WO2006098461A1 - 樹脂組成物 - Google Patents

樹脂組成物 Download PDF

Info

Publication number
WO2006098461A1
WO2006098461A1 PCT/JP2006/305475 JP2006305475W WO2006098461A1 WO 2006098461 A1 WO2006098461 A1 WO 2006098461A1 JP 2006305475 W JP2006305475 W JP 2006305475W WO 2006098461 A1 WO2006098461 A1 WO 2006098461A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
weight
resin composition
resin
average molecular
Prior art date
Application number
PCT/JP2006/305475
Other languages
English (en)
French (fr)
Inventor
Tomomitsu Onizawa
Yoshihide Nishihiro
Atsushi Hayashida
Original Assignee
Teijin Chemicals Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005074760A external-priority patent/JP4705388B2/ja
Priority claimed from JP2005205250A external-priority patent/JP2007023118A/ja
Application filed by Teijin Chemicals Ltd. filed Critical Teijin Chemicals Ltd.
Priority to EP06715703A priority Critical patent/EP1860155B1/en
Priority to DE602006016082T priority patent/DE602006016082D1/de
Priority to KR1020077020891A priority patent/KR101268740B1/ko
Priority to CN2006800084975A priority patent/CN101142277B/zh
Priority to AT06715703T priority patent/ATE477300T1/de
Priority to US11/886,087 priority patent/US7732520B2/en
Publication of WO2006098461A1 publication Critical patent/WO2006098461A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0013Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • B29C2045/0027Gate or gate mark locations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • B29C2045/0032Preventing defects on the moulded article, e.g. weld lines, shrinkage marks sequential injection from multiple gates, e.g. to avoid weld lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3005Body finishings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Definitions

