WO2006103235A2 - Deckschicht für elektrophotografische druckwalzen - Google Patents

Deckschicht für elektrophotografische druckwalzen Download PDF

Info

Publication number
WO2006103235A2
WO2006103235A2 PCT/EP2006/061098 EP2006061098W WO2006103235A2 WO 2006103235 A2 WO2006103235 A2 WO 2006103235A2 EP 2006061098 W EP2006061098 W EP 2006061098W WO 2006103235 A2 WO2006103235 A2 WO 2006103235A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrophotographic printing
printing rollers
layer
covering layer
epoxide
Prior art date
Application number
PCT/EP2006/061098
Other languages
English (en)
French (fr)
Other versions
WO2006103235A3 (de
Inventor
Christoph Roth
Regina Lischewski
Roland Ackermann
Wolfgang Witt
Original Assignee
Sensient Imaging Technologies Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sensient Imaging Technologies Gmbh filed Critical Sensient Imaging Technologies Gmbh
Priority to EP06725361A priority Critical patent/EP1866702A2/de
Priority to US11/910,168 priority patent/US8246526B2/en
Priority to JP2008503502A priority patent/JP5015133B2/ja
Publication of WO2006103235A2 publication Critical patent/WO2006103235A2/de
Publication of WO2006103235A3 publication Critical patent/WO2006103235A3/de
Priority to HK08108944.2A priority patent/HK1118102A1/xx

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14704Cover layers comprising inorganic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14717Macromolecular material obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/14726Halogenated polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14747Macromolecular material obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/1476Other polycondensates comprising oxygen atoms in the main chain; Phenol resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14747Macromolecular material obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/14773Polycondensates comprising silicon atoms in the main chain

