WO2006098133A1 - 内燃機関の動弁装置 - Google Patents

内燃機関の動弁装置 Download PDF

Info

Publication number
WO2006098133A1
WO2006098133A1 PCT/JP2006/303511 JP2006303511W WO2006098133A1 WO 2006098133 A1 WO2006098133 A1 WO 2006098133A1 JP 2006303511 W JP2006303511 W JP 2006303511W WO 2006098133 A1 WO2006098133 A1 WO 2006098133A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
cylinders
valve
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2006/303511
Other languages
English (en)
French (fr)
Inventor
Shuichi Ezaki
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP06714650.6A priority Critical patent/EP1860287B1/en
Priority to JP2007508051A priority patent/JP4293273B2/ja
Priority to CN2006800057770A priority patent/CN101128650B/zh
Publication of WO2006098133A1 publication Critical patent/WO2006098133A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/06Cutting-out cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/024Belt drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/042Cam discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0005Deactivating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0082Controlling each cylinder individually per groups or banks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L2001/028Pre-assembled timing arrangement, e.g. located in a cassette
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0476Camshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L2009/25Mixed arrangement with both mechanically and electromagnetically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/08Timing or lift different for valves of different cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/032Electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/22Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • F02D2041/0012Controlling intake air for engines with variable valve actuation with selective deactivation of cylinders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a valve operating apparatus for an internal combustion engine.
  • the present invention has been made to solve the above-described problems.
  • the explosive stroke is regularly performed to improve the driveability.
  • the purpose is to drive in a state where deterioration is suppressed. Disclosure of the invention
  • a first aspect of the present invention is a valve operating apparatus for an internal combustion engine in which a valve body included in each cylinder is driven to open and close by a plurality of motors. In the plurality of motors, an explosion stroke is performed at substantially equal intervals of the crank angle.
  • This is a valve operating apparatus for an internal combustion engine that drives the valve body for each of a plurality of groups formed of cylinder groups.
  • each of the plurality of motors drives only the valve body of one cylinder of the group. Since each of the plurality of motors drives only the valve bodies of one group of cylinders, each motor does not drive the valve bodies of two or more groups of cylinders. Accordingly, it is possible to drive only the valve bodies of cylinders belonging to a specific group and completely stop the valve bodies of cylinders belonging to other groups.
  • the improved valve operating apparatus for an internal combustion engine when an abnormality occurs in a specific cylinder, at least the valve body of the all cylinders of the group to which the cylinder in which the abnormality occurs belongs. The drive is stopped.
  • the fourth invention is the above-described improved valve operating system for an internal combustion engine, wherein the plurality of modes has a number of cylinders belonging to one group when there are a plurality of options in the configuration of the group.
  • the valve body is driven for each of the fewer groups.
  • valve body is driven for each group with a smaller number of cylinders belonging to one group. Output can be reduced and the driver can be made aware of the occurrence of an abnormality.
  • the improved valve operating apparatus for an internal combustion engine when the plurality of modes has a plurality of options in the configuration of the group, the number of cylinders belonging to one group is larger.
  • the valve body is driven for each of the increasing groups.
  • valve body When there are multiple options in the group configuration, the valve body is driven for each group that has a larger number of cylinders belonging to one group.
  • the output can be increased. Therefore, it is possible to perform the same operation as normal.
  • the improved valve operating apparatus for an internal combustion engine when the reduced cylinder operation is performed, only the valve bodies of all the cylinders belonging to the specific group are driven, The drive of the valve bodies of the cylinders belonging to the control group is stopped.
  • the valve body that has been stopped is fully closed.
  • valve element that has stopped driving is fully closed, it is possible to minimize the bonder loss that occurs in cylinders that have stopped operating. Moreover, since it is possible to suppress the flow of low-temperature air in the exhaust passage, it is possible to suppress the temperature reduction of the exhaust purification catalyst.
  • An eighth invention is a valve operating apparatus for an internal combustion engine in which a valve body provided in each cylinder is driven to open and close by a plurality of motors, and 'the valve body of a specific cylinder and the valve body of another cylinder are independent of each other.
  • a valve operating means that can be driven is provided, and the number of cylinders in which combustion is performed is varied stepwise according to the operating state of the internal combustion engine.
  • the torque can be changed smoothly in the process of increasing or decreasing the number of cylinders, and drivability can be improved.
  • the number of cylinders in which combustion is performed is varied discontinuously during sudden acceleration or sudden deceleration.
  • the valve body of a cylinder in which combustion is not performed is closed.
  • a first aspect of the invention is the above-described improved valve operating apparatus for an internal combustion engine, wherein the valve operating means is configured to vary a lift amount, a working angle, or an opening / closing timing of the valve body, and a cylinder in which combustion is performed If the number decreases, the intake air volume decreases just before the number of cylinders decreases.
  • the valve body is driven so that the intake air amount increases immediately after the number of cylinders is decreased, and the number of cylinders is increased when the number of cylinders in which combustion is performed increases.
  • the valve body is driven so that the intake air amount increases immediately before, and the valve body is driven so that the intake air amount decreases immediately after increasing the number of cylinders.
  • the intake air amount is controlled immediately before the timing for increasing or decreasing the number of cylinders, and the intake air amount is controlled immediately after the timing for increasing or decreasing the number of cylinders, there will be a step in the torque when the number of cylinders is increased or decreased. Can be suppressed. Therefore, drivability can be improved when the number of cylinders changes.
  • the 12th invention is the above-described improved valve operating apparatus for an internal combustion engine, wherein the valve operating means is configured such that when the number of cylinders for combustion is varied and the explosion strokes are performed at unequal intervals, By changing the lift amount, working angle or opening / closing timing of the valve body of the cylinder in which the explosion stroke is performed immediately before the cylinder where combustion is stopped, the intake air amount of the cylinder is relative to other cylinders. To increase.
  • the intake air amount of the cylinder in which the explosion stroke is performed immediately before the cylinder where the combustion is stopped is increased relative to the other cylinders. It is possible to prevent the torque from temporarily decreasing in a section where the torque becomes longer. Therefore, even if the explosion strokes are performed at unequal intervals, the torque can be leveled and drivability can be improved.
  • the 13th invention is the above-described improved valve operating system for an internal combustion engine, in a V-type 8-cylinder internal combustion engine, in which the combustion of # 3 cylinder and # 2 cylinder is stopped and 6-cylinder operation is performed. Increases the intake air volume of the # 4 and # 7 cylinders relative to the other cylinders.
  • the # 4 cylinder explosion stroke is performed before the # 3 cylinder explosion stroke
  • the # 7 cylinder explosion stroke is performed before the # 2 cylinder explosion stroke.
  • the 14th invention relates to the above-described improved valve operating system for an internal combustion engine, in a V-type 6-cylinder internal combustion engine, in which the combustion of # 3 cylinder and # 6 cylinder is stopped and 4-cylinder operation is performed Increases the intake air volume of cylinder # 2 and cylinder # 5 relative to other cylinders. It is something to make.
  • the # 2 cylinder explosion stroke is performed before the # 3 cylinder explosion stroke
  • the # 5 cylinder explosion stroke is performed before the # 6 cylinder explosion stroke.
  • the 15th invention is the above-described improved valve operating system for an internal combustion engine.
  • the inline 4-cylinder internal combustion engine when # 3 cylinder combustion is stopped and 3 cylinder operation is performed, the # 1 cylinder The intake air amount is increased relative to the other cylinders.
  • # 1 cylinder explosion stroke is performed before # 3 cylinder explosion stroke, #
  • # Torque can be leveled even when combustion of the 3 cylinders is stopped.
  • FIG. 1 is a schematic diagram showing the configuration of a system including a valve operating apparatus for an internal combustion engine according to each embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a configuration around the 13 ⁇ 4 air valve and the valve operating apparatus in the first embodiment.
  • FIG. 3 is a schematic diagram showing how the intake valve is driven by the cam.
  • FIG. 4 is a schematic diagram showing the relationship between the engine speed and output torque of the internal combustion engine and the cam drive mode.
  • FIG. 5 is a schematic diagram showing in detail two types of cams provided on the camshaft.
  • FIG. 6 is a schematic diagram showing a control group of each cylinder in the first embodiment.
  • FIG. 7 is a schematic diagram showing the configuration around the intake valve and the valve operating apparatus in the second embodiment.
  • FIG. 8 is a schematic diagram showing a control group of each cylinder in the second embodiment.
  • FIG. 9 is a schematic diagram showing an example in which a mechanical variable valve mechanism is provided in one bank and a valve operating device according to Moyu is provided in the other bank in an internal combustion engine composed of V-type six cylinders. .
  • FIG. 10 is a schematic diagram showing a configuration around the intake valve and the valve gear in the second embodiment.
  • FIG. 11 is a schematic diagram showing a control group of each cylinder in the third embodiment.
  • FIG. 12 is a schematic diagram showing the control performed in the fourth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic diagram showing the configuration of a system including a valve operating apparatus for an internal combustion engine according to each embodiment of the present invention.
  • An intake passage 12 and an exhaust passage 14 communicate with the internal combustion engine 10.
  • the intake passage 12 is provided with an air filter 16 at its upstream end.
  • the air filter 16 is equipped with an intake air temperature sensor 18 that detects the intake air temperature THA (ie, the outside air temperature).
  • An exhaust purification catalyst 3 2 is disposed in the exhaust passage 14.
  • a air flow meter 20 is disposed downstream of the air filter 16.
  • a throttle valve 22 is provided downstream of the air flow meter 20. In the vicinity of the throttle valve 22, there are arranged a throttle sensor 24 that detects the throttle opening TA, and an idle switch 26 that is turned on when the throttle valve 22 is fully closed.
  • a surge tank 28 is provided downstream of the throttle valve 22.
  • the internal combustion engine 10 is provided with a fuel injection valve 30 that injects fuel into the combustion chamber (inside the cylinder).
  • the fuel injection valve 30 may inject fuel toward the intake port.
  • the internal combustion engine 10 includes a PJ3 ⁇ 4air valve 36 and an exhaust valve 38.
  • a valve operating device 48 for driving the intake valve 36 is connected to the intake valve 36.
  • a valve operating device 50 for driving the exhaust valve 38 is connected to the exhaust valve 38.
  • the control device of this embodiment includes an ECU (Electronic Control Unit) 40.
  • the ECU 40 has a KCS sensor that detects the occurrence of knocking in order to understand the operating state of the internal combustion engine 10, throttle opening, engine speed, exhaust temperature, cooling water temperature, lubricating oil temperature Various sensors (not shown) for detecting the catalyst bed temperature etc. are connected.
  • the ECU 40 is connected to each of the actuators and sensors provided in the fuel injection valve 30 and the valve gears 48 and 50 described above.
  • FIG. 2 is a schematic diagram showing the configuration around the intake valve 36 and the valve gear 48, and mainly shows the configuration around the cylinder head.
  • the exhaust valve 38 and the valve operating device 50 are not shown, but the P valve side valve device 48 and the exhaust side valve device 50 basically have the same configuration. Yes.
  • each cylinder of the internal combustion engine 10 is provided with two intake valves 36 and two exhaust valves 38.
  • the internal combustion engine 10 of this embodiment includes four cylinders (# 1 to # 4), and the explosion stroke is performed in the order of # 1 ⁇ # 3— # 4 ⁇ # 2.
  • the valve gear 48 includes two devices (the valve gear 48A and the valve gear 48B).
  • the valve operating device 48 A drives the intake valve 36 provided in the # 2 cylinder and the # 3 cylinder
  • the valve operating device 48 B drives the intake valve 36 provided in the # 1 cylinder and the # 4 cylinder.
  • the valve gear 48A includes an electric motor (hereinafter referred to as a motor) 54A as a drive source, a gear train 56A as a transmission mechanism that transmits the rotational motion of the motor 54A, and rotational motion transmitted from the gear train. And a camshaft 58 A for converting into a linear opening / closing motion of the intake valve 36.
  • the valve gear 48B includes a motor 54B, a gear train 56B, and a force shaft 58B.
  • the configuration of the gear train 56 B is the same as that of the gear train 56 A.
  • a DC brushless motor capable of controlling the rotation speed is used for the motors 54A and 54B.
  • the motors 54A and 54B have built-in position detection sensors such as a resolver and a rotary encoder for detecting the rotational position.
  • a cam drive gear 60 that rotates integrally with the camshafts 58 A and 58 B and a cam 62 that also rotates integrally with the camshafts 58 A and 58 B are provided on the outer periphery of the camshafts 58 A and 58 B. It has been.
  • the gear train 56 A transmits the rotation of the motor gear 64 A attached to the output shaft 55 of the motor 54 A to the cam and drive gear 60 of the camshaft 58 A through the intermediate gear 66 A.
  • the gear train 5 6 A may be configured such that the motor gear 6 4 A and the cam drive gear 60 rotate at the same speed, or the cam drive gear 6 4 relative to the motor gear 6 4 A. It may be configured to increase or decrease 0.
  • the gear train 5 6 B cams the rotation of the motor gear 6 4 B attached to the output shaft of the motor 5 4 B via the intermediate gear 6 6 B (not shown in FIG. 2). It is transmitted to the cam drive gear 60 of the shaft 5 8 B. As shown in Fig.
  • the camshaft 5 8 A is located at the top of the intake valves 3 6 of # 2 and # 3 cylinders, and the # 2, # Each cylinder 3 intake valve 3 6 is opened and closed.
  • the camshaft 5 8 B is divided into two parts and is arranged at the top of the intake valves 3 and 6 of the # 1 and # 4 cylinders.
  • the four cams 6 2 provided on the camshaft 5 8 B # 1 and # 4 Cylinder intake valves 3 6 are driven to open and close.
  • the camshaft 5 8 B divided into two is connected by a connecting member 5 8 C passed through a through hole provided in the center of the camshaft 5 8 A, and is configured to rotate integrally. Yes.
  • FIG. 2 shows a state where the camshaft 5 8 A and the two camshafts 5 8 B are separated from each other.
  • FIG. 3 is a schematic diagram showing how the intake valve 36 is driven by the cam 62.
