WO2010073369A1 - 可変動弁機構を有する内燃機関の制御装置 - Google Patents

可変動弁機構を有する内燃機関の制御装置 Download PDF

Info

Publication number
WO2010073369A1
WO2010073369A1 PCT/JP2008/073736 JP2008073736W WO2010073369A1 WO 2010073369 A1 WO2010073369 A1 WO 2010073369A1 JP 2008073736 W JP2008073736 W JP 2008073736W WO 2010073369 A1 WO2010073369 A1 WO 2010073369A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
cylinders
abnormal
abnormality
group
Prior art date
Application number
PCT/JP2008/073736
Other languages
English (en)
French (fr)
Inventor
啓介 佐野
和弘 若尾
貴志 錦織
剛 渡辺
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2008/073736 priority Critical patent/WO2010073369A1/ja
Priority to CN2008801066210A priority patent/CN101861453B/zh
Priority to US12/677,640 priority patent/US8285469B2/en
Priority to JP2010508138A priority patent/JP5099216B2/ja
Priority to EP08876900.5A priority patent/EP2372132B1/en
Publication of WO2010073369A1 publication Critical patent/WO2010073369A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/06Cutting-out cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/04Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling rendering engines inoperative or idling, e.g. caused by abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • F02D2041/0012Controlling intake air for engines with variable valve actuation with selective deactivation of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for an internal combustion engine having a variable valve mechanism.
  • Patent Document 1 discloses a failure determination device for an internal combustion engine including a variable valve mechanism that can stop the operation of an intake / exhaust valve in a closed state.
  • this conventional failure determination apparatus the presence or absence of misfire of the internal combustion engine is determined for each cylinder based on the rotational fluctuation of the crankshaft.
  • Patent Literature 2 discloses a misfire determination method for a specific cylinder in a multi-cylinder engine.
  • this conventional misfire determination method when it is determined that a misfire has occurred in any of the cylinders based on predetermined misfire information (output of the O2 sensor arranged downstream of the exhaust manifold assembly portion), The fuel supply is stopped sequentially for each cylinder. Then, when misfire information is no longer detected due to such sequential stop of fuel supply, it is determined that misfire has occurred in the cylinder whose fuel supply has been stopped.
  • predetermined misfire information output of the O2 sensor arranged downstream of the exhaust manifold assembly portion
  • Patent Document 1 described above describes that the presence or absence of misfire is determined for each cylinder based on the rotational fluctuation of the crankshaft.
  • it is difficult to accurately determine which cylinder the crankshaft rotational fluctuation caused by misfiring originates. is there. *
  • the present invention has been made to solve the above-described problems, and is capable of accurately and efficiently identifying a cylinder in which an abnormality has occurred during operation while preventing deterioration of the catalyst. It aims at providing the control apparatus of the internal combustion engine which has this.
  • a first invention is a control device for an internal combustion engine having a variable valve mechanism, A fuel injection valve capable of injecting fuel for each cylinder; a variable valve mechanism capable of stopping at least one of an intake valve and an exhaust valve independently in a closed state for each cylinder; and operating an internal combustion engine
  • the abnormality detection means for acquiring an abnormality evaluation index value and detecting an abnormality occurring in at least one cylinder of the internal combustion engine based on the abnormality evaluation index value.
  • First cylinder deactivation execution means for deactivating a cylinder for performing deactivation of the fuel supply and deactivation of the valve in a closed state for a first partial cylinder including two cylinders; Second cylinder deactivation execution means for performing deactivation of a cylinder after changing the deactivation cylinder for a second partial cylinder including at least one cylinder after the cylinder deactivation by the first cylinder deactivation execution means; And an abnormal cylinder specifying means for specifying an abnormal cylinder based on a change in the abnormality evaluation index value accompanying a change of the deactivated cylinder by the cylinder deactivation execution means.
  • the second invention is the first invention, wherein
  • the second cylinder deactivation execution means includes a deactivation cylinder number decrease execution means for decreasing the number of deactivation cylinders as the abnormality occurrence cylinder is identified.
  • the third invention is the first or second invention, wherein
  • the first cylinder deactivation execution means selects one or both of two group cylinders whose deactivation interval or explosion interval is equal or closest to the equal interval as the first partial cylinder, and performs cylinder deactivation.
  • the abnormal cylinder specifying means determines whether one or both of the group cylinders includes an abnormal cylinder based on the abnormality evaluation index value when the cylinder is deactivated for the first partial cylinder.
  • the second cylinder deactivation execution means executes a cylinder deactivation by selecting a part of the group cylinders determined to include an abnormal cylinder as the second partial cylinder,
  • the abnormal cylinder specifying means is based on the abnormality evaluation index value at the time of cylinder deactivation for the second partial cylinder, in the group cylinder determined to include an abnormal cylinder,
  • a group cylinder abnormality specifying means for specifying an abnormality occurrence cylinder is included.
  • the second cylinder deactivation execution means includes a plurality of other group cylinders whose deactivation intervals or explosion intervals are equal or closest to each other in the group cylinders that are determined to include abnormal cylinders. If so, at least one of the other group cylinders is selected as the second partial cylinder and cylinder deactivation is performed. Whether the abnormal cylinder specifying means includes an abnormal cylinder in at least one of the other group cylinders based on the abnormality evaluation index value when the cylinder is deactivated for the second partial cylinder.
  • Second abnormal group cylinder discrimination means for discriminating whether or not, The second cylinder deactivation execution means selects a partial cylinder in the other group cylinder determined to include an abnormal cylinder as a third partial cylinder, and performs a cylinder deactivation.
  • the in-group cylinder abnormality specifying means determines that the other group in which an abnormality has occurred is included based on the abnormality evaluation index value when the cylinder is deactivated for the third partial cylinder.
  • An abnormality occurrence cylinder is specified in the cylinder.
  • the fifth invention is the first or second invention, wherein
  • the internal combustion engine is an internal combustion engine having four cylinders
  • the first cylinder deactivation execution means selects one of the two group cylinders consisting of two cylinders whose deactivation interval is equal or closest to the equal interval as the first partial cylinder, and performs cylinder deactivation.
  • the abnormal cylinder specifying means determines which one of the group cylinders includes an abnormal cylinder based on the abnormality evaluation index value when the cylinder is deactivated for the first partial cylinder. Including abnormal group cylinder discrimination means for
  • the second cylinder deactivation execution means selects any one of the group cylinders determined to include an abnormal cylinder as the second partial cylinder, and performs cylinder deactivation.
  • the abnormal cylinder specifying means is based on the abnormality evaluation index value at the time of cylinder deactivation for the second partial cylinder, in the group cylinder determined to include an abnormal cylinder, A group cylinder abnormality specifying means for specifying an abnormality occurrence cylinder is included.
  • the sixth invention is the first or second invention, wherein
  • the internal combustion engine is an internal combustion engine having four cylinders
  • the first cylinder deactivation execution means sequentially selects two group cylinders composed of two cylinders whose deactivation interval is equal or closest to the equal interval as the first partial cylinder, and performs cylinder deactivation.
  • the abnormal cylinder specifying means determines whether one or both of the group cylinders includes an abnormal cylinder based on the abnormality evaluation index value when the cylinder is deactivated for the first partial cylinder. Including an abnormal group cylinder discriminating means for discriminating
  • the second cylinder deactivation execution means selects three cylinders other than any one of the group cylinders determined to include an abnormal cylinder as the second partial cylinder, and deactivates the cylinder.
  • the abnormal cylinder specifying means is based on the abnormality evaluation index value at the time of cylinder deactivation for the second partial cylinder, in the group cylinder determined to include an abnormal cylinder, A group cylinder abnormality specifying means for specifying an abnormality occurrence cylinder is included.
  • the seventh invention is the first or second invention, wherein
  • the internal combustion engine is an internal combustion engine having six cylinders
  • the first cylinder deactivation execution means selects one of two group cylinders consisting of three cylinders whose explosion intervals are equal or closest to each other as the first partial cylinder, and performs cylinder deactivation.
  • the abnormal cylinder specifying means determines which one of the group cylinders includes an abnormal cylinder based on the abnormality evaluation index value when the cylinder is deactivated for the first partial cylinder.
  • the second cylinder deactivation execution means includes two cylinders included in the other group cylinders with respect to at least one of the three other group cylinders including two cylinders whose explosion intervals are equal or closest to each other.
  • the abnormal cylinder specifying means determines whether or not an abnormal cylinder is included in the other group cylinder based on the abnormality evaluation index value when the cylinder is deactivated for the second partial cylinder. And an in-group cylinder abnormality specifying means for specifying an abnormality occurrence cylinder based on the result of the determination and the determination result by the abnormal group cylinder determining means.
  • the eighth invention is the first or second invention, wherein
  • the internal combustion engine is an internal combustion engine having six cylinders
  • the first cylinder deactivation execution means sequentially selects two group cylinders composed of three cylinders whose explosion intervals are equal or closest to each other as the first partial cylinder, and performs cylinder deactivation.
  • the abnormal cylinder specifying means determines whether one or both of the group cylinders includes an abnormal cylinder based on the abnormality evaluation index value when the cylinder is deactivated for the first partial cylinder.
  • the second cylinder deactivation execution means has four cylinders other than the two cylinders included in the other group cylinders with respect to three other group cylinders composed of two cylinders whose explosion intervals are equal or closest to each other. Are sequentially selected as the second partial cylinder to perform cylinder deactivation, When it is determined that the abnormal cylinder is included in only one of the group cylinders, the abnormal cylinder specifying unit is configured to detect the abnormality when the cylinder is deactivated for the second partial cylinder.
  • a group cylinder that identifies an abnormal cylinder based on a result of determining whether or not an abnormal cylinder is included in the other group cylinder based on a value and a determination result by the abnormal group cylinder determination means
  • An abnormality specifying means is included.
  • the ninth invention is the eighth invention, wherein The second cylinder deactivation execution means further selects any one of the other group cylinders determined to include an abnormal cylinder as a third partial cylinder and performs cylinder deactivation.
  • the in-group cylinder abnormality specifying means determines that an abnormality occurrence cylinder is included in both of the group cylinders in the other group cylinder determined to contain an abnormality occurrence cylinder.
  • the abnormality occurrence cylinder is specified based on the abnormality evaluation index value when the cylinder is deactivated for the third partial cylinder.
  • the tenth invention is the first or second invention, wherein
  • the internal combustion engine is an internal combustion engine having eight cylinders
  • the first cylinder deactivation execution means selects one of two group cylinders consisting of four cylinders whose deactivation interval is equal or closest to the equal interval as the first partial cylinder, and performs cylinder deactivation.
  • the abnormal cylinder specifying means determines which one of the group cylinders includes an abnormal cylinder based on the abnormality evaluation index value when the cylinder is deactivated for the first partial cylinder.
  • the second cylinder deactivation execution means includes two other group cylinders composed of two cylinders whose deactivation intervals are equal or closest to each other in the group cylinders that are determined to include abnormal cylinders.
  • the abnormal cylinder specifying means determines whether any of the other group cylinders includes an abnormal cylinder based on the abnormality evaluation index value when the cylinder is deactivated for the second partial cylinder.
  • a second abnormal group cylinder discriminating means for discriminating The second cylinder deactivation execution means further selects any one of the other group cylinders determined to include an abnormal cylinder as a third partial cylinder and performs cylinder deactivation.
  • the abnormal cylinder specifying means is based on the abnormality evaluation index value when the cylinder is deactivated with respect to the third partial cylinder in the other group cylinders that are determined to include an abnormal cylinder.
  • an in-group cylinder abnormality specifying means for specifying an abnormality occurrence cylinder.
  • the eleventh invention is the first or second invention, wherein
  • the internal combustion engine is an internal combustion engine having eight cylinders
  • the first cylinder deactivation execution means sequentially selects two group cylinders consisting of four cylinders whose deactivation interval is equal or closest to the equal interval as the first partial cylinder, and performs cylinder deactivation.
  • the abnormal cylinder specifying means determines whether one or both of the group cylinders includes an abnormal cylinder based on the abnormality evaluation index value when the cylinder is deactivated for the first partial cylinder.
  • the second cylinder deactivation execution means includes four other group cylinders comprising two cylinders whose deactivation intervals are equal or closest to each other in the group cylinders that are determined to include abnormal cylinders. 4 cylinders other than the two cylinders included in the other group cylinders are sequentially selected as the second partial cylinder for at least two of the cylinders, and cylinder deactivation is performed.
  • the abnormal cylinder specifying means is included in the group cylinder determined to include an abnormal cylinder based on the abnormality evaluation index value at the time of cylinder deactivation for the second partial cylinder.
  • a second abnormal group cylinder determining means for determining whether or not an abnormal cylinder is included in at least one of the two other group cylinders;
  • the second cylinder deactivation execution means selects any one of the other group cylinders determined to include an abnormal cylinder as a third partial cylinder, and performs cylinder deactivation.
  • the abnormal cylinder specifying means is based on the abnormality evaluation index value at the time of cylinder deactivation for the third partial cylinder in the other group cylinders that are determined to include abnormal cylinders.
  • a group cylinder abnormality specifying means for specifying the abnormality occurrence cylinder.
  • a twelfth aspect of the invention is any one of the first to eleventh aspects of the invention,
  • a fuel cut request determining means for determining whether or not there is a request for executing a fuel cut;
  • Third cylinder deactivation execution means for performing cylinder deactivation while sequentially changing the predetermined one cylinder when the fuel cut execution request is recognized
  • the abnormal cylinder specifying means includes second abnormal cylinder specifying means for specifying an abnormal cylinder based on the abnormality evaluation index value at the time of cylinder deactivation by the third cylinder deactivation execution unit.
  • the abnormality detection means is means for detecting the abnormality based on a deviation amount of the air-fuel ratio with respect to a predetermined determination value using the air-fuel ratio of the exhaust gas flowing through the exhaust passage as the abnormality evaluation index value.
  • the control device for the internal combustion engine corrects the air-fuel ratio of the exhaust gas exhausted from the abnormality occurrence cylinder specified by the second abnormal cylinder specifying means so that the abnormality detected by the abnormality detection means is eliminated. It further comprises a correction means.
  • the abnormality detection means includes First abnormality evaluation index value determination means for determining whether or not the crankshaft rotation fluctuation is the abnormality evaluation index value and determining whether or not the crankshaft rotation fluctuation is equal to or greater than a predetermined determination value; A second abnormality evaluation index value determining means for determining whether the air-fuel ratio of the exhaust gas flowing through the exhaust passage is the abnormality evaluation index value and determining whether the deviation amount of the air-fuel ratio is equal to or greater than a predetermined determination value; The control device for the internal combustion engine determines that the abnormality is misfire when the crankshaft rotational fluctuation is equal to or greater than the determination value, and the crankshaft rotational fluctuation is not equal to or greater than the determination value.
  • the apparatus further comprises abnormality content specifying means for determining that the abnormality is an air-fuel ratio imbalance when the deviation amount of the air-fuel ratio is greater than or equal to the determination value.
  • the abnormality evaluation index value can change as the idle cylinder is changed. For example, when some cylinders including an abnormality occurrence cylinder are deactivated, the abnormality evaluation index value does not indicate an abnormality of the internal combustion engine.
  • the cylinder that first performs cylinder deactivation is the first partial cylinder including at least two cylinders. Accordingly, it is possible to reduce the number of cylinder deactivations required for specifying the malfunctioning cylinder and to reduce the cylinder deactivation time as compared with the case where cylinder deactivation is sequentially performed for each cylinder. Further, in the present invention, the abnormality occurrence cylinder is specified based on the change in the abnormality evaluation index value accompanying the change of the deactivated cylinder.
  • the abnormality detection means itself has an accuracy sufficient to detect that an abnormality has occurred in any cylinder of the internal combustion engine, and without requiring high detection accuracy from the abnormality detection means.
  • An abnormal cylinder can be specified.
  • the operation of the valve is deactivated while the fuel supply is deactivated, so that air is supplied from the deactivated cylinder to the catalyst when the cylinder is deactivated to identify the abnormal cylinder. Can be prevented, and deterioration of the catalyst can be prevented.
  • the number of deactivated cylinders is reduced as the specification of abnormal cylinders progresses. Therefore, it is possible to reduce the time for only one cylinder to be deactivated. As a result, it is possible to identify the abnormal cylinder while suppressing the deterioration of the vibration noise of the internal combustion engine.
  • cylinder deactivation is first performed for one or both of the two group cylinders, and the presence / absence of an abnormal cylinder is determined for each group cylinder. Then, the abnormality-occurring cylinder is identified in the group cylinder determined to include the abnormality-occurring cylinder. For this reason, according to the present invention, it is possible to efficiently reduce the number of cylinder deactivations required for specifying the cylinder in which an abnormality has occurred. Further, in the present invention, the group cylinder is composed of cylinders whose pause intervals or explosion intervals are equal or closest to each other. For this reason, according to the present invention, it is possible to identify an abnormal cylinder while suitably suppressing deterioration of vibration noise during cylinder deactivation.
  • the fourth aspect of the present invention there are a plurality of other group cylinders in which the pause interval or the explosion interval is equal or closest to the equal interval in the group cylinder determined to include the abnormal cylinder.
  • cylinder deactivation is executed for at least one of the other group cylinders.
  • the abnormality occurrence cylinder is identified in the other group cylinders that are determined to include the abnormality occurrence cylinder. Therefore, according to the present invention, in an internal combustion engine having a large number of cylinders, such as a 6-cylinder type or an 8-cylinder type, an abnormal cylinder can be identified efficiently while suitably suppressing deterioration of vibration noise during cylinder deactivation. Is possible.
  • the fifth aspect of the present invention when it is assumed that an abnormality occurs in only one of the cylinders in the four-cylinder internal combustion engine, it is possible to efficiently suppress the deterioration of vibration noise during cylinder deactivation. It is possible to identify abnormal cylinders well.
  • an abnormal cylinder is efficiently suppressed while suppressing deterioration of vibration noise during cylinder deactivation. Can be specified.
  • the efficiency of the vibration noise is preferably suppressed while suppressing deterioration of vibration noise during cylinder deactivation. It is possible to identify abnormal cylinders well. More specifically, according to the present invention, the result of determining whether or not an abnormal cylinder is included in another group cylinder and the result of determination by the abnormal group cylinder determining means (that is, which of the above group cylinders) Therefore, it is possible to identify an abnormal cylinder without the need for single cylinder operation. It becomes.
  • the eighth aspect of the invention when it is assumed that an abnormality occurs in a plurality of cylinders of a 6-cylinder internal combustion engine, it can be determined that only one of the group cylinders includes the abnormality occurrence cylinder. Thus, it is possible to efficiently identify an abnormal cylinder without requiring single-cylinder operation while suitably suppressing deterioration of vibration noise during cylinder deactivation.
  • the ninth aspect when it is assumed that an abnormality occurs in a plurality of cylinders of a 6-cylinder internal combustion engine, when it can be determined that an abnormality occurrence cylinder is included in both of the group cylinders, It is possible to efficiently identify an abnormal cylinder while suitably suppressing deterioration of vibration noise during cylinder deactivation.
  • the deterioration of vibration noise at the time of cylinder deactivation is suitably suppressed and the efficiency is improved. It is possible to identify abnormal cylinders well.
  • the abnormal cylinder when it is assumed that an abnormality occurs in a plurality of cylinders of an 8-cylinder internal combustion engine, the abnormal cylinder is efficiently suppressed while suitably suppressing the deterioration of vibration noise during cylinder deactivation. Can be specified.
  • the twelfth aspect of the invention it is possible to identify an abnormal cylinder while suppressing deterioration of the catalyst by utilizing a situation where a fuel cut execution request is made. For this reason, according to the present invention, it is possible to sufficiently secure an opportunity to detect an abnormal cylinder during operation of the internal combustion engine.
  • the present invention by specifying an abnormal cylinder at the time of a fuel cut execution request for which no torque is required for the internal combustion engine, it is possible to sufficiently eliminate the influence of some cylinder pauses on vibration noise. .
  • the thirteenth aspect of the present invention it is possible to correct the air-fuel ratio of exhaust gas discharged from a cylinder in which an abnormality has occurred while suppressing deterioration of the catalyst by utilizing a situation where a fuel cut execution request is made.
  • the fourteenth aspect it is possible to specify whether the abnormality occurring in any cylinder of the internal combustion engine is a misfire or an air-fuel ratio imbalance. As a result, according to the present invention, it is possible to accurately identify the cylinder in which misfire or air-fuel ratio imbalance has occurred.
  • FIG. 1 is a diagram schematically showing an overall configuration of an intake variable valve mechanism for an internal combustion engine according to Embodiment 1 of the present invention.
  • FIG. 2 It is the figure which looked down at the variable mechanism shown in FIG. 2 from the base end part side of the valve
  • Embodiment 1 of the present invention It is a flowchart of the routine performed in Embodiment 1 of the present invention. It is a flowchart of the routine performed in Embodiment 2 of this invention. It is a figure which shows arrangement
  • Embodiment 5 of this invention It is a figure which shows arrangement
  • FIG. 1 is a diagram for explaining a configuration of an internal combustion engine system according to Embodiment 1 of the present invention.
  • the system of this embodiment includes an internal combustion engine 10.
  • the internal combustion engine 10 has four cylinders (# 1 to # 4) and explodes at equal intervals in the order of # 1 ⁇ # 3 ⁇ # 4 ⁇ # 2 (example). It is assumed that the engine is an in-line four-cylinder engine that performs a stroke.
  • the internal combustion engine 10 includes an exhaust passage 12 through which exhaust gas discharged from the cylinder flows.
  • a catalyst 14 for purifying the exhaust gas is disposed in the middle of the exhaust passage 12 (more specifically, a portion after exhaust gases from the cylinders merge).
  • an A / F sensor 16 for detecting the air-fuel ratio (A / F) of the exhaust gas is disposed at the position upstream of the catalyst 14 in the exhaust passage 12.
  • the intake valve (not shown) and the exhaust valve (not shown) of the internal combustion engine 10 are driven by an intake variable valve mechanism 18 and an exhaust variable valve mechanism 20, respectively.
  • intake variable valve mechanism 18 and exhaust variable valve mechanism 20 The detailed configuration of these variable valve mechanisms 18 and 20 will be described later with reference to FIGS.
  • the system shown in FIG. 1 includes an ECU (Electronic Control Unit) 22.
  • the ECU 22 In order to detect the operating state of the internal combustion engine 10 such as the crank angle sensor 24 for detecting the rotational position and rotational speed (engine speed) of the crankshaft in addition to the A / F sensor 16 described above, the ECU 22 inputs. The various sensors are connected. The output of the ECU 22 controls the operating state of the internal combustion engine 10 such as the fuel injection valve 26 for injecting fuel into the cylinder or the intake port of the internal combustion engine 10 in addition to the variable valve mechanisms 18 and 20 described above. Various actuators for connecting are connected. The ECU 22 can control the operating state of the internal combustion engine 10 based on those sensor outputs.
  • FIG. 2 is a diagram schematically showing the overall configuration of the intake variable valve mechanism 18 of the internal combustion engine 10 according to the first embodiment of the present invention.
  • the intake variable valve mechanism 18 will be described as an example, but the exhaust variable valve mechanism 20 is also configured in the same manner as the intake variable valve mechanism 18.
  • the variable valve mechanism 18 of this embodiment includes a camshaft 52.
  • the camshaft 52 is connected to a crankshaft (not shown) by a timing chain or a timing belt, and is configured to rotate at a half speed of the crankshaft.
  • the camshaft 52 is formed with one main cam 54 and two sub cams 56 per cylinder.