Definitions

  • the invention relates to a new cover layer for electrophotographic printing rollers with improved scratch resistance.
  • the new cover layer is suitable for copier and printer rollers.
  • Electrophotography is a very common process in printing and duplicating technology. It is based on the fact that in a charge-formation layer after exposure, charges are released which can convert a previously applied charge into a charge image. By means of charged toner particles, an image can thus be produced on the roller which, after contact with paper, is transferred to the latter. To achieve high adhesion and resistance to paper support, the charged toner particles are embedded in special resins. After transferring them to paper, they can thus be thermally fixed.
  • electrophotographic printing rollers consist of an aluminum cylinder provided with an adhesive layer. Applied thereon is: a) a charge-generating layer with a thickness of 0.2 to 3 ⁇ m, b) a charge-transport layer with a thickness of 10 to 40 ⁇ m c) a 0.5 to 5 micron thick topcoat
  • the charge-generating layer often contains, as a photosensitive layer, phthaloyl cyanine compounds such as titanoyl phthalocyanine in dispersed form in a polymer matrix.
  • the polymer matrix is usually a synthetic resin binder based on polycarbonate, polyester, polyamide, polyepoxide, polysilicone resin or copolymers based on acrylic or methacrylic acid esters.
  • the charges generated in this layer are taken up by the charge transport layer and transferred to the surface.
  • the charge transport layer is intended to hold the charges of the recording material in the dark as an insulating layer. Hydrazone compounds, which are also dispersed in dispersed form in special resins, usually accomplish this task.
  • the cover layer acts as a protective layer and significantly influences the print result, in particular it is intended to protect the print cylinder surface against mechanical damage by toner particles and paper. Furthermore, it should meet other requirements such as high transparency matched electrical properties such as low transverse conductivity, no isolator function, specific residual potential, etc. high solvent resistance, preferably with barrier function, to allow the use of liquid toner easy cleaning properties, no unwanted adhesion of toner particles high oxidation resistance, low susceptibility to the ozone generated during charging and nitrogen oxide meet.
  • EP 1 030 223 describes crosslinked polysiloxanes in combination with dihydroxymethyltriphenylamine and methyltrimethoxysilane.
  • EP 1 271 253 proposes pigmented protective layers based on phenolic resins and Teflon dispersions. By adding fluorosilane coupling agent good anchoring of the antimony-zinc oxide pigments is achieved with good lubricity.
  • Teflon particles as a lubricant in binder mixtures of polyurethane resin and polyvinyl butyral.
  • JP 2004-020649 proposes the use of aromatic, N-substituted polyepoxides in combination with silane mixtures of phenyltriethoxysilane, methyltriethoxysilane and aminopropyltriethoxysilane.
  • the object is achieved with a protective layer of a) 50-75% by weight of cycloaliphatic, polyfunctional epoxides b) 20-60% by weight of amino-functional silica nanoparticles c) 0-2% by weight of perfluoroalkyltrialkoxysilane.
  • the cycloaliphatic epoxides can be used both as monomers and as polymers. Your epoxy functionality must be at least two.
  • Examples of such compounds are: hydrogenated bisphenol A diglycidyl ether hydrogenated bisphenol F diglycidyl ether hexahydrophthalic acid diglycidyl ether.
  • the epoxides are used in the form of 10 to 35% strength by weight solutions in isopropanol, n-butanol or methoxypropanol.
  • Aliphatic epoxides such as, for example, trimethylolpropane triglycidyl ether, hexanediol diglycidyl ether or pentaerythritol tetra- surprisingly, glycidic ethers are unsuitable because they cause deleterious electrical layer properties that prevent the printing of "single dots.” Residual potentials of 0 to 5 volts are determined on such layers.
  • Aromatic epoxides are likewise not suitable for the purposes of the invention, since they require the use of ketones and aromatics as solvents. Such solvents often cause film disruption by solubilization of the charge transport layer.
  • the synthesis of the amino-functional silica nanoparticles is carried out in a known manner by sol / gel technology by hydrolyzing aminoalkyl trialkoxysilanes in alcohols and condensing them into solid particles.
  • aminoalkylsilanes examples are:
  • amino-functional silica nanoparticles which are prepared by surface functionalization of aerosils according to DE 3 212 771, DE 3 709 501, US Pat. No. 3,986,997.
  • composition according to the invention may also contain up to 2% by weight of a perfluoroalkyltrialkoxysilane.
  • fluorosilanes examples include tridecafluorooctyltriethoxysilane or the Perfluoropolyether silanes Fluorolink 7007 and Fluorolink S 10 from Solvay.
  • the particle size of the silica nanoparticles is in the range of 5 to 40 nm, preferably 5 to 20 nm.
  • the amino-functional silica nanoparticles have a high reactivity with epoxides, these nanoparticles must be stored separately from the epoxide solutions and handled as a two-component system.
  • the coating of the pressure rollers can be carried out in a known manner by spraying, dipping or knife coating. Depending on the concentration of the components, a processing time of 8 to 120 hours is possible. Thereafter, a gelation occurs.
  • the layer After coating, the layer is aerated at room temperature or elevated temperatures for 15 min and cured at 110 to 13O 0 C for about 30 min. As a result of this thermal curing, a highly cross-linked hybrid polymer with covalently bonded silica nanoparticles is formed.
  • the cover layers of the invention are transparent, solvent-resistant and are characterized by a significant improvement in the scratch resistance. They allow a good adjustment of the residual potential and give a very good detail reproduction. A complex and often difficult reproducible dispersion of the nanoparticles is not required.
  • the topcoats are suitable for both dry and liquid toners.
  • 180 ml of isopropanol and 180 ml of n-butanol are mixed at room temperature in a temperature-controlled stirred vessel.
  • To this mixture is added 80 ml of aminopropyltriethoxysilane and 40 ml of distilled water and stirred for 30 minutes.
  • Example 1 The procedure of Example 1 is followed substituting 80 ml of N- (2-aminoethyl) -3-aminopropyltrimethoxysilane for aminopropyltriethoxysilane.
  • a sol is obtained with the following characteristics: Solids content: 13.2% pH: 11.2
  • Example 1 The procedure of Example 1 is maintained with the following composition: 180 ml of isopropanol 180 ml of n-butanol 30 ml of phenyltriethoxysilane 60 ml of tetraethoxysilane 45 ml 0, ln trifluoroacetic acid
  • a sol is obtained with the following characteristics: Solids content: 7.3% pH: 2.9
  • sol A 4/6 50 g of hexahydrophthalic acid diglycidyl ether (10% strength in isopropanol)
  • the mechanical surface properties are characterized by determining the surface hardness according to Erichsen (ISO 15184) and by contacting the surface with a hard polyamide fabric (Glitzi sponge, Scotch-Britt sponge), which is loaded with 200 and 500 g respectively.
  • the surface injuries caused by this contacting are quantified by ratings of 1 to 5.
  • Grade 1 is awarded for completely undamaged, Grade 5 for very badly damaged surfaces. Table 1 below summarizes the results:
  • the layers After 15 minutes of air drying, the layers are cured for 30 minutes at H 2 O.
  • the electrical properties of the cover layer are characterized by the DE 3 924 904 determined residual potential. Furthermore, the reproduction of the smallest still printable detailed information ("single dots") after 10 and 7000 copies is determined and in Table 2 the results are summarized.
  • the protective layers according to the invention corresponding to compositions 5/4 to 5/7 show a considerable improvement in the printing properties.
  • Protective layers containing known polysiloxanes (5/2) or aliphatic epoxides do not permit the printing of "single dots.”
  • Protective layers based on polycarbonate show a significant impairment in reproduction as the number of copies increases.

Abstract

Die Erfindung betrifft eine neue Deckschicht für elektrophotograf ische Druckwalzen mit verbesserter Kratzbeständigkeit. Die neue Deckschicht besteht aus 50 bis 75 Gew.-% cycloaliphatischen Epoxiden, 20 bis 60 Gew.-% aminofunktionellen Silica-Nanopartikeln und 0 bis 2 Gew.-% Perfluoralkyltrialkoxysilanen. Die Herstellung der aminofunktionellen Nanopartikel erfolgt vorzugsweise durch Sol/Gel-Technologie aus Aminoalkyltrialkoxysilanen.