  • the force 6 2 is a type of plate cam in which a nose 6 2 a is formed by inflating a part of an arc-shaped base circle 6 2 b coaxial with the cam shafts 5 8 A and 5 8 B toward the outside in the radial direction. Is formed.
  • the profile of the cam 62 is set so as to draw a convex curved surface outward in the radial direction so that no negative curvature occurs over the entire circumference.
  • each intake valve 36 has a valve shaft 36 a.
  • Each cam 6 2 faces a retainer 68 provided at one end of the valve shaft 36 a of the intake valve 36.
  • Each intake valve 3 6 is urged toward the cam 62 by the compression reaction force of a valve spring (not shown), and when the base circle 6 2 b of the force 6 2 and the retainer 6 8 are opposed to each other, PJ: The intake valve 36 is brought into close contact with the valve seat (not shown) of the air port and the intake port is closed.
  • FIG. 3A and 3B show two drive modes of the cam 62.
  • FIG. In the drive mode of cam 62 the motor 5 4 A, 5 4 B is continuously rotated in one direction as shown in Fig. 3.
  • the cam 62 is moved to the maximum lift position, that is, beyond the position where the cam 6 2 nose 6 2 a contacts the other part (in this case, retainer 6 8).
  • (A) Direction of forward drive that rotates continuously (in the direction of the arrow in the figure), and change the direction of rotation of 5 4 A and 5 4 B before reaching the maximum lift position in forward drive mode.
  • (B) there is a swing drive mode in which the cam 62 is reciprocated.
  • the operating angle of the intake valve 36 is controlled by changing the rotational speed of the cam 62 with respect to the rotation of the crankshaft.
  • the cam 62 In the swing drive mode, the cam
  • the maximum lift amount and working angle of the intake valve 36 can be controlled by controlling the angular range in which the cam 62 swings together with the rotational speed of the 62.
  • FIG. 4 is a schematic diagram showing the relationship between the engine speed and output torque of the internal combustion engine 10 and the drive mode of the cam 62.
  • the drive mode of the cam 62 is properly used in association with the engine speed and the output torque.
  • the oscillating drive mode is selected in the low rotation range
  • the forward rotation drive mode is selected in the high rotation range.
  • the lift amount and operating angle of the intake valve 36 are reduced in the low rotation range, and the lift amount and operating angle of the intake valve 36 are increased in the high rotation range, and the engine speed and output torque are controlled. It is possible to send an optimal amount of air corresponding to the engine cylinder.
  • FIG. 5 is a schematic diagram showing in detail the two types of cams 62 provided on the camshaft 58A.
  • the camshaft 5 8 A includes a cam 6 2 for driving the # 2 cylinder intake valve 3 6 and a cam 6 2 for driving the # 3 cylinder intake valve 3 6 Are spaced apart by an angular position of 1800 degrees. Crank angle for a 4-cylinder internal combustion engine
  • the valve gear 4 8 A has a # 2 cylinder cam 6 2 and a # 3 cylinder cam 6 2 alternately with a # 2 cylinder intake valve 3 6 and # 3 cylinder
  • the camshaft 5 8 A is rotated or swung so as to drive the intake valve 3 6.
  • the camshaft 5 8 B is provided with two types of cams 6 2 for driving the # 1 and # 4 cylinder intake valves 3 6, and the valve gear 4 8 B is connected to the camshaft 5 By rotating or swinging 8B, # 1 cylinder intake valve 3 6 and # 4 cylinder intake valve 3 6 are driven.
  • an explosion stroke is performed in the order of # 1 ⁇ # 3 ⁇ # 4 ⁇ # 2 every 180 ° crank angle.
  • the explosion stroke performed every crank angle of 180 ° under normal conditions is the crank angle only between the # 1 and # 4 cylinders. This occurs at 360 ° intervals, and torque fluctuations occur in the crankshaft rotation.
  • valve gears 48 A and 48 B for example, if an abnormality occurs in the fuel injection valve 30 or spark plug of a particular cylinder, the explosion stroke is no longer performed in that cylinder. There is concern about torque fluctuations.
  • FIG. 6 is a schematic diagram showing a control group in the case of four cylinders. As shown in FIG. 6, # 1 and # 4 cylinders belong to the control group (1), and # 2 and # 3 cylinders belong to the control dull (2).
  • Two cylinders belonging to the control group (1) or the control group (2) have an explosion process at the same crank angle interval (360 ° in this case) when the crankshaft rotates twice (720 °) in one cycle.
  • Judgment can be made based on whether or not. That is, the angular velocity of the camshaft v c am and result, it can be determined that abnormality when the following equation is satisfied has occurred.
  • ⁇ ⁇ is a characteristic value determined in accordance with an allowable level such as torque fluctuation or poor combustion of the internal combustion engine 10.
  • V c am . Is a value determined according to the angular velocity of the crankshaft V crk , where V a c is the speed control variable. There is a relationship of ocV crk + Q !.
  • Angular velocity V c am camshaft is determined based on the output voltage of the position detection sensor for detecting the cam angle.
  • the drive of the intake valve 36 and the exhaust valve 38 is stopped by the valve gears 48, 50.
  • the valve gear 4 8 A mode 5 4 A is stopped.
  • the drive of intake valves 3 6 of # 2 and # 3 cylinders is stopped.
  • the # 1 and # 4 cylinders belonging to the control group ⁇ / 1 (1) perform the explosion process at every interval of the same crank angle, so when operating with only the # 1 and # 4 cylinders Even in the case of odors, the explosion process does not occur at irregular times. Therefore, fluctuations in the rotational torque of the crankshaft can be suppressed, and even if an abnormality occurs in a specific cylinder, the internal combustion engine 1 It becomes possible to drive 0.
  • the vehicle on which the internal combustion engine 10 is mounted can be continuously operated.
  • driving is performed only in one control group, it is preferable to let the driver recognize the fact by a warning lamp or the like.
  • the output of the internal combustion engine 10 decreases, so that the driver can recognize the occurrence of the abnormality.
  • the control group (1) and the control group (2) are alternately.
  • the cylinders of the group that has not been operated are cooled and the startability is reduced. Or the increase in friction.
  • the catalyst temperature of the cylinders that are not operating may drop, so the control loop (1) and control group (2) are alternately switched. It is preferred to operate to maintain the catalyst temperature at the activation temperature.
  • the control valve (1) and the control group (2) of the two cylinders in which the operation is stopped have the intake valve 3 6, exhaust Leave valve 3 8 fully closed. If the intake valves 3 6 and exhaust valves 3 8 of the cylinders that are not operating are open, the vertical movement of the piston 4 4 causes air flow in the intake passages 1 2 and exhaust passages 1 4, resulting in a bonder loss. It is to do. By keeping the air valve 3 6 and the exhaust valve 3 8 fully closed, there is no air flow in the intake passage 1 2 and exhaust passage 1 4, and the occurrence of bond pin loss is reliably suppressed. Can do.
  • valve spring load Since the valve spring load is acting on each intake valve 3 6 and exhaust valve 3 8, the holding torque of the motor 5 4 A, 5 4 B when not energized is kept small, and the cylinder By stopping energization of motors 5 4 A and 5 4 B, intake valve 3 6 and exhaust valve 3 8 can be closed by the valve spring reaction force.
  • each cylinder of the four-cylinder internal combustion engine is divided into two control groups, and the explosion strokes are performed with the same crank angle width in the cylinders belonging to each control group.
  • the explosion stroke can be performed for each equal crank angle by operating only one of the two control groups. It becomes possible.
  • FIG. 7 is a schematic diagram showing the configuration around the valve operating device 48 and the valve operating device 50 according to the second embodiment, and mainly shows the configuration around the cylinder head.
  • the internal combustion engine 10 of the present embodiment is composed of V-type 6 cylinders, 3 cylinders # 1, # 3, and # 5 are arranged in one bank 70, and 3 cylinders # 2, # 4, and # 6 Is placed in the other punk 7 2.
  • the bank 70 and the puncture 72 are provided with a valve operating device 48 for driving the intake valve 36 and a valve operating device 50 for driving the exhaust valve 38, respectively.
  • a valve operating device 48 for driving the intake valve 36
  • a valve operating device 50 for driving the exhaust valve 38
  • the configuration of the valve gear 48 will be mainly described, but the valve gear 48 and the valve gear 50 basically have the same configuration.
  • each cylinder of the internal combustion engine 10 is provided with two intake valves 3 6 and two exhaust valves 3 8.
  • valve gear 48 arranged in the bank 70 is composed of two devices (valve gear 48 C, valve gear 48 D). Further, the valve gear 48 arranged in the puncture 72 is composed of two devices (valve gear 48 E, valve gear 48 F).
  • the valve gear 4 8 C drives the intake valve 3 6 provided in the # 1 cylinder and the # 3 cylinder, and drives the intake valve 3 6 provided in the valve gear 4 8 D «# 3 cylinder. Further, the valve operating device 4 8 E drives the intake valves 3 6 provided in the # 2 cylinder and the # 4 cylinder, and the valve operating devices 4 8? Drives the intake valves 3 6 provided in the # 6 cylinder.
  • each of the valve gears 4 8 C, 4 8 D, 4 8 E, 4 8 F is It is equipped with MOCYU 54C, 54D, 54E, and 54 F as drive sources.
  • MOCYU 54C, 54D, 54E, and 54 F as drive sources.
  • the rotational motion of the motor 54C is transmitted to the camshaft 58C via the gear train 56C.
  • the rotational motion of the motor 54D is transmitted to the cam shaft 58D through the gear train 56D.
  • the rotational movement of F is transmitted to the camshaft 58 F via the gear train 56 F.
  • camshaft 58 C is located above # 1, # 3 cylinder intake valve 36, and four cams 62 on camshaft 58 C provide # 1, # 3 cylinder intake valves. 36 is driven to open and close.
  • the camshaft 58D is disposed above the intake valve 36 of the # 5 cylinder, and the # 5 cylinder intake valve 36 is driven to open and close by two forces 62 provided on the camshaft 58D.
  • the camshaft 58 E is arranged above the intake valves 36 of the # 2 and # 4 cylinders, and the four cams 62 provided on the camshaft 58 E are used for the intake valves of the # 2, # 4 cylinders. 36 is driven to open and close.
  • the camshaft 58F is arranged above the intake valve 36 of the # 6 cylinder, and the intake valve 36 of the # 6 cylinder is driven to open and close by two forces 62 provided on the camshaft 58F.
  • the intake valve 36 of each cylinder is driven in the forward drive mode or the swing drive mode. Therefore, as in the first embodiment, the lift amount and operating angle of the intake valve 36 of each cylinder can be freely varied.
  • FIG. 8 is a schematic diagram showing a control group of each cylinder in the second embodiment.
  • # 1, # 3, # 5 cylinders belong to the control group (1), and # 2, #
  • the cylinders # 4 and # 6 belong to the control drape (2).
  • the three cylinders belonging to control group (1) or control group (2) have an explosion process at the same crank angle interval (every 240 ° in this case) when the crankshaft rotates twice (720 °) in one cycle.
  • the operation of the cylinder in which the failure has occurred is stopped, and the operation of other cylinders in the control group to which the cylinder in which the failure has occurred is stopped.
  • Control to stop For example, when a failure occurs in # 3 cylinder, # 3 cylinder operation is stopped, and # 3 cylinders in the control group (1) to which # 3 cylinder belongs, that is, # 1, # 5 cylinder operation is also stopped. To do. Then, only the # 2, # 4, and # 6 cylinders belonging to the control loop (2) are operated.
  • the drive of the intake valve 36 and the exhaust valve 38 is stopped by the valve gears 48, 50.
  • the motor 5 4 C of the valve operating device 4 8 C and the motor 5 4 D of the valve operating device 4 8 D are stopped.
  • the driving of intake valves 3 6 of # 1, # 3 and # 5 cylinders is stopped.
  • the # 2 cylinder, # 4 cylinder, and # 6 cylinder belonging to the control group (2) perform the explosion process at the same crank angle interval, so only the # 2, # 4, and # 6 cylinders are used. Even when driving, the explosion process will not occur at irregular timings. Therefore, fluctuations in the rotational torque of the crankshaft can be suppressed, and even when an abnormality occurs in a specific cylinder, the internal combustion engine 10 can be operated in a state where the deterioration in dry capability is minimized. It becomes possible to drive. As a result, even when an abnormality occurs, the vehicle on which the internal combustion engine 10 is mounted can be continuously operated.
  • the reduced cylinder operation when the reduced cylinder operation is performed, the operation of all the cylinders belonging to one of the control group (1) or the control group (2) is stopped and the other control group is stopped. Operation is performed only with the cylinders belonging to the loop. As a result, only the cylinders belonging to one control group can perform the explosion stroke at every equal crank angle, so the reduced cylinder operation is performed. In this case, torque fluctuation of the crankshaft can be minimized.
  • the P and the exhaust valves 36 and the exhaust valves 38 are fully closed. As a result, it is possible to suppress the occurrence of the bonder loss and to suppress the temperature reduction of the exhaust purification catalyst 32.
  • Fig. 9 shows a V-type 6-cylinder internal combustion engine provided with a mechanical variable valve mechanism as a mechanism for driving the intake valve 3 6 and exhaust valve 3 8 of each cylinder of bank 70.
  • a mechanical variable valve mechanism as a mechanism for driving the intake valve 3 6 and exhaust valve 3 8 of each cylinder of bank 70.
  • An example is shown in which the intake valve 36 and the exhaust valve 38 of each cylinder are driven by valve gears 48 and 50 as in FIG.
  • FIG. 9 only the # 1 and # 2 cylinders are shown, but the arrangement of the cylinders in the banks 70 and 72 is the same as that in FIG. In bank 70, the camshaft is driven by a normal timing belt 74.
  • each cylinder is Divided into two control groups (1) and (2).
  • operation is performed with only one of the two control groups (1) and (2).
  • the cylinders of the control group (2) belonging to the bank 72 can be operated by the valve gears 48 and 50.
  • the valve gears 48, 50 the cylinders of the control group (1) belonging to the bank 70 can be operated with a mechanical variable valve mechanism.
  • the mechanical mechanism is mirror-arranged to provide both the V-type internal combustion engine. If it is placed in the puncture, the rotation direction of the camshaft driven by the belt or the chain is the same in both banks. The behavior of the operating angle varies between the two banks, and the same function may not be configured in both banks simply by placing a mirror mechanism.
  • the intake valve 36 is driven by the motor by the valve operating device 48, so that such adverse effects can be suppressed.
  • the control group when there are a plurality of options in the configuration of the control group, for example, the control group is configured so that the number of cylinders belonging to one control group is smaller. As a result, when the operation is performed only with the cylinders belonging to one control group, the output can be lowered, and the driver can be made aware of the abnormality when the abnormality occurs.
  • the control group when there are a plurality of options in the configuration of the control group, the control group may be configured so that the number of cylinders belonging to one control group is larger. This makes it possible to increase the output when the operation is performed with only the cylinders belonging to one control group, and it is possible to perform the operation equivalent to the normal operation.
  • control group when an abnormality occurs, the control group is configured so that the number of cylinders belonging to one control group is reduced, and the driver is made aware of the occurrence of the abnormality by operating only with the cylinders belonging to one control group.
  • control group In order to enable operation close to normal operation during subsequent restarts, the control group is reconfigured so that the number of cylinders belonging to one control group is increased, and the control group to which no abnormal cylinders belong is assigned. You may make it drive with a cylinder.