  • the present invention relates to a resin composition
  • a resin composition comprising an aromatic polycarbonate (hereinafter sometimes referred to as PC) and polyethylene terephthalate (hereinafter sometimes referred to as PET).
  • PC aromatic polycarbonate
  • PET polyethylene terephthalate
  • the present invention also provides a molded article such as a vehicle exterior material comprising the composition, and
  • PC / PET alloy As a resin composition used in automobiles and office automation equipment, there is a resin composition composed of PC and PET (hereinafter sometimes referred to as PC / PET alloy).
  • PC / PET alloy is a useful resin composition because it has both the characteristics of PC with excellent impact resistance and rigidity, and the characteristics of PET with excellent chemical resistance. Proposed.
  • Patent Document 1 describes a side protector for automobiles manufactured by injection molding a resin composition comprising PC, PET, an impact modifier and my strength.
  • the resin composition is obtained by improving the chemical resistance, which is a drawback of the resin composition, using the advantages of PC, such as impact resistance and heat resistance.
  • PC such as impact resistance and heat resistance.
  • there is room for improvement in the fluidity of the resin composition which may cause problems when molding large parts.
  • Patent Document 2 proposes a resin composition comprising PC and recycled PET.
  • the resin composition has advantages such as impact resistance, rigidity, and heat resistance derived from PC, but it is necessary to improve the fluidity of the resin composition in order to mold large, thin and light weight parts. There is.
  • the resin composition uses recycled PET. Therefore, the thermal stability is not sufficient.
  • Patent Document 3 discloses a resin composition comprising fine fibers surface-treated with PC, aromatic polyester, rubber elastic body, and a silane compound for the purpose of improving weld strength, rigidity, and impact resistance.
  • Patent Document 4 describes a resin composition comprising PC, aromatic polyester, wollastonite, ethylene-ethyl ethyl acrylate copolymer, and a copolymer wax of eleven-year-old olefin and maleic anhydride. ing.
  • the proposal described in this document aims to improve the surface appearance, chemical resistance, impact resistance and rigidity of the molded body.
  • Patent Document 5 describes a resin composition comprising PC, aromatic polyester, and wollastonite having a specific shape.
  • the proposal described in this document aims to improve the impact resistance, recyclability and surface appearance of the resin composition.
  • Patent Document 6 describes a large molded article obtained by injection compression molding a resin composition composed of PC and aromatic polyester.
  • the proposal described in this document aims to improve the dimensional stability and impact strength of the resin composition.
  • all of these proposals are aimed at improving mechanical properties such as impact resistance and rigidity, and thermal properties such as heat resistance, and are required when molding thin-walled large parts. The study on the fluidity of the resin composition is not sufficient.
  • Patent Document 7 discloses a resin composition comprising a low molecular weight polybutylene terephthalate, a high molecular weight polyester and a specific phosphorus-containing compound.
  • this technology cannot be applied to P CZP E TAlloy with different resin components. Further, this resin composition has room for improvement in rigidity, impact resistance, heat resistance and the like.
  • Patent Document 8 discloses a resin composition composed of PC, ABS, and talc, which satisfies a specific linear thermal expansion coefficient, dirt impact strength, and deflection temperature under load. A resin composition is disclosed.
  • P CZP ET alloy has made many proposals for improving impact resistance, rigidity, heat resistance, thermal stability, etc. There is no proposal for a resin composition having both the fluidity required when molding required large parts and the chemical resistance required when molding parts required to have a stable coating appearance.
  • the sequential valve GaUng method (hereinafter "Sequential Valve GaUng” method) is used to open and close multiple hot runner valves in sequence.
  • the “SVG method” is suitable (see Non-Patent Document 1).
  • the SVG method is sometimes used to form multiple molded bodies with different shapes from multiple gates, but when a single molded body is molded from multiple gates, a good quality large resin molded body is obtained. It is done. In the latter case, after the molten resin flowing from the previous gate passes, the gate is opened, and the resin is filled from the gate on the flow of the molten resin.
  • cascade molding Since this operation is carried out step by step at each gate and the melt shelf is supplied, molding by the SVG method is usually called cascade molding.
  • cascade forming has the advantage that it is possible to suppress the weld line and increase the degree of freedom of the number of gate points, and as a result, it is possible to perform injection molding of a large molded body with a relatively low clamping force. The Therefore, a resin composition having good fluidity suitable for this molding method is desired.
  • Patent Document 1 Japanese Patent Laid-Open No. 4-224920
  • Patent Document 2 JP 2003-128905 A
  • Patent Document 3 JP-A-8-259789
  • Patent Document 4 Japanese Patent Laid-Open No. 9-0112847
  • Patent Document 5 JP 2002-265769 A
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2003-171564
  • Patent Document 7 JP-A-6-279664
  • Patent Document 8 Japanese Patent Application Laid-Open No. 2-294358
  • Non-Patent Document 1 Plastics Technology, Dec. 2003, p38 Disclosure of Invention
  • the resin composition must have high fluidity. Molded products that require even better appearance are generally painted, and high chemical resistance to organic solvents such as thinner in the paint is required for the appearance of a stable paint appearance. . At the same time, high rigidity, impact resistance, heat resistance, and-thermal stability are often required.
  • the present invention provides a resin composition mainly composed of PC and PET, which has high chemical resistance while maintaining good fluidity, and is excellent in impact resistance, heat resistance, rigidity, and thermal stability. With the goal.
  • Another object of the present invention is to provide a molded article such as a vehicle exterior material comprising the composition. Furthermore, an object of this invention is to provide the manufacturing method of a vehicle exterior material.
  • the molecular weight of the constituent resin may be decreased.
  • mechanical properties such as impact resistance, rigidity, and heat resistance, and thermal properties are lowered.
  • the content of PET which has better chemical resistance than PC, can be increased.
  • increasing the PET content decreases the mechanical and thermal properties such as impact resistance and heat resistance.
  • the present inventor examined a method for improving fluidity of PCZPET alloy while suppressing a decrease in impact resistance, rigidity, heat resistance, thermal stability, and the like.
  • unprecedented low-viscosity PET as the PET component of PC / PET alloy, fluidity is improved without degrading properties such as impact resistance, heat resistance, rigidity, and thermal stability.
  • the present invention has been completed.
  • the inventor also surprisingly found that using low viscosity PET, P
  • the present invention comprises 50 to 100% by weight of resin component and 0 to 50% by weight of inorganic filler.
  • Filler (D component) is a powerful resin composition, and the resin component is
  • Intrinsic viscosity (IV) is 0.45-0.57 dl / g
  • terminal carboxyl group weight is 20-35 eQ / ton
  • This invention includes the molded object which consists of this rosin composition. Moreover, the vehicle exterior material which consists of this molded object is included.
  • the present invention is also a method for producing a vehicle exterior material by injection molding a resin composition into a mold, wherein (i) the mold is:
  • Gate 1 B is a gate to which molten resin flows from another gate and then the molten resin is supplied so as to merge with the flow.
  • Gate-A is a melting shelf. It is a gate to which molten resin is supplied without joining the effect flow,
  • Each gate in the mold is provided in a range where no other gate exists within a straight line distance of at least 20 cm on the exterior material surface.
  • (ii-1) It is mainly composed of a design surface provided on either the front or back surface, and an unnecessary portion of design properties selected from the group consisting of a recessed portion retreated from the design surface and a penetrating portion where the surface is missing,
  • Intrinsic viscosity is 0.45 to 0.57 dlZg, From polyethylene terephthalate (component B) with a xyl group weight of 20-35 eqt on and a ratio of weight average molecular weight (Mw) to number average molecular weight (Mn) (MwZMn) of 1.3 to 2.1 Obviously
  • the intrinsic viscosity of PET used in the present invention is extremely lower than the intrinsic viscosity of PET used in general PC / PET alloys. That is, the intrinsic viscosity of PET used in general PCZPET alloys is about 0.65 to 1.5 dlZg, whereas the intrinsic viscosity of PET used in the present invention is 0.45 to 0.57 d 1. Zg.
  • PET is used in which the degree of polymerization is increased by further solid-phase polymerization of PET obtained by polycondensation reaction.
  • PET it is preferable to use PET having a low intrinsic viscosity before solid phase polymerization as the B component.
  • Fig. 1 is a front schematic view ([A]), a side schematic view ([B]), and a cross-sectional schematic diagram ([C]) along the A-A 'axis of the vehicle exterior material created in the example.
  • Vehicle exterior body (vertical projection length: 850 mm, lateral projection length: 1, 000 mm, and wall thickness: 4.5 mm)
  • Recessed gate for grip attachment (Direct gate located on the left / right symmetry axis, and its tip is connected to the hot runner valve)
  • PC which is the component A, is obtained by reacting divalent phenol with a carbonate precursor.
  • reaction method include an interfacial polycondensation method, a melt transesterification method, a solid-phase transesterification method of a force-ponate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
  • Divalent phenols include 2,2-bis (4-hydroxyphenyl) propane (commonly referred to as bisphenol A), 2,2-bis ⁇ (4-hydroxy-3-methyl) phenyl ⁇ propane, 2, 2— Bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) 1-methylbutane, 2,2-bis (4-hydroxyphenyl) 1,3,3-dimethylbutane, 2,2-bis (4-hydroxyphenyl) 4-methylpentane, 1,1-bis (4-hydroxyphenyl) -1,3,3,5-trimethylcyclohexane, ⁇ , bis (4-hydroxyphenyl) — Examples include m-diisopropylbenzene. These can be used alone or in admixture of two or more.
  • the component A is preferably a bisphenol A type PC produced using a divalent phenol substantially consisting of bisphenol A. That is, bisphenol A type PC produced using 90 to 100 mol%, more preferably 95 to 100 mol% of bisphenol A as divalent phenol is preferable.
  • the carbonate precursor carbonyl halide, carbonate ester, haloformate or the like is used, and specific examples include phosgene, diphenyl carbonate, or divalent formate of divalent phenol.
  • the component A may be various PCs with high heat resistance or low water absorption, which are combined using other divalent phenols.
  • PC may be produced by any production method, and in the case of interfacial polycondensation, a terminal stopper of monovalent phenols is usually used.
  • the PC may also be a branched PC obtained by polymerizing trifunctional phenols, and further a copolymer obtained by copolymerizing an aliphatic dicarboxylic acid or an aromatic dicarboxylic acid, or a divalent aliphatic or alicyclic alcohol. It may be a PC. However, PC made of a homopolymer of bisphenol A is particularly preferred because of its excellent impact resistance. Details of the component A are described in WO 03/080 No. 728 pamphlet.
  • PC having high heat resistance or low water absorption
  • polymerized using other divalent phenols the following can be preferably exemplified.
  • BPM 4, 4'-one (m-phenylene disopropylidene) diphenol
  • BCF 9,9_bis (4-hydroxy-1-methylphenyl) fluorene
  • Bisphenol A component is preferably 10 to 95 mol%, more preferably 50 to 90 mol%, still more preferably 60 to 85 mol% in 100 mol% of the divalent phenol component constituting PC Copolymer PC in which the BCF component is preferably 5 to 90 mol%, more preferably 10 to 50 mol%, still more preferably 15 to 40 mol%.
  • BPM component is preferably 20 to 80 mol%, more preferably 40 to 75 mol%, more preferably 100 mol% of divalent phenol component constituting PC. 45-65 mol%, and 1,1-bis (4-hydroxyphenyl) -3.
  • 3,5-trimethylcyclohexane component is preferably 20-80 mol%, more preferably 25-60 mol% %, More preferably 35-55 mol% copolymerized PC.
  • These special PCs may be used alone or in combination of two or more. These can also be used by mixing with the widely used bisphenol A type PC.
  • component A not only virgin raw materials, but also PC recycled from used products, so-called material recycled PC can be used.
  • Used products include soundproof walls, glass windows, translucent roofing materials, various glazing materials such as automobile sunroofs, transparent members such as windshields and automobile headlamp lenses, containers such as water bottles, and optical recording media Etc. are preferable. These do not contain a large amount of additives or other resins, and the desired quality is easily obtained stably. In particular, automobile headlamp lenses and optical recording media are consumed in large quantities, and the regenerated material can be obtained stably.
  • the above virgin raw material is a raw material that has not yet been used in the factory after its production.
  • the viscosity average molecular weight of the component A is 16,000 to 23,000, preferably 1,600 to 22,000, more preferably 18,000 to 21,000.
  • PC having such a preferred range of viscosity average molecular weight has a good balance of fluidity, strength, and heat.
  • the viscosity average molecular weight only needs to be satisfied as a whole component A, and includes those satisfying such a range by a mixture of two or more kinds having different molecular weights.
  • mixing PC with a viscosity average molecular weight of preferably 50,000, more preferably 80,000 or more, and even more preferably 100,000 or more is intended to increase the enthalpy elasticity at the time of melting. May be advantageous. For example, reducing jetting, gas injection Effective for cushion molding, foam molding (including supercritical fluids), and injection press molding. Therefore, mixing PCs with a viscosity average molecular weight of 50,000 or more is one of the preferred choices when these improvements are required and when these molding methods are applied.
  • the upper limit of the molecular weight is preferably 2 million, more preferably 300,000, and even more preferably 200,000. It is preferable that such high molecular weight components are mixed so that the molecular weight distribution of two or more peaks can be observed by a measurement method such as GPC (gel permeation chromatography).
  • the phenolic hydroxyl group content is preferably 30 eqZt on or less, more preferably 25 eq / ton or less, and further preferably 20 eqZton or less.
  • the force value can be made substantially 0 edZton by reacting the terminal terminator sufficiently.
  • the amount of phenolic hydroxyl group was measured by NMR measurement, and the molarity of divalent phenol unit having a monotonic bond, divalent phenol unit having a phenolic hydroxyl group, and the unit of a terminal terminator unit. The ratio is calculated and converted to the amount of phenolic hydroxyl group per polymer weight based on this ratio.
  • the viscosity average molecular weight referred to in the present invention is obtained by first using a host viscometer from a solution obtained by dissolving 7 g of PCO. 7 g in 100 ml of methyl chloride at 20 ° C.
  • the viscosity average molecular weight M is obtained by inserting the obtained specific viscosity by the following formula.
  • V SP , C [??] +0. 45X [ ⁇ ?] 2 c (where [77] is the intrinsic viscosity)
  • PET uses terephthalic acid as the main dicarboxylic acid component.
  • PET also contains dicarboxylic acid components other than terephthalic acid components as copolymerization components. Good. That is, when the total amount of the dicarboxylic acid component is 100 mol%, PET is preferably 70 to 100 mol%, more preferably 80 to 100 mol%, and even more preferably 9 It is PET in which 0 to 100 mol% is terephthalic acid.
  • the description of “aa component” related to the structural unit of component B (“aa” indicates the compound name) indicates the polymer structural unit derived from the compound “aa” or its ester-forming derivative. .
  • the dicarboxylic acid component refers to a structural unit derived from dicarboxylic acid or an ester-forming derivative thereof.
  • dicarponic acid components examples include isophthalic acid, 2-chloroterephthalic acid, 2,5-dichloroterephthalic acid, 2-methylterephthalic acid, 4,4 monostilbene dicarboxylic acid, 4,4-biphenyldicarboxylic acid, orthophthalic acid Acid, 2, 6-naphthalenedicarboxylic acid, 2, 7-naphthalenedicarboxylic acid, bisbenzoic acid, bis (P-streptoxyphenyl) methane, anthracene dicarboxylic acid, 4, 4-diphenyl terdicarboxylic acid, Examples include structural units derived from 4,4-diphenoxy dicarboxylic acid, 5-Na sulfoisophthalic acid, ethylene-bis-P-benzoic acid, and the like.
  • dicarboxylic acid components can be used alone or in admixture of two or more.
  • the other dicarboxylic acid component is preferably 0 to 30 mol%, more preferably 0 to 20 mol%, still more preferably 0 to 10 mol%, when the total amount of the dicarboxylic acid component is 100 mol%. It is.
  • the B component can be copolymerized with an aliphatic dicarboxylic acid component of less than 30 mol%.
  • the component include structural units derived from adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and the like.
  • PET may contain a diol component other than the ethylene dalycol component as a copolymer component.
  • PET is preferably 70 to 100 mol%, more preferably 80 to 100 mol%, more preferably 90, when the total amount of diol components is 100 mol%.
  • ⁇ 100 mol% is PET which is an ethylene glycol component.
  • diol components include, for example, diethylene glycol, 1,2_propylene Glycol, 1,3-propanediol, 2,2-dimethyl-1,3-propanediol, trans- or 1,2,2,4-tetramethyl-1,3-cyclobutanediol, 1,4-butane Diol, Neopentyldaricol, 1,5 Monopentanediol, 1,6 Monohexanediol, 1,4-Cyclohexanedimenol, 1,3-Cyclohexanedimethanol, Decamethylene glycol, Cyclohexane Examples include structural units derived from diol, p-xylenediol, bisphenol A, tetrabromobisphenol A, tetrabromobisphenol A-bis (2-hydroxyethyl ester), and the like.
  • the other diol component is preferably 0 to 30 mol%, more preferably 0 to 20 mol%, and still more preferably 0 to 1 when the total amount of the diol component is 100 mol%. 0 mol%.
  • Polyethylene terephthalate obtained by copolymerizing a polyethylene glycol component slightly as the diol component can also be used.
  • the molecular weight of the polyethylene glycol component is preferably in the range of 150 to 6,00.
  • the composition ratio of the polyethylene glycol component is preferably 5% by weight or less, more preferably 3% by weight or less, and even more preferably 2% by weight or less in 100% by weight of the diol component.
  • the lower limit is preferably 0.5% by weight or more, and more preferably 1% by weight or more.
  • the B component contains about 0.5 mol% or more of a diethylene glycol component in 100 mol% of the diol component as a side reaction product at the time of normal polymerization. 6 mol% or less is preferable, and 5 mol% or less is more preferable.
  • a terephthalic acid component and an isophthalic acid in a polyethylene terephthalate / isophthalate copolymer (hereinafter sometimes referred to as a TAZ IA copolymer) in which a part of the terephthalic acid component is an isophthalic acid component.
  • the ratio with respect to the acid component is such that when the total dicarboxylic acid component is 100 mol%, the terephthalic acid component is 70 to 99.9 mol%, preferably 75 to 99 mol%, more preferably 80 mol. ⁇ 9 9 mol%.
  • the isophthalic acid component is 0.1 to 30 mol%, preferably 1 to 25 mol%, More preferably, it is 1 to 20 mol%.
  • the aromatic dicarboxylic acid component such as naphthenic dicarboxylic acid other than the terephthalic acid component and the isophthalic acid component is 10 mol% or less, preferably 5 mol% or less.
  • the aliphatic dicarboxylic acid component such as adipic acid can be copolymerized in an amount of 5 mol% or less, preferably 3 mol% or less, but only the terephthalic acid component and the isophthalic acid component are used as the di-functional sulfonic acid component. Is most preferred.
  • the ethylene dallicol component alone is most preferable as the diol component in the TAZ I A copolymer, it is possible to copolymerize a diol component other than ethylene dallicol.
  • Ethylenedaricol component in a polyethylene / neopentyl terephthalate copolymer in which a part of the ethylenedaricol component in component B is a neopentylglycol component
  • the ratio of diol component to neopentyl alcohol component is 90 to 99 mol%, preferably 95 to 99 mol%, more preferably 95 to 99 mol% of the ethylene glycol component when the total diol component is 100 mol%. 9 7-9 9 mol%.
  • the neopentyl alcohol component is 1 to 10 mol%, preferably 1 to 8 mol%, more preferably 1 to 5 mol%. It is also possible to copolymerize diol components other than ethylene dalycol and neopentyl glycol.
  • the aromatic dicarboxylic acid component such as isophthalic acid naphtha dicarboxylic acid other than terephthalic acid component is 10 mol% or less, preferably 5 mol% or less, and adipic acid. It is possible to copolymerize the aliphatic dicarboxylic acid component such as 5 mol% or less, preferably 3 mol% or less, and the dicarboxylic acid component is most preferably a terephthalic acid component alone. It is also possible to copolymerize an aliphatic dicarboxylic acid component.
  • the B component is polymerized with a compound that induces a dicarboxylic acid component while heating and a compound that induces the diol component in the presence of a polycondensation catalyst containing titanium, germanium, antimony, or the like. It can be produced by discharging by-product water or lower alcohol out of the system.
  • Germanium as a polycondensation catalyst A polymer polymerization catalyst is preferred.
  • germanium-based polymerization catalysts include germanium oxides, oxides, halides, alcoholates, phenolates, and the like. More specifically, germanium dioxide, germanium hydroxide, germanium tetrachloride, Examples include tetramethoxygermanium.
  • Other examples include insoluble catalysts such as antimony trioxide.
  • PET polymerized with a germanium polymerization catalyst when PET polymerized with a germanium polymerization catalyst is used, chemical resistance and thermal stability are improved.
  • compounds such as manganese, zinc, calcium, and magnesium used in a transesterification reaction that is a pre-stage of a conventionally known polycondensation can be used together.
  • the catalyst can be deactivated and polycondensed with a phosphoric acid compound or the like.
  • the production method of PET can be either batch type or continuous polymerization type.
  • Component B is characterized by a lower intrinsic viscosity than PET used in general PCZPET alloys. That is, the intrinsic viscosity (IV) of the component B is 0.45 to 0.57 dlZg, preferably 0.47 to 0.55 dl / g, and more preferably 0.49 to 0.52 dlZg.
  • IV value is high, fluidity is lowered, and there is a problem that the effect of improving the chemical resistance is hardly exhibited.
  • the IV is too low, the strength is greatly reduced and the thermal stability of the thermoplastic resin is lowered due to the large amount of PET end groups. Also, the production of PET with a low IV has the problem that pelleting is difficult due to the loss of thread.
  • the intrinsic viscosity (IV) of component B is the value measured at 25 ° C in o-chlorophenol. That is, it is calculated from the solution viscosity measured at 25 ° C after heating and dissolving 1.2 g of PET in 15 cm 3 of o-clonal phenol.
  • the density of the PET obtained after the polycondensation reaction step is preferably 1.35 to 1.41 gZ cm 3 , more preferably 1.37 to 1.39 g / cm 3 .
  • the density of PET is measured at a temperature of 23 ° C. by a density gradient tube method using a calcium nitrate solution in accordance with D method of JIS K7112.
  • PET obtained by further solid-phase polymerization of PET obtained by polycondensation reaction to increase the degree of polymerization is used.
  • the B component As described above, PET having a low polymerization degree that is not solid-phase polymerized can be used.
  • Component B has a ratio (MwZM n) of weight average molecular weight (Mw) to number average molecular weight (Mn) of 1.3 to 2.1, preferably 1.5 to 2.1, more preferably 1.7 to 2. 0.
  • Mw / Mn can be determined by the GPC (gel permeation chromatography) method. That is, using a GPC measuring device placed in a clean air environment with a temperature of 23 ° C and a relative humidity of 50%, MI XED-C (length 300 mm, inner diameter 7.5 mm) made by Polymer Laboratories as a column , Using Kuroguchi Form as the mobile phase, Easy Lab PS-2 manufactured by Polymer Laboratories as the standard substance, and UV detector (wavelength 254 nm) as the detector, and Kuroguchi Form as the developing solvent.
  • GPC gel permeation chromatography
  • Recycled PET may have a large MwZMn, and care must be taken when used as the B component of the present invention.
  • the amount of terminal force lpoxyl group of the component B is 20 to 35 eq / ton, preferably 22 to 30 eq / ton, and more preferably ZSSeQi / ton.
  • the content of dioxyethylene terephthalate units is preferably in the range of 1.0 to 5.0 mol%, more preferably 1.0 to 2.5 mol%.
  • PET obtained by polycondensation reaction is usually formed into granules (chips) by melt extrusion.
  • Such granular PET preferably has an average particle size of 2-5 mm, more preferably 2.2-4 mm.
  • As the PET it is preferable to use the granular PET that has undergone the liquid phase polycondensation process as it is. (component c: rubbery polymer)
  • the rubbery polymer of component C is a polymer comprising a rubber component having a glass transition temperature of preferably 10 ° C. or lower, more preferably 10 ° C. or lower, and still more preferably 30 ° C. or lower.
  • a copolymer in which another polymer chain is bonded to the polymer comprising the rubber component refers to a polymer whose rubber component is contained in 100% by weight of rubbery polymer, preferably 35% by weight or more, more preferably 45% by weight or more.
  • a practical upper limit of the rubber component content is about 90% by weight.
  • the rubbery polymer is more preferably a copolymer formed by bonding other polymer chains.
  • a rubbery polymer in which another polymer chain is graft-bonded to a rubber component it is widely known that not a few polymers or copolymers that are not drafted are formed on the rubber component.
  • the component C of the present invention may contain such a free polymer or copolymer.
  • SB styrene-butadiene copolymer
  • AB S acrylonitrile-butadiene-styrene
  • MBS methyl methacrylate acrylate-butadiene-styrene copolymer
  • MA BS methyl methacrylate-acrylonitrile-butadiene styrene) copolymer
  • MB methyl methacrylate-butadiene copolymer
  • ASA acrylonitrile-styrene-acrylic rubber
  • AE S acrylonitrile-ethylene propylene rubber
  • copolymers are preferably core-shell type graft copolymers in which a polymer chain composed of the above monomers is bonded to a polymer core composed of a rubber component.
  • Monobutadiene copolymer, acrylonitrile monobutadiene monostyrene copolymer, methyl methacrylate monotobutadiene-styrene copolymer and methyl methacrylate (acrylic / silicone IPN rubber) copolymer At least one rubbery polymer selected from the group consisting of
  • the rubber particle diameter of the rubbery polymer is preferably from 0.05 to 2 m in terms of weight average particle diameter, more preferably from 0.:! To l / im, particularly preferably from 0.1 to 0.5 m. It is.
  • the rubber particle size distribution can be either a single distribution or a plurality having two or more peaks, and the rubber particles form a single phase in the morphology. However, it may have a salami structure by containing an occluded phase around the rubber particles.
  • the weight ratio of the grafted component to the rubber substrate is preferably 10 to 100%, more preferably 15%. ⁇ 70%, more preferably 15 ⁇ 40%.
  • Examples of the rubbery polymer include various thermoplastic elastomers composed of a hard segment and a soft segment.
  • thermoplastic elastomers include polyester elastomers, polyurethane elastomers, styrene elastomers, and olefin elastomers.
  • the inorganic filler that is component D of the present invention can be freely selected from flakes, fibers, spheres, and hollows. Flaky fillers and Z or fibrous fillers are preferred for improving the strength and impact resistance of the resin composition and dimensional stability.
  • Inorganic fillers (component D) include silane coupling agents (including alkylalkoxysilanes and polyorganohydrogen siloxanes), higher fatty acid esters, acid compounds (for example, phosphorous acid, phosphoric acid, carboxylic acid, and carboxylic acid anhydride). Etc.) and various surface treatment agents such as wax. Further, it may be granulated with a sizing agent such as various resins, higher fatty acid esters, and waxes.
  • the flaky filler examples include glass flakes, metal flakes, graphite flakes, smectites, kaolin clay, mai force, and talc.
  • a hollow filler such as a glass balloon may be broken by melting and kneading with a resin, and the effect of improving rigidity may be obtained in the same manner as a plate-like inorganic filler.
  • Flake Fillers include those that exhibit such effects.
  • These inorganic fillers include those with a surface coating of a different material. Typical examples of dissimilar materials are metals, alloys and metal oxides. Coatings such as metals and alloys can impart high electrical conductivity and may improve design. In some cases, the metal oxide coating can provide functions such as photoconductivity, and the design can be improved.
  • the flaky filler has an average particle size (D50 (median diameter of particle size distribution)) measured by the laser-diffraction 'scattering method of preferably 0.1 to 50 m, more preferably 0.3. -30 / xm, more preferably 0.5-10 m.
  • the average particle thickness is preferably from 0.01 to lm, more preferably from 0.01 to 0.8 m, and even more preferably from 0.05 to 0.5 zm.
  • the My force has an average particle size (D 50 (median diameter of particle size distribution)) measured by the laser diffraction 'scattering method, preferably 1 to 50 xm, more preferably 2 to 20 m, more preferably 2 to 10 m. If the average particle size of the My force is less than 1 m, the effect of improving the rigidity is not sufficient, and if it exceeds 50 im, the rigidity is not sufficiently improved, and the mechanical strength such as impact characteristics is not significantly lowered.
  • the thickness measured by observation with an electron microscope is preferably 0.01 to 1 m, more preferably 0.03 to 0.3 m.
  • the aspect ratio is preferably 5 to 200, more preferably 10 to 100.
  • My power may be a pulverized natural mineral or a synthetic product.
  • the powder form method of My power it may be produced by either dry pulverization method or wet pulverization method.
  • the dry milling method is more inexpensive and more common, while the wet milling method is effective for finer and finer milling. As a result, the effect of improving the rigidity of the resin composition becomes higher.
  • Talc is hydrous magnesium silicate in terms of chemical composition.
  • S iO 2 ⁇ 3MgO ⁇ 2H 2 O It is represented by S iO 2 ⁇ 3MgO ⁇ 2H 2 O and is usually a scaly particle with a layered structure.
  • Talc 56 to 65 wt% of S i 0 2, and a H 2 0 of Mg_ ⁇ and about 5 wt% of 28 to 35 wt%.
  • Fe 2 0 3 as another minor component is 0. 03 to 1.2% by weight, A 1 2 0 3 to 0.05 to 1.5% by weight, CaO to 0.05 to 1.2% by weight, K 2 0 to 0.2% by weight or less, Na 2 ⁇ In an amount of 0.2% by weight or less.
  • the loss on ignition is preferably 2 to 5.5% by weight.
  • Talc has an average particle size measured by a sedimentation method of preferably 0.1 to 50 mm, more preferably 0.1 to 10 m, still more preferably 0.2 to 5 m, and particularly preferably 0.2. ⁇ 3.5 im. Talc with a bulk density of 0.5 g / cm 3 is preferred.
  • the average particle size of talc is the D 50 (median diameter of particle size distribution) measured by the X-ray transmission method, which is one of the liquid phase precipitation methods.
  • a specific example of an apparatus for performing such measurement is Sedigraph 5100 manufactured by Micromeritics.
  • the production method when talc is ground from the raw stone there is no particular limitation on the production method when talc is ground from the raw stone, and the axial flow mill method, the Annular type mill method, the roll mill method, the pole mill method, the jet mill method, and the container rotary compression shear type mill method. Etc. can be used. Further, the evening pulverized powder is preferably classified by various classifiers and has a uniform particle size distribution.
  • classifiers such as impact-type inertial force classifiers (such as barrier impactors), Coanda effect-based inertial force classifiers (such as ELPOJET), centrifugal field classifiers (multistage cyclone, microplex, dispa John Separe Yuichi, Accucut, Yuichi Poclassifier, Turpoplex, Micron Separator, and Super Separator Yuichi).
  • impact-type inertial force classifiers such as barrier impactors
  • Coanda effect-based inertial force classifiers such as ELPOJET
  • centrifugal field classifiers multistage cyclone, microplex, dispa John Separe Yuichi, Accucut, Yuichi Poclassifier, Turpoplex, Micron Separator, and Super Separator Yuichi).
  • talc is preferably in an aggregated state in view of its handleability and the like, and examples of such production methods include a method using deaeration compression and a method using a sizing agent to compress.
  • the degassing compression method is preferable because it is simple and does not include unnecessary sizing agent shelf components in the vinegar composition of the present invention.
  • the fibrous filler preferably has an average fiber diameter of 0.1 to 30 xm, more preferably 0.1 to 20 xm, more preferably 0.5 to 15 m.
  • the average fiber length is preferably 1 to 500 / m, more preferably 1 to 400 m, and further preferably 5 to 35 / m.
  • the average fiber diameter is obtained by observing the reinforcing filter with an electron microscope, obtaining the individual fiber diameters, and calculating the number average fiber diameter from the measured values.
  • the electron microscope is used because it is difficult to accurately measure the size of the target level with an optical microscope. From the image obtained by observation with an electron microscope, the target filament to be measured is randomly extracted, and the fiber diameter is measured near the center of each filler. The number average fiber diameter is calculated from the measured values obtained.
  • the observation magnification should be approximately 1,00,000, and the number of measurements should be at least 500 (more than 600 is suitable for work).
  • the average fiber length is obtained by observing the filler with an optical microscope, obtaining individual lengths, and calculating the number average fiber length from the measured values.
  • Observation with an optical microscope begins with the preparation of dispersed samples so that the fillers do not overlap each other. Observation is performed under the condition that the objective lens is 20 times, and the observation image is captured as image data into a CCD camera having about 250,000 pixels. From the obtained image data, the fiber length is calculated using a program that calculates the maximum distance between two points in the image data using an image analyzer. Under such conditions, the size per pixel corresponds to a length of 1.25 m, and the number of measurement is 5500 or more (60.0 or less is suitable for work).
  • fibrous filler examples include glass fiber, carbon fiber, metal fiber, ceramic fiber, slag fiber, rock wool, zonotlite, wollastonite, and various whiskers (potassium titanate whisker, aluminum borate whisker). Boron whisker, basic magnesium sulfate whisker, etc.). (Wollastonite)
  • the average fiber diameter of wollastonite is preferably 0.1 to 10 m, more preferably 0.1 to 5 mm, and still more preferably 1 to 2 m.
  • the aspect ratio (average fiber length / average fiber diameter) is preferably 3 to 30 and more preferably 5 to 9.
  • the measuring method of the average fiber diameter and the average fiber length is the same as the measuring method.
  • Wollastonite is intended to fully reflect its inherent whiteness in the resin composition. Therefore, it is preferable to remove as much as possible the iron content mixed in the raw material ore and the iron content mixed due to wear of the equipment when the raw material ore is crushed by a magnetic separator.
  • the content of iron in the wollastonite Such magnetic separator process in terms of F e 2 0 3, 0. Is preferably 5 wt% or less.
  • Wollastonite may be a natural mineral powder or a synthetic product. -(Glass fiber)
  • the glass fiber is not particularly limited in glass composition such as A glass, C glass, and E glass, and may contain components such as T i 0 2 , S 0 3 , and P 2 0 5 in some cases. May be. However, E glass (non-alkali glass) is more preferable. Glass fibers are obtained by rapidly cooling molten glass while drawing it by various methods to obtain a predetermined fiber shape. In such a case, the quenching and stretching conditions are not particularly limited. In addition to the perfect circle shape, the cross-sectional shape may be other than a perfect circle such as an ellipse shape, a cocoon shape, or a trefoil shape. Further, a mixture of a perfect glass fiber and a glass fiber having a shape other than a perfect circle may be used.
  • the average fiber diameter of the glass fiber is not particularly limited, but preferably 1-2.
  • the preferred fiber length of the glass reinforcing material is preferably 50 to 500 zm, more preferably 100 to 400 m as the average fiber length in the resin composition pellet or molded product of the present invention. More preferably, it is 2 30 to 2 70 xm.
  • the average fiber length is a value calculated by an image analysis device from an optical microscope observation or the like from a glass fiber residue collected after dissolving the molded body in a solvent or decomposing the measurement with a basic compound. Also, when calculating such values, those with a length equal to or less than the fiber diameter are values that are not counted. Further, in order to reduce the anisotropy derived from the glass fiber, LZD ⁇ 10 called milled fiber can be added separately from the glass fiber.
  • the glass fiber may be coated with a surface coating agent.
  • a surface coating agent is (i) Those containing an epoxy group-containing compound are preferred.
  • Epoxy group-containing compounds are highly reactive to various types of resins and are effective in improving adhesion. On the other hand, they have good properties without causing degradation reactions even for highly reactive condensed polymers. Can be demonstrated.
  • Such an improvement in adhesion results in a high shear force acting on the polymer existing between the glass fibers during the forming process. In addition to the fiber reinforcement effect, this increases the crystallinity in the case of crystalline polymers, resulting in good heat resistance and reduced dimensional changes over time.
  • the epoxy group-containing compound has a polymer structure having a molecular weight of 500 or more, and further contains a plurality of epoxy groups in one molecule. is there. From the viewpoint of heat resistance, a structure mainly composed of aromatic rings is preferable.
  • the epoxy group-containing compound include a phenol enopolac epoxy resin and a linear cresol nopolac epoxy resin.
  • phenolic enopolak type epoxy resins that is, a compound mainly composed of a phenol enopolak type epoxy resin and Z or linear cresol nopolak type epoxy resin is preferable as the epoxy group-containing compound. That is, 70% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more, of epoxy group-containing compound 1 Q 0% by weight, phenol nopolac type epoxy resin and Z or linear cresolno.
  • Preferred examples include those containing a pollac type epoxy resin.
  • the amount of the surface coating agent is preferably (ii) 0.1 to 2% by weight, more preferably 0.5 to 1.5% by weight, and still more preferably 0.6 to 1% per 100% by weight of the glass fiber. 2% by weight. If it is less than 0.1% by weight, the surface coating is insufficient and the fibers are not sufficiently focused. Such insufficient focusing failure will be described later. On the other hand, when the content exceeds 2% by weight, the adhesiveness is saturated, while the sizing agent may deteriorate the properties of the thermoplastic resin.
  • Glass fiber has the following characteristics: (iii) 2 g of glass fiber 3 mm long chopped strand is placed in a 1-liter beaker and stirred with a stirrer at 23 ° C. It is preferable that the amount of fluff generated when stirring at 0 rpm for 5 minutes is 10 g or less. Here, the fluff is a chopped strand that has been bundled by stirring and opened.