Description

Deckschicht für elektrophotografische Druckwalzen
Anwendungsgebiet der Erfindung
Die Erfindung betrifft eine neue Deckschicht für elektrophotografische Druckwalzen mit verbesserter Kratzbeständigkeit. Die neue Deckschicht eignet sich für Kopier- und Druckerwalzen.
Stand der Technik
Die Elektrophotografie ist in der Druck- und Vervielfältigungstechnik ein sehr verbreitetes Verfahren. Sie beruht darauf, dass in einer Ladungsbildungsschicht nach Belichtung Ladungen freigesetzt werden, die eine vorher aufgebrachte Ladung in ein Ladungsbild umwandeln können. Mittels geladener Tonerpartikel kann so auf der Walze ein Bild erzeugt werden, das nach Kontak- tierung mit Papier auf dieses übertragen wird. Um eine hohe Haftung und Beständigkeit auf Papierträger zu erzielen, sind die geladenen Tonerpartikel in speziellen Harzen eingebettet. Nach Übertragung dieser auf Papier können sie somit thermisch fixiert werden.
Im Allgemeinen bestehen elektrophotografische Druckwalzen aus einem Aluminiumzylinder, der mit einer Haftschicht versehen ist. Darauf aufgebracht ist: a) eine 0,2 bis 3 μm starke Ladungsbildungsschicht b) eine 10 bis 40 μm starke Ladungstransportschicht c) eine 0,5 bis 5 μm starke Deckschicht
Die Ladungsbildungsschicht enthält als lichtempfindliche Schicht häufig Phthaloylcyaninverbindungen wie Titanoylphthalocyanin in dispergierter Form in einer Polymermatrix. Die Polymermatrix ist meist ein synthetisches Harzbindemittel auf der Basis von PoIy- carbonat, Polyester, Polyamid, Polyepoxid, Polysiliconharz oder Copolymere auf der Basis von Acryl- oder Methacrylsäureestern.
Die in dieser Schicht erzeugten Ladungen werden von der Ladungstransportschicht aufgenommen und zur Oberfläche transferiert. Die Ladungstransportschicht soll die Ladungen des Aufzeichnungsmaterials bei Dunkelheit wie eine Isolierschicht halten. Diese Aufgabe erfüllen meist Hydrazonverbindungen, die ebenfalls in dispergierter Form in speziellen Harzen dispergiert sind. Die Deckschicht fungiert als Schutzschicht und beeinflusst wesentlich das Druckergebnis, insbesondere soll sie die Druckwalzenoberfläche gegen mechanische Verletzungen durch Tonerpartikel und Papier schützen. Des Weiteren sollte sie weitere Anforderungen wie hohe Transparenz abgestimmte elektrische Eigenschaften wie geringe Querleitfähigkeit, keine Isolatorfunktion, bestimmtes Restpotential etc . hohe Lösungsmittelbeständigkeit, möglichst mit Barrierefunktion, um auch den Einsatz von Flüssigtoner zu ermöglichen leichte Reinigungseigenschaften, keine unerwünschte Haftung von Tonerpartikel hohe Oxidationsbeständigkeit, geringe Anfälligkeit gegen das bei der Aufladung entstehende Ozon und Stickoxid erfüllen .
Es ist bekannt, für solche Schutzschichten ABS-Harze, Phenolharze, Polyester, Polycarbonat, Polyamid, Siliconharze oder Acrylharze zu verwenden. In EP 1 030 223 werden vernetzte PoIy- siloxane in Kombination mit Dihydroxymethyltriphenylamin und Methyltrimethoxysilan beschrieben .
US 6,495,300 schlägt die Verwendung von Trialkoxysilyl-funktio- nalisierten Hydroxyalkylacrylaten in Kombination mit Aerosil- Pigmenten vor. In EP 1 271 253 werden pigmentierte Schutzschichten auf der Basis von Phenol-Harzen und Teflondispersionen vorgeschlagen. Durch Zugabe von Fluorsilan-Kupplungsmittel wird eine gute Verankerung der Antimon-Zinkoxid-Pigmente bei guter Gleitfähigkeit erzielt.
Es ist weiterhin bekannt, Teflonpartikel als Schmiermittel in Bindemittelgemischen aus Polyurethanharz und Polyvinylbutyral zu verwenden .
In JP 2004-020649 (Abstract) wird der Einsatz von aromatischen, N-substituierten Polyepoxiden in Kombination mit Silangemischen aus Phenyltriethoxysilan, Methyltriethoxysilan und Aminopro- pyltriethoxysilan vorgeschlagen.
Schutzschichten mit kontrollierbaren Restpotential sind ebenfalls beschrieben. Als Polymerharz dient u.a. Polycarbonat . Die mangelhafte Kratzfestigkeit soll dabei durch 20 - 60 Gew.-% Perfluoralkylharz-Partikel kompensiert werden.
Schutzschichten, deren Aushärtung durch Fotopolymerisation von Epoxiden Vinylethern oder cyclischen Ethermonomeren erfolgt, sind ebenfalls bekannt. In Gegenwart von kationischen Fotoinitiatoren, wie beispielsweise Triphenylsulfonium hexafluoroantimo- nat, erfolgt nach thermischer Trocknung und UV-Belichtung die Polymerbildung . Ziel der Erfindung