  • the main cam 54 is disposed between the two sub cams 56.
  • the main cam 54 has an arcuate base circle 54a (see FIG. 4) coaxial with the camshaft 52, and a nose 54b (see FIG. 4) formed so as to bulge a part of the base circle radially outward. 4).
  • the sub cam 56 is comprised as a cam (zero lift cam) which has only a base circle part (refer FIG. 5).
  • a variable mechanism 60 is interposed between the cams 54 and 56 of each cylinder and the intake valve 28 (hereinafter simply referred to as “valve 28”). That is, the acting force of the cams 54 and 56 is transmitted to the two valves 28 via the variable mechanism 60.
  • the valve 28 is opened and closed using the acting force of the cams 54 and 56 and the urging force of the valve spring 62.
  • the state shown in FIG. 2 represents a state in which the valve 28 of the # 1 cylinder is opened by receiving the acting force of the main cam 54.
  • the variable mechanism 60 is a mechanism that changes the valve opening characteristic of the valve 28 by switching between a state in which the acting force of the main cam 54 is transmitted to the valve 28 and a state in which the acting force of the sub cam 56 is transmitted to the valve 28. .
  • the state in which the acting force of the sub cam 56 is transmitted to the valve 28 means a state in which the valve 28 does not open or close (valve inactive state).
  • variable valve mechanism 18 of the present embodiment includes a switching mechanism 64 for each cylinder that drives each variable mechanism 60 to switch the operation state of the valve 28 between the valve operating state and the valve stop state for each cylinder. ing.
  • the switching mechanism 64 is driven according to the drive signal from the ECU 22 described above.
  • the ECU 22 controls the switching mechanism 64 based on an output signal from the crank angle sensor 24 or the like.
  • FIG. 3 is a view of the variable mechanism 60 shown in FIG. 2 as viewed from the base end side of the valve 28.
  • the variable mechanism 60 includes a rocker shaft 70 disposed in parallel with the camshaft 52.
  • a first rocker arm 72 and a pair of second rocker arms 74 ⁇ / b> R and 74 ⁇ / b> L are rotatably attached to the rocker shaft 70.
  • the first rocker arm 72 is disposed between the two second rocker arms 74R and 74L.
  • the left and right second rocker arms 74R and 74L may be simply referred to as the second rocker arm 74.
  • FIG. 4 is a view of the first rocker arm 72 viewed from the axial direction of the rocker shaft 70 (the direction of arrow A in FIG. 3), and FIG. 5 shows the second rocker arm 74 in the same manner as FIG. It is the figure seen from 70 axial directions (direction of arrow A).
  • a first roller 76 is rotatably attached to an end of the first rocker arm 72 opposite to the rocker shaft 70 at a position where it can contact the main cam 54.
  • the first rocker arm 72 is urged by a coil spring 78 attached to the rocker shaft 70 so that the first roller 76 is always in contact with the main cam 54.
  • the first rocker arm 72 configured as described above swings about the rocker shaft 70 as a fulcrum by the cooperation of the acting force of the main cam 54 and the biasing force of the coil spring 78.
  • the base end portion of the valve 28 (specifically, the base end portion of the valve stem) is in contact with the end portion of the second rocker arm 74 opposite to the rocker shaft 70.
  • a second roller 80 is rotatably attached to the central portion of the second rocker arm 74.
  • the outer diameter of the second roller 80 is the same as the outer diameter of the first roller 76.
  • the rocker shaft 70 is supported by a cam carrier (or a cylinder head or the like) that is a stationary member of the internal combustion engine 10 via a lash adjuster 82. Therefore, the second rocker arm 74 is biased toward the sub cam 56 by receiving a pushing force from the lash adjuster 82.
  • the position of the second roller 80 relative to the first roller 76 is such that the first roller 76 contacts the base circle 54a of the main cam 54 (see FIG. 4), and the second roller 80 is the base of the sub cam 56.
  • the shaft center of the second roller 80 and the shaft center of the first roller 76 are determined so as to be positioned on the same straight line L as shown in FIG. ing.
  • the switching mechanism 64 is a mechanism for switching the connection / separation between the first rocker arm 72 and the second rocker arm 74, whereby the operating force of the main cam 54 is transmitted to the second rocker arm 74. Then, the state in which the acting force is not transmitted to the second rocker arm 74 is switched, and the operation state of the valve 28 is switched between the valve operation state and the valve stop state (the state in which the valve 28 is stopped in the closed state). Be able to.
  • FIG. 6 is a diagram for explaining a detailed configuration of the switching mechanism 64 shown in FIG.
  • the variable mechanism 60 is represented using a cross section cut at the axial center position of the rollers 76 and 80. Further, for easy understanding, the mounting position of the camshaft 52 relative to the mounting position of the variable mechanism 60 is expressed in a state different from the actual mounting position except for the axial position of the camshaft 52.
  • a first pin hole 86 is formed inside the first support shaft 84 of the first roller so as to penetrate in the axial direction.
  • One rocker arm 72 is open on both side surfaces.
  • a cylindrical first switching pin 88 is slidably inserted into the first pin hole 86.
  • the outer diameter of the first switching pin 88 is substantially equal to the inner diameter of the first pin hole 86, and the axial length of the first switching pin 88 is substantially equal to the length of the first pin hole 86.
  • the end on the opposite side to the first rocker arm 72 is closed inside the second support shaft 90L of the second roller 80 on the second rocker arm 74L side, and the end on the first rocker arm 72 side is closed.
  • a second pin hole 92L having an opening is formed.
  • a second pin hole 92R is formed in the second support shaft 90R of the second roller 80 on the second rocker arm 74R side so as to penetrate in the axial direction, and both ends of the second pin hole 92R are formed.
  • the inner diameters of the second pin holes 92R and 92L are equal to the inner diameter of the first pin hole 86.
  • a cylindrical second switching pin 94L is slidably inserted into the second pin hole 92L.
  • a return spring 96 that urges the second switching pin 94L toward the first rocker arm 72 (hereinafter referred to as “the advancement direction of the switching pin”) is disposed inside the second pin hole 92L. Yes.
  • the outer diameter of the second switching pin 94L is substantially equal to the inner diameter of the second pin hole 92L.
  • the axial length of the second switching pin 94L is shorter than the second pin hole 92L, and the second switching pin 94L is pushed in the second pin hole 92L and the second switching pin 94L is pushed in the second switching hole 94L.
  • the tip of the pin 94L is adjusted so as to slightly protrude from the side surface of the second rocker arm 74L. Further, it is assumed that the return spring 96 is configured to constantly bias the second switching pin 94L toward the first rocker arm 72 in the mounted state.
  • a cylindrical second switching pin 94R is slidably inserted into the second pin hole 92R.
  • the outer diameter of the second switching pin 94R is substantially equal to the inner diameter of the second pin hole 92R, and the axial length of the second switching pin 94R is substantially equal to the length of the second pin hole 92R.
  • the relative positions of the three pin holes 86, 92L, and 92R described above are such that the first roller 76 contacts the base circular portion 54a of the main cam 54 (see FIG. 4), and the second roller 80 contacts the sub cam 56. It is determined that the axial centers of the three pin holes 86, 92L, and 92R are located on the same straight line when in contact with the base circle (see FIG. 5).
  • FIG. 7 is a view of the switching mechanism 64 as viewed from the axial direction of the camshaft 52 (the direction of arrow B in FIG. 6).
  • the switching mechanism 64 includes a slide pin 98 for displacing the switching pins 88, 94L, 94R toward the second rocker arm 74L (in the retracting direction of the switching pin) using the rotational force of the cam. . As shown in FIG.
  • the slide pin 98 includes a cylindrical portion 98 a having an end surface that comes into contact with the end surface of the second switching pin 94 ⁇ / b> R.
  • the cylindrical portion 98a is supported by a support member 100 fixed to the cam carrier so as to be movable back and forth in the axial direction and rotatable in the circumferential direction.
  • the tip of the second switching pin 94L is pressed against one end of the first switching pin 88 by the urging force (reaction force) of the return spring 96. Accordingly, the other end of the first switching pin 88 is pressed against one end of the second switching pin 94R in a situation where the axial centers of the three pin holes 86, 92L, 92R are located on the same straight line. become. Further, the other end of the second switching pin 94R is pressed against the end surface of the cylindrical portion 98a of the slide pin 98. As described above, the biasing force of the return spring 96 acts on the slide pin 98 under the specific condition.
  • a rod-like arm portion 98b is provided at an end portion of the cylindrical portion 98a opposite to the second switching pin 94R so as to protrude outward in the radial direction of the cylindrical portion 98a. That is, the arm portion 98b is configured to be rotatable about the axis of the cylindrical portion 98a. As shown in FIG. 7, the distal end portion of the arm portion 98 b is configured to extend to a position facing the peripheral surface of the camshaft 52. Further, a projecting portion 98 c is provided at the distal end portion of the arm portion 98 b so as to protrude toward the peripheral surface of the camshaft 52.
  • a large-diameter portion 102 having an outer diameter larger than that of the camshaft 52 is formed on the outer peripheral surface of the camshaft 52 facing the protruding portion 98c.
  • a spiral groove 104 extending in the circumferential direction is formed on the circumferential surface of the large diameter portion 102. The width of the spiral groove 104 is slightly larger than the outer diameter of the protrusion 98c.
  • the switching mechanism 64 includes an actuator 106 for inserting the protrusion 98 c into the spiral groove 104. More specifically, the actuator 106 includes a solenoid 108 that is duty-controlled based on a command from the ECU 22, and a lock pin 110 that comes into contact with the drive shaft 108 a of the solenoid 108.
  • the lock pin 110 is formed in a cylindrical shape.
  • a spring 112 that generates a biasing force against the thrust of the solenoid 108 is hooked on the lock pin 110, and the other end of the spring 112 is attached to a support member 114 fixed to a cam carrier that is a stationary member. It is hung.
  • the thrust of the solenoid 108 overcomes the urging force of the spring 112, so that the lock pin 110 can be advanced.
  • the lock pin 110 and the drive shaft 108a can be quickly retracted to a predetermined position by the urging force of the spring 112. Further, the movement of the lock pin 110 in the radial direction is restricted by the support member 114. For this reason, even if the lock pin 110 receives a force from its radial direction, the lock pin 110 can be prevented from moving in that direction.
  • the solenoid 108 is capable of pressing the pressing surface 98d (the surface opposite to the surface provided with the protruding portion 98c) 98d of the lock pin 110 toward the spiral groove 104 with respect to the tip portion of the arm portion 98b of the slide pin 98. In position, it shall be fixed to stationary members, such as a cam carrier. In other words, the pressing surface 98d is provided in a shape and a position such that the protrusion 98c can be pressed toward the spiral groove 104 by the lock pin 110.
  • the arm portion 98b of the slide pin 98 is set to be rotatable around the axis of the cylindrical portion 98a within a range constrained by the large diameter portion 102 and the stopper 116 on the camshaft 52 side.
  • the lock pin 110 driven by the solenoid 108 is pressed against the pressing surface 98d of the arm portion 98b.
  • the positional relationship of each component is set so that it can be surely contacted.
  • a spring 118 is attached to the arm portion 98b to urge the arm portion 98b toward the stopper 116. Note that such a spring 118 is not necessarily provided when the arm portion 98b is not expected to be fitted into the spiral groove 104 due to the weight of the slide pin 98 when the solenoid 108 is not driven.
  • the direction of the spiral in the spiral groove 104 of the camshaft 52 is such that the slide pin 98 is a return spring when the camshaft 52 rotates in a predetermined rotational direction shown in FIG. 7 with the protrusion 98c inserted therein.
  • the switching pins 88, 94L, 94R are set so as to be displaced in a direction approaching the rocker arms 72, 74 by pushing the switching pins 88, 94L, 94R against the biasing force of 96.
  • the second switching pin 94L is inserted into both the second pin hole 92L and the first pin hole 86, and the first switching pin 88 is in the first pin hole 86.
  • the position of the slide pin 98 when inserted into both the second pin hole 92R and the second pin hole 92R is referred to as “displacement end Pmax1”.
  • the slide pin 98 is positioned at the displacement end Pmax1, the first rocker arm 72 and the second rocker arms 74R and 74L are all connected.
  • the position of the base end 104a of the spiral groove 104 in the axial direction of the camshaft 52 is set so as to coincide with the position of the protrusion 98c when the slide pin 98 is positioned at the displacement end Pmax1. Yes.
  • the position of the terminal end 104b of the spiral groove 104 in the axial direction of the camshaft 52 is set so as to coincide with the position of the protrusion 98c when the slide pin 98 is positioned at the displacement end Pmax2. That is, in the present embodiment, the slide pin 98 is configured to be displaceable between the displacement ends Pmax1 and Pmax2 within the range in which the protrusion 98c is guided by the spiral groove 104.
  • the spiral groove 104 of the present embodiment has a spiral section with the rotation of the camshaft 52 as a predetermined section on the terminal end 104 b side after the slide pin 98 reaches the displacement end Pmax 2.
  • a shallow groove portion 104c in which the groove 104 gradually becomes shallow is provided.
  • channel 104 is constant.
  • the arm portion 98b of the present embodiment is provided with a notch portion 98e formed in a concave shape by notching a part of the pressing surface 98d.
  • the pressing surface 98d is provided so that the state in contact with the lock pin 110 is maintained while the slide pin 98 is displaced from the displacement end Pmax1 to Pmax2.
  • the notch 98e is formed with the lock pin 110 when the projecting portion 98c is taken out to the surface of the large diameter portion 102 by the action of the shallow groove portion 104c in a state where the slide pin 98 is located at the displacement end Pmax2. It is provided in the part which can be engaged.
  • the notch 98e can restrict the rotation of the arm 98b in the direction in which the projection 98c is inserted into the spiral groove 104, and restricts the slide pin 98 from moving in the advance direction of the switching pin. In a possible manner, it is configured to engage the lock pin 110. More specifically, the notch portion 98e is provided with a guide surface 98f that guides the slide pin 98 away from the large diameter portion 102 as the lock pin 110 enters the notch portion 98e.
  • FIG. 8 is a diagram illustrating a control state when the valve is operating (during a normal lift operation).
  • the drive of the solenoid 108 is turned OFF, so that the slide pin 98 is separated from the cam shaft 52 and the urging force of the return spring 96 is applied. Therefore, it is located at the displacement end Pmax1.
  • the first rocker arm 72 and the two second rocker arms 74 are connected via the switching pins 88 and 94L.
  • FIG. 9 is a diagram illustrating a control state at the start of the valve stop operation.
  • the valve stop operation is performed, for example, when a request for executing a predetermined valve stop operation such as a fuel cut request of the internal combustion engine 10 is detected by the ECU 22.
  • a valve stop operation is an operation of displacing the switching pins 88, 94L, 94R in the retracting direction by the slide pin 98 using the rotational force of the camshaft 52, and therefore, the switching pins 88, 94L, 94R. Need to be performed when the shaft centers of the first rocker arm 72 are not oscillating.
  • the spiral groove 104 is set so that the section in which the slide pin 98 slides in the retreat direction of the switching pin corresponds to the base circle section of the main cam 54. For this reason, when the ECU 22 detects the execution request for the predetermined valve stop operation, the solenoid 108 is driven in order from the cylinder in which the base circle section first arrives, thereby, as shown in FIG. 98c is inserted into the spiral groove 104, and the valve stop operation of each cylinder starts in sequence. Then, the protrusion 98c inserted into the spiral groove 104 is guided by the spiral groove 104, so that the rotational end of the camshaft 52 is utilized as shown in FIG. The slide operation of the slide pin 98 starts toward the side.
  • FIG. 10 is a diagram illustrating a control state when the slide operation is completed.
  • the projecting portion 98c comes into contact with the side surface of the spiral groove 104, and the slide pin 98 moves toward the displacement end Pmax2 while the urging force of the return spring 96 is received.
  • FIG. 10A shows the timing when the slide pin 98 reaches the displacement end Pmax2 and the slide operation at the time of the valve stop request is completed, that is, the first switching pin 88 and the second switching pin 94L are respectively in the first pin hole 86.
  • the timing when the connection between the first rocker arm 72 and the second rocker arms 74R and 74L is released by being within the second pin hole 92L is shown.
  • FIG. 10B the position of the protrusion 98c in the spiral groove 104 has not yet reached the shallow groove 104c.
  • FIG. 11 and 12 are diagrams showing a control state during a holding operation in which the slide pin 98 is held by the lock pin 110.
  • FIG. 11 shows a state in which the first rocker arm 72 is not performing a swinging operation (lifting operation)
  • FIG. 12 shows a state in which the first rocker arm 72 is swinging ( The state when the lift operation is being performed is shown.
  • the lock pin 110 comes into engagement with the notch 98e.
  • the slide pin 98 has the protruding portion 98c separated from the camshaft 52 and the urging force of the return spring 96 by the lock pin 110. It will be held in a state of receiving. Therefore, during this holding operation, as shown in FIGS. 11A and 12A, the state where the first rocker arm 72 and the second rocker arm 74 are separated, that is, the valve stop state is maintained. Will come to be.
  • Valve return operation The valve return operation for returning to the valve operating state in which the normal lift operation is performed from the valve stop state is performed when the ECU 22 detects an execution request for a predetermined valve return operation such as a return request from a fuel cut, for example. Is called.
  • a valve return operation is performed in the control state shown in FIGS. 11 and 12 by a predetermined time required for the operation of the solenoid 108 from the ECU 22 at a predetermined timing (the start timing of the base circle section in which the switching pin 88 and the like are movable). As soon as possible, turning off the energization of the solenoid 108 is started.
  • the slide pin is turned on using the energization ON / OFF of the solenoid 108, the rotational force of the camshaft 52, and the biasing force of the return spring 96.
  • the operating state of the valve 28 can be switched between the valve operating state and the valve stopping state.
  • the energization of the solenoid 108 is turned on and the protrusion 98 c is inserted into the spiral groove 104, so that the slide pin 98 that uses the rotational force of the camshaft 52 is used.
  • the switching pin 88 and the like can be moved in the direction in which the switching pin is withdrawn.
  • the first rocker arm 72 and the two second rocker arms 74 can be quickly switched from the connected state to the separated state during one base circle section. Thereby, it can be set as a valve stop state.
  • an abnormality such as misfire or an air-fuel ratio imbalance with respect to other cylinders may occur.
  • a technique for sequentially stopping the combustion of each cylinder in order to identify the cylinder in which such an abnormality has occurred is known.
  • stopping the combustion of some cylinders is effective in identifying abnormal cylinders, but can adversely affect the running performance of the vehicle and the vibration noise of the internal combustion engine. Therefore, it is desirable to minimize the number of times that some cylinders are deactivated in order to identify abnormal cylinders, and to shorten the cylinder deactivation time as much as possible.
  • no consideration is given when combustion is stopped in some cylinders, there is a concern that the air sucked into the stopped cylinders is exhausted toward the catalyst as it is and the catalyst deteriorates.
  • variable valve mechanisms 18 and 20 the valves 28 (intake and exhaust valves) are stopped in a closed state independently for each cylinder by individually controlling the energization of the solenoid 108 of each cylinder. It becomes possible. Accordingly, in the present embodiment, when the variable valve mechanisms 18 and 20 configured as described above are used to stop combustion (fuel supply) in some cylinders in order to identify abnormal cylinders, In the deactivated cylinder, the intake and exhaust valve operations are deactivated in the closed state.
  • an abnormality has occurred in any of the cylinders during the operation of the internal combustion engine 10 based on a predetermined abnormality evaluation index value (crank shaft rotation fluctuation or air-fuel ratio deviation amount).
  • a first cylinder which is composed of two cylinders instead of a single cylinder (first)
  • the deactivated cylinder is changed for a (second) partial cylinder consisting of one cylinder, and the cylinder is deactivated.
  • the abnormality occurrence cylinder is specified based on the change in the abnormality evaluation index value that accompanies such a change of the idle cylinder.
  • Cylinder deactivation is performed by selecting one of the two group cylinders (# 1, # 4 cylinder, or # 2, # 3 cylinder) having an equal interval as the (first) partial cylinder. I did it. Then, based on the abnormality evaluation index value at the time of cylinder deactivation, it is determined for each of the group cylinders whether or not the abnormal phenomenon disappears with the cylinder deactivation. Then, only one cylinder in the group cylinder that can be determined to include an abnormality occurring cylinder is deactivated, and then the abnormality occurrence cylinder is specified based on the abnormality evaluation index value when the cylinder is deactivated.
  • FIG. 13 is a flowchart of a routine that the ECU 22 executes in order to realize the abnormal cylinder specifying method according to the first embodiment of the present invention.
  • This routine is executed when the internal combustion engine 10 that is a four-cylinder engine is operating in four cylinders (all cylinders).
  • the internal combustion engine 10 that is a four-cylinder engine is operating in four cylinders (all cylinders).
  • a process assuming a case where an abnormality occurs in only one of the four cylinders of the internal combustion engine 10 will be described. *
  • step 100 it is determined whether or not the crankshaft rotational fluctuation detected by the crank angle sensor 24 is equal to or greater than a predetermined value, or at the exhaust manifold assembly portion detected by the A / F sensor 16. It is determined whether or not the air / fuel ratio of the engine is deviated by a predetermined value or more with respect to a predetermined control target air / fuel ratio (for example, theoretical air / fuel ratio) (step 100).
  • a predetermined value or more with respect to a predetermined control target air / fuel ratio for example, theoretical air / fuel ratio
  • any cylinder that is currently in operation is misfired. It can be determined whether or not an abnormality such as an air-fuel ratio imbalance has occurred.
  • the abnormality detection method itself in this step 100 uses the above-described crankshaft rotation fluctuation or air-fuel ratio deviation as long as it can detect that any abnormality has occurred in any of the currently operating cylinders. It is not limited to the method.
  • step 102 If the determination in step 100 is satisfied, that is, if it is recognized that an abnormality has occurred in any of the four currently operating cylinders, # 1 and # 4 cylinders are deactivated (step 102). More specifically, the fuel injection valve 26 is controlled so that the fuel supply to the cylinders # 1 and # 4 is stopped, and the operations of the intake valve and the exhaust valve of these cylinders are stopped in the closed state. Thus, the variable valve mechanisms 18 and 20 are controlled. *
  • step 104 the abnormality detection process similar to that in step 100 is performed with the cylinders # 1 and # 4 being deactivated.
  • step 104 determines whether abnormality is detected as the # 1 and # 4 cylinders are stopped. It can be determined that one of the currently deactivated cylinders # 1 and # 4 is abnormal. Therefore, in this case, only the # 1 cylinder is deactivated in order to specify which of the # 1 and # 4 cylinders is abnormal (step 106).
  • step 108 the abnormality detection process similar to step 100 is executed.
  • the determination in step 108 is not established, that is, if no abnormality is detected as the # 1 cylinder is stopped, it is determined that the currently stopped # 1 cylinder is abnormal (Ste 110).
  • the determination in step 108 is satisfied, that is, if abnormality is still detected with the # 1 cylinder being deactivated, it is determined that the currently operating # 4 cylinder is abnormal (step). 112).
  • step 104 determines whether an abnormality is still detected with the # 1 and # 4 cylinders being deactivated. It can be determined to be abnormal. Therefore, in this case, only the # 2 cylinder is deactivated in order to specify which of the # 2 and # 3 cylinders is abnormal (step 114).
  • step 116 the abnormality detection process similar to the above step 100 is executed.
  • the determination in step 116 is not established, that is, if no abnormality is detected as the # 2 cylinder is deactivated, it is determined that the currently deactivated # 2 cylinder is abnormal ( Step 118).
