WO2006106739A1 - 半導体加速度センサ - Google Patents

半導体加速度センサ Download PDF

Info

Publication number
WO2006106739A1
WO2006106739A1 PCT/JP2006/306481 JP2006306481W WO2006106739A1 WO 2006106739 A1 WO2006106739 A1 WO 2006106739A1 JP 2006306481 W JP2006306481 W JP 2006306481W WO 2006106739 A1 WO2006106739 A1 WO 2006106739A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
axis direction
acceleration sensor
semiconductor acceleration
axis
Prior art date
Application number
PCT/JP2006/306481
Other languages
English (en)
French (fr)
Inventor
Yutaka Hattori
Yasuo Hatano
Original Assignee
The Yokohama Rubber Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Yokohama Rubber Co., Ltd. filed Critical The Yokohama Rubber Co., Ltd.
Priority to US11/815,556 priority Critical patent/US7827865B2/en
Priority to EP06730429A priority patent/EP1865329B1/en
Publication of WO2006106739A1 publication Critical patent/WO2006106739A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Definitions

  • the present invention relates to a semiconductor acceleration sensor, and more particularly to a semiconductor acceleration sensor that detects accelerations in directions orthogonal to each other with appropriate sensitivity.
  • a semiconductor acceleration sensor is provided in a vehicle such as an automobile or in a tire, and a semiconductor acceleration sensor is used for controlling the posture of the vehicle or detecting distortion of the tire.
  • FIGS. 21 is an external perspective view
  • FIG. 22 is a cross-sectional view taken along line AA shown in FIG. 21
  • FIG. 23 is a cross-sectional view taken along line BB shown in FIG.
  • the semiconductor acceleration sensor 20 includes a pedestal 21 having a rectangular frame shape, and is manufactured by attaching a silicon substrate 22 on one opening surface of the pedestal 21.
  • a thin film diaphragm 23 having a cross shape is formed at the center of the silicon substrate 22 corresponding to the opening of the pedestal 21, and the piezoresistors 26 are formed on the upper surfaces of the diaphragm pieces 23a to 23d.
  • a thick film portion 24 is formed on one surface side of the central portion of the diaphragm 23 at the intersection of the diaphragm pieces 23a to 23d, and the surface of the thick film portion 24 has, for example, a rectangular parallelepiped shape having a glass isotropic force.
  • a weight 25 is attached.
  • the diaphragm pieces 23a to 23d are distorted, thereby causing the resistance of the piezoresistors 26 to The value changes. Accordingly, by forming a resistance bridge circuit by the piezoresistors 26 provided on the predetermined diaphragm pieces 23a to 23d, it is possible to detect acceleration in a predetermined direction, for example, the X axis, Y axis, and Z axis directions orthogonal to each other. it can.
  • semiconductor acceleration sensor As an example of the semiconductor acceleration sensor as described above, there are known semiconductor acceleration sensors disclosed in, for example, JP-A-8-75775 and JP-A-2000-28633! .
  • Patent Document 1 JP-A-8-75775
  • Patent Document 2 JP 2000-28633 A
  • the X-axis direction is suitable for detecting acceleration of up to about 500G.
  • the Y-axis direction can only detect acceleration of several G at most, and a semiconductor acceleration sensor whose sensitivity varies depending on the direction of acceleration is required.
  • an object of the present invention is to provide a semiconductor acceleration sensor capable of detecting accelerations in two directions parallel to a diaphragm surface and orthogonal to each other with appropriate sensitivity.
  • the present invention provides a silicon wafer in which a diaphragm is formed in a wafer outer peripheral frame portion, a pedestal for fixing the wafer outer peripheral frame portion, and a central portion of one surface of the diaphragm.
  • a weight that is provided and extends from the center of the diaphragm surface to the wafer outer peripheral frame portion along the X-axis direction and the Y-axis direction that are parallel to and orthogonal to the surface of the diaphragm!
  • the cross-sectional areas perpendicular to the respective axes at predetermined positions of the plurality of beams are respectively set according to the maximum acceleration values in the X-axis direction and the Y-axis direction.
  • a semiconductor acceleration sensor is proposed.
  • the wafer outer peripheral frame extends from the center of the diaphragm surface along the X-axis direction and the Y-axis direction that are parallel to the diaphragm surface and orthogonal to each other.
  • a plurality of beams extending to the section are provided, and the cross-sectional area perpendicular to each axis at a predetermined position of the beam is set in accordance with the maximum acceleration in each of the X-axis direction and the Y-axis direction.
  • the diaphragm is distorted in the direction in which the force acts, but its displacement is inversely proportional to the cross-sectional area of the beam. Therefore, when the same magnitude of acceleration is applied to each of the X-axis and Y-axis directions
  • the beams are displaced in inverse proportion to the maximum acceleration of the respective axes.
  • the same semiconductor acceleration sensor is proposed.
  • the cross-sectional areas at two points symmetrical about the center are the same in the beam in the X-axis direction and the beam in the Y-axis direction.
  • the diaphragm is distorted in the direction in which the force acts, but the displacement is inversely proportional to the cross-sectional area of the beam. Accordingly, the beams are displaced symmetrically with respect to the center.
  • the cross-sectional area of the beam along the X-axis direction and the beam along the Z-axis or the Y-axis direction increases from the center toward the wafer outer peripheral frame.
  • a semiconductor acceleration sensor is proposed.
  • At least one of the cross-sectional area of the beam along the X-axis direction and the beam along the Y-axis direction is cut toward the central force toward the outer peripheral frame portion. Increases area.
  • the diaphragm is distorted in the direction in which the force acts.
  • the displacement is inversely proportional to the cross-sectional area of the beam. Accordingly, each beam is displaced more as it is closer to the center.
  • the present invention provides the semiconductor acceleration sensor configured as described above, wherein the acceleration in the X-axis direction, the Y-axis direction, and the Z-axis direction perpendicular to the surface of the diaphragm can be detected.
  • a semiconductor acceleration device comprising: a diffusion resistor disposed on each of the plurality of beams; and a connection electrode connected to the diffusion resistor on the wafer outer peripheral frame corresponding to each of the plurality of beams.
  • a sensor is proposed.
  • the plurality of the plurality of the plurality of accelerations can be detected so as to detect the respective accelerations in the X-axis direction and the Y-axis direction and in the Z-axis direction perpendicular to the diaphragm surface.
  • Diffusion resistors are arranged along each of the beams, and these diffusion resistance antibodies are connected to electrodes provided on the wafer outer peripheral frame.
  • the An external circuit can be connected to the diffused resistor through the electrode, and the resistance value of the diffused resistor changes with the displacement of the diaphragm.
  • the present invention also proposes a semiconductor acceleration sensor having the above-described configuration, wherein the diaphragm is a silicon piezo-type diaphragm.
  • the resistance value of the piezoresistor changes with the displacement of the diaphragm.
  • the present invention provides a center surface of the diaphragm and a surface of the weight corresponding to Z or the center portion on one surface side and Z or the other surface side of the diaphragm.
  • Force A semiconductor acceleration sensor is proposed in which a protrusion is provided that is fixed at a predetermined interval and protrudes in opposition to the central portion.
  • the semiconductor acceleration sensor having the above-described configuration, when a force of a predetermined value or more is applied due to acceleration generated in a direction perpendicular to the surface of the diaphragm, the diaphragm is distorted and extended in the direction in which the force acts. Since the displacement is limited by the protrusion, the diaphragm does not fully extend. As a result, even if excessive acceleration occurs in a direction perpendicular to the surface of the diaphragm, the position of the weight is displaced with the apex of the protrusion serving as a fulcrum, so the direction parallel to the surface of the diaphragm It is possible to detect the acceleration.
  • the present invention provides the semiconductor acceleration sensor configured as described above, wherein the protrusion is fixedly supported by the wafer outer peripheral frame and Z or the pedestal, and is provided at the center of the other surface of the diaphragm.
  • a semiconductor acceleration sensor is proposed in which the central portion of the other surface of the diaphragm is projected at a predetermined interval so as to project oppositely.
  • the diaphragm when a force of a predetermined value or more is applied to the other surface side of the diaphragm due to acceleration generated in a direction perpendicular to the surface of the diaphragm, the diaphragm Is a force that is distorted and stretched in the direction in which the force is applied, and its displacement is limited by the projections, so that the diaphragm does not fully stretch.