Die bekannten Verfahren stellen Kompromisslösungen dar und erfüllen nur teilweise die Anforderungen an Deckschichten. Es ist Ziel und Aufgabe der vorliegenden Erfindung eine neue kratzbeständige Schutzschicht zu entwickeln, die thermisch härtbar ist, keine giftigen aromatischen Amine enthält und eine hohe Barrierewirkung aufweist, um auch den Einsatz mit Flüssigtonern abzusichern .
Zusammenfassung der Erfindung
Erfindungsgemäß wird die Aufgabe mit einer Schutzschicht aus a) 50 - 75 Gew.-% cyloaliphatischen, polyfunktionellen Epoxiden b) 20 - 60 Gew.-% aminofunktionellen Silica-Nanopartikeln c) 0 - 2 Gew.-% Perfluoralkyltrialkoxysilan gelöst .
Die cyloaliphatischen Epoxide können sowohl als Monomere als auch als Polymere eingesetzt werden. Ihre Epoxidfunktionalität muss aber mindestens zwei betragen.
Beispiele für solche Verbindungen sind: hydrierter Bisphenol-A-diglycidether hydrierter Bisphenol-F-diglycidether Hexahydrophthalsäurediglycidether .
Um ein Anlösen der Ladungstransportschicht zu vermeiden, erfolgt die Anwendung der Epoxide in Form von 10 bis 35 Gew.-%igen Lösungen in Isopropanol, n-Butanol oder Methoxypropanol .
Aliphatische Epoxide, wie beispielsweise Trimethylolpropan- triglycidether, Hexandioldiglycidether oder Penthaerythrittetra- glycidether, eignen sich überraschenderweise nicht, da sie nachteilige elektrische Schichteigenschaften verursachen, die das Ausdrucken von „Single dots" verhindern. Es wird an solchen Schichten ein Restpotential von 0 bis 5 Volt bestimmt.
Aromatische Epoxide eignen sich im Sinne der Erfindung ebenfalls nicht, da sie den Einsatz von Ketonen und Aromaten als Lösungsmittel bedingen. Solche Lösungsmittel verursachen durch Anlösung der Ladungstransportschicht häufig Schichtstörungen.
Die Synthese der aminofunktionellen Silica-Nanopartikel erfolgt in bekannter Weise durch Sol/Gel-Technolgie, indem Aminoalkyl- trialkoxysilane in Alkoholen hydrolysiert und zu festen Partikeln kondensiert werden.
Beispiele für Aminoalkylsilane sind:
Aminopropyltriethoxysilan,
Aminopropyltrimethoxysilan oder
N- (2-Aminoethyl) -3-aminopropyltrimethoxysilan oder Gemische davon .
Es ist erfindungsgemäß auch möglich, aminofunktionelle Silica- Nanopartikel zu verwenden, die durch Oberflächenfunktionalisie- rung von Aerosilen gemäß DE 3 212 771, DE 3 709 501, US 3 986 997 hergestellt werden.
Zusätzlich zu den aminofunktionellen Silica-Nanopartikel kann die erfindungsgemäße Zusammensetzung noch bis zu 2 Gew.-% eines Perfluoralkyltrialkoxysilans enthalten .
Beispiele für solche Fluorsilane sind: Tridecafluorooctyltriethoxysilan oder die Perfluoropolyethersilane Fluorolink 7007 und Fluorolink S 10 der Firma Solvay.
Im Allgemeinen liegt die Teilchengröße der Silica-Nanopartikel im Bereich von 5 bis 40 nm, vorzugsweise 5 bis 20 nm.
Da die aminofunktionellen Silica-Nanopartikel eine hohe Reaktivität zu Epoxiden aufweisen, müssen diese Nanopartikel getrennt von den Epoxidlösungen gelagert und als Zweikomponentensystem gehandhabt werden. Bei der Mischung ist es vorteilhaft, die Epoxidkomponente vorzulegen und in diese die Aminkomponente unter Rühren zuzugeben. Nach intensiver Mischung kann die Beschichtung der Druckwalzen in bekannter Weise durch Sprüh-, Tauch- oder Rakelbeschichtung erfolgen. Je nach Konzentration der Komponenten ist eine Verarbeitungszeit von 8 bis 120 Stunden möglich. Danach tritt eine Gelierung ein.
Nach erfolgter Beschichtung wird die Schicht bei Raumtemperatur oder erhöhten Temperaturen 15 min belüftet und ca. 30 min bei 110 bis 13O0C gehärtet. Im Ergebnis dieser thermischen Härtung entsteht ein hochvernetztes Hybridpolymer mit kovalent gebundenen Silica-Nanopartikeln.
Die erfindungsgemäßen Deckschichten sind transparent, lösungsmittelbeständig und zeichnen sich durch eine erhebliche Verbesserung der Kratzfestigkeit aus. Sie erlauben eine gute Einstellung des Restpotentials und ergeben eine sehr gute Detailwiedergabe. Eine aufwendige und oft schwierig reproduzierbare Disper- gierung der Nanopartikel ist nicht erforderlich. Die Deckschichten sind sowohl für Trocken- als auch für Flüssigtoner geeignet.
Die Erfindung wird nachstehend durch Beispiele näher erläutert. Ausführungsbeispiele
Beispiel 1