  • the agitator is preferably one that can display the rotation speed and can be feedback-controlled to the set rotation speed (that is, the rotation speed is always kept constant).
  • the blade of the stirrer is a three-blade marine eve with a diameter of 5 ⁇ ⁇ . Such a fluff generation amount is more preferably 5 g or less, and even more preferably 3 g or less.
  • the resin composition containing glass fiber like this invention is manufactured by supplying glass fiber to a melt kneader. At that time, the raw glass fiber is (1) pre-blended with the raw material resin, (2) pneumatically transported, and (3) a feeder (screw set, vibration type, etc.) and side feeder. Considerable external force due to factors such as being supplied independently to the melt-kneader.
  • a surface coating agent containing a component such as polyurethane, polyacrylate or polyamide in addition to the epoxy-containing compound as the surface coating agent.
  • suitable surface coating agents include those having phenol nopolac type epoxy resin and Z or linear cresol mononopolak type epoxy resin as main components, and further comprising polyurethane.
  • the enolpnopolac type epoxy resin and / or the linear cresol nopolak type epoxy resin is used in the surface coating agent of 100% by weight, preferably 50 to 95% by weight, more preferably 60 to 90% by weight. contains.
  • a phenol nopolac type epoxy resin is contained in 100% by weight of the binder component, preferably 50% by weight or more, more preferably 60% by weight or more.
  • the surface of the glass fiber is previously surface-treated with an aminosilane coupling agent or an epoxysilane coupling agent, and then a phenol nopolac type epoxy resin and / or linear It is preferable to treat with a cresol nopolac type epoxy resin and polyurethane.
  • Glass fiber sizing agents usually include components that substantially bundle fiber reinforcing agents (surface coating agents), as well as components that impart lubricity and other emulsifiers. It may be included in the bundling agent.
  • An emulsion solution containing these various components is applied and dried to leave components mainly composed of a surface coating agent on the fiber reinforcement.
  • the surface coating agent is promoted to have a high molecular weight and a sufficient surface coating agent is formed.
  • phenol nopolac type epoxy resin and Z or linear cresol nonopolac type epoxy resin and polyurethane are based on a method in which glass fiber is applied to a mixture of both emulsions. However, it is also possible to apply both independently.
  • the amount of generated cotton increases only with phenol nopolac type epoxy 3 ⁇ 4f fat.
  • the amount of epoxy resin is adjusted and combined with other sizing agents, so that the surface coating has good heat resistance and contains a large number of epoxy groups, while producing a glass fiber with a low amount of fluff generation. It can be obtained, and excellent effects such as heat resistance and dimensional stability can be achieved by reducing the amount of fluff generated.
  • At least one inorganic filler selected from the group consisting of My strength, talc, wollastonite, and glass fiber is preferable from the viewpoints of impact resistance, appearance, dimensional stability, and cost.
  • wollastonite or glass fiber is preferable.
  • the resin composition of the present invention can contain a bending inhibitor in order to suppress breakage and cracking of the inorganic filler (component D) and to further improve the thermal stability of the resin composition.
  • folding inhibitors include (i) a lubricant containing a functional group having reactivity with the silicate mineral, and (ii) a lubricant whose surface has been previously coated on the silicate mineral.
  • Suitable folding inhibitors are acidic group-containing lubricants, or alkylalkoxysilanes or alkylhydrogensilanes having an alkyl group having 60 or less carbon atoms.
  • the strong lpoxyl group is preferably 0.05 to: L Ome q / g, more preferably 0.1 to 6 me qZ g, more preferably 0.
  • An olefin-based wax containing a strong lpoxyl group contained at a concentration of 5 to 4 meq / g is preferred.
  • the molecular weight of the olefin-based wax is preferably 1,000 to 10,000.
  • a copolymer of ⁇ -olefin and maleic anhydride that satisfies the conditions of such concentration and molecular weight is preferable.
  • Such a copolymer can be produced by melt polymerization or bulk polymerization in the presence of a radical catalyst according to a conventional method.
  • a radical catalyst e.g., a nickel catalyst, nickel, nickel, nickel, nickel, nickel, nickel, zinc, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium
  • the resin composition of the present invention comprises 50-: L 00 wt%, preferably 70-95 wt%, more preferably 55-65 wt% resin component and 50-0 wt%, preferably 30-5 wt%, More preferably, it comprises 45 to 35% by weight of an inorganic filler (component D).
  • the resin composition of the present invention has a weight ratio of the total amount of PC (A component) and inorganic filler (D component) to PET (B component), that is, (A + D) / B is 60/40 to 85 15, preferably 65/35 to 85/15, more preferably 65 / 35-80 / 20.
  • the weight ratio of component A to component B is preferably 40 / 60-90 / 10, More preferably, it is 65Z35-75 / 25.
  • the rubbery polymer (C component) is preferably 1 to 50 parts by weight, more preferably 1 to 10 parts by weight, and even more preferably 2 to 7 parts by weight with respect to 100 parts by weight of the total of component A and component B It is. If the added amount is small, the impact strength tends to be insufficient, and if it is too large, the heat resistance or rigidity is lowered.
  • the folding inhibitor (component E) is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, even more preferably 100 parts by weight of the total of component A and component B. Or 0.3 to 3 parts by weight.
  • the optimum amount of the E component varies depending on the content of the D component, and is preferably 0.05 to 5 parts by weight, more preferably 0.1 to 3 parts by weight, more preferably 10 parts by weight of the D component. Preferably it is 0.1 to 1 part by weight.
  • the resin composition of the present invention preferably has a melt volume rate (MVR value: unit cm 3 / l 0 min) at 280 ° C and 2.16 kg load according to the ISO 1133 standard, preferably 10 to 150, more preferably Is 13 to 150, more preferably 18 to 100, and even more preferably 20 to 80. If the MVR value is small, sufficient flow characteristics cannot be expressed, and if it is too large, the impact resistance may be poor.
  • the resin composition has a flexural modulus (unit: MPa) in accordance with ASTM D-790 of preferably 2,000 to 25,000, more preferably 8,000 to 25,000.
  • the resin composition has a crack occurrence rate in a chemical resistance test of preferably 0 to 20%, more preferably 0 to L 0%.
  • a crack occurrence rate in a chemical resistance test of preferably 0 to 20%, more preferably 0 to L 0%.
  • 10 specimens prepared according to ASTM 0-638 are each subjected to a strain of 0.5% with a 3-point bending jig and subjected to gasoline (Ethso, regular gasoline) at 23 ° C for 10 minutes. The number was set so as not to cause cracks.
  • the resin composition has a linear expansion coefficient of 1.0 X 1 in the range of 30 to 80 ° C measured in the flow direction at the center of a test piece prepared in accordance with ISO 527-1. 0 5-12. in the range of 0 X 1 0- 5 Z ° C .
  • the lower limit of the linear expansion coefficient is preferred.
  • Properly 1. a 2 X 10- 5 / ° C.
  • the upper limit of such a linear expansion coefficient of preferably 5. 5 X 1 0- 5 / / . c, more preferably from 3. 5 X 10- 5 Z ° C .
  • the linear expansion coefficient is larger than this range, the dimensional change of the molded body is large with respect to the temperature change in the usage environment, and it is not suitable as a vehicle exterior material.
  • the linear expansion coefficient is small, there is no particular problem, but it is substantially difficult to achieve compatibility with other characteristics, particularly the appearance of the molded body.
  • the resin composition has a deflection temperature under load measured in accordance with ASTM D-648 at 0.45 MPa load in the range of 110 to 145 ° C, preferably 120 ° C to 145. Particularly preferred is 130 ° (: ⁇ 145 ° C. If the deflection temperature under load is low, deformation is likely to occur during paint baking. In addition, when the load is applied under the operating environment, for example under hot weather, It is easy to deteriorate the quality.
  • a resin composition comprising 70 to 95% by weight of a resin component and 30 to 5% by weight of wollastonite (component D) having an average fiber diameter of 1 to 2 iim and an aspect ratio of 5 to 9.
  • the resin component is
  • Intrinsic viscosity is from 0.49 to 0.57 dl / g, terminal force lpoxyl group weight is 23 to 28 eq / ton, weight average molecular weight (Mw) and number average molecular weight (Mn) And polyethylene terephthalate (component B) polymerized with a germanium polymerization catalyst having a ratio (MwXMn) of 1.9-1.
  • a resin composition comprising 55 to 65% by weight of a resin component and 45 to 35% by weight of glass fiber (component D) having an average fiber diameter of 10 to 15 m and an average fiber length of 230 to 270 m.
  • the resin component is
  • a resin composition comprising at least one inorganic filler (component D) selected from the group consisting of 50 to 100% by weight of a resin component and 0 to 50% by weight of My strength, talc, and wollastonite.
  • the resin component is
  • a polystrength Ponate (A1 component) selected from the group consisting of bisphenol A type polystrength Ponates with a viscosity average molecular weight of 16,000 to 23,000, and
  • Intrinsic viscosity (IV) is 0.45 ⁇ 0.57 d 1 / g, terminal carboxyl group weight is 20-35 e qZ ton, weight average molecular weight (Mw) and number average molecular weight (M n) Of polyethylene terephthalate (B 1 component) selected from polyethylene terephthalate having a ratio (Mw / Mn) of 1.3 to 2.1,
  • a polycarbonate (A1 component) selected from the group consisting of bisphenol A type polycarbonate having a viscosity average molecular weight of 16,000 to 23,000; and (ii) The intrinsic viscosity (IV) is 0.45-0.57 dlZg, the terminal force lpoxyl is 20-35 e ciZton, and the weight average molecular weight (Mw) and number average molecular weight (M n) are A polyethylene terephthalate (B 1 component) selected from polyethylene terephthalate having a ratio (Mw / Mn) of 1.3 to 2.1.
  • the resin composition of the present invention has an aromatic polyester other than the component B, a flame retardant, a flame retardant aid (for example, sodium antimonate, antimony trioxide, etc.), as long as the above characteristics are satisfied.
  • Chia-forming compounds for example, novolac-type phenolic resins, condensates of pitches and formaldehyde
  • nucleating agents for example, sodium stearate and ethylene-sodium acrylate
  • anti-dripping agents formation of propyls
  • heat stabilizers antioxidants (for example, hindered phenolic antioxidants, thioic acid antioxidants, etc.), ultraviolet absorbers, light stabilizers, mold release Agent, antistatic agent, foaming agent, flow modifier, antibacterial agent, photocatalytic antifouling agent (fine titanium oxide, fine zinc oxide, etc.), lubricant, colorant, Light brighteners, luminous pigments, fluorescent dyes, infrared absorbing agents, such as photo
  • An aromatic polyester other than polyethylene terephthalate can be added to the resin composition of the present invention.
  • Examples include polypropylene terephthalate, polybutylene terephthalate (PBT), polyhexylene terephthalate, polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polyethylene — 1, 2-bis (phenoxy) ethane 1, 4, 4 '-other than dicarboxylate Examples include copolyester strength such as tonoisophthalate.
  • the amount of these aromatic polyesters added is preferably 1 to 100 parts by weight, more preferably 10 to 90 parts by weight, and even more preferably 30 to 100 parts by weight of the B component PET. ⁇ 60 parts by weight. -(ii) heat stabilizer
  • a phosphorus stabilizer is suitable as such a heat stabilizer.
  • phosphorus stabilizers include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof, and tertiary phosphine. Such phosphorus stabilizers can be used not only alone but also in combination of two or more.
  • phosphite compounds include trialkyl phosphites such as tridecyl phosphite, dialkyl monoaryl phosphites such as didecyl monophenyl phosphite, and monoptyl diphenyl phosphites. Noalkyldiaryphosphite, triphenylphosphite and tris (2,
  • Triaryl phosphite such as 4-di-tert-butylphenyl) phosphite, distearyl pen erythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2, 4 _Dicumylphenyl) pentaerythri] Rudiphosphite and bis (2,6-di-tert-butyl-tetramethylphenyl) Pentaerythritol such as erythritol diphosphite] ⁇ monosulfite, and 2,2-methylenebis (4,6- Examples include cyclic phosphites such as tert-butylphenyl) octyl phosphite and 2,2,2'-methylenebis (4,6-ditert-butylphenyl) (2,4-ditert-butylphenyl)
  • phosphate compounds include tryptyl phosphate, trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, Tributoxetyl phosphate and diisopropyl phosphate Examples thereof include triphenyl phosphate and trimethyl phosphate.
  • Preferred examples of the phosphonite compound include tetrakis (di-tert-butylphenyl) -biphenyl dirange phosphonite and bis (di-tert-butylphenyl) -phenyl monophenylphosphonite, and tetrakis (2,4-di-tert-butylphenyl). ) -Biphenylene diphosphonate and bis (2,4-di-tert-butylphenyl) -phenylene phosphonite are more preferred.
  • Such a phosphonite compound is preferably used in combination with a phosphite compound having an aryl group in which two or more alkyl groups are substituted.
  • Examples of the phosphonate compound include dimethyl benzenephosphonate, jetyl benzenephosphonate, and dipropyl benzenephosphonate.
  • An example of the tertiary phosphate is triphenylphosphine.
  • the amount of the phosphorus-based stabilizer is preferably 0.0001 to 1% by weight, more preferably 0.0005 to 0.5% by weight, and still more preferably 0.002% in 100% by weight of the resin composition of the present invention. ⁇ 0.3% by weight.
  • An antioxidant may be blended in the shelf composition of the present invention.
  • the antioxidant can improve the heat stability and the heat resistance of the resin composition during the molding process.
  • the antioxidant is preferably a hindered phenolic antioxidant.
  • Hindered phenolic antioxidants include octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2-tert-butyl-6, (3-, tert-butyl-5, -methyl-2 ' ⁇ — Hydroxybenzyl) 4-methylphenylacrylate, 4, 4'-butylidenebis (3-methyl-6-tert-butylphenol), triethylene glycol N-bis-1-3- (3-tert-butyl-1-hydroxy- 5-methylphenyl) propionate, 3,9-bis ⁇ 2- (3- (3-tert-petitu 4-hydroxy-1-5-methylphenyl) propio.niloxy] 1, 1 Dimethylethyl ⁇ 1, 2, 4, 8, 1 0—Tetraox
  • octyldecyl- 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate is preferably used.
  • the hindered phenolic anti-oxidation agents can be used alone or in combination of two or more.
  • the blending amount of the antioxidant is preferably 0.0001 to 0.05% by weight in 100% by weight of the resin composition.
  • UV absorber examples include benzophenone compounds, benzotriazole compounds, hydroxyphenyl triazine compounds, cyclic imino ester compounds, and cyanoacrylate compounds known as ultraviolet absorbers. More specifically, for example, 2— (2 II-benzotriazol-2-yl) —P-cresol, 2— (2 H-benzotriazol 2-ru) 1-4 (1, 1, 3, 3-tetramethylbutyl) phenol, 2- (2H-benzotriazol 2-yl) 1, 4-6-bis (1-methyl-1-phenylethyl) phenol, 2- [5 2H) —Benzotriazole _ 2—yl] — 4—Methyl _6— tert-Ptylphenol, 2, 2, -methylenebis [6— (2H—Benzotriazo 1 lou 2 _yl) —4 1 (1, 1, 3 , 3-tetramethylbutyl) phenol], 2- (4, 6-diphenyl-1,3,5-triazine-2-
  • Blending amount of UV absorber and light stabilizer Is preferably 0.1 to 1% by weight in 100% by weight of the resin composition.
  • the release agent examples include olefin wax, silicone oil, fluorine oil, organopolysiloxane, esters of mono- or polyhydric alcohols and higher fatty acids, paraffin wax, and beeswax. Of these, esters of mono- or polyhydric alcohols and higher fatty acids are preferred.
  • the higher fatty acid preferably contains a fatty acid having 17 or more carbon atoms, more preferably 17 to 32 carbon atoms, more preferably 26 to 32 carbon atoms, and 60% by weight or more. As such higher fatty acids, higher fatty acids mainly composed of montanic acid are preferably exemplified. Powerful, high-strength fatty acids are usually produced by oxidizing montan wax.
  • examples of monohydric alcohols include dodecanol, tetradecanol, hexadecanol, octadecanol, eicosanol, tetracosanol, seryl alcohol, and triaconol alcohol.
  • polyhydric alcohol examples include glycerin, diglycerin, polyglycerin (eg, decaglycerin), pen erythritol, dipen erythritol, trimethylolpropane, diethylene glycol, and propylene glycol.
  • the alcohol component in the ester of a monohydric or polyhydric alcohol and a higher fatty acid is more preferably a polyhydric alcohol.
  • glycerin, pen erythritol, dipen erythritol, and trimethyl oral propane are preferable, and glycerin is particularly preferable.
  • the compounding amount of the mold release agent is preferably 0.001 to 2% by weight, more preferably 0.05 to 1% by weight, more preferably 0.001 to 10% by weight of the resin composition. 1% by weight, particularly preferably 0.1 to 0.5% by weight.
  • the antistatic agent examples include polyether ester amide, glycerin monostearate, naphthalene sulfonate formaldehyde highly condensed alkali (earth) metal salt, alkali dodecylbenzene sulfonate (earth) metal salt, ammonium dodecyl benzene sulfonate, dodecyl salt Benzenesulfonic acid phosphonium salt, none Examples thereof include water maleic acid monoglyceride and maleic anhydride diglyceride.
  • the blending amount of the antistatic agent is preferably from 0.01 to 10% by weight in 100% by weight of the resin composition.
  • Examples of flow modifiers include plasticizers (represented by phosphate esters, phosphate oligomers, phosphazene oligomers, fatty acid esters, aliphatic polyesters, aliphatic polycarbonates, etc.), high rigidity and high fluidity.
  • plasticizers represented by phosphate esters, phosphate oligomers, phosphazene oligomers, fatty acid esters, aliphatic polyesters, aliphatic polycarbonates, etc.
  • thermoplastic resins and thermoplastic resin oligomers for example, those having a weight average molecular weight of less than 40,000, which are obtained by polymerizing at least one component selected from styrene, acrylonitrile, and polymethyl methacrylate) Coalesced, typified by high-rigidity polytonic oligomers, etc.
  • liquid crystal polymers typically represented by liquid crystal polyesters, etc.
  • rigid molecules eg typified by poly p-phenylene compounds
  • lubricants e.g. mineral oils, synthetic oils, higher fatty acid esters, higher fatty acid amides, Organosiloxane, old olefin waxes, polyalkylene glycols, typified Contact and fluorine oil
  • the flow modifier may be blended in 100 wt% of the resin composition, preferably 0.1 to 10 wt%, more preferably 1 to 8 wt%. '
  • red phosphorus or a red phosphorus flame retardant typified by stabilized red phosphorus in which the surface of red phosphorus is microencapsulated with a known thermosetting shelf and Z or inorganic material
  • tetrabromobisphenol A oligomer of tetrabromobisphenol A, brominated bisphenol epoxy resin, brominated bisphenol phenol resin, brominated bisphenol polycarbonate, brominated polystyrene, brominated cross-linked polystyrene, brominated polyphenylene ether, Halogenated flame retardants typified by polydibromophenylene ether, decabromodiphenyl oxide bisphenol condensate and halogenated phosphoric acid ester; ⁇ phenyl phosphate as monophosphate compound, resorcino as condensed phosphoric acid ester Bis (Magnetic Sile nil phosphate) and bisphenol A bis (Diphenyl phosphate), and other
  • the content of the flame retardant is preferably 0.1 to 50% by weight, more preferably 0.1 to 20% by weight in 100% by weight of the resin composition.
  • the anti-dripping agent prevents melt dripping during combustion and further improves flame retardancy.
  • a fluorine-containing anti-dripping agent is suitable as the anti-drip agent.
  • fluorine-containing anti-dripping agent suitable as the anti-dripping agent examples include a fluorine-containing polymer having a fibril-forming ability.
  • a fluorine-containing polymer having a fibril-forming ability examples include polytetrafluoroethylene and tetrafluoroethylene-based copolymers (for example, tetrafluoro mouth). Ethylene / hexafluoropropylene copolymer, etc.), partially fluorinated polymers such as those disclosed in US Pat. No. 4,337,990, and polycarbonate shelves produced from fluorinated diphenols. Can be mentioned. Among them, preferred is polytetrafluoroethylene (hereinafter sometimes referred to as PTFE).
  • PTFE polytetrafluoroethylene
  • the molecular weight of PTFE which has the ability to form fibrils, has an extremely high molecular weight. It shows a tendency to bind PTFE to external fibers by external action such as breaking force. Its number average molecular weight ranges from 1.5 million to tens of millions. The lower limit is more preferably 3 million.
  • the number average molecular weight is calculated based on the melt viscosity of polytetrafluoroethylene at 380 ° C. as disclosed in JP-A-6-145520. That is, the fibrillated PTFE has a melt viscosity of 10 7 to 10 13 poise, preferably 10 8 to 10 12 poise, at 380 ° C. measured by the method described in this publication.
  • Such PTFE can be used in solid form or in the form of an aqueous dispersion.
  • PTFE with such fibril-forming ability improves dispersibility in the resin, and it is also possible to use a PTFE mixture in a mixed form with other resins to obtain better flame retardancy and mechanical properties. It is.
  • Examples of commercially available PTFE with fibril-forming ability include Teflon (registered trademark) 6 J from Mitsui DuPont Fluorochemical Co., Ltd., Polyflon MPA FA500 and F-201 L from Daikin Chemical Industries, Ltd. .
  • Commercially available aqueous dispersions of PTF E include Asahi IC Fluoropolymers 'full-on AD-1, AD-936, Daikin Industries' full-on D-1, D1-2, Mitsui DuPont Teflon (registered trademark) 30 J manufactured by Fluorochemical Co., Ltd. can be listed as a representative.
  • the proportion of PTFE in the mixed form is preferably 1 to 60% by weight, more preferably 5 to 55% by weight in 100% by weight of the PTFE mixture.
  • the content of the anti-dripping agent is preferably 0.01 to 10% by weight, more preferably 0.1 to 3% by weight in 100% by weight of the resin composition.
  • the resin composition of the present invention can be produced, for example, by premixing component A, component B and other components, and then melt-kneading and pelletizing.
  • the pre-mixing method include a now evening mixer, a V-type renderer, a Henschel mixer, a mechanochemical apparatus, and an extrusion mixer.
  • granulation can be performed by an extrusion granulator or a brigetting machine if necessary.
  • Other examples of the melt kneader include a bumper mixer, a kneading port, and a constant temperature stirring vessel, but a vent type twin screw extruder is preferred.
  • each component is independently supplied to a melt kneader represented by a twin screw extruder without being premixed.
  • the inorganic filler is preferably supplied from a supply port in the middle of the extruder into the molten resin using a supply device such as a side feeder.
  • the premixing means and granulation are the same as described above.
  • the so-called liquid injection device or liquid addition device is used to supply to the melt kneader. Can be used.
  • the water content in the A component and the B component is low before melt kneading. Therefore, it is more preferable to melt-knead after drying either component A or component B or both by various methods such as hot air drying, electromagnetic wave drying, or vacuum drying.
  • the degree of vent suction during melt kneading is preferably in the range of 1 to 60 kPa, more preferably 2 to 30 kPa.
  • the resin composition extruded as described above is preferably directly cut into pellets or formed into strands, and then the strands are cut with a pelletizer to form pellets.
  • a pelletizer When it is necessary to reduce the influence of external dust during pelletization, it is preferable to clean the atmosphere around the extruder.
  • various methods already proposed for the optical disc polyphonic shelf for optical discs are used to narrow the pellet shape distribution, reduce miscuts, during transportation or transportation. It is preferable to appropriately reduce the generated fine powder and the bubbles (vacuum bubbles) generated in the strands and pellets. By these treatments, it is possible to increase the molding cycle and reduce the rate of occurrence of defects such as silver.
  • the pellet may have a general shape such as a cylinder, a prism, or a sphere, but is more preferably a cylinder.
  • the diameter of such a cylinder is preferably 1 to 5 mm, more preferably 1.5 to 4 mm, and still more preferably 2 to 3.3 mm.
  • the length of the cylinder is preferably 1 to 30 mm, more preferably 2 to 5 mm, and still more preferably 2.5 to 3.5 mm.
  • a molded article such as the vehicle exterior material of the present invention can be obtained.
  • the pellet is preferably a single pellet containing all components constituting the molded body, but pellets having different components can be mixed during injection molding to obtain a molded body.
  • This invention includes the molded object which consists of the above-mentioned resin composition.
  • molded products include automobile parts such as vehicle exterior materials, and parts for office automation equipment.
  • the present invention includes a vehicle exterior material comprising the above-described molded body.
  • the vehicle exterior material is mainly composed of a design surface provided on either the front or back surface, and an unnecessary portion of design properties selected from the group consisting of a recessed portion retreated from the design surface and a through portion having a missing surface. .
  • the vehicle exterior material has a surface roughness (Ra) measured in accordance with JIS B060-1994 on the design surface of preferably 0.001 to 3 m, more preferably 0.01 to 1 / m.
  • the breaking energy in the high-speed surface impact test measured at 23 ° C is preferably in the range of 3 to 70 J.
  • the surface roughness of the molded body surface depends on the mold surface smoothness, molding conditions, mold equipment such as a heat insulating mold and rapid heating / cooling mold, and molding materials.
  • the surface roughness (Ra) is smaller than the above range, these facilities are excessive and the molding stability tends to be lacking.
  • the surface roughness (Ra) is larger than the above range, it is likely to be insufficient as a vehicle exterior material, or excessive coating is required.
  • Ra 0.01 to l m, the balance between these is particularly excellent.
  • the vehicle exterior material preferably has a coating film on at least the design surface. That is, the vehicle exterior material is preferably a vehicle exterior material in which a paint is applied to at least its design surface after molding and subsequently cured in a temperature range of 100 to 140 ° C. to form a coating film. Good. Such a temperature range is more preferably 105 to 135 ° C, and even more preferably 115 to 135 ° C. The higher the baking temperature of the paint, the less the difference in color from the steel plate part and the better the gloss. As a result, high-quality painting is possible. In a preferred embodiment of the present invention, the vehicle exterior material of the present invention can sufficiently withstand such coating.
  • the design surface in the vehicle exterior material of the present invention refers to a surface that can be recognized from the outside at least when the vehicle is viewed in a state where it can run.
  • the vehicle exterior material is preferably affixed to the frame with a rubber adhesive.
  • a known adhesive can be used for the rubber adhesive, but a two-component urethane adhesive can be preferably used.
  • suitable two-component urethane adhesives include, for example, BETAMATE2810 (trade name, combination of A and B / S agents) manufactured by DOW AUTOMOT I VE.
  • a suitable primer is used, and a specific example of a primer is, for example, B ETAPR IME 5404 (trade name) manufactured by DOW AUTOMOT I VE.
  • the vehicle exterior material is preferably one in which a light transmissive member or a lighting device is attached to at least one of the recessed portion or the penetrating portion.
  • the vehicle exterior material can have a higher function as a module component.
  • Maximum projected area of the vehicle exterior material is preferably 1, 500 to 40, 000 cm 2, more preferably 2, from 000 to 20, 000 cm 2, more preferably 2, 200 to 15, a 000 cm 2.
  • vehicle exterior materials back panels, fenders, bumpers, door panels, pillars, side protectors, side moldings, rear protection evenings, rear moldings, various boilers, bonnets, roof panels, trunk lids, detachable tops and wind reflector evenings
  • vehicle exterior material of the present invention is suitable for so-called vertical outer plates such as a fader and a door panel.
  • power of the motorcycle and the panel for the cab of the tractor are exemplified.
  • the resin composition that constitutes the vehicle exterior material is 100% by weight of the resin composition, 40 to 90% by weight of PC (A component), 5 to 35% by weight of PET (B component), rubber polymer (C component) ) 1 to 8% by weight, and inorganic filler (component D) 3 to 25% by weight are preferred.
  • This invention includes the manufacturing method of the vehicle exterior material using the above-mentioned resin composition.
  • This method uses cascade molding by the SVG method.
  • the vehicle exterior material and (iii) the resin composition are as described above.
  • the mold has the following characteristics.
  • (i) type has (i 1 1) both gate 1 A and gate 1 B,
  • Gate-B is a gate to which the melt shelf is supplied so as to join the flow after the flow of the melt shelf flowing in from the other gate passes, while gate A is It is a gate to which molten resin is supplied without joining the molten resin flow, and each gate in the (i-3) mold has other gates within at least 20 cm as a linear distance on the exterior material surface. It is provided in a range that does not.
  • the mold it is preferable that all the gates are provided in at least one kind of design unnecessary portion selected from the group consisting of a recessed portion, a penetrating portion end portion, and a molded body end portion.
  • the mold is further: (i-4) Gate B is supplied with other resin by controlling the supply regulating valve provided in the flow path communicating with Gate B after the resin is supplied from Gate A. It is preferable that the gate is a gate to which molten resin is supplied so that the molten resin flow flowing from the gate passes through the flow after passing through. Control of such a preparation valve may be performed by any method using a commercially available apparatus. Examples include time control, screw position control, and intracavity pressure control.
  • the molten resin is supplied at Gate B too early, a molten resin backflow will occur and the flow of the resin will be disturbed, resulting in poor appearance or weld lines. If this supply is too slow, the molten resin from the other gates cools down, resulting in a large density difference from the resin of Gate B, which also tends to cause poor appearance. Therefore, it is necessary to appropriately control the opening and closing timing of the gate so that these problems do not occur. Furthermore, it is preferable to determine the gate position so that the opening / closing timing conditions are as tolerant as possible.
  • the molten resin does not pass through other gates. Except for the gate to which molten resin is supplied last, the resin from any gate flows to at least another gate. There is a need to. Lastly, at the gate where molten resin is supplied, the molten resin must flow to the end of the product.
  • the arrangement is not particularly limited, but the gate between the gate supplied with the molten resin and the gate through which the molten resin passes from the gate passes. Gate arrangements that are particularly short compared to others at some gates, PT / JP2006 / 305475
  • the resin capacity (V i) supplied from each gate with respect to the average capacity (Vave) obtained by dividing the total amount of resin capacity filled in the mold by the number of gate points is preferably 0.5 ⁇ V iZVave ⁇ l. 5, more preferably 0.6 ⁇ V iZVave ⁇ l. 4, more preferably 0.7 ⁇ V iZVave ⁇ l. 3.
  • the SVG method of cascade molding requires much better fluidity than that required for normal multi-point gate molding.
  • the resin composition of the present invention can produce a satisfactory vehicle exterior material by cascading molding by the SVG method by satisfying such requirements.
  • the thickness of the molded body is preferably as uniform as possible throughout the whole. Therefore, the vehicle exterior material of the present invention preferably has a wall thickness within 50% of the average wall thickness, and more preferably within ⁇ 30%.
  • the average wall thickness is a value obtained by dividing the compact volume (mm 3 ) by the surface area (mm 2 ) of the compact.
  • each gate in the mold is provided in a range where the other gates do not exist at least within 20 cm and do not exist within 80 cm as a linear distance on the exterior material surface. More preferably at least within the range of 25 cm and within 70 cm, and at least within the range of 25 cm and within 60 cm. More preferably.
  • Injection molding includes injection compression molding, hollow molding, rapid heating / cooling molding, two-color molding, etc. It is also possible to use the known molding method for a part or the whole of the vehicle exterior material at the same time. In particular, hollow molding is used in combination with the thick part of the molded product, and two-color molding of the transparent resin material is performed on the penetration or recess of the vehicle exterior material, and the transparent member that is molded in two colors is molded by injection compression molding. It is effective to use rapid heating / cooling molding for parts that require particularly good design. -
  • the method for manufacturing a vehicle exterior material of the present invention it is possible to suppress weld lines of the obtained molded body.
  • the degree of freedom in the number of gate points is increased, and as a result, a large molded body can be injection-molded with a relatively low clamping force.
  • PC 1 Linear aromatic polystrength Ponate powder with a viscosity average molecular weight of 19,700 (Teijin Chemicals Ltd. Panlite L-1225WX (trade name))
  • PC 2 Linear aromatic polycarbonate powder with a viscosity average molecular weight of 16,000 (Teijin Kasei Panlite CM—1000 (trade name))
  • PC 3 Linear aromatic polystrength Ponate powder with viscosity average molecular weight of 20,900 (Panlite L-1225WS (trade name) manufactured by Teijin Chemicals Ltd.)
  • PC4 Linear aromatic polycarbonate pellets with a viscosity average molecular weight of 19,700 (Teijin Chemicals Ltd. Panlite L 1 1225 L (trade name))
  • PET1 Polyethylene terephthalate having a IV value of 0.51 polymerized using a germanium compound polymerization catalyst, a terminal force lpoxyl group amount of 26.3 eqZton, and MwZMn of 2.0 (manufactured by Teijin Chemicals Ltd.) TR—MB)
  • PET2 Polymerized with a germanium compound keratome, IV value 0.56, terminal force lpoxyl group content 23.2 e qZt on, MwZMn 2.1 Lentelev evening rate (Teijin Kasei Co., Ltd., TR-L)
  • PET3 Polyethylene terephthalate, polymerized using a germanium compound polymerization catalyst, with an IV value of 0.70, a terminal force lpoxyl group amount of 20.0 eq / ton, and MwZMn of 1.9 (manufactured by Teijin Chemicals Ltd.) 550 (product name))
  • PET 4 Polyethylene terephthalate with a IV value of 0.83, a terminal force lpoxyl group amount of 18.0 eq / ton, and Mw / Mn of 2.1, polymerized using a germanium compound polymerization catalyst (Teijin Kasei) TR-8580 (trade name))
  • IM2 Butadiene, alkyl acrylate, and alkyl methacrylate copolymer (Paraloid E XL 2602 (trade name), manufactured by Ichimu and Haas Co., Ltd.)
  • WSN1 ⁇ Last Night (NYCO, NYGLOS4 (trade name))
  • WSN2 Sakai Last Night (manufactured by Kawatetsu Kogyo Co., Ltd., PH-330 (product name))
  • GF Glass fiber (manufactured by Nittobo Co., Ltd., 3PE—944 (product name))
  • PBT1 Polybutylene terephthalate with a value of 0.87 (manufactured by Polyplastics Co., Ltd., Giranex 500 FP (trade name))
  • ST1 Phosphorus stabilizer (Asahi Denka Kogyo Co., Ltd., ADK STAB PEP-8 (trade name)
  • ST2 Phosphorus stabilizer (Asahi Denka Kogyo Co., Ltd., ADK STAB PEP— 24G (trade name))
  • UV absorber (Cipro Kasei Co., Ltd., Seasorb 701 (trade name))
  • CB Carbon Black Master I (Koshigaya Kasei Kogyo Co., Ltd., Royal Black 9 04S (product name))
  • Titanium dioxide made by Taioxide Japan Co., Ltd., RTC 30
  • carbon black Mitsubishi Chemical Co., Ltd. # 970 0.5% by weight
  • the pellets of the manufactured shelf lining composition were dried with a hot air dryer at 120 ° C for 4 hours, and the cylinder temperature was 270 ° C using a molding machine with a clamping force of 1470 kN (FANUC: T-150D). Molded at a mold temperature of 70 ° C.
  • the specimen shape was a specimen that complied with each standard.
  • MVR Melt polymer rate (MVR value at 280 ° (: 2.16 kg load) in accordance with ISO 1133 standard using manufactured resin pellets In the measurement, the pellets were previously dried with a hot air drier for 4 hours at 120 ° C. For measurement, a melt indexer 2 A manufactured by Toyo Seiki Co., Ltd. was used.
  • pellets (E1) to (E6) of the resin composition were produced by an extruder.
  • component A powder a paddle dryer was used, and for pellets, a hopper dryer was used and dried in advance at 120 ° C for 4 hours or more and charged from the main feeder.
  • Ingredient B was dried in a hopper dryer at 120 ° C for 4 hours or more and charged from the main feeder.
  • D component and WAX were mixed in advance and charged from the side feeder using a separate weighing machine.
  • the other ingredients were pre-blended with a Henschel mixer in advance and charged from the main feeder.
  • a vent was set at the 10th barrel, and suction was performed at a vacuum level of 6 kPa or less.
  • the other extrusion conditions were: cylinder set temperature: 260 ° C, die set temperature: 270 ° C, discharge rate: 200 kg / hour, and screw speed: 250 rpm.
  • Table 1 shows the properties of the obtained pellets (E 1) to (E6).
  • Resin composition pellets (CE 1) to (CE7) were produced by performing the same operations as in Examples 1 to 6 except that the types and amounts of raw materials shown in Table 1 were used. Table 1 shows the characteristics of pellets (CE 1) to (CE7). table 1
  • the resin composition of the present invention has high fluidity (MVR), high chemical resistance, and excellent elasticity, impact resistance, and thermal stability.
  • the pellets (E 1) to (E6) were dried at 120 ° C. for 4 hours to form a molded article for vehicle exterior materials shown in FIG. J 1300 E-C 5 manufactured by Nippon Steel Works, Ltd. was used for molding.
  • the cylinder set temperature was 270 ° C and the mold temperature was 60 ° C.
  • the tip of each sprue was connected to the valve gate of the hot runner, and the valve gate connected to each gate was opened in the following order. That is, the gate (16) at the top of the molded body and the lower gate (15) on the axis of symmetry were opened first. Thereafter, the valve was opened so that the molten resin from the gate 16 was supplied from the gate 11 immediately after the molten resin from the gate 16 passed through the gate 11.
  • the valve was opened so that the molten resin was supplied from the gate 14 immediately after the molten resin from the gate 15 passed through the gate 14.
  • the linear distance on the exterior material surface from gate 16 to gate 11 is approximately 33.5 cm, and the linear distance on the exterior material surface from gate 15 to gate 14 is approximately 26.8 cm. It was. Table 2 shows the numbers of the pellets used in each example.
  • Example 7 to 12 and Comparative Examples 8 to 9 molded bodies with almost no weld lines on the design surface were obtained by cascade forming by the SVG method. 'The design surface has a weld line that can be recognized by observation under a strong light source, and its length is 1 cm. It was about. Also, according to JISB 0601-1994, the surface roughness (Ra) on the design surface was measured by sampling at five locations, and all were between 0.15 and 0.20 m. Since the appearance of the design surface was uniform, it was judged that any part could satisfy this value. In Example 12, it was possible to obtain a molded body by setting the molding temperature to 300 ° C.
  • the resin composition of the present invention has high chemical resistance while maintaining good fluidity, and is excellent in impact resistance, heat resistance, rigidity, and thermal stability. Further, the molded article of the present invention is excellent in impact resistance, heat resistance, rigidity, thermal stability, chemical resistance and appearance. According to the method for manufacturing a vehicle exterior material of the present invention, it is possible to obtain a vehicle exterior material having an excellent appearance and surface, in which the generation of weld lines is suppressed. Industrial applicability Since the resin composition of the present invention is excellent in impact resistance, rigidity, and heat resistance,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