  • the position of the weight is displaced with the apex of the protrusion as a fulcrum, so that the surface of the diaphragm is displaced.
  • the present invention provides the semiconductor acceleration sensor configured as described above, wherein the protrusion is supported by being connected and fixed to the wafer outer peripheral frame and z or the pedestal, and protrudes facing the surface of the weight.
  • a semiconductor acceleration sensor is proposed in which the force of the central portion of the weight is provided at a predetermined interval.
  • the diaphragm when a force of a predetermined value or more is applied to one side of the diaphragm due to acceleration generated in a direction perpendicular to the surface of the diaphragm, the diaphragm Is a force that is distorted and stretched in the direction in which the force works, and its displacement is limited by the projections, so that the diaphragm does not fully stretch.
  • the present invention provides the semiconductor acceleration sensor having the above-described configuration, wherein the central surface of the diaphragm and the tip of the projection corresponding to the surface of the weight corresponding to Z or the central portion are conical.
  • a semiconductor acceleration sensor having a tip shape is proposed.
  • the semiconductor acceleration sensor having the above configuration, when a force of a predetermined value or more is applied due to acceleration generated in a direction perpendicular to the surface of the diaphragm, the diaphragm is distorted and extended in the direction in which the force acts. The displacement is supported and limited by the conical tip of the protrusion, so that the diaphragm does not extend to the maximum and excessive acceleration occurs in a direction perpendicular to the surface of the diaphragm.
  • the position of the weight is displaced with the apex of the protrusion serving as a fulcrum, acceleration in a direction parallel to the surface of the diaphragm can be detected.
  • the diaphragm pieces which are beams arranged in a straight line along the X-axis direction parallel to the plane of the diaphragm and orthogonal to each other, and the beams arranged in a straight line along the Y-axis direction
  • the area of the cross section perpendicular to each axis of the diaphragm piece is symmetrical with respect to the center of the diaphragm, and is set according to the maximum value of acceleration in the X-axis direction or Y-axis direction. Displaces in inverse proportion to the maximum value and detects acceleration in two directions parallel to the diaphragm surface and perpendicular to each other with appropriate sensitivity. can do.
  • the diaphragm's central force is also directed toward the wafer outer peripheral frame to increase the cross-sectional area, so that the diaphragm piece is displaced more as it is closer to the center of the diaphragm, and the change in the piezoresistor becomes more significant, resulting in higher accuracy. Acceleration can be detected.
  • FIG. 1 is an external perspective view showing a semiconductor acceleration sensor according to a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing an electric circuit of the semiconductor acceleration sensor according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a bridge circuit that detects acceleration in the X-axis direction using the semiconductor acceleration sensor according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a bridge circuit that detects acceleration in the Y-axis direction using the semiconductor acceleration sensor according to the first embodiment of the present invention.
  • FIG. 5 is a diagram showing a bridge circuit that detects acceleration in the Z-axis direction using the semiconductor acceleration sensor according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view taken along the line CC in FIG.
  • FIG. 7 is a cross-sectional view in the direction of arrows D—D in FIG.
  • FIG. 8 is a cross-sectional view taken along line C1-C1 in FIG.
  • FIG. 9 is a cross-sectional view taken along the line D1-D1 in FIG.
  • FIG. 10 is a diagram showing an experimental result of acceleration detected by the diaphragm according to the first embodiment of the present invention.
  • Fig. 11 shows an experiment of acceleration detected by the diaphragm according to the first embodiment of the present invention. It is a figure which shows a result.
  • FIG. 12 is a diagram for explaining the operation of the semiconductor acceleration sensor according to the first embodiment of the present invention.
  • FIG. 13 is a diagram for explaining the operation of the semiconductor acceleration sensor according to the first embodiment of the present invention.
  • FIG. 14 is an external perspective view showing another example of the semiconductor acceleration sensor according to the first embodiment of the present invention.
  • FIG. 15 is a cross-sectional view taken along the line EE in FIG.
  • FIG. 16 is a cross-sectional view in the direction of arrow E1-E1 in FIG.
  • FIG. 17 is a cross-sectional view in the direction of arrow E2-E2 in FIG.
  • FIG. 18 is an exploded perspective view showing a semiconductor acceleration sensor according to a second embodiment of the present invention.
  • FIG. 19 is a side sectional view showing a semiconductor acceleration sensor according to a second embodiment of the present invention.
  • FIG. 20 is a diagram for explaining the operation of the semiconductor acceleration sensor according to the second embodiment of the present invention.
  • FIG. 21 is an external perspective view showing a conventional semiconductor acceleration sensor.
  • FIG. 22 is a cross-sectional view taken along line AA in FIG.
  • FIG. 23 is a cross-sectional view in the direction of the arrows BB in FIG.
  • 10A, 10B Semiconductor acceleration sensor, 11: Pedestal, 12: Silicon substrate, 12a: Ueno, outer frame, 121 ... Electrode, 13 ... Diaphragm, 13a-13d ... Diaphragm piece, 14 .... Thick film part, 15 ... Weight, 16 ... Support, 161 ... Outer frame part, 162 ... Post, 163 ... Beam part, 16 ⁇ ... Projection part, 164a ... tip, 31A to 31C ... voltage detector, 32A to 32C ... DC power supply, 50 ... support, 501 ... outer frame, 502 ... support, 503 ... beam, 504 ... projection, 504a ... tip, d 1 ⁇ Distance, Rxl to Rx4, Ryl to Ry4, Rzl to Rz4 ... Piezoresistors (diffusion resistors).
  • FIG. 1 is an external perspective view showing a semiconductor acceleration sensor according to the first embodiment of the present invention.
  • the semiconductor acceleration sensor 10 includes a pedestal 11 and a silicon substrate 12.
  • the pedestal 11 has a rectangular frame shape, and a silicon substrate (silicon wafer) 12 is attached to one opening surface of the pedestal 11.
  • a silicon substrate 12 is provided in the opening of the pedestal 11, and a thin film diaphragm 13 having a cross shape is formed in the center of the wafer outer peripheral frame portion 12 a of the silicon substrate 12.
  • the diaphragm 13 includes four diaphragm pieces 13a to 13d, which are four beams respectively extending from the center of the diaphragm surface to the wafer outer peripheral frame portion 12a along the X-axis direction and the Y-axis direction orthogonal to each other.
  • Piezoresistors (diffusion resistors) Rxl to Rx4, Ryl to Ry4, Rzl to Rz4 are formed on the upper surface.
  • one diaphragm piece 13a of the diaphragm pieces 13a and 13b arranged in a straight line is formed with piezoresistors Rxl, Rx2, Rzl, and Rz2, and the other diaphragm piece 13b is formed on the other diaphragm piece 13b.
  • Piezoresistors Rx3, Rx4, Rz3, Rz4 are formed.
  • Piezoresistors Ryl and Ry2 are formed on one diaphragm piece 13c of the diaphragm piece 13c and the diaphragm piece 13d arranged on a straight line perpendicular to the diaphragm piece 13a and the diaphragm piece 13b, and the other diaphragm piece.
  • piezoresistors Ry3 and Ry4 are formed in 13d.
  • the piezoresistors Rxl ⁇ : Rx4, Ryl ⁇ Ry4, Rzl ⁇ Rz4 can configure a resistance bridge circuit for detecting acceleration in the X-axis, Y-axis, and Z-axis directions orthogonal to each other. 2 is connected to the connection electrode 121 provided on the outer peripheral surface of the silicon substrate 12 as shown in FIG.
  • a thick film portion 14 is formed on one surface side of the central portion of the diaphragm 13 at the intersection of the diaphragm pieces 13a to 13d, and the surface of the thick film portion 14 has, for example, a glass isotropic force.
  • a shaped weight 15 is attached.
  • FIGS. three resistance bridge circuits are configured as shown in FIGS. That is, as a bridge circuit for detecting acceleration in the X-axis direction, as shown in FIG. 3, the positive electrode of the DC power supply 32A is connected to the connection point between one end of the piezoresistor Rxl and one end of the piezoresistor Rx2. Connect one end of the piezoresistor Rx3 to the piezo resistor Connect the negative electrode of DC power supply 32A to the connection point with one end of antibody Rx4.
  • one end of the voltage detector 31 A is connected to the connection point between the other end of the piezoresistor Rxl and the other end of the piezoresistor Rx4, and the other end of the piezoresistor Rx2 and the piezoresistor Rx3 Connect the other end of the voltage detector 3 1A to the connection point.