Herstellung von aminofunktionellen Silica-Nanopartikeln (SoI A)
In einem temperierbaren Rührgefäß werden bei Raumtemperatur 180 ml Isopropanol und 180 ml n-Butanol gemischt. Zu dieser Mischung werden 80 ml Aminopropyltriethoxysilan und 40 ml destilliertes Wasser gegeben, und es wird 30 min gerührt.
Danach wird die Temperatur auf 5O0C erhöht und das Rühren 6
Stunden fortgesetzt. Es wird ein SoI mit folgenden Kenndaten erhalten:
Feststoffgehalt: 9,6% pH-Wert: 11,0
Teilchengröße: 5 nm
Beispiel 2
Herstellung von aminofunktionellen Silica-Nanopartikeln (SoI B)
Die Verfahrensweise des Beispiels 1 wird beibehalten, wobei Aminopropyltriethoxysilan durch 80 ml N- (2-Aminoethyl) -3-aminopro- pyltrimethoxysilan ersetzt wird. Es wird ein SoI mit folgenden Kenndaten erhalten: Feststoffgehalt: 13,2% pH-Wert: 11,2
Teilchengröße 8 nm Beispiel 3
(Vergleichsbeispiel, SoI C)
Die Verfahrensweise des Beispiels 1 wird beibehalten mit folgender Zusammensetzung: 180 ml Isopropanol 180 ml n-Butanol 30 ml Phenyltriethoxysilan 60 ml Tetraethoxysilan 45 ml 0,ln Trifluoressigsäure
Es wird ein SoI mit folgenden Kenndaten erhalten: Feststoffgehalt: 7,3 % pH-Wert: 2,9
Teilchengröße: 7 nm
Beispiel 4
Bestimmung der Härte und Kratzfestigkeit an Modell-Deckschichten
Auf Polyesterfolie werden mittels Tauchbeguss folgenden Lösungen aufgetragen:
4/1: Polycarbonat Z 200 (Bayer) als 5%ige Lösung in
Methylenchlorid 4/2: SoI C 4/3 50g hydrierter Bisphenol A -diglycidether (10%ig in
Isopropanol)
26,8 g SoI A 4/4: 50 g hydrierter Bisphenol A-diglycidether (10%ig in
Isopropanol) 27,5 g SoI B 4/5 50 g Hexahydrophthalsäurediglycidether (10%ig in
Methoxypropanol)
33,5 g SoI A 4/6 50 g Hexahydrophthalsäurediglycidether (10%ig in Isopropa- nol)
33 g SoI B
9 g Perfluoralkylsilan Dynasylan F 8263 (l%ig in Isopropa- nol) .
Nach Lufttrocknung werden die beschichteten Proben 30 min bei HO0C gehärtet. Die Charakterisierung der mechanischen Oberflächeneigenschaften erfolgt durch Bestimmung der Oberflächenhärte nach Erichsen (ISO 15184) sowie durch Kontaktierung der Oberfläche mit einem harten Polyamidgewebe (Glitzi-Schwamm, Scotch-Britt-Schwamm) , der jeweils mit 200 und 500g belastet wird. Die durch diese Kontaktierung verursachten Oberflächenverletzungen werden durch Benotungen von 1 bis 5 quantifiziert. Note 1 wird für völlig unbeschädigte, Note 5 für sehr stark beschädigte Oberflächen vergeben. In folgender Tabelle 1 sind die Ergebnisse zusammengefasst :
Tabelle 1
Figure imgf000010_0001
Beispiel 5
Konventionelle Druckwalzen für Laserdrucker, die mit einer 0,8 μm dicken Ladungsbildungsschicht auf der Basis eines Phthalocya- nin-Titanoxid-Komplexes in Polyvinylbutyral als Bindemittel und einer 25 μm dicken Ladungstransportschicht auf der Basis von N,Nf -bis- (3-methylphenyl) -N,Nf -bis- (phenyl) -benzidin als Fotoleiter und Polycarbonat als Bindemittel versehen sind, werden mittels Tauchlackierung mit folgenden Schutzschichtzusammensetzungen beschichtet:
5/1 Polycarbonat Z 200 (5%ige Lösung in Methylenchlorid)
5/2 SoI C
5/3 100 g Trimethylolpropantriglycidether (10%ig in Isopropa- nol)
78,5 g SoI A 5/4 100 g hydrierter Bisphenol-A-diglycidether (10%ig in
Isopropanol)
53 g SoI A 5/5 100 g hydrierter Bisphenol-A-diglycidether (10%ig in Metho- xypropanol)
56 g SoI B
5/6 100 g Hexahydrophthalsäurediglycidether (10%ig in Isopropanol)
60,5 g SoI A 5/7 100 g Hexahydrophthalsäurediglyidether (10%ig in
Methoxypropanol)
62 g SoI B
15 g Dynasilan F 8263 (l%ig in Isopropanol)
Nach 15 min Lufttrocknung werden die Schichten 30 min bei HO0C gehärtet. Die elektrischen Eigenschaften der Deckschicht werden durch das gemäß DE 3 924 904 bestimmte Restpotential charakterisiert. Des Weiteren wird die Wiedergabe der kleinsten noch druckbaren Detailinformationen („Single dots") nach 10 und 7000 Kopien bestimmt. In Tabelle 2 sind die Ergebnisse zusammen- gefasst .
Tabelle 2
Figure imgf000012_0001
Die erfindungsgemäßen Schutzschichten entsprechend Zusammensetzungen 5/4 bis 5/7 zeigen eine erhebliche Verbesserung der Druckeigenschaften. Schutzschichten mit bekannten Polysiloxanen (5/2) oder aliphatischen Epoxiden erlauben nicht die Ausdruckung von „Single dots". Schutzschichten auf der Basis von Polycarbo- nat zeigen mit zunehmender Anzahl von Kopien eine deutliche Beeinträchtigung in der Wiedergabe.