  • the determination in step 116 is true, that is, if an abnormality is still detected with the # 2 cylinder being deactivated, it is determined that the currently operating # 3 cylinder is abnormal (step). 120).
  • the valve is deactivated together with the deactivation of the fuel supply, so that air is not discharged from the deactivated cylinder, and the abnormal cylinder can be identified while preventing the catalyst 14 from deteriorating. It becomes.
  • an abnormal cylinder when an abnormal cylinder is specified, a group cylinder having an equal pause interval (explosion interval) is selected and the first cylinder pause is performed. I try to change to a cylinder.
  • a group cylinder having an equal pause interval explosion interval
  • an abnormal cylinder can be accurately identified by a single pause of the above-mentioned group cylinders selected to minimize deterioration of vibration noise and a single pause of only one cylinder in one group cylinder. It becomes possible to specify. In other words, it is possible to accurately identify the abnormal cylinder while minimizing the number of times and the operation time of the single cylinder rest operation in which the deterioration of vibration noise is a concern.
  • the cylinder deactivation performed in order to identify an abnormal cylinder in the present embodiment be performed when the internal combustion engine 10 is under a low load. Thereby, the bad influence to the running performance of a vehicle and the vibration noise of the internal combustion engine 10 can fully be reduced.
  • step 114 when an abnormality is detected during the operation of all cylinders (4 cylinders), # 1 and # 4 cylinders are deactivated. In this case, the cylinders are deactivated.
  • the group cylinders may be # 2, # 3 cylinders.
  • only # 2 cylinder (step 114) or only # 1 cylinder (step 106) is deactivated depending on whether or not an abnormality occurs when cylinders # 1 and # 4 are deactivated.
  • step 114 only # 3 cylinder may be deactivated, and in step 106, only # 4 cylinder may be deactivated.
  • a pause interval (explosion interval) is specified when an abnormal cylinder is specified.
  • the explosion intervals of each cylinder are not necessarily equal intervals intentionally or as a result.
  • a pause interval (or explosion interval) is set in consideration of the explosion order. It is preferable to perform cylinder deactivation by selecting the group cylinders that are closest to each other (substantially equally spaced).
  • the valve that is deactivated when the cylinder is deactivated may be either an intake valve or an exhaust valve.
  • the ECU 22 executes the process of step 100, 104, 108, or 116, so that the “abnormality detection means” in the first invention performs the process of step 102.
  • the “first cylinder deactivation execution means” in the first, third, or fifth invention executes the processing of step 106 or 114 described above, thereby executing the first, third, or fifth.
  • the “second cylinder deactivation execution means” in the invention and the “abnormal cylinder specifying means” in the first invention are realized by executing the processing of steps 108 to 112 or 116 to 120, respectively. .
  • the ECU 22 executes the processing of steps 102 to 106 (or 102, 104, and 114), thereby realizing the “restored cylinder number reducing execution means” in the second invention.
  • the ECU 22 executes the process of step 104, whereby the “abnormal group cylinder determining means” in the third or fifth aspect of the invention, and the steps 108 to 112,
  • the “group cylinder abnormality specifying means” in the third or fifth aspect of the present invention is implemented by executing the processes 116 to 120, respectively.
  • Embodiment 2 a second embodiment of the present invention will be described with reference to FIG.
  • the system of the present embodiment can be realized by causing the ECU 22 to execute a routine shown in FIG. 14 described later instead of the routine shown in FIG. 13 using the hardware configuration shown in FIGS. is there.
  • FIG. 14 is a flowchart of a routine that the ECU 22 executes in order to implement the abnormal cylinder specifying method according to the second embodiment of the present invention.
  • abnormality detection processing similar to that in step 100 is executed during all-cylinder operation (step 200).
  • step 200 determines whether an abnormality has occurred in any of the four currently operating cylinders.
  • # 1 and # 4 cylinders are deactivated (step 202). ).
  • step 204 the abnormality detection process similar to step 100 is executed with the cylinders # 1 and # 4 being deactivated.
  • step 204 when the determination of step 204 is established, that is, when an abnormality is still detected with the cylinders # 1 and # 4 being stopped, at least one of the currently operating cylinders # 2 and # 3 Therefore, it can be determined that the # 1 and # 4 cylinders that are currently stopped are also likely to be abnormal. Therefore, in this case, in order to further identify the abnormal cylinder, the # 3 cylinder is further stopped in addition to the # 1 and # 4 cylinders (step 206). In step 206, the # 2 cylinder may be deactivated instead of the # 3 cylinder.
  • step 208 the abnormality detection process similar to step 100 is executed (step 208).
  • the determination of this step 208 is not established, that is, if no abnormality is detected as the # 1, # 3, and # 4 cylinders are stopped, the # 3 cylinder that has been additionally stopped this time Is determined to be abnormal (step 210).
  • the determination of step 208 is established, that is, when abnormality is still detected with cylinders # 1, # 3, and # 4 being deactivated, the currently operating # 2 cylinder is abnormal. It is determined that the # 3 cylinder additionally stopped this time is likely to be abnormal (step 212).
  • step 216 the abnormality detection process similar to step 100 is performed with the cylinders # 2 and # 3 being deactivated (step 216).
  • # 1, # 4 in a situation where an abnormality is recognized while the # 4 cylinder is stopped (a situation in which the judgment in step 204 is established) It can be determined that there is no abnormality in the # 4 cylinder, and at least one of the # 2, # 3 cylinders is abnormal.
  • the abnormal cylinders related to the # 2 and # 3 cylinders have already been specified by the processing in the above steps 206 to 212, the abnormal cylinders related to the # 2 and # 3 cylinders are not specified.
  • step 216 determines whether an abnormality is still detected with the # 2 and # 3 cylinders deactivated. If an abnormality is still detected with the # 2 and # 3 cylinders deactivated, at least the currently operating # 1 and # 4 cylinders are at least One can be determined to be abnormal. Therefore, in this case, the # 4 cylinder is further stopped in addition to the # 2 and # 3 cylinders in order to further identify the abnormal cylinder (step 218). In step 218, the # 1 cylinder may be deactivated instead of the # 4 cylinder.
  • step 220 the abnormality detection process similar to the above step 100 is executed (step 220).
  • step 220 determines whether abnormality is detected as the # 2, # 3, and # 4 cylinders are stopped.
  • step 220 determines whether abnormality is still detected with cylinders # 2, # 3, and # 4 being deactivated. It is determined that the # 4 cylinder additionally stopped this time is likely to be abnormal (step 224).
  • the abnormal cylinders related to the # 2 and # 3 cylinders are specified. It is possible to avoid unnecessary single-cylinder operation for the purpose. Furthermore, also in this embodiment, since the idle cylinders are grouped into cylinders with equal idle intervals (explosion intervals), it is possible to satisfactorily prevent deterioration of vibration noise of the internal combustion engine 10 when an abnormal cylinder is specified. be able to.
  • the “first cylinder deactivation execution means” in the first, third, or sixth invention is performed by the ECU 22 executing the process of step 202 or 214 described above.
  • the “second cylinder deactivation execution means” in the first, third, or sixth invention performs the process of steps 204 and 216 to execute the third or
  • the “abnormal group cylinder discriminating means” in the sixth aspect of the invention performs the processing of the above steps 208 to 212 or 220 to 224 to thereby execute the “group cylinder abnormality specifying means” in the third or sixth aspect of the invention.
  • FIG. 15 is a diagram showing the arrangement and explosion order of each cylinder of the internal combustion engine 120 in the third embodiment of the present invention.
  • the internal combustion engine 120 of the present embodiment is a six-cylinder engine, more specifically, a V-type 6 having a total of six cylinders (# 1 to # 6) in two banks 120a and 120b. Assume that it is a cylinder engine.
  • the three cylinders arranged in one bank 120a are referred to as # 1, # 3, and # 5, and the three cylinders arranged in the other bank 120b are referred to as # 2, # 4, and # 6 cylinders.
  • the explosion order of the internal combustion engine 120 is, for example, the order of # 1 ⁇ # 2 ⁇ # 3 ⁇ # 4 ⁇ # 5 ⁇ # 6, and the explosion stroke of each cylinder is performed at equal intervals in this order. Shall.
  • the internal combustion engine 120 of this embodiment is basically configured in the same manner as the internal combustion engine 10 except that the engine format is different. That is, although illustration is omitted, it is assumed that each cylinder is provided with a fuel injection valve and each cylinder is provided with a variable valve mechanism capable of stopping the intake and exhaust valves in a closed state. It is assumed that an appropriate number of catalysts are disposed in the exhaust passage. In addition, the air-fuel ratio is detected at the positions downstream of the exhaust manifold aggregates of the banks 120a and 120b and at the positions after the exhaust gas discharged from the banks 120a and 120b are merged. A / F sensor (or O2 sensor) is arranged.
  • FIG. 16 is a flowchart of a routine that the ECU 22 executes in order to realize the abnormal cylinder specifying method according to the third embodiment of the present invention.
  • This routine is executed when the internal combustion engine 120, which is a six-cylinder engine, is operating in six cylinders (all cylinders).
  • the internal combustion engine 120 which is a six-cylinder engine
  • processing that assumes a case where an abnormality occurs in only one of the six cylinders of the internal combustion engine 120 will be described.
  • step 300 an abnormality detection process similar to step 100 is executed. As a result, if the determination in step 300 is satisfied, that is, if it is recognized that an abnormality has occurred in any of the six cylinders currently in operation, the reduction using # 1, # 3, and # 5 cylinders is performed. Cylinder operation is executed (step 302). That is, # 2, # 4, and # 6 cylinders are deactivated.
  • step 304 the presence / absence of abnormality is determined by the same method as in step 100 (step 304).
  • step 304 a reduced cylinder operation using the # 1 and # 4 cylinders is executed (step 306).
  • step 308 the abnormality detection process similar to step 100 is executed in a state where the reduced cylinder operation using the # 1 and # 4 cylinders is performed (step 308).
  • step 308 determines whether an abnormality has been recognized at the time of abnormality determination under reduced-cylinder operation using # 1, # 3, and # 5 cylinders in step 304 (step 310). As a result, if the determination in step 310 is satisfied, it can be determined that either # 1 or # 4 cylinder is abnormal, and any of # 1, # 3, or # 5 cylinder is abnormal. Since this corresponds to the case where it can be determined, it is determined that the # 1 cylinder is abnormal (step 312).
  • step 310 determines whether # 1 or # 4 cylinder is abnormal and any of # 2, # 4, or # 6 cylinder is abnormal. Since this corresponds to the case where it can be determined, it is determined that the # 4 cylinder is abnormal (step 314).
  • step 308 determines whether abnormality is detected during the reduced cylinder operation using the # 1 and # 4 cylinders. If the determination in step 308 is not established, that is, if no abnormality is detected during the reduced cylinder operation using the # 1 and # 4 cylinders, the reduced cylinder using the # 3 and # 6 cylinders. Operation is performed (step 316). Next, the abnormality detection process similar to step 100 is performed in a state where the reduced cylinder operation using the # 3 and # 6 cylinders is performed (step 318).
  • step 318 determines whether an abnormality has been recognized at the time of abnormality determination under reduced-cylinder operation using the # 1, # 3, and # 5 cylinders in step 304 (step 320). As a result, if the determination in step 320 is established, it can be determined that either # 3 or # 6 cylinder is abnormal, and any of # 1, # 3, or # 5 cylinder is abnormal. Since this corresponds to the case where it can be determined, it is determined that the # 3 cylinder is abnormal (step 322).
  • step 320 determines whether # 3 or # 6 cylinder is abnormal, and any of # 2, # 4, or # 6 cylinder is abnormal. Since this corresponds to the case where it can be determined, it is determined that the # 6 cylinder is abnormal (step 324).
  • step 318 determines whether or not an abnormality has been recognized at the time of abnormality determination under reduced-cylinder operation using # 1, # 3, and # 5 cylinders in step 304 (step 326). As a result, if the determination in step 326 is established, it can be determined that either # 2 or # 5 cylinder is abnormal, and any of # 1, # 3, or # 5 cylinder is abnormal. Since this corresponds to a case where it can be determined, it is determined that the # 5 cylinder is abnormal (step 328).
  • step 326 determines whether # 2 or # 5 cylinder is abnormal and any of # 2, # 4, or # 6 cylinder is abnormal. Since this corresponds to a case where it can be determined, it is determined that the # 2 cylinder is abnormal (step 330).
  • the catalyst disposed in the exhaust passage It is possible to accurately identify an abnormal cylinder while suppressing deterioration.
  • the routine processing when any cylinder is abnormal, first, one of the two group cylinders (for example, # 1, # 3, # 5) consisting of half the cylinders (3 cylinders) is used. After determining whether or not an abnormality is recognized, it is sequentially determined whether or not an abnormality is recognized in other group cylinders configured by collecting one cylinder from each of the group cylinders. According to such a method, the number of times that a part of the cylinders are stopped for specifying the abnormal cylinder is two or three times. As described above, according to the processing of the above routine, the number of times that some of the cylinders are stopped and the downtime for specifying the abnormal cylinders can be sufficiently reduced, so that the abnormal cylinders can be specified accurately. . In addition, it is possible to identify an abnormal cylinder while eliminating the need for single-cylinder operation, which is feared to deteriorate vibration noise.
  • the # 1, # 3, and # 5 cylinders are set as three cylinders having the same explosion interval.
  • the group cylinders used for the three-cylinder operation may be # 2, # 4, and # 6 cylinders.
  • the group cylinders used for these two cylinder operations are Any one of a group cylinder consisting of # 1, # 4 cylinders, a group cylinder consisting of # 3, # 6 cylinders, and a group cylinder consisting of # 2, # 5 cylinders may be used.
  • the ECU 22 executes the process of step 302, so that the “first cylinder deactivation execution means” in the first or seventh aspect of the invention is the process of step 306 or 316.
  • the “second cylinder deactivation execution unit” in the first or seventh invention performs the “abnormal group” in the seventh invention.
  • the “cylinder discrimination means” and the processing of step 308 or 318 described above execute the “group cylinder abnormality specifying means” in the seventh aspect of the invention.
  • Embodiment 4 FIG. Next, a fourth embodiment of the present invention will be described with reference to FIGS.
  • the system of the present embodiment uses the hardware configuration shown in FIGS. 2 to 12 and 15 to cause the ECU 22 to execute routines shown in FIGS. 17 to 19 described later instead of the routine shown in FIG. It can be realized.
  • FIGS. 17 to 19 are flowcharts of routines executed by the ECU 22 in order to realize the abnormal cylinder specifying method according to the fourth embodiment of the present invention.
  • FIG. 17 to FIG. 19 show a series of completed processes, that is, a routine of the abnormal cylinder specifying method of this embodiment.
  • step 400 an abnormality detection process similar to step 100 is executed during all cylinder operation.
  • step 400 determines whether an abnormality has occurred in any of the six cylinders currently in operation.
  • Cylinder operation is executed (step 402). That is, # 2, # 4, and # 6 cylinders are deactivated.
  • step 404 the abnormality detection process similar to the above step 100 is executed in the state where the cylinders # 1, # 3, and # 5 are operated (step 404).
  • step 406 the reduced cylinder operation using the # 2, # 4, and # 6 cylinders is executed (step 406). That is, # 1, # 3, and # 5 cylinders are deactivated.
  • step 408 the abnormality detection process similar to step 100 is executed with the # 2, # 4, and # 6 cylinders being operated (step 408).
  • step 410 determines whether abnormality has been detected both during # 1, # 3, and # 5 cylinder operation and during # 2, # 4, and # 6 cylinder operation. Is determined (step 410). As a result, when the determination of step 410 is not established, that is, abnormality is detected only in any one of the # 1, # 3, and # 5 cylinder operations and the # 2, # 4, and # 6 cylinder operations. In that case, a series of processes after “* 1” shown in FIG. 18 is then executed.
  • step 412 a reduced cylinder operation using the # 1 and # 4 cylinders is executed (step 412).
  • step 414 the abnormality detection process similar to step 100 is performed in a state where the reduced cylinder operation using the # 1 and # 4 cylinders is performed (step 414).
  • the determination in this step 414 is established, that is, if it can be determined that one of the # 1 and # 4 cylinders is abnormal, the # 1, # 3, and # 5 cylinders in the above step 402 are changed. It is determined whether or not an abnormality has been recognized at the time of abnormality determination under the reduced-cylinder operation used (step 416).
  • step 416 determines whether # 1 or # 4 cylinder is abnormal, and any of # 1, # 3, or # 5 cylinder is abnormal. Since this corresponds to the case where it can be determined, it is determined that the # 1 cylinder is abnormal (step 418).
  • step 416 determines whether # 1 or # 4 cylinder is abnormal, and any of # 2, # 4, or # 6 cylinder is abnormal. Since this corresponds to a case where it can be determined, it is determined that the # 4 cylinder is abnormal (step 420).
  • Step 414 when the determination of step 414 is not established (that is, when no abnormality is detected during the reduced cylinder operation using the # 1, # 4 cylinders), or the abnormality identification regarding the # 1, # 4 cylinders (above)
  • Steps 416 to 420 When Steps 416 to 420) are completed, the reduced-cylinder operation using the # 3 and # 6 cylinders is then executed (Step 422). Then, the abnormality detection process similar to step 100 is executed in a state where the reduced cylinder operation using the # 3 and # 6 cylinders is performed (step 424).
  • the determination of step 424 is satisfied (that is, when it can be determined that one of the # 3 and # 6 cylinders is abnormal), the same as in the case of the above-described # 1 and # 4 cylinders.
  • steps 426 to 430 it is specified which of the # 3 and # 6 cylinders has an abnormality.
  • Step 424 when the determination in step 424 is not established (that is, when no abnormality is detected during the reduced-cylinder operation using the # 3 and # 6 cylinders), or the abnormality identification regarding the # 3 and # 6 cylinders (described above)
  • Steps 426 to 430 When Steps 426 to 430 are completed, the reduced-cylinder operation using the # 5 and # 2 cylinders is then executed (Step 432).
  • the abnormality detection process similar to step 100 is performed in a state where the reduced cylinder operation using the # 5 and # 2 cylinders is performed (step 434).
  • this step 434 determines whether one of the # 5 and # 2 cylinders is abnormal.
  • the determination of this step 434 is established (that is, when it can be determined that one of the # 5 and # 2 cylinders is abnormal), hereinafter, the case of the above-described # 1 and # 4 cylinders, etc.
  • the abnormal cylinder is the # 5 cylinder or the # 2 cylinder.
  • step 410 determines whether abnormality is detected both in the # 1, # 3, and # 5 cylinder operations and in the # 2, # 4, and # 6 cylinder operations. In that case, a series of processes after “* 2” shown in FIG. 19 is then executed.
  • step 442 a reduced-cylinder operation using the # 1 and # 4 cylinders is executed (step 442).
  • step 444 the abnormality detection process similar to step 100 is performed in a state where the reduced cylinder operation using the # 1 and # 4 cylinders is performed (step 444).
  • the determination of step 444 is established, that is, when it can be determined that at least one of the # 1 and # 4 cylinders is abnormal, the operation is performed with only the # 1 cylinder in order to further identify the abnormal cylinder. Is performed (step 446). In this step 446, operation may be performed using only the # 4 cylinder instead of the # 1 cylinder.
  • step 448 the abnormality detection process similar to step 100 is executed in a state where only the # 1 cylinder is operated.
  • the determination in step 448 is not established, that is, if no abnormality is detected when the # 4 cylinder is deactivated, it is determined that the # 4 cylinder additionally deactivated this time is abnormal.
  • Step 450 the determination in step 448 is true, that is, if abnormality is still detected with only the # 1 cylinder being operated, it is determined that the currently operating # 1 cylinder is abnormal. Then, it is determined that the # 4 cylinder additionally stopped this time is likely to be abnormal (step 452).
  • Step 444 determines whether abnormality is detected during the reduced-cylinder operation using the # 1, # 4 cylinders
  • Steps 446 to 452 are completed, the reduced-cylinder operation using the # 3 and # 6 cylinders is then executed (Step 454).
  • the abnormality detection process similar to step 100 is performed in a state where the reduced cylinder operation using the # 3 and # 6 cylinders is performed (step 456).
  • step 456 when the determination in step 456 is satisfied (that is, when it can be determined that at least one of the # 3 and # 6 cylinders is abnormal), the identification of the abnormal cylinder is further advanced with respect to the # 3 and # 6 cylinders. Accordingly, the processing of steps 458 to 464 similar to those in the case of the # 1 and # 4 cylinders is executed.
  • Step 456 when the determination of step 456 is not established (that is, when no abnormality is detected during the reduced-cylinder operation using the # 3 and # 6 cylinders), or abnormality identification regarding the # 3 and # 6 cylinders (above)
  • Steps 458 to 464 are completed, the reduced-cylinder operation using the # 5 and # 2 cylinders is then performed (Step 466).
  • the abnormality detection process similar to step 100 is performed in a state where the reduced cylinder operation using the # 5 and # 2 cylinders is performed (step 468).
  • this step 468 when the determination of this step 468 is established (that is, when it can be determined that at least one of the # 5 and # 2 cylinders is abnormal), the identification of the abnormal cylinder is further advanced with respect to the # 5 and # 2 cylinders. Accordingly, the same processes of steps 470 to 476 as those in the case of the # 1 and # 4 cylinders are executed.
  • a group cylinder with an equal explosion interval is selected as the active cylinder, and the cylinder is deactivated.
  • the internal combustion engine 120 which is a 6-cylinder engine, it is possible to identify an abnormal cylinder while sufficiently suppressing vibration noise.
  • the ECU 22 executes the processes of steps 402 and 406 so that the “first cylinder deactivation execution means” in the first or eighth aspect of the invention is the steps 412, 422.
  • the “second cylinder deactivation execution means” in the first or eighth invention executes the processing of step 410 described above, thereby executing the eighth invention.
  • the “abnormal group cylinder determining means” in step 812 and 442 or 476 are executed, and the “group cylinder abnormality determining means” in the eighth or ninth invention is realized, respectively. Has been.
  • FIG. 20 is a diagram showing the arrangement of each cylinder and the explosion order in internal combustion engine 130 according to Embodiment 5 of the present invention.
  • the internal combustion engine 120 of this embodiment is an eight-cylinder engine, more specifically, a V-type 8 having a total of eight cylinders (# 1 to # 8) in two banks 130a and 130b. Assume that it is a cylinder engine. Also, here, the four cylinders arranged in one bank 130a are referred to as # 1, # 3, # 5, # 7, and the four cylinders arranged in the other bank 130b are # 2, # 4, ##. 6, referred to as # 8 cylinder.
  • the explosion order of the internal combustion engine 130 is, for example, the order of # 1 ⁇ # 8 ⁇ # 4 ⁇ # 3 ⁇ # 6 ⁇ # 5 ⁇ # 7 ⁇ # 2, and the explosion strokes are equally spaced in this order. Shall be performed.
  • the internal combustion engine 130 of the present embodiment is basically configured in the same manner as the internal combustion engine 10 except that the engine format is different. That is, although illustration is omitted, it is assumed that each cylinder is provided with a fuel injection valve and each cylinder is provided with a variable valve mechanism capable of stopping the intake and exhaust valves in a closed state. It is assumed that an appropriate number of catalysts are disposed in the exhaust passage. Further, the air-fuel ratio is detected at the positions downstream of the banks of the exhaust manifolds of the banks 130a and 130b and at the positions after the exhaust gas exhausted from the banks 130a and 130b merge. A / F sensor (or O2 sensor) is arranged.
  • FIG. 21 is a flowchart of a routine that the ECU 22 executes in order to realize the abnormal cylinder specifying method according to the fifth embodiment of the present invention.