  • the positive electrode of the DC power supply 32B is connected to the connection point between one end of the piezoresistor Ryl and one end of the piezoresistor Ry2. And connect the negative electrode of DC power supply 32B to the connection point between one end of piezoresistor Ry3 and one end of piezoresistor Ry4. Furthermore, one end of the voltage detector 3 IB is connected to the connection point between the other end of the piezoresistor Ryl and the other end of the piezoresistor Ry4, and the other end of the piezoresistor Ry2 and the piezoresistor Ry3 are connected. Connect the other end of the voltage detector 31B to the connection point with the other end.
  • the DC power supply 32C is connected to the connection point between one end of the piezoresistor Rzl and one end of the piezoresistor Rz2. Connect the poles, and connect the negative electrode of the DC power supply 32C to the connection point between one end of the piezoresistor Rz3 and one end of the piezoresistor Rz4. Furthermore, one end of the voltage detector 31C is connected to the connection point between the other end of the piezoresistor Rzl and the other end of the piezoresistor Rz3, and the other end of the piezoresistor Rz2 and the other end of the piezoresistor Rz4 are connected. Connect the other end of the voltage detector 31C to the connection point.
  • the diaphragm pieces 13a to 13d are distorted, which causes the piezoresistors Rxl to Rx4, Ryl to Ry4, Rz.
  • the resistance value of l to Rz4 changes. Therefore, the piezoresistors Rxl to Rx4, Ryl to Ry4, and Rzl to Rz4 provided on the diaphragm pieces 13a to 13d form a resistance bridge circuit, so that they are orthogonal to each other in the X-axis, Y-axis, and Z-axis directions.
  • the acceleration of is detected.
  • FIG. 6 is a cross-sectional view taken along the CC line in FIG. 1
  • FIG. 7 is a cross-sectional view taken along the D-D line in FIG. 1
  • FIG. 8 is a cross-sectional view taken along the C1 C1 line in FIG.
  • FIG. 2 is a cross-sectional view taken along line D1-D1 in FIG.
  • a diaphragm piece 13a and a diaphragm piece 13b arranged on a straight line along the X-axis direction, and a diaphragm piece 13c and a diaphragm piece 13d arranged on a straight line along the Y-axis direction are arranged on each axis.
  • the cross-sectional area is perpendicular and the X-axis direction or Y-axis direction, respectively. It is set according to the maximum value of acceleration in the direction.
  • the cross-sectional areas of the diaphragm piece 13a and the diaphragm 13b along the X-axis direction are the Y-axis direction.
  • the cross-sectional areas of the diaphragm pieces 13c and the diaphragms 13d are increased.
  • the diaphragm 13 When force is applied by acceleration, the diaphragm 13 is distorted in the direction in which the force acts. The displacement is inversely proportional to the cross-sectional areas of the diaphragm pieces 13a to 13d. Therefore, when the same magnitude of acceleration is applied to each of the X-axis direction and the Y-axis direction, the diaphragm pieces 13a to 13d are displaced in inverse proportion to the maximum acceleration values of the respective axes. Further, the cross-sectional areas of the diaphragm pieces 13a to 13d are uniform and symmetric with respect to the center of the diaphragm 13, so that they are displaced symmetrically with respect to the center.
  • Applied acceleration is 0 or more: In LOO [G], the difference between the detected acceleration on the X-axis and the Y-axis is within 1% each, and the detected acceleration in the Z-axis direction is 3% different from the applied acceleration. Was within.
  • accelerations of the same magnitude are generated in the X-axis and Y-axis directions, which are two directions parallel to the surface of the diaphragm 13 and orthogonal to each other.
  • the diaphragm 13 is a force that extends in the direction in which the forces 41 and 42 work.
  • the diaphragm piece 13a and the diaphragm piece 13b have a large cross-sectional area, so they are hardly displaced by the force 41, whereas the diaphragm piece 13c and the diaphragm piece 13d have a cross-sectional area. Therefore, the force is greatly displaced by the force 42.
  • the cross-sectional areas of the diaphragm pieces 13a to 13d are symmetrical with respect to the center of the diaphragm 13. It only has to be. As shown in Fig. 14 to Fig.
  • the cross-sectional area is increased from the center of the diaphragm 13 toward the wafer outer peripheral frame portion 12a, so that the diaphragm piece 13a and the diaphragm piece 13b Is displaced more as it is closer to the center.
  • the piezoresistors Rxl to Rx4 are formed and the cross-sectional area is changed stepwise at other positions, the resistance values of the piezoresistors Rxl to Rx4 change significantly. Become.
  • the area of the cross section perpendicular to each axis of the diaphragm piece 13c and the diaphragm piece 13d arranged in a straight line along 13b and the Y-axis direction is symmetric with respect to the center of the diaphragm 13, and is respectively in the X-axis direction or the Y-axis direction.
  • displacement is inversely proportional to the maximum value of acceleration of each axis, and acceleration in two directions parallel to the surface of diaphragm 13 and orthogonal to each other is detected with appropriate sensitivity.
  • the central force of the diaphragm 13 is directed toward the wafer outer peripheral frame portion 12a to increase the cross-sectional area, so that the diaphragm pieces 13a to 13d are displaced more toward the center of the diaphragm 13, and the piezoresistors Rxl to: Rx4, Changes in Ryl to Ry4 and Rzl to Rz4 become prominent, and acceleration can be detected with higher accuracy.
  • FIG. 18 is an exploded perspective view showing a semiconductor acceleration sensor according to the second embodiment of the present invention
  • FIG. 19 is a side sectional view thereof
  • FIG. 20 is a view for explaining the operation thereof.
  • the same components as those of the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.
  • the difference between the second embodiment and the first embodiment is that, in the second embodiment, in addition to the configuration of the first embodiment, both the side where the weight 15 of the diaphragm 13 is present and the side where the weight 15 is not present are arranged. This is because the support bodies 16 and 50 having the protrusions are provided.
  • the semiconductor acceleration sensor 10B is composed of a pedestal 11, a silicon substrate 12, and supports 16, 50, and the outer frame 161 of the support 16 is fixed to the outer periphery of the pedestal 11.
  • the support body 16 is provided so as to connect an outer frame portion 161 having a rectangular frame shape, four support columns 162 erected at four corners of the outer frame portion 161, and tip portions of the support columns 162.
  • Cross-shaped beam It is composed of a part 163 and a conical projection 164 provided at the central intersection of the beam part 163.
  • the outer frame portion 161 is fitted and fixed to the outer peripheral portion of the base 11 so that the protruding portion 164 is located on the other surface side of the diaphragm 13, that is, on the side where the weight 15 is not present.
  • the tip 164 a of the protrusion 164 is set to be at a distance dl from the surface of the diaphragm 13. This distance dl is generated when acceleration occurs in a direction perpendicular to the surface of the diaphragm 13 and a force of a predetermined value or more is applied to the other surface side of the diaphragm 13, that is, the side where the weight 15 does not exist.
  • the displacement is set to a value that can be limited by the projection 164 so that the diaphragm pieces 13c and the diaphragm pieces 13d are not fully extended.
  • the support body 50 is provided so as to connect an outer frame portion 501 having a rectangular frame shape, four support columns 502 erected at the four corners of the outer frame portion 501, and a tip portion of each support column 502.
  • the cross-shaped beam portion 503 and a conical projection portion 504 provided at the central intersection of the beam portion 503 are configured.
  • the outer frame portion 501 is fixed to the outer peripheral portion of the pedestal 11 so that the protruding portion 504 is positioned on the bottom surface side of the weight 15.
  • the tip 504a of the protrusion 504 is set so that the bottom surface force of the weight 15 is also at a distance dl.
  • This distance dl is generated when acceleration occurs in a direction perpendicular to the surface of the diaphragm 13, and a force of a predetermined value or more is applied to one surface side of the diaphragm 13, that is, the weight 15 due to this acceleration.
  • the displacement is set to a value that can be limited by the projection 504 so that the diaphragm piece 13c and the diaphragm piece 13d do not fully extend.
  • the acceleration at which the force 43 including the force component in the direction perpendicular to the surface of the diaphragm 13 is applied.
  • the diaphragm 13 is distorted and extended in the direction in which the force 43 acts.
  • the displacement is supported and limited by the tip 1 64a of the protrusion 164. Therefore, the diaphragm piece 13c and the diaphragm piece 13d are not fully extended.
  • the diaphragm pieces 13a to 13d whose cross-sectional area is reduced in order to change the sensitivity because the position of the weight 15 is displaced with 04a as a fulcrum, are effectively parallel to the surface of the diaphragm 13 and directly intersect with each other. Acceleration in two directions can be detected.
  • the acceleration sensor can detect acceleration in the X-axis direction and Y-axis direction with appropriate sensitivity, so there are applications for vehicles that require different sensitivities depending on the longitudinal and lateral directions of the vehicle. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