  • each cylinder of the V-type 6-cylinder internal combustion engine 10 is divided into two control groups. Since the same crank angle width is used, when a failure occurs in a specific cylinder or when reduced cylinder operation is performed, only one of the two control groups is operated. It is possible to perform an explosion process. As a result, it is possible to minimize the deterioration of the driver parity even when the operation is performed with only a part of the cylinders in the event of a failure or when the reduced-cylinder operation is performed.
  • FIG. 10 is a schematic diagram showing the configuration around the valve operating device 48 and the valve operating device 50 according to the third embodiment, and mainly shows the configuration around the cylinder head.
  • the internal combustion engine 10 of the present embodiment is composed of V-type eight cylinders, and four cylinders # 2, # 4, # 6, and # 8 are arranged in one bank 80, # 1, # 3, # 5 , # 7 4 cylinders are located in the other bank 8 2.
  • the bank 80 and the bank 8 2 are each provided with a valve operating device 48 for driving the intake valve 36 and a valve operating device 50 for driving the exhaust valve 38.
  • a valve operating device 48 for driving the intake valve 36
  • a valve operating device 50 for driving the exhaust valve 38.
  • the configuration of the valve gear 48 will be mainly described, but the valve gear 48 and the valve gear 50 basically have the same configuration.
  • each cylinder of the internal combustion engine 10 is provided with two intake valves 3 6 and two exhaust valves 3 8.
  • the valve gear 4 8 arranged in the bank 80 is composed of two devices (the valve gear 4 8 G and the valve gear 4 8 H). Further, the valve gear 48 disposed in the trunk 8 2 is composed of two devices (valve gear 48 1, valve gear 48 J).
  • the valve gear 4 80 drives the intake valve 3 6 provided in the # 2 cylinder and the # 8 cylinder, and drives the intake valve 36 provided in the valve drive device 4 8 H3 ⁇ 4 # 4 cylinder and # 6 cylinder.
  • the valve gear 4 8 I drives the intake valves 3 6 included in the # 1 and # 7 cylinders, and the valve gear 4 8 J drives the intake valves 3 6 included in the # 3 and # 5 cylinders.
  • each of the valve gears 4 8 G, 4 8 H, 4 8 1, 4 8 J is a motor source 5 4 G, 5 4 H, 5 4 1, 5 4 as a drive source. J is equipped.
  • the rotational motion of the motor 54G is transmitted to the camshaft 58G via the gear train 56G.
  • the rotational motion of the motor 5 4 H is camshafted via the gear train 5 6 H. To 58 H.
  • the rotational motion of the motor 54I is transmitted to the camshaft 58I via the gear train 56I.
  • the rotational motion of the motor 54 J is transmitted to the camshaft 58 J through the gear train 56 J.
  • the camshaft 58 G is divided into two parts and arranged at the upper part of the intake valves 36 of the # 2 and # 8 cylinders.
  • the four cams 62 provided on the camshaft 58G 2.
  • Each intake valve 36 of # 8 cylinder is driven to open and close.
  • the camshaft 58 G divided into two is connected by a connecting member threaded through a through hole provided in the center of the camshaft 58 H, and is configured to rotate integrally.
  • the force shaft 58H is located above the intake valves 36 of the # 4 and # 6 cylinders.
  • the four cams 62 provided on the force shaft 58H open and close the intake valves 36 of the # 4 and # 6 cylinders. Driven.
  • the camshaft 58 I is divided into two parts and is arranged at the upper part of the intake valves 36 of the # 1, # 7 cylinders.
  • the camshaft 58I divided into two is connected by a connecting member passed through a through hole provided in the center of the camshaft 58J, and is configured to rotate integrally.
  • the camshaft 58 J is located above the intake valves 36 of the # 3 and # 5 cylinders, and the four cams 62 provided on the camshaft 58 J allow the intake valves 36 of the # 3 and # 5 cylinders to be It is opened and closed.
  • the intake valve 36 of each cylinder is driven in the forward drive mode or the swing drive mode. Therefore, as in the first embodiment, the lift amount and operating angle of the intake valve 36 of each cylinder can be freely varied.
  • FIG. 11 is a schematic diagram showing a control group of each cylinder in the third embodiment.
  • # 1, # 4, # 6, and # 7 cylinders belong to the control group (1).
  • the # 2, # 3, # 5, and # 8 cylinders belong to the control group (2).
  • the four cylinders belonging to the control group (1) or control group (2) explode at the same crank angle interval (here, every 180 °) when the crankshaft rotates twice (720 °) in one cycle.
  • the # 1, # 4, # 6, and # 7 cylinders belonging to the control group (1) perform an explosion stroke at every 80 ° crank angle when the crankshaft rotates twice.
  • # 2, # 3, # 5, and # 8 cylinders that belong to perform an explosion stroke at every 180 ° crank angle when the crankshaft rotates twice.
  • the drive of the intake valve 36 and the exhaust valve 38 is stopped by the valve gears 48 and 50.
  • the motor 54 G of the valve gear 48 G and the motor 54 J of the valve gear 48 J are stopped.
  • the drive of the intake valves 36 of # 2, # 3, # 5 and # 8 cylinders is stopped.
  • it is desirable that the fuel injection by the fuel injection valve 30 and the ignition by the ignition plug are also stopped in the cylinder where the operation is stopped. As a result, unnecessary operations can be avoided when an abnormality occurs.
  • the # 1, # 4, # 6, and # 7 cylinders belonging to the control group (1) perform the explosion process at every interval of the same crank angle, so the # 1, # 4, # 6 Even when only the cylinder # 7 is operated, the explosion process will not occur at irregular timings. Therefore, fluctuations in the rotational torque of the crankshaft can be suppressed, and even when an abnormality occurs in a specific cylinder, the internal combustion engine 10 is kept in a state in which the dry nuisance is minimized. It becomes possible to drive. Thus, even when an abnormality occurs, the vehicle equipped with the internal combustion engine 10 can be continuously operated.
  • the operation of all the cylinders belonging to one of the control group (1) or the control group (2) is stopped and the other control group is stopped. Operation is performed only with the cylinders belonging to the loop. As a result, only the cylinders belonging to one control group can perform the explosion stroke at every equal crank angle, so that the torque fluctuation of the crankshaft can be minimized even when the reduced cylinder operation is performed. .
  • the intake valve 36 and the exhaust valve 38 are fully closed in the cylinders of the group in which the operation is stopped. As a result, the occurrence of bombing loss can be suppressed, and the temperature reduction of the air purification catalyst 32 can be suppressed.
  • control group is divided into four groups, # 1 and # 6 cylinders are designated as control group (1), # 8 and # 5 cylinders are designated as control group (2), and # 4 and # 7 cylinders are controlled.
  • Group (3) can be used, and # 3 and # 2 cylinders can be used as control group (4).
  • the explosion stroke is performed at every interval of the same crank angle (here, 360 °). Therefore, by operating only the cylinders belonging to any one of the control groups (1) to (4) fc, it is possible to prevent the explosion stroke from being performed irregularly and to suppress the torque fluctuation of the crankshaft. .
  • each cylinder of the V-type 8-cylinder internal combustion engine 10 is divided into two control groups, and the cylinders belonging to the respective control groups have the same crank angle width in the explosion stroke. Therefore, when a failure occurs in a specific cylinder, or when reduced cylinder operation is performed, only one of the two control groups is operated, and an explosion stroke is performed for each equal crank angle. Is possible. As a result, it is possible to minimize the badness of the driver philosophy even when the operation is performed with only a part of the cylinders at the time of failure or when the reduced cylinder operation is performed.
  • FIG. 12 is a schematic diagram showing the control performed in the fourth embodiment. As shown in FIG. 12, in this embodiment, the number of cylinders that stops combustion is varied according to the engine speed and the load. When the internal combustion engine 10 has eight cylinders, combustion is performed in all eight cylinders during operation at high speed and high load. As the engine speed and load decrease, 6-cylinder operation, 4-cylinder operation, and 2-cylinder operation are performed.
  • the torque slightly changes when the number of cylinders that perform combustion changes. Therefore, it is assumed that there is a slight difference in the torque of the internal combustion engine 10 at the timing of switching the number of cylinders. For example, because the torque is larger in 8-cylinder operation than in 6-cylinder operation, when increasing or decreasing the number of cylinders between 8-cylinder operation and 6-cylinder operation, a slight level difference in torque may occur due to the increase / decrease timing. is assumed.
  • the intake valve 36 by controlling the lift amount, operating angle, and opening / closing timing of the intake valve 36 before and after the timing of increasing / decreasing the number of cylinders, it is possible to suppress the occurrence of torque steps when switching the number of cylinders. I have to. Since the configuration of the valve gear of the present embodiment is the same as that of each of the embodiments described above, the intake valve 36 can be driven with an optimal lift amount, working angle, and opening / closing timing according to the operating state.
  • the intake valve 36 is controlled so that the intake air quantity force S decreases as the engine speed and load decrease.
  • the torque can be reduced just before shifting to 6-cylinder operation, and when the engine speed and load are further decreased to shift to 6-cylinder operation, a step in the torque is prevented from occurring. it can.
  • the intake valve 36 is controlled so that the intake air amount increases more than usual.
  • the torque immediately after switching to 6-cylinder operation can be increased sufficiently, and the occurrence of a step difference in torque when switching from 8-cylinder operation with higher torque to 6-cylinder operation is suppressed. it can.
  • the intake valve 36 is controlled in the same manner. For example, when switching from 8-cylinder operation to 4-cylinder operation by skipping 6-cylinder operation, the intake valve 3 6 is controlled so that the intake air amount decreases in the 8-cylinder operation state immediately before switching, and 4-cylinder operation is performed. Immediately after switching to, the intake valve 36 is controlled so that the P and the intake air amount increase more than usual. As a result, even if the number of combustion cylinders is discontinuously changed and the number of combustion cylinders increases or decreases rapidly, it is possible to suppress the occurrence of a step in the torque.
  • the lift amount, working angle, and opening / closing timing of the intake valve 36 are optimally controlled in accordance with the switching timing. In this case, it is possible to prevent the torque from being stepped. Therefore, it is possible to suppress the deterioration of the driver parity when switching the number of cylinders.
  • Embodiment 5 when increasing or decreasing the number of cylinders, the lift amount, working angle, and opening / closing timing of the intake valve 36 are optimally controlled in accordance with the switching timing. In this case, it is possible to prevent the torque from being stepped. Therefore, it is possible to suppress the deterioration of the driver parity when switching the number of cylinders.
  • Embodiment 5 Embodiment 5.
  • the intake valve 36 can be driven with an optimal lift amount, operating angle, and opening / closing timing for each cylinder.
  • the torque temporarily decreases between the explosion stroke of the # 6 cylinder and the explosion stroke.
  • the torque decreases temporarily until the explosion stroke of # 1 cylinder is performed. Therefore, in the present embodiment, when performing 6-cylinder operation, in the intake process of the # 4 cylinder and the intake stroke of the # 7 cylinder, the lift amount or working angle of the intake valve 36 is temporarily increased, or The opening / closing timing of the intake valve 36 can be changed to a timing at which the intake air amount increases. As a result, the intake air amount of the # 4 cylinder and # 7 cylinder can be made larger than that of the other cylinders. Then, control is performed to increase the fuel injection amount of the # 4 cylinder and # 7 cylinder according to the increase of the intake air amount.
  • the torque generated in the explosion strokes of the # 4 and # 7 cylinders can be made larger than the torque generated in the explosion strokes of the other cylinders. Therefore, after the explosion stroke of the # 4 cylinder is performed, until the explosion stroke of the # 6 cylinder is performed, and after the explosion stroke of the # 7 cylinder is performed, the explosion stroke of the # 1 cylinder is performed. In the meantime, it is possible to prevent the torque from temporarily decreasing and to level the torque. As a result, even when explosion processes are performed at unequal intervals, it is possible to improve the driver spirit. For example, if the torque of a specific cylinder is reduced by a method such as ignition retarding to equalize the torque, there may be a negative effect such as a deterioration in fuel efficiency. The fuel consumption can be prevented from deteriorating.
  • control when the number of cylinders of the internal combustion engine 10 is 6 will be described. Even when the internal combustion engine 10 has six cylinders, the number of cylinders that perform combustion is variable in accordance with the engine speed and load. During operation at high speed and high load, combustion occurs in all six cylinders. Then, when the engine speed and load are reduced, control is performed so that the number of combustion cylinders decreases in order of 4-cylinder operation, 3-cylinder operation, and 2-cylinder operation.
  • the explosion stroke is performed in the order of # 1 ⁇ # 2 ⁇ # 3 ⁇ # 4 ⁇ # 5 ⁇ # 6.
  • the explosion strokes of the # 3 and # 6 cylinders are stopped. Therefore, when performing 4-cylinder operation, the explosion process is performed in the order of # 1 ⁇ # 2 ⁇ # 4 ⁇ # 5.
  • 6-cylinder operation six explosion strokes are performed at a crank angle of 720 °, so one explosion stroke is performed at intervals of 120 ° crank angle.
  • the # 3 cylinder explosion stroke is stopped, so the crank angle from # 2 cylinder explosion stroke to # 4 cylinder explosion stroke is 240 °.
  • # 5 The crank angle from the cylinder explosion stroke to the cylinder # 1 explosion stroke is 2400 °.
  • the other explosion strokes are performed every 120 ° crank angle.
  • the torque generated in the explosion strokes of the # 2 and # 5 cylinders can be made larger than the torque generated in the explosion strokes of the other cylinders. Therefore, it is possible to prevent the torque from temporarily decreasing after the # 2 cylinder explosion stroke and before the # 4 cylinder explosion stroke. In addition, it is possible to prevent the torque from temporarily decreasing after the explosion stroke of # 5 cylinder and before the explosion stroke of # 1 cylinder. Therefore, the torque can be leveled throughout one cycle, and drivability can be improved.
  • control when the number of cylinders of the internal combustion engine 10 is four will be described. Even when the internal combustion engine 10 has four cylinders, the number of cylinders that perform combustion is variable in accordance with the engine speed and load. In high-speed and high-load operation, combustion occurs in all four cylinders. When the engine speed and load are reduced, control is performed so that the number of combustion cylinders decreases in the order of 3-cylinder operation and 2-cylinder operation.
  • the explosion stroke is performed in the order of # 1 ⁇ # 3 ⁇ # 4 ⁇ # 2.
  • the explosion stroke of # 3 cylinder is stopped. Therefore, when performing 3-cylinder operation, the explosion process is performed in the order of # 1 ⁇ # 4 ⁇ # 2.
  • the torque generated in the explosion stroke of # 1 cylinder can be made larger than the torque generated in the explosion stroke of other cylinders. Therefore, it is possible to prevent the torque from temporarily decreasing after the explosion stroke of # 1 cylinder and before the explosion stroke of # 4 cylinder. Therefore, it is possible to achieve a leveling of torque throughout one cycle, and it is possible to improve the dryness.
  • valve operating apparatus for an internal combustion engine can suppress the deterioration of the driver parity even when the operation is performed with only a specific cylinder. Useful for.