Claims

P409306PC-WTPatentansprüche
1. Deckschicht für elektrophotografische Druckwalzen, dadurch gekennzeichnet, dass die Deckschicht a) 50 bis 75 Gew.-% cycloaliphatisches polyfunktionelles Epoxid b) 20 bis 60 Gew.-% aminofunktionelle Silica-Nanopartikel c) 0 bis 2 Gew.-% Perfluoralkyltrialkoxysilan umfasst .
2. Deckschicht für elektrophotografische Druckwalzen nach Anspruch 1, worin die Funktionalität des Epoxids zwei beträgt .
3. Deckschicht für elektrophotografische Druckwalzen nach Anspruch 1, worin als Epoxid hydrierter Bisphenol-A-diglycid- ether enthalten ist.
4. Deckschicht für elektrophotografische Druckwalzen nach Anspruch 1, worin als Epoxid Hexahydrophthalsäurediglycid- ether enthalten ist.
5. Deckschicht für elektrophotografische Druckwalzen nach einem der Ansprüche 1 bis 4, worin als Perfluoralkyltrialkoxysilan Triethoxy (trideca-fluoroctyl) -silan enthalten ist.
6. Deckschicht für elektrophotografische Druckwalzen nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein Lösungsmittel enthalten ist.
7. Deckschicht für elektrophotografische Druckwalzen nach Anspruch 6, worin als Lösungsmittel ein oder mehrere alipha- tische Alkohole enthalten sind.
8. Deckschicht für elektrophotografische Druckwalzen nach einem der Ansprüche 1 bis 7, worin die aminofunktionellen Silica- Nanopartikel solche sind, die durch Sol/Gel-Technologie aus Aminoalkylsilanen hergestellt werden.
9. Deckschicht für elektrophotografische Druckwalzen nach Anspruch 8, worin die Aminoalkylsilane Aminopropyltriethoxy- silan, Aminopropyltrimethoxysilan, N- (2-Aminoethyl) -3-amino- propyltrimethoxysilan oder Gemische davon sind.
PCT/EP2006/061098 2005-03-30 2006-03-28 Deckschicht für elektrophotografische druckwalzen WO2006103235A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06725361A EP1866702A2 (de) 2005-03-30 2006-03-28 Deckschicht für elektrophotografische druckwalzen
US11/910,168 US8246526B2 (en) 2005-03-30 2006-03-28 Covering layer for electrophotographic printing rollers
JP2008503502A JP5015133B2 (ja) 2005-03-30 2006-03-28 電子写真式印刷ローラー用カバー層
HK08108944.2A HK1118102A1 (en) 2005-03-30 2008-08-12 Covering layer for electrophotographic printing rollers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005014958A DE102005014958A1 (de) 2005-03-30 2005-03-30 Deckschicht für eletrophotografische Druckwalzen
DE102005014958.8 2005-03-30

Publications (2)

Publication Number Publication Date
WO2006103235A2 true WO2006103235A2 (de) 2006-10-05
WO2006103235A3 WO2006103235A3 (de) 2007-07-05