 ダイアフラムの面に平行で互いに直交する2方向における加速度をそれぞれ適切な感度で検出することができる半導体加速度センサを提供することである。  ダイアフラムの面の中心から互いに直交するX軸方向及びY軸方向に沿って、ウェハ外周枠部12aへそれぞれ延びている各ダイアフラム片13a~13dからなり、その上面にピエゾ抵抗体Rx1~Rx4,Ry1~Ry4,Rz1~Rz4が形成されている半導体加速度センサ10を構成する。X軸方向に沿って一直線上に配置されたダイアフラム片13a及びダイアフラム片13bと、Y軸方向に沿って一直線上に配置されたダイアフラム片13c及びダイアフラム片13dにおいて、その軸に直交する断面の面積がそれぞれX軸方向又はY軸方向の加速度の最大値にあわせて設定されている。                                                                         

Description

明 細 書
半導体加速度センサ
技術分野
[0001] 本発明は、半導体加速度センサに関し、特に互いに直交する方向の加速度をそれ ぞれ適切な感度で検出する半導体加速度センサに関するものである。
背景技術
[0002] 従来、自動車等の車両やタイヤ内に設けられ、車両の姿勢制御を行うため或いは タイヤの歪みを検知するために半導体加速度センサが用いられて 、る。
[0003] この種の半導体加速度センサの一例を図 21乃至図 23を参照して説明する。図 21 は外観斜視図、図 22は図 21に示す A— A線矢視方向断面図、図 23は図 21に示す B— B線矢視方向断面図である。図に示すように、半導体加速度センサ 20は、矩形 の枠型をなした台座 21を備え、台座 21の一開口面上にシリコン基板 22が取り付けら れて作製されている。
[0004] また、台座 21の開口部に対応するシリコン基板 22の中央部は十字形状をなす薄 膜のダイアフラム 23が形成されており、各ダイアフラム片 23a〜23dの上面にピエゾ 抵抗体 26が形成されている。さらに、ダイアフラム片 23a〜23dの交差部には、ダイ ァフラム 23の中央部の一方の面側に厚膜部 24が形成され、この厚膜部 24の表面に は例えばガラス等力もなる直方体形状の重錘 25が取り付けられている。
[0005] 上記構成をなす半導体加速度センサ 20は、加速度に伴って発生する力が重錘 25 に加わると、各ダイアフラム片 23a〜23dに歪みが生じ、これによつてピエゾ抵抗体 2 6の抵抗値が変化する。従って、所定のダイアフラム片 23a〜23dに設けられたピエ ゾ抵抗体 26によって抵抗ブリッジ回路を形成することにより所定方向、例えば互いに 直交する X軸、 Y軸、 Z軸方向の加速度を検出することができる。
[0006] 上記のような半導体加速度センサの一例としては、例えば、特開平 8— 75775号公 報、特開 2000— 28633号公報に開示されて 、る半導体加速度センサが知られて!/ヽ る。
特許文献 1:特開平 8— 75775号公報 特許文献 2:特開 2000— 28633号公報
発明の開示
発明が解決しょうとする課題
[0007] 例えば、車両の前後方向を X軸、左右方向を Y軸、上下方向を Z軸として加速度セ ンサが設けられている場合、 X軸方向は最大 500G程度の加速度を検出するのに対 し、 Y軸方向はせいぜい数 G程度の加速度を検出するに留まり、加速度の方向により 感度が異なる半導体加速度センサが必要とされている。
[0008] しかしながら、前述した従来の半導体加速度センサにおいては、 X軸、 Y軸、 Z軸方 向の加速度の感度がほとんど同じであり、 X軸方向の加速度の最大値にあわせると Y 軸方向の微小な加速度の変化が検出できず、 Y軸方向の加速度の最大値にあわせ ると X軸方向の所定値以上の加速度を検出できないおそれがあった。
[0009] 本発明の目的は上記の問題点に鑑み、ダイァフラムの面に平行で互いに直交する 2方向における加速度をそれぞれ適切な感度で検出することができる半導体加速度 センサを提供することである。
課題を解決するための手段
[0010] 本発明は上記の目的を達成するために、ウェハ外周枠部内にダイァフラムが形成 されたシリコンウェハと、前記ウェハ外周枠部を固定する台座と、前記ダイァフラムの 一方の面の中央部に設けられた重錘と、前記ダイァフラムの面に対して平行で且つ 互いに直交する X軸方向及び Y軸方向に沿って、前記ダイァフラムの面の中心から 前記ウェハ外周枠部へそれぞれ延びて!/、る複数の梁とを備え、該複数の梁の所定 位置における各軸に直交する断面の面積が、前記 X軸方向及び Y軸方向のそれぞ れの加速度の最大値にあわせてそれぞれ設定されている半導体加速度センサを提 案する。
[0011] 上記構成よりなる半導体加速度センサによれば、前記ダイァフラムの面に対して平 行で且つ互いに直交する X軸方向及び Y軸方向に沿って、前記ダイァフラムの面の 中心から前記ウェハ外周枠部へ延びている複数の梁を備え、前記 X軸方向及び Y軸 方向のそれぞれの加速度の最大値にあわせて前記梁の所定位置における各軸に直 交する断面の面積が設定されている。ここで、加速度により力が加わった場合、前記 ダイアフラムは力の働く方向に歪むが、その変位は前記梁の前記断面積に反比例す る。従って、 X軸方向及び Y軸方向のそれぞれに同じ大きさの加速度が加わったとき
、前記各梁はそれぞれの軸の加速度の最大値に反比例して変位する。
[0012] また、本発明は、上記構成の半導体加速度センサにおいて、前記 X軸方向に沿う 梁及び前記 Y軸方向に沿う梁において、前記中心に関し対称な 2点の前記断面積が ぞれぞれ同一である半導体加速度センサを提案する。
[0013] 上記構成よりなる半導体加速度センサによれば、前記 X軸方向の梁と前記 Y軸方 向の梁とにおいて前記中心に関し対称な 2点の前記断面積がぞれぞれ同一である。 ここで、加速度により力が加わった場合、前記ダイアフラムは力の働く方向に歪むが 、その変位は前記梁の前記断面積に反比例する。従って、前記各梁は前記中心に 関して対称に変位する。
また、本発明は、上記構成の半導体加速度センサにおいて、前記 X軸方向に沿う梁 及び Z又は前記 Y軸方向に沿う梁において、前記中心から前記ウェハ外周枠部に 向かって前記断面積が大きくなる半導体加速度センサを提案する。
[0014] 上記構成よりなる半導体加速度センサによれば、前記 X軸方向に沿う梁及び前記 Y軸方向に沿う梁の少なくとも一方の断面積が前記中心力 前記ゥ ハ外周枠部に 向かって前記断面積が大きくなる。ここで、加速度により力が加わった場合、前記ダイ ァフラムは力の働く方向に歪む力 その変位は前記梁の前記断面積に反比例する。 従って、前記各梁は中心に近いほど大きく変位する。
[0015] また、本発明は、上記構成の半導体加速度センサにおいて、前記 X軸方向及び Y 軸方向並びに前記ダイァフラムの面に対して垂直な Z軸方向のそれぞれの加速度を 検出可能なように、前記複数の梁のそれぞれに拡散抵抗体が配置されていると共に 、前記複数の梁のそれぞれに対応する前記ウェハ外周枠部上に前記拡散抵抗体に 接続された接続用の電極を備えている半導体加速度センサを提案する。
[0016] 上記構成よりなる半導体加速度センサによれば、前記 X軸方向及び Y軸方向並び に前記ダイァフラムの面に対して垂直な Z軸方向のそれぞれの加速度を検出可能な ように、前記複数の梁のそれぞれに沿って拡散抵抗体が配置され、これらの拡散抵 抗体は前記ウェハ外周枠部上に設けられた電極に接続されている。これにより、前記 電極を介して前記拡散抵抗体に外部回路を接続することができ、前記ダイァフラムの 変位に伴って前記拡散抵抗体の抵抗値が変化する。
[0017] また、本発明は、上記構成の半導体加速度センサにおいて、前記ダイアフラムはシ リコンピエゾ型のダイァフラムである半導体加速度センサを提案する。
[0018] 上記構成よりなる半導体加速度センサによれば、前記ダイァフラムの変位に伴って ピエゾ抵抗体の抵抗値が変化する。
[0019] また、本発明は、上記構成の半導体加速度センサにおいて、前記ダイァフラムの一 面側及び Z又は他面側に、ダイァフラムの中央部表面及び Z又は該中央部に対応 する前記重錘の表面力 所定の間隔をあけた位置に固定され、該中央部に対向して 突出する突起部が設けられている半導体加速度センサを提案する。
[0020] 上記構成よりなる半導体加速度センサによれば、前記ダイァフラムの面に垂直な方 向に生ずる加速度により所定値以上の力が加わった場合、前記ダイアフラムは前記 力の働く方向に歪んで伸びるが、その変位は前記突起部によって制限されるため、 ダイァフラムが最大限に伸びきることがない。これにより、前記ダイァフラムの面に垂 直な方向に過度の加速度が生じた場合も、前記突起部の頂点が支点となって前記 重錘の位置が変位するので、前記ダイァフラムの面に平行な方向の加速度を検出す ることがでさる。
[0021] また、本発明は、上記構成の半導体加速度センサにおいて、前記突起部は、前記 ウェハ外周枠部及び Z又は前記台座に固定されて支持され、前記ダイァフラムの他 方の面の中央部に対向して突出するように、前記ダイァフラムの他方の面の中央部 力 所定の間隔をあけた位置に設けられている半導体加速度センサを提案する。
[0022] 上記構成よりなる半導体加速度センサによれば、前記ダイァフラムの面に垂直な方 向に生ずる加速度により、前記ダイァフラムの他方の面の側に所定値以上の力が加 わった場合、前記ダイアフラムは前記力の働く方向に歪んで伸びる力 その変位は 前記突起部によって制限されるため、ダイァフラムが最大限に伸びきることがない。こ れにより、前記ダイァフラムの他方の面の側に所定値以上の力が加わった場合も、前 記突起部の頂点が支点となって前記重錘の位置が変位するので、前記ダイアフラム の面に平行な方向の加速度を検出することができる。 [0023] また、本発明は、上記構成の半導体加速度センサにおいて、前記突起部は、前記 ウェハ外周枠部及び z又は前記台座に連結固定されて支持され、前記重錘の表面 に対向して突出するように、該重錘の中央部力 所定の間隔をあけた位置に設けら れて 、る半導体加速度センサを提案する。