本発明は、良好な流動性を保ちながら高い耐薬品性を有し、耐衝撃性、耐熱性、剛性、熱安定性に優れる芳香族ポリカーボネートとポリエチレンテレフタレートからなる樹脂組成物、その成形体および車両外装材の製造方法を提供することを目的とする。本発明は、50~100重量%の樹脂成分および0~50重量%の無機充填材(D成分)からなる樹脂組成物であって、樹脂成分は、(i)特定の粘度平均分子量の芳香族ポリカーボネート(A成分)および(ii)特定の固有粘度(IV)、末端カルボキシル基量、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)を有するポリエチレンテレフタレート(B成分)からなり、(iii)A成分およびD成分の合計量と、B成分との重量比{(A+D)/B}が60/40~85/15である樹脂組成物、その成形体および車両外装材の製造方法である。

Description

樹脂組成物
技術分野
本発明は、 芳香族ポリカーボネート (以下、 PCと称することがある) および ポリエチレンテレフ夕レート (以下、 PETと称することがある) からなる樹脂 組成物に関する。 また本発明は、 該組成物からなる車両外装材などの成形体およ 明
び車両外装材の製造方法に関する。 書
背景技術
近年、 自動車および OA機器では、 部品の薄肉化および軽量化が急速に進行し ている。 例えば、 自動車では軽量化のためフェンダー等のボディパネルに代表さ れる大型部品を樹脂組成物を用いて製造する試みがなされている。
自動車および OA機器に用いられる榭脂組成物として、 PCと PETからなる 樹脂組成物がある (以下、 PC/PETァロイと称することがある)。 PC/PE Tァロイは、 耐衝.撃性、 剛性に優れた PCの特性、 並びに耐薬品性に優れた PE Tの特性を併せて有するため、 有用な樹脂組成物であり、 種々の改良が提案され ている。
例えば、 特許文献 1には、 PC、 PET.、 衝撃改良材およびマイ力からなる樹 脂組成物を射出成形して製造された自動車用サイドプロテク夕一が記載されてい る。 該樹脂組成物は、 PCの長所である耐衝撃性、 耐熱性を生かし、 その欠点で ある耐薬品性を P ETで改良したものである。 しかし該樹脂組成物の流動性には 改良の余地があり、 大型部品を成形する際には支障を生じる場合がある。
また特許文献 2には、 P Cおよびリサイクル P E Tからなる樹脂組成物が提案 されている。 該樹脂組成物は、 PC由来の耐衝撃性、 剛性、 耐熱性などの利点を 有するが、 大型で、 薄肉化および軽量化した部品を成形するには、 樹脂組成物の 流動性を改良する必要がある。 また該樹脂組成物は、 リサイクル PETを使用し ているため熱安定性が充分ではない。
これらと同様に、 P Cと P E Tなどの芳香族ポリエステルを主成分とする樹脂 組成物の物性を改良する種々の提案がなされている。 例えば特許文献 3には、 ゥ ェルド強度、 剛性、 耐衝撃性の改良を目的とし、 P C、 芳香族ポリエステル、 ゴ ム質弾性体およびシラン系化合物で表面処理された微細繊維からなる樹脂組成物 が記載されている。 また特許文献 4には、 P C、 芳香族ポリエステル、 ワラスト ナイト、 エチレン一ェチルァクリレート共重合体およびひ一才レフィンと無水マ レイン酸との共重合体ワックスからなる樹脂組成物が記載されている。 該文献に 記載の提案は、 成形体の表面外観、 耐薬品性、 耐衝撃性、 剛性の改良を目的とす るものである。 さらに特許文献 5には、 P C、 芳香族ポリエステル、 特定形状の ワラストナイトからなる樹脂組成物が記載されている。 該文献に記載の提案は、 樹脂組成物の耐衝撃性、 リサイクル性および表面外観の改良を目的とするもので ある。 加えて、 特許文献 6には、 P Cおよび芳香族ポリエステルからなる樹脂組 成物を、射出圧縮成形した大型成形体が記載されている。該文献に記載の提案は、 樹脂組成物の寸法安定性、 耐衝撃強度を改良することを目的とするものである。 しかし、 これらの提案はいずれも、 耐衝撃性、 剛性などの機械的特性、 耐熱性 などの熱的特性を改良することを主眼とするもので、 薄肉化した大型部品を成形 する際に要求される樹脂組成物の流動性についての検討は充分ではない。
棚旨組成物の流動性を改良する技術として、 特許文献 7には、 低分子量のポリ ブチレンテレフタレート、 高分子量のポリエステルおよび特定の含リン化合物か らなる樹脂組成物が開示されている。 しかし、 この技術を樹脂成分の相違する P CZP E Tァロイに適応することはできない。 またこの樹脂組成物は、 剛性、 耐 衝撃性、 耐熱性などについて改良の余地がある。
また、 自動車部品用の樹脂組成物として、 例えば特許文献 8には、 P C、 A B Sおよびタルクからなる樹脂組成物であって、 特定の線熱膨張率、 ダート衝撃強 さ、 および荷重たわみ温度を満足する樹脂組成物が開示されている。
上述の如く、 P CZP E Tァロイにおいては、 耐衝撃性、 剛性、 耐熱性、 熱安 定性などの改良についての多くの提案がなされているが、 薄肉化および軽量化が 求められる大型部品を成形する際に要求される流動性、 並びに安定した塗装外観 が求められる部品を成形する際に要求される耐薬品性を併せ持つ樹脂組成物につ いての提案はない。
一方、 自動車部品などの大型成形体の製造には、 複数のホットランナバルブを プログラムにしたがって順を追って開けたり閉めた-りするシーケンシャル ·バル ブ*ゲ一ティング(Sequential Valve GaUng)法 (以下 "SVG法" と称する) が 適している(非特許文献 1参照)。 SVG法は、複数のゲートから形状の異なる複 数の成形体をそれぞれ成形するのに利用されることもあるが、 複数のゲー卜から 1つの成形体を成形すると良質な大型樹脂成形体が得られる。 後者では通常その 前のゲートから流動してきた溶融樹脂が通過した後に、 ゲートを開放しその溶融 樹脂の流動に乗せてかかるゲ一トから樹脂が充填される。 かかる動作を各ゲート で段階的に行い溶融棚 を供給することから、 S VG法による成形は通常カスケ —ド成形 (cascade molding)と呼ばれている。 このようなカスケード成形は、 ゥ エルドラインを抑制することが可能で、 ゲート点数の自由度を高め、 その結果、 大型成形体を比較的低い型締め力で射出成形することができるという利点を有す る。 それ故、 この成形方法に適した良好な流動性を有する樹脂組成物が求められ ている。
(特許文献 1 ) 特開平 4 -224920号公報
(特許文献 2) 特開 2003-128905号公報
(特許文献 3) 特開平 8— 259789号公報
(特許文献 4) 特開平 9一 012847号公報
(特許文献 5) 特開 2002-265769号公報
(特許文献 6) 特開 2003— 171564号公報
(特許文献 7) 特開平 6— 279664号公報
(特許文献 8) 特開平 2— 294358号公報
(非特許文献 1) Plastics Technology, Dec.2003, p38 発明の開示 自動車および OA機器の部品のように薄肉化および軽量ィ匕が求められる部品を 成形する場合、 樹脂組成物は高い流動性を有すること力必要である。 さらに優れ た外観を求められる成形体には、 塗装がなされることが一般的であり、 安定した 塗装外観の発現には、 塗料中のシンナー等の有機溶剤に対する高い耐薬品性が必 要である。 また同時に高い剛性、 耐衝撃性、 耐熱性、 - 熱安定性などを要求される 場合が多い。
そこで本発明は、 良好な流動性を保ちながら高い耐薬品性を有し、 耐衝撃性、 耐熱性、 剛性、 熱安定性に優れる、 PCおよび PETを主成分とする樹脂組成物 を提供することを目的とする。 また本発明は、 該組成物からなる車両外装材など の成形体を提供することを目的とする。 さらに本発明は、 車両外装材の製造方法 を提供することを目的とする。
一般に、 樹脂組成物の流動性を上げるには、 構成樹脂の分子量を低下させれば 良い。 しかし、 樹脂の分子量を低下させると、 耐衝撃性、 剛性、 耐熱性などの機 械的特性、 熱的特性が低下する。 一方、 PCZPETァロイにおいて、 耐薬品性 を向上させるには、 P Cより耐薬品性に優れた P ETの含有量を増やせば良い。 しかし、 PETの含有量を増加させると、 耐衝撃性、 耐熱性などの機械的特性、 熱的特性が低下する。
そこで、 本発明者は、 PCZPETァロイにおいて、 耐衝撃性、 剛性、 耐熱性 および熱安定性などの低下を抑制しつつ、 その流動性を向上させる方法について 検討した。 その結果、 PC/PETァロイの PET成分として、 従来にない低粘 度の PETを用いることにより、 耐衝撃性、 耐熱性、 剛性および熱安定性などの 特性を低下させることなく、 流動性を上げることができることを見出し本発明を 完成した。 また本発明者は、 驚くべきことには、 低粘度の PETを用いると、 P
E Tの含有量を増加させることなく、 耐薬品性の向上が達成できることを見出し た。 さらに本発明者は、 低粘度の PETを用いた樹脂組成物を SVG法により成 形すると、 耐衝撃性、 低線膨張係数および優れた外観 (特に塗装外観) を有する 車両外装材が得られることを見出し、 本発明を完成した。
即ち本発明は、 50〜100重量%の樹脂成分および 0〜50重量%の無機充 填材 (D成分) 力 なる樹脂組成物であって、 樹脂成分は、
( i )粘度平均分子量 1 6, 000〜 23, 00 0の芳香族ポリカーポネ一卜(A 成分) および
( i i) 固有粘度 (I V) が 0. 45〜0. 5 7 d l /gで、 末端カルボキシル 基量が 2 0〜35 e Q/ t onで、 重量平均分子量 -(Mw) と数平均分子量 (M n) との比 (Mw/Mn) が 1. 3〜2. 1であるポリエチレンテレフタレ一卜 (B成分) からなり、
( i i i ) A成分および D成分の合計量と、 B成分との重量比 {(A + D) /B) が 60Z40〜8 5/1 5である、 樹脂組成物である。 本発明は、 該榭脂組成物 からなる成形体を包含する。 また該成形体からなる車両外装材を包含する。
また本発明は、 樹脂組成物を型内に射出成形することにより車両外装材を製造 する方法であって、 (i) 型は、
( i一 1) ゲ一トー Aおよびゲ一ト— Bを共に有し、
( i— 2)ゲート一 Bは、他のゲートから流入した溶融樹脂流動が通過した後に、 該流動に合流するように溶融樹脂が供給されるゲートであり、 一方、 ゲート—A は、 溶融棚旨流動に合流させることなく溶融樹脂が供給されるゲートであり、
( i— 3) 型内の各ゲートは、 外装材表面上の直線距離にして少なくとも 20 c m以内に他のゲ一トが存在しない範囲に設けられており、
( i i ) 該車両外装材は、
( i i - 1) 表裏いずれかの面に設けられた意匠面と、 意匠面から後退した凹み 部および面の欠損した貫通部からなる群から選ばれる意匠性の不要な部位とから 主として構成され、
( i i i ) 樹脂組成物は、
( i i i一 1) 5 0〜: L 00重量%の樹脂成分および 0〜50重量%の無機充填 材 (D成分) からなり、 樹脂成分は、
( i i i— 2) 粘度平均分子量 1 6, 00 0〜2 3, 000の芳香族ポリカーボ ネート (A成分) および
( i i i -3) 固有粘度 (I V) が 0. 45〜0. 57d lZgで、 末端力ルポ キシル基量が 20-35 e q t onで、 重量平均分子量 (Mw) と数平均分子 量 (Mn) との比 (MwZMn) が 1. 3〜2. 1であるポリエチレンテレフ夕 レート (B成分) からなり、
(i i i -4) A成分と D成分との合計量と B成分との重量比 {(A + D) /B} 力 60/40〜85Ζ15である樹脂組成物、 - である車両外装材の製造方法である。
本発明に用いる P E Tの固有粘度は、 一般的な PC/PETァロイに用いられ る PETの固有粘度に比べ極めて低い。 即ち、 一般的な PCZPETァロイに用 いられる PETの固有粘度は、 0. 65〜1. 5 d lZg程度であるのに対し、 本発明に用いる PETの固有粘度は、 0.45〜0. 57 d 1 Zgである。 通常、 成形体の製造には、 重縮合反応により得られた P E Tをさらに固相重合して重合 度を上げた PETが用いられている。 しかし、 本発明においては B成分として、 固相重合する前の、 固有粘度の低い PETを用いることが好ましい。 図面の簡単な説明
図 1 実施例で作成した車両外装材の正面概略図 ([A])、 側面概略図 ([B]) および A— A' 軸における断面概略図 ([C]) である。
符号の説明
1 車両外装材本体(縦方向の投影長さ: 850 mm,横方向の投影長さ: 1 , 000 mm, および肉厚: 4. 5mm)
2 . 意匠面
3 窓搭載部 (非意匠面)
灯具取り付けのための凹み部
5 把手取り付けのための凹み部
11 枠内上部ゲ一ト
12 ゲート 1 1に連結したスプルー (スプル一先端はホットランナバルブに連 結する)
13 枠内下部ゲート 14 ゲート 1 3に連結したスプル一 (スプル一先端はホットランナバルブに連 結する)
1 5 把手取り付けのための凹み部ゲート (左右対称軸上に位置するダイレクト ゲートであり、 その先端はホットランナバルブに連結する)
16 成形体塔頂部ゲート (左右対称軸上に位置する)
1 7 ゲート 1 6に連結したスプル一 (スプル一先端はホットランナバルブに連 結する) 発明を実施するための最良の形態
く樹脂組成物 >
(A成分: PC)
A成分である P Cは、 二価フエノールとカーボネート前駆体とを反応させて得 られるものである。 反応の方法としては界面重縮合法、 溶融エステル交換法、 力 —ポネートプレボリマーの固相エステル交換法、 および環状カーボネート化合物 の開環重合法などを挙げることができる。
二価フエノールとして、 2, 2—ビス(4ーヒドロキシフエニル)プロパン(通 称ビスフエノール Aという)、 2, 2—ビス {(4ーヒドロキシ— 3—メチル) フ ェニル } プロパン、 2, 2—ビス (4—ヒドロキシフエニル) ブタン、 2, 2 - ビス (4ーヒドロキシフエニル) 一3—メチルブタン、 2, 2—ビス (4ーヒド ロキシフエニル) 一 3, 3—ジメチルブタン、 2, 2—ビス (4ーヒドロキシフ ェニル) 一4—メチルペンタン、 1, 1一ビス(4—ヒドロキシフエ二ル)一 3, 3, 5—トリメチルシクロへキサン、 α, ひ ' 一ビス (4—ヒドロキシフエニル) —m—ジイソプロピルベンゼンなどが挙げられる。 これらは単独または 2種以上 を混合して使用できる。
A成分は、 実質的にビスフエノール Aからなる二価フエノールを用いて製造し たビスフエノール A型 PCが好ましい。 即ち、 二価フエノールとして、 好ましく は 90〜1 00モル%、 より好ましくは 95〜 1 0 0モル%のビスフエノール A を用いて製造したビスフエノール A型 P Cが好ましい。 カーボネート前駆体としてはカルボニルハライド、 カーボネートエステルまた はハロホルメート等が使用され、 具体的にはホスゲン、 ジフエニルカーボネート または二価フエノールのジハ口ホルメ一ト等が挙げられる。
A成分は、 ビスフエノール A型 PC以外にも、 他の二価フエノールを用いて重 合された、 高耐熱性または低吸水率の各種の PCであってもよい。 PCはいかな る製造方法によって製造されたものでもよく、 界面重縮合の場合は、 通常、 一価 フエノール類の末端停止剤が使用される。 P Cはまた 3官能フエノ一ル類を重合 させた分岐 PCであってもよく、 さらに脂肪族ジカルポン酸ゃ芳香族ジカルボン 酸、 または二価の脂肪族または脂環族アルコールを共重合させた共重合 P Cであ つてもよい。 しかしながら、 ビスフエノール Aの単独重合体からなる PCは、 耐 衝撃性に優れる点で特に好ましい。 A成分の詳細については、 WO03/080 728号パンフレツトに記載されている。
他の二価フエノ一ルを用いて重合された、 高耐熱性または低吸水率の P Cの具 体例としては、 下記のものが好適に例示される。
(1) PCを構成する二価フエノール成分 100モル%中、 4, 4' 一 (m- フェニレンジィソプロピリデン)ジフエノール (以下 "BPM"と略称)成分が、 好ましくは 20〜80モル%、 より好ましくは 40〜75モル%、 さらに好まし くは 45〜65モル%であり、 かつ 9, 9_ビス (4ーヒドロキシ一 3—メチル フエニル) フルオレン (以下 "BCF" と略称) 成分が、 好ましくは 20〜80 モル%、 より好ましくは 25〜60モル%、 さらに好ましくは 35〜55モル% である共重合 PC。
(2) PCを構成する二価フエノ一ル成分 100モル%中、 ビスフエノール A成 分が、 好ましくは 10〜95モル%、 より好ましくは 50〜90モル%、 さらに 好ましくは 60〜85モル%であり、 かつ BCF成分が、 好ましくは 5〜90モ ル%、 より好ましくは 10〜50モル%、 さらに好ましくは 15〜40モル%で ある共重合 PC。
(3) PCを構成する二価フエノール成分 100モル%中、 BPM成分が、 好ま しくは 20〜80モル%、 より好ましくは 40〜75モル%、 さらに好ましくは 45〜65モル%であり、 かつ 1, 1―ビス (4ーヒドロキシフエニル) -3. 3, 5—トリメチルシクロへキサン成分が、 好ましくは 20〜80モル%、 より 好ましくは 25〜60モル%、 さらに好ましくは 35〜55モル%である共重合 PC。
これらの特殊な PCは、 単独で用いてもよく、 2種以上を適宜混合して使用し てもよい。 また、 これらを汎用されているビスフエノール A型の PCと混合して 使用することもできる。
これらの特殊な PCの製法および特性については、 例えば、 特開平 6— 172
508号公報、 特開平 8— 27370号公報、 特開 2001— 55435号公報 および特開 2002 - 117580号公報等に詳しく記載されている。
A成分としては、 バ一ジン原料だけでなく、 使用済みの製品から再生された P C、 いわゆるマテリアルリサイクルされた PCの使用も可能である。 使用済みの 製品としては防音壁、 ガラス窓、 透光屋根材、 および自動車サンルーフなどに代 表される各種グレージング材、風防や自動車へッドランプレンズなどの透明部材、 水ボトルなどの容器、 並びに光記録媒体などが好ましく挙げられる。 これらは多 量の添加剤や他樹脂などを含むことがなく、目的の品質が安定して得られやすい。 殊に自動車へッドランプレンズゃ光記録媒体などは大量に消費され、 再生物が安 定して得られることから好ましい態様として挙げられる。 なお、 上記のバージン 原料とは、 その製造後に未だ巿場において使用されていない原料である。
A成分の粘度平均分子量は 16, 000〜23, 000、 好ましくは 16, 0 00〜22, 000であり、より好ましくは 18, 000〜21, 000である。 かかる好適な範囲の粘度平均分子量を有する PCは、 流動性、 強度、 および 熱 性のバランスに優れるようになる。
なお、 かかる粘度平均分子量は A成分全体として満足すればよく、 分子量の異 なる 2種以上の混合物によりかかる範囲を満足するものを含む。 特に粘度平均分 子量が、 好ましくは 50, 000、 より好ましくは 80, 000以上、 さらに好 ましくは 100, 000以上である P Cの混合は、 溶融時のェント口ピー弾性を 高くする点で有利な場合がある。 例えば、 ジエツティングの低減、 ガスインジェ クシヨン成形、発泡成形(超臨界流体によるものを含む)、 および射出プレス成形 性の改良などに効果を発揮する。 したがって、 粘度平均分子量が 50, 000以 上の P Cの混合は、 これらの改良が求められる場合およびこれらの成形法を適用 する場合に、 好適な選択の 1つとなる。 かかる効果は、 PCの分子量が高いほど 顕著となるが、 実用上、 分子量の上限は、 好ましくは 200万、 より好ましくは 30万、 さらに好ましくは 20万である。 かかる高分子量成分の混合は、 その配 合によって GPC (ゲルパーミエーシヨンクロマトグラフィー) などの測定法に おいて 2ピーク以上の分子量分布を観察できる量とすることが好ましい。
また PC (A成分) において、 そのフエノール性水酸基量は 30 e qZt on 以下が好ましく、 25 e q/t on以下がより好ましく、 20 e qZt on以下 がさらに好ましい。 なお、 力 ^かる値は十分に末端停止剤を反応させることで実質 的に 0 e dZt onとすることも可能である。 なお、 フエノール性水酸基量は、 ェ11一 NMR測定を行い、 力一ポネート結合を有する二価フエノ一ルュニット、 フエノール性水酸基を有する二価フエノールュニット、 および末端停止剤のュニ ットのモル比を算出し、 それに基づきポリマー重量当りのフエノール性水酸基量 に換算することで求められる。
本発明でいう粘度平均分子量は、 まず次式にて算出される比粘度を、 塩化メチ レン 100mlに PCO. 7gを 20 °Cで溶解した溶液からォストヮルド粘度計 を用いて求め、
比粘度 (7? SP) = (t- t0) /t 0
[ t。は塩化メチレンの落下秒数、 tは試料溶液の落下秒数]
求められた比粘度を次式にて挿入して粘度平均分子量 Mを求める。
VSP,C= [??] +0. 45X [τ?] 2c (但し [77] は極限粘度)
[?7] =1. 23X 10- 4Μ0· 83
C = 0. 7
(B成分: PET)
PET (B成分) は、 テレフタル酸を主たるジカルボン酸成分とする。 PET は、 テレフタル酸成分以外のジカルボン酸成分を共重合成分として含むものでも よい。 即ち、 P E Tは、 ジカルボン酸成分の全量を 1 0 0モル%としたとき、 好 ましくは 7 0〜1 0 0モル%、 より好ましくは 8 0〜1 0 0モル%、 さらに好ま しくは 9 0〜1 0 0モル%がテレフタル酸である P E Tである。 なお、 B成分の 構成単位に関連する " a a成分"なる表記(" a a "は化合物名を示す)の記載は、 その化合物 " a a " またはそのエステル形成性誘導体に由来するポリマー構成単 位を示す。 例えば、 ジカルボン酸成分とは、 ジカルボン酸またはそのエステル形 成性誘導体に由来する構成単位を示す。
他のジカルポン酸成分の例として、 イソフタル酸、 2—クロロテレフタル酸、 2 , 5—ジクロロテレフタル酸、 2—メチルテレフタル酸、 4 , 4一スチルベン ジカルボン酸、 4 , 4ービフエニルジカルボン酸、 オルトフタル酸、 2 , 6—ナ フタレンジカルボン酸、 2 , 7—ナフ夕レンジカルボン酸、 ビス安息香酸、 ビス ( P—力ルポキシフエニル) メタン、 アントラセンジカルボン酸、 4, 4—ジフ ェニルェ一テルジカルボン酸、 4 , 4ージフエノキシェ夕ンジカルボン酸、 5— N aスルホイソフタル酸、 エチレン—ビス— P—安息香酸等に由来する構成単位 があげられる。 これらのジカルボン酸成分は単独でまたは 2種以上混合して使用 することができる。 他のジカルボン酸成分は、 ジカルボン酸成分の全量を 1 0 0 モル%としたとき、好ましくは 0〜 3 0モル%、より好ましくは 0〜2 0モル%、 さらに好ましくは 0〜1 0モル%である。
さらに B成分には、 上記芳香族ジカルボン酸成分以外に、 3 0モル%未満の脂 肪族ジカルボン酸成分を共重合することができる。 該成分の具体例として、 アジ ピン酸、 セバシン酸、 ァゼライン酸、 ドデカン二酸、 1 , 3—シクロへキサンジ カルボン酸、 1 , 4—シクロへキサンジカルボン酸等に由来する構成単位があげ られる。
また P E Tは、 エチレンダリコール成分以外のジオール成分を共重合成分とし て含むものでもよい。 P E Tは、ジォ一ル成分の全量を 1 0 0モル%としたとき、 好ましくは 7 0〜1 0 0モル%、 より好ましくは 8 0〜1 0 0モル%、 さらに好 ましくは 9 0〜1 0 0モル%がエチレングリコール成分である P E Tである。 他のジオール成分としては、 例えばジエチレングリコール、 1, 2 _プロピレ ングリコ一ル、 1 , 3—プロパンジオール、 2, 2—ジメチルー 1 , 3—プロパ ンジオール、 トランス一または一 2, 2 , 4 , 4—テトラメチルー 1 , 3—シク ロブ夕ンジオール、 1 , 4—ブタンジオール、 ネオペンチルダリコール、 1 , 5 一ペンタンジオール、 1 , 6一へキサンジオール、 1 , 4—シクロへキサンジメ 夕ノール、 1, 3—シクロへキサンジメタノール、 デカメチレングリコール、 シ クロへキサンジオール、 p—キシレンジォ一ル、 ビスフエノール A、 テトラブロ モビスフエノール A、 テトラブロモビスフエノール A—ビス (2—ヒドロキシェ チルェ一テル) などに由来する構成単位を挙げることができる。 これらは単独で も、 2種以上を混合して使用することができる。 他のジォ一ル成分は、 ジオール 成分の全量を 1 0 0モル%としたとき、 好ましくは 0〜3 0モル%、 より好まし くは 0〜2 0モル%、 さらに好ましくは 0〜1 0モル%である。
さらにジオール成分としてわずかにポリエチレングリコール成分を共重合した ボリエチレンテレフタレートも使用できる。 ポリエチレングリコール成分の分子 量としては 1 5 0〜6 , 0 0 0の範囲が好ましい。
ポリエチレングリコール成分の組成割合としては、 ジオール成分 1 0 0重量% 中、 5重量%以下が好ましく、 3重量%以下がより好ましく、 2重量%以下がさ らに好ましい。 一方下限としては、 0 . 5重量%以上が好ましく、 1重量%以上 がより好ましい。
さらに B成分中には、 通常重合時の副反応生成物としてジオール成分 1 0 0モ ル%中、 約 0 . 5モル%以上のジエチレングリコール成分が含まれているが、 か かるジエチレンダリコール成分は 6モル%以下が好ましく、 5モル%以下がさら に好ましい。
B成分において、 テレフタル酸成分の一部をイソフ夕ル酸成分としたポリェチ レンテレフ夕レート/イソフタレート共重合体 (以下、 TAZ I A共重合体と略 称することがある。) におけるテレフタル酸成分とイソフタル酸成分との割合は、 全ジカルボン酸成分を 1 0 0モル%としたとき、テレフタル酸成分が 7 0 - 9 9 . 9モル%、 好ましくは 7 5〜9 9モル%、 さらに好ましくは 8 0〜9 9モル%で ある。また、イソフタル酸成分は 0 . 1〜3 0モル%、好ましくは 1〜2 5モル%、 さらに好ましくは 1〜2 0モル%である。
さらにこの TAZ I A共重合体には、 テレフタル酸成分とイソフ夕ル酸成分以 外の、 ナフ夕レンジカルボン酸等前記の芳香族ジカルボン酸成分を 1 0モル%以 下、 好ましくは 5モル%以下、 またアジピン酸等の前記の脂肪族ジカルボン酸成 分を 5モル%以下、 好ましくは 3モル%以下共重合することが可能であるが、 ジ 力ルポン酸成分としてテレフタル酸成分とイソフタル酸成分のみからなるものが 最も好ましい。 また、 TAZ I A共重合体におけるジオール成分としてエチレン ダリコール成分単独が最も好ましいが、 エチレンダリコール以外のジォ一ル成分 を共重合することも可能である。