Family

ID=36821491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/061098 WO2006103235A2 (de) 2005-03-30 2006-03-28 Deckschicht für elektrophotografische druckwalzen

Country Status (8)

Country Link
US (1) US8246526B2 (de)
EP (1) EP1866702A2 (de)
JP (1) JP5015133B2 (de)
KR (1) KR20080013867A (de)
CN (1) CN100593757C (de)
DE (1) DE102005014958A1 (de)
HK (1) HK1118102A1 (de)
WO (1) WO2006103235A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8450037B2 (en) 2009-03-12 2013-05-28 Hewlett-Packard Development Company, L.P. Photoconductor for electrophotography
WO2011095208A1 (en) * 2010-02-03 2011-08-11 Abb Research Ltd Electrical insulation system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2315249A1 (de) * 1972-04-07 1973-10-11 Turlabor Ag Schichtkoerper und verwendung desselben
US6495300B1 (en) * 2001-07-02 2002-12-17 Xerox Corporation Photoconductive imaging members

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2651065A1 (de) * 1976-11-09 1978-05-18 Bayer Ag Modifizierte, sulfonsaeureestergruppen aufweisende polyisocyanate
US4100134A (en) * 1977-03-28 1978-07-11 Minnesota Mining And Manufacturing Company Storage-stable epoxy-terminated silane prepolymer
JPS5540743A (en) * 1978-09-19 1980-03-22 Mitsubishi Gas Chem Co Inc Surface treatment of polycarbonate resin molded article
US4343855A (en) * 1978-10-30 1982-08-10 Minnesota Mining And Manufacturing Company Transfer film
US4378250A (en) * 1981-07-31 1983-03-29 Treadway Gerald D Organosilicone coating compositions
JPS59111649A (ja) * 1982-12-17 1984-06-27 Dainichi Seika Kogyo Kk 感光体およびその製造方法
JP2542119B2 (ja) * 1989-11-01 1996-10-09 ポリプラスチックス株式会社 熱可塑性相互侵入網目構造体及びその形成法
JPH03200154A (ja) * 1989-12-28 1991-09-02 Shindengen Electric Mfg Co Ltd 電子写真用感光体
US5314980A (en) * 1993-01-19 1994-05-24 Minnesota Mining And Manufacturing Company Epoxy coating compositions with metal-containing stabilizers
US5411339A (en) * 1993-12-09 1995-05-02 Kroy, Inc. Portable printer and cartridge therefor
US6218482B1 (en) * 1994-02-24 2001-04-17 New Japan Chemical Co., Ltd. Epoxy resin, process for preparing the resin and photo-curable resin composition and resin composition for powder coatings containing the epoxy resin
US5888644A (en) * 1995-07-17 1999-03-30 Fujicopian Co., Ltd. Thermal transfer recording material
DE19737475A1 (de) * 1997-08-28 1999-03-04 Bayer Ag Beschichtungszusammensetzungen auf der Basis von Epoxidgruppen enthaltenden Silanen
US6321062B1 (en) * 1999-03-09 2001-11-20 Canon Kabushiki Kaisha Fixing-unit roller making use of composite material, process for its production, and fixing assembly employing the roller
JP3684130B2 (ja) * 1999-03-09 2005-08-17 キヤノン株式会社 複合材料を用いた定着用ローラ
US6780232B2 (en) * 1999-08-20 2004-08-24 The Walman Optical Company Coating composition yielding abrasion-resistant tiniable coating
JP2001183935A (ja) * 1999-12-27 2001-07-06 Nitto Kogyo Co Ltd 定着用ローラ
JP4389315B2 (ja) * 1999-12-28 2009-12-24 Jsr株式会社 反応性粒子、これを含有する硬化性組成物及び硬化物
DE10018935A1 (de) * 2000-04-17 2001-10-18 Bayer Ag Kratzfeste Beschichtungen
EP1195417B1 (de) * 2000-10-05 2009-10-14 Evonik Degussa GmbH Siliciumorganische Nanokapseln
DE10100442A1 (de) * 2001-01-08 2002-07-11 Bayer Ag Transparente Kunststoff-Formmasse
EP1249470A3 (de) * 2001-03-30 2005-12-28 Degussa AG Hochgefüllte pastöse siliciumorganische Nano- und/oder Mikrohybridkapseln enthaltende Zusammensetzung für kratz- und/oder abriebfeste Beschichtungen
DE50210398D1 (de) * 2001-03-30 2007-08-16 Degussa Siliciumorganische Nano-Mikrohybridsysteme oder Mikrohybridsysteme enthaltende Zusammensetzung für kratz- und abriebfeste Beschichtungen
BR0209708A (pt) * 2001-05-31 2004-07-27 Akzo Nobel Coatings Int Bv Revestimento de azulejos brutos com um revestimento resistente à abrasão e a arranhões
DE10144871A1 (de) * 2001-09-12 2003-03-27 Bosch Gmbh Robert Vergußmasse mit hoher thermischer Stabilität
CN1259600C (zh) * 2002-02-21 2006-06-14 佳能化成株式会社 带电辊、成像处理盒和电子照相装置
JP2003316051A (ja) * 2002-04-24 2003-11-06 Konica Minolta Holdings Inc 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2003316036A (ja) * 2002-04-24 2003-11-06 Konica Minolta Holdings Inc 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ
JP4301765B2 (ja) * 2002-04-25 2009-07-22 コニカミノルタホールディングス株式会社 画像形成方法及び画像形成装置
JP2003316203A (ja) * 2002-04-25 2003-11-07 Konica Minolta Holdings Inc 画像形成方法及び画像形成装置
JP2004138919A (ja) * 2002-10-18 2004-05-13 Ricoh Co Ltd 電子写真感光体、画像形成方法、画像形成装置及び画像形成装置装着用プロセスカートリッジ
US7268176B2 (en) * 2002-12-12 2007-09-11 Ppg Industries Ohio, Inc. Additives for imparting mar and scratch resistance and compositions comprising the same
TWI275621B (en) * 2002-12-19 2007-03-11 Vantico Gmbh UV-curable epoxy acrylates
DE502004007114D1 (de) * 2003-09-29 2008-06-26 Bosch Gmbh Robert Härtbares Reaktionsharzsystem
RU2006116448A (ru) * 2003-10-15 2007-11-20 Циба Спешиалти Кемикэлз Холдинг Инк. (Ch) Упрочненные покрытия, обладающие повышенной стойкостью к царапанию
JP5378858B2 (ja) * 2009-03-30 2013-12-25 富士フイルム株式会社 インプリント用モールド構造体、インプリント用モールド構造体の製造方法、インプリント方法、及び磁気記録媒体の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2315249A1 (de) * 1972-04-07 1973-10-11 Turlabor Ag Schichtkoerper und verwendung desselben
US6495300B1 (en) * 2001-07-02 2002-12-17 Xerox Corporation Photoconductive imaging members