[0024] 上記構成よりなる半導体加速度センサによれば、前記ダイァフラムの面に垂直な方 向に生ずる加速度により、前記ダイァフラムの一方の面の側に所定値以上の力が加 わった場合、前記ダイアフラムは前記力の働く方向に歪んで伸びる力 その変位は 前記突起部によって制限されるため、ダイァフラムが最大限に伸びきることがない。こ れにより、前記ダイァフラムの一方の面の側に所定値以上の力が加わった場合も、前 記突起部の頂点が支点となって前記重錘の位置が変位するので、前記ダイアフラム の面に平行な方向の加速度を検出することができる。
[0025] また、本発明は、上記構成の半導体加速度センサにおいて、前記ダイァフラムの中 央部表面及び Z又は該中央部に対応する前記重錘の表面に対応する前記突起部 の先端は錐形の先端形状をなしている半導体加速度センサを提案する。
[0026] 上記構成よりなる半導体加速度センサによれば、前記ダイァフラムの面に垂直な方 向に生ずる加速度により所定値以上の力が加わった場合、前記ダイアフラムは前記 力の働く方向に歪んで伸びるが、その変位は前記突起部の錐形をなす先端によって 支持されて制限されるため、ダイァフラムが最大限に伸びきることがないと共に、前記 ダイァフラムの面に垂直な方向に過度の加速度が生じた場合も、前記突起部の頂点 が支点となって前記重錘の位置が変位するので、前記ダイァフラムの面に平行な方 向の加速度を検出することができる。
発明の効果
[0027] 本発明によれば、ダイァフラムの面に平行で互いに直交する X軸方向に沿って一 直線上に配置された梁であるダイアフラム片及び Y軸方向に沿って一直線上に配置 された梁であるダイアフラム片の各軸に直交する断面の面積がダイァフラムの中心に 関し対称で、それぞれ X軸方向又は Y軸方向の加速度の最大値にあわせて設定さ れることにより、それぞれの軸の加速度の最大値に反比例して変位し、ダイアフラム の面に平行で互いに直交する 2方向における加速度をそれぞれ適切な感度で検出 することができる。また、ダイァフラムの中心力もウェハ外周枠部に向力つて断面積を 大きくすることにより、ダイアフラム片はダイァフラムの中心に近いほど大きく変位する と共に、ピエゾ抵抗体の変化が顕著になり、より高精度に加速度を検出することがで きる。
[0028] さらに、ダイァフラムの面に垂直な方向に過度の加速度が生じた場合、突起部の頂 点が支点となって重錘の位置が変位するので、感度を変えるため断面積を小さくした ダイアフラム片においても、効果的にダイァフラムの面に平行で互 ヽに直交する 2方 向における加速度を検出することができるという非常に優れた効果を奏する。
[0029] 本発明の前記目的とそれ以外の目的と、特徴と、利益は、以下の説明と添付図面 によって明らかになる。
図面の簡単な説明
[0030] [図 1]図 1は本発明の第 1実施形態における半導体加速度センサを示す外観斜視図 である。
[図 2]図 2は本発明の第 1実施形態における半導体加速度センサの電気系回路を示 す構成図である。
[図 3]図 3は本発明の第 1実施形態における半導体加速度センサを用いた X軸方向 の加速度を検出するブリッジ回路を示す図である。
[図 4]図 4は本発明の第 1実施形態における半導体加速度センサを用いた Y軸方向 の加速度を検出するブリッジ回路を示す図である。
[図 5]図 5は本発明の第 1実施形態における半導体加速度センサを用いた Z軸方向 の加速度を検出するブリッジ回路を示す図である。
[図 6]図 6は図 1における C— C線矢視方向断面図である。
[図 7]図 7は図 1における D— D線矢視方向断面図である。
[図 8]図 8は図 6における C1— C1線矢視方向断面図である。
[図 9]図 9は図 7における D1— D1線矢視方向断面図である。
[図 10]図 10は本発明の第 1実施形態におけるダイァフラムが検出する加速度の実験 結果を示す図である。
[図 11]図 11は本発明の第 1実施形態におけるダイァフラムが検出する加速度の実験 結果を示す図である。
[図 12]図 12は本発明の第 1実施形態における半導体加速度センサの動作を説明す る図である。
[図 13]図 13は本発明の第 1実施形態における半導体加速度センサの動作を説明す る図である。
[図 14]図 14は本発明の第 1実施形態における他の例の半導体加速度センサを示す 外観斜視図である。
[図 15]図 15は図 14における E—E線矢視方向断面図である。
[図 16]図 16は図 14における E1—E1線矢視方向断面図である。
[図 17]図 17は図 14における E2—E2線矢視方向断面図である。
[図 18]図 18は本発明の第 2実施形態における半導体加速度センサを示す分解斜視 図である。
[図 19]図 19は本発明の第 2実施形態における半導体加速度センサを示す側断面図 である。
[図 20]図 20は本発明の第 2実施形態における半導体加速度センサの動作を説明す る図である。
[図 21]図 21は従来例の半導体加速度センサを示す外観斜視図である。
[図 22]図 22は図 21における A— A線矢視方向断面図である。
[図 23]図 23は図 21における B— B線矢視方向断面図である。
符号の説明
[0031] 10, 10A, 10B…半導体加速度センサ、 11· ··台座、 12· ··シリコン基板、 12a…ゥ エノ、外周枠部、 121· ··電極、 13· ··ダイァフラム、 13a〜13d…ダイアフラム片、 14· ·. 厚膜部、 15· ··重錘、 16· ··支持体、 161…外枠部、 162· ··支柱、 163…梁部、 16Φ ·· 突起部、 164a…先端、 31A〜31C…電圧検出器、 32A〜32C…直流電源、 50· ·· 支持体、 501…外枠部、 502…支柱、 503…梁部、 504…突起部、 504a…先端、 d 1· ··距離、 Rxl〜Rx4, Ryl〜Ry4, Rzl〜Rz4…ピエゾ抵抗体(拡散抵抗体)。
発明を実施するための最良の形態
[0032] 以下、図面に基づいて本発明の一実施形態を説明する。 [0033] 図 1は本発明の第 1実施形態における半導体加速度センサを示す外観斜視図であ る。図において、半導体加速度センサ 10は、台座 11と、シリコン基板 12とから構成さ れている。台座 11は矩形の枠型をなし、台座 11の一開口面上にシリコン基板 (シリコ ンウェハ) 12が取り付けられている。
[0034] 台座 11の開口部にシリコン基板 12が設けられ、シリコン基板 12のウェハ外周枠部 12a内の中央部には十字状をなす薄膜のダイアフラム 13が形成されている。ダイァ フラム 13は、ダイァフラムの面の中心から互いに直交する X軸方向及び Y軸方向に 沿って、ウェハ外周枠部 12aへそれぞれ延びている 4つの梁である各ダイアフラム片 13a〜13dからなり、その上面にピエゾ抵抗体(拡散抵抗体) Rxl〜Rx4, Ryl〜Ry4 , Rzl〜Rz4が形成されている。
[0035] 詳細には、一直線上に配置されたダイアフラム片 13a, 13bのうちの一方のダイァフ ラム片 13aにはピエゾ抵抗体 Rxl, Rx2, Rzl, Rz2が形成され、他方のダイアフラム 片 13bにはピエゾ抵抗体 Rx3, Rx4, Rz3, Rz4が形成されている。また、ダイアフラム 片 13a及びダイアフラム片 13bに直交する一直線上に配置されたダイアフラム片 13c 及びダイアフラム片 13dのうちの一方のダイアフラム片 13cにはピエゾ抵抗体 Ryl , R y2が形成され、他方のダイアフラム片 13dにはピエゾ抵抗体 Ry3, Ry4が形成されて いる。
[0036] また、ピエゾ抵抗体 Rxl〜: Rx4, Ryl〜Ry4, Rzl〜Rz4は、互いに直交する X軸、 Y 軸、 Z軸方向の加速度を検出するための抵抗ブリッジ回路を構成可能なように、シリ コン基板 12の外周部表面に設けられた接続用の電極 121と図 2に示すように接続さ れている。
[0037] さらに、ダイアフラム片 13a〜13dの交差部には、ダイアフラム 13の中央部の一方 の面側に厚膜部 14が形成され、この厚膜部 14の表面には例えばガラス等力もなる 直方体形状の重錘 15が取り付けられている。
[0038] 上記構成の半導体加速度センサ 10を用いる場合は、図 3乃至図 5に示すように 3 つの抵抗ブリッジ回路を構成する。即ち、 X軸方向の加速度を検出するためのブリツ ジ回路としては、図 3に示すように、ピエゾ抵抗体 Rxlの一端とピエゾ抵抗体 Rx2の一 端との接続点に直流電源 32Aの正極を接続し、ピエゾ抵抗体 Rx3の一端とピエゾ抵 抗体 Rx4の一端との接続点に直流電源 32Aの負極を接続する。さら〖こ、ピエゾ抵抗 体 Rxlの他端とピエゾ抵抗体 Rx4の他端との接続点に電圧検出器 31 Aの一端を接 続し、ピエゾ抵抗体 Rx2の他端とピエゾ抵抗体 Rx3の他端との接続点に電圧検出器 3 1Aの他端を接続する。
[0039] また、 Y軸方向の加速度を検出するためのブリッジ回路としては、図 4に示すように 、ピエゾ抵抗体 Rylの一端とピエゾ抵抗体 Ry2の一端との接続点に直流電源 32Bの 正極を接続し、ピエゾ抵抗体 Ry3の一端とピエゾ抵抗体 Ry4の一端との接続点に直 流電源 32Bの負極を接続する。さら〖こ、ピエゾ抵抗体 Rylの他端とピエゾ抵抗体 Ry4 の他端との接続点に電圧検出器 3 IBの一端を接続し、ピエゾ抵抗体 Ry2の他端とピ ェゾ抵抗体 Ry3の他端との接続点に電圧検出器 31Bの他端を接続する。
[0040] また、 Z軸方向の加速度を検出するためのブリッジ回路としては、図 5に示すように、 ピエゾ抵抗体 Rzlの一端とピエゾ抵抗体 Rz2の一端との接続点に直流電源 32Cの正 極を接続し、ピエゾ抵抗体 Rz3の一端とピエゾ抵抗体 Rz4の一端との接続点に直流 電源 32Cの負極を接続する。さらに、ピエゾ抵抗体 Rzlの他端とピエゾ抵抗体 Rz3の 他端との接続点に電圧検出器 31Cの一端を接続し、ピエゾ抵抗体 Rz2の他端とピエ ゾ抵抗体 Rz4の他端との接続点に電圧検出器 31Cの他端を接続する。