  • This routine is executed when the internal combustion engine 130, which is an 8-cylinder engine, is operating in 8 cylinders (all cylinders).
  • the internal combustion engine 130 which is an 8-cylinder engine
  • 8 cylinders all cylinders.
  • step 500 the abnormality detection process similar to step 100 is executed.
  • the cylinders # 1, # 4, # 6, and # 7 are It is paused (step 502). That is, the reduced cylinder operation using the # 8, # 3, # 5, and # 2 cylinders is executed.
  • step 504 the abnormality detection process similar to step 100 is executed in a state where the cylinders # 1, # 4, # 6, and # 7 are deactivated (step 504).
  • the determination in step 504 is not established, that is, if no abnormality is detected due to the suspension of the cylinders # 1, # 4, # 6, and # 7, the currently operating # 8, It can be determined that any one of the # 1, # 4, # 6, and # 7 cylinders that are currently stopped is abnormal, not the 3, # 5, and # 2 cylinders. For this reason, in this case, a series of processes of the following steps 506 to 524 are executed in order to specify which of the cylinders # 1, # 4, # 6, and # 7 is abnormal.
  • steps 506 to 524 is the same as the processing in steps 102 to 120 in the routine shown in FIG. 13 except that the target cylinders are # 1, # 4, # 6, and # 7 cylinders. . Therefore, detailed description thereof is omitted here.
  • step 504 determines whether an abnormality is still detected with cylinders # 1, # 4, # 6, and # 7 being deactivated, # 8, # It can be determined that any one of the cylinders # 3, # 5, and # 2 is abnormal. Therefore, in this case, the following series of steps 526 to 544 are executed in order to identify which of the # 8, # 3, # 5, and # 2 cylinders is abnormal.
  • the following steps 526 to 544 are the same as the steps 102 to 120 in the routine shown in FIG. 13 except that the target cylinders are # 8, # 3, # 5, and # 2 cylinders. . Therefore, detailed description thereof is omitted here.
  • the deterioration of the catalyst disposed in the exhaust passage is assumed when an abnormality occurs in any one cylinder of the internal combustion engine 130 which is an 8-cylinder engine. It is possible to accurately identify the abnormal cylinder while suppressing the above.
  • any cylinder is abnormal, first, one of the group cylinders (for example, # 1, # 4, # 6, # 7) consisting of half the cylinders (4 cylinders) is used. After determining whether or not an abnormality is recognized, the number of idle cylinders is changed from 4 to 2 cylinders (for example, other group cylinders consisting of # 1 and # 4 cylinders) as the abnormal cylinder identification process proceeds. Furthermore, the order is reduced to one cylinder. As a result, the number of times that single cylinder deactivation is performed can be effectively reduced, and the cylinder deactivation time can be effectively shortened. For this reason, it is possible to accurately identify the abnormal cylinder while suppressing adverse effects on the running performance of the vehicle and the vibration noise of the internal combustion engine.
  • both the group cylinder selected when the abnormal cylinder is specified and the other group cylinders are cylinders with equal intervals. According to such a method, it is possible to identify an abnormal cylinder while minimizing deterioration of vibration noise caused by cylinder deactivation. More specifically, each of the above-mentioned group cylinders and other group cylinders selected to minimize the deterioration of vibration noise is stopped once and only one cylinder in the other group cylinders is stopped once. It is possible to accurately identify the abnormal cylinder only by a total of three pauses. In other words, it is possible to accurately identify the abnormal cylinder while minimizing the number of times and the operation time of the single cylinder rest operation in which the deterioration of vibration noise is a concern.
  • the ECU 22 executes the process of step 502, whereby the “first cylinder deactivation execution means” in the first, third, or tenth aspect of the invention is the step 506. (Or 526) or 510 (518, 530, or 538) is executed, the “second cylinder deactivation execution means” in the first, third, or tenth aspect of the invention performs the process of step 504.
  • the “second abnormal group cylinder” in the fourth or tenth invention is executed by the “abnormal group cylinder determining means” in the third or tenth invention.
  • the discriminating means "and the above steps 512 to 516, 520 to 524, 532 to 536, or 540 to 5 By executing the processing of the 4 "groups cylinder abnormality identification means" in the invention of the third or 10 are realized respectively.
  • Embodiment 6 FIG. Next, a sixth embodiment of the present invention will be described with reference to FIG.
  • the system of the present embodiment is realized by causing the ECU 22 to execute a routine shown in FIG. 22 described later instead of the routine shown in FIG. 21 using the hardware configuration shown in FIGS. 2 to 12 and FIG. It is something that can be done.
  • FIG. 22 is a flowchart of a routine that the ECU 22 executes in order to realize the abnormal cylinder specifying method according to the sixth embodiment of the present invention.
  • abnormality detection processing similar to step 100 is executed during all-cylinder operation (step 600).
  • the cylinders # 1, # 4, # 6, and # 7 are It is paused (step 602). That is, the reduced cylinder operation using the # 8, # 3, # 5, and # 2 cylinders is executed.
  • step 604 the abnormality detection process similar to the above step 100 is executed with the cylinders # 1, # 4, # 6, and # 7 being deactivated (step 604).
  • step 606 the # 8, # 3, # 5, and # 2 cylinders are deactivated (step 606). That is, the reduced cylinder operation using the # 1, # 4, # 6, and # 7 cylinders is executed.
  • step 608 the abnormality detection process similar to step 100 is executed in a state where the cylinders # 8, # 3, # 5, and # 2 are stopped (step 608).
  • step 610 it is determined whether or not an abnormality has been detected. As a result, if the determination in step 610 is not established, that is, only one of the # 1, # 4, # 6, and # 7 cylinders and the # 8, # 3, # 5, and # 2 cylinders are deactivated. If an abnormality is detected in step 612, it is then determined whether or not an abnormality has been detected only when cylinders # 1, # 4, # 6, and # 7 are deactivated (step 612).
  • step 612 determines whether an abnormality is detected only when cylinders # 1, # 4, # 6, and # 7 are stopped. If the determination in step 612 is satisfied, that is, if it can be determined that an abnormality is detected only when cylinders # 1, # 4, # 6, and # 7 are stopped, cylinders # 1, # 4, # 6, and # 7 It can be determined that at least one of is abnormal. Therefore, in this case, processing similar to steps 202 to 224 of the routine shown in FIG. 14 is executed in order to further identify abnormal cylinders for the cylinders # 1, # 4, # 6, and # 7 (see FIG. 14). Step 614). The processing in step 614 is the same as the processing in steps 202 to 224 except that cylinders # 1, # 4, # 6, and # 7 are to be processed, and thus detailed description thereof is omitted here. To do.
  • step 612 determines whether an abnormality has been detected only when # 8, # 3, # 5, and # 2 are deactivated, # 8, # 3, # 5, It can be determined that at least one of the # 2 cylinders is abnormal. Therefore, in this case, processing similar to steps 202 to 224 of the routine shown in FIG. 14 is executed in order to further identify the abnormal cylinder with respect to the # 8, # 3, # 5, and # 2 cylinders ( Step 616).
  • the processing of this step 616 is the same as the processing of steps 202 to 224 except that the cylinders # 8, # 3, # 5, and # 2 are subject to processing, and thus detailed description thereof is omitted here. To do.
  • step 610 when the determination in the above step 610 is established, that is, abnormality is detected both when # 1, # 4, # 6, and # 7 are deactivated and when # 8, # 3, # 5, and # 2 are deactivated. If this is the case, the process for identifying the abnormal cylinder for the # 1, # 4, # 6, and # 7 cylinders (step 618) and the abnormal cylinder for the # 8, # 3, # 5, and # 2 cylinders are then performed.
  • the process for specifying (step 620) is executed in order. Note that the processing in step 618 is the same as the processing in step 614, and the processing in step 620 is the same as the processing in step 616.
  • the abnormal cylinder is practically used while suppressing deterioration of the catalyst. It becomes possible to specify at a sufficient level.
  • abnormality detection processing is executed for each of two group cylinders consisting of half of the cylinders (four cylinders), and the abnormality occurrence cylinder is included in one of the group cylinders. It is made clear whether it is included in both or both of them, and abnormal cylinders are specified as necessary for the cylinders included in each group cylinder. According to such a method, it is possible to efficiently identify the abnormal cylinder while reducing the number of times of deactivation of some cylinders for identifying the abnormal cylinder. Further, when specifying an abnormal cylinder in the group cylinder, an abnormality determination is performed during an operation in which another group cylinder is selected as a deactivated cylinder prior to the execution of the single cylinder operation.
  • the cylinder deactivation is performed by selecting a group cylinder with equal intervals. Specifically, the first selected group cylinder (# 1, # 4, # 6, # 7, or # 8, # 3, # 5, # 2), and other group cylinders selected thereafter ( For any of # 1 and # 6, # 4 and # 7, # 8 and # 5, or # 3 and # 2), a 4-cylinder or a 2-cylinder with equal intervals is selected. For this reason, in the internal combustion engine 130 which is an 8-cylinder engine, it is possible to identify an abnormal cylinder while sufficiently suppressing vibration noise.
  • the ECU 22 executes the processing of steps 602 and 606, whereby the “first cylinder deactivation execution means” in the first, third, or eleventh invention is By executing the processing of steps 614, 616, or 618 and 620, the “second cylinder deactivation execution means” in the first, third, or eleventh invention executes the processing of steps 610 and 612. Accordingly, the “abnormal group cylinder discrimination means” in the third or eleventh invention executes the processing of the above steps 614, 616, or 618 and 620, thereby “second” in the fourth or eleventh invention. The abnormal group cylinder discriminating means ”is then executed in the above steps 614, 616, or 618 and 620. The "Group cylinder abnormality identification means" in the invention of the third or 11 by the execution, is realized, respectively.
  • Embodiment 7 of the present invention will be described with reference to FIG.
  • the system of the present embodiment can be realized by causing the ECU 22 to execute a routine shown in FIG. 23 described later together with a routine shown in FIG. 13 by using the hardware configuration shown in FIG. 1 and FIGS. It can be done.
  • FIG. 23 is a flowchart of a routine that the ECU 22 executes in order to realize the abnormal cylinder specifying method according to the seventh embodiment of the present invention.
  • the routine shown in FIG. 23 first, it is determined whether or not the vehicle is decelerating based on the output of a throttle opening sensor or the like provided in the internal combustion engine 10 (step 700).
  • step 702 when it is determined that the vehicle is decelerating, in other words, when it can be determined that there is a request to execute fuel cut, three cylinders other than the predetermined N-th cylinder are deactivated (step 702). More specifically, fuel supply is suspended in the cylinders to be deactivated, and the operation of the intake / exhaust valves is deactivated in the closed state.
  • the air-fuel ratio of the exhaust gas exhausted from the N-th cylinder is set to a predetermined control target air-fuel ratio based on the output of the A / F sensor 16. Then, it is determined whether or not the deviation is greater than a predetermined value (step 704). As a result, when it is determined that there is an A / F deviation of a certain value or more, an abnormality is recognized in the Nth cylinder, so that the deviation to the Nth cylinder is eliminated so that the detected A / F deviation is eliminated. Feedback is provided (step 706).
  • the air-fuel ratio of the exhaust gas supplied to the catalyst 14 is maintained at a predetermined control target air-fuel ratio.
  • Air-fuel ratio feedback control for correcting the fuel injection amount is performed.
  • the fuel injection amount for the Nth cylinder is corrected so that the A / F deviation is eliminated.
  • step 706 After performing the correction in step 706, it is determined whether or not there is an A / F deviation greater than the predetermined value in the Nth cylinder (step 708). As a result, when it is determined that the A / F deviation of the predetermined value or more still exists, it is finally determined that the Nth cylinder is abnormal (step 710).
  • step 700 if it is determined in step 700 that the vehicle is decelerating, the processes in steps 702 to 710 are sequentially performed on the # 1 to # 4 cylinders of the internal combustion engine 10.
  • the abnormal cylinder can be specified while suppressing the deterioration of the catalyst 14 by utilizing the situation where the fuel cut is executed at the time of deceleration. Therefore, by executing this routine together with the processing of the first to sixth embodiments shown in FIG. 13 and the like, it is possible to sufficiently secure an opportunity to detect abnormal cylinders during operation of the internal combustion engine 10. . Further, according to the routine processing, when an abnormality is recognized in any of the cylinders, the fuel injection amount of the Nth cylinder in which the abnormality is detected can be corrected prior to the abnormality determination. In addition, according to the processing of the above routine, by detecting abnormal cylinders during deceleration when no torque is required for the internal combustion engine 10, it is possible to sufficiently eliminate the influence of some cylinder pauses on vibration noise. it can.
  • the ECU 22 executes the process of step 700, so that the “fuel cut request determining means” in the twelfth aspect of the invention executes the process of step 702.
  • the “third cylinder deactivation execution means” in the twelfth aspect of the invention and the “second abnormal cylinder identification means” in the twelfth aspect of the present invention are implemented by executing the processing of steps 708 and 710, respectively.
  • the “air-fuel ratio correcting means” according to the thirteenth aspect of the present invention is implemented when the ECU 22 executes the process of step 706.
  • Embodiment 8 FIG. Next, an eighth embodiment of the present invention will be described with reference to FIG.
  • the system of the present embodiment can be realized by causing the ECU 22 to execute a routine shown in FIG. 24 described later together with a routine shown in FIG. 13 by using the hardware configuration shown in FIG. 1 and FIGS. It can be done.
  • the abnormality that may occur in each cylinder of the internal combustion engine 10 includes misfire, A / F imbalance, and the like.
  • a method for specifying whether the abnormality occurring in the internal combustion engine 10 is misfire or A / F imbalance will be described.