B成分においてエチレンダリコール成分の一部をネオペンチルグリコール成分 としたポリエチレン /ネオペンチルテレフタレ一ト共重合体 (以下、 E GZN P G共重合体と略称することがある。)におけるエチレンダリコール成分とネオペン チルダリコール成分との割合は、 全ジオール成分 1 0 0モル%とした時にェチレ ングリコ一ル成分が 9 0〜 9 9モル%、 好ましくは 9 5〜9 9モル%、 さらに好 ましくは 9 7〜 9 9モル%である。 また、 ネオペンチルダリコ一ル成分は 1〜1 0モル%、 好ましくは 1〜8モル%、 さらに好ましくは 1〜 5モル%である。 ま たエチレンダリコールとネオペンチルグリコール以外のジオール成分を共重合す ることも可能である。
この E G/N P G共重合体には、 テレフタル酸成分以外のイソフタル酸ゃナフ 夕レンジカルボン酸等、 前記の芳香族ジカルボン酸成分を 1 0モル%以下、 好ま しくは 5モル%以下、 またアジピン酸等の前記の脂肪族ジカルボン酸成分を 5モ ル%以下、 好ましくは 3モル%以下共重合することが可能であるが、 ジカルボン 酸成分がテレフタル酸成分単独のものが最も好ましい。 また脂肪族ジカルボン酸 成分を共重合することも可能である。
B成分は、 常法に従い、 チタン、 ゲルマニウム、 アンチモン等を含有する重縮 合触媒の存在下に、 加熱しながらジカルボン酸成分を誘導する化合物と前記ジォ —ル成分を誘導する化合物とを重合させ、 副生する水または低級アルコールを系 外に排出することにより製造することができる。 重縮合触媒としてはゲルマニウ ム系重合触媒が好ましい。 ゲルマニウム系重合触媒としては、 ゲルマニウムの酸 化物、 酸化物、 ハロゲン化物、 アルコラ一卜、 フエノラ一ト等が例示でき、 さ らに具体的には、 二酸化ゲルマニウム、 水酸化ゲルマニウム、 四塩化ゲルマニウ ム、 テトラメ卜キシゲルマニウム等が例示される。 またその他、 三酸化アンチモ ン等の非溶性触媒が例示される。 特に、 ゲルマニウム系重合触媒で重合された P ETを用いると、 耐薬品性、 熱安定性が良好となる。
また本発明では、 従来公知の重縮合の前段階であるエステル交換反応において 使用される、 マンガン、 亜鉛、 カルシウム、 マグネシウム等の化合物を併せて使 用でき、 およびエステル交換反応終了後にリン酸または亜リン酸の化合物等によ り、かかる触媒を失活させて重縮合することも可能である。 P E Tの製造方法は、 バッチ式、 連続重合式のいずれの方法をとることも可能である。
B成分は、 一般の PCZPETァロイに用いられる PETに比べ固有粘度が低 いことを特徴とする。 即ち、 B成分の固有粘度 (I V) は、 0.45〜0. 57d lZg、 好ましくは 0. 47〜0. 55 d 1/g、 さらに好ましくは 0. 49〜 0. 52 d lZgである。 I V値が高い場合には流動性が低下するほかに、 耐薬 品性の向上効果が発現しにくいといった問題がある。 他方 I Vが低すぎる場合に は、 強度低下が大きいほか、 PETの末端基量が多い影響により熱可塑性樹脂の 熱安定性が低下する。 また I Vの低い PETの生産は、 スレットが碎けてしまう ためペレタイズが困難といった問題もある。
B成分の固有粘度 (IV) は、 o—クロロフエノ一ル中 25°Cで測定された値 である。 即ち、 PET1. 2 gを o—クロ口フエノール 15 cm3中に加熱溶解 した後、 冷却して 25°Cで測定された溶液粘度から算出される。 また重縮合反応 工程後に得られた PETの密度は、 1. 35〜1. 41 gZ cm3であることが 好ましく、 より好ましくは 1. 37〜1. 39 g/cm3である。 本発明におい て、 PETの密度は、 J I S K7112の D法に準拠した硝酸カルシウム溶液 を用いた密度勾配管法により、 23 °Cの温度で測定される。
通常、 成形体の製造には、 重縮合反応により得られた PETをさらに固相重合 して重合度を上げた PETが用いられている。 しかし、 本発明においては B成分 として、 固相重合されていない重合度の低い PETを用いることができる。
B成分は、 重量平均分子量 (Mw) と数平均分子量 (Mn) との比 (MwZM n) は 1. 3〜2. 1、好ましくは 1. 5〜2. 1、 より好ましくは 1. 7〜2. 0である。
Mw/Mnは、 GPC (ゲルパ一ミエーシヨンクロマトグラフィー) 法により 求めることができる。 即ち、 温度 23°C、 相対湿度 50%の清浄な空気の環境下 に置かれた G P C測定装置を用い、 カラムとしてポリマーラボラトリ一ズ社製 M I XED-C (長さ 300mm、 内径 7. 5mm), 移動相としてクロ口ホルム、 標準物質としてポリマーラボラトリ一ズ社製イージーキヤル P S— 2、 および'検 出器として UV検出器 (波長 254nm) を用い、 展開溶媒としてクロ口ホルム を使用し、 PET試料を一旦クロ口ホルム:へキサフルォロイソプロパノール = 1 : 1 (vo l) 混合溶液に溶解後、 クロ口ホルムで希釈した濃度 0. 3mgZ m 1の溶液を GP C測定装置に 100 1に注入し、 カラム温度 35°Cおよび流 量 lmlZmi nの条件により GPC測定を行い、 試料の数平均分子量 (Mn)、 重量平均分子量 (Mw) および MwZM nを算出する。 なおその際、 GPC測定 ピークのうち、 低分子量領域で発生する未反応モノマーや不純物に由来する微細 なピークは除外し、 ポリマ一由来のメインピークのみを使用して算出する。
近年、 リサイクル PETを樹脂組成物に再利用することが行われている。 リサ ィクル PETは、 MwZM nが大きい場合があり、 本発明の B成分として使用す る場合には注意を要する。
B成分の末端力ルポキシル基量は 20〜35 e q/t on, 好ましくは 22〜 30 e q/t on, より好ましくは Z S S S e Qi/t onである。
B成分は、 ジォキシエチレンテレフ夕レート単位の含有率が、 好ましくは 1. 0〜5. 0モル%、 より好ましくは 1. 0〜2. 5モル%の範囲にある。 重縮合 反応により得られた PETは、 通常、 溶融押出成形法によって粒状 (チップ状) に成形される。 このような粒状の PETは、 好ましくは 2〜5mm、 より好まし くは 2. 2〜 4mmの平均粒径を有する。 PETは、 このようにして液相重縮合 工程を経た粒状の PETをそのまま利用することが好ましい。 ( c成分:ゴム質重合体)
C成分のゴム質重合体とは、 ガラス転移温度が、 好ましくは 1 0 °C以下、 より 好ましくは一 1 0 °C以下、 さらに好ましくは一 3 0 °C以下のゴム成分からなる重 合体、 並びに該ゴム成分からなる重合体に他のポリマー鎖が結合してなる共重合 体をいう。 さらにそのゴム成分がゴム質重合体 1 0 0重量%中、 好ましくは 3 5 重量%以上、 より好ましくは 4 5重量%以上含有する重合体をいう。 ゴム成分の 含有量の上限は、 実用上 9 0重量%程度が適切である。
ゴム質重合体は、 他のポリマ一鎖が結合してなる共重合体がより好適である。 ゴム成分に他のポリマ一鎖がグラフト結合してなるゴム質重合体の製造において は、 ゴム成分にダラフトしない重合体または共重合体が少なからず生成すること は広く知られている。 本発明の C成分はかかる遊離の重合体または共重合体を含 有するものであってもよい。
C成分のゴム質重合体としてより具体的には、 S B (スチレン—ブタジエン) 共重合体、 AB S (アクリロニトリル—ブタジエン—スチレン) 共重合体、 M B S (メチルメ夕クリレート一ブタジエン—スチレン) 共重合体、 MA B S (メチ ルメタクリレート一アクリロニトリル一ブタジエン一スチレン) 共重合体、 MB (メチレメタクリレートーブタジエン) 共重合体、 A S A (アクリロニトリル一 スチレン一アクリルゴム) 共重合体、 AE S (アクリロニトリル—エチレンプロ ピレンゴム一スチレン)共重合体、 MA (メチルメタクリレ一トーアクリルゴム) 共重合体、 MA S (メチルメタクリレ一トーアクリルゴム一スチレン)共重合体、 メチルメタクリレート—アクリル ·ブタジエンゴム共重合体、 メチルメタクリレ —トーアクリル ·ブタジエンゴム一スチレン共重合体、 メチルメタクリレ一トー (アクリル ·シリコーン I P Nゴム) 共重合体などを挙げることができる。 これ らの共重合体はいずれもゴム成分からなる重合体のコアに上記単量体からなるポ リマー鎖が結合したコア一シェルタイプのグラフト共重合体であることが好まし レ^ その中でもスチレン一ブタジエン共重合体、 アクリロニトリル一ブタジエン 一スチレン共重合体、 メチルメタクリレ一トーブタジエン—スチレン共重合体お よびメチルメタクリレートー (アクリル ·シリコーン I P Nゴム) 共重合体から なる群より選ばれる少なくとも 1種のゴム質重合体が好ましい。
ゴム質重合体のゴム粒子径は、 重量平均粒子径において 0 . 0 5〜 2 mが好 ましく、 より好ましくは 0 . :!〜 l /i m、 特に好ましくは 0 . 1〜0 . 5 mで ある。 かかるゴム粒子径の分布は単一の分布であるものおよび 2山以上の複数の 山を有するもののいずれもが使用可能であり、 さらにそのモルフォロジ一におい てもゴム粒子が単一の相をなすものであっても、 ゴム粒子の周りにォクル一ド相 を含有することによりサラミ構造を有するものであってもよい。
グラフト共重合体のゴム質重合体では、 そのグラフトされた成分のゴム基質に 対する重量比率(グラフト率 (重量%)) は、 1 0〜1 0 0 %が好ましく、 より好 ましくは 1 5〜7 0 %、 さらに好ましくは 1 5〜4 0 %である。
また、 ゴム質重合体としては、 ハードセグメントとソフトセグメントから構成 される各種の熱可塑性エラストマ一を挙げることができる。 かかる熱可塑性エラ ス卜マ一としては、 ポリエステルエラストマ一、 ポリウレタンエラストマ一、 ス チレン系エラストマ一、 およびォレフィン系エラストマ一などが例示される。
(D成分:無機充填材)
本発明の D成分である無機充填材は、 フレーク状、 繊維状、 球状、 中空状を自 由に選択できる。 樹脂組成物の強度ゃ耐衝撃性の向上、 および寸法安定性のため にはフレーク状充填材および Zまたは繊維状充填材が好ましい。 無機充填材 (D 成分) は、 シランカップリング剤 (アルキルアルコキシシランやポリオルガノハ イドロジェンシロキサンなどを含む)、 高級脂肪酸エステル、 酸化合物 (例えば、 亜リン酸、 リン酸、 カルボン酸、 およびカルボン酸無水物など) 並びにワックス などの各種表面処理剤で表面処理されていてもよい。 さらに各種樹脂、 高級脂肪 酸エステル、 およびワックスなどの集束剤で造粒し顆粒状とされていてもよい。
(フレーク状充填材)
フレーク状充填材としては、 ガラスフレーク、 金属フレーク、 グラフアイトフ レーク、 スメクタイト、 カオリンクレー、 マイ力、 およびタルクなどが例示され る。 ガラスバルーンなどの中空充填材は、 樹脂と溶融混練することにより破碎し て板状の無機充填材と同様に剛性向上の効果が得られる場合がある。 フレーク状 充填材にはかかる効果を発現するものを含む。 これらの無機充填材は、 異種材料 を表面被覆したものを含む。 異種材料としては金属、 合金、 金属酸化物などが代 表的である。 金属や合金などの被覆は高い導電性を付与でき、 また意匠性を向上 させる場合もある。 金属酸化物の被覆は光導電性などの機能が付与できる場合が あり、 また意匠性の向上も可能である。 - フレーク状充填材は、 レーザ一回折'散乱法で測定される平均粒径(D 50 (粒 子径分布のメジアン径)) が、 好ましくは 0. l〜50 m、 より好ましくは 0. 3〜30/xm、 さらに好ましくは 0. 5〜 10 mである。 平均粒子厚みは、 好 ましくは 0. 01〜l m、 より好ましくは 0. 01〜0. 8 m、 さらに好ま しくは 0. 05〜0. 5 zmである。
(マイ力)
マイ力は、 レーザー回折'散乱法で測定される平均粒径 (D 50 (粒子径分布 のメジアン径)) が、好ましくは 1〜50 xm、 より好ましくは 2〜20 m、 さ らに好ましくは 2〜 10 mである。 マイ力の平均粒径が 1 m未満では剛性に 対する改良効果が十分でなく、 50 imを越えても剛性の向上が十分でなく、 衝 撃特性等の機械的強度の低下も著しく好ましくない。 マイ力は、 電子顕微鏡の観 察により実測した厚みが好ましくは 0. 01〜1 m、 より好ましくは 0. 03 〜0. 3 mである。 アスペクト比は、 好ましくは 5〜200、 より好ましくは 10〜100である。 マイ力は天然鉱物の粉砕物であっても合成品であってもよ い。 また、 マイ力の粉枠法としては乾式粉砕法および湿式粉砕法のいずれで製造 されたものであってもよい。 乾式粉碎法の方が低コストで一般的であるが、 一方 湿式粉碎法は、 マイ力をより薄く細かく粉碎するのに有効である。 その結果樹脂 組成物の剛性向上効果はより高くなる。
(タルク)
タルクは、 化学組成的には含水珪酸マグネシウムであり、 一般的には化学式 4
S i〇2 · 3MgO · 2H2〇で表され、 通常層状構造を持った鱗片状の粒子であ る。 タルクは、 56〜65重量%の S i 02、 28〜35重量%の Mg〇および 約 5重量%の H20から構成されている。その他の少量成分として F e 203を 0. 03〜1. 2重量%、 A 1203を 0. 05〜1. 5重量%、 CaOを 0. 05〜 1. 2重量%、 K20を 0. 2重量%以下、 Na2〇を 0. 2重量%以下含有する。 より好適なタルクの組成としては、 S i〇2 : 62〜63. 5重量%、 Mg〇: 31〜32. 5重量%、 F e 203: 0. 03〜0. 15重量%、 A 1203: 0. 05〜0. 25重量%、 および C a〇: 0. 05〜- 0. 25重量%である。 さら に強熱減量が 2〜 5. 5重量%であることが好ましい。
タルクは、沈降法により測定される平均粒径が、好ましくは 0. 1〜50 ΠΊ、 より好ましくは 0. 1〜10 m、 さらに好ましくは 0. 2〜5 m、 特に好ま しくは 0. 2〜3. 5 imである。 かさ密度が 0. 5 g/c m3のタルクが好適 である。 タルクの平均粒径は、 液相沈降法の 1つである X線透過法で測定された D 50 (粒子径分布のメジアン径) をいう。 かかる測定を行う装置の具体例とし てはマイクロメリティックス社製 S e d i g r aph 5100などを挙げること ができる。
またタルクを原石から粉碎する際の製法に関しては特に制限はなく、 軸流型ミ ル法、 ァニユラ一型ミル法、 ロールミル法、 ポールミル法、 ジェットミル法、 お よび容器回転式圧縮剪断型ミル法等を利用することができる。 さらに粉碎後の夕 ルクは、 各種の分級機によって分級処理され、 粒子径の分布が揃ったものが好適 である。 分級機としては特に制限はなく、 インパク夕型慣性力分級機 (バリアブ ルインパクターなど)、コアンダ効果利用型慣性力分級機 (エルポージェットなど)、 遠心場分級機 (多段サイクロン、 ミクロプレックス、 ディスパ一ジョンセパレー 夕一、 アキュカット、 夕一ポクラシファイア、 ターポプレックス、 ミクロンセパ レーター、 およびスーパ一セパレー夕一など) などを挙げることができる。
さらにタルクは、 その取り扱い性等の点で凝集状態であるものが好ましく、 か かる製法としては脱気圧縮による方法、 集束剤を使用し圧縮する方法等がある。 特に脱気圧縮による方法が簡便かつ不要の集束剤棚旨成分を本発明の觀旨組成物 中に混入させない点で好ましい。
(繊維状充填材) .
繊維状充填材は、 平均繊維径が好ましくは 0. l〜30 xm、 より好ましくは 0 . 1〜2 0 x m、 さらに好ましくは 0 . 5〜1 5 mである。 平均繊維長は、 好ましくは 1〜5 0 0 // m、 より好ましくは 1〜4 0 0 m、 さらに好ましくは 5〜3 5 0 /mである。
平均繊維径は、 電子顕微鏡で強化フイラ一を観察し、 個々の繊維径を求め、 そ の測定値から数平均繊維径を算出する。 電子顕微鏡を使用するのは、 対象とする レベルの大きさを正確に測定することが光学顕微鏡では困難なためである。 電子 顕微鏡の観察で得られる画像から繊維径を測定する対象のフイラ一をランダムに 抽出し、 各フイラ一の中央部に近いところで繊維径を測定する。 得られた測定値 より数平均繊維径を算出する。 観察の倍率は約 1, 0 0 0倍とし、 測定本数は 5 0 0本以上 (6 0 0本以下が作業上好適である) で行う。
平均繊維長は、 フイラ一を光学顕微鏡で観察し、 個々の長さを求め、 その測定 値から数平均繊維長を算出する。 光学顕微鏡の観察は、 フイラ一同士があまり重 なり合わないように分散されたサンプルを準備することから始まる。 観察は対物 レンズ 2 0倍の条件で行い、 その観察像を画素数が約 2 5万である C C Dカメラ に画像データとして取り込む。 得られた画像デ一夕から、 画像解析装置を使用し て画像データの 2点間の最大距離を求めるプログラムを使用して、 繊維長を算出 する。 かかる条件の下では 1画素当りの大きさが 1 . 2 5 mの長さに相当し、 測定本数は 5 0 0本以上 (6 0 0本以下が作業上好適である) で行う。
繊維状充填材としては、 ガラス繊維、 炭素繊維、 金属繊維、.セラミック繊維、 スラグ繊維、 ロックウール、 ゾノトライト、 ワラストナイト、 および各種ウイス カー類 (チタン酸カリウムゥイス力一、 ホウ酸アルミニウムゥイスカー、 ボロン ウイスカ一、および塩基性硫酸マグネシウムウイスカ一など)などが例示される。 (ワラストナイト)
ワラストナイトの平均繊維径は、 好ましくは 0 . l〜1 0 m、 より好ましく は 0 . 1〜5 ΠΙ、 さらに好ましくは 1〜 2 mである。 またそのアスペクト比 (平均繊維長/平均繊維径) は、 好ましくは 3〜3 0、 より好ましくは 5〜9で ある。 なお、 平均繊維径、 平均繊維長の測定方法は前記測定方法と同じである。 ワラストナイトは、 その元来有する白色度を十分に樹脂組成物に反映させるた め、 原料鉱石中に混入する鉄分並びに原料鉱石を粉砕する際に機器の摩耗により 混入する鉄分を磁選機によって極力取り除くことが好ましい。 かかる磁選機処理 によりワラストナイト中の鉄の含有量は F e 203に換算して、 0 . 5重量%以下 であることが好ましい。 またワラストナイトは天然鉱物の粉碎物であっても合成 品であってもよい。 - (ガラス繊維)
ガラス繊維としては、 Aガラス、 Cガラス、 Eガラス等のガラス組成を特に限 定するものではなく、 場合により T i 02、 S 03、 P 205等の成分を含有するも のであってもよい。 但し、 Eガラス (無アルカリガラス) がより好ましい。 ガラ ス繊維は溶融ガラスを種々の方法にて延伸しながら急冷し、 所定の繊維状にした ものである。 かかる場合の急冷および延伸条件についても特に限定されるもので はない。 また断面の形状は真円状の他に、 楕円状、 マユ型、 三つ葉型などの真円 以外の形状ものを使用してもよい。 さらに真円状ガラス繊維と真円以外の形状の ガラス繊維が混合したものでもよい。
ガラス繊維の平均繊維径は特に限定されるものではないが、 好ましくは 1〜2
5 m、より好ましくは 3〜 1 7 / m、さらに好ましくは 1 0〜1 5 / mである。 この範囲の平均繊維径を持つガラス繊維を使用した場合には、 成形体外観を損な う事なく良好な耐熱性等を発現する事ができる。 また、 ガラス強化材の好ましい 繊維長としては、 本発明の樹脂組成物ペレツトまたは成形体中で平均繊維長とし て好ましくは 5 0〜5 0 0 z m、 より好ましくは 1 0 0〜4 0 0 m、 さらに好 ましくは 2 3 0〜 2 7 0 x mである。
平均繊維長は、 成形体を溶剤に溶解したり、 測旨を塩基性化合物で分解した後 に採取されるガラス繊維の残渣から光学顕微鏡観察などから画像解析装置により 算出される値である。 またかかる値の算出に際しては繊維径以下の長さのものは カウントしない方法による値である。 さらに、 ガラス繊維に由来する異方性を低 減する目的でミルドフアイバーと呼ばれる L ZD≤ 1 0のものを上記ガラス繊維 とは別に添加することも可能である。
ガラス繊維は表面被覆剤により被覆されていてもよい。 ここで表面被覆剤は ( i ) エポキシ基含有化合物を含むものが好ましい。 エポキシ基含有化合物は各 種の樹脂に対して反応性に富み密着性の向上に効果がある一方、 反応性が高い縮 合系のポリマーなどに対しても分解反応などを生ずることなく良好な特性が発揮 できる。 かかる密着性の向上は、 ガラス繊維の間に存在するポリマーに対して成 形加工時に高い剪断力を作用させることとなる。 これにより繊維の補強効果に加 えて、 結晶性のポリマーの場合に結晶性が高められ、 結果として良好な耐熱性お よび低減した寸法の経時変化が達成される。
エポキシ基含有化合物としては各種のものが使用可能であるが、 好ましくはそ の分子量が 5 0 0以上の高分子構造を有するものであり、 さらに 1分子中に複数 のエポキシ基を含有するものである。 また耐熱性の観点から芳香環から主として 構成される構造が好ましい。
エポキシ基含有化合物として好適なものとしては、 フエノ一ルノポラック型ェ ポキシ樹脂、 線状クレゾールノポラック型エポキシ樹脂を挙げることができる。 特にフエノ一ルノポラック型エポキシ樹脂を挙げることができる。 即ちフエノ一 ルノポラック型エポキシ榭脂および Zまたは線状クレゾールノポラック型ェポキ シ樹脂を主体とするものがエポキシ基含有化合物として好ましい。 即ちエポキシ 基含有化合物 1 Q 0重量%中 7 0重量%以上、 好ましくは 8 0重量%以上、 さら に好ましくは 9 0重量%以上、 フエノールノポラック型エポキシ樹脂および Zま たは線状クレゾールノポラック型エポキシ樹脂を含むものを好ましく挙げること ができる。
表面被覆剤の量は、 (i i )ガラス繊維 1 0 0重量%当たり、好ましくは 0 . 1 〜2重量%、 より好ましくは 0 . 5〜1 . 5重量%、 さらに好ましくは 0 . 6〜 1 . 2重量%である。 0 . 1重量%未満では表面被覆が不十分で繊維の集束が不 十分となる。 かかる不十分な集束の不具合については後述する。 一方 2重量%を 超えると密着性が飽和する一方で、 集束剤が熱可塑性樹脂の有する特性を低下さ せる場合が生ずる。
ガラス繊維は、 その特性として ( i i i ) 1リツトルのビ一カーに 2 0 0 gの ガラス繊維の 3 mm長チョップドストランドを入れ、 2 3 °Cにて攪拌機で 2 , 0 0 0 r p mで 5分間攪拌した場合の風綿発生量が 1 0 g以下であることが好まし い。 ここで風綿とは攪拌によって集束されたチョップドストランドが開繊し、 3
0メッシュオンする量である。 また攪拌機としては回転数が表示され、 また設定 値の回転数にフィードバック制御できるものが好ましい (即ち回転数は常に一定 に保持される)。また攪拌機の羽根は直径 5 Ο ππηφである 3枚羽根のマリーン夕 イブが使用される。 かかる風綿発生量は、 より好ましくは 5 g以下、 さらに好ま しくは 3 g以下である。
通常、 本発明のようなガラス繊維を含む樹脂組成物は、 ガラス繊維を溶融混練 機に供給することにより製造される。その際、原料のガラス繊維は、 (1 )原料樹 脂とプリブレンドされる、 (2 )空気輸送される、並びに (3 ) 供給機(スクリュ 一式や振動式など) およびサイドフィーダ一を使用し独立に溶融混練機に供給さ れるなどの要因により、 かなりの外力を受ける。
ここで上記の試験による風綿発生量が多いガラス繊維の場合には、 溶融混練機 に供給した場合に風綿により安定した供給ができない問題が発生する。 さらには かかる風綿の嵩密度が低いために溶融混練機にかみ込まず、 加えてバックフロ一 等の問題が発生する。これらの問題は樹脂の不規則な溶融混練機中の滞留を招き、 結果として樹脂を熱劣化させる。
さらに、 ガラス繊維を空気輸送等で溶融混練機に供給する場合にも、 輸送中に 風綿が発生し輸送配管中に詰まり、空気輸送を不可能にする等の問題が発生する。 また風綿発生量が多い場合には熱可塑性樹脂とガラス繊維との溶融混練時に、 ガ ラス繊維の折れが発生しやすくなり、 岡 ij性や耐熱性等の望まれる諸特性が発現で きない等の問題がある。
上記の風綿発生量の特性を満足するためには、 その表面被覆剤としてエポキシ 含有化合物に加えて、 ポリウレタン、 ポリアクリレ一トまたはポリアミドなどの 成分を含んでなる表面被覆剤を併用することが好ましい。 より好ましいのはポリ ウレタンとの併用である。 したがって好適な表面被覆剤としては、 フエノールノ ポラック型エポキシ樹脂および Zまたは線状クレゾ一ルノポラック型エポキシ樹 脂を主成分とし、 さらにポリウレタンを含んでなるものが挙げられる。 ここでフ エノ一ルノポラック型エポキシ樹脂および/または線状クレゾールノポラック型 エポキシ樹脂は、 表面被覆剤 1 0 0重量%中、 好ましくは 5 0〜9 5重量%、 よ り好ましくは 6 0〜9 0重量%含有する。 特にフエノールノポラック型エポキシ 樹脂をバインダー成分 1 0 0重量%中、 好ましくは 5 0重量%以上、 より好まし くは 6 0重量%以上含有する。 - かかる表面被覆剤で被覆する場合には、 予めガラス繊維の表面をァミノシラン 系カップリング剤やエポキシシラン系のカップリング剤で表面処理を行った後に、 フエノールノポラック型エポキシ樹脂および/または線状クレゾールノポラック 型エポキシ樹脂、 およびポリウレタンで処理することが好ましい。 またガラス繊 維の集束剤には、 通常実質的に繊維強化剤を束ねる成分 (表面被覆剤) の他、 滑 り性を付与する成分やその他乳化剤が含まれるが、 かかる各種の成分は当然に集 束剤中に含まれてよい。これら各種の成分を含んだェマルジョン溶液が塗布され、 乾燥処理されて表面被覆剤を主とする成分が繊維強化剤上に残留する。 乾燥処理 や熱処理の工程で表面被覆剤の高分子量化が促進されて十分な表面被覆剤が形成 される。
またフエノールノポラック型エポキシ樹脂および Zまたは線状クレゾ一ルノポ ラック型エポキシ樹脂、 およびポリウレタンは、 両者のェマルジヨンを混合した 液中にガラス繊維を塗布する方法を基本とする。 しかし両者を独立に塗布する方 法であってもよい。
通常、 フエノールノポラック型エポキシ ¾f脂のみでは風綿発生量が増加する。 しかしながら本発明ではエポキシ f脂の量を調節し他の集束剤と組み合わせるこ とにより、 表面被覆剤が耐熱性が良好でかつ多数のエポキシ基を含有しつつ、 風 綿発生量の少ないガラス繊維を得ることが可能となり、 風綿発生量が低減される ことで耐熱性、 寸法安定性などの優れた効果が達成できる。