[0041] センサ 10に加わる加速度に伴って発生する力が重錘 15に加わると、各ダイアフラ ム片 13a〜13dに歪みが生じ、これによつてピエゾ抵抗体 Rxl〜Rx4, Ryl〜Ry4, Rz l〜Rz4の抵抗値が変化する。従って、各ダイアフラム片 13a〜 13dに設けられたピエ ゾ抵抗体 Rxl〜Rx4, Ryl〜Ry4, Rzl〜Rz4によって抵抗ブリッジ回路を形成するこ とにより、互いに直交する X軸、 Y軸、 Z軸方向の加速度を検出する。
[0042] 次に本発明の特徴であるダイアフラム片 13a〜13dの構成について説明する。図 6 は図 1における C C線矢視方向断面図、図 7は図 1における D— D線矢視方向断面 図、図 8は図 6における C1 C1線矢視方向断面図、図 9は図 7における D1— D1線 矢視方向断面図である。
[0043] X軸方向に沿って一直線上に配置されたダイアフラム片 13a及びダイアフラム片 13 bと、 Y軸方向に沿って一直線上に配置されたダイアフラム片 13c及びダイアフラム片 13dとは、各軸に直交する断面の面積が均一であり、それぞれ X軸方向又は Y軸方 向の加速度の最大値にあわせて設定されている。本実施形態では、車両の前後方 向を X軸、左右方向を Y軸として加速度を検出することを想定して、 X軸方向に沿うダ ィアフラム片 13a及びダイァフラム 13bの断面積を Y軸方向に沿うダイアフラム片 13c 及びダイアフラム 13dの断面積と比較して大きくしている。
[0044] 加速度により力が加わった場合、ダイアフラム 13は力の働く方向に歪む力 その変 位はダイアフラム片 13a〜 13dの断面積に反比例する。従って、 X軸方向及び Y軸方 向のそれぞれに同じ大きさの加速度が加わったとき、各ダイアフラム片 13a〜 13dは それぞれの軸の加速度の最大値に反比例して変位する。また、各ダイアフラム片 13 a〜13dの断面積は均一であり、ダイアフラム 13の中心に関して対称であるので、中 心に関して対称に変位する。
[0045] ここで、図 8及び図 9に示すようにダイアフラム片の幅を W、厚さを Tとする場合、各 ダイアフラム片 13a〜 13dの幅、厚さをそれぞれ W= 100 [ m]、 T= 14 [ m]とす るダイアフラム 13が検出する加速度の実験結果を図 10に示す。ダイアフラム 13に印 カロされる加速度が 0〜30[G]において、 X軸、 Y軸、 Z軸方向の検出加速度はそれぞ れ印加加速度との差が 1%以内であった。
[0046] また、各ダイアフラム片 13a〜 13dの幅、厚さをそれぞれ W= 70[ /z m]、 T= 20[ μ m]とするダイアフラム 13が検出する加速度の実験結果を図 11に示す。印加加速 度が 0〜: LOO[G]において、 X軸、 Y軸の検出加速度は印加加速度との差がそれぞ れ 1%以内、 Z軸方向の検出加速度は印加加速度との差が 3%以内であった。
[0047] 図 12及び図 13に示すように、ダイアフラム 13の面に平行で互いに直交する 2方向 である X軸、 Y軸方向に同じ大きさの加速度が生じ、この加速度により力 41, 42が働 く場合、ダイアフラム 13は力 41, 42の働く方向に伸びる力 ダイアフラム片 13a及び ダイアフラム片 13bは断面積が大きいため力 41によりほとんど変位しないのに対し、 ダイアフラム片 13c及びダイアフラム片 13dは断面積が小さ 、ため力 42により大きく 変位する。
[0048] なお、本実施形態では、各ダイアフラム片 13a〜 13dの断面積が均一であるダイァ フラム 13を示した力 各ダイアフラム片 13a〜 13dの断面積は、ダイアフラム 13の中 心に関して対称になっていればよい。図 14乃至図 17に示すように、 X軸方向に沿つ て一直線上に配置されたダイアフラム片 13a及びダイアフラム片 13bにお 、て、ダイ ァフラム 13の中心からウェハ外周枠部 12aに向力つて断面積を大きくすることで、ダ ィアフラム片 13a及びダイアフラム片 13bは中心に近いほど大きく変位する。特に、ピ ェゾ抵抗体 Rxl〜Rx4の形成されて 、る位置と、その他の位置で断面積を階段状に 変化させて ヽるので、ピエゾ抵抗体 Rxl〜Rx4の抵抗値の変化が顕著になる。
[0049] このように上記構成よりなる半導体加速度センサ 10によれば、ダイアフラム 13の面 に平行で互!ヽに直交する X軸方向に沿って一直線上に配置されたダイアフラム片 13 a及びダイアフラム片 13bと Y軸方向に沿って一直線上に配置されたダイアフラム片 1 3c及びダイアフラム片 13dの各軸に直交する断面の面積がダイアフラム 13の中心に 関し対称で、それぞれ X軸方向又は Y軸方向の加速度の最大値にあわせて設定さ れることにより、それぞれの軸の加速度の最大値に反比例して変位し、ダイアフラム 1 3の面に平行で互いに直交する 2方向における加速度をそれぞれ適切な感度で検 出することができる。また、ダイァフラム 13の中心力 ウェハ外周枠部 12aに向力つて 断面積を大きくすることにより、ダイアフラム片 13a〜 13dはダイァフラム 13の中心に 近いほど大きく変位すると共に、ピエゾ抵抗体 Rxl〜: Rx4, Ryl〜Ry4, Rzl〜Rz4の 変化が顕著になり、より高精度に加速度を検出することができる。
[0050] 次に、本発明の第 2実施形態を説明する。
[0051] 図 18は本発明の第 2実施形態における半導体加速度センサを示す分解斜視図、 図 19はその側断面図、図 20はその動作を説明する図である。図において、前述した 第 1実施形態と同一構成部分は同一符号をもって表し、その説明を省略する。また、 第 2実施形態と第 1実施形態との相違点は、第 2実施形態では、第 1実施形態の構 成に加えて、ダイアフラム 13の重錘 15が存在する側、しない側の両方に突起部を配 置した支持体 16, 50を設けたことである。
[0052] 図において、半導体加速度センサ 10Bは、台座 11と、シリコン基板 12、支持体 16 , 50と力ら構成され、台座 11の外周部には支持体 16の外枠部 161が固定されてい る。
[0053] 支持体 16は、矩形の枠型をなした外枠部 161と、外枠部 161の四隅に立設された 4つの支柱 162と、各支柱 162の先端部を連結するように設けられた十字形状の梁 部 163と、梁部 163の中央交差部分に設けられた円錐形状をなす突起部 164とから 構成されている。
[0054] 外枠部 161は、突起部 164がダイアフラム 13の他面側、即ち重錘 15が存在しない 側に位置するように、台座 11の外周部に嵌合して固定されている。ここで、突起部 1 64の先端 164aがダイアフラム 13の表面から距離 dlの位置になるように設定されて いる。この距離 dlは、ダイアフラム 13の面に垂直な方向に加速度が生じ、この加速 度によりダイアフラム 13の他面側、即ち重錘 15が存在しない側に所定値以上の力が 加わった場合にぉ ヽても、各ダイアフラム片 13c及びダイアフラム片 13dが伸びきら な 、ように、その変位が突起部 164によって制限できる値に設定されて 、る。
[0055] 支持体 50は、矩形の枠型をなした外枠部 501と、外枠部 501の四隅に立設された 4つの支柱 502と、各支柱 502の先端部を連結するように設けられた十字形状の梁 部 503と、梁部 503の中央交差部分に設けられた円錐形状をなす突起部 504とから 構成されている。
[0056] 外枠部 501は、突起部 504が重錘 15の底面側に位置するように、台座 11の外周 部に固定されている。ここで、突起部 504の先端 504aが重錘 15の底面力も距離 dl の位置になるように設定されている。この距離 dlは、ダイアフラム 13の面に垂直な方 向に加速度が生じ、この加速度によりダイアフラム 13の一面側、即ち重錘 15が設け られて 、る側に所定値以上の力が加わった場合にぉ ヽても、ダイアフラム片 13c及 びダイアフラム片 13dが伸びきらないように、その変位が突起部 504によって制限で きる値に設定されている。
[0057] このように上記構成よりなる第 2実施形態の半導体加速度センサ 10Bによれば、図 20に示すように、ダイアフラム 13の面に垂直な方向の力成分を含む力 43が働くよう な加速度が加わり、ダイアフラム 13の他面側に所定値以上の力が加わった場合、ダ ィァフラム 13は力 43の働く方向に歪んで伸びる力 その変位は突起部 164の先端 1 64aによって支持されて制限されるため、ダイアフラム片 13c及びダイアフラム片 13d が最大限に伸びきることがない。また、図 19において下方向の力成分を含む力が働 くような加速度が加わり、重錘 15の底面側に所定値以上の力が加わった場合も同様 に、その変位は突起部 504の先端 504aによって支持されて制限されるため、ダイァ フラム片 13c及びダイアフラム片 13dが最大限に伸びきることがな 、。
[0058] これにより、ダイアフラム 13の面に垂直な方向に加速度が生じ、その加速度により 所定値以上の力が加わった場合、突起部 164の先端 164a又は突起部 504の先端 5
04aが支点となって重錘 15の位置が変位し、感度を変えるため断面積を小さくしたダ ィアフラム片 13a〜 13dにおいても、効果的にダイアフラム 13の面に平行で互!、に直 交する 2方向における加速度を検出することができる。
[0059] なお、支持体 16又は支持体 50の一方を必要としない場合は、支持体 16又は支持 体 50の他方のみを設けるようにしてもょ 、。
[0060] また、本発明の構成は前述の実施形態のみに限定されるものではなぐ本発明の 要旨を逸脱しな 、範囲内にお 、て種々変更をカ卩えてもょ 、。
産業上の利用可能性
[0061] ダイァフラムの面に平行で互 、に直交する X軸方向及び Y軸方向のそれぞれの加 速度の最大値にあわせて各軸に直交する断面の面積がそれぞれ設定された複数の 梁を備えた加速度センサによって、 X軸方向及び Y軸方向における加速度をそれぞ れ適切な感度で検出することができるので、車両の前後方向、左右方向により異なる 感度が要求される車両用としての用途がある。