  • FIG. 24 is a flowchart of a routine executed by the ECU 22 to implement the abnormality content identification method according to the eighth embodiment of the present invention.
  • the routine shown in FIG. 24 first, whether the deviation of the detected value of the A / F sensor 16 from the control target air-fuel ratio is equal to or greater than a predetermined value for detecting an abnormality, using the same method as the processing performed in step 100 above. It is determined whether or not (step 800). As a result, if an A / F deviation greater than or equal to the predetermined value is recognized, it is then determined whether or not the crankshaft rotational fluctuation is equal to or greater than a predetermined value for misfire determination (step 802). .
  • step 802 If the determination in step 802 is satisfied, that is, if it can be determined that both the A / F deviation and the crankshaft rotation fluctuation are at abnormal levels, the abnormality of the internal combustion engine 10 detected this time is a misfire. It is determined that there is (step 804). On the other hand, if the determination in step 802 is not established, that is, if it can be determined that an abnormal level of A / F deviation is recognized but an abnormal level of crankshaft rotation fluctuation is not recognized, this detection is performed. It is determined that the abnormality of the internal combustion engine 10 that has been made is an A / F imbalance (step 806).
  • any one of the internal combustion engines 10 is determined based on the presence / absence of the A / F deviation equal to or greater than the predetermined value and the presence / absence of the crankshaft rotational fluctuation greater than the predetermined value. It is possible to specify whether the abnormality occurring in the cylinder is misfire or A / F imbalance. By executing such routine processing in combination with the abnormal cylinder identification method of the first to seventh embodiments described above, it is possible to accurately identify the cylinder in which misfire or A / F imbalance has occurred. Become.
  • the ECU 22 executes the process of step 802, whereby the “first abnormality evaluation index value determining means” in the fourteenth aspect of the invention executes the process of step 800.
  • the “second abnormality evaluation index value determining means” in the fourteenth aspect of the invention realizes the “abnormality content specifying means” of the fourteenth aspect of the invention by executing the processing of steps 800 to 806, respectively. Yes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 この発明は、触媒の劣化を防止しつつ、運転中に異常が生じた気筒を精度良くかつ効率良く特定することのできる可変動弁機構を有する内燃機関の制御装置を提供することを目的とする。 気筒毎に燃料を噴射可能な燃料噴射弁26を備える。吸気弁および排気弁の動作を気筒毎に閉弁状態で休止可能な可変動弁機構18、20を備える。内燃機関10の運転中に異常評価指標値を取得し、当該異常評価指標値に基づいて内燃機関の少なくとも1つの気筒に生じた異常を検出する。当該異常が検出された場合に、少なくとも2つの気筒からなる第1の一部気筒を対象として、燃料供給の休止および閉弁状態でのバルブの動作の休止を行う気筒休止を実行する。当該気筒休止後に、少なくとも1つの気筒からなる第2の一部気筒を対象として休止気筒を変更したうえで気筒休止を実行する。当該休止気筒の変更に伴う異常評価指標値の変化に基づいて、異常発生気筒を特定する。

Description

可変動弁機構を有する内燃機関の制御装置
 この発明は、可変動弁機構を有する内燃機関の制御装置に関する。
 従来、例えば特許文献1には、吸排気弁の動作を閉弁状態で休止可能な可変動弁機構を備える内燃機関の故障判定装置が開示されている。この従来の故障判定装置では、クランクシャフトの回転変動に基づき、内燃機関の失火の発生の有無を気筒毎に判定するようにしている。
また、例えば特許文献2には、多気筒エンジンにおける特定気筒の失火判別方法が開示されている。この従来の失火判別方法では、所定の失火情報(排気マニホールドの集合部よりも下流側に配置されたO2センサの出力)に基づいて何れかの気筒で失火したと判断した場合に、各気筒への燃料供給を1気筒づつ順次停止するようにしている。そして、そのような燃料供給の順次停止によって失火情報が検出されなくなった時に燃料供給が停止されている気筒に失火が生じていると判断するようにしている。 
日本特開2003-184626号公報 日本特開昭62-228640号公報
 上述した特許文献1には、クランクシャフトの回転変動に基づいて失火の有無を気筒毎に判定する旨が記載されている。しかしながら、現実には、クランクシャフトの回転変動に基づいて、失火が生じている気筒を十分な精度で特定することは困難である。特に、内燃機関が備える気筒数が多いほど、更には、エンジン回転数が高くなるほど、失火に起因して生じたクランクシャフトの回転変動がどの気筒に由来するのかを精度良く判定することは困難である。 
また、上述した特許文献2に記載の手法では、失火が生じた気筒の特定を行う際に、新気が、燃料供給が停止された気筒から排気通路に配置される触媒に供給されてしまうことになる。その結果、触媒が劣化してしまうことが懸念される。また、一部の気筒の燃焼を休止させることは、異常気筒を特定するうえで有効であるが、車両の走行性能や内燃機関の振動騒音に悪影響を与え得るものである。従って、異常気筒を特定するために一部の気筒が休止される回数をできるだけ少なくし、また、気筒休止時間をできるだけ短くすることが望ましい。
 この発明は、上述のような課題を解決するためになされたもので、触媒の劣化を防止しつつ、運転中に異常が生じた気筒を精度良くかつ効率良く特定することのできる可変動弁機構を有する内燃機関の制御装置を提供することを目的とする。
 第1の発明は、可変動弁機構を有する内燃機関の制御装置であって、
 気筒毎に燃料を噴射可能な燃料噴射弁と、 吸気弁および排気弁の少なくとも一方のバルブの動作を気筒毎に独立して閉弁状態で休止可能な可変動弁機構と、 内燃機関の運転中に異常評価指標値を取得し、当該異常評価指標値に基づいて内燃機関の少なくとも1つの気筒に生じた異常を検出する異常検出手段と、 前記異常検出手段により異常が検出された場合に、少なくとも2つの気筒からなる第1の一部気筒を対象として、燃料供給の休止および閉弁状態での前記バルブの動作の休止を行う気筒休止を実行する第1気筒休止実行手段と、
 前記第1気筒休止実行手段による気筒休止後に、少なくとも1つの気筒からなる第2の一部気筒を対象として休止気筒を変更したうえで気筒休止を実行する第2気筒休止実行手段と、 前記第2気筒休止実行手段による休止気筒の変更に伴う前記異常評価指標値の変化に基づいて、異常発生気筒を特定する異常気筒特定手段と、 を備えることを特徴とする。
 また、第2の発明は、第1の発明において、
 前記第2気筒休止実行手段は、異常発生気筒の特定が進行するに従って、休止気筒数を減少させる休止気筒数減少実行手段を含むことを特徴とする。
 また、第3の発明は、第1または第2の発明において、
 前記第1気筒休止実行手段は、休止間隔もしくは爆発間隔が等間隔もしくは最も等間隔に近くなる2つのグループ気筒の一方もしくは双方を前記第1の一部気筒として選択して気筒休止を実行し、
 前記異常気筒特定手段は、前記第1の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、前記グループ気筒の一方もしくは双方に異常発生気筒が含まれているか否かを判別する異常グループ気筒判別手段を含み、
 前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記グループ気筒内の一部気筒を前記第2の一部気筒として選択して気筒休止を実行し、
 前記異常気筒特定手段は、前記第2の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、異常発生気筒が含まれていると判別された前記グループ気筒内で、異常発生気筒を特定するグループ気筒内異常特定手段を含むことを特徴とする。
 また、第4の発明は、第3の発明において、
 前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記グループ気筒内に、休止間隔もしくは爆発間隔が等間隔もしくは最も等間隔に近くなる複数の他のグループ気筒が存在する場合には、当該他のグループ気筒の少なくとも1つを前記第2の一部気筒として選択して気筒休止を実行し、
 前記異常気筒特定手段は、前記第2の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、前記他のグループ気筒の少なくとも一つに異常発生気筒が含まれているか否かを判別する第2異常グループ気筒判別手段を含み、
 前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記他のグループ気筒内の一部気筒を第3の一部気筒として選択して気筒休止を実行し、
 前記グループ気筒内異常特定手段は、前記第3の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、異常発生気筒が含まれていると判別された前記他のグループ気筒内で異常発生気筒を特定することを特徴とする。
 また、第5の発明は、第1または第2の発明において、
 前記内燃機関は、4つの気筒を有する内燃機関であって、
 第1気筒休止実行手段は、休止間隔が等間隔もしくは最も等間隔に近くなる2つの気筒からなる2つのグループ気筒の一方を前記第1の一部気筒として選択して気筒休止を実行し、
 前記異常気筒特定手段は、前記第1の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、前記グループ気筒のどちらに異常発生気筒が含まれているか否かを判別する異常グループ気筒判別手段を含み、
 前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記グループ気筒内の何れか1つの気筒を前記第2の一部気筒として選択して気筒休止を実行し、
 前記異常気筒特定手段は、前記第2の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、異常発生気筒が含まれていると判別された前記グループ気筒内で、異常発生気筒を特定するグループ気筒内異常特定手段を含むことを特徴とする。
 また、第6の発明は、第1または第2の発明において、
 前記内燃機関は、4つの気筒を有する内燃機関であって、
 第1気筒休止実行手段は、休止間隔が等間隔もしくは最も等間隔に近くなる2つの気筒からなる2つのグループ気筒を順次前記第1の一部気筒として選択して気筒休止を実行し、
 前記異常気筒特定手段は、前記第1の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、前記グループ気筒の一方もしくは双方に異常発生気筒が含まれているか否かを判別する異常グループ気筒判別手段を含み、
 前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記グループ気筒内の何れか1つの気筒以外の3気筒を前記第2の一部気筒として選択して気筒休止を実行し、
 前記異常気筒特定手段は、前記第2の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、異常発生気筒が含まれていると判別された前記グループ気筒内で、異常発生気筒を特定するグループ気筒内異常特定手段を含むことを特徴とする。
 また、第7の発明は、第1または第2の発明において、
 前記内燃機関は、6つの気筒を有する内燃機関であって、
 前記第1気筒休止実行手段は、爆発間隔が等間隔もしくは最も等間隔に近くなる3つの気筒からなる2つのグループ気筒の一方を前記第1の一部気筒として選択して気筒休止を実行し、
 前記異常気筒特定手段は、前記第1の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、前記グループ気筒のどちらに異常発生気筒が含まれているか否かを判別する異常グループ気筒判別手段を含み、
 前記第2気筒休止実行手段は、爆発間隔が等間隔もしくは最も等間隔に近くなる2つの気筒からなる3つの他のグループ気筒の少なくとも1つに対して、当該他のグループ気筒に含まれる2気筒以外の4気筒を前記第2の一部気筒として選択して気筒休止を実行し、
 前記異常気筒特定手段は、前記第2の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて前記他のグループ気筒内に異常発生気筒が含まれているか否かを判別した結果と、前記異常グループ気筒判別手段による判別結果とに基づいて、異常発生気筒を特定するグループ気筒内異常特定手段を含むことを特徴とする。
 また、第8の発明は、第1または第2の発明において、
 前記内燃機関は、6つの気筒を有する内燃機関であって、
 前記第1気筒休止実行手段は、爆発間隔が等間隔もしくは最も等間隔に近くなる3つの気筒からなる2つのグループ気筒を順次前記第1の一部気筒として選択して気筒休止を実行し、
 前記異常気筒特定手段は、前記第1の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、前記グループ気筒の一方もしくは双方に異常発生気筒が含まれているか否かを判別する異常グループ気筒判別手段を含み、
 前記第2気筒休止実行手段は、爆発間隔が等間隔もしくは最も等間隔に近くなる2つの気筒からなる3つの他のグループ気筒に対して、当該他のグループ気筒に含まれる2気筒以外の4気筒を順次前記第2の一部気筒として選択して気筒休止を実行し、
 前記異常気筒特定手段は、前記グループ気筒の一方のみに異常発生気筒が含まれていると判断された場合には、前記第2の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて前記他のグループ気筒内に異常発生気筒が含まれているか否かを判別した結果と、前記異常グループ気筒判別手段による判別結果とに基づいて、異常発生気筒を特定するグループ気筒内異常特定手段を含むことを特徴とする。
 また、第9の発明は、第8の発明において、
 前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記他のグループ気筒内の何れか1つの気筒を更に第3の一部気筒として選択して気筒休止を実行し、
 前記グループ気筒内異常特定手段は、前記グループ気筒の双方に異常発生気筒が含まれていると判断された場合には、異常発生気筒が含まれていると判別された前記他のグループ気筒内で、前記第3の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて異常発生気筒を特定することを特徴とする。
 また、第10の発明は、第1または第2の発明において、
 前記内燃機関は、8つの気筒を有する内燃機関であって、
 前記第1気筒休止実行手段は、休止間隔が等間隔もしくは最も等間隔に近くなる4つの気筒からなる2つのグループ気筒の一方を前記第1の一部気筒として選択して気筒休止を実行し、
 前記異常気筒特定手段は、前記第1の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、前記グループ気筒のどちらに異常発生気筒が含まれているか否かを判別する異常グループ気筒判別手段を含み、
 前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記グループ気筒内で、休止間隔が等間隔もしくは最も等間隔に近くなる2つの気筒からなる2つの他のグループ気筒の一方を前記第2の一部気筒として選択して気筒休止を実行し、
 前記異常気筒特定手段は、前記第2の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、前記他のグループ気筒のどちらに異常発生気筒が含まれているか否かを判別する第2異常グループ気筒判別手段を含み、
 前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記他のグループ気筒内の何れか1つの気筒を更に第3の一部気筒として選択して気筒休止を実行し、
 前記異常気筒特定手段は、異常発生気筒が含まれていると判別された前記他のグループ気筒内で、前記第3の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて異常発生気筒を特定するグループ気筒内異常特定手段を含むことを特徴とする。
 また、第11の発明は、第1または第2の発明において、
 前記内燃機関は、8つの気筒を有する内燃機関であって、
 前記第1気筒休止実行手段は、休止間隔が等間隔もしくは最も等間隔に近くなる4つの気筒からなる2つのグループ気筒を順次前記第1の一部気筒として選択して気筒休止を実行し、
 前記異常気筒特定手段は、前記第1の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、前記グループ気筒の一方もしくは双方に異常発生気筒が含まれているか否かを判別する異常グループ気筒判別手段を含み、
 前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記グループ気筒内で、休止間隔が等間隔もしくは最も等間隔に近くなる2つの気筒からなる4つの他のグループ気筒の少なくとも2つに対して、当該他のグループ気筒に含まれる2気筒以外の4気筒を順次前記第2の一部気筒として選択して気筒休止を実行し、
 前記異常気筒特定手段は、前記第2の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、異常発生気筒が含まれていると判別された前記グループ気筒に含まれる2つの前記他のグループ気筒の少なくとも一方に異常発生気筒が含まれているか否かを判別する第2異常グループ気筒判別手段を含み、
 前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記他のグループ気筒内の何れか1つの気筒を第3の一部気筒として選択して気筒休止を実行し、
 前記異常気筒特定手段は、異常発生気筒が含まれていると判別された前記他のグループ気筒内で、前記第3の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて異常発生気筒を特定するグループ気筒内異常特定手段を含むことを特徴とする。
 また、第12の発明は、第1乃至第11の発明の何れかにおいて、
 燃料カットの実行要求の有無を判別する燃料カット要求判別手段と、
 前記燃料カットの実行要求が認められる場合に、所定の1気筒以外の他の気筒を対象とし、かつ、前記所定の1気筒を順次変更しながら気筒休止を実行する第3気筒休止実行手段とを更に備え、
 前記異常気筒特定手段は、前記第3気筒休止実行手段による気筒休止時の前記異常評価指標値に基づいて、異常発生気筒を特定する第2異常気筒特定手段を含むことを特徴とする。
 また、第13の発明は、第12の発明において、
 前記異常検出手段は、排気通路を流れる排気ガスの空燃比を前記異常評価指標値とし、所定の判定値に対する当該空燃比のずれ量に基づいて、前記異常を検出する手段であって、
 前記内燃機関の制御装置は、前記異常検出手段により検出された異常が無くなるように、前記第2異常気筒特定手段によって特定される異常発生気筒から排出される排気ガスの空燃比を補正する空燃比補正手段を更に備えることを特徴とする。
 また、第14の発明は、第1乃至第13の発明の何れかにおいて、
 前記異常検出手段は、
 クランク軸の回転変動を前記異常評価指標値とし、前記クランク軸の回転変動が所定の判定値以上であるか否かを判定する第1異常評価指標値判定手段と、
 排気通路を流れる排気ガスの空燃比を前記異常評価指標値とし、前記空燃比のずれ量が所定の判定値以上であるか否かを判定する第2異常評価指標値判定手段とを含み、
 前記内燃機関の制御装置は、前記クランク軸の回転変動が前記判定値以上である場合には、前記異常が失火であると判定し、前記クランク軸の回転変動が前記判定値以上ではないが前記空燃比のずれ量が前記判定値以上である場合に、前記異常が空燃比インバランスであると判定する異常内容特定手段を更に備えることを特徴とする。
 第1の発明によれば、異常評価指標値に基づいて内燃機関の少なくとも1つの気筒に生じた異常が検出された場合に、少なくとも2つの気筒からなる第1の一部気筒を対象として、燃料供給の休止および閉弁状態でのバルブの動作の休止を行う気筒休止が実行される。そして、当該気筒休止後に、少なくとも1つの気筒からなる第2の一部気筒を対象として休止気筒を変更したうえで気筒休止が実行される。その結果、休止気筒の変更に伴って異常評価指標値が変化し得る。例えば、異常発生気筒を含む一部気筒が休止された場合には、異常評価指標値は内燃機関の異常を示すものではなくなる。従って、休止気筒の変更に伴う異常評価指標値の変化を判断することで、異常発生気筒を特定することが可能となる。また、本発明では、最初に気筒休止を行う気筒を少なくとも2つの気筒からなる第1の一部気筒とされている。これにより、1気筒づつ順次に気筒休止を行う場合に比して、異常発生気筒の特定に要する気筒休止回数を減らし、また、気筒休止時間を減らすことが可能となる。また、本発明では、休止気筒の変更に伴う異常評価指標値の変化に基づいて異常発生気筒を特定するようにしている。このため、異常検出手段自体は内燃機関のどれかの気筒に異常が生じていることを検出できる程度の精度を有していればよく、異常検出手段に対して高い検出精度を要求せずに異常発生気筒を特定することができるようになる。更に、本発明における気筒休止時には、燃料供給の休止とともにバルブの動作を閉弁状態で休止させるようにしているので、異常気筒特定のための気筒休止時に休止気筒から触媒に空気が供給されるのを防止することができ、触媒の劣化を防止することができる。以上のように、本発明によれば、触媒の劣化を防止しつつ、運転中に異常が生じた気筒を精度良くかつ効率良く特定することが可能となる。
 内燃機関が有する複数の気筒のうちの1気筒のみを休止気筒とすると、内燃機関の振動騒音が大きくなることが懸念される。第2の発明によれば、異常発生気筒の特定が進行するに従って、休止気筒数を減少させるようにしているので、1気筒のみを休止気筒とする時間を少なくすることが可能となる。これにより、内燃機関の振動騒音の悪化を抑制しつつ、異常発生気筒を特定することが可能となる。
 第3の発明によれば、先ず、2つのグループ気筒の一方もしくは双方を対象として気筒休止が行われ、当該グループ気筒単位で異常発生気筒の有無が判断される。そして、異常発生気筒が含まれていると判別されたグループ気筒内で、異常発生気筒が特定されるようになる。このため、本発明によれば、異常発生気筒の特定に要する気筒休止回数を効率良く減らすことが可能となる。また、本発明では、上記グループ気筒は、休止間隔もしくは爆発間隔が等間隔もしくは最も等間隔に近くなる気筒で構成されている。このため、本発明によれば、気筒休止実行時の振動騒音の悪化を好適に抑制しつつ、異常気筒を特定することが可能となる。
 第4の発明によれば、異常発生気筒が含まれていると判別された上記グループ気筒内に、休止間隔もしくは爆発間隔が等間隔もしくは最も等間隔に近くなる複数の他のグループ気筒が存在する場合には、当該他のグループ気筒の少なくとも1つを対象として気筒休止が実行される。そして、異常発生気筒が含まれていると判別された他のグループ気筒内で、異常発生気筒が特定されるようになる。このため、本発明によれば、6気筒型や8気筒型等の気筒数の多い内燃機関において、気筒休止実行時の振動騒音の悪化を好適に抑制しつつ、効率よく異常気筒を特定することが可能となる。
 第5の発明によれば、4気筒型の内燃機関における何れか1つの気筒のみに異常が発生することを想定した場合において、気筒休止実行時の振動騒音の悪化を好適に抑制しつつ、効率よく異常気筒を特定することが可能となる。
 第6の発明によれば、4気筒型の内燃機関の複数の気筒に異常が発生することを想定した場合において、気筒休止実行時の振動騒音の悪化を好適に抑制しつつ、効率よく異常気筒を特定することが可能となる。
 第7の発明によれば、6気筒型の内燃機関における何れか1つの気筒のみに異常が発生することを想定した場合において、気筒休止実行時の振動騒音の悪化を好適に抑制しつつ、効率よく異常気筒を特定することが可能となる。より具体的には、本発明によれば、他のグループ気筒内に異常発生気筒が含まれているか否かを判別した結果と、異常グループ気筒判別手段による判別結果(つまり、上記グループ気筒のどちらに異常発生気筒が含まれているか否かを判別した結果)とに基づいて、異常発生気筒を特定するようにしているので、単気筒運転を必要とせずに異常発生気筒を特定することが可能となる。
 第8の発明によれば、6気筒型の内燃機関の複数の気筒に異常が発生することを想定した場合において、上記グループ気筒の一方のみに異常発生気筒が含まれていると判断できる場合に、気筒休止実行時の振動騒音の悪化を好適に抑制しつつ、単気筒運転を必要とせずに効率よく異常気筒を特定することが可能となる。
 第9の発明によれば、6気筒型の内燃機関の複数の気筒に異常が発生することを想定した場合において、上記グループ気筒の双方に異常発生気筒が含まれていると判断できる場合に、気筒休止実行時の振動騒音の悪化を好適に抑制しつつ、効率よく異常気筒を特定することが可能となる。
 第10の発明によれば、8気筒型の内燃機関における何れか1つの気筒のみに異常が発生することを想定した場合において、気筒休止実行時の振動騒音の悪化を好適に抑制しつつ、効率よく異常気筒を特定することが可能となる。
 第11の発明によれば、8気筒型の内燃機関の複数の気筒に異常が発生することを想定した場合において、気筒休止実行時の振動騒音の悪化を好適に抑制しつつ、効率よく異常気筒を特定することが可能となる。
 第12の発明によれば、燃料カットの実行要求のある状況を利用して、触媒の劣化を抑制しつつ、異常気筒の特定を行うことができる。このため、本発明によれば、内燃機関の運転中に異常気筒を検出する機会を十分に確保できるようになる。また、本発明によれば、内燃機関にトルクが要求されない燃料カットの実行要求時に異常気筒の特定を行うことで、一部の気筒の休止が振動騒音に与える影響を十分に排除することができる。
 第13の発明によれば、燃料カットの実行要求のある状況を利用して、触媒の劣化を抑制しつつ、異常発生が認められる気筒から排出される排気ガスの空燃比を補正することができる。
 第14の発明によれば、内燃機関の何れかの気筒に発生した異常が、失火であるか空燃比インバランスであるかを特定することが可能となる。その結果、本発明によれば、失火もしくは空燃比インバランスが発生した気筒を精度良く特定することが可能となる。
本発明の実施の形態1の内燃機関システムの構成を説明するための図である。 本発明の実施の形態1における内燃機関の吸気可変動弁機構の全体構成を概略的に示す図である。 図2に示す可変機構を、バルブの基端部側から見下ろした図である。 第1ロッカーアームをロッカーシャフトの軸方向(図3中の矢視Aの方向)から見た図である。 第2ロッカーアームを図4と同じくロッカーシャフトの軸方向(矢視Aの方向)から見た図である。 図2に示す切換機構の詳細な構成を説明するための図である。 切換機構をカムシャフトの軸方向(図6中の矢視Bの方向)から見た図である。 弁稼動状態時(通常のリフト動作時)の制御状態を示す図である。 弁停止動作の開始時の制御状態を示す図である。 スライド動作の完了時の制御状態を示す図である。 、スライドピンをロックピンによって保持する保持動作時の制御状態を示す図である。 、スライドピンをロックピンによって保持する保持動作時の制御状態を示す図である。 本発明の実施の形態1において実行されるルーチンのフローチャートである。 本発明の実施の形態2において実行されるルーチンのフローチャートである。 本発明の実施の形態3における内燃機関の各気筒の配置と爆発順序を示す図である。 本発明の実施の形態3において実行されるルーチンのフローチャートである。 本発明の実施の形態4において実行されるルーチンのフローチャートである。 本発明の実施の形態4において実行されるルーチンのフローチャートである。 本発明の実施の形態4において実行されるルーチンのフローチャートである。 本発明の実施の形態5における内燃機関の各気筒の配置と爆発順序を示す図である。 本発明の実施の形態5において実行されるルーチンのフローチャートである。 本発明の実施の形態6において実行されるルーチンのフローチャートである。 本発明の実施の形態7において実行されるルーチンのフローチャートである。 本発明の実施の形態8において実行されるルーチンのフローチャートである。
符号の説明
10、120、130 内燃機関
12 排気通路
14 触媒
16 A/Fセンサ
18 吸気可変動弁機構
20 排気可変動弁機構
22 ECU(Electronic Control Unit)
24 クランク角センサ
26 燃料噴射弁
28 バルブ(吸排気バルブ)
52 カムシャフト
54 主カム
56 副カム
60 可変機構
64 切換機構
106 アクチュエータ
120a、120b、130a、130b バンク
実施の形態1.
[システム構成の説明]
 図1は、本発明の実施の形態1の内燃機関システムの構成を説明するための図である。本実施形態のシステムは、内燃機関10を備えている。ここでは、図1に示すように、内燃機関10は、4つの気筒(#1~#4)を有し、#1→#3→#4→#2の順(一例)で等間隔に爆発行程が行われる直列4気筒型のエンジンであるものとする。
 内燃機関10は、その筒内から排出される排気ガスが流れる排気通路12を備えている。排気通路12の途中(より具体的には、各気筒からの排気ガスが合流した後の部位)には、排気ガスを浄化するための触媒14が配置されている。また、排気通路12における触媒14の上流には、その位置で排気ガスの空燃比(A/F)を検出するためのA/Fセンサ16が配置されている。
 内燃機関10の吸気バルブ(図示省略)および排気バルブ(図示省略)は、それぞれ吸気可変動弁機構18および排気可変動弁機構20により駆動される。これらの可変動弁機構18、20の詳細な構成については、図2乃至図12を参照して後述するものとする。
 図1に示すシステムは、ECU(Electronic Control Unit)22を備えている。ECU22の入力には、上述したA/Fセンサ16に加え、クランク軸の回転位置や回転速度(エンジン回転数)を検出するためのクランク角センサ24等の内燃機関10の運転状態を検出するための各種センサが接続されている。また、ECU22の出力には、上述した可変動弁機構18、20に加え、内燃機関10の筒内もしくは吸気ポートに燃料を噴射するための燃料噴射弁26等の内燃機関10の運転状態を制御するための各種アクチュエータが接続されている。ECU22は、それらのセンサ出力に基づいて、内燃機関10の運転状態を制御することができる。
[可変動弁機構の全体構成]
 図2は、本発明の実施の形態1における内燃機関10の吸気可変動弁機構18の全体構成を概略的に示す図である。尚、ここでは、吸気可変動弁機構18を例にとって説明を行うが、排気可変動弁機構20についても、吸気可変動弁機構18と同様に構成されているものとする。
 本実施形態の可変動弁機構18は、カムシャフト52を備えている。カムシャフト52は、図示省略するクランクシャフトに対してタイミングチェーンまたはタイミングベルトによって連結され、クランクシャフトの1/2の速度で回転するように構成されている。カムシャフト52には、1気筒当たり1つの主カム54と2つの副カム56とが形成されている。主カム54は、2つの副カム56の間に配置されている。
 主カム54は、カムシャフト52と同軸の円弧状のベース円部54a(図4参照)と、当該ベース円の一部を半径方向外側に向かって膨らませるように形成されたノーズ部54b(図4参照)とを備えている。また、本実施形態では、副カム56は、ベース円部のみを有するカム(ゼロリフトカム)として構成されている(図5参照)。
 各気筒のカム54、56と吸気バルブ28(以下、単に「バルブ28」と略する)との間には、可変機構60が介在している。すなわち、カム54、56の作用力は、可変機構60を介して2つのバルブ28へ伝達されるようになっている。バルブ28は、カム54、56の作用力とバルブスプリング62の付勢力とを利用して開閉されるようになっている。尚、図2に示す状態は、#1気筒のバルブ28が主カム54の作用力を受けて開弁した状態を表している。