Also Published As

Publication number Publication date
CN101164017A (zh) 2008-04-16
WO2006103235A3 (de) 2007-07-05
US8246526B2 (en) 2012-08-21
JP2008535009A (ja) 2008-08-28
EP1866702A2 (de) 2007-12-19
KR20080013867A (ko) 2008-02-13
HK1118102A1 (en) 2009-01-30
JP5015133B2 (ja) 2012-08-29
DE102005014958A1 (de) 2006-10-05
CN100593757C (zh) 2010-03-10
US20080166157A1 (en) 2008-07-10

Similar Documents

Publication Publication Date Title
DE60032397T2 (de) Elektrophotographisches lichtempfindliches Element, Verfahren zu dessen Herstellung, Prozesskartusche und elektrophotographischer Apparat
WO1998053372A1 (de) Beschichtete partikel
JPH02216161A (ja) ポリシロキサンでオーバーコートした感光体
US8501381B2 (en) Liquid developer composition and method of its preparation
DE3337121A1 (de) Haertungsprodukt aus kugeligen teilchen und verfahren zu seiner herstellung
JPH0658539B2 (ja) オーバーコートされた電子写真画像形成部材の製造方法
DE102018108965A1 (de) Elektrofotografisches lichtempfindliches element, prozesskartusche und elektrofotografisches gerät
DE69434880T2 (de) Polysiloxanzusammensetzungen zur Verwendung als Trägerbeschichtung
US20060014020A1 (en) Surface grafted metal oxide particles and compositions comprising the same
US4914478A (en) Image holding member
WO2006103235A2 (de) Deckschicht für elektrophotografische druckwalzen
DE4140794C1 (de)
DE19752444A1 (de) Polycarbonatharz und elektrofotografischer Fotoleiter, der dieses verwendet
DE19807634A1 (de) Beschichtete Partikel
US20070059620A1 (en) High sensitive imaging member with intermediate and/or undercoat layer
JP3878064B2 (ja) 電子写真感光体及びその製造方法
WO1994028466A1 (fr) Procede et appareil pour la formation d'images couleurs
JP2007065320A (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
JPH0636100B2 (ja) 光導電性集成体およびトナー像コピーの製造方法
JP4216706B2 (ja) 記録体の製版方法
DE102018130071A1 (de) Elektrofotografisches lichtempfindliches element, prozesskartusche und elektrofotografisches gerät
US20060040814A1 (en) Roller for use with substrates bearing printed ink images and a composition for coating the roller
EP0060679A1 (de) Lichtempfindliche Platte für die Elektrophotographie
DE10234571B4 (de) Ladungsableitende Beschichtung, insbesondere für Tonertransfertrommeln
JPH0470629B2 (de)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008503502

Country of ref document: JP

Ref document number: 200680010284.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077024347

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006725361

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWP Wipo information: published in national office

Ref document number: 2006725361

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11910168

Country of ref document: US