Abstract

この発明の内燃機関(10)の動弁装置(48)は、各気筒が備える吸気弁(36)をモータ(54A,54B)により開閉駆動する内燃機関(10)の動弁装置(48)であって、モータ(54A,54B)により、略等間隔のクランク角毎に爆発行程が行われる気筒群で構成される複数のグループ毎に吸気弁(36)を駆動するようにした。略等間隔のクランク角毎に爆発行程が行われる気筒群で構成される複数のグループ毎に吸気弁(36)を駆動するため、任意のグループに属する気筒のみで運転を行った場合であっても、不規則に爆発行程が行われることが無く、ドライバビリティが悪化してしまうことを抑止できる。

Description

明細書 内燃機関の動弁装置 技術分野
この発明は、 内燃機関の動弁装置に関する。 背景技術
従来、 例えば日本特開 2 0 0 4— 1 8 3 6 1 0号公報に記載されているように、 個々の気筒に設けられた吸気弁、 排気弁を電動モータにより駆動する技術が知られ ている。
しかしながら、 上記従来の技術のように、 各気筒の吸気弁、 排気弁を電動モータ で駆動する方法では、 電動モータまたはモー夕の回転位置を検出するセンサなどに 故障が発生することが懸念される。 この場合、 故障が発生していない気筒のみで内 燃機関の運転を継続すると、 爆発行程が不規則に行われるため、 回転トルクに変動 が生じてしまう。 これにより、 ドライバピリティが悪化したり、 内燃機関の運転を 継続することが困難になるという問題が生じる。
この発明は、 上述のような問題を解決するためになされたものであり、 一部の気 筒のみで内燃機関の運転を行う場合において、 爆発行程を規則的に行うことで、 ド ライバビリティの悪化を抑えた状態で運転を行うことを目的とする。 発明の開示
第 1の発明は、 各気筒が備える弁体を複数のモータにより開閉駆動する内燃機関 の動弁装置であって、 前記複数のモー夕は、 略等間隔のクランク角毎に爆発行程が 行われる気筒群で構成される複数のグループ毎に前記弁体を駆動する内燃機関の動 弁装置である。
略等間隔のクランク角毎に爆発行程が行われる気筒群で構成される複数のグルー プ毎に弁体を駆動するため、 特定のグループに属する気筒のみで運転を行った場合 であっても、 不規則に爆発行程が行われることが無く、 ドライバピリティが悪ィ匕し てしまうことを抑止できる。 第 2の発明は、 上述の改良された内燃機関の動弁装置において、 前記複数のモー 夕のそれぞれは、 1つの前記グループの気筒の前記弁体のみを駆動するものである。 複数のモ一夕のそれぞれは、 1つのグループの気筒の弁体のみを駆動するため、 各モータが 2つ以上のグループの気筒の弁体を駆動することがない。 従って、 特定 のグループに属する気筒の弁体のみを駆動し、 他のグループに属する気筒の弁体を 完全に停止することが可能となる。
第 3の発明は、 上述の改良された内燃機関の動弁装置において、 特定の気筒に異 常が発生した場合は、 少なくとも異常が発生した気筒が属する前記グループの全気 筒の前記弁体の駆動を停止するものである。
特定の気筒に異常が発生した場合は、 少なくとも異常が発生した気筒が属するグ ループの全気筒の弁体の駆動を停止するため、 弁体の駆動が停止されていない他の グループの気筒により略等間隔に爆発行程を行うことが可能となる。 従って、 異常 が発生していない気筒のみで運転を継続することができ、 ドライバピリティの悪ィ匕 を確実に抑止することができる。
'第 4の発明は、 上述の改良された内燃機関の動弁装置において、 前記複数のモー 夕は、 前記グループの構成に複数の選択肢が存在する場合は、 1つのグループに属 する気筒数がより少なくなる前記グループ毎に前記弁体を駆動するものである。
グループの構成に複数の選択肢が存在する場合は、 1つのグループに属する気筒 数がより少なくなるグループ毎に弁体を駆動するため、 異常発生により特定のダル —プの気筒のみで運転を行う場合の出力を低下させることができ、 運転者に異常の 発生を認知させることが可能となる。
第 5の発明は、 上述の改良された内燃機関の動弁装置において、 前記複数のモー 夕は、 前記グループの構成に複数の選択肢が存在する場合は、 1つのグループに属 する気筒数がより多くなる前記グループ毎に前記弁体を駆動するものである。
グループの構成に複数の選択肢が存在する場合は、 1つのグループに属する気筒 数がより多くなるグループ毎に弁体を駆動するため、 異常発生により特定のグルー プの気筒のみで運転を行う場合に出力を高くすることができる。 従って、 通常時と . 同等に運転を行うことが可能となる。
第 6の発明は、 上述の改良された内燃機関の動弁装置において、 減筒運転を行う 場合は、 特定の前記グループに属する全ての気筒の前記弁体のみを駆動し、 他の前 記制御グループに属する気筒の前記弁体の駆動を停止するものである。
減筒運転を行う場合は、 特定のグループに属する全ての気筒の弁体のみを駆動す るため、 略等間隔に爆発行程を行うことができる。 従って、 減筒運転を行う場合に、 ドライノ ピリティが悪化してしまうことを抑止することができる。
第 7の発明は、 上述の改良された内燃機関の動弁装置において、 駆動が停止され た前記弁体を全閉状態とするものである。
駆動が停止された弁体を全閉状態とするため、 運転が停止された気筒で発生する ボンピンダロスを最小限に抑えることが可能となる。 また、 排気通路に温度の低い 空気が流れることを抑えることができるため、 排気浄化触媒の温度低下を抑止する ことが可能となる。
第 8の発明は、 各気筒が備える弁体を複数のモータにより開閉駆動する内燃機関 の動弁装置であって、 '特定の気筒の前記弁体と、 他の気筒の前記弁体とを独立して 駆動可能な動弁手段を備え、 内燃機関の運転状態に応じて、 燃焼が行われる気筒数 が段階的に可変されるものである。
燃焼が行われる気筒数が段階的に可変されるため、 気筒数を増減する過程で滑ら かにトルクを変ィ匕させることができ、 ドライバビリティを向上することが可能とな る。
第 9の発明は、 上述の改良された内燃機関の動弁装置において、 急加速時、 又は 急減速時には、 燃焼が行われる気筒数が不連続に可変されるものである。
急加速時、 又は急減速時には、 燃焼が行われる気筒数が不連続に可変されるため、 燃焼が行われる気筒数を加速要求、 減速要求に応じた気筒数に瞬時に切り換えるこ とが可能となる。
第 1 0の発明は、 上述の改良された内燃機関の動弁装置において、 燃焼が行われ ていない気筒の前記弁体を閉じるものである。
燃焼が行われていない気筒の弁体を閉じることにより、 ボンピンダロスの発生を 抑えることが可能となる。 また、 弁体の不要な動作がなくなるため、 モータの消費 電力を低減することができ、 システムの効率を高めることができる。
第 1 1の発明は、 上述の改良された内燃機関の動弁装置において、 前記動弁手段 は、 前記弁体のリフト量、 作用角又は開閉タイミングを可変するものであり、 燃焼 が行われる気筒数が減少する場合は、 気筒数を減少する直前に吸入空気量が減少す るように前記弁体を駆動するとともに、 気筒数を減少した直後に吸入空気量が増加 するように前記弁体を駆動し、 燃焼が行われる気筒数が増加する場合は、 気筒数を 増加する直前に吸入空気量が増加するように前記弁体を駆動するとともに、 気筒数 を増加した直後に吸入空気量が減少するように前記弁体を駆動するものである。
気筒数を増減するタイミングの直前に吸入空気量を制御し、 且つ、 気筒数を増減 するタイミングの直後に吸入空気量を制御するため、 気筒数を増減するタイミング でトルクに段差が生じてしまうことを抑止できる。 従って、 気筒数が変化する際に ドライバビリティを良好にすることができる。
第 1 2の発明は、 上述の改良された内燃機関の動弁装置において、 前記動弁手段 は、 燃焼を行う気筒数が可変された場合に、 爆発行程が不等間隔で行われる場合は、 燃焼が停止された気筒の直前に爆発行程が行われる気筒の前記弁体のリフト量、 作 用角又は開閉タイミングを可変して、 当該気筒の吸入空気量を他の気筒に対して相 対的に増加させるものである。
爆発行程が不等間隔で行われる場合は、 燃焼が停止された気筒の直前に爆発行程 が行われる気筒の吸入空気量を他の気筒に対して相対的に増加させるため、 爆発行 程の間隔が長くなる区間でトルクが一時的に低下してしまうことを抑止できる。 従 つて、 爆発行程が不等間隔で行われる場合であってもトルクを平準化することがで き、. ドライバビリティを良好にすることができる。
第 1 3の発明は、 上述の改良された内燃機関の動弁装置において、 V型 8気筒の 内燃機関において、 # 3気筒及び # 2気筒の燃焼が停止されて 6気筒運転が行われ る場合は、 # 4気筒及び # 7気筒の吸入空気量を他の気筒に対して相対的に増加さ せるものである。
V型 8気筒の内燃機関では、 # 3気筒の爆発行程の前に # 4気筒の爆発行程が行 われ、 # 2気筒の爆発行程の前に # 7気筒の爆発行程が行われるため、 # 4気筒及 び # 7気筒の吸入空気量を他の気筒に対して相対的に増加させることで、 # 3気筒 及び # 2気筒の燃焼を停止した場合であっても、 トルクを平準ィヒすることが可能と なる。
第 1 4の発明は、 上述の改良された内燃機関の動弁装置において、 V型 6気筒の 内燃機関において、 # 3気筒及び # 6気筒の燃焼が停止されて 4気筒運転が行われ る場合は、 # 2気筒及び # 5気筒の吸入空気量を他の気筒に対して相対的に増加さ せるものである。
V型 6気筒の内燃機関では、 # 3気筒の爆発行程の前に # 2気筒の爆発行程が行 われ、 # 6気筒の爆発行程の前に # 5気筒の爆発行程が行われるため、 # 2気筒及 び # 5気筒の吸入空気量を他の気筒に対して相対的に増加させることで、 # 3気筒 及び # 6気筒の燃焼を停止した場合であっても、 トルクを平準化することが可能と なる。
第 1 5の発明は、 上述の改良された内燃機関の動弁装置において、 直列 4気筒の 内燃機関において、 # 3気筒の燃焼が停止されて 3気筒運転が行われる場合は、 # 1気筒の吸入空気量を他の気筒に対して相対的に増加させるものである。
直列 4気筒の内燃機関では、 # 3気筒の爆発行程の前に # 1気筒の爆発行程が行 われるため、 # 1気筒の吸入空気量を他の気筒に対して相対的に増加させることで、 # 3気筒の燃焼を停止した場合であっても、 トルクを平準化することが可能となる。 図面の簡単な説明
図 1は、 本発明の各実施形態に係る内燃機関の動弁装置を備えたシステムの構成 を示す模式図である。
図 2は、 実施の形態 1において、 1¾気弁および動弁装置の周辺の構成を示す模式 図である。
図 3は、 カムによって吸気弁が駆動される様子を示す模式図である。
図 4は、 内燃機関の機関回転数、 出力トルクと、 カムの駆動モードとの関係を示 す模式図である。
図 5は、 カムシャフトに設けられた 2種類のカムを詳細に示す模式図である。
図 6は、 実施の形態 1における各気筒の制御グループを示す模式図である。
図 7は、 実施の形態 2において、 吸気弁および動弁装置の周辺の構成を示す模式 図である。
図 8は、 実施の形態 2における各気筒の制御グループを示す模式図である。
図 9は、 V型 6気筒で構成される内燃機関において、 一方のバンクにメカ式の可 変動弁機構を設け、 他方のバンクにモー夕による動弁装置を設けた例を示す模式図 である。
図 1 0は、 実施の形態 2において、 吸気弁および動弁装置の周辺の構成を示す模 式図である。
図 1 1は、 実施の形態 3における各気筒の制御グループを示す模式図である。
図 1 2は、 実施の形態 4で行われる制御を示す模式図である。 発明を実施するための最良の形態
本発明をより詳細に説述するために、 この発明のいくつかの実施の形態について 添付の図面に従って説明する。 尚、 各図において共通する要素には、 同一の符号を 付して重複する説明を省略する。 また、 以下の実施の形態によりこの発明が限定さ れるものではない。 実施の形態 1 .
図 1は、 本発明の各実施形態に係る内燃機関の動弁装置を備えたシステムの構成 を示す模式図である。 内燃機関 1 0には吸気通路 1 2および排気通路 1 4が連通し ている。 吸気通路 1 2は、 上流側の端部にエアフィルタ 1 6を備えている。 エアフ ィルタ 1 6には、 吸気温 THA (すなわち外気温) を検出する吸気温センサ 1 8が 組みつけられている。 また、 排気通路 1 4には排気浄化触媒 3 2が配置されている。 エアフィルタ 1 6の下流には、 ェアフロメータ 2 0が配置されている。 ェアフロ メータ 2 0の下流には、 スロットルバルブ 2 2が設けられている。 スロットルバル ブ 2 2の近傍には、 スロットル開度 TAを検出するスロットルセンサ 2 4と、 スロ ットルバルブ 2 2が全閉となることでオンとなるアイドルスィッチ 2 6とが配置さ れている。 スロットルバルブ 2 2の下流には、 サージタンク 2 8が設けられている。 内燃機関 1 0には、 燃焼室内 (筒内) に向けて燃料を噴射する燃料噴射弁 3 0が 設けられている。 なお、 燃料噴射弁 3 0は吸気ポートに向けて燃料を噴射するもの であっても良い。 また、 内燃機関 1 0は、 PJ¾気弁 3 6および排気弁 3 8を備えてい る。 吸気弁 3 6には、 吸気弁 3 6を駆動するための動弁装置 4 8が接続されている。 また、 排気弁 3 8には、 排気弁 3 8を駆動するための動弁装置 5 0が接続されてい る。
また、 燃焼室内に噴霧された燃料に点火するため、 内燃機関 1 0の筒内には点火 プラグが設けられている。 更に、 筒内には、 その内部を往復運動するピストン 4 4 が設けられている。 図 1に示すように、 本実施形態の制御装置は ECU (Electronic Control Unit) 40を備えている。 ECU40には、 上述した各種センサに加え、 内燃機関 10の 運転状態を把握すべく、 ノッキングの発生を検知する KCSセンサや、 スロットル開度、 機関回転数、 排気温度、 冷却水温度、 潤滑油温度、 触媒床温度などを検出するため の各種センサ (不図示) が接続されている。 また、 ECU40には、 上述した燃料 噴射弁 30、 動弁装置 48, 50などが備える各ァクチユエ一タ、 センサが接続さ れている。
図 2は、 吸気弁 36および動弁装置 48の周辺の構成を示す模式図であって、 主 としてシリンダヘッドの周りの構成を示している。 図 2では、 排気弁 38および動 弁装置 50の図示を省略しているが、 P及気側の動弁装置 48と排気側の動弁装置 5 0は基本的に同一の構成を有している。 ここでは、 内燃機関 10の個々の気筒に 2 つの吸気弁 36と 2つの排気弁 38とが備わっているものとする。
本実施形態の内燃機関 10は 4つの気筒 (# 1〜#4) を備えており、 # 1→# 3— #4→# 2の順で爆発行程が行われる。 動弁装置 48は、 2つの装置 (動弁装 置 48A、 動弁装置 48 B) から構成されている。 動弁装置 48 Aは #2気筒およ び # 3気筒が備える吸気弁 36を駆動し、 動弁装置 48 Bは # 1気筒および #4気 筒が備える吸気弁 36を駆動する。
動弁装置 48 Aは、 駆動源としての電動機 (以下、 モータと称する) 54Aと、 モータ 54 Aの回転運動を伝達する伝達機構としてのギヤ列 56 Aと、 ギヤ列から 伝達された回転運動を吸気弁 36の直線的な開閉運動に変換するカムシャフト 58 Aとを備えている。 同様に、 動弁装置 48Bは、 モータ 54B、 ギヤ列 56B、 力 ムシャフト 58 Bを備えている。 ギヤ列 56 Bの構成はギヤ列 56 Aと同様である。 モータ 54 A, 54Bには、 例えば回転速度の制御が可能な D Cブラシレスモ一 夕等が使用される。 モータ 54A, 54Bには、 その回転位置を検出するためのレ ゾルバ、 ロータリーエンコーダ等の位置検出センサが内蔵されている。 カムシャフ ト 58 A、 58Bの外周部には、 カムシャフト 58 A、 58 Bに対して一体回転す るカム駆動ギヤ 60と、 やはりカムシャフト 58A、 58 Bに対して一体回転する カム 62とが設けられている。
ギヤ列 56 Aは、 モータ 54 Aの出力軸 55に取り付けられたモータギヤ 64 A の回転を中間ギヤ 66 Aを介してカムシャフト 58 Aのカム,駆動ギヤ 60に伝達す る。 ギヤ列 5 6 Aはモ一夕ギヤ 6 4 Aとカム駆動ギヤ 6 0とが互いに等しい速度で 回転するように構成されても良いし、 モ一夕ギヤ 6 4 Aに対してカム駆動ギヤ 6 0 を増速又は減速させるように構成されても良い。 同様にして、 ギヤ列 5 6 Bは、 モ —夕 5 4 Bの出力軸に取り付けられたモ一夕ギヤ 6 4 Bの回転を中間ギヤ 6 6 B ( 図 2において不図示) を介してカムシャフト 5 8 Bのカム駆動ギヤ 6 0に伝達する。 図 2に示すように、 カムシャフト 5 8 Aは # 2, # 3気筒の吸気弁 3 6の上部に 配置されており、 カムシャフト 5 8 Aに設けられた 4つのカム 6 2により # 2 , # 3気筒の各吸気弁 3 6が開閉駆動される。 また、 カムシャフト 5 8 Bは 2つに分割 された状態で # 1, # 4気筒の吸気弁 3 6の上部に配置されており、 カムシャフト 5 8 Bに設けられた 4つのカム 6 2により # 1, # 4気筒の各吸気弁 3 6が開閉駆 動される。 2つに分割されたカムシャフト 5 8 Bはカムシャフト 5 8 Aの中心に設 けられた貫通孔に揷通された連結部材 5 8 Cにより接続され、 一体的に回転するよ うに構成されている。 なお、 説明の便宜上、 図 2では、 カムシャフト 5 8 Aと 2つ のカムシャフト 5 8 Bをそれぞれ分離した状態を示している。