 可変機構60は、主カム54の作用力をバルブ28へ伝達する状態と副カム56の作用力をバルブ28へ伝達する状態とを切り換えることにより、バルブ28の開弁特性を変更する機構である。尚、本実施形態においては、副カム56はゼロリフトカムであるため、副カム56の作用力がバルブ28へ伝達される状態とは、バルブ28が開閉しない状態(バルブ休止状態)を意味するものとする。
 また、本実施形態の可変動弁機構18は、各可変機構60を駆動して、バルブ28の動作状態を弁稼動状態と弁停止状態との間で切り換えるための切換機構64を気筒毎に備えている。切換機構64は、上述したECU22からの駆動信号に従って駆動されるようになっている。ECU22は、クランク角センサ24等の出力信号に基づいて切換機構64を制御する。
(可変機構の構成)
 次に、図3乃至図5を参照して、可変機構60の詳細な構成を説明する。
 図3は、図2に示す可変機構60を、バルブ28の基端部側から見下ろした図である。
 可変機構60は、カムシャフト52と平行に配置されたロッカーシャフト70を備えている。図3に示すように、ロッカーシャフト70には、1つの第1ロッカーアーム72と、一対の第2ロッカーアーム74R、74Lとが回転自在に取り付けられている。第1ロッカーアーム72は、2つの第2ロッカーアーム74R、74Lの間に配置されている。尚、本明細書では、左右の第2ロッカーアーム74R、74Lを特に区別しないときには、単に第2ロッカーアーム74と表記する場合がある。
 図4は、第1ロッカーアーム72をロッカーシャフト70の軸方向(図3中の矢視Aの方向)から見た図であり、図5は、第2ロッカーアーム74を図4と同じくロッカーシャフト70の軸方向(矢視Aの方向)から見た図である。
 図4に示すように、第1ロッカーアーム72におけるロッカーシャフト70の反対側の端部には、主カム54と接することができる位置に、第1ローラ76が回転可能に取り付けられている。第1ロッカーアーム72は、ロッカーシャフト70に取り付けられたコイルスプリング78によって、第1ローラ76が主カム54と常に当接するように付勢されている。上記のように構成された第1ロッカーアーム72は、主カム54の作用力とコイルスプリング78の付勢力との協働により、ロッカーシャフト70を支点として揺動するようになる。
 一方、図5に示すように、第2ロッカーアーム74におけるロッカーシャフト70の反対側の端部には、バルブ28の基端部(詳細には、バルブステムの基端部)が当接している。また、第2ロッカーアーム74の中央部位には、第2ローラ80が回転可能に取り付けられている。尚、第2ローラ80の外径は、第1ローラ76の外径と同等である。
 また、第2ロッカーアーム74の他端においては、ロッカーシャフト70がラッシュアジャスタ82を介して内燃機関10の静止部材であるカムキャリア(或いはシリンダヘッド等)に支持されているものとする。このため、第2ロッカーアーム74は、ラッシュアジャスタ82から押し上げ力を受けることによって、副カム56に向けて付勢されている。
 また、第1ローラ76に対する第2ローラ80の位置は、第1ローラ76が主カム54のベース円部54aと当接(図4参照)し、かつ、第2ローラ80が副カム56のベース円部と当接(図5参照)している時に、第2ローラ80の軸心と第1ローラ76の軸心とが図3に示すように、同一直線L上に位置するように定められている。
(切換機構の構成)
 次に、図6乃至図7を参照して、切換機構64の詳細な構成を説明する。
 切換機構64は、第1ロッカーアーム72と第2ロッカーアーム74との連結/分離を切り換えるための機構であり、これにより、主カム54の作用力が第2ロッカーアーム74に伝達される状態と、当該作用力が第2ロッカーアーム74に伝達されない状態とを切り換えて、バルブ28の動作状態を弁稼動状態と弁停止状態(バルブ28を閉弁状態で休止させた状態)との間で切り換えることができるようになっている。
 図6は、図2に示す切換機構64の詳細な構成を説明するための図である。尚、図6においては、ローラ76、80の軸心位置で切断した断面を用いて可変機構60を表している。また、説明を分かり易くする観点から、可変機構60の搭載位置に対するカムシャフト52の搭載位置を、カムシャフト52の軸方向位置を除き実際の搭載位置と異ならせた状態で表している。
 図6に示すように、第1ローラの第1支軸84の内部には、その軸方向に貫通するように第1ピン孔86が形成されており、第1ピン孔86の両端は、第1ロッカーアーム72の両側面に開口している。第1ピン孔86には、円柱状の第1切換ピン88が摺動自在に挿入されている。第1切換ピン88の外径は、第1ピン孔86の内径と略同等であり、第1切換ピン88の軸方向の長さは、第1ピン孔86の長さと略同等である。
 一方、第2ロッカーアーム74L側の第2ローラ80の第2支軸90Lの内部には、第1ロッカーアーム72と反対側の端部が閉塞され、かつ、第1ロッカーアーム72側の端部が開口された第2ピン孔92Lが形成されている。また、第2ロッカーアーム74R側の第2ローラ80の第2支軸90Rの内部には、その軸方向に貫通するように第2ピン孔92Rが形成されており、第2ピン孔92Rの両端は、第2ロッカーアーム74Rの両側面に開口している。第2ピン孔92R、92Lの内径は、第1ピン孔86の内径と同等である。
 第2ピン孔92Lには、円柱状の第2切換ピン94Lが摺動自在に挿入されている。また、第2ピン孔92Lの内部には、第2切換ピン94Lを第1ロッカーアーム72方向(以下、「切換ピンの進出方向」と称する)に向けて付勢するリターンスプリング96が配置されている。第2切換ピン94Lの外径は、第2ピン孔92Lの内径と略同等である。また、第2切換ピン94Lの軸方向の長さは、第2ピン孔92Lより短くされており、第2切換ピン94Lが第2ピン孔92L内に向けて押された状態で、第2切換ピン94Lの先端が第2ロッカーアーム74Lの側面から僅かに突出するように調整されている。また、リターンスプリング96は、実装された状態において、第1ロッカーアーム72に向けて第2切換ピン94Lを常時付勢するように構成されているものとする。
 第2ピン孔92Rには、円柱状の第2切換ピン94Rが摺動自在に挿入されている。第2切換ピン94Rの外径は、第2ピン孔92Rの内径と略同等であり、第2切換ピン94Rの軸方向の長さは、第2ピン孔92Rの長さと略同等である。
 以上の3つのピン孔86、92L、92Rの相対位置は、第1ローラ76が主カム54のベース円部54aと当接(図4参照)し、かつ、第2ローラ80が副カム56のベース円部と当接(図5参照)している時に、3つのピン孔86、92L、92Rの軸心が同一直線上に位置するように決定されている。
 ここで、上記図6とともに新たに図7を参照して、切換機構64の説明を継続する。
図7は、切換機構64をカムシャフト52の軸方向(図6中の矢視Bの方向)から見た図である。尚、図7以降の図においては、ロックピン110とソレノイド108との関係を簡略化して図示する場合がある。
 切換機構64は、カムの回転力を利用して、切換ピン88、94L、94Rを第2ロッカーアーム74L側に向けて(切換ピンの退出方向に)変位させるためのスライドピン98を備えている。スライドピン98は、図6に示すように、第2切換ピン94Rの端面と当接する端面を有する円柱部98aを備えている。円柱部98aは、カムキャリアに固定された支持部材100によって、軸方向に進退自在であって、周方向に回転自在に支持されている。
 第2切換ピン94Lの先端は、リターンスプリング96の付勢力(反力)によって第1切換ピン88の一端に押し付けられることになる。それに応じて、上記3つのピン孔86、92L、92Rの軸心が同一直線上に位置している状況下では、第1切換ピン88の他端が第2切換ピン94Rの一端に押し付けられることになる。そして、更に、第2切換ピン94Rの他端がスライドピン98の円柱部98aの端面に押し付けられるようになる。このように、上記特定の状況下では、スライドピン98には、リターンスプリング96の付勢力が作用するようになっている。尚、第2ロッカーアーム74Rが主カム54からの作用力を受けて揺動する際に、第2切換ピン94Rと円柱部98aとの当接が途切れないように各構成要素の形状や寸法が設定されている。
 また、円柱部98aにおける第2切換ピン94Rと反対側の端部には、当該円柱部98aの半径方向外側に向けて突出するように、棒状のアーム部98bが設けられている。すなわち、当該アーム部98bは、当該円柱部98aの軸心を中心として回転自在に構成されている。アーム部98bの先端部は、図7に示すように、カムシャフト52の周面と対向する位置まで延びるように構成されている。また、アーム部98bの先端部には、カムシャフト52の周面に向けて突出するように突起部98cが設けられている。
 カムシャフト52における突起部98cと対向する外周面には、当該カムシャフト52よりも大きな外径を有する大径部102が形成されている。大径部102の周面には、周方向に延びる螺旋状溝104が形成されている。螺旋状溝104の幅は、突起部98cの外径より若干大きく形成されている。
 また、切換機構64は、突起部98cを螺旋状溝104に挿入させるためのアクチュエータ106を備えている。より具体的には、アクチュエータ106は、ECU22からの指令に基づいてデューティ制御されるソレノイド108と、当該ソレノイド108の駆動軸108aと当接するロックピン110とを備えている。ロックピン110は、円筒状に形成されている。
 ロックピン110には、ソレノイド108の推力に抗する付勢力を発するスプリング112の一端が掛け留められており、当該スプリング112の他端は、静止部材であるカムキャリアに固定された支持部材114に掛け留められている。このような構成によれば、ECU22からの指令に基づくソレノイド108の駆動時には、ソレノイド108の推力がスプリング112の付勢力に打ち勝つことで、ロックピン110を進出させることができ、一方、ソレノイド108の駆動が停止されると、スプリング112の付勢力によってロックピン110および駆動軸108aを速やかに所定位置に退出させられるようになる。また、ロックピン110は、支持部材114によってその半径方向への移動が拘束されている。このため、ロックピン110がその半径方向から力を受けることがあっても、ロックピン110が当該方向に移動しないようにすることができる。
 また、ソレノイド108は、ロックピン110がスライドピン98のアーム部98bの先端部の押圧面(突起部98cが設けられた面と反対側の面)98dを螺旋状溝104に向けて押圧可能な位置において、カムキャリア等の静止部材に固定されているものとする。言い換えれば、押圧面98dは、ロックピン110によって突起部98cが螺旋状溝104に向けて押されることができるような形状および位置に設けられている。
 スライドピン98のアーム部98bは、カムシャフト52側の大径部102とストッパー116とによって拘束された範囲内で、円柱部98aの軸心を中心として回転可能に設定されている。そして、アーム部98bが当該範囲内にあり、かつ、スライドピン98の軸方向位置が後述する変位端Pmax1にある場合には、ソレノイド108により駆動されるロックピン110がアーム部98bの押圧面98dに確実に当接できるように、各構成要素の位置関係が設定されている。また、アーム部98bには、当該アーム部98bをストッパー116に向けて付勢するスプリング118が取り付けられている。尚、このようなスプリング118は、ソレノイド108の非駆動時にスライドピン98の自重によってアーム部98bが螺旋状溝104に嵌まり込むことが想定されない場合等には、必ずしも備えていなくてもよい。
 カムシャフト52の螺旋状溝104における螺旋の向きは、その内部に突起部98cが挿入された状態でカムシャフト52が図7に示す所定の回転方向に回転する場合に、スライドピン98がリターンスプリング96の付勢力に抗して切換ピン88、94L、94Rをその退出方向に押し退けてロッカーアーム72、74に近づく方向に変位するように、設定されている。
 ここで、リターンスプリング96の付勢力によって、第2切換ピン94Lが第2ピン孔92Lおよび第1ピン孔86の双方に挿入された状態となり、かつ、第1切換ピン88が第1ピン孔86および第2ピン孔92Rの双方に挿入された状態となっている時のスライドピン98の位置を、「変位端Pmax1」と称する。この変位端Pmax1にスライドピン98が位置している時には、第1ロッカーアーム72と第2ロッカーアーム74R、74Lとがすべて連結された状態となる。そして、切換ピン88等がスライドピン98からの力を受けることによって、第2切換ピン94L、第1切換ピン88、および第2切換ピン94Rがそれぞれ第2ピン孔92L、第1ピン孔86、および第2ピン孔92Rのみに挿入された状態となっている時のスライドピン98の位置を、「変位端Pmax2」と称する。すなわち、この変位端Pmax2にスライドピン98が位置している時には、第1ロッカーアーム72と第2ロッカーアーム74R、74Lとがすべて分離された状態となる。
 本実施形態では、カムシャフト52の軸方向における螺旋状溝104の基端104aの位置は、スライドピン98が上記変位端Pmax1に位置する時の突起部98cの位置と一致するように設定されている。そして、カムシャフト52の軸方向における螺旋状溝104の終端104bの位置は、スライドピン98が上記変位端Pmax2に位置する時の突起部98cの位置と一致するように設定されている。つまり、本実施形態では、螺旋状溝104によって突起部98cが案内される範囲内で、スライドピン98が変位端Pmax1からPmax2の間で変位可能となるように構成されている。
 更に、本実施形態の螺旋状溝104には、図7に示すように、スライドピン98が変位端Pmax2に達した後における終端104b側の所定区間として、カムシャフト52の回転に伴って螺旋状溝104が徐々に浅くなる浅溝部104cが設けられている。尚、螺旋状溝104における浅溝部104c以外の部位の深さは一定である。
 また、本実施形態のアーム部98bには、押圧面98dの一部を切り欠いて凹状に形成された切欠部98eが設けられている。押圧面98dは、スライドピン98が変位端Pmax1からPmax2に変位する間、ロックピン110と当接した状態が維持されるように設けられている。そして、切欠部98eは、スライドピン98が上記変位端Pmax2に位置している状態において、上記浅溝部104cの作用によって突起部98cが大径部102の表面に取り出された時に、ロックピン110と係合可能な部位に設けられている。
 また、切欠部98eは、突起部98cが螺旋状溝104に挿入される方向にアーム部98bが回転するのを規制可能であって、スライドピン98が切換ピンの進出方向に移動するのを規制可能な態様で、ロックピン110と係合するように形成されている。より具体的には、切欠部98eには、ロックピン110が当該切欠部98e内に入り込んでいくにつれ、スライドピン98が大径部102から離れるように案内する案内面98fが備えられている。
[可変動弁機構の動作]
 次に、図8乃至図12を参照して、可変動弁機構18の動作について説明する。
(弁稼動状態時)
 図8は、弁稼動状態時(通常のリフト動作時)の制御状態を示す図である。
 この場合には、図8(B)に示すように、ソレノイド108の駆動がOFFとされており、これにより、スライドピン98は、カムシャフト52から離れた状態で、リターンスプリング96の付勢力を受けて、変位端Pmax1に位置している。この状態では、図8(A)に示すように、第1ロッカーアーム72と2つの第2ロッカーアーム74とが切換ピン88、94Lを介して連結されている。その結果、主カム54の作用力が第1ロッカーアーム72から左右の第2ロッカーアーム74R、74Lを介して双方のバルブ28に伝達されるようになる。このため、主カム54のプロフィールに従って、通常のバルブ28のリフト動作が行われるようになる。
(弁停止動作開始時(スライド動作の開始時))
 図9は、弁停止動作の開始時の制御状態を示す図である。
 弁停止動作は、例えば、内燃機関10のフューエルカット要求等の所定の弁停止動作の実行要求がECU22によって検知された際に行われる。このような弁停止動作は、カムシャフト52の回転力を利用してスライドピン98によって切換ピン88、94L、94Rをその退出方向に変位させる動作であるため、これらの切換ピン88、94L、94Rの軸心が同一直線状に位置する時、すなわち、第1ロッカーアーム72が揺動していない時に行われる必要がある。
 本実施形態では、切換ピンの退出方向にスライドピン98がスライド動作を行う区間が主カム54のベース円区間内と対応するように、螺旋状溝104が設定されている。このため、ECU22が所定の弁停止動作の実行要求を検知した場合において、最初にベース円区間が到来する気筒から順にソレノイド108を駆動することによって、図9(B)に示すように、突起部98cが螺旋状溝104に挿入され、各気筒の弁停止動作が順に開始するようになる。そして、螺旋状溝104に挿入された突起部98cが当該螺旋状溝104によって案内されることで、カムシャフト52の回転力を利用して、図9(A)に示すように、変位端Pmax2側に向けて、スライドピン98のスライド動作が開始するようになる。
(スライド動作の完了時)
 図10は、スライド動作の完了時の制御状態を示す図である。
 スライド動作の実行中には、螺旋状溝104の側面に突起部98cが当接することによって、リターンスプリング96の付勢力が受け止められた状態で、スライドピン98が変位端Pmax2に向けて移動していく。図10(A)は、スライドピン98が変位端Pmax2に到達して弁停止要求時のスライド動作が完了したタイミング、すなわち、第1切換ピン88および第2切換ピン94Lがそれぞれ第1ピン孔86および第2ピン孔92L内に収まるようになったことで、第1ロッカーアーム72と第2ロッカーアーム74R、74Lとの連結が解除されたタイミングを示している。また、このタイミングでは、図10(B)に示すように、螺旋状溝104内における突起部98cの位置は、未だ浅溝部104cに達していない。
 上記のようにスライド動作が完了し、第1ロッカーアーム72と第2ロッカーアーム74R、74Lとが分離された状態になると、主カム54の回転に伴って、コイルスプリング78によって主カム54に向けて付勢された第1ロッカーアーム72が単独で揺動することになる。このため、2つの第2ロッカーアーム74には、主カム54の作用力が伝達されなくなる。また、第2ロッカーアーム74が当接する副カム56は、ゼロリフトカムであるため、主カム54の作用力が伝達されなくなった第2ロッカーアーム74には、バルブ28を駆動するための力が与えられなくなる。その結果、主カム54の回転に関係なく、第2ロッカーアーム74が静止状態となるので、バルブ28のリフト動作が停止状態となる。
 尚、第1ロッカーアーム72のみが揺動する場合には、第1切換ピン88と第2切換ピン94L、94Rとの軸心がずれることになる。第1ロッカーアーム72と第2ロッカーアーム74との円滑な動作を確保するためには、そのようなずれが生ずる際に、第1切換ピン88の端面の一部と第2切換ピン94L、94Rの端面の一部とが互いに当接している必要がある。このため、本実施形態では、第1切換ピン88および第2切換ピン94L、94Rの端面の形状や寸法は、上記条件を満たすように定められている。
(変位部材の保持動作時)
 図11および図12は、スライドピン98をロックピン110によって保持する保持動作時の制御状態を示す図である。より具体的には、図11は、第1ロッカーアーム72が揺動動作(リフト動作)を行っていない場合の状態を示しており、図12は、当該第1ロッカーアーム72が揺動動作(リフト動作)を行っている場合の状態を示している。
 上記図10に示すスライド動作完了時から更にカムシャフト52が回転すると、突起部98cは、溝が徐々に浅くなる浅溝部104cに差し掛かる。その結果、浅溝部104cの作用によって、スライドピン98がカムシャフト52から離れる方向に回転させられるようになる。そして、浅溝部104cによって溝が浅くなるにつれ、ロックピン110がその退出方向に少し変位する。その後、ソレノイド108によって駆動され続けているロックピン110が切欠部98eに一致するようになるまでスライドピン98が更に回転すると、ロックピン110と当接するスライドピン98側の部位が押圧面98dから切欠部98eへと切り替わる。
 その結果、ロックピン110が切欠部98eに係合するようになる。これにより、図11(B)および図12(B)に示すように、スライドピン98は、突起部98cがカムシャフト52から離れた状態で、かつ、ロックピン110によってリターンスプリング96の付勢力を受け止める状態で保持されるようになる。このため、この保持動作中において、図11(A)および図12(A)に示すように、第1ロッカーアーム72と第2ロッカーアーム74とが分離された状態、すなわち、弁停止状態が維持されるようになる。
(弁復帰動作時)
 弁停止状態から通常のリフト動作が行われる弁稼動状態に戻すための弁復帰動作は、例えば、フューエルカットからの復帰要求等の所定の弁復帰動作の実行要求がECU22によって検知された際に行われる。このような弁復帰動作は、図11、12に示す制御状態において、ECU22が所定のタイミング(切換ピン88等が移動可能となるベース円区間の開始タイミングよりもソレノイド108の動作に要する所定時間分だけ早いタイミング)でソレノイド108への通電をOFFとすることが開始される。ソレノイド108への通電がOFFとされると、スライドピン98の切欠部98eとロックピン110との係合が解かれることになる。その結果、リターンスプリング96の付勢力に抗して第1切換ピン88および第2切換ピン94Lをそれぞれ第1ピン孔86および第2ピン孔92Lに留めておく力が消滅することになる。
 このため、切換ピン88、94L、94Rの位置が一致するベース円区間が到来すると、リターンスプリング96の付勢力によって、切換ピン88、94Lが進出方向に移動し、第1ロッカーアーム72と2つの第2ロッカーアーム74とが切換ピン88、94Lを介して連結された状態、すなわち、主カム54の作用力によってバルブ28のリフト動作が可能な状態に復帰することになる。また、リターンスプリング96の付勢力によって切換ピン88、94Lが進出方向に移動するのに伴って、第2切換ピン94Rを介して、スライドピン98が変位端Pmax2から変位端Pmax1に戻されるようになる。
(まとめ)
 以上のように構成された本実施形態の可変動弁機構18によれば、ソレノイド108の通電のON、OFFとカムシャフト52の回転力とリターンスプリング96の付勢力とを利用して、スライドピン98の軸方向位置を変位端Pmax1からPmax2の間で移動させることで、弁稼動状態と弁停止状態との間でバルブ28の動作状態を切り換えることが可能となる。
 より具体的には、弁停止要求が出された際に、ソレノイド108の通電をONとして突起部98cを螺旋状溝104に挿入することで、カムシャフト52の回転力を利用するスライドピン98によって、切換ピン88等を切換ピンの退出方向に移動させることができる。その結果、一度のベース円区間中に、第1ロッカーアーム72と2つの第2ロッカーアーム74とを連結状態から分離状態に速やかに切り換えることが可能となる。これにより、弁停止状態とすることができる。また、弁復帰要求が出された際に、ソレノイドの通電をOFFとしてスライドピン98とロックピン110との係合を解除することで、リターンスプリング96の付勢力を利用して、切換ピン88等やスライドピン98を切換ピンの進出方向に移動させることができる。その結果、一度のベース円区間中に、第1ロッカーアーム72と2つの第2ロッカーアーム74とを分離状態から連結状態に速やかに切り換えることが可能となるとともに、弁停止動作を開始させられる元の位置(Pmax1)にスライドピン98を戻すことができる。これにより、バルブ28の動作状態を弁停止状態に復帰させることができる。
[実施の形態1の異常気筒特定手法]
 内燃機関10には、失火や他の気筒に対する空燃比のインバランス等の異常が生じ得る。そのような異常が生じた気筒を特定すべく、各気筒の燃焼を順次休止させる技術が知られている。しかしながら、一部の気筒の燃焼を休止させることは、異常気筒を特定するうえで有効であるが、車両の走行性能や内燃機関の振動騒音に悪影響を与え得るものである。従って、異常気筒を特定するために一部の気筒が休止される回数をできるだけ少なくし、また、気筒休止時間をできるだけ短くすることが望ましい。また、一部の気筒で燃焼が休止された場合に何らの配慮がなされていないと、当該休止気筒に吸入された空気がそのまま触媒に向けて排出され、触媒が劣化してしまうことが懸念される。
 上述した可変動弁機構18、20によれば、各気筒のソレノイド108の通電を個別に制御することで、気筒毎に独立してバルブ28(吸排気バルブ)を閉弁状態で休止させておくことが可能となる。そこで、本実施形態では、そのように構成された可変動弁機構18、20を利用して、異常気筒の特定のために一部の気筒で燃焼(燃料供給)を休止させる際には、対象となる休止気筒において、吸排気バルブの動作を閉弁状態で休止させるようにした。
 そのうえで、本実施形態では、所定の異常評価指標値(クランク軸の回転変動や空燃比のずれ量)に基づいて内燃機関10の運転中に何れかの気筒に異常が発生していることが認められる場合には、先ず、単気筒ではなく2つの気筒からなる(第1の)一部気筒を対象として、気筒休止(具体的には、燃料供給の休止および閉弁状態での吸排気バルブの動作の休止)を実行するようにした。そして、当該気筒休止後に、1つの気筒からなる(第2の)一部気筒を対象として休止気筒を変更したうえで気筒休止を実行するようにした。そのうえで、そのような休止気筒の変更に伴う異常評価指標値の変化に基づいて、異常発生気筒を特定するようにした。
 より具体的には、本実施形態では、所定の異常評価指標値に基づいて内燃機関10の運転中に何れかの気筒に異常が発生していることが認められる場合には、休止間隔(爆発間隔)が等間隔となる2つのグループ気筒(#1、#4気筒、もしくは#2、#3気筒)のうちの一方を上記(第1の)一部の気筒として選択して気筒休止を行うようにした。そして、この気筒休止時の異常評価指標値に基づいて、当該気筒休止に伴って異常現象が無くなるかどうかを上記グループ気筒毎に判定するようにした。そして、異常発生気筒を含むと判断できるグループ気筒内の一方の気筒のみを休止したうえで、当該気筒休止時の異常評価指標値に基づいて異常発生気筒を特定するようにした。
図13は、本発明の実施の形態1における異常気筒特定手法を実現するためにECU22が実行するルーチンのフローチャートである。尚、本ルーチンは、4気筒エンジンである内燃機関10が4気筒(全気筒)運転を行っている場合に実行されるものとする。また、本実施形態では、内燃機関10が有する4つの気筒のうちの何れか1つの気筒のみに異常が生ずるケースを想定した処理について説明を行う。 
 図13に示すルーチンでは、先ず、クランク角センサ24によって検出されるクランク軸の回転変動が所定値以上になっているか否か、或いは、A/Fセンサ16によって検出される排気マニホールドの集合部での空燃比が所定の制御目標空燃比(例えば、理論空燃比)に対して所定値以上ずれているか否かが判別される(ステップ100)。内燃機関10の何れかの気筒に異常(失火)が生じた場合には、そのような異常の発生に伴ってクランク軸の回転変動が発生する。このため、クランク軸の回転変動が失火判定のための所定値以上になっているか否かを判別することで、現在運転中の何れかの気筒に失火等の異常が生じたか否かを判断することができる。また、内燃機関10の何れかの気筒に異常(失火や空燃比のインバランス)が生じた場合には、そのような異常の発生に伴ってA/Fセンサ16の検出値に制御目標空燃比に対するずれが発生する。このため、制御目標空燃比に対するA/Fセンサ16の検出値のずれが異常検出のための所定値以上になっているか否かを判別することで、現在運転中の何れかの気筒に失火や空燃比のインバランス等の異常が生じたか否かを判断することができる。尚、本ステップ100における異常検出手法自体は、現在運転中の何れかの気筒に何らかの異常が生じたことを検出できるものであれば、上述したクランク軸の回転変動や空燃比のずれを利用した手法に限らない。 
上記ステップ100の判定が成立する場合、つまり、現在運転中の4気筒の何れかに異常が生じていると認められる場合には、#1および#4気筒が休止される(ステップ102)。より具体的には、#1、#4気筒に対する燃料供給が休止されるように燃料噴射弁26が制御されるとともに、これらの気筒の吸気バルブおよび排気バルブの動作が閉弁状態で休止されるように可変動弁機構18、20が制御される。 
次に、#1、#4気筒が休止された状態で、上記ステップ100と同様の異常検出処理が実行される(ステップ104)。その結果、本ステップ104の判定が不成立となる場合、つまり、#1、#4気筒の休止に伴って異常が検出されなくなった場合には、現在運転中の#2、#3気筒ではなく、現在休止中の#1、#4気筒のどちらかが異常であると判断することができる。このため、この場合には、#1、#4気筒のどちらが異常であるかを特定すべく、#1気筒のみが休止される(ステップ106)。
 次に、#1気筒のみが休止された状態で、上記ステップ100と同様の異常検出処理が実行される(ステップ108)。その結果、本ステップ108の判定が不成立となる場合、つまり、#1気筒の休止に伴って異常が検出されなくなった場合には、今回休止された#1気筒が異常であると判定される(ステップ110)。一方、本ステップ108の判定が成立する場合、つまり、#1気筒が休止された状態で依然として異常が検出される場合には、現在運転中の#4気筒が異常であると判定される(ステップ112)。
 一方、上記ステップ104における判定が成立する場合、つまり、#1、#4気筒が休止された状態で依然として異常が検出される場合には、現在運転中の#2、#3気筒のどちらかが異常であると判断することができる。このため、この場合には、#2、#3気筒のどちらが異常であるかを特定すべく、#2気筒のみが休止される(ステップ114)。
 次に、#2気筒のみが休止された状態で、上記ステップ100と同様の異常検出処理が実行される(ステップ116)。その結果、本ステップ116の判定が不成立となる場合、つまり、#2気筒の休止に伴って異常が検出されなくなった場合には、今回休止された#2気筒が異常であると判定される(ステップ118)。一方、本ステップ116の判定が成立する場合、つまり、#2気筒が休止された状態で依然として異常が検出される場合には、現在運転中の#3気筒が異常であると判定される(ステップ120)。
 以上説明した図13に示すルーチンの処理によれば、#1、#4気筒からなるグループ気筒と、#2、#3気筒からなるグループ気筒のどちらのグループ気筒内に異常気筒が含まれているかどうかが判定されたうえで、異常気筒を含むと判断されるグループ気筒内の一方の気筒を休止して異常気筒が特定される。このような異常気筒特定手法によれば、気筒休止を行う回数を効果的に少なくし、また、気筒休止時間を効果的に短くすることができる。このため、車両の走行性能や内燃機関の振動騒音への悪影響を抑制しつつ、異常気筒を正確に特定することが可能となる。また、気筒休止時には、燃料供給の休止とともに弁休止を行っているので、休止気筒から空気が排出されないようにすることができ、触媒14の劣化を防止しつつ、異常気筒を特定することが可能となる。
 また、上記ルーチンの処理では、異常気筒の特定時に、休止間隔(爆発間隔)が等間隔となるグループ気筒を選択して最初の気筒休止を行うようにし、その後に、休止気筒を2気筒から1気筒に変更するようにしている。このような手法によれば、気筒休止に伴う振動騒音の悪化を最小限に抑えながら、異常気筒を特定することが可能となる。より具体的には、振動騒音の悪化を最小限に抑えるべく選択された上記グループ気筒の一回の休止と、一方のグループ気筒内の1気筒のみの一回の休止のみで、異常気筒を正確に特定することが可能となる。つまり、振動騒音の悪化が懸念される単気筒休止運転の実施回数およびその運転時間を最短にしつつ、異常気筒を正確に特定することが可能となる。
 また、クランク軸の回転変動や排気マニホールドの集合部で検出されるA/Fのずれに基づき、異常に起因して生じたクランク軸の回転変動やA/Fのずれがどの気筒に由来するのかを精度良く判定することは、現実には困難である。しかしながら、本実施形態の異常気筒特定手法によれば、クランク軸の回転変動やA/Fのずれ等の検出自体に対しては、内燃機関10の何れかの気筒に何らかの異常が発生したかどうかを判定できる程度の精度が確保されていればよく、異常気筒を特定することのできる程度の精度までは必要とせずに、上述した休止気筒の変更を適宜行うことで正確に異常気筒を特定できるようになる。
 また、本実施形態において異常気筒を特定するために実施される上記気筒休止は、内燃機関10の低負荷時に行うことが好適である。これにより、車両の走行性能や内燃機関10の振動騒音への悪影響を十分に低減することができる。
 ところで、上述した実施の形態1においては、全気筒(4気筒)運転時に異常発生が認められた場合には、#1、#4気筒を休止するようにしているが、この場合に休止されるグループ気筒は、#2、#3気筒であってもよい。また、#1、#4気筒の休止時に異常発生の有無に応じて、#2気筒のみ(ステップ114)または#1気筒のみ(ステップ106)を休止するようにしているが、これに代え、ステップ114では#3気筒のみを休止し、ステップ106では#4気筒のみを休止するようにしてもよい。
 また、上述した実施の形態1においては、#1→#3→#4→#2の順で等間隔に爆発行程が行われる内燃機関10において、異常気筒の特定時に、休止間隔(爆発間隔)が等間隔となるグループ気筒を選択して最初の気筒休止を行うようにしている。しかしながら、多気筒を有する内燃機関では、各気筒の爆発間隔は、意図的に或いは結果的に必ずしも等間隔でない場合が存在する。このような不等間隔で爆発行程が行われる内燃機関においても、本発明の異常気筒の特定時には、振動騒音の悪化を抑制するために、爆発順序を考慮して休止間隔(もしくは爆発間隔)が最も等間隔に近くなる(略等間隔の)グループ気筒を選択して気筒休止を行うことが好適である。
 また、上述した実施の形態1においては、気筒休止を行う際に吸気バルブおよび排気バルブの双方の動作が閉弁状態で休止される例について説明を行っている。しかしながら、本発明において気筒休止時に閉弁状態で休止されるバルブは、吸気バルブおよび排気バルブの何れか一方でもよい。
 尚、上述した実施の形態1においては、ECU22が、上記ステップ100、104、108、または116の処理を実行することにより前記第1の発明における「異常検出手段」が、上記ステップ102の処理を実行することにより前記第1、第3、または第5の発明における「第1気筒休止実行手段」が、上記ステップ106または114の処理を実行することにより前記第1、第3、または第5の発明における「第2気筒休止実行手段」が、そして、上記ステップ108~112、または116~120の処理を実行することにより前記第1の発明における「異常気筒特定手段」が、それぞれ実現されている。
 また、上述した実施の形態1においては、ECU22が上記ステップ102~106(または102、104、および114)の処理を実行することにより前記第2の発明における「休止気筒数減少実行手段」が実現されている。
 また、上述した実施の形態1においては、ECU22が、上記ステップ104の処理を実行することにより前記第3または第5の発明における「異常グループ気筒判別手段」が、そして、上記ステップ108~112、または116~120の処理を実行することにより前記第3または第5の発明における「グループ気筒内異常特定手段」が、それぞれ実現されている。
実施の形態2.