本発明では、耐衝撃性、外観、寸法安定性、およびコストなどの点からマイ力、 タルク、 ワラストナイトおよびガラス繊維からなる群より選ばれる少なくとも 1 種の無機充填材が好ましい。特に、ワラストナイトまたはガラス繊維が好ましい。
(E成分:折れ抑制剤) 本発明の樹脂組成物は、 無機充填材 (D成分) の折れや割れを抑制するため、 さらには樹脂組成物の熱安定性をより向上させるため、 折れ抑制剤を含むことが できる。かかる折れ抑制剤には、 ( i )珪酸塩鉱物との間に反応性を有する官能基 を含む滑剤、 および (i i) 珪酸塩鉱物に予め表面被覆された滑剤が含まれる。 好適な折れ抑制剤は、 酸性基含有滑剤、 もしくは炭素数 60以下のアルキル基を 有するアルキルアルコキシシランまたはアルキルハイドロジェンシランである。 酸性基含有滑剤として、 力ルポキシル基類含有滑剤 1 g当り、 力ルポキシル基 類を好ましくは 0. 05〜: L Ome q/g、 より好ましくは 0. l〜6me qZ g、 さらに好ましくは 0. 5〜 4m e q/gの濃度で含有する力ルポキシル基類 含有ォレフィン系ワックスが好適である。 さらにォレフィン系ワックスの分子量 は、 1, 000〜 10, 000が好ましい。 さらにかかる濃度および分子量の条 件を満足する α—ォレフィンと無水マレイン酸との共重合体が好適である。 かか る共重合体は、 常法に従いラジカル触媒の存在下に、 溶融重合あるいはバルク重 合法で製造することができる。 ここで 0;—ォレフィンとしてはその炭素数が平均 値として 10〜60のものを好ましく挙げることができる。 α—ォレフインとし てより好ましくはその炭素数が平均値として 16〜60、 さらに好ましくは 25 〜55のものを挙げることができる。
(各成分の割合)
本発明における各成分の割合について記載する。
本発明の樹脂組成物は、 50〜: L 00重量%、 好ましくは 70〜 95重量%、 より好ましくは 55〜65重量%の樹脂成分および 50〜0重量%、 好ましくは 30〜5重量%、 より好ましくは 45〜35重量%の無機充填材 (D成分) から なる。
本発明の樹脂組成物は、 PC (A成分) および無機充填材 (D成分) の合計量 と、 PET (B成分) との重量比、 即ち (A + D) /Bが、 60/40〜85 15、 好ましくは 65/35〜85/15、 より好ましくは 65/35-80/ 20ある。
A成分と B成分との重量比(AZB)は、好ましくは 40/60-90/10, より好ましくは 65Z35〜 75/25である。 A成分の添加量が少ない場合に は、 衝撃強度、 耐熱性が不十分になりやすく、 添加量が多い場合には耐薬品性が 発現しにくくなる。
ゴム質重合体 (C成分) は、 A成分と B成分との合計 100重量部に対して、 好ましくは 1〜50重量部、 より好ましくは 1〜10重量部、 さらに好ましくは 2〜 7重量部である。 添加量が少ない場合には衝撃強度の発現が不十分になりや すく、 多すぎる場合には耐熱性、 または剛性が低下する。
折れ抑制剤 (E成分) は、 A成分と B成分との合計 1 00重量部に対して、 好 ましくは 0. 01〜10重量部、 より好ましくは 0. 1〜5重量部、 さらに好ま しくは 0. 3~ 3重量部である。 E成分の最適量は、 D成分の含有量により変化 し、 D成分の含有量 10重量部あたり、 好ましくは 0. 05〜5重量部、 より好 ましくは 0. 1〜3重量部、 さらに好ましくは 0. 1〜1重量部である。
本発明の樹脂組成物は、 I SO 1133規格に準拠した 280°C、 2. 16k g荷重におけるメルトボリュームレート (MVR値:単位 cm3/l 0分) が、 好ましくは 10〜150、 より好ましくは 13〜150、 さらに好ましくは 18 〜100、 さらにより好ましくは 20〜80である。 MVR値が小さい場合には 十分な流動特性を発現できず、 大きすぎる場合には耐衝撃性が悪い場合がある。 樹脂組成物は、 ASTM D-790に準拠した曲げ弾性率 (単位: MP a) が、 好ましくは 2, 000〜25, 000、 より好ましくは 8, 000〜25, 0 0 0である。
樹脂組成物は、 耐薬品性試験におけるクラックの発生率が、 好ましくは 0〜2 0%、 より好ましくは 0〜: L 0%である。 耐薬品性は、 ASTM 0— 638に 準拠して作成した試験片 10本についてそれぞれ、 3点曲げ治具にて歪み 0.5% をかけ、 23°Cにおいてガソリン (エツソ製、 レギュラーガソリン) に 10分間 浸漬させクラック等の発生のなかった本数とした。
樹脂組成物は、 I SO 527- 1に準拠して作成された試験片の中心部にお いて、 流れ方向に測定された一 30〜 80 °Cの範囲における線膨張係数が 1. 0 X 1 0— 5〜12. 0 X 1 0— 5Z°Cの範囲である。かかる線膨張係数の下限は好ま しくは 1. 2 X 10— 5/°Cである。 かかる線膨張係数の上限は好ましくは 5. 5 X 1 0- 5//。c、 さらに好ましくは 3. 5 X 10— 5Z°Cである。 かかる範囲よりも 線膨張係数が大きい場合には、 使用環境中の温度変化に対して成形体の寸法変化 が大きく、 車両外装材として適さない。 線膨張係数が小さい場合、 特に問題ない が、 実質的に他の特性、 特に成形体外観との両立が困難である。
樹脂組成物は、 ASTM D-648に準拠し 0.45 MP a荷重において測定 した荷重たわみ温度が 110〜 145 °Cの範囲にあり、 好ましくは 120 °C〜 1 45。 特に好ましくは 130° (:〜 145°Cである。 荷重たわみ温度が低い場合 には塗装焼付け時に変形を生じやすい。 また使用環境下で、 例えば炎天下で荷重 がかかった際に大きくたわみ、 車両の品質感を低下させやすい。
本発明の榭脂組成物の好適な態様として、 以下の測旨組成物がある。
( 1 ) 70〜 95重量%の樹脂成分および 30〜 5重量%の平均繊維径が 1〜 2 iim, アスペクト比が 5〜9であるワラストナイト (D成分) からなる樹脂組成 物であって、 樹脂成分は、
( i ) 粘度平均分子量 16 , 000〜23, 000のビスフエノ一ル A型の芳香 族ポリカーボネート (A成分) および
( i i) 固有粘度 (I V) が 0. 49〜0. 57 d l/gで、 末端力ルポキシル 基量が 23〜28 e q/t onで、 重量平均分子量 (Mw) と数平均分子量 (M n) との比 (MwXMn) が 1. 9〜2. 1であるゲルマニウム系重合触媒で重 合されたポリエチレンテレフ夕レート (B成分) からなり、
(i i i) A成分および D成分の合計量と、 B成分との重量比 {(A + D) /B) が 70 30〜 80 / 20であり、
( i v) A成分と B成分との重量比 (AZB) が 65Z35〜75Z25である 請求項 1記載の棚旨組成物。
(2) 55-65重量%の樹脂成分および 45〜 35重量%の平均繊維径が 10 〜 15 m、 平均繊維長が 230〜270 mであるガラス繊維 (D成分) から なる樹脂組成物であって、 樹脂成分は、
( i ) 粘度平均分子量 16 , 000〜23, 000のビスフエノール A型の芳香 族ポリカーボネート (A成分) および
( i i) 固有粘度 (I V) が 0. 49〜0. 52 d l/gで、 末端カルボキシル 基量が 23〜28 e t onで、 重量平均分子量 (Mw) と数平均分子量 (M n) との比 (Mw/Mn) が 1. 9〜2. 1であるゲルマニウム系重合触媒で重 合されたポリエチレンテレフタレ一ト (B成分) からなり、
( i i i) A成分および D成分の合計量と、 B成分との重量比 A + D) /B} が 65Z35〜75/25であり、
( i v) A成分と B成分との重量比 (A/B) が 45/55〜55ノ45である 請求項 1記載の樹脂組成物。
(3) 50〜100重量%の樹脂成分および 0〜50重量%のマイ力、 タルク、 およびワラストナイ卜からなる群より選ばれる少なくとも 1種の無機充填材 (D 成分) からなる樹脂組成物であって、 樹脂成分は、
( i ) 粘度平均分子量 16 , 000〜23, 000のビスフエノール A型のポリ 力一ポネートからなる群より選ばれたポリ力一ポネート (A1成分) および
( i i) 固有粘度 (I V) が 0. 45^0. 57 d 1/gで、 末端カルボキシル 基量が 20〜35 e qZ t o nで、 重量平均分子量 (Mw) と数平均分子量 (M n) との比 (Mw/Mn) が 1. 3〜2. 1であるポリエチレンテレフタレ一ト から選ばれたポリエチレンテレフタレート (B 1成分) からなり、
( i i i) A 1成分および D成分の合計量と、 B 1成分との重量比 {(A1+D) ZB 1 } が 60Z40〜85Z1 5であり
( i V) I SO 1 133規格に準拠した 280°C、 2. 16 kg荷重におけるメル トポリュームレ一ト (MVR値) が 23〜150 cm3Zl 0分、 ASTM D - 790に準拠した曲げ弾性率が 2, 000〜 25, 000MPa、 かつ耐薬品 性評価におけるクラック発生率が 0〜 20 %である流動性樹脂組成物。
(4) 50〜: L 00重量%の樹脂成分および 0〜50重量%のガラス繊維 (D成 分) からなる樹脂組成物であって、 樹脂成分は、
( i ) 粘度平均分子量 16 , 000〜23, 000のビスフエノール A型のポリ カーボネートからなる群より選ばれたポリカーボネート (A1成分) および (i i) 固有粘度 (IV) が 0. 45〜0. 57 d lZgで、 末端力ルポキシル 基量が 20〜35 e ciZt onで、 重量平均分子量 (Mw) と数平均分子量 (M n) との比 (Mw/Mn) が 1. 3〜2. 1であるポリエチレンテレフ夕レート から選ばれたポリエチレンテレフ夕レート (B 1成分) からなり、 .
(i i i) A 1成分および D成分の合計量と、 B 1成分との重量比 {(A1+D) /B 1 } が 60/40〜85Z15であり
(i V) I SOI 133規格に準拠した 280°C、 2. 16 kg荷重におけるメル トポリュ一ムレ一ト (MVR値) が 10〜150 cm3Zl 0分、 ASTM D - 790に準拠した曲げ弾性率が 8, 000〜 25, O O 0MP a、 かつ耐薬品 性評価におけるクラック発生率が 0〜 10 %である流動性樹脂組成物。
(その他の成分)
さらに本発明の樹脂組成物には、 上記特性を満足する範囲で、 さらに、 B成分 以外の芳香族ポリエステル、 難燃剤、 難燃助剤 (例えば、 アンチモン酸ナトリウ ム、 および三酸化アンチモン等)、 チヤ一形成化合物 (例えば、 ノボラック型フエ ノール樹脂、 ピッチ類とホルムアルデヒドとの縮合物など)、核剤 (例えば、 ステ ァリン酸ナトリゥム、およびエチレン—ァクリル酸ナトリゥム等)、滴下防止剤(フ ィプリル形成能を有するフッ素化ポリオレフイン等)、熱安定剤、酸化防止剤(例 えば、 ヒンダードフエノール系酸化防止剤、およびィォゥ系酸ィ匕防止剤等)、紫外 線吸収剤、 光安定剤、 離型剤、 帯電防止剤、 発泡剤、 流動改質剤、 抗菌剤、 光触 媒系防汚剤 (微粒子酸化チタン、 微粒子酸化亜鉛など)、 滑剤、着色剤、 蛍光増白 剤、 蓄光顔料、 蛍光染料、 赤外線吸収剤、 フォトクロミック剤などを配合するこ とができる。
(i) 芳香族ボリエステル
本 明の樹脂組成物には、 ポリエチレンテレフタレ一ト以外の芳香族ポリエス テルも添加することができる。 例としてはポリプロピレンテレフタレ一ト、 ポリ ブチレンテレフタレ一ト (PBT)、ポリへキシレンテレフタレート、 ポリエチレ ンナフタレート (PEN), ポリブチレンナフタレート (PBN)、 ポリエチレン — 1, 2—ビス(フエノキシ)ェタン一 4, 4' —ジカルボキシレートなどの他、 トノイソフタレートなどの共重合ポリエステル力挙げられる。 これらの芳香族ポ リエステルの添加量としては B成分の P E T 1 0 0重量部に対して、 好ましくは 1〜1 0 0重量部、 より好ましくは 1 0〜9 0重量部、 さらに好ましくは 3 0〜 6 0重量部である。 - ( i i ) 熱安定剤
本発明の樹脂組成物には各種の熱安定剤が配合されることが好ましい。 かかる 熱安定剤としてリン系安定剤が好適である。 リン系安定剤としては、 亜リン酸、 リン酸、 亜ホスホン酸、 ホスホン酸およびこれらのエステル、 並びに第 3級ホス フィンなどが例示される。 かかるリン系安定剤は、 1種のみならず 2種以上を混 合して用いることができる。
具体的にはホスファイト化合物としては、 例えば、 トリデシルホスフアイトの 如きトリアルキルホスフアイト、 ジデシルモノフエニルホスフアイトの如きジァ ルキルモノァリールホスフアイト、 モノプチルジフエニルホスフアイ卜の如きモ ノアルキルジァリ一ルホスフアイト、トリフエニルホスフアイトおよびトリス(2 ,
4—ジ— t e r t一ブチルフエニル) ホスファイトの如きトリァリールホスファ イト、 ジステアリルペン夕エリスリトールジホスファイト、 ビス (2, 4一ジ— t e r t一ブチルフエニル) ペンタエリスリトールジホスフアイト、 ビス (2, 4 _ジクミルフエニル)ペンタエリスリ ] ルジホスフアイト、およびビス(2 , 6—ジ— t e r t—ブチルー 4一メチルフエニル) ペン夕エリスリトールジホス ファイトなどのペンタエリスリ ] ^一ルホスファイト、 並びに 2, 2—メチレンビ ス (4 , 6—ジー t e r t—ブチルフエニル) ォクチルホスファイトおよび 2 , 2 ' —メチレンビス (4, 6—ジー t e r t—ブチルフエニル) (2, 4—ジー t e r t一ブチルフエニル) ホスフアイトなどの環状ホスフアイトが例示される。 ホスフェート化合物としては、 トリプチルホスフェート、 トリメチルホスフエ —ト、 トリクレジルホスフエ一ト、 トリフエニルホスフエ一ト、 トリェチルホス フェート、 ジフエニルクレジルホスフエ一ト、 ジフエニルモノオルソキセニルホ スフェート、 トリブトキシェチルホスフェート、 およびジイソプロピルホスフエ ートなどが例示され、 好ましくはトリフエニルホスフエ一ト、 トリメチルホスフ ェ一トである。
ホスホナイト化合物としては、 テトラキス (ジー t e r t—ブチルフエニル) ービフエ二レンジホスホナイト、 およびビス (ジー t e r t—ブチルフエニル) —フエニル一フエニルホスホナイトが好ましく例示され、 テ卜ラキス (2, 4— ジー t e r t—ブチルフエニル)ービフエ二レンジホスホナイト、およびビス(2, 4ージ— t e r t一ブチルフエニル) —フエ二ルーフェニルホスホナイトがより 好ましい。 かかるホスホナイト化合物は上記アルキル基が 2以上置換したァリー ル基を有するホスフアイト化合物との併用可能であり好ましい。
ホスホネィト化合物としては、 ベンゼンホスホン酸ジメチル、 ベンゼンホスホ ン酸ジェチル、 およびベンゼンホスホン酸ジプロピル等が挙げられる。 第 3級ホ スフインとしては、 例えばトリフエニルホスフィンが例示される。
リン系安定剤の配合量は、本発明の樹脂組成物 100重量%中、好ましくは 0. 0001〜1重量%、 より好ましくは 0. 0005〜0. 5重量%、 さらに好ま しくは 0. 002〜0. 3重量%である。
( i i i ) 酸化防止剤
本発明の棚旨組成物には酸化防止剤が配合されてもよい。 酸化防止剤は、 樹脂 組成物の成形加工時の熱安定性および ¾"熱老ィ匕性を向上させることができる。 酸 化防止剤は、 好適にはヒンダードフエノール系酸化防止剤である。 ヒンダードフ ェノール系酸化防止剤としては、 ォクタデシルー 3— (3, 5—ジー t e r t— ブチルー 4—ヒドロキシフエニル) プロピオネート、 2— t e r t—ブチルー 6 一 (3, — t e r t—ブチルー 5, ーメチルー 2 '·—ヒドロキシベンジル) 一 4 —メチルフエ二ルァクリレ一ト、 4, 4' ーブチリデンビス (3—メチルー 6— t e r t一ブチルフエノール)、 トリエチレングリコール一 N—ビス一 3—(3— t e r t—ブチル一4—ヒドロキシ— 5—メチルフエニル)プロピオネート、 3, 9一ビス {2— [3— (3— t e r t—プチルー 4—ヒドロキシ一 5—メチルフ ェニル) プロピオ.ニルォキシ] 一 1, 1, 一ジメチルェチル} 一 2, 4, 8, 1 0—テトラオキサスピロ [5, 5] ゥンデカン、 N, N' —へキサメチレンビス — (3, 5—ジー t e r tーブチルー 4—ヒドロキシヒドロシンナミド)、 1, 3, 5—トリメチルー 2, 4, 6—トリス (3, 5—ジ— t e r t—ブチルー 4—ヒ ドロキシベンジル) ベンゼン、 およびテトラキス [メチレン一 3— (3, 5—ジ - t e r t一プチルー 4ーヒドロキシフエニル) プロピオネート] メタンなどが 例示される。これらはいずれも入手容易である。中でもォク夕デシルー 3— (3, 5—ジ一 t e r t—ブチルー 4—ヒドロキシフエニル) プロピオネートが好まし く利用される。 ヒンダードフエノール系酸ィ匕防止剤は、 単独でまたは 2種以上を 組合せて使用することができる。酸化防止剤の配合量は、樹脂組成物 100重量% 中、 0. 0001〜0. 05重量%が好ましい。
( i V) 紫外線吸収剤
紫外線吸収剤としては、 紫外線吸収剤として公知のベンゾフェノン系化合物、 ベンゾトリァゾール系化合物、 ヒドロキシフエニルトリアジン系化合物、 環状ィ ミノエステル系化合物、 およびシァノアクリレート系化合物などが例示される。 より具体的には、 例えば 2— ( 2 I-I—ベンゾトリアゾ一ル— 2—ィル) —P—ク レゾール、 2— ( 2 H—ベンゾトリァゾ一ルー 2—ィル) 一4一 (1, 1, 3, 3—テトラメチルブチル) フエノ一ル、 2— (2H—べンゾトリァゾ一ルー 2— ィル) 一4, 6—ビス (1—メチルー 1一フエニルェチル) フエノール、 2— [5 一クロ口 (2H) —ベンゾトリアゾール _ 2—ィル] — 4—メチル _6— t e r t一プチルフエノール、 2, 2, ーメチレンビス [6— (2H—ベンゾトリアゾ 一ルー 2 _ィル) —4一 (1, 1, 3, 3—テトラメチルブチル) フエノール]、 2- (4, 6—ジフエニル— 1, 3, 5—トリアジン— 2—ィル) -5- [(へキ シル) ォキシ] フエノール、 2, 2' —p—フェ^レンビス (3, 1—べンゾォ キサジン _4一オン)、 および 1, 3—ビス [(2—シァノ一3, 3—ジフエニル ァクリロイル) ォキシ] —2, 2_ビス [[(2—シァノー 3, 3—ジフエニルァ クリロイル) ォキシ]メチル] プロパンなどが例示される。 さらにビス (2, 2, 6, 6—テトラメチルー 4 _ピぺリジル) セバゲート、 ビス (1, 2, 2, 6, 6—ペンタメチル— 4—ピペリジル) セバケ一ト等に代表されるヒンダードアミ ン系の光安定剤も使用することが可能である。 紫外線吸収剤、 光安定剤の配合量 は、 樹脂組成物 1 0 0重量%中、 0 . 0 1〜1重量%が好ましい。
( V ) 離型剤
離型剤としては、 ォレフィン系ワックス、 シリコーンオイル、 フッ素オイル、 オルガノポリシロキサン、一価または多価アルコールと高級脂肪酸とのエステル、 パラフィンワックス、 および蜜蠟などが例示される。 中でも一価または多価アル コールと高級脂肪酸とのエステルが好適である。 高級脂肪酸は、 好ましくは炭素 数 1 7以上、 より好ましくは炭素数 1 7〜3 2、 さらに好ましくは炭素数 2 6〜 3 2の脂肪酸を 6 0重量%以上含有する。 かかる高級脂肪酸として、 モンタン酸 を主成分とする高級脂肪酸が好ましく例示される。 力、かる高綱旨肪酸は通常モン タンロウを酸化することにより製造される。 一方、 一価アルコールとしては、 例 えばドデカノール、 テトラデカノ一ル、 へキサデカノ一ル、 ォクタデカノール、 エイコサノール、 テトラコサノール、 セリルアルコール、 およびトリアコン夕ノ —ルなどが例示される。
多価アルコールとしては、 例えばグリセリン、 ジグリセリン、 ポリグリセリン (例えばデカグリセリンなど)、ペン夕エリスリトール、ジペン夕エリスリトール、 トリメチロールプロパン、 ジエチレングリコール、 およびプロピレングリコール などが挙げられる。 一価または多価アルコールと高級脂肪酸とのエステルにおけ るアルコール成分は、 より好ましくは多価アルコールである。 さらにこれらの中 でもグリセリン、 ペン夕エリスリトール、 ジペン夕エリスリトール、 およびトリ メチ口一ルプロパンが好ましく、 特にグリセリンが好ましい。
離型剤の配合量は、樹脂組成物 1 0 0重量%中好ましくは 0 . 0 0 1〜2重量%、 より好ましくは 0 . 0 0 5〜1重量%、 さらに好ましくは 0 . 0 1〜1重量%、 特に好ましくは 0 . 0 1〜0 . 5重量%である。
( V i ) 帯電防止剤
帯電防止剤としては、 例えばポリエーテルエステルアミド、 グリセリンモノス テアレート、 ナフタリンスルホン酸ホルムアルデヒド高縮合物アルカリ (土類) 金属塩、 ドデシルベンゼンスルホン酸アルカリ (土類) 金属塩、 ドデシルペンゼ ンスルホン酸アンモニゥム塩、 ドデシルベンゼンスルホン酸ホスホニゥム塩、 無 水マレイン酸モノグリセライド、 および無水マレイン酸ジグリセライド等が挙げ られる。 帯電防止剤の配合量は、 樹脂組成物 1 0 0重量%中、 0 . 0 1〜 1 0重 量%が好ましい。
( V i i ) 流動改質剤
流動改質剤としては例えば、 可塑剤 (例えばリン酸エステル、 リン酸エステル オリゴマ一、 ホスファゼンオリゴマー、 脂肪酸エステル、 脂肪族ポリエステル、 および脂肪族ポリカーボネート等に代表される)、高剛性かつ高流動性の他の熱可 塑性樹脂や熱可塑性樹脂オリゴマー (例えば、 スチレン、 アクリロニトリル、 お よびポリメチルメタクリレートから選択された少なくとも 1種の成分を重合して なる重量平均分子量が 4 0 , 0 0 0未満の重合体、 高剛性ポリ力一ポネートのォ リゴマ一などに代表される)、液晶ポリマー(例えば液晶ポリエステルなどに代表 される)、 剛直型分子 (例えばポリ p—フエ二レン化合物などに代表される)、 並 びに滑剤 (例えば鉱物油、 合成油、 高級脂肪酸エステル、 高級脂肪酸アミド、 ポ リオルガノシロキサン、 才レフィン系ワックス、 ポリアルキレングリコール、 お よびフッ素オイルなどに代表される) などが例示される。
流動改質剤は、 樹脂組成物 1 0 0重量%中、 好ましくは 0 . 1〜 1 0重量%、 より好ましくは 1〜8重量%配合することができる。 '
( V i i i ) 難燃剤
難燃剤としては、 赤リンまたは赤リン表面を公知の熱硬化棚 および Zまたは 無機材料を用いてマイクロカプセル化されている安定化赤リンに代表される赤リ ン系難燃剤;テトラブロムビスフエノール A、 テトラブロムビスフエノール Aの オリゴマー、 ブロム化ビスフエノール系エポキシ樹脂、 ブロム化ビスフエノール 系フエノキシ樹脂、 ブロム化ビスフエノール系ポリカーボネート、 ブロム化ポリ スチレン、 ブロム化架橋ポリスチレン、 ブロム化ポリフエ二レンエーテル、 ポリ ジブロムフエ二レンエーテル、 デカブロモジフエニルオキサイドビスフエノール 縮合物および含ハロゲンリン酸エステルに代表されるハロゲン系難燃剤;モノホ スフエート化合物として卜リフエニルホスフエ一ト、 縮合リン酸エステルとして レゾルシノールビス (ジキシレニルホスフェート) およびビスフエノール Aビス (ジフエニルホスフェート)、その他ペン夕エリスリトールジフエニルジホスフエ ートなどに代表される有機リン酸エステル系難燃剤;ポリリン酸ァンモニゥム塩、 リン酸アルミニウム、 リン酸ジルコニウムなどの無機系リン酸塩、 水酸化アルミ 二ゥム、 水酸化マグネシウムなどの無機金属化合物の水和物、 ホウ酸亜鉛、 メタ ホウ酸亜鉛、酸化マグネシウム、酸化モリブデン、酸化ジルコニウム、酸化スズ、 酸化アンチモンなどに代表される無機系難燃剤;パ一フルォロブ夕ンスルホン酸 カリウム、 パーフルォロブタンスルホン酸カルシウム、 パ一フルォロブタンスル ホン酸セシウム、 ジフエニルスルホン一 3—スルホン酸カリウム、 ジフエニルス ルホン—3 , 3 ' —ジスルホン酸カリウムに代表される有機アルカリ (土類) 金 属塩系難燃剤;ァリール基およびアルコキシ基を含有する (ポリ) オルガノシロ キサン化合物、 ァリール基および S i— H基を含有する (ポリ) オルガノシロキ サン化合物や (ポリ) オルガノシロキサンとポリ力一ポネート樹脂の共重合体に 代表されるシリコーン系難燃剤;フエノキシホスファゼンオリゴマーや環状フエ ノキシホスファゼンオリゴマーに代表されるホスファゼン系難燃剤などを挙げる ことができる。
難燃剤の含有量は、樹脂組成物 1 0 0重量%中、好ましくは 0 . 1〜5 0重量%、 より好ましくは 0·. 1〜2 0重量%でぁる。
( i X ) 滴下防止剤
滴下防止剤は燃焼時の溶融滴下を防止し難燃性をさらに向上させる。 滴下防止 剤としては含フッ素滴下防止剤が好適である。
滴下防止剤として好適な含フッ素滴下防止剤としては、 フィブリル形成能を有 する含フッ素ポリマーを挙げることができ、 かかるポリマーとしてはポリテトラ フルォロエチレン、 テトラフルォロエチレン系共重合体 (例えば、 テトラフルォ 口エチレン/へキサフルォロプロピレン共重合体、など)、米国特許第 4 3 7 9 9 1 0号公報に示されるような部分フッ素化ポリマ一、 フッ素化ジフエノールから 製造されるポリカーボネート棚旨などを挙げることかできる。 中でも好ましくは ポリテトラフルォロエチレン (以下 P T F Eと称することがある) である。
フィブリル形成能を有する P T F Eの分子量は極めて高い分子量を有し、 せん 断力などの外的作用により P T F E同士を結合して繊維状になる傾向を示すもの である。 その数平均分子量は、 150万〜数千万の範囲である。 下限はより好ま しくは 300万である。 かかる数平均分子量は、 特開平 6— 145520号公報 に開示されているとおり、 380°Cでのポリテトラフルォロエチレンの溶融粘度 に基づき算出される。 即ち、 フィブリル化 PTFEは、 かかる公報に記載された 方法で測定される 380°Cにおける溶融粘度が 107〜1013p o i s eの範囲 であり、好ましくは 108〜1012p o i s eの範囲である。かかる PTFEは、 固体形状の他、 水性分散液形態のものも使用可能である。 またかかるフィブリル 形成能を有する P T F Eは樹脂中での分散性を向上させ、 さらに良好な難燃性お よび機械的特性を得るために他の樹脂との混合形態の PTFE混合物を使用する ことも可能である。