図 3は、 カム 6 2によって吸気弁 3 6が駆動される様子を示す模式図である。 力 ム 6 2はカムシャフト 5 8 A, 5 8 Bと同軸の円弧状のベース円 6 2 bの一部を半 径方向外側に向かって膨らませてノーズ 6 2 aを形成した板カムの一種として形成 されている。 カム 6 2のプロファイルはその全周に亘つて負の曲率が生じないよう に、 つまり半径方向外側に向かって凸曲面を描くように設定されている。
図 2に示すように、 吸気弁 3 6はそれぞれ弁軸 3 6 aを備えている。 各カム 6 2 は吸気弁 3 6の弁軸 3 6 aの一端に設けられたリテーナ 6 8と対向する。 各吸気弁 3 6はパルブスプリング (不図示) の圧縮反力によってカム 6 2側に付勢され、 力 ム 6 2のベース円 6 2 bとリテ一ナ 6 8が対向している場合は、 PJ:気ポートのバル ブシート (不図示) に吸気弁 3 6が密着して吸気ポートが閉じられる。
モータ 5 4 A、 5 4 Bの回転運動がギヤ列 5 6 A, 5 6 Bを介してカムシャフト 5 8 A, 5 8 Bに伝達されると、 カムシャフト 5 8 A, 5 8 Bと一体にカム 6 2が 回転し、 ノーズ 6 2 aがリテーナ 6 8を乗り越える間にリテ一ナ 6 8が押し下げら れ、 P気弁 3 6がバルブスプリングに抗して開閉駆動される。
また、 図 3 (A) 及び図 3 (B) は、 カム 6 2の 2つの駆動モードを示している。 カム 6 2の駆動モードには、 モ一夕 5 4 A、 5 4 Bを一方向に連続回転させて図 3 (A) に示すようにカム 6 2を最大リフト位置、 すなわちカム 6 2のノ一ズ 6 2 a が相手側の部品 (この場合はリテ一ナ 6 8 ) と接する位置を越えて正転方向 (図 3
(A) 中の矢印方向) に連続的に回転させる正転駆動モードと、 正転駆動モードに おける最大リフト位置に達する前にモ一夕 5 4 A、 5 4 Bの回転方向を切り換えて 図 3 (B) に示すようにカム 6 2を往復運動させる揺動駆動モードとがある。 正転駆動モ一ドでは、 クランクシャフトの回転に対してカム 6 2の回転速度を可 変することで吸気弁 3 6の作用角が制御される。 また、 揺動駆動モードでは、 カム
6 2の回転速度とともに、 カム 6 2が揺動する角度範囲を制御することで、 吸気弁 3 6の最大リフト量、 作用角を制御することができる。
これにより、 運転状態に応じた最適なリフト量、 作用角で吸気弁 3 6を駆動する ことが可能となる。 図 4は内燃機関 1 0の機関回転数、 出力トルクと、 カム 6 2の 駆動モードとの関係を示す模式図である。 図 4に示すように、 カム 6 2の駆動モ一 ドは、 機関回転数と出力トルクとに関連付けて使い分けられる。 基本的に低回転域 では揺動駆動モードが選択され、 高回転域では正転駆動モードが選択される。 これ により、 低回転域では吸気弁 3 6のリフト量、 作用角を少なくし、 高回転域では吸 気弁 3 6のリフト量、 作用角を大きくする制御が行われ、 機関回転数と出力トルク に応じた最適な空気量を機関筒内に送ることが可能となる。
図 5は、 カムシャフト 5 8 Aに設けられた 2種類のカム 6 2を詳細に示す模式図 である。 図 5に示すように、 カムシャフト 5 8 Aには、 # 2気筒の吸気弁 3 6を駆 動するためのカム 6 2と、 # 3気筒の吸気弁 3 6を駆動するためのカム 6 2とが 1 8 0 ° の角度位置だけ離間して設けられている。 4気筒の内燃機関ではクランク角
7 2 0 ° の間に # 1→# 3→# 4→# 2の順で爆発行程が行われるため、 # 2気筒 と # 3気筒の吸気行程はクランク角の 3 6 0 °毎に行われる。 動弁装置 4 8 Aは、 クランク角 3 6 0 °毎に # 2気筒用のカム 6 2と # 3気筒用のカム 6 2が、 交互に # 2気筒の吸気弁 3 6と # 3気筒の吸気弁 3 6を駆動するようにカムシャフト 5 8 Aを回転または揺動させる。 同様に、 カムシャフト 5 8 Bには # 1気筒、 # 4気筒 の吸気弁 3 6を駆動するための 2種類のカム 6 2が設けられており、 動弁装置 4 8 Bは、 カムシャフト 5 8 Bを回転または揺動させることで、 # 1気筒の吸気弁 3 6 と # 4気筒の吸気弁 3 6を駆動する。
以上のように構成されたシステムにおいて、 動弁装置 4 8 , 5 0に何らかの異常 が発生した場合、 吸気弁 36、 排気弁 38が正常に動作しなくなることが懸念され る。 例えば、 モータ 54A、 54 Bが故障して正常な回転動作、 揺動動作ができな くなつた場合、 モ一夕 54A、 54 Bが備える位置検出センサが故障した場合、 ま たは配線に断線等が発生した場合などには、 特定の気筒の吸気弁 36のみが異常な 動作を行うことが想定される。
4気筒の内燃機関では、 クランク角 180° 毎に # 1→# 3→#4→# 2の順で 爆発行程が行われる。 この場合、 例えば #3気筒に異常が発生して #3気筒の爆発 行程が行われなくなると、 正常時にはクランク角 180° 毎に行われる爆発行程が # 1気筒と #4気筒の間だけクランク角 360° 間隔で行われることとなり、 クラ ンクシャフトの回転にトルク変動が生じてしまう。
動弁装置 48 A, 48 B以外においても、 例えば特定の気筒の燃料噴射弁 30、 点火プラグなどに異常が発生した場合は、 その気筒で爆発行程が行われなくなるた め、 クランクシャフトの回転にトルク変動が生じることが懸念される。
このため、 本実施形態では、 4つの気筒を 2つの制御グループに分けている。 図 6は、 4気筒の場合の制御グループを示す模式図である。 図 6に示すように、 # 1 及び # 4気筒は制御グループ ( 1 ) に属しており、 #2及び # 3気筒は制御ダル一 プ (2) に属している。
制御グループ(1) または制御グループ (2) に属する 2つの気筒は、 1サイク ルでクランクシャフトが 2回転 (720° ) する際に、 同じクランク角の間隔毎 ( ここでは 360° ) に爆発工程が行われる気筒である。 すなわち、 制御グループ ( 1) に属する #1気筒、 #4気筒は、 クランクシャフトが 2回転する際にクランク 角 360° 毎に爆発行程を行い、 制御グループ (2) に属する #2気筒、 #3気筒 は、 クランクシャフトが 2回転する際にクランク角 360° 毎に爆発行程を行う。 そして、 本実施形態のシステムでは、 特定の気筒に故障が発生した場合は、 故障 が発生した気筒の運転を停止するとともに、 故障が発生した気筒が属する制御ダル —プの他の気筒の運転を停止するように制御を行う。 例えば、 #3気筒に故障が発 生した場合は、 #3気筒の運転を停止するとともに、 #3気筒が属する制御グルー プ (2) の他気筒、 すなわち #2気筒の運転も停止する。 そして、 制御グループ ( 1) に属する #1気筒、 #4気筒のみで運転を行う。
故障の発生は、 例えばクランク角速度に対するカム角速度の制御が正常であるか 否かに基づいて判断することができる。 すなわち、 カムシャフトの角速度を vc amと すると、 下式が成立する場合に異常が生じていると判断できる。
ί 1 V ν c am n 0 - V ν c am I 1 > ζ Δ " V ν χ
ここで、 Δνχは内燃機関 1 0のトルク変動、 燃焼不良などの許容レベルに応じて 定められる特性値である。 また、 V c am。はクランクシャフトの角速度 V c r kに応じ て定められる値であり、 速度制御変数を αとすると、 Vc am。ocVc r k+ Q!の関係が ある。 カムシャフトの角速度 Vc amは、 カム角を検出する位置検出センサの出力電圧 に基づいて求められる。
運転を停止する気筒において,は、 動弁装置 4 8 , 5 0により吸気弁 3 6、 排気弁 3 8の駆動が停止される。 例えば、 # 3気筒に故障が発生した場合、 動弁装置 4 8 Aのモ一夕 5 4 Aを停止する。 これにより、 # 2及び # 3気筒の吸気弁 3 6の駆動 が停止される。 また、 運転を停止する気筒においては、 燃料噴射弁 3 0による燃料 噴射、 点火プラグによる着火も停止することが望ましい。 これにより、 異常発生時 に不要な動作が行われることを回避できる。
この際、 制御グ^/一プ (1 ) に属する # 1気筒、 # 4気筒は、 同じクランク角の 間隔毎に爆発工程を行うため、 # 1気筒、 # 4気筒のみで運転を行った場合におい ても、 爆発行程が不規則なタイミングで行われることがない。 従って、 クランクシ ャフトの回転トルクに変動が生じることを抑えることができ、 特定の気筒に異常が 発生した場合であっても、 ドライバピリティの悪ィ匕を最小限に抑えた状態で内燃機 関 1 0を運転することが可能となる。
従って、 異常発生時においても内燃機関 1 0が搭載された車両の運転を引き続き 行うことができる。 なお、 一方の制御グループのみで運転が行われている場合は、 警告ランプ等により運転者にその旨を認知させることが好適である。 また、 一方の 制御グループのみで運転が行われる場合は、 内燃機関 1 0の出力が低下するため、 運転者は異常発生を認知することができる。
特に、 本実施形態では、 各気筒の吸気弁 3 6、 排気弁 3 8を駆動するモータが制 御グループ毎に完全に分離されているため、 1つのモ一夕が双方の制御グループに 属する気筒を駆動することが無い。 このため、 一方の制御グループの気筒の吸気弁 3 6、 排気弁 3 8のみを駆動し、 他方の制御グループの吸気弁 3 6、 排気弁 3 8を 完全に停止することが可能である。 また、 本実施形態のシステムにおいて、 低負荷走行時などに減筒運転を行うこと も可能である。 減筒運転を行う場合は、 制御グループ (1 ) 、 または制御グループ ( 2 ) の一方に属する全ての気筒の運転を停止し、 他方の制御グループに属する気 筒のみで運転を行う。 これにより、 一方の制御グループに属する気筒のみで等しい クランク角毎に爆発行程が行われるため、 減筒運転を行う際にもクランクシャフト のトルク変動を最小限に抑えることが可能となる。 そして、 減筒運転を行うことで、 燃費を向上させることが可能となる。
好適には、 減筒運転を行う場合は、 制御グループ (1 ) 、 制御グループ (2 ) を 交互に作動させることが望ましい。 一方の制御グループに属する気筒のみを長時間 作動させた場合、 減筒運転から通常の全気筒運転に復帰した場合に、 運転が行われ ていなかったグループの気筒が冷却されて、 始動性が低下したり、 フリクションが 増加することが懸念されるためである。 また、 各気筒が個別に触媒を備えている場 合は、 運転が行われていない気筒の触媒温度が低下する場合があるため、 制御ダル ープ (1 ) 、 制御グループ (2 ) を交互に作動させて、 触媒温度を活性温度に維持 することが好適である。
異常発生の場合と減筒運転の場合のいずれにおいても、 制御クル一プ (1 ) 、 制 御グループ (2 ) のうち、 運転を停止しているグループの 2気筒では、 吸気弁 3 6、 排気弁 3 8を全閉状態としておく。 運転を停止している気筒の吸気弁 3 6、 排気弁 3 8が開いていると、 ピストン 4 4の上下動によって吸気通路 1 2、 排気通路 1 4 に空気の流れが生じ、 ボンピンダロスが発生するためである。 及気弁3 6、 排気弁 3 8を全閉状態としておくことで、 吸気通路 1 2、 排気通路 1 4に空気の流れが生 じることがなく、 ボンピンダロスの発生を確実に抑止することができる。 各吸気弁 3 6、 排気弁 3 8にはパルブスプリング荷重が作用しているため、 非通電時のモー 夕 5 4 A, 5 4 Bの保持トルクを小さくしておき、 異常が発生した気筒のモータ 5 4 A, 5 4 Bへの通電を停止することで、 バルブスプリング反力により、 吸気弁 3 6、 排気弁 3 8を閉じることが可能である。
また、 運転を停止している気筒の吸気弁 3 6、 排気弁 3 8を開いておくと、 冷え た空気が排気通路 1 4に流れ、 排気浄ィ匕触媒 3 2の温度が低下してしまう。 運転を 停止している気筒の吸気弁 3 6、 排気弁 1 8を閉じることで、 排気浄化触媒 3 2が 冷却されることを抑止でき、 排気浄化触媒 3 2を確実に活性温度に維持することが 可能となる。
以上説明したように実施の形態 1によれば、 4気筒の内燃機関の各気筒を 2つの 制御グループに分け、 それぞれの制御グループに属する気筒では、 爆発行程が等し いクランク角幅で行われるようにしたため、 特定の気筒に故障が発生した場合、 ま たは減筒運転を行う場合は、 2つの制御グループの一方のみで運転を行うことで、 等しいクランク角毎に爆発行程を行うことが可能となる。 これにより、 故障時また は、 減筒運転を行う場合において、 一部の気筒のみで運転を行う場合においても、 ドライバピリティの悪化を最小限に抑えることが可能となる。 実施の形態 2 .
次に、 本発明の実施の形態 2について説明する。 実施の形態 2は、 6気筒の内燃 機関 1 0に本発明を適用したものである。 図 7は、 実施の形態 2の動弁装置 4 8、 動弁装置 5 0の周辺の構成を示す模式図であって、 主としてシリンダへッド周りの 構成を示している。 本実施形態の内燃機関 1 0は V型の 6気筒で構成され、 # 1、 # 3、 # 5の 3気筒が一方のバンク 7 0に配置され、 # 2、 # 4、 # 6の 3気筒が 他方のパンク 7 2に配置されている。
バンク 7 0、 パンク 7 2は、 吸気弁 3 6を駆動する動弁装置 4 8、 排気弁 3 8を 駆動する動弁装置 5 0をそれぞれ備えている。 ここでは、 動弁装置 4 8の構成を中 心に説明するが、 動弁装置 4 8と動弁装置 5 0は基本的に同一の構成を有している。 ここでは、 内燃機関 1 0の個々の気筒に 2つの吸気弁 3 6と 2つの排気弁 3 8とが 備わっているものとする。
V型 6気筒の内燃機関 1 0では、 # 1→# 2→# 3→# 4— # 5→# 6の順で爆 発行程が行われる。 バンク 7 0に配置された動弁装置 4 8は、 2つの装置 (動弁装 置 4 8 C、 動弁装置 4 8 D) から構成されている。 また、 パンク 7 2に配置された 動弁装置 4 8は、 2つの装置 (動弁装置 4 8 E、 動弁装置 4 8 F) から構成されて いる。 動弁装置 4 8 Cは # 1気筒および # 3気筒が備える吸気弁 3 6を駆動し、 動 弁装置 4 8 D «# 3気筒が備える吸気弁 3 6を駆動する。 また、 動弁装置 4 8 Eは # 2気筒および # 4気筒が備える吸気弁 3 6を駆動し、 動弁装置 4 8 ?は# 6気筒 が備える吸気弁 3 6を駆動する。
実施の形態 1と同様に、 動弁装置 4 8 C , 4 8 D, 4 8 E , 4 8 Fのそれぞれは、 駆動源としてのモ一夕 54C, 54D, 54E, 54 Fを備えている。 バンク 70 において、 モ一夕 54 Cの回転運動はギヤ列 56 Cを介してカムシャフト 58 Cに 伝達される。 同様に、 モータ 54Dの回転運動はギヤ列 56 Dを介してカムシャフ ト 58Dに伝達される。
バンク 72においても同様に、 モー夕 54 Eの回転運動はギヤ列 56 Eを介して カムシャフト 58 Eに伝達される。 同様に、 動弁装置 48 Fにおいて、 モ一夕 54
Fの回転運動はギヤ列 56 Fを介してカムシャフト 58 Fに伝達される。
バンク 70において、 カムシャフト 58 Cは # 1, # 3気筒の吸気弁 36の上部 に配置されており、 カムシャフト 58 Cに設けられた 4つのカム 62により # 1, #3気筒の各吸気弁 36が開閉駆動される。 また、 カムシャフト 58Dは #5気筒 の吸気弁 36の上部に配置されており、 カムシャフト 58 Dに設けられた 2つの力 ム 62により #5気筒の吸気弁 36が開閉駆動される。
バンク 72において、 カムシャフト 58 Eは #2, #4気筒の吸気弁 36の上部 に配置されており、 カムシャフト 58 Eに設けられた 4つのカム 62により #2, #4気筒の各吸気弁 36が開閉駆動される。 また、 カムシャフト 58Fは #6気筒 の吸気弁 36の上部に配置されており、 カムシャフト 58 Fに設けられた 2つの力 ム 62により #6気筒の吸気弁 36が開閉駆動される。
このように構成された本実施形態のシステムにおいても、 正転駆動モードまたは 揺動駆動モードにより各気筒の吸気弁 36が駆動される。 従って、 実施の形態 1と 同様に、 各気筒の吸気弁 36のリフト量、 作用角を自在に可変することが可能であ る。