 次に、図14を参照して、本発明の実施の形態2について説明する。
 本実施形態のシステムは、図1乃至図12に示すハードウェア構成を用いて、ECU22に図13に示すルーチンに代えて後述する図14に示すルーチンを実行させることにより実現することができるものである。
[実施の形態2の異常気筒特定手法]
 上述した実施の形態1においては、4気筒型の内燃機関10における何れか1つの気筒のみに異常が生ずることを想定した場合の異常気筒特定手法について説明を行った。これに対し、本実施形態では、内燃機関10の複数の気筒に異常が生ずることを想定した場合の異常気筒特定手法について説明を行う。
  図14は、本発明の実施の形態2における異常気筒特定手法を実現するためにECU22が実行するルーチンのフローチャートである。
 図14に示すルーチンでは、先ず、全気筒運転中に、上記ステップ100と同様の異常検出処理が実行される(ステップ200)。その結果、本ステップ200の判定が成立する場合、つまり、現在運転中の4気筒の何れかに異常が生じていると認められる場合には、#1および#4気筒が休止される(ステップ202)。
 次に、#1、#4気筒が休止された状態で、上記ステップ100と同様の異常検出処理が実行される(ステップ204)。その結果、本ステップ204の判定が成立する場合、つまり、#1、#4気筒が休止された状態で依然として異常が検出される場合には、現在運転中の#2、#3気筒の少なくとも一方が異常であり、また、現在休止中の#1、#4気筒にも異常の可能性があると判断することができる。このため、この場合には、異常気筒の特定を更に進めるべく、#1、#4気筒に加えて#3気筒が更に休止される(ステップ206)。尚、本ステップ206では、#3気筒に代え、#2気筒を休止するようにしてもよい。
 次に、#1、#3、#4気筒が休止された状態(つまり、#2気筒のみが運転された状態)で、上記ステップ100と同様の異常検出処理が実行される(ステップ208)。その結果、本ステップ208の判定が不成立となる場合、つまり、#1、#3、#4気筒の休止に伴って異常が検出されなくなった場合には、今回追加的に休止された#3気筒が異常であると判定される(ステップ210)。一方、本ステップ208の判定が成立する場合、つまり、#1、#3、#4気筒が休止された状態で依然として異常が検出される場合には、現在運転中の#2気筒が異常であると判定されるとともに、今回追加的に休止された#3気筒は異常の可能性ありと判定される(ステップ212)。
 また、図14に示すルーチンでは、上記ステップ206~212の処理によって#2、#3気筒に関する異常気筒の特定が行われた場合、或いは、上記ステップ204の判定が不成立となることで(#1、#4気筒の休止に伴って異常が検出されなくなったことで)、現在運転中の#2、#3気筒ではなく現在休止中の#1、#4気筒の少なくとも一方のみが異常であると判断することができる場合には、次いで、#2および#3気筒が休止される(ステップ214)。
 次に、#2、#3気筒が休止された状態で、上記ステップ100と同様の異常検出処理が実行される(ステップ216)。その結果、本ステップ216の判定が不成立となる場合には、#1、#4気筒の休止中に異常発生が認められる状況下(上記ステップ204の判定が成立する状況下)において、#1、#4気筒には異常がなく、#2、#3気筒の少なくとも一方のみが異常であると判断することができる。この場合には、上記ステップ206~212の処理によって#2、#3気筒に関する異常気筒の特定が既に行われているので、#2、#3気筒に関する異常気筒の特定は行わない。
 一方、上記ステップ216の判定が成立する場合には、つまり、#2、#3気筒が休止された状態で依然として異常が検出される場合には、現在運転中の#1、#4気筒の少なくとも一方が異常であると判断することができる。このため、この場合には、異常気筒の特定を更に進めるべく、#2、#3気筒に加えて#4気筒が更に休止される(ステップ218)。尚、本ステップ218では、#4気筒に代え、#1気筒を休止するようにしてもよい。
 次に、#2、#3、#4気筒が休止された状態(つまり、#1気筒のみが運転された状態)で、上記ステップ100と同様の異常検出処理が実行される(ステップ220)。その結果、本ステップ220の判定が不成立となる場合、つまり、#2、#3、#4気筒の休止に伴って異常が検出されなくなった場合には、今回追加的に休止された#4気筒が異常であると判定される(ステップ222)。一方、本ステップ220の判定が成立する場合、つまり、#2、#3、#4気筒が休止された状態で依然として異常が検出される場合には、現在運転中の#1気筒が異常であると判定されるとともに、今回追加的に休止された#4気筒は異常の可能性ありと判定される(ステップ224)。
 以上説明した図14に示すルーチンの処理によれば、内燃機関10の複数の気筒に異常が発生することを想定した場合においても、触媒14の劣化を抑制しつつ、異常気筒を実用上十分なレベルで特定することが可能となる。
 また、上記ルーチンでは、グループ気筒(#1と#4、或いは#2と#3)の一方を最初に選択して気筒休止をしたうえで異常現象の有無を判定するようにしているため、単気筒運転を全気筒に対して順次実行しながら異常気筒を特定する手法と比べ、一方のグループ気筒内にのみ異常があると判断できるケースを抽出することが可能となる。これにより、異常気筒の特定のために不必要な単気筒運転が実施されるのを回避できる場合が得られる。具体的には、上記ステップ204の判定が不成立となるケース(つまり、#1、#4気筒の少なくとも一方にのみ異常があると判断できるケース)において、#2、#3気筒に関する異常気筒の特定を目的とした不必要な単気筒運転の実施を回避することができる。更に、本実施形態においても、休止間隔(爆発間隔)が等間隔となる気筒で休止気筒をグループ分けしているので、異常気筒の特定時の内燃機関10の振動騒音の悪化を良好に防止することができる。
 尚、上述した実施の形態2においては、ECU22が、上記ステップ202または214の処理を実行することにより前記第1、第3、または第6の発明における「第1気筒休止実行手段」が、上記ステップ206または218の処理を実行することにより前記第1、第3、または第6の発明における「第2気筒休止実行手段」が、上記ステップ204および216の処理を実行することにより前記第3または第6の発明における「異常グループ気筒判別手段」が、そして、上記ステップ208~212、または220~224の処理を実行することにより前記第3または第6の発明における「グループ気筒内異常特定手段」が、それぞれ実現されている。
実施の形態3.
 次に、図15および図16を参照して、本発明の実施の形態3について説明する。
 図15は、本発明の実施の形態3における内燃機関120の各気筒の配置と爆発順序を示す図である。図15に示すように、本実施形態の内燃機関120は、6気筒型エンジン、より具体的には、2つのバンク120a、120bに合計6つの気筒(#1~#6)を有するV型6気筒エンジンであるものとする。また、ここでは、一方のバンク120aに配置される3つの気筒を#1、#3、#5と称し、他方のバンク120bに配置される3つの気筒を#2、#4、#6気筒と称する。また、内燃機関120の爆発順序は、一例として#1→#2→#3→#4→#5→#6の順であるものとし、この順番で等間隔に各気筒の爆発行程が行われるものとする。
 本実施形態の内燃機関120は、エンジン形式が異なる点を除き、基本的には内燃機関10と同様に構成されている。すなわち、図示は省略しているが、気筒毎に燃料噴射弁が備えられているとともに、気筒毎に吸排気バルブを閉弁状態で休止可能な可変動弁機構が備えられているものとする。また、排気通路には、適切な数の触媒が配置されているものとする。更に、各バンク120a、120bの排気マニホールドの集合部よりも下流側の部位、および両バンク120a、120bから排出される排気ガスの合流後の部位には、それらの位置で空燃比を検出するためのA/Fセンサ(もしくはO2センサ)が配置されているものとする。
[実施の形態3の異常気筒特定手法]
 図16は、本発明の実施の形態3における異常気筒特定手法を実現するためにECU22が実行するルーチンのフローチャートである。尚、本ルーチンは、6気筒エンジンである内燃機関120が6気筒(全気筒)運転を行っている場合に実行されるものとする。また、本実施形態では、内燃機関120が有する6つの気筒のうちの何れか1つの気筒のみに異常が生ずるケースを想定した処理について説明を行う。
 図16に示すルーチンでは、先ず、全気筒運転中に、上記ステップ100と同様の異常検出処理が実行される(ステップ300)。その結果、本ステップ300の判定が成立する場合、つまり、現在運転中の6気筒の何れかに異常が生じていると認められる場合には、#1、#3、#5気筒を用いた減筒運転が実行される(ステップ302)。すなわち、#2、#4、#6気筒が休止される。
 次に、#1、#3、#5気筒が運転された状態で、上記ステップ100と同様の手法で、異常の有無が判定される(ステップ304)。次いで、#1、#4気筒を用いた減筒運転が実行される(ステップ306)。次いで、#1、#4気筒を用いた減筒運転が行われている状態で、上記ステップ100と同様の異常検出処理が実行される(ステップ308)。
 上記ステップ308の判定が成立する場合、つまり、#1、#4気筒を用いた減筒運転中に異常が検出された場合には、現在運転中の#1、#4気筒のどちらかが異常であると判断することができる。この場合には、次いで、上記ステップ304における#1、#3、#5気筒を用いた減筒運転下での異常判定時に異常が認められていたか否かが判別される(ステップ310)。その結果、本ステップ310の判定が成立する場合は、#1、#4気筒のどちらかが異常であると判断でき、かつ、#1、#3、#5気筒の何れかが異常であると判断できる場合に相当するので、#1気筒が異常であると判定される(ステップ312)。一方、本ステップ310の判定が不成立となる場合は、#1、#4気筒のどちらかが異常であると判断でき、かつ、#2、#4、#6気筒の何れかが異常であると判断できる場合に相当するので、#4気筒が異常であると判定される(ステップ314)。
 また、上記ステップ308の判定が不成立となる場合、つまり、#1、#4気筒を用いた減筒運転中に異常が検出されなくなった場合には、#3、#6気筒を用いた減筒運転が実行される(ステップ316)。次いで、#3、#6気筒を用いた減筒運転が行われている状態で、上記ステップ100と同様の異常検出処理が実行される(ステップ318)。
 上記ステップ318の判定が成立する場合、つまり、#3、#6気筒を用いた減筒運転中に異常が検出された場合には、現在運転中の#3、#6気筒のどちらかが異常であると判断することができる。この場合には、次いで、上記ステップ304における#1、#3、#5気筒を用いた減筒運転下での異常判定時に異常が認められていたか否かが判別される(ステップ320)。その結果、本ステップ320の判定が成立する場合は、#3、#6気筒のどちらかが異常であると判断でき、かつ、#1、#3、#5気筒の何れかが異常であると判断できる場合に相当するので、#3気筒が異常であると判定される(ステップ322)。一方、本ステップ320の判定が不成立となる場合は、#3、#6気筒のどちらかが異常であると判断でき、かつ、#2、#4、#6気筒の何れかが異常であると判断できる場合に相当するので、#6気筒が異常であると判定される(ステップ324)。
 また、上記ステップ318の判定が不成立となる場合、つまり、#3、#6気筒を用いた減筒運転中に異常が検出されなかった場合には、残された#2、#5気筒のどちらかが異常であると判断することができる。この場合には、次いで、上記ステップ304における#1、#3、#5気筒を用いた減筒運転下での異常判定時に異常が認められていたか否かが判別される(ステップ326)。その結果、本ステップ326の判定が成立する場合は、#2、#5気筒のどちらかが異常であると判断でき、かつ、#1、#3、#5気筒の何れかが異常であると判断できる場合に相当するので、#5気筒が異常であると判定される(ステップ328)。一方、本ステップ326の判定が不成立となる場合は、#2、#5気筒のどちらかが異常であると判断でき、かつ、#2、#4、#6気筒の何れかが異常であると判断できる場合に相当するので、#2気筒が異常であると判定される(ステップ330)。
 以上説明した図16に示すルーチンの処理によれば、6気筒型エンジンである内燃機関120の何れか1つの気筒のみに異常が発生することを想定した場合において、排気通路に配置される触媒の劣化を抑制しつつ、異常気筒を正確に特定することが可能となる。
 また、上記ルーチンの処理では、何れかの気筒に異常が認められる場合に、先ず、半数の気筒(3気筒)からなる2つのグループ気筒の一方(例えば、#1、#3、#5)に異常が認められるか否かを判断したうえで、グループ気筒のそれぞれの中から1気筒づつを集めて構成した他のグループ気筒内に異常が認められるか否かを順次判断するようにしている。このような手法によれば、異常気筒の特定のために一部の気筒が休止される回数は、2回もしくは3回で済むようになる。このように、上記ルーチンの処理によれば、異常気筒の特定のために一部の気筒が休止される回数および休止時間を十分に減らして、異常気筒を正確に特定することができるようになる。更に付け加えると、振動騒音の悪化が懸念される単気筒運転を不要としながら異常気筒を特定することが可能となる。
 また、上記ルーチンの処理においても、一部気筒の休止運転時の振動騒音の低減を図るべく、爆発間隔が等間隔となるグループ気筒を運転気筒に選択して、気筒休止が行われるように配慮されている。具体的には、最初に選択されるグループ気筒(#1、#3、#5)、そしてその後に選択される他のグループ気筒(#1と#4、および#3と#6)の何れについても、爆発間隔が等間隔となる3気筒或いは2気筒が選択されている。このため、6気筒型エンジンである内燃機関120において、振動騒音を十分に抑制しながら、異常気筒の特定を行うことが可能となる。
 ところで、上述した実施の形態3においては、全気筒(6気筒)運転時に異常発生が認められた場合には、爆発間隔が等間隔となる3気筒として、#1、#3、#5気筒を運転するようにしているが、この3気筒運転に用いられるグループ気筒は、#2、#4、#6気筒であってもよい。また、その後に爆発間隔が等間隔となる2気筒として、#1、#4気筒、次いで、#3、#6気筒を運転するようにしているが、これらの2気筒運転に用いられるグループ気筒は、#1、#4気筒からなるグループ気筒、#3、#6気筒からなるグループ気筒、および、#2、#5気筒からなるグループ気筒のうちの任意の何れか2つであればよい。
 尚、上述した実施の形態3においては、ECU22が、上記ステップ302の処理を実行することにより前記第1または第7の発明における「第1気筒休止実行手段」が、上記ステップ306または316の処理を実行することにより前記第1または第7の発明における「第2気筒休止実行手段」が、上記ステップ304、310、320、または326の処理を実行することにより前記第7の発明における「異常グループ気筒判別手段」が、そして、上記ステップ308または318の処理を実行することにより前記第7の発明における「グループ気筒内異常特定手段」が、それぞれ実現されている。
実施の形態4.