Claims

請求の範囲
[1] ウェハ外周枠部内にダイァフラムが形成されたシリコンウェハと、
前記ゥ ハ外周枠部を固定する台座と、
前記ダイァフラムの一方の面の中央部に設けられた重錘と、
前記ダイァフラムの面に対して平行で且つ互!ヽに直交する X軸方向及び Y軸方向 に沿って、前記ダイァフラムの面の中心力 前記ウェハ外周枠部へそれぞれ延びて いる複数の梁とを備え、
該複数の梁の所定位置における各軸に直交する断面の面積が、前記 X軸方向及 ひ Ύ軸方向のそれぞれの加速度の最大値にあわせてそれぞれ設定されている ことを特徴とする半導体加速度センサ。
[2] 前記 X軸方向に沿う梁及び前記 Y軸方向に沿う梁において、前記中心に関し対称 な 2点の前記断面積がぞれぞれ同一である
ことを特徴とする請求項 1に記載の半導体加速度センサ。
[3] 前記 X軸方向に沿う梁及び Z又は前記 Y軸方向に沿う梁において、前記中心から 前記ウェハ外周枠部に向力つて前記断面積が大きくなる
ことを特徴とする請求項 1に記載の半導体加速度センサ。
[4] 前記 X軸方向及び Y軸方向並びに前記ダイァフラムの面に対して垂直な Z軸方向 のそれぞれの加速度を検出可能なように、前記複数の梁のそれぞれに拡散抵抗体 が配置されて 、ると共に、前記複数の梁のそれぞれに対応する前記ウェハ外周枠部 上に前記拡散抵抗体に接続された接続用の電極を備えている
ことを特徴とする請求項 1に記載の半導体加速度センサ。
[5] 前記ダイアフラムはシリコンピエゾ型のダイァフラムである
ことを特徴とする請求項 1に記載の半導体加速度センサ。
[6] 前記ダイァフラムの一面側及び Z又は他面側に、ダイァフラムの中央部表面及び Z又は該中央部に対応する前記重錘の表面から所定の間隔をあけた位置に固定さ れ、該中央部に対向して突出する突起部が設けられている
ことを特徴とする請求項 1に記載の半導体加速度センサ。
[7] 前記突起部は、前記ウェハ外周枠部及び Z又は前記台座に固定されて支持され、 前記ダイァフラムの他方の面の中央部に対向して突出するように、前記ダイアフラム の他方の面の中央部力 所定の間隔をあけた位置に設けられている
ことを特徴とする請求項 6に記載の半導体加速度センサ。
[8] 前記突起部は、前記ウェハ外周枠部及び Z又は前記台座に連結固定されて支持 され、前記重錘の表面に対向して突出するように、該重錘の中央部から所定の間隔 をあけた位置に設けられて 、る
ことを特徴とする請求項 6に記載の半導体加速度センサ。
[9] 前記ダイァフラムの中央部表面及び Z又は該中央部に対応する前記重錘の表面 に対応する前記突起部の先端は錐形の先端形状をなしている
ことを特徴とする請求項 6に記載の半導体加速度センサ。
PCT/JP2006/306481 2005-03-30 2006-03-29 半導体加速度センサ WO2006106739A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/815,556 US7827865B2 (en) 2005-03-30 2006-03-29 Semiconductor acceleration sensor
EP06730429A EP1865329B1 (en) 2005-03-30 2006-03-29 Semiconductor acceleration sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005097901A JP2006275896A (ja) 2005-03-30 2005-03-30 半導体加速度センサ
JP2005-097901 2005-03-30