図 8は、 実施の形態 2における各気筒の制御グループを示す模式図である。 図 8 に示すように、 V型 6気筒の内燃機関 10で構成される本実施形態のシステムでは、 #1, #3, #5気筒が制御グループ (1) に属しており、 #2, #4, #6気筒 は制御ダレープ (2) に属している。 制御グループ (1) または制御グループ (2 ) に属する 3つの気筒は、 1サイクルでクランクシャフトが 2回転 (720° ) す る際に、 同じクランク角の間隔 (ここでは 240°毎) で爆発工程が行われる気筒 である。 すなわち、 制御グループ (1) に属する #1気筒、 # 3気筒、 #5気筒は、 クランクシャフトが 2回転する際にクランク角 240° 毎に爆発行程を行い、 制御 グループ (2) に属する #2気筒、 #4気筒、 #6気筒は、 クランクシャフトが 2 回転する際にクランク角 2 4 0 ° 毎に爆発行程を行う。
そして、 実施の形態 1と同様に、 特定の気筒で故障が発生した場合は、 故障が発 生した気筒の運転を停止するとともに、 故障が発生した気筒が属する制御グループ の他の気筒の運転を停止するように制御を行う。 例えば、 # 3気筒に故障が発生し た場合は、 # 3気筒の運転を停止するとともに、 # 3気筒が属する制御グループ ( 1 ) の他気筒、 すなわち # 1気筒、 # 5気筒の運転も停止する。 そして、 制御ダル —プ (2 ) に属する # 2気筒、 # 4気筒、 # 6気筒のみで運転を行う。
運転を停止する気筒においては、 動弁装置 4 8 , 5 0により吸気弁 3 6、 排気弁 3 8の駆動が停止される。 例えば、 # 3気筒に故障が発生した場合、 動弁装置 4 8 Cのモ一夕 5 4 C及び動弁装置 4 8 Dのモータ 5 4 Dを停止する。 これにより、 # 1、 # 3及び # 5気筒の吸気弁 3 6の駆動が停止される。 また、 実施の形態 1と同 様、 運転を停止する気筒においては、 燃料噴射弁 3 0による燃料噴射、 点火プラグ による着火も停止することが望ましい。 これにより、 異常発生時に不要な動作が行 われることを回避できる。
この際、 制御グループ (2 ) に属する # 2気筒、 # 4気筒、 # 6気筒は、 同じク ランク角の間隔毎に爆発工程を行うため、 # 2気筒、 # 4気筒、 # 6気筒のみで運 転を行った場合においても、 爆発行程が不規則なタイミングで行われることがない。 従って、 クランクシャフトの回転トルクに変動が生じることを抑えることができ、 特定の気筒に異常が発生した場合であっても、 ドライパビリティの悪化を最小限に 抑えた状態で内燃機関 1 0を運転することが可能となる。 これにより、 異常発生時 においても内燃機関 1 0が搭載された車両の運転を引き続き行うことができる。
本実施形態おいても、 各気筒の吸気弁 3 6、 排気弁 3 8を駆動するモ一夕が制御 グループ毎に完全に分離されているため、 1つのモータが双方の制御グループに属 する気筒を駆動することが無い。 このため、 一方の制御グループの気筒の吸気弁 3 6、 排気弁 3 8のみを駆動し、 他方の制御グループの吸気弁 3 6、 排気弁 3 8を完 全に停止することが可能である。
また、 実施の形態 1と同様に、 減筒運転を行う際には、 制御グループ (1 ) 、 ま たは制御グループ (2 ) の一方に属する全ての気筒の運転を停止し、 他方の制御グ ループに属する気筒のみで運転を行う。 これにより、 一方の制御グループに属する 気筒のみで等しいクランク角毎に爆発行程を行うことができるため、 減筒運転を行 う際にもクランクシャフ卜のトルク変動を最小限に抑えることが可能となる。
また、 制御クループ (1 ) 、 制御グループ (2 ) のうち、 運転を停止しているグ ループの気筒では、 P及気弁 3 6、 排気弁 3 8を全閉状態としておく。 これにより、 ボンピンダロスの発生を抑えるとともに、 排気浄化触媒 3 2の温度低下を抑止する ことができる。
図 9は、 V型 6気筒で構成される内燃機関において、 バンク 7 0の各気筒の吸気 弁 3 6、 排気弁 3 8を駆動する機構としてメカ式の可変動弁機構を設け、 バンク 7 2の各気筒の吸気弁 3 6、 排気弁 3 8を図 7と同様に動弁装置 4 8 , 5 0で駆動す る例を示している。 図 9では # 1及び # 2気筒のみを図示しているが、 バンク 7 0 , 7 2における各気筒の配置は図 7と同様である。 バンク 7 0では、 通常のタイミン グべレト 7 4によりカムシャフトを,駆動している。
図 9に示すように、 一方のバンク 7 0の各気筒の吸気弁 3 6、 排気弁 3 8をメカ 式の可変動弁機構で駆動した場合においても、 図 8と同様にして各気筒を 2つの制 御グループ (1 ) , ( 2 ) に分け、 特定の気筒に故障が発生した場合、 または減筒 運転を行う場合は、 2つの制御グループ (1 ) , ( 2 ) の一方のみで運転を行う。 これにより、 メカ式の可変動弁機構に故障が発生した場合は、 動弁装置 4 8, 5 0 によりバンク 7 2に属する制御グループ (2 ) の各気筒の運転を行うことができる。 また、 動弁装置 4 8, 5 0に故障が発生した場合は、 メカ式の可変動弁機構でバン ク 7 0に属する制御グループ (1 ) の各気筒の運転を行うことができる。 これによ り、 一方のバンクの気筒によりクランクシャフトのトルク変動を最小限に抑えた状 態で運転を行うことが可能となる。
全ての気筒の吸気弁 3 6をメカ式の可変動弁機構で駆動した場合、 例えば夕イミ ングベルト 7 4が切れるなどの故障が発生した場合は全気筒が停止してしまうが、 図 9に示すように一方のバンク 7 2の吸気弁 3 6、 排気弁 3 8を動弁装置 4 8 , 5 0で駆動している場合は、 バンク 7 2の気筒を作動させることで運転を継続するこ と力 Sできる。
また、 吸気弁 3 6のリフト量を可変すると作用角が共に可変するタイプのメカ式 の可変動弁機構 (いわゆる位相連成タイプ) では、 メカ機構をミラー配置して V型 の内燃機関の双方のパンクに配置した場合、 ベルト駆動またはチェーン駆動される カムシャフトの回転方向は双方のバンクで同一となるため、 リフト量の変化に伴う 作用角の変化の様子が双方のバンクで異なり、 単純にメカ機構をミラ一配置するの みでは双方のバンクで同一の機能を構成できない場合がある。 図 9の構成によれば、 一方のバンク 7 2では、 動弁装置 4 8により吸気弁 3 6をモータ駆動しているため、 このような弊害の発生を抑止できる。
ところで、 同じクランク角の間隔毎に爆発行程が行われる気筒で制御グループを 構成する際に、 4気筒の機関では、 制御グループを構成する選択肢は実施の形態 1 で説明した 1つのパターンしか存在しない。 しかし、 6気筒の機関では制御グルー プを 3つに分け、 # 1及び # 4気筒を制御グループ (1 ) とし、 # 2及び # 5気筒 を制御グループ (2 ) とし、 # 3及び # 6気筒を制御グループ (3 ) とすることも 可能である。 この場合においても、 各制御グループに属する気筒では、 クランクシ ャフトが 2回転する際に、 同じクランク角の間隔毎 (ここでは 3 6 0 ° ) に爆発行 程が行われる。 従って、 制御グループ(1 ) 〜 (3 ) のいずれか 1つに属する気筒 のみを運転することで、 爆発行程が不規則に行われることを抑止でき、 クランクシ ャフトのトルク変動を抑えることができる。
このうように、 制御グループの構成に複数の選択肢が存在する場合は、 例えば 1 つの制御グループに属する気筒数がより少なくなるように制御グループを構成する。 これにより、 1つの制御グループに属する気筒のみで運転を行った場合に、 出力を 低下させることができ、 異常発生時に運転者に異常を認知させることが可能となる。 また、 制御グループの構成に複数の選択肢が存在する場合は、 1つの制御グルー プに属する気筒数がより多くなるように制御グループを構成しても良い。 これによ り、 1つの制御グループに属する気筒のみで運転を行つた場合に出力を高くするこ とができ、 通常時と同等に運転を行うことが可能となる。
また、 異常発生時には、 1つの制御グループに属する気筒数がより少なくなるよ うに制御グループを構成して、 1つの制御グループに属する気筒のみで運転を行う ことで運転者に異常の発生を認知させ、 その後の再始動時には通常運転に近い運転 を可能とするために、 1つの制御グループに属する気筒数がより多くなるように制 御グループを構成し直して、 異常気筒が属していない制御グループの気筒で運転を 行うようにしても良い。
以上説明したように実施の形態 2によれば、 V型 6気筒の内燃機関 1 0の各気筒 を 2つの制御グループに分け、 それぞれの制御グループに属する気筒では、 爆発行 程が等しいクランク角幅で行われるようにしたため、 特定の気筒に故障が発生した 場合、 または減筒運転を行う場合は、 2つの制御グループの一方のみで運転を行う ことで、 等しいクランク角毎に爆発行程を行うことが可能となる。 これにより、 故 障時または、 減筒運転を行う場合において、 一部の気筒のみで運転を行う場合にお いても、 ドライバピリティの悪化を最小限に抑えることが可能となる。 実施の形態 3 .
次に、 本発明の実施の形態 3について説明する。 実施の形態 3は、 8気筒の内燃 機関 1 0に本発明を適用したものである。 図 1 0は、 実施の形態 3の動弁装置 4 8、 動弁装置 5 0の周辺の構成を示す模式図であって、 主としてシリンダへッド周りの 構成を示している。 本実施形態の内燃機関 1 0は V型の 8気筒で構成され、 # 2、 # 4、 # 6、 # 8の 4気筒が一方のバンク 8 0に配置され、 # 1、 # 3、 # 5、 # 7の 4気筒が他方のバンク 8 2に配置されている。
バンク 8 0、 バンク 8 2は、 吸気弁 3 6を,駆動する動弁装置 4 8、 排気弁 3 8を 駆動する動弁装置 5 0をそれぞれ備えている。 ここでは、 動弁装置 4 8の構成を中 心に説明するが、 動弁装置 4 8と動弁装置 5 0は基本的に同一の構成を有している。 ここでは、 内燃機関 1 0の個々の気筒に 2つの吸気弁 3 6と 2つの排気弁 3 8とが 備わっているものとする。
V型 8気筒の内燃機関 1 0では、 # 1→# 8→# 4→# 3→# 6→# 5→# 7→ # 2の順で爆発行程が行われる。 バンク 8 0に配置された動弁装置 4 8は、 2つの 装置 (動弁装置 4 8 G、 動弁装置 4 8 H) から構成されている。 また、 ノ ンク 8 2 に配置された動弁装置 4 8は、 2つの装置 (動弁装置 4 8 1、 動弁装置 4 8 J ) か ら構成されている。 動弁装置 4 8 0は# 2気筒および # 8気筒が備える吸気弁 3 6 を駆動し、 動弁装置 4 8 H¾# 4気筒および # 6気筒が備える吸気弁 3 6を駆動す る。 また、 動弁装置 4 8 Iは # 1気筒および # 7気筒が備える吸気弁 3 6を駆動し、 動弁装置 4 8 Jは # 3気筒および # 5気筒が備える吸気弁 3 6を駆動する。
実施の形態 1と同様に、 動弁装置 4 8 G, 4 8 H, 4 8 1 , 4 8 Jのそれぞれは、 駆動源としてのモー夕 5 4 G, 5 4 H, 5 4 1, 5 4 Jを備えている。 ノ ンク 8 0 において、 モー夕 5 4 Gの回転運動はギヤ列 5 6 Gを介してカムシャフト 5 8 Gに 伝達される。 同様に、 モータ 5 4 Hの回転運動はギヤ列 5 6 Hを介してカムシャフ ト 58 Hに伝達される。
バンク 82においても同様に、 モータ 54 Iの回転運動はギヤ列 56 Iを介して カムシャフト 58 Iに伝達される。 同様に、 モー夕 54 Jの回転運動はギヤ列 56 Jを介してカムシャフト 58 Jに伝達される。
バンク 80において、 カムシャフト 58 Gは 2つに分割された状態で # 2, #8 気筒の吸気弁 36の上部に配置されており、 カムシャフト 58 Gに設けられた 4つ のカム 62により #2, #8気筒の各吸気弁 36が開閉駆動される。 2つに分割さ れたカムシャフト 58 Gはカムシャフト 58 Hの中心に設けられた貫通孔に揷通さ れた連結部材により接続され、 一体的に回転するように構成されている。 また、 力 ムシャフト 58Hは #4, #6気筒の吸気弁 36の上部に配置されており、 力ムシ ャフト 58Hに設けられた 4つのカム 62により #4, #6気筒の各吸気弁 36が 開閉駆動される。
また、 パンク 82において、 カムシャフト 58 Iは 2つに分割された状態で # 1, # 7気筒の吸気弁 36の上部に配置されており、 カムシャフト 58 Iに設けられた 4つのカム 62により # 1, #7気筒の各吸気弁 36が開閉駆動される。 2つに分 割されたカムシャフト 58 Iはカムシャフト 58 Jの中心に設けられた貫通孔に揷 通された連結部材により接続され、 一体的に回転するように構成されている。 また、 カムシャフト 58 Jは #3, #5気筒の吸気弁 36の上部に配置されており、 カム シャフト 58 Jに設けられた 4つのカム 62により #3, # 5気筒の各吸気弁 36 が開閉駆動される。
このように構成された本実施形態のシステムにおいても、 正転駆動モードまたは 揺動駆動モードにより各気筒の吸気弁 36が駆動される。 従って、 実施の形態 1と 同様に、 各気筒の吸気弁 36のリフト量、 作用角を自在に可変することが可能であ る。
図 1 1は、 実施の形態 3における各気筒の制御グループを示す模式図である。 図 1 1に示すように、 V型 8気筒の内燃機関 10で構成される本実施形態のシステム では、 #1, #4, #6, #7気筒が制御グループ (1) に属しており、 #2, # 3, #5, #8気筒は制御グループ (2) に属している。 制御グループ (1) また は制御グループ (2) に属する 4つの気筒は、 1サイクルでクランクシャフトが 2 回転 (720 ° ) する際に、 同じクランク角の間隔 (ここでは 180° 毎) で爆発 工程が行われる気筒である。 すなわち、 制御グループ (1) に属する #1気筒、 # 4気筒、 #6気筒、 #7気筒は、 クランクシャフトが 2回転する際にクランク角 1 80°毎に爆発行程を行い、 制御グループ (2) に属する #2気筒、 #3気筒、 # 5気筒、 #8気筒は、 クランクシャフトが 2回転する際にクランク角 180° 毎に 爆発行程を行う。
そして、 実施の形態 1と同様に、 特定の気筒で故障が発生した場合は、 故障が発 生した気筒の運転を停止するとともに、 故障が発生した気筒が属する制御グループ の他の気筒の運転を停止するように制御を行う。 例えば、 #3気筒に故障が発生し た場合は、 #3気筒の運転を停止するとともに、 #3気筒が属する制御グループ ( 2) の他気筒、 すなわち #2気筒、 #5気筒、 #8気筒の運転も停止する。 そして、 制御グループ (1) に属する # 1気筒、 #4気筒、 #6気筒、 #7気筒のみで運転 を行う。
運転を停止する気筒においては、 動弁装置 48, 50により吸気弁 36、 排気弁 38の駆動が停止される。 例えば、 #3気筒に故障が発生した場合、 動弁装置 48 Gのモータ 54 G及び動弁装置 48 Jのモー夕 54 Jを停止する。 これにより、 # 2、 # 3、 #5及び # 8気筒の吸気弁 36の駆動が停止される。 また、 実施の形態 1と同様、 運転を停止する気筒においては、 燃料噴射弁 30による燃料噴射、 点火 プラグによる着火も停止することが望ましい。 これにより、 異常発生時に不要な動 作が行われることを回避できる。
この際、 制御グループ(1) に属する #1気筒、 #4気筒、 #6気筒、 #7気筒 は、 同じクランク角の間隔毎に爆発工程を行うため、 # 1気筒、 #4気筒、 #6気 筒、 #7のみで運転を行つた場合においても、 爆発行程が不規則なタイミングで行 われることがない。 従って、 クランクシャフトの回転トルクに変動が生じることを 抑えることができ、 特定の気筒に異常が発生した場合であっても、 ドライノ ビリテ ィの悪ィ匕を最小限に抑えた状態で内燃機関 10を運転することが可能となる。 これ により、 異常発生時においても'内燃機関 10が搭載された車両の運転を引き続き行 うことができる。
本実施形態おいても、 各気筒の吸気弁 36、 排気弁 38を駆動するモータが制御 グループ毎に完全〖こ分離されているため、 1つのモータが双方の制御グループに属 する気筒を駆動することが無い。 このため、 一方の制御グループの気筒の吸気弁 3 6、 排気弁 3 8のみを駆動し、 他方の制御グループの吸気弁 3 6、 排気弁 3 8を完 全に停止することが可能である。
また、 実施の形態 1と同様に、 減筒運転を行う際には、 制御グループ (1 ) 、 ま たは制御グループ (2 ) の一方に属する全ての気筒の運転を停止し、 他方の制御グ ループに属する気筒のみで運転を行う。 これにより、 一方の制御グループに属する 気筒のみで等しいクランク角毎に爆発行程を行うことができるため、 減筒運転を行 う際にもクランクシャフトのトルク変動を最小限に抑えることが可能となる。 また、 制御クループ (1 ) 、 制御グループ (2 ) のうち、 運転を停止しているグ ループの気筒では、 吸気弁 3 6、 排気弁 3 8を全閉状態としておく。 これにより、 ボンビングロスの発生を抑えるとともに、 お気浄化触媒 3 2の温度低下を抑止する ことができる。