フィブリル形成能を有する PTFEの市販品としては例えば三井 ·デュポンフ ロロケミカル (株) のテフロン (登録商標) 6 J、 ダイキン化学工業 (株) のポ リフロン MPA FA500、 F— 201 Lなどを挙げることができる。 PTF Eの水性分散液の市販品としては、 旭アイシーアィフロロポリマーズ (株) 製の フルオン AD— 1、 AD—936、 ダイキン工業 (株) 製のフルオン D— 1、 D 一 2、 三井 ·デュポンフロロケミカル (株) 製のテフロン (登録商標) 30 Jな どを代表として挙げることができる
混合形態の P T F Eとしては、 ( 1 ) P T F Eの水性分散液と有機重合体の水性 分散液または溶液とを混合し共沈殿を行い共凝集混合物を得る方法 (特開昭 60 - 258263号公報、特開昭 63- 154744号公報などに記載された方法)、 (2) PTFEの水性分散液と乾燥した有機重合体粒子とを混合する方法 (特開 平 4一 272957号公報に記載された方法)、 (3) PTFEの水性分散液と有 機重合体粒子溶液を均一に混合し、 かかる混合物からそれぞれの媒体を同時に除 去する方法 (特開平 06— 220210号公報、 特開平 08— 188653号公 報などに記載された方法)、 (4) PTFEの水性分散液中で有機重合体を形成す る単量体を重合する方法(特開平 9一 95583号公報に記載された方法)、およ び (5) PTFEの水性分散液と有機重合体分散液を均一に混合後、 さらに該混 合分散液中でビニル系単量体を重合し、 その後混合物を得る方法 (特開平 11一
29679号などに記載された方法) により得られたものが使用できる。 これら の混合形態の PTFEの市販品としては、三菱レイヨン(株)の「メタプレン A
3800」 (商品名)、 および GEスぺシャリティーケミカルズ社製 「BLEN DEX B449」 (商品名) などを挙げることができる。
混合形態における PTFEの割合としては、 PTFE混合物 100重量%中、 PTFEが 1〜60重量%が好ましく、 より好ましくは 5〜55重量%である。
PTFEの割合がかかる範囲にある場合は、 PTFEの良好な分散性を達成する ことができる。
滴下防止剤の含有量は、 樹脂組成物 100重量%中、 好ましくは 0. 01〜1 0重量%、 より好ましくは 0. 1〜3重量%である。
(樹脂組成物の製造)
本発明の樹脂組成物は、 例えば A成分、 B成分および他の成分を予備混合し、 その後、 溶融混練し、 ペレット化することにより製造することができる。 予備混 合の手段としては、 ナウ夕一ミキサー、' V型プレンダ一、 ヘンシェルミキサー、 メカノケミカ レ装置、 押出混合機などを挙げることができる。 予備混合において は必要に応じて押出造粒器ゃブリゲッティングマシーンなどにより造粒を行うこ ともできる。 予備混合後、 ベント式二軸押出機に代表される溶融混練機で溶融混 練し、 ペレタイザ一等の機器によりペレット化することが好ましい。 溶融混練機 としては他にバンパリ一ミキサー、 混練口一ル、 恒熱撹拌容器などを挙げること ができるが、 ベント式二軸押出機が好ましい。
他に、 各成分を予備混合することなく、 それぞれ独立に二軸押出機に代表され る溶融混練機に供給する方法も取ることができる。 また一部の成分を予備混合し た後、 残りの成分と独立に溶融混練機に供給する方法が挙げられる。 特に無機充 填材が配合される場合には、 無機充填材は押出機途中の供給口から溶融樹脂中に サイドフィーダ一の如き供給装置を用いて供給されることが好ましい。 予備混合 の手段や造粒に関しては、 前記と同様である。 なお、 配合する成分に液状のもの がある場合には、 溶融混練機への供給にいわゆる液注装置、 または液添装置を使 用することができる。
さらに溶融混練前に A成分、 および B成分に含まれる水分が少ないことが好ま しい。 したがって各種熱風乾燥、 電磁波乾燥、 真空乾燥などの方法により、 A成 分または B成分のいずれかまたは両者を乾燥した後に溶融混練することがより好 ましい。 溶融混練中のベント吸引度は、 好ましくは l〜6 0 k P a、 より好まし くは 2〜3 0 k P aの範囲である。
上記の如く押出された樹脂組成物は、 直接切断してペレット化するか、 または ストランドを形成した後、 ストランドをペレタイザ一で切断してペレツト化する ことが好ましい。 ペレツト化に際して外部の埃などの影響を低減する必要がある 場合には、 押出機周囲の雰囲気を清浄化することが好ましい。 さらにかかるペレ ットの製造においては、 光学ディスク用ポリ力一ポネート棚旨において既に提案 されている様々な方法を用いて、 ペレットの形状分布の狭小化、 ミスカット物の 低減、 運送または輸送時に発生する微小粉の低減、 並びにストランドやペレット 内部に発生する気泡 (真空気泡) の低減を適宜行うことが好ましい。 これらの処 方により成形のハイサイクル化、 およびシルバーの如き不良発生割合の低減を行 うことができる。 またペレットの形状は、 円柱、 角柱、 および球状など一般的な 形状を取り得るが、 より好適には円柱である。 かかる円柱の直径は好ま くは 1 〜5 mm、 より好ましくは 1 . 5〜4mm、 さらに好ましくは 2〜3 . 3 mmで ある。一方、円柱の長さは好ましくは 1〜3 0 mm、より好ましくは 2〜 5 mm、 さらに好ましくは 2 . 5〜3 . 5 mmである。
本発明の樹脂組成物のペレツトを射出成形することで、 本発明の車両外装材な どの成形体を得ることができる。 なお、 ペレットは成形体を構成する全ての成分 を含んだ単一のペレツトであることが好ましいが、 成分の異なるペレツトを射出 成形時に混合し、 成形体を得ることも可能である。
く成形体〉
本発明は、 前述の樹脂組成物からなる成形体を包含する。 成形体として、 車両 外装材のような自.動車部品、 O A機器の部品が挙げられる。
ぐ車両外装材> 本発明は、 前述の成形体からなる車両外装材を包含する。 車両外装材は、 表裏 いずれかの面に設けられた意匠面と、 意匠面から後退した凹み部および面の欠損 した貫通部からなる群から選ばれる意匠性の不要な部位とから主として構成され る。
車両外装材は、 意匠面における J I S B060 -1994に準拠して測定 された表面粗さ (Ra) が好ましくは 0. 001〜3 mであり、 より好ましく は 0. 01〜1 /mであり、 23 °Cにおいて測定された高速面衝撃試験における 破断エネルギーが 3〜 70 Jの範囲であることが好ましい。
成形体表面の表面粗さは、 金型表面平滑性、 成形条件、 および断熱金型や急速 加熱冷却金型などの金型設備、並びに成形材料などにより依存する。表面粗さ(R a) が上記範囲より小さいときは、 これらの設備が過剰となったり、 成形の安定 性を欠きやすくなる。 一方で表面粗さ (Ra) が上記範囲より大きいときは、 車 両外装材として不十分となりやすいか、 または過剰な塗装を必要とする。 Raが 0. 01〜l mのときは、 特にこれらのバランスに優れる。
車両外装材は、 少なくとも意匠面上に塗膜を有することが好ましい。 即ち、 車 両外装材は、 成形後少なくともその意匠面に塗料が塗布され、 続いて 100〜1 40°Cの温度範囲で硬化処理され、 塗膜が形成される車両外装材であることが好 ましい。 かかる温度範囲はより好ましくは 105〜135°C、 さらに好ましくは 1 15〜135°Cである。 塗料の焼付け温度が高いほど、 鋼板部分との色味の差 が少なく、 光沢が良好で、 その結果、 高級感のある塗装が可能となる。 本発明の 好ましい態様においては、 本発明の車両外装材はかかる塗装に十分耐え得る。 ま た、 近年環境問題から、 新規塗料 (水性塗料、 およびパウダー塗料等) も検討さ れているが、 本発明の成形体には、 これら新規塗料も好適に使用できる。 さらに 塗装レスの目的でフィルムインサート成形が盛んに検討されているが、 本発明の 成形体は、通常の射出成形体と比較してもフィルムインサート成形の適性に優れ、 特に深絞り形状のフィルムインサート成形に適するものである。 .
本発明の車両外装材における意匠面とは、 少なくとも車両を走行可能な状態に して視認した際、 外部から認識できる面をいう。 車両外装材は、 ゴム質接着剤によってフレームに貼り付けられたものが好まし レ^ ゴム質接着剤は周知の接着剤が使用可能であるが、 好適には二液性ウレタン 接着剤を使用できる。 好適な二液性ウレタン接着剤の具体例としては、 例えば D OW AUTOMOT I VE社製、 BETAMATE2810 (商品名、 A剤と B/S剤との組合せ) がある。 該接着剤には、 好適【こプライマーが使用され、 プ ライマ一の好適な具体例として、 例えば DOW AUTOMOT I VE社製、 B ETAPR IME 5404 (商品名) が例示される。
車両外装材は、 その凹み部または貫通部の少なくとも 1つに、 光透過性部材ま たは照灯装置が取り付けられたものが好ましい。 これにより、 車両外装材はより モジュール部品としてのさらに高い機能を併せ持つことができる。
車両外装材の最大投影面積は、 好ましくは 1, 500〜 40, 000 cm2, より好ましくは 2, 000〜20, 000 cm2、 さらに好ましくは 2, 200 〜15, 000 cm2である。
車両外装材として、 バックパネル、 フェンダー、 バンパー、 ドアパネル、 ピラ 一、 サイドプロテクター、 サイドモール、 リアプロテク夕一、 リアモ一ル、 各種 スボイラー、 ボンネット、 ルーフパネル、 トランクリツド、 デタツチヤブルトツ プおよびウィンドリフレク夕一などが挙げられる。 本発明の車両外装材は、 フエ ンダ一およびドアパネルなどのいわゆる垂直外板に好適である。 またモー夕一バ イクの力ウルおよびトラクタ一のキヤビン用パネルなどが例示される。
車両外装材を構成する樹脂組成物は、 樹脂組成物 100重量%中、 PC (A成 分) 40〜90重量%、 PET (B成分) 5〜35重量%、 ゴム質重合体 (C成 分) 1〜8重量%、 および無機充填材 (D成分) 3〜25重量%を含有すること が好ましい。
<車両外装材の製造方法 >
本発明は、 前述の樹脂組成物を用いた車両外装材の製造方法を包含する。 該方 法は、 S VG法によるカスケ一ド成形(cascade molding)を利用するものである。 該方法において (i i) 車両外装材および (i i i) 樹脂組成物は前述の通りで ある。 (i) 型は以下の特徴を有する。 ( i ) 型は、 (i一 1 ) ゲート一 Aおよびゲート一 Bを共に有し、
( i一 2 )ゲート— Bは、他のゲートから流入した溶融棚旨流動が通過した後に、 該流動に合流するように溶融棚旨が供給されるゲートであり、 一方、 ゲート— A は、 溶融樹脂流動に合流させることなく溶融樹脂が供給されるゲートであり、 ( i - 3 ) 型内の各ゲートは、 外装材表面上の直線距離にして少なくとも 2 0 c m以内に他のゲートが存在しない範囲に設けられている。
型は、 全てのゲートが、 凹み部、 貫通部端部および成形体端部からなる群より 選ばれる少なくとも 1種の意匠性の不要な部位に設けられていることが好ましい。 型は、 さらに (i— 4 ) ゲ一ト— Bは、 ゲート一 Aから樹脂が供給された後、 ゲ一トー Bに連通する流路に設けられた供給調整弁を制御することにより、 他の ゲー卜から流入した溶融樹脂流動が通過した後に該流動に合流するように溶融樹 脂が供給されるゲートであることが好ましい。 かかる調製弁の制御は、 市販の装 置を用いていかなる方法で行われてもよい。 例えば時間制御、 スクリュー位置制 御、 およびキヤビティ内圧力制御などが例示される。 ゲート一 Bにおける溶融樹 脂の供給は、 早すぎると溶融樹脂のバックフローが生じ樹脂の流動を乱すことか ら、 外観不良またはウエルドラインを発生することとなる。 かかる供給が遅すぎ る場合には、 他のゲートからの溶融樹脂が冷却してゲ一トー Bの樹脂との大きな 密度差が生じるために、 やはり外観不良を生じやすい。 したがって、 これらの不 具合が生じないよう適宜ゲートの開閉時期を制御する必要がある。 さらにかかる 開閉時期の条件ができる限り寛容になるよう、 そのゲート位置を定めることが好 ましい。
S V G法によるカスケ一ド成形では、 その溶融樹脂が他のゲートを通過しない 最後に溶融樹脂が供給されるゲートを除き、 いずれのゲートからの樹脂も、 少な くとも他のゲートまで溶融樹脂が流動する必要がある。 また最後に溶融樹脂が供 給されるゲートでは、 その製品末端まで溶融樹脂が流動する必要がある。
本発明では、 各ゲートが上記 (i一 3 ) を満足すれば、 その配置は特に制限さ れないものの、 溶融樹脂が供給されたゲートとそのゲートからの溶融樹脂が通過 するゲ一卜との距離が一部のゲ一トで他に比較して特に短くなるゲート配置や、 P T/JP2006/305475
42
または該配置などの原因で一部のゲートからの供給樹脂量が少なくなる場合には、 次のような弊害が生じやすい。 (a)ゲート開閉の制御が困難となりやすい、 (b) 供給される樹脂量が他に比較して少なくなるためにその部分で溶融樹脂の滞留時 間が長くなり樹脂が熱劣化する。 また最後に溶融樹脂が供給されるゲートからの 供給樹脂量が少ない場合も、 上記 (b) の弊害が生ずる。
したがって、 型内に充填される樹脂容量の総量をゲー卜点数で割った平均容量 (Vave) に対する各ゲートから供給される樹脂容量 (V i) は、 好ましくは 0. 5≤V iZVave≤l。 5、 より好ましくは 0. 6≤V iZVave≤l. 4、 さら に好ましくは 0. 7≤V iZVave≤l. 3を満足するものである。
一方で、 かかる好ましい関係を満足するときには、 肉厚の薄い部分ほどゲート 間の距離を長くする必要が生ずる。 したがって、 SVG法によるカスケ一ド成形 では、 通常の多点ゲートの成形で必要とされるよりもはるかに良好な流動性が必 要とされる。 本発明の樹脂組成物は、 かかる要件をも満足することで SVG法に よるカスケード成形で、 良好な車両外装材を製造することができる。 また上記の 好ましい関係を満足するときには、 その成形体肉厚が全体に渉ってできる限り均 一であることが好ましくなる。 したがって本発明の車両外装材は、 その肉厚が平 均肉厚の土 50%以内にあることが好ましく、 ±30%以内にあることがより好 ましい。 なお平均肉厚は、 成形体体積 (mm3) を成形体の表面積 (mm2) で除 した値をいう。
また、 溶融樹脂が供給されたゲートとそのゲ一トからの溶融樹脂が通過するゲ ―トとの S巨離があまりに離れている場合には、 溶融樹脂の流動が不足しやすくな る。 したがって、 上記条件 (i一 3) は、 型内の各ゲートは、 他のゲートが外装 材表面上の直線距離にして、 少なくとも 20 cm以内に存在せず 80 cm以内に 存在する範囲に設けられていることが好ましく、 少なくとも 25 cm以内に存在 せず 70 cm以内に存在する範囲に設けられていることがより好ましく、 少なく とも 25 cm以内に存在せず 60 cm以内に存在する範囲に設けられていること がさらに好ましい。
射出成形は、 射出圧縮成形、 中空成形、 急速加熱冷却成形、 および 2色成形等 の既知の成形方法を、 車両外装材の一部または全体に同時に使用することも可能 である。 特に成形体肉厚部に中空成形を併用すること、 および車両外装材の貫通 部または凹み部に透明樹脂材料を 2色成形すること、 2色成形する透明部材が射 出圧縮成形にて成形されること、 意匠性の特に必要な部位に急速加熱冷却成形を 使用することなどは有効である。 ―
本発明の車両外装材の製造方法によれば、 得られる成形体のゥエルドラインを 抑制することができる。 本発明の車両外装材の製造方法によれば、 ゲート点数の 自由度を高め、 その結果、 大型成形体を比較的低い型締め力で射出成形すること ができる。 実施例
以下、 本発明を実施例により詳述する。
I. 原料
(A成分)
PC 1 :粘度平均分子量 19, 700の直鎖状芳香族ポリ力一ポネートパウダー (帝人化成 (株) 製パンライト L— 1225WX (商品名))
PC 2 :粘度平均分子量 16, 000の直鎖状芳香族ポリカーボネートパウダー (帝人化成 (株) 製パンライト CM— 1000 (商品名))
PC 3 :粘度平均分子量 20, 900の直鎖状芳香族ポリ力一ポネートパウダー (帝人化成 (株) 製パンライト L— 1225WS (商品名))
PC4:粘度平均分子量 19, 700の直鎖状芳香族ポリカーボネ一トペレット (帝人化成 (株) 製パンライト L一 1225 L (商品名))
(B成分)
PET1 :ゲルマニウム化合物の重合触媒を用いて重合された I V値 0. 51、 末端力ルポキシル基量が 26. 3 e qZt on、 MwZMnが 2. 0のポリェチ レンテレフ夕レート (帝人化成 (株) 製、 TR—MB)
PET2 :ゲルマニウム化合物の重合角虫媒を用いて重合された I V値 0. 56、 末端力ルポキシル基量が 23. 2 e qZt o n、 MwZMnが 2. 1のポリェチ レンテレフ夕レート (帝人化成 (株) 製、 TR— L)
(B成分以外)
PET3 :ゲルマニウム化合物の重合触媒を用いて重合された IV値 0. 70、 末端力ルポキシル基量が 22. 0 e q/t on, MwZMnが 1. 9のポリェチ レンテレフ夕レート (帝人化成 (株) 製、 550 (商品名))
PET 4 :ゲルマニウム化合物の重合触媒を用いて重合された IV値 0. 83、 末端力ルポキシル基量が 18. 0 e q/t on, Mw/Mnが 2. 1のポリェチ レンテレフ夕レート (帝人化成 (株) 製、 TR— 8580 (商品名))
(C成分)
I Ml :ブタジエン ·メ夕クリル酸アルキル ·スチレン共重合体 (ロームアンド ハース社製、 BTA712 (商品名))
IM2 :ブタジエン ·ァクリル酸アルキル ·メ夕クリル酸アルキル共重合体 (口 一ムアンドハース社製、 パラロイド E XL 2602 (商品名))
(D成分)
WSN1 :ヮラストナイト (NYCO社製、 NYGLOS4 (商品名))
WSN2 :ヮラストナイト (川鉄工業 (株) 製、 PH- 330 (商品名)) GF :ガラスファイバー (日東紡 (株) 製、 3PE— 944 (商品名))
(E成分)
WAX: 1一アルケン ·無水マレイン酸共重合体 (三菱化学 (株) 製ダイヤカル ナ 30M (商品名))
(その他)
PBT1 : 1 値0. 87のポリブチレンテレフ夕レート (ポリプラスチックス (株) 製、 ジユラネックス 500 FP (商品名))
ST1:リン系安定剤(旭電化工業(株) 製、 アデカスタブ PEP— 8 (商品名)) ST2 : リン系安定剤 (旭電化工業 (株) 製、 アデカスタブ PEP— 24G (商 品名))
UV :紫外線吸収剤 (シプロ化成 (株) 製、 シーソーブ 701 (商品名))
CB:カーボンブラックマスタ一 (越谷化成工業 (株) 製、 ロイヤルブラック 9 04S (商品名))
COL:上記 PC Iに二酸化チタン (タイオキサイドジャパン (株) 製、 RTC 30) 25重量%およびカーボンブラック (三菱化学 (株) 製 # 970) 0. 5 重量%を加え合計 100重量%とし、 スーパ一ミキサーでドライブレンドして均 一に分散させたもの -
1 I . 試験片の作成
製造した棚旨組成物のペレツトを 120°Cにて 4時間、 熱風乾燥機により乾燥 させ、 型締め力 1470 kNの成形機 (FANUC社製: T— 150D) にてシ リンダ一温度 270°C、 金型温度 70°Cにて成形した。 試験片形状はそれぞれの 規格に準拠した試験片とした。
I I I. 樹脂組成物の特性評価
(i) MVR (単位: cm3/l 0分):製造した樹脂ペレットを用いて、 I SO 1133規格に準拠した 280° (:、 2. 16 kg荷重におけるメルトポリュ一ム レ一ト(MVR値)を測定した。測定に際してペレツトは予め 120°Cで 4時間、 熱風乾燥機により乾燥した。 測定には '(株) 東洋精機製メルトインデクサ一 2 A を用いた。
( i i )荷重たわみ温度(単位: °C):上記の方法で、試験片を作成し A S TM D -648に準拠し 0.45 MP a荷重において荷重たわみ温度を測定した。
(i i i) 曲げ弾性率 (単位: MP a):上記の方法で、 試験片を作成し ASTM D- 790に準拠し曲げ弾性率を測定した。
( i V)耐衝撃性 (単位: J Zm):上記の方法で、 試験片を作成し A STM D - 256に準拠し 23 °Cのアイゾット衝撃値 (ノツチ付) を測定した。
(V) 耐薬品性:上記の方法で、 ASTM D— 638に準拠し引張り試験片を 作成した。 試験片を 3点曲げ治具にて歪み 0. 5%をかけ、 23°Cにおいてガソ リン (エツソ (株) 製、 レギュラーガソリン) に 10分間浸漬させた。 各 10本 試験を実施し、 クラック等の発生のなかった本数を記載した。
(v i) 熱安定性:シリンダー温度を 280°Cにする以外は、 上記の試験片の作 成の項と同じ方法で、 角板 (15 OX 150 X 3 mm t ) を連続で 20ショット 成形した後、 成形サイクルを意図的に停止させ 10分間滞留を実施した。 滞留後 1ショット〜 3ショットまでの成形体外観を確認し下記の評価を実施した。
◎成形体表面にシルバ一等の発生は確認されない。
〇 1ショット目にはシルバーが確認されるが、 2および 3ショット目 には ―
シルバ一等の発生は確認されない。
ぐ実施例 (樹脂組成物の製造) >
表 1に示す、 種類および量の原料を用いて押出機により樹脂組成物のペレツト (E1)〜(E6) を製造した。押出機は東芝機械(株)製 TEM— 48SS (L ZD=50、 ノ レル数 13) を用いた。 A成分でパウダーのものはパドルドライ ヤーを使用し、 またペレツ卜のものはホッパードライヤーを使用しあらかじめ 1 20°Cにて 4時間以上乾燥しメインフィーダ一より投入した。 B成分はあらかじ めホッパードライヤーで 120°Cにて 4時間以上乾燥しメインフィーダ一より投 入した。 D成分および WAXはあらかじめ混合し、 B成分とは別の計量機を使用 してサイドフィーダ一より投入した。 それ以外の成分については、 事前にヘンシ エルミキサーにてプリブレンドしメインフィーダ一から投入した。 なお 10バレ ル目にはベントを設定し、 6 kP a以下の真空度にて吸引を実施した。 その他の 押出条件は、 シリンダ一設定温度: 260°C、 ダイ設定温度: 270°C、 吐出率: 200 k g/時、 およびスクリュ一回転数: 250 r pmであった。 得られたぺ レット (E 1) 〜 (E6) の特性を表 1に示す。
<比較例 1〜7>
表 1に示す、 種類および量の原料を用いた以外ほ実施例 1〜 6と同じ操作を行 レ、 樹脂組成物のペレット (CE 1) 〜 (CE7) を製造した。 ペレット (CE 1) 〜 (CE7) の特性を表 1に示す。 表 1
Figure imgf000048_0001
表 1に示すように、 本発明の樹脂組成物は高い流動性 (MVR) を有し、 かつ 高い耐薬品性を有し、 弾性、.耐衝撃性、 熱安定性に優れる。
<実施例 7〜 12 (成形体の製造) >
ペレット (E 1) 〜 (E6) を 120°Cにて 4時間乾燥し、 図 1に示す車輛外 装材用の成形体を成形した。 成形には (株) 日本製鋼所製: J 1300 E-C 5 を使用した。 シリンダー設定温度は 270 °C、 金型温度は 60 °Cとした。 スプル 一の先端はいずれもホットランナーのバルブゲートに連結しており、 各ゲートに 連結したバルブゲートの開きは次の順序で行った。 即ち成形体の塔頂部のゲ一ト (16) と対称軸上に存在する下部のゲート (15) を第 1に開いた。 その後ゲ —ト 16からの溶融樹脂がゲート 11を通過した直後にゲート 11から溶融樹 が供給されるようバルブを開いた。 またゲート 15からの溶融樹脂がゲート 14 を通過した直後にゲート 14から溶融樹脂が供給されるようバルブを開いた。 ゲ —ト 16からゲート 11までの外装材表面上の直線距離は、 約 33. 5 c mであ り、 ゲート 15からゲート 14までの外装材表面上の直線距離は、 約 26. 8 c mであった。 各実施例で使用したペレットの番号を表 2に示す。
表 2
Figure imgf000049_0001
<比較例 8〜14>
ペレット (CE 1) 〜 (CE7) を用いた以外は実施例 7〜12と同じ操作を 行い、 図 1に示す成形体を成形した。 各比較で使用したペレットの番号を表 3に 示す。
表 3
Figure imgf000049_0002
(成形性の評価)
実施例 7〜12、 比較例 8〜9では、 SVG法によるカスケード成形で、 意匠 面にほとんどゥエルドラインが認められない成形体が得られた。'意匠面のゥエル ドラインは強い光源下での観察で認識される程度であり、 またその長さも 1 c m 程度のものであった。また J I S B 0601-1994に準拠して、意匠面にお ける表面粗さ (Ra) を 5箇所サンプリングして測定したところ、 いずれも 0. 15〜0. 20 mの間であった。 意匠面の外観が均一であることから、 いずれ の部分もかかる値を満足し得るものと判断した。 実施例 12については成形温度 を 300 °Cとすることで成形体を得ることが可能であった。
一方、 ペレット (CE3) 〜 (CE6) を用いた比較例 10〜13では、 樹脂 組成物の流動性が不足するため、 同じ条件で成形しても意匠面に明確なゥエルド ラィンが発生した。 かかるウエルドラインは、 シリンダー設定温度を 300 °Cま で設定すると消失したが、 意匠面にシルバーストリークが発生し、 外観が良好な 成形体は得られなかった。
ペレット (CE7) を用いた比較例 14については、 成形温度 300°Cでも流 動性が不足し、 成形体は得られなかった。
(塗装性の評価)
良好な成形体が得られた実施例 7〜12 {ペレット (E 1) 〜 (E6)}、 比較 例 8〜9 {ペレット (CE 1) 〜 (CE2)} の成形体について塗装を実施した。 塗装の焼付け温度は 120°Cとした。 かかる塗装後、 比較例 8〜9の成形体はゲ ート部においてクラックが発生し、 その部分に塗装が吸い込まれ、 いわゆる塗装 吸い込みが生じ、 外観が低下した。 実施例?〜 12の成形体については、 塗装外 観が良好な塗装品を得ることができた。 発明の効果 '
本発明の樹脂組成物は、 良好な流動性を保ちながら高い耐薬品性を有し、 耐衝 撃性、 耐熱性、 剛性、 熱安定性に優れる。 また本発明の成形体は、 耐衝撃性、 耐 熱性、 剛性、 熱安定性、 耐薬品性および外観に優れる。 本発明の車両外装材の製 造方法によれば、 ウエルドラインの発生が抑制され、 優れた外観および表面を有 する車両外装材を得ることができる。 産業上の利用可能性 本発明の樹脂組成物は、 耐衝撃性、 剛性、 耐熱性に優れるため、 自動車分野、
OA機器分野、 電子 ·電気機器分野、 建材分野、 農業資材分野、 漁業資材分野な ど幅広い産業分野で利用することができる。