Publications (1)

Publication Number Publication Date
WO2006106739A1 true WO2006106739A1 (ja) 2006-10-12

Family

ID=37073302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306481 WO2006106739A1 (ja) 2005-03-30 2006-03-29 半導体加速度センサ

Country Status (4)

Country Link
US (1) US7827865B2 (ja)
EP (1) EP1865329B1 (ja)
JP (1) JP2006275896A (ja)
WO (1) WO2006106739A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100895037B1 (ko) 2007-02-05 2009-05-04 (주)에스엠엘전자 고감도 3축 가속도 센서
EP2473830A4 (en) * 2009-09-02 2014-07-02 Kontel Data System Ltd MEMS BURDENING CONCENTRATION STRUCTURE FOR MEMS SENSORS
KR101119283B1 (ko) * 2009-12-22 2012-06-05 삼성전기주식회사 관성 센서 및 그 제조 방법
DE102010002994A1 (de) * 2010-03-18 2011-09-22 Robert Bosch Gmbh Piezoresistives mikromechanisches Sensorbauelement und entsprechendes Messverfahren
US20120090393A1 (en) * 2010-06-18 2012-04-19 Baolab Microsystems Sl Unstable electrostatic spring accelerometer
TWI477780B (zh) * 2011-10-12 2015-03-21 Richwave Technology Corp 壓阻式z軸加速度感測器
US10444015B2 (en) * 2014-03-20 2019-10-15 Kyocera Corporation Sensor for detecting angular velocity
JP6420442B1 (ja) * 2017-10-16 2018-11-07 株式会社ワコー 発電素子
CN113933538B (zh) * 2021-09-18 2024-07-19 重庆邮电大学 一种压阻式高g值加速度计

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875775A (ja) 1994-09-08 1996-03-22 Fujikura Ltd 半導体型加速度センサ
JPH09119943A (ja) * 1995-10-24 1997-05-06 Wako:Kk 加速度センサ
JPH09292409A (ja) * 1996-04-26 1997-11-11 Hitachi Ltd 加速度センサ
JP2000028633A (ja) 1998-07-08 2000-01-28 Japan Aviation Electronics Ind Ltd 半導体加速度センサ
JP2004340616A (ja) 2003-05-13 2004-12-02 Yokohama Rubber Co Ltd:The 半導体加速度センサ
JP2005003494A (ja) * 2003-06-11 2005-01-06 Sharp Corp パネルセンサおよびこれを備えた情報機器
JP2005017080A (ja) * 2003-06-25 2005-01-20 Matsushita Electric Works Ltd 半導体加速度センサおよびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0312605A4 (en) * 1987-04-24 1992-06-17 Kabushiki Kaisha Nexy Kenkyusho Detector for force, acceleration and magnetism using resistor element
US5081867A (en) * 1988-09-30 1992-01-21 Nec Corporation Semiconductor sensor
US5209117A (en) * 1990-10-22 1993-05-11 Motorola, Inc. Tapered cantilever beam for sensors
US5412986A (en) * 1990-12-21 1995-05-09 Texas Instruments Incorporated Accelerometer with improved strain gauge sensing means
US5351542A (en) * 1992-01-27 1994-10-04 Kansei Corporation Acceleration sensor assembly
JP3391841B2 (ja) * 1993-05-26 2003-03-31 松下電工株式会社 半導体加速度センサ
WO1998037425A1 (fr) * 1997-02-21 1998-08-27 Matsushita Electric Works, Ltd. Element detecteur d'acceleration et son procede de production
JP2003172745A (ja) * 2001-09-26 2003-06-20 Hitachi Metals Ltd 半導体加速度センサ
JP4216525B2 (ja) * 2002-05-13 2009-01-28 株式会社ワコー 加速度センサおよびその製造方法
JP2004198280A (ja) * 2002-12-19 2004-07-15 Hitachi Metals Ltd 加速度センサ
EP1491901A1 (en) * 2003-06-25 2004-12-29 Matsushita Electric Works, Ltd. Semiconductor acceleration sensor and method of manufacturing the same
JP4416460B2 (ja) * 2003-09-16 2010-02-17 トレックス・セミコンダクター株式会社 加速度センサー
US7331230B2 (en) * 2003-12-24 2008-02-19 Hitachi Metals, Ltd. Semiconductor-type three-axis acceleration sensor
US7367232B2 (en) * 2004-01-24 2008-05-06 Vladimir Vaganov System and method for a three-axis MEMS accelerometer
TWI277735B (en) * 2004-09-30 2007-04-01 Hitachi Metals Ltd Semiconductor acceleration sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875775A (ja) 1994-09-08 1996-03-22 Fujikura Ltd 半導体型加速度センサ
JPH09119943A (ja) * 1995-10-24 1997-05-06 Wako:Kk 加速度センサ
JPH09292409A (ja) * 1996-04-26 1997-11-11 Hitachi Ltd 加速度センサ
JP2000028633A (ja) 1998-07-08 2000-01-28 Japan Aviation Electronics Ind Ltd 半導体加速度センサ
JP2004340616A (ja) 2003-05-13 2004-12-02 Yokohama Rubber Co Ltd:The 半導体加速度センサ
JP2005003494A (ja) * 2003-06-11 2005-01-06 Sharp Corp パネルセンサおよびこれを備えた情報機器
JP2005017080A (ja) * 2003-06-25 2005-01-20 Matsushita Electric Works Ltd 半導体加速度センサおよびその製造方法

Also Published As

Publication number Publication date
US20080271535A1 (en) 2008-11-06
EP1865329A4 (en) 2010-02-10
EP1865329B1 (en) 2012-03-07
JP2006275896A (ja) 2006-10-12
EP1865329A1 (en) 2007-12-12
US7827865B2 (en) 2010-11-09

Similar Documents

Publication Publication Date Title
WO2006106739A1 (ja) 半導体加速度センサ
CN108020687B (zh) 一种mems加速度计
JP7433299B2 (ja) 3軸加速度計
JP2776142B2 (ja) 加速度センサ
US8061203B2 (en) Combined sensor
JPH09318649A (ja) 複合センサ
US8074517B2 (en) Inertia force sensor
WO2005085876A1 (ja) 振動型圧電加速度センサ
JP2004340616A (ja) 半導体加速度センサ
JP2002372549A (ja) 加速度センサデバイス
JP3230109B2 (ja) 加速度センサユニット
JPH07140167A (ja) 容量型加速度センサ
JP2004069405A5 (ja)
JPH11248741A (ja) 静電容量型多軸加速度センサ
JPH08160070A (ja) 加速度センサ
JP2539560B2 (ja) 半導体加速度センサ及びエアバッグシステム
JPH0714382U (ja) 静電容量型加速度センサ
JP3171970B2 (ja) 力/加速度の検出装置
JPH11133051A (ja) 環状剪断形圧電素子及びこれを用いた加速度計
JP4617255B2 (ja) 半導体加速度センサ
JPH075193A (ja) 多軸加速度検出装置
JPH1010150A (ja) 加速度センサ
JPH049673A (ja) 半導体加速度センサ
WO2014073631A1 (ja) 角加速度センサおよび加速度センサ
JPH07202221A (ja) 半導体加速度センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006730429

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11815556

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006730429

Country of ref document: EP