8気筒の機関では制御グループを 4つに分け、 # 1及び # 6気筒を制御グループ ( 1 ) とし、 # 8及び # 5気筒を制御グループ (2 ) とし、 # 4及び # 7気筒を制 御グループ (3 ) とし、 # 3及び # 2気筒を制御グループ (4 ) とすることも可能 である。 この場合においても、 各制御グループに属する気筒では、 クランクシャフ トが 2回転する際に、 同じクランク角の間隔毎 (ここでは 3 6 0 ° ) に爆発行程が 行われる。 従って、 制御グループ (1 ) 〜 (4) のいずれか 1つ fc属する気筒のみ を運転することで、 爆発行程が不規則に行われることを抑止でき、 クランクシャフ トのトルク変動を抑えることができる。
以上説明したように実施の形態 3によれば、 V型 8気筒の内燃機関 1 0の各気筒 を 2つの制御グループに分け、 それぞれの制御グループに属する気筒では、 爆発行 程が等しいクランク角幅で行われるようにしたため、 特定の気筒に故障が発生した 場合、 または減筒運転を行う場合は、 2つの制御グループの一方のみで運転を行う ことで、 等しいクランク角毎に爆発行程を行うことが可能となる。 これにより、 故 障時または、 減筒運転を行う場合において、 一部の気筒のみで運転を行う場合にお いても、 ドライバピリティの悪ィ匕を最小限に抑えることが可能となる。
なお、 上述した各実施形態では、 4気筒、 6気筒、 8気筒の内燃機関 1 0に本発 明を適用した例を示したが、 その他の気筒においても、 同様に制御グループを構成 することで、 一部の気筒のみで運転を行った際に等しいクランク角毎に爆発行程を 行うことが可能となる。 各気筒の配置についても、 直列、 V型、 水平対向などの各 配置に適用することが可能である。 実施の形態 4.
次に、 本発明の実施の形態 4について説明する。 実施の形態 4の内燃機関の動弁 装置の構成は、 上述した各実施形態と同様である。 図 1 2は、 実施の形態 4で行わ れる制御を示す模式図である。 図 1 2に示すように、 本実施形態では、 機関回転数 及び負荷に応じて、 燃焼を停止する気筒数が可変される。 内燃機関 1 0が 8気筒の 場合、 高回転、 高負荷域の運転では、 8気筒全てで燃焼が行われる。 そして、 機関 回転数、 負荷が低下するに従って、 6気筒運転、 4気筒運転、 2気筒運転が行われ る。 このように、 機関回転数、 負荷の低下に応じて爆発行程が行われる気筒数を段 階的に低下させることで、 燃焼気筒数を増減させる過程でスムーズにトルクを変化 させることができ、 ドライバピリティを向上することができる。 また、 必要最小限 の気筒のみで燃焼を行うことで、 燃費を向上することができる。 従って、 例えば 8 気筒運転から 4気筒運転に切り換える場合に比べて、 切り換え時のトルク段差を大 幅に低減することができる。
なお、 加減速が急に行われる場合は、 不連続に燃焼気筒数を可変し、 途中の気筒 数をとばして瞬時に目標の気筒数へ切り換えることが好適である。 例えば 4気筒運 転から急加速を行う場合は、 6気筒運転をとばして 8気筒運転に切り換えるように する。
以上のような制御において、 燃焼を行う気筒数が変化するとトルクが若干変化す るため、 気筒数を切り換えるタイミングでは、 内燃機関 1 0のトルクに多少の段差 が生じる場合が想定される。 例えば、 6気筒運転よりも 8気筒運転の方がトルクが 大きいため、 8気筒運転と 6気筒運転の間で気筒数を増減する場合は、 増減のタイ ミングでトルクに若干の段差が生じることが想定される。
このため、 本実施形態では、 気筒数を増減するタイミングの前後で吸気弁 3 6の リフト量、 作用角、 開閉タイミングを制御することで、 気筒数の切り換え時のトル ク段差の発生を抑えるようにしている。 本実施形態の動弁装置の構成は、 上述した 各実施形態と同様であるため、 運転状態に応じた最適なリフト量、 作用角、 開閉夕 ィミングで吸気弁 3 6を駆動することができる。
例えば、 8気筒運転から 6気筒運転に切り換える際には、 8気筒運転の状態で、 機関回転数及び負荷の低下に伴って吸入空気量力 S減少するように吸気弁 3 6を制御 する。 これにより、 6気筒運転に移行する直前の段階でトルクを低下させることが でき、 機関回転数、 負荷が更に低下して 6気筒運転に移行した際に、 トルクに段差 が生じてしまうことを抑止できる。
また、 6気筒運転に移行した直後は、 吸入空気量が通常よりも増加するように吸 気弁 3 6を制御する。 これにより、 6気筒運転に切り換わった直後のトルクを十分 に増加させることができ、 よりトルクの大きい 8気筒運転から 6気筒運転に切り換 わった際にトルクに段差が生じてしまうことを抑止できる。
同様に、 6気筒運転から 8気筒運転へ切り換える際にも、 切り換えタイミングの 直前で吸入空気量を増加させて、 6気筒運転の状態で十分にトルクを増加させてお く。 これにより、 よりトルクの大きい 8気筒運転に切り換えた際にトルクに段差が 生じてしまうことを抑止できる。 また、 8気筒運転に切り換えた直後は、 吸入空気 量が減少するように吸気弁 3 6を制御することで、 よりトルクの大きい 8気筒運転 に切り換えた直後にトルクに段差が生じてしまうことを抑止できる。
加減速を急激に行う場合も、 同様の手法で吸気弁 3 6を制御する。 例えば、 6気 筒運転をとばして 8気筒運転から 4気筒運転へ切り換える際には、 切り換え直前の 8気筒運転の状態で吸入空気量が減少するように吸気弁 3 6を制御し、 4気筒運転 に切り換えた直後は、 P及入空気量が通常よりも増加するように吸気弁 3 6を制御す る。 これにより、 燃焼気筒数を不連続に可変し、 燃焼気筒数が急激に増減した場合 であっても、 トルクに段差が生じることを抑止できる。
以上説明したように実施の形態 4によれば、 気筒数を増減する際には、 切り換え のタイミングに合わせて吸気弁 3 6のリフト量、 作用角、 開閉タイミングを最適に 制御するため、 切り換えの際にトルクに段差が生じてしまうことを抑止できる。 従 つて、 気筒数を切り換える際にドライバピリティが悪化してしまうことを抑止する ことができる。 実施の形態 5 .
次に、 本発明の実施の形態 5について説明する。 実施の形態 5は、 減筒運転を行 つた場合に、 爆発行程が不等間隔で行われる場合は、 PJ:気弁 3 6を制御することに よりトルクを平準化するものである。 実施の形態 4の内燃機関の動弁装置の構成は、 上述した各実施形態と同様であり、 各気筒毎に最適なリフト量、 作用角、 開閉タイ ミングで吸気弁 36を駆動することができる。
最初に、 内燃機関 10の気筒数が 8気筒の場合の制御について説明する。 実施の 形態 3で説明したように、 V型 8気筒の内燃機関 10では、 # 1→#8→#4→# 3→#6→# 5→#7→#2の順で爆発行程が行われる。 8気筒の内燃機関 10で 6気筒運転を行う場合は、 # 3気筒と #2気筒の爆発行程が停止される。 従って、 6気筒運転を行う場合は、 # 1→#8→#4→#6→#5→# 7の順で爆発行程が 行われる。
8気筒運転の場合、 クランク角 720° で 8回の爆発行程が行われるため、 クラ ンク角 90° 間隔で 1回の爆発行程が行われる。 6気筒運転の際には、 #3気筒の 爆発行程が停止されるため、 # 4気筒の爆発行程から # 6気筒の爆発行程までのク ランク角が 180° となる。 また、 #2気筒の爆発行程が停止されるため、 #7気 筒の爆発行程から # 1気筒の爆発行程までのクランク角が 180° となる。 一方、 その他の爆発行程の間では、 クランク角 90° 毎に爆発行程が行われる。
従って、 #4気筒の爆発行程が行われた後、 #6気筒の爆発行程が行われるまで の間に、 一時的にトルクの低下が生じる。 同様に、 #7気筒の爆発行程が行われた 後、 # 1気筒の爆発行程が行われるまでの間に、 一時的にトルクの低下が生じる。 このため、 本実施形態では、 6気筒運転を行う場合に、 #4気筒の吸気工程と # 7気筒の吸気行程では、 一時的に吸気弁 36のリフト量、 又は作用角を増加させ、 または、 吸気弁 36の開閉タイミングを吸入空気量がより多くなるタイミングに可 変する。 これにより、 #4気筒、 #7気筒の吸入空気量を他の気筒よりも多くする ことができる。 そして、 吸入空気量の増加に応じて、 #4気筒、 #7気筒の燃料噴 射量を増量する制御を行う。
これにより、 #4気筒と # 7気筒の爆発行程で発生するトルクを他の気筒の爆発 行程で発生するトルクよりも大きくすることができる。 従って、 #4気筒の爆発行 程が行われた後、 #6気筒の爆発行程が行われるまでの間、 および #7気筒の爆発 行程が行われた後、 # 1気筒の爆発行程が行われるまでの間に、 一時的にトルクが 低下してしまうことを抑止することができ、 トルクの平準化を図ることができる。 これにより、 不等間隔で爆発行程が行われる場合においても、 ドライバピリティを 良好にすることが可能となる。 例えば点火遅角等の方法により特定の気筒のトルクを低減させてトルクを平準化 した場合は、 燃費が悪ィ匕するなどの弊害が想定されるが、 以上のような手法によれ ば、 トルクを増加させて平啊匕するため、 燃費の悪化を抑止することができる。
4気筒運転の場合は、 8気筒のうちの 4気筒の燃焼を停止し、 クランク角 180 。毎に爆発行程が行われるように気筒を停止する。 この場合、 # 1→#4→#6→ # 7の順でクランク角 180°毎に爆発行程が行われるように気筒停止を行う力、 若しくは、 # 8→# 3→# 5→# 2の順で爆発行程が行われるように気筒停止を行 う。 この場合は、 クランク角 180° 毎に等間隔で爆発行程が行われるため、 一時 的なトルクの低下が生じることがなく、 特定の気筒の吸入空気量を増加させる制御 は不要である。
同様に、 2気筒運転を行う場合は、 8気筒のうちの 6気筒の燃焼を停止し、 クラ ンク角 360。 毎に爆発行程が行われるように気筒を停止する。 この場合、 # 1→ #6の 2気筒、 # 8→#5の 2気筒、 #4→#7の 2気筒、 又は #3→#2の 2気 筒のいずれか 2気筒で爆発行程が行われるように気筒停止を行う。 この場合におい ても、 クランク角 360° 毎に等間隔で爆発行程が行われるため、 一時的なトルク の低下が生じることがなく、 特定の気筒の吸入空気量を増加させる制御は不要であ る。
次に、 内燃機関 10の気筒数が 6気筒の場合の制御について説明する。 内燃機関 10が 6気筒の場合も、 機関回転数及び負荷に応じて、 燃焼を行う気筒数が可変さ れる。 高回転、 高負荷域の運転では、 6気筒全てで燃焼が行われる。 そして、 機関 回転数、 負荷が低下すると、 4気筒運転、 3気筒運転、 2気筒運転と順次に燃焼気 筒数が減少するように制御が行われる。
実施の形態 2で説明したように、 V型 6気筒の内燃機関 10では、 # 1→#2→ #3→#4→# 5→# 6の順で爆発行程が行われる。 6気筒の内燃機関 10で 4気 筒運転を行う場合は、 #3気筒と #6気筒の爆発行程が停止される。 従って、 4気 筒運転を行う場合は、 # 1→#2→#4→# 5の順で爆発行程が行われる。
6気筒運転の場合、 クランク角 720° で 6回の爆発行程が行われるため、 クラ ンク角 120° 間隔で 1回の爆発行程が行われる。 4気筒運転の際には、 #3気筒 の爆発行程が停止されるため、 # 2気筒の爆発行程から #4気筒の爆発行程までの クランク角が 240° となる。 また、 #6気筒の爆発行程が停止されるため、 #5 気筒の爆発行程から # 1気筒の爆発行程までのクランク角が 2 4 0 ° となる。 一方、 その他の爆発行程は、 クランク角 1 2 0 °毎に行われる。
従って、 # 2気筒の爆発行程が行われた後、 # 4気筒の爆発行程が行われるまで の間に一時的にトルクの低下が生じ、 また、 # 5気筒の爆発行程が行われた後、 # 1気筒の爆発行程が行われるまでの間に一時的にト レクの低下が生じる。
このため、 6気筒の内燃機関 1 0で 4気筒運転を行う場合は、 # 2気筒及び # 5 気筒の吸気行程で一時的に吸気弁 3 6のリフト量、 又は作用角を増加させ、 または、 吸気弁 3 6の開閉タイミングを吸入空気量がより多くなるタイミングに可変する。 これにより、 # 2気筒、 # 5気筒の吸入空気量を他の気筒よりも多くすることがで きる。 そして、 吸入空気量の増加に応じて、 # 2気筒、 # 5気筒の燃料噴射量を増 量する制御を行う。
これにより、 # 2気筒と # 5気筒の爆発行程で発生するトルクを他の気筒の爆発 行程で発生するトルクよりも大きくすることができる。 従って、 # 2気筒の爆発行 程が行われた後、 # 4気筒の爆発行程が行われるまでの間に、 一時的にトルクが低 下してしまうことを抑止することができる。 また、 # 5気筒の爆発行程が行われた 後、 # 1気筒の爆発行程が行われるまでの間に、 一時的にトルクが低下してしまう ことを抑止することができる。 従って、 1サイクルを通してトルクの平準ィ匕を図る ことができ、 ドライバビリティを良好にすることが可能となる。
6気筒の内燃機関 1 0で 3気筒運転の場合は、 6気筒のうちの 3気筒の燃焼を停 止し、 クランク角 2 4 0 ° 毎に爆発行程が行われるように気筒停止を行う。 この場 合、 一方のバンクで # 1→# 3→# 5の順でクランク角 2 4 0 ° 毎に爆発行程が行 われるように気筒停止を行う力、、 若しくは、 他方のバンクで # 2→# 4→# 6の順 でクランク角 2 4 0 ° 毎に爆発行程が行われるように気筒停止を行う。 この場合は、 クランク角 2 4 0 ° 毎に等間隔で爆発行程が行われるため、 一時的なトルクの低下 が生じることがなく、 特定の気筒の吸入空気量を増加させる制御は不要である。
同様に、 2気筒運転を行う場合は、 6気筒のうちの 4気筒の燃焼を停止し、 クラ ンク角 3 6 0 ° 毎に爆発行程が行われるように気筒を停止する。 この場合、 # 1→ # 4の 2気筒、 # 2→# 5の 2気筒、 又は # 3→# 6の 2気筒のいずれか 2気筒で 爆発行程が行われるように気筒停止を行う。 この場合においても、 クランク角 3 6 0 ° 毎に等間隔で爆発行程が行われるため、 一時的なトルクの低下が生じることが なく、 特定の気筒の吸入空気量を増加させる制御は不要である。
次に、 内燃機関 1 0の気筒数が 4気筒の場合の制御について説明する。 内燃機関 1 0が 4気筒の場合も、 機関回転数及び負荷に応じて、 燃焼を行う気筒数が可変さ れる。 高回転、 高負荷域の運転では、 4気筒全てで燃焼が行われる。 そして、 機関 回転数、 負荷が低下すると、 3気筒運転、 2気筒運転の順で燃焼気筒数が減少する ように制御が行われる。
実施の形態 1で説明したように、 4気筒の内燃機関 1 0では、 # 1→# 3→# 4 →# 2の順で爆発行程が行われる。 4気筒の内燃機関 1 0で 3気筒運転を行う場合 は、 # 3気筒の爆発行程が停止される。 従って、 3気筒運転を行う場合は、 # 1→ # 4→# 2の順で爆発行程が行われる。
4気筒運転の場合、 クランク角 7 2 0 ° で 4回の爆発行程が行われるため、 クラ ンク角 1 8 0 ° 間隔で 1回の爆発行程が行われる。 3気筒運転の際には、 # 3気筒 の爆発行程が停止されるため、 # 1気筒の爆発行程から # 4気筒の爆発行程までの クランク角が 3 6 0 ° となる。 一方、 その他の爆発行程は、 クランク角 1 8 0 ° 毎 に行われる。
従って、 # 1気筒の爆発行程が行われた後、 # 4気筒の爆発行程が行われるまで の間に一時的にトルクの低下が生じる。
このため、 4気筒の内燃機関 1 0で 3気筒運転を行う場合は、 # 1気筒の吸気行 程で一時的に吸気弁 3 6のリフト量、 又は作用角を増加させ、 または、 吸気弁 3 6 の開閉タイミングを吸入空気量がより多くなるタイミングに可変する。 これにより、 # 1気筒の吸入空気量を他の気筒よりも多くすることができる。 そして、 P及入空気 量の増加に応じて # 1気筒の燃料噴射量を増量する制御を行う。
これにより、 # 1気筒の爆発行程で発生するトルクを他の気筒の爆発行程で発生 するトルクよりも大きくすることができる。 従って、 # 1気筒の爆発行程が行われ た後、 # 4気筒の爆発行程が行われるまでの間に、 一時的にトルクが低下してしま うことを抑止することができる。 従って、 1サイクルを通してトルクの平準ィ匕を図 ることができ、 ドライノ ピリティを良好にすることが可能となる。
4気筒の内燃機関 1 0で 2気筒運転を行う場合は、 4気筒のうちの 2気筒の燃焼 を停止し、 クランク角 3 6 0 ° 毎に爆発行程が行われるように気筒停止を行う。 こ の場合、 # 1気筒と # 4気筒でクランク角 3 6 0 °毎に爆発行程が行われるように 気筒停止を行うか、 若しくは、 # 2気筒と # 3気筒でクランク角 3 6 0 ° 毎に爆発 行程が行われるように気筒停止を行う。 この場合は、 クランク角 3 6 0 ° 毎に等間 隔で爆発行程が行われるため、 一時的なトルクの低下が生じることがなく、 特定の 気筒の吸入空気量を増加させる制御は不要である。
以上説明したように実施の形態 5によれば、 減筒運転を行う場合に、 爆発行程が 等間隔に行われない場合は、 爆発行程の間隔が広がる区間の手前で爆発行程が行わ れる気筒の吸入空気量が増加するように、 吸気弁 3 6のリフト量、 作用角、 又は開 閉タイミングを制御するため、 トルクの平準ィ匕を図ることが可能となる。 従って、 減筒運転の際にドライバピリティが悪化してしまうことを抑止できる。 産業上の利用可能性
以上のように、 この発明にかかる内燃機関の動弁装置は、 特定の気筒のみで運転 を行った場合であっても、 ドライバピリティが悪化してしまうことを抑止でき、 多 種の内燃機関に有用である。