Claims

請 求 の 範 囲
1. 5 0〜1 0 0重量%の樹脂成分および 0〜50重量%の無機充填材 (D成 分) からなる樹脂組成物であって、 樹脂成分は、
( i )粘度平均分子量 16, 00 0〜 2 3, 00 0の—芳香族ポリカーボネート(A 成分) および
( i i) 固有粘度 ( I V) が 0. 45〜0. 5 7 d l /gで、 末端カルボキシル 基量が 2 0〜3 5 e q/t onで、 重量平均分子量 (Mw) と数平均分子量 (M n) との比 (MwZMn) が 1. 3〜2. 1であるボリエチレンテレフ夕レー卜 (B成分) からなり、
( i i i) A成分および D成分の合計量と、 B成分との重量比 {(A + D) /B) が 60Z40〜8 5Z1 5である樹脂組成物。 '
2. A成分と B成分との重量比 (AZB) が、 40Z60〜90 10である 請求項 1に記載の樹脂組成物。
3. B成分の固有粘度 (I V) が、 0. 47〜0. 5 5 d l /gである請求項 1に記載の樹脂組成物。
4. ゴム質重合体(C成分)を、 A成分と B成分との合計 1 00重量部に対し、 1〜 50重量部含む請求項 1記載の樹脂組成物。
5. C成分が、 スチレン一ブタジエン共重合体、 アクリロニトリルーブ夕ジェ ンースチレン共重合体、 メチルメタクリレート一ブタジエン一スチレン共重合体 およびメチルメタクリレート一 (アクリル ·シリコーン I PNゴム) 共重合体か らなる群より選ばれる少なくとも 1種のゴム質重合体である請求項 4に記載の樹 脂組成物
6. 折れ抑制剤 (E成分) を、 A成分と B成分との合計 100重量部に対し、 0. 01-10重量部含む請求項 1記載の樹脂組成物。
7. D成分が、 フレーク状充填材および/または繊維状充填材である請求項 1 記載の樹脂組成物。 -
8. D成分が、 マイ力、 タルク、 ワラストナイトおよびガラス繊維からなる群 より選ばれる少なくとも 1種の無機充填材である請求項 1記載の樹脂組成物。
9. D成分が、 ワラストナイトまたはガラス繊維である請求項 1記載の樹脂組 成物。
10. A成分が、 ビスフエノール A型の芳香族ポリカーボネートである請求項 1記載の榭脂組成物。
1 1. B成分が、 ゲルマニウム系重合触媒で重合されたポリエチレンテレフタ レートである請求項 1記載の樹脂組成物。
12. 70〜 95重量%の樹脂成分および 30〜 5重量%の平均繊維径が 1〜 2 , アスペクト比が 5〜9であるワラストナイト (D成分) からなる樹脂組 成物であって、 樹脂成分は、
( i ) 粘度平均分子量 16 , 000〜23, 000のビスフエノール A型の芳香 族ポリカーボネート (A成分) および
(i i) 固有粘度 (IV) が 0. 49〜0. 57 d lZgで、 末端力ルポキシル 基量が 23〜28 e qZ t 0 nで、 重量平均分子量 (Mw) と数平均分子量 (M n) との比 (Mw/Mn) が 1. 9〜2. 1であるゲルマニウム系重合触媒で重 合されたポリエチレンテレフタレート (B成分) からなり、
( i i i) A成分および D成分の合計量と、 B成分との重量比 A + D) ZB} が 70Z30〜80Z20であり、
(i v) A成分と B成分との重量比 (AZB) が 65Z35〜75Z25である 請求項 1記載の樹脂組成物。
13. 55〜65重量%の樹脂成分および 45〜― 35重量%の平均繊維径が 1 0〜15 m、 平均繊維長が 230〜270 / mであるガラス繊維 (D成分) か らなる樹脂組成物であって、 樹脂成分は、
( i ) 粘度平均分子量 16, 000〜23, 000のビスフエノール A型の芳香 族ポリカーボネート (A成分) および
(i i) 固有粘度 (IV) が 0. 49〜0. 52d lZgで、 末端力ルポキシル 基量が 23〜28€ 1ノ1: 011で、 重量平均分子量 (Mw) と数平均分子量 (M n) との比 (Mw/Mn) が 1. 9〜2. 1であるゲルマニウム系重合触媒で重 合されたポリエチレンテレフ夕レート (B成分) からなり、
(i i i) A成分および D成分の合計量と、 B成分との重量比 A + D) /B} が 65Z35〜75/25であり、
(i v) A成分と B成分との重量比 (AZB) が 45Z55〜55/45である 請求項 1記載の樹脂組成物。
14. 50〜100重量%の樹脂成分および 0〜50重量%のマイ力、タルク、 およびワラストナイトからなる群より選ばれる少なくとも 1種の無機充填材 (D 成分) カ^なる樹脂組成物であって、 樹脂成分は、
( i ) 粘度平均分子量 16 , 000〜23, 000のビスフエノール A型のポリ 力一ポネートからなる群より選ばれたポリカーボネート (A1成分) および
(i i) 固有粘度 (IV) が 0. 45〜0. 57d lZgで、 末端力ルポキシル 基量が 20〜35ecj/t onで、 重量平均分子量 (Mw) と数平均分子量 (M n) との比 (MwZMn) が 1. 3〜2. 1であるポリエチレンテレフタレート から選ばれたポリエチレンテレフ夕レー卜 (B1成分) からなり、
(i i i) A成分および D成分の合計量と、 B成分との重量比 {(A + D) /B} が 60/40〜 85/15であり
( i V) I S〇l 133規格に準拠した 280°C、 2. 16 k g荷重におけるメル トポリュームレート (MVR値) が 23〜150 cmVl 0分、 ASTM D
- 790に準拠した曲げ弾性率が 2, 000〜 25, 000MPa、 かつ耐薬品 性試験におけるクラック発生率が 0〜20 %である流動性樹脂組成物。
15. 50〜100重量%の樹脂成分および 0〜50重量%のガラス繊維 (D 成分) 力^なる樹脂組成物であって、 樹脂成分は、
( i ) 粘度平均分子量 16 , 000〜23, 000のビスフエノール A型のポリ カーボネートからなる群より選ばれたポリカーボネート (A1成分) および
( i i) 固有粘度 (IV) が 0. 45〜0. 57d lZgで、 末端カルボキシル 基量が 20〜35 e qZt onで、 重量平均分子量 (Mw) と数平均分子量 (M n) との比 (Mw/Mn) が 1. 3〜2. 1であるポリエチレンテレフ夕レート から選ばれたポリエチレンテレフ夕レート (B 1成分) からなり、
(i i i) A成分および D成分の合計量と、 B成分との重量比 {(A + D) / ] が 60/40〜85/15であり
(i V) I SOI 133規格に準拠した 280°C、 2. 16 kg荷重におけるメル トポリュームレ一ト (MVR値) が 10〜150 cmVl 0分、 ASTM D
- 790に準拠した曲げ弾性率が 8, 000〜 25, 000MPa、 かつ耐薬品 性試験におけるクラック発生率が 0〜 10 %である流動性樹脂組成物。
16. 請求項 1記載の樹脂組成物からなる成形体。
17. 請求項 16記載の成形体からなる車両外装材。
18. 意匠面における J I S B0601-1994に準拠して測定された表 面粗さ (Ra) が 0. 001〜3 ΠΙであり、 23 °Cにおいて測定された高速面 衝撃試験における破断エネルギーが 3〜 70 Jの範囲である請求項 17記載の車 両外装材。
19. 少なくとも意匠面上に塗膜を有する請求項 17記載の車両外装材。
20. ゴム質接着剤によってフレームに貼り付けられた請求項 17記載の車両 外装材。
21. 凹み部または貫通部の少なくとも一つに、 光透過性部材または照灯装置 が取り付けられた請求項 17記載の車両外装材。
22. 最大投影面積が、 1, 500〜 40, 000 c m2の範囲にある請求項 17記載の車両外装材。
23. 樹脂組成物を型内に射出成形することにより車両外装材を製造する方法 であって、 ( i) 型は、
( i - 1) ゲート一 Aおよびゲート— Bを共に有し、
( i一 2)ゲート—Bは、他のゲートから流入した溶融樹脂流動が通過した後に、 該流動に合流するように溶融樹脂が供給されるゲートであり、 一方、 ゲート一 A は、 溶融樹脂流動に合流させることなく溶融樹脂が供給されるゲ一トであり、 ( i— 3) 型内の各ゲートは、 外装材表面上の直線距離にして少なくとも 20 c m以内に他のゲー卜が存在しない範囲に設けられており、
(i i) 該車両外装材は、
(i i一 1) 表裏いずれかの面に設けられた意匠面と、 意匠面から後退した凹み 部および面の欠損した貫通部からなる群から選ばれる意匠性の不要な部位とから 主として構成され、
(i i i) 樹脂組成物は、
( i i i一 1) 5.0〜100重量%の樹脂成分および 0〜50重量%の無機充填 材 (D成分) からなり、 樹脂成分は、 ( i i i— 2) 粘度平均分子量 16, 000〜23, 000の芳香族ポリカーボ ネート (A成分) および
( i i i一 3) 固有粘度 (IV) が 0. 45〜0. 57 d lZgで、 末端カルボ キシル基量が20〜356(1 1: 011で、 重量平均分子量 (Mw) と数平均分子 量 (Mn) との比 (Mw/Mn) が 1. 3〜2. 1ャあるポリエチレンテレフ夕 レート (B成分) からなり、
(i i i— 4) A成分と D成分との合計量と B成分との重量比 {(A + D) ZB} が 60Z40〜85Z15である樹脂組成物、
である車両外装材の製造方法。
24. 型は、 さらに
(i一 4) ゲート一 Bは、 ゲート— Aから樹脂が供給された後、 ゲート一 Bに連 通する流路に設けられた供給調整弁を制御することにより、 他のゲートから流入 した溶融樹脂流動が通過した後に該流動に合流するように溶融樹脂が供給される ゲートである請求項 23記載の製造方法。
25. 型は、 全てのゲートが、 凹み部、 貫通部、 端部および成形体端部からな る群より選ばれる少なくとも 1種の意匠性の不要な部位に設けられている請求項 23記載の製造方法。
PCT/JP2006/305475 2005-03-16 2006-03-14 樹脂組成物 WO2006098461A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06715703A EP1860155B1 (en) 2005-03-16 2006-03-14 Resin composition
DE602006016082T DE602006016082D1 (de) 2005-03-16 2006-03-14 Harzzusammensetzung
KR1020077020891A KR101268740B1 (ko) 2005-03-16 2006-03-14 수지 조성물
CN2006800084975A CN101142277B (zh) 2005-03-16 2006-03-14 树脂组合物
AT06715703T ATE477300T1 (de) 2005-03-16 2006-03-14 Harzzusammensetzung
US11/886,087 US7732520B2 (en) 2005-03-16 2006-03-14 Resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-074760 2005-03-16
JP2005074760A JP4705388B2 (ja) 2005-03-16 2005-03-16 車両外装材およびその製造方法
JP2005-205250 2005-07-14
JP2005205250A JP2007023118A (ja) 2005-07-14 2005-07-14 熱可塑性樹脂組成物

Publications (1)

Publication Number Publication Date
WO2006098461A1 true WO2006098461A1 (ja) 2006-09-21

Family

ID=36991805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305475 WO2006098461A1 (ja) 2005-03-16 2006-03-14 樹脂組成物

Country Status (6)

Country Link
US (1) US7732520B2 (ja)
EP (1) EP1860155B1 (ja)
KR (1) KR101268740B1 (ja)
AT (1) ATE477300T1 (ja)
DE (1) DE602006016082D1 (ja)
WO (1) WO2006098461A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178608B2 (en) * 2006-04-13 2012-05-15 Mitsubishi Engineering-Plastics Corporation Thermoplastic resin composition and resin molded article
CN117683362A (zh) * 2024-02-01 2024-03-12 国网湖南省电力有限公司湘潭供电分公司 低吸水率耐紫外老化硅橡胶及其制备方法和应用

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090215934A1 (en) * 2006-03-06 2009-08-27 Makoto Nakamura Thermoplastic resin composition and resin molded product
JP2008202013A (ja) * 2007-02-23 2008-09-04 Daicel Polymer Ltd 自動車用樹脂外装部品
WO2010094676A1 (en) * 2009-02-20 2010-08-26 Dsm Ip Assets B.V. Improved fiber reinforced polyester composition
JP2011026541A (ja) * 2009-03-11 2011-02-10 Sumitomo Chemical Co Ltd 液晶性ポリエステル樹脂組成物及びその成形体
WO2010116920A1 (ja) * 2009-04-09 2010-10-14 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート/ポリエチレンテレフタレート複合樹脂組成物及び成形品
US8552096B2 (en) 2009-07-31 2013-10-08 Sabic Innovative Plastics Ip B.V. Flame-retardant reinforced polycarbonate compositions
KR100950217B1 (ko) * 2009-08-28 2010-03-29 (주)애린엠피테크 복합성형체의 제조방법
KR101257997B1 (ko) * 2009-12-18 2013-04-24 주식회사 삼양사 열가소성 수지 조성물
US20110206882A1 (en) * 2010-02-24 2011-08-25 Norman Scott Broyles Injection stretch blow molding process
TWI513757B (zh) * 2011-01-14 2015-12-21 Teijin Chemicals Ltd Aromatic polycarbonate resin composition and molded article
JP2013071341A (ja) * 2011-09-28 2013-04-22 Du Pont Mitsui Fluorochem Co Ltd フッ素樹脂成形品
EP2821438B1 (en) * 2012-02-29 2016-10-19 Toray Industries, Inc. Liquid crystal polyester resin composition
FR2987576B1 (fr) * 2012-03-05 2014-04-11 Faurecia Interieur Ind Outil et procede de realisation par injection d'un element presentant une epaisseur reduite
EP2879989A1 (en) * 2012-08-03 2015-06-10 OCV Intellectual Capital, LLC Improved fiberglass reinforced composites
KR101579522B1 (ko) 2014-07-25 2015-12-23 (주)창림이엔지 우수한 방열 특성과 전자파 차폐 및 흡수능을 갖는 수지 조성물, 및 이를 이용하여 제조된 성형체
WO2016024531A1 (ja) * 2014-08-14 2016-02-18 株式会社カネカ 熱可塑性樹脂組成物およびその成形体
DE112016003480T5 (de) * 2015-07-31 2018-04-12 Murata Manufacturing Co., Ltd. Temperatursensor
EP3504272B1 (de) 2016-08-24 2020-09-23 Covestro Intellectual Property GmbH & Co. KG Polycarbonatzusammensetzung umfassend talk
US10513591B2 (en) * 2017-02-10 2019-12-24 Ford Global Technologies, Llc Low cost high heat polymer with improved sound deadening properties made with recycled plastics
PL3372631T3 (pl) 2017-03-08 2021-11-29 Armacell Enterprise Gmbh & Co. Kg Elastyczna pianka o poprawionych właściwościach izolacyjnych
KR102054332B1 (ko) * 2018-06-26 2019-12-10 엘에스산전 주식회사 배선용 차단기의 아크 소호실 베이스
KR102188340B1 (ko) 2018-11-29 2020-12-08 롯데첨단소재(주) 열가소성 수지 조성물 및 이를 이용한 성형품
KR102311477B1 (ko) * 2019-05-31 2021-10-08 롯데케미칼 주식회사 열가소성 수지 조성물 및 이를 이용한 성형품
US11577665B2 (en) 2020-02-27 2023-02-14 Cpk Interior Products Urethane and graphene interior trim panel
DE102020210648A1 (de) * 2020-08-21 2022-02-24 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Verfahren zur Herstellung eines Spritzgussteils
EP3970489A1 (en) 2020-09-18 2022-03-23 CpK Interior Products Inc. Graphene-based antiviral polymer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912847A (ja) * 1995-06-26 1997-01-14 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物及びその成形品
JPH11106624A (ja) * 1997-10-06 1999-04-20 Teijin Ltd ポリエステル樹脂組成物
JP2001164105A (ja) * 1999-12-08 2001-06-19 Teijin Chem Ltd ガラス強化難燃性ポリカーボネート樹脂組成物
JP2002265769A (ja) * 2001-03-09 2002-09-18 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JP2003128905A (ja) * 2001-10-25 2003-05-08 Teijin Chem Ltd 熱可塑性樹脂組成物
JP2004143208A (ja) * 2002-10-22 2004-05-20 Mitsubishi Engineering Plastics Corp ポリブチレンテレフタレート樹脂組成物及び成形品
JP2006111713A (ja) * 2004-10-14 2006-04-27 Teijin Chem Ltd 光拡散性ポリカーボネート樹脂組成物成形品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091461A (en) 1989-04-07 1992-02-25 The Dow Chemical Company Filled polymeric blend
JPH0775856B2 (ja) 1990-12-26 1995-08-16 鐘淵化学工業株式会社 自動車用サイドプロテクター
CA2103420A1 (en) 1992-12-22 1994-06-23 Eileen B. Walsh Stabilization of low molecular weight polybutylene terephthalate/polyester blends with phosphorus compounds
JP3169149B2 (ja) 1993-02-15 2001-05-21 豊田合成株式会社 射出成形方法
JP3182997B2 (ja) 1993-10-18 2001-07-03 豊田合成株式会社 樹脂成形品の射出成形方法及び成形用金型
JPH0857904A (ja) 1994-08-28 1996-03-05 Inoac Corp 射出成形品の製造方法
JP3427864B2 (ja) 1995-03-20 2003-07-22 出光石油化学株式会社 ポリカーボネート樹脂組成物及びそれを用いた自動車外装部材
JP4224920B2 (ja) 2000-03-24 2009-02-18 株式会社Ihi 熱分解ガス加熱方法及び装置
US6780917B2 (en) 2001-03-02 2004-08-24 Teijin Chemicals, Ltd. Aromatic polycarbonate resin composition
JP4606674B2 (ja) 2001-12-07 2011-01-05 帝人化成株式会社 射出圧縮成形品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912847A (ja) * 1995-06-26 1997-01-14 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物及びその成形品
JPH11106624A (ja) * 1997-10-06 1999-04-20 Teijin Ltd ポリエステル樹脂組成物
JP2001164105A (ja) * 1999-12-08 2001-06-19 Teijin Chem Ltd ガラス強化難燃性ポリカーボネート樹脂組成物
JP2002265769A (ja) * 2001-03-09 2002-09-18 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JP2003128905A (ja) * 2001-10-25 2003-05-08 Teijin Chem Ltd 熱可塑性樹脂組成物
JP2004143208A (ja) * 2002-10-22 2004-05-20 Mitsubishi Engineering Plastics Corp ポリブチレンテレフタレート樹脂組成物及び成形品
JP2006111713A (ja) * 2004-10-14 2006-04-27 Teijin Chem Ltd 光拡散性ポリカーボネート樹脂組成物成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KNIGHTS M.: "Sequential Valve Gating", PLASTICS TECHNOLOGY, vol. 49, no. 12, 2003, pages 38 - 43, XP003001210 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178608B2 (en) * 2006-04-13 2012-05-15 Mitsubishi Engineering-Plastics Corporation Thermoplastic resin composition and resin molded article
CN117683362A (zh) * 2024-02-01 2024-03-12 国网湖南省电力有限公司湘潭供电分公司 低吸水率耐紫外老化硅橡胶及其制备方法和应用
CN117683362B (zh) * 2024-02-01 2024-06-04 国网湖南省电力有限公司湘潭供电分公司 低吸水率耐紫外老化硅橡胶及其制备方法和应用

Also Published As

Publication number Publication date
ATE477300T1 (de) 2010-08-15
EP1860155B1 (en) 2010-08-11
EP1860155A1 (en) 2007-11-28
DE602006016082D1 (de) 2010-09-23
US7732520B2 (en) 2010-06-08
KR101268740B1 (ko) 2013-06-04
US20080176048A1 (en) 2008-07-24
EP1860155A4 (en) 2009-09-02
KR20070120104A (ko) 2007-12-21

Similar Documents

Publication Publication Date Title
WO2006098461A1 (ja) 樹脂組成物
CN106471059B (zh) 聚酯树脂组合物、注射成型品、光反射体基体和光反射体
JP4705388B2 (ja) 車両外装材およびその製造方法
JP2007023118A (ja) 熱可塑性樹脂組成物
WO2015159813A1 (ja) 強化芳香族ポリカーボネート樹脂シート又はフィルム
JP2010126706A (ja) フィルムインサート成形用樹脂組成物およびその成形品
JP5564269B2 (ja) 成形用原料ペレットの製造方法
JP5436219B2 (ja) 樹脂組成物
JP5017888B2 (ja) 熱可塑性樹脂組成物および樹脂成形体
JP5902409B2 (ja) 難燃性ポリカーボネート樹脂組成物の製造方法およびその成形品の製造方法
JP2010015091A (ja) ガラス繊維強化樹脂組成物からなる鏡筒
JP5541881B2 (ja) ガラス強化樹脂組成物
JP2010275346A (ja) ガラス繊維強化樹脂組成物
JP2007211157A (ja) ガラス繊維強化難燃性ポリカーボネート樹脂組成物
JP2013018864A (ja) ポリカーボネート樹脂組成物およびその成形品
JP2009051989A (ja) 熱可塑性樹脂組成物および樹脂成形品
JP5226326B2 (ja) 芳香族ポリカーボネート樹脂組成物
JP5199590B2 (ja) 熱可塑性樹脂組成物
JP2010275413A (ja) ガラス強化樹脂組成物
JP2011140545A (ja) 繊維強化樹脂組成物およびこれを成形してなる樹脂成形体
JP2002327108A (ja) ウエルド部を有する中空成形品に適する熱可塑性樹脂組成物およびその中空成形品
JP6854655B2 (ja) 熱可塑性樹脂組成物およびその成形品
JP7068532B2 (ja) ポリエステル系樹脂組成物及び車両灯体用部品
JP2004323825A (ja) 再生樹脂組成物、再生樹脂組成物の製造方法、および成形品の再利用方法
JP2010229305A (ja) 熱可塑性樹脂組成物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680008497.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11886087

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077020891

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006715703

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006715703

Country of ref document: EP