Claims

請求の範囲
1 . 各気筒が備える弁体を複数のモー夕により開閉駆動する内燃機関の動弁装置で あって、
前記複数のモータは、 略等間隔のクランク角毎に爆発行程が行われる気筒群で構 成される複数のグループ毎に前記弁体を駆動することを特徴とする内燃機関の動弁 装置。
2 . 前記複数のモータのそれぞれは、 1つの前記グループの気筒の前記弁体のみを 駆動することを特徴とする請求項 1記載の内燃機関の動弁装置。
3 . 特定の気筒に異常が発生した場合は、 少なくとも異常が発生した気筒が属する 前記グループの全気筒の前記弁体の駆動を停止することを特徴とする請求項 1又は 2記載の内燃機関の動弁装置。
4. 前記複数のモー夕は、 前記グループの構成に複数の選択肢が存在する場合は、
1つのグループに属する気筒数がより少なくなる前記グループ毎に前記弁体を駆動 することを特徴とする請求項 1〜 3のいずれかに記載の内燃機関の動弁装置。
5 . 前記複数のモータは、 前記グループの構成に複数の選択肢が存在する場合は、
1つのグループに属する気筒数がより多くなる前記グループ毎に前記弁体を駆動す ることを特徴とする請求項 1〜 3のいずれかに記載の内燃機関の動弁装置。
6 . 減筒運転を行う場合は、 特定の前記グループに属する全ての気筒の前記弁体の みを駆動し、 他の前記制御グループに属する気筒の前記弁体の駆動を停止すること を特徴とする請求項 1又は 2記載の内燃機関の動弁装置。
7 . 駆動が停止された前記弁体を全閉状態とすることを特徴とする請求項 3〜 6の いずれかに記載の内燃機関の動弁装置。
8 . 各気筒が備える弁体を複数のモータにより開閉駆動する内燃機関の動弁装置で あって、
特定の気筒の前記弁体と、 他の気筒の前記弁体とを独立して駆動可能な動弁手段 を備え、
内燃機関の運転状態に応じて、 燃焼が行われる気筒数が段階的に可変されること を特徴とする内燃機関の動弁装置。
9 . 急加速時、 又は急減速時には、 燃焼が行われる気筒数が不連続に可変されるこ とを特徴とする請求項 8記載の内燃機関の動弁装置。
1 0 . 前記動弁手段は、 燃焼が行われていない気筒の前記弁体を閉じることを特徴 とする請求項 8又は 9記載の内燃機関の動弁装置。
1 1 . 前記動弁手段は、 前記弁体のリフト量、 作用角又は開閉タイミングを可変す るものであり、
燃焼が行われる気筒数が減少する場合は、 気筒数を減少する直前に吸入空気量が 減少するように前記弁体を駆動するとともに、 気筒数を減少した直後に吸入空気量 が増加するように前記弁体を駆動し、
燃焼が行われる気筒数が増加する場合は、 気筒数を増加する直前に吸入空気量が 増加するように前記弁体を駆動するとともに、 気筒数を増加した直後に吸入空気量 が減少するように前記弁体を駆動することを特徴とする請求項 8〜: L 0のいずれか に記載の内燃機関の動弁装置。
1 2 . 前記動弁手段は、 燃焼を行う気筒数が可変された場合に、 爆発行程が不等間 隔で行われる場合は、 燃焼が停止された気筒の直前に爆発行程が行われる気筒の前 記弁体のリフト量、 作用角又は開閉タイミングを可変して、 当該気筒の吸入空気量 を他の気筒に対して相対的に増加させることを特徴とする請求項 8〜1 1のいずれ かに記載の内燃機関の動弁装置。
1 3 . V型 8気筒の内燃機関において、 # 3気筒及び # 2気筒の燃焼が停止されて 6気筒運転が行われる場合は、 # 4気筒及び # 7気筒の吸入空気量を他の気筒に対 して相対的に増加させることを特徴とする請求項 1 2記載の内燃機関の動弁装置。
1 4. V型 6気筒の内燃機関において、 # 3気筒及び # 6気筒の燃焼が停止されて 4気筒運転が行われる場合は、 # 2気筒及び # 5気筒の吸入空気量を他の気筒に対 して相対的に増加させることを特徴とする請求項 1 2記載の内燃機関の動弁装置。
1 5 . 直列 4気筒の内燃機関において、 # 3気筒の燃焼が停止されて 3気筒運転が 行われる場合は、 # 1気筒の吸入空気量を他の気筒に対して相対的に増加させるこ とを特徴とする請求項 1 2記載の内燃機関の動弁装置。
PCT/JP2006/303511 2005-02-23 2006-02-20 内燃機関の動弁装置 WO2006098133A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06714650.6A EP1860287B1 (en) 2005-02-23 2006-02-20 Valve train of internal combustion engine
JP2007508051A JP4293273B2 (ja) 2005-02-23 2006-02-20 内燃機関の動弁装置
CN2006800057770A CN101128650B (zh) 2005-02-23 2006-02-20 内燃机的气门传动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005047051 2005-02-23
JP2005-047051 2005-02-23

Publications (1)

Publication Number Publication Date
WO2006098133A1 true WO2006098133A1 (ja) 2006-09-21

Family

ID=36991486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303511 WO2006098133A1 (ja) 2005-02-23 2006-02-20 内燃機関の動弁装置

Country Status (5)

Country Link
US (1) US7823551B2 (ja)
EP (1) EP1860287B1 (ja)
JP (1) JP4293273B2 (ja)
CN (1) CN101128650B (ja)
WO (1) WO2006098133A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104780A1 (en) * 2007-02-28 2008-09-04 Dakota Ltd Gibraltar Camshaft drive
WO2010073369A1 (ja) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 可変動弁機構を有する内燃機関の制御装置
WO2010131325A1 (ja) * 2009-05-11 2010-11-18 トヨタ自動車株式会社 内燃機関の弁停止装置
WO2012073366A1 (ja) * 2010-12-02 2012-06-07 トヨタ自動車株式会社 内燃機関の制御装置
JP2018193954A (ja) * 2017-05-19 2018-12-06 トヨタ自動車株式会社 内燃機関の制御装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215900A (ja) * 2008-03-07 2009-09-24 Toyota Motor Corp 6気筒エンジン
US9689327B2 (en) 2008-07-11 2017-06-27 Tula Technology, Inc. Multi-level skip fire
CN101676538A (zh) * 2008-09-18 2010-03-24 吕文杰 多级排气量发动机
JP5273257B2 (ja) 2009-11-25 2013-08-28 トヨタ自動車株式会社 内燃機関の可変動弁装置
WO2011064845A1 (ja) * 2009-11-25 2011-06-03 トヨタ自動車株式会社 内燃機関の可変動弁装置
FR2965015B1 (fr) * 2010-09-22 2013-04-12 Valeo Sys Controle Moteur Sas Procede de gestion d'une desactivation de cylindres d'un moteur thermique et dispositif de gestion d'un tel moteur
US8839750B2 (en) * 2010-10-22 2014-09-23 GM Global Technology Operations LLC System and method for controlling hydraulic pressure in electro-hydraulic valve actuation systems
US8919097B2 (en) * 2011-05-12 2014-12-30 Ford Global Technologies, Llc Methods and systems for variable displacement engine control
KR101955146B1 (ko) 2011-10-17 2019-03-06 툴라 테크놀로지, 인크. 착화-스킵 엔진 제어 시의 착화 분율 관리
US9169787B2 (en) 2012-05-22 2015-10-27 GM Global Technology Operations LLC Valve control systems and methods for cylinder deactivation and activation transitions
US9567928B2 (en) 2012-08-07 2017-02-14 GM Global Technology Operations LLC System and method for controlling a variable valve actuation system to reduce delay associated with reactivating a cylinder
US8931444B2 (en) * 2012-11-20 2015-01-13 Ford Global Technologies, Llc Head packaging for cylinder deactivation
FR2998923B1 (fr) * 2012-12-04 2014-12-12 Peugeot Citroen Automobiles Sa Procede de coupure selective de l'injection d'un ou plusieurs cylindres d'un moteur thermique et vehicule automobile correspondant
US9399964B2 (en) 2014-11-10 2016-07-26 Tula Technology, Inc. Multi-level skip fire
US10400691B2 (en) 2013-10-09 2019-09-03 Tula Technology, Inc. Noise/vibration reduction control
US11236689B2 (en) 2014-03-13 2022-02-01 Tula Technology, Inc. Skip fire valve control
US10662883B2 (en) 2014-05-12 2020-05-26 Tula Technology, Inc. Internal combustion engine air charge control
US10233796B2 (en) * 2014-05-12 2019-03-19 Tula Technology, Inc. Internal combustion engine using variable valve lift and skip fire control
CN106429228A (zh) * 2016-11-08 2017-02-22 天奇自动化工程股份有限公司 滑橇解锁装置
US10493836B2 (en) 2018-02-12 2019-12-03 Tula Technology, Inc. Noise/vibration control using variable spring absorber
FR3083267B1 (fr) * 2018-06-27 2021-06-11 Renault Sas Desactivation de cylindres de moteur thermique
CN114337104A (zh) * 2019-07-15 2022-04-12 华为技术有限公司 油冷电机控制装置和方法
FR3107306B1 (fr) * 2020-02-17 2023-04-21 Caurraze Innovation Système d’assistance électrique d’un moteur à combustion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261636A (en) * 1975-11-17 1977-05-21 Nissan Motor Co Ltd Change-over control device for cylinders with fuel supply
JPH1047028A (ja) * 1996-07-31 1998-02-17 Suzuki Motor Corp 電磁弁型エンジンの制御装置
JP2001329874A (ja) * 2000-05-23 2001-11-30 Toyota Motor Corp 内燃機関
JP2003170764A (ja) * 2001-12-04 2003-06-17 Toyota Motor Corp 車両のエンジン制御装置
JP2003254103A (ja) * 2002-03-04 2003-09-10 Toyota Motor Corp 車両用制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646010B2 (ja) 1988-07-14 1994-06-15 本田技研工業株式会社 スロットル制御装置
DE19825964A1 (de) 1998-06-10 1999-12-16 Schaeffler Waelzlager Ohg Ventiltrieb einer Brennkraftmaschine
JP2000337183A (ja) 1999-05-24 2000-12-05 Honda Motor Co Ltd 気筒休止エンジンの制御装置
DE19963638A1 (de) * 1999-12-29 2001-07-12 Bosch Gmbh Robert Überwachung der Funktion einer Zylinderabschaltung bei mehrzylindrigen Verbrennungsmotoren
JP2002309977A (ja) 2001-04-13 2002-10-23 Nissan Motor Co Ltd 多気筒エンジンの制御装置
JP4158507B2 (ja) 2002-12-05 2008-10-01 トヨタ自動車株式会社 内燃機関の弁駆動システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261636A (en) * 1975-11-17 1977-05-21 Nissan Motor Co Ltd Change-over control device for cylinders with fuel supply
JPH1047028A (ja) * 1996-07-31 1998-02-17 Suzuki Motor Corp 電磁弁型エンジンの制御装置
JP2001329874A (ja) * 2000-05-23 2001-11-30 Toyota Motor Corp 内燃機関
JP2003170764A (ja) * 2001-12-04 2003-06-17 Toyota Motor Corp 車両のエンジン制御装置
JP2003254103A (ja) * 2002-03-04 2003-09-10 Toyota Motor Corp 車両用制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1860287A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104780A1 (en) * 2007-02-28 2008-09-04 Dakota Ltd Gibraltar Camshaft drive
WO2010073369A1 (ja) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 可変動弁機構を有する内燃機関の制御装置
US8285469B2 (en) 2008-12-26 2012-10-09 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine including variable valve operating mechanism
WO2010131325A1 (ja) * 2009-05-11 2010-11-18 トヨタ自動車株式会社 内燃機関の弁停止装置
JP5110204B2 (ja) * 2009-05-11 2012-12-26 トヨタ自動車株式会社 内燃機関の弁停止装置
US8522735B2 (en) 2009-05-11 2013-09-03 Toyota Jidosha Kabushiki Kaisha Valve stopping device for internal combustion engine
WO2012073366A1 (ja) * 2010-12-02 2012-06-07 トヨタ自動車株式会社 内燃機関の制御装置
US8826891B2 (en) 2010-12-02 2014-09-09 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP2018193954A (ja) * 2017-05-19 2018-12-06 トヨタ自動車株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
EP1860287A1 (en) 2007-11-28
CN101128650A (zh) 2008-02-20
JP4293273B2 (ja) 2009-07-08
US7823551B2 (en) 2010-11-02
EP1860287A4 (en) 2008-11-12
CN101128650B (zh) 2012-01-25
US20090277407A1 (en) 2009-11-12
JPWO2006098133A1 (ja) 2008-08-21
EP1860287B1 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP4293273B2 (ja) 内燃機関の動弁装置
US7890244B2 (en) Internal combustion engine
JP4483759B2 (ja) 内燃機関の制御装置
US7603223B2 (en) Apparatus for adjusting valve timing when starting internal combustion engine
US10196945B2 (en) Valve opening and closing timing control apparatus
CN101321931A (zh) 可变阀正时设备
WO2006118063A1 (ja) 内燃機関の動弁装置
CN104246183A (zh) 可变气门机构的控制装置
JP2008057348A (ja) 可変バルブタイミング装置
US20100170461A1 (en) Variable valve timing apparatus
JP2015075052A (ja) 内燃機関
JP2008215303A (ja) 内燃機関の制御装置
JP5038662B2 (ja) 可変バルブタイミング装置
JP2009264231A (ja) バルブタイミング調整装置用のロック制御装置、及びロック制御システム
JP2007309266A (ja) 可変動弁機構を備えた内燃機関の制御装置
JP4094767B2 (ja) 内燃機関の可変動弁装置
JP2006220108A (ja) 内燃機関の可変動弁機構
JP2007292045A (ja) 内燃機関の制御装置
JP4720642B2 (ja) 可変バルブタイミング装置
JP4594283B2 (ja) 開弁特性可変型内燃機関
JP2021110259A (ja) 内燃機関の気筒休止装置
JPH07324607A (ja) 弁開閉時期制御装置
JP2010101251A (ja) カム角センサ
JP2007262993A (ja) 内燃機関の制御装置
JPH10280918A (ja) 内燃機関の動弁機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11794573

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007508051

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680005777.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006714650

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006714650

Country of ref document: EP