 次に、図17乃至図19を参照して、本発明の実施の形態4について説明する。
 本実施形態のシステムは、図2乃至図12、および図15に示すハードウェア構成を用いて、ECU22に図16に示すルーチンに代えて後述する図17乃至図19に示すルーチンを実行させることにより実現することができるものである。
[実施の形態4の異常気筒特定手法]
 上述した実施の形態3においては、6気筒型の内燃機関120における何れか1つの気筒のみに異常が生ずることを想定した場合の異常気筒特定手法について説明を行った。これに対し、本実施形態では、内燃機関120の複数の気筒に異常が生ずることを想定した場合の異常気筒特定手法について説明を行う。
  図17乃至図19は、本発明の実施の形態4における異常気筒特定手法を実現するためにECU22が実行するルーチンのフローチャートである。尚、図17乃至図19は、それらが合わさって一連の完成された処理、すなわち、本実施形態の異常気筒特定手法のルーチンを示すものである。
 本ルーチンでは、先ず、図17に示すように、全気筒運転中に、上記ステップ100と同様の異常検出処理が実行される(ステップ400)。その結果、本ステップ400の判定が成立する場合、つまり、現在運転中の6気筒の何れかに異常が生じていると認められる場合には、#1、#3、#5気筒を用いた減筒運転が実行される(ステップ402)。すなわち、#2、#4、#6気筒が休止される。
 次に、#1、#3、#5気筒が運転された状態で、上記ステップ100と同様の異常検出処理が実行される(ステップ404)。次いで、#2、#4、#6気筒を用いた減筒運転が実行される(ステップ406)。すなわち、#1、#3、#5気筒が休止される。そのうえで、#2、#4、#6気筒が運転された状態で、上記ステップ100と同様の異常検出処理が実行される(ステップ408)。
 次に、上記ステップ404および408の異常検出処理の結果に基づいて、#1、#3、#5気筒運転時と#2、#4、#6気筒運転時の双方で異常が検出されたか否かが判別される(ステップ410)。その結果、本ステップ410の判定が不成立となる場合、つまり、#1、#3、#5気筒運転時と#2、#4、#6気筒運転時の何れか一方のみで異常が検出された場合には、次いで、図18中に示す「*1」より後の一連の処理が実行される。
 すなわち、図18に示すように、先ず、#1、#4気筒を用いた減筒運転が実行される(ステップ412)。次いで、#1、#4気筒を用いた減筒運転が行われている状態で、上記ステップ100と同様の異常検出処理が実行される(ステップ414)。その結果、本ステップ414の判定が成立する場合、つまり、#1、#4気筒のどちらか一方が異常であると判断できる場合には、上記ステップ402における#1、#3、#5気筒を用いた減筒運転下での異常判定時に異常が認められていたか否かが判別される(ステップ416)。その結果、本ステップ416の判定が成立する場合は、#1、#4気筒のどちらかが異常であると判断でき、かつ、#1、#3、#5気筒の何れかが異常であると判断できる場合に相当するので、#1気筒が異常であると判定される(ステップ418)。一方、本ステップ416の判定が不成立となる場合は、#1、#4気筒のどちらかが異常であると判断でき、かつ、#2、#4、#6気筒の何れかが異常であると判断できる場合に相当するので、#4気筒が異常であると判定される(ステップ420)。
 また、上記ステップ414の判定が不成立となる場合(つまり、#1、#4気筒を用いた減筒運転中に異常が検出されなかった場合)、或いは#1、#4気筒に関する異常特定(上記ステップ416~420)が完了した場合には、次いで、#3、#6気筒を用いた減筒運転が実行される(ステップ422)。そのうえで、#3、#6気筒を用いた減筒運転が行われている状態で、上記ステップ100と同様の異常検出処理が実行される(ステップ424)。その結果、本ステップ424の判定が成立する場合(つまり、#3、#6気筒のどちらか一方が異常であると判断できる場合)には、以下、上記#1、#4気筒の場合と同様のステップ426~430の処理によって、異常発生気筒が#3、#6気筒のどちらであるかが特定される。
 更に、上記ステップ424の判定が不成立となる場合(つまり、#3、#6気筒を用いた減筒運転中に異常が検出されなかった場合)、或いは#3、#6気筒に関する異常特定(上記ステップ426~430)が完了した場合には、次いで、#5、#2気筒を用いた減筒運転が実行される(ステップ432)。そのうえで、#5、#2気筒を用いた減筒運転が行われている状態で、上記ステップ100と同様の異常検出処理が実行される(ステップ434)。その結果、本ステップ434の判定が成立する場合(つまり、#5、#2気筒のどちらか一方が異常であると判断できる場合)には、以下、上記#1、#4気筒の場合等と同様のステップ436~440の処理によって、異常発生気筒が#5、#2気筒のどちらであるかが特定される。
 一方、上記ステップ410(図17参照)の判定が成立する場合、つまり、#1、#3、#5気筒運転時と#2、#4、#6気筒運転時の双方で異常が検出された場合には、次いで、図19中に示す「*2」より後の一連の処理が実行される。
 すなわち、図19に示すように、先ず、#1、#4気筒を用いた減筒運転が実行される(ステップ442)。次いで、#1、#4気筒を用いた減筒運転が行われている状態で、上記ステップ100と同様の異常検出処理が実行される(ステップ444)。その結果、本ステップ444の判定が成立する場合、つまり、#1、#4気筒の少なくとも一方が異常であると判断できる場合には、異常気筒の特定を更に進めるべく、#1気筒のみで運転が行われる(ステップ446)。尚、本ステップ446では、#1気筒に代え、#4気筒のみで運転するようにしてもよい。
 次に、#1気筒のみが運転された状態で、上記ステップ100と同様の異常検出処理が実行される(ステップ448)。その結果、本ステップ448の判定が不成立となる場合、つまり、#4気筒の休止に伴って異常が検出されなくなった場合には、今回追加的に休止された#4気筒が異常であると判定される(ステップ450)。一方、本ステップ448の判定が成立する場合、つまり、#1気筒のみが運転された状態で依然として異常が検出される場合には、現在運転中の#1気筒が異常であると判定されるとともに、今回追加的に休止された#4気筒は異常の可能性ありと判定される(ステップ452)。
 また、上記ステップ444の判定が不成立となる場合(つまり、#1、#4気筒を用いた減筒運転中に異常が検出されなかった場合)、或いは#1、#4気筒に関する異常特定(上記ステップ446~452)が完了した場合には、次いで、#3、#6気筒を用いた減筒運転が実行される(ステップ454)。そのうえで、#3、#6気筒を用いた減筒運転が行われている状態で、上記ステップ100と同様の異常検出処理が実行される(ステップ456)。その結果、本ステップ456の判定が成立する場合(つまり、#3、#6気筒の少なくとも一方が異常であると判断できる場合)には、#3、#6気筒に関して異常気筒の特定を更に進めるべく、以下、上記#1、#4気筒の場合と同様のステップ458~464の処理が実行される。
 また、上記ステップ456の判定が不成立となる場合(つまり、#3、#6気筒を用いた減筒運転中に異常が検出されなかった場合)、或いは#3、#6気筒に関する異常特定(上記ステップ458~464)が完了した場合には、次いで、#5、#2気筒を用いた減筒運転が実行される(ステップ466)。そのうえで、#5、#2気筒を用いた減筒運転が行われている状態で、上記ステップ100と同様の異常検出処理が実行される(ステップ468)。その結果、本ステップ468の判定が成立する場合(つまり、#5、#2気筒の少なくとも一方が異常であると判断できる場合)には、#5、#2気筒に関して異常気筒の特定を更に進めるべく、以下、上記#1、#4気筒の場合と同様のステップ470~476の処理が実行される。
 以上説明した図17乃至図19に示すルーチンの処理によれば、6気筒エンジンである内燃機関120の複数の気筒に異常が発生することを想定した場合においても、触媒の劣化を抑制しつつ、異常気筒を実用上十分なレベルで特定することが可能となる。
 また、上記ルーチンの処理では、半数の気筒(3気筒)からなるグループ気筒のそれぞれについて異常検出処理を実行したうえで、グループ気筒のそれぞれの中から1気筒づつを集めて構成した他のグループ気筒内に異常が認められるか否かを順次判断するようにしている。このような手法によれば、2つのグループ気筒のうちの何れか一方にのみ異常が存在する場合には、単気筒運転を実施する必要なしに異常気筒を効率良く特定することが可能となる(図18参照)。また、グループ気筒の双方に異常が認められる場合であっても、単気筒運転の実施に先立って他のグループ気筒を選択した運転時に異常判定が行われる。これにより、そのような減筒運転を行った段階で当該他のグループ気筒内に異常が存在していないと判断できる場合には、当該他のグループ気筒に関する異常気筒の特定を省略することができる(図19参照)。このため、減筒運転の実施が必要最小限に抑制され、その結果、最大でも3つの気筒に対して単気筒運転を行うだけで、実用上十分なレベルで異常気筒を良好に特定することが可能となる。
 また、上記ルーチンの処理においても、一部気筒の休止運転時の振動騒音の低減を図るべく、爆発間隔が等間隔となるグループ気筒を運転気筒に選択して、気筒休止が行われるように配慮されている。具体的には、最初に選択されるグループ気筒(#1、#3、#5)、そしてその後に選択される他のグループ気筒(#1と#4、#3と#6、および#5、#2気筒)の何れについても、爆発間隔が等間隔となる3気筒或いは2気筒が選択されている。このため、6気筒型エンジンである内燃機関120において、振動騒音を十分に抑制しながら、異常気筒の特定を行うことが可能となる。
 尚、上述した実施の形態4においては、ECU22が、上記ステップ402および406の処理を実行することにより前記第1または第8の発明における「第1気筒休止実行手段」が、上記ステップ412、422、432、442、454、または466の処理を実行することにより前記第1または第8の発明における「第2気筒休止実行手段」が、上記ステップ410の処理を実行することにより前記第8の発明における「異常グループ気筒判別手段」が、そして、上記ステップ412~440、または442~476の処理を実行することにより前記第8または第9の発明における「グループ気筒内異常特定手段」が、それぞれ実現されている。
実施の形態5.
 次に、図20および図21を参照して、本発明の実施の形態5について説明する。
 図20は、本発明の実施の形態5における内燃機関130の各気筒の配置と爆発順序を示す図である。図20に示すように、本実施形態の内燃機関120は、8気筒型エンジン、より具体的には、2つのバンク130a、130bに合計8つの気筒(#1~#8)を有するV型8気筒エンジンであるものとする。また、ここでは、一方のバンク130aに配置される4つの気筒を#1、#3、#5、#7と称し、他方のバンク130bに配置される4つの気筒を#2、#4、#6、#8気筒と称する。また、内燃機関130の爆発順序は、一例として#1→#8→#4→#3→#6→#5→#7→#2の順であるものとし、この順番で等間隔に爆発行程が行われるものとする。
 本実施形態の内燃機関130は、エンジン形式が異なる点を除き、基本的には内燃機関10と同様に構成されている。すなわち、図示は省略しているが、気筒毎に燃料噴射弁が備えられているとともに、気筒毎に吸排気バルブを閉弁状態で休止可能な可変動弁機構が備えられているものとする。また、排気通路には、適切な数の触媒が配置されているものとする。更に、各バンク130a、130bの排気マニホールドの集合部よりも下流側の部位、および両バンク130a、130bから排出される排気ガスの合流後の部位には、それらの位置で空燃比を検出するためのA/Fセンサ(もしくはO2センサ)が配置されているものとする。
[実施の形態5の異常気筒特定手法]
 図21は、本発明の実施の形態5における異常気筒特定手法を実現するためにECU22が実行するルーチンのフローチャートである。尚、本ルーチンは、8気筒エンジンである内燃機関130が8気筒(全気筒)運転を行っている場合に実行されるものとする。また、本実施形態では、内燃機関130が有する8つの気筒のうちの何れか1つの気筒のみに異常が生ずるケースを想定した処理について説明を行う。
 図21に示すルーチンでは、先ず、全気筒運転中に、上記ステップ100と同様の異常検出処理が実行される(ステップ500)。その結果、本ステップ500の判定が成立する場合、つまり、現在運転中の8気筒の何れかに異常が生じていると認められる場合には、#1、#4、#6、#7気筒が休止される(ステップ502)。すなわち、#8、#3、#5、#2気筒を用いた減筒運転が実行される。
次に、#1、#4、#6、#7気筒が休止された状態で、上記ステップ100と同様の異常検出処理が実行される(ステップ504)。その結果、本ステップ504の判定が不成立となる場合、つまり、#1、#4、#6、#7気筒の休止に伴って異常が検出されなくなった場合には、現在運転中の#8、3、#5、#2気筒ではなく、現在休止中の#1、#4、#6、#7気筒の何れか1つが異常であると判断することができる。このため、この場合には、#1、#4、#6、#7気筒のうちのどの気筒が異常であるかを特定すべく、以下のステップ506~524の一連の処理が実行される。以下のステップ506~524の処理は、対象となる気筒が#1、#4、#6、#7気筒である点を除き、上記図13に示すルーチンにおけるステップ102~120の処理と同様である。このため、ここではその詳細な説明を省略する。
 一方、上記ステップ504の判定が成立する場合、つまり、#1、#4、#6、#7気筒が休止された状態で依然として異常が検出される場合には、現在運転中の#8、#3、#5、#2気筒の何れか1つが異常であると判断することができる。このため、この場合には、#8、#3、#5、#2気筒のうちのどの気筒が異常であるかを特定すべく、以下のステップ526~544の一連の処理が実行される。以下のステップ526~544の処理は、対象となる気筒が#8、#3、#5、#2気筒である点を除き、上記図13に示すルーチンにおけるステップ102~120の処理と同様である。このため、ここではその詳細な説明を省略する。
 以上説明した図21に示すルーチンの処理によれば、8気筒型エンジンである内燃機関130の何れか1つの気筒に異常が発生することを想定した場合において、排気通路に配置される触媒の劣化を抑制しつつ、異常気筒を正確に特定することが可能となる。
 また、上記ルーチンの処理では、何れかの気筒に異常が認められる場合に、先ず、半数の気筒(4気筒)からなるグループ気筒の一方(例えば#1、#4、#6、#7)に異常が認められるか否かを判断したうえで、その後に異常気筒の特定処理が進むにつれ、休止気筒数を4気筒から2気筒(例えば、#1、#4気筒からなる他のグループ気筒)、更には1気筒に順序減少させている。これにより、単気筒休止が行われる回数を効果的に少なくし、また、気筒休止時間を効果的に短くすることができる。このため、車両の走行性能や内燃機関の振動騒音への悪影響を抑制しつつ、異常気筒を正確に特定することが可能となる。
 また、上記ルーチンの処理では、異常気筒の特定時に選択されるグループ気筒および他のグループ気筒は、ともに、休止間隔が等間隔となる気筒とされている。このような手法によれば、気筒休止に伴う振動騒音の悪化を最小限に抑えながら、異常気筒を特定することが可能となる。より具体的には、振動騒音の悪化を最小限に抑えるべく選択された上記グループ気筒および他のグループ気筒のそれぞれ一回の休止と、他のグループ気筒内の1気筒のみの一回の休止の合計三回の休止のみで、異常気筒を正確に特定することが可能となる。つまり、振動騒音の悪化が懸念される単気筒休止運転の実施回数およびその運転時間を最短にしつつ、異常気筒を正確に特定することが可能となる。
 尚、上述した実施の形態5においては、ECU22が、上記ステップ502の処理を実行することにより前記第1、第3、または第10の発明における「第1気筒休止実行手段」が、上記ステップ506(もしくは526)、または510(518、530、もしくは538)の処理を実行することにより前記第1、第3、または第10の発明における「第2気筒休止実行手段」が、上記ステップ504の処理を実行することにより前記第3または第10の発明における「異常グループ気筒判別手段」が、上記ステップ508または528の処理を実行することにより前記第4または第10の発明における「第2異常グループ気筒判別手段」が、そして、上記ステップ512~516、520~524、532~536、または540~544の処理を実行することにより前記第3または第10の発明における「グループ気筒内異常特定手段」が、それぞれ実現されている。
実施の形態6.
 次に、図22を参照して、本発明の実施の形態6について説明する。
 本実施形態のシステムは、図2乃至図12、および図20に示すハードウェア構成を用いて、ECU22に図21に示すルーチンに代えて後述する図22に示すルーチンを実行させることにより実現することができるものである。
[実施の形態6の異常気筒特定手法]
 上述した実施の形態5においては、8気筒型の内燃機関130における何れか1つの気筒のみに異常が生ずることを想定した場合の異常気筒特定手法について説明を行った。これに対し、本実施形態では、内燃機関130の複数の気筒に異常が生ずることを想定した場合の異常気筒特定手法について説明を行う。
 図22は、本発明の実施の形態6における異常気筒特定手法を実現するためにECU22が実行するルーチンのフローチャートである。
 図22に示すルーチンでは、先ず、全気筒運転中に、上記ステップ100と同様の異常検出処理が実行される(ステップ600)。その結果、本ステップ600の判定が成立する場合、つまり、現在運転中の8気筒の何れかに異常が生じていると認められる場合には、#1、#4、#6、#7気筒が休止される(ステップ602)。すなわち、#8、#3、#5、#2気筒を用いた減筒運転が実行される。
 次に、#1、#4、#6、#7気筒が休止された状態で、上記ステップ100と同様の異常検出処理が実行される(ステップ604)。次いで、#8、#3、#5、#2気筒が休止される(ステップ606)。すなわち、#1、#4、#6、#7気筒を用いた減筒運転が実行される。そのうえで、#8、#3、#5、#2気筒が休止された状態で、上記ステップ100と同様の異常検出処理が実行される(ステップ608)。
 次に、上記ステップ604および608の異常検出処理の結果に基づいて、#1、#4、#6、#7気筒休止時と#8、#3、#5、#2気筒休止時の双方で異常が検出されたか否かが判別される(ステップ610)。その結果、本ステップ610の判定が不成立となる場合、つまり、#1、#4、#6、#7気筒休止時と#8、#3、#5、#2気筒休止時の何れか一方のみで異常が検出された場合には、次いで、#1、#4、#6、#7気筒休止時にのみ異常が検出されたか否かが判別される(ステップ612)。
 上記ステップ612の判定が成立する場合、つまり、#1、#4、#6、#7気筒休止時にのみ異常が検出されたと判断できる場合には、#1、#4、#6、#7気筒の中の少なくとも1つが異常であると判断することができる。このため、この場合には、#1、#4、#6、#7気筒に関して異常気筒の特定を更に進めるべく、上記図14に示すルーチンのステップ202~224と同様の処理が実行される(ステップ614)。本ステップ614の処理は、#1、#4、#6、#7気筒が処理の対象となる点を除き、上記ステップ202~224の処理と同様であるため、ここではその詳細な説明を省略する。
 一方、上記ステップ612の判定が不成立となる場合、つまり、#8、#3、#5、#2気筒休止時にのみ異常が検出されたと判断できる場合には、#8、#3、#5、#2気筒の中の少なくとも1つが異常であると判断することができる。このため、この場合には、#8、#3、#5、#2気筒に関して異常気筒の特定を更に進めるべく、上記図14に示すルーチンのステップ202~224と同様の処理が実行される(ステップ616)。本ステップ616の処理は、#8、#3、#5、#2気筒が処理の対象となる点を除き、上記ステップ202~224の処理と同様であるため、ここではその詳細な説明を省略する。
 また、上記ステップ610の判定が成立する場合、つまり、#1、#4、#6、#7気筒休止時と#8、#3、#5、#2気筒休止時の双方で異常が検出された場合には、次いで、#1、#4、#6、#7気筒に関して異常気筒を特定するための処理(ステップ618)と、#8、#3、#5、#2気筒に関して異常気筒を特定するための処理(ステップ620)とが順に実行される。尚、ステップ618の処理は、上記ステップ614の処理と同じであり、ステップ620の処理は、上記ステップ616の処理と同じである。
 以上説明した図22に示すルーチンによれば、8気筒エンジンである内燃機関130の複数の気筒に異常が発生することを想定した場合においても、触媒の劣化を抑制しつつ、異常気筒を実用上十分なレベルで特定することが可能となる。
 また、上記ルーチンの処理では、先ず、半数の気筒(4気筒)からなる2つのグループ気筒のそれぞれについて異常検出処理を実行し、更に、異常発生気筒がグループ気筒のうちのどちらか一方に含まれるのか或いはその双方に含まれるのかを明らかにしたうえで、各グループ気筒に含まれる気筒に対して必要に応じて異常気筒の特定を行うようにしている。このような手法によれば、異常気筒を特定するための一部気筒の休止回数を少なくしながら異常気筒を効率良く特定することが可能となる。また、グループ気筒内の異常気筒を特定する際に、単気筒運転の実施に先立って他のグループ気筒を休止気筒として選択した運転時に異常判定が行われる。これにより、そのような減筒運転を行った段階で当該他のグループ気筒内に異常が存在していないと判断できる場合には、当該他のグループ気筒に関する異常気筒の特定を省略することができる。このため、単気筒運転の実施が必要最小限に抑制され、その結果、最大でも4つの気筒に対して単気筒運転を行うだけで、実用上十分なレベルで異常気筒を良好に特定することが可能となる。
 また、上記ルーチンの処理においても、一部気筒の休止運転時の振動騒音の低減を図るべく、休止間隔が等間隔となるグループ気筒を選択して、気筒休止が行われるように配慮されている。具体的には、最初に選択されるグループ気筒(#1、#4、#6、#7、もしくは#8、#3、#5、#2)、そしてその後に選択される他のグループ気筒(#1と#6、#4と#7、#8と#5、もしくは#3と#2)の何れについても、休止間隔が等間隔となる4気筒或いは2気筒が選択されている。このため、8気筒型エンジンである内燃機関130において、振動騒音を十分に抑制しながら、異常気筒の特定を行うことが可能となる。
 尚、上述した実施の形態6においては、ECU22が、上記ステップ602および606の処理を実行することにより前記第1、第3、または第11の発明における「第1気筒休止実行手段」が、上記ステップ614、616、または、618および620の処理を実行することにより前記第1、第3、または第11の発明における「第2気筒休止実行手段」が、上記ステップ610および612の処理を実行することにより前記第3または第11の発明における「異常グループ気筒判別手段」が、上記ステップ614、616、または、618および620の処理を実行することにより前記第4または第11の発明における「第2異常グループ気筒判別手段」が、そして、上記ステップ614、616、または、618および620の処理を実行することにより前記第3または第11の発明における「グループ気筒内異常特定手段」が、それぞれ実現されている。
実施の形態7.
 次に、図23を参照して、本発明の実施の形態7について説明する。
 本実施形態のシステムは、例えば図1、および図2乃至図12に示すハードウェア構成を用いて、ECU22に図13に示すルーチンとともに後述する図23に示すルーチンを実行させることにより実現することができるものである。
[実施の形態7の異常気筒特定手法]
 内燃機関10の減速時等のトルクを減らす要求がある場合には、所定の実施条件が成立すると、各気筒への燃料供給を停止する処理、つまり、燃料カットが実行される。本実施形態の異常気筒特定手法は、そのような燃料カットの実行要求時に実行されるものである。
 図23は、本発明の実施の形態7における異常気筒特定手法を実現するためにECU22が実行するルーチンのフローチャートである。
 図23に示すルーチンでは、先ず、内燃機関10が備えるスロットル開度センサ等の出力に基づいて、減速中であるか否かが判別される(ステップ700)。
 その結果、減速中であると判定された場合、言い換えれば、燃料カットの実行要求があると判断できる場合には、所定のN番気筒以外の3気筒が休止される(ステップ702)。より具体的には、休止対象気筒において燃料供給が休止されるとともに、吸排気バルブの動作が閉弁状態で休止される。
 次に、上記N番気筒のみが運転されている状況下で、A/Fセンサ16の出力に基づいて、当該N番気筒から排出される排気ガスの空燃比が所定の制御目標空燃比に対して所定値以上ずれているか否かが判別される(ステップ704)。その結果、一定値以上のA/Fのずれがあると判定された場合には、N番気筒に異常が認められるので、検出されたA/Fのずれが無くなるように、N番気筒へのフィードバックが行われる(ステップ706)。より具体的には、内燃機関10では、A/Fセンサ16等の出力に従って、触媒14に供給される排気ガスの空燃比が所定の制御目標空燃比に維持されるように、各気筒への燃料噴射量を補正する空燃比フィードバック制御が行われている。本ステップ706では、上記のA/Fのずれが無くなるように、N番気筒に対する燃料噴射量が補正される。
 次に、上記ステップ706による補正の実施後において、N番気筒に上記一定値以上のA/Fのずれが存在しているか否かが判別される(ステップ708)。その結果、上記一定値以上のA/Fのずれが未だ存在していると判定された場合には、N番気筒が異常であると最終的に判定される(ステップ710)。
 本ルーチンでは、上記ステップ700において減速中と判定された場合には、上記ステップ702~710の処理が、内燃機関10が有する#1~#4気筒に対して順番に実施される。
 以上説明した図23に示すルーチンの処理によれば、減速時に燃料カットが実行される状況を利用して、触媒14の劣化を抑制しつつ、異常気筒の特定を行うことができる。このため、本ルーチンを上記図13等に示す実施の形態1~6の処理とともに実行させるようにすることで、内燃機関10の運転中に異常気筒を検出する機会を十分に確保できるようになる。また、上記ルーチンの処理によれば、何れかの気筒に異常が認められる場合に、異常判定に先立って異常が検出されたN番気筒の燃料噴射量の補正を行うことができる。また、上記ルーチンの処理によれば、内燃機関10にトルクが要求されていない減速時に異常気筒の検出を行うことで、一部の気筒の休止が振動騒音に与える影響を十分に排除することができる。
 尚、上述した実施の形態7においては、ECU22が、上記ステップ700の処理を実行することにより前記第12の発明における「燃料カット要求判別手段」が、上記ステップ702の処理を実行することにより前記第12の発明における「第3気筒休止実行手段」が、そして、上記ステップ708および710の処理を実行することにより前記第12の発明における「第2異常気筒特定手段」が、それぞれ実現されている。
 また、上述した実施の形態7においては、ECU22が上記ステップ706の処理を実行することにより前記第13の発明における「空燃比補正手段」が実現されている。
実施の形態8.
 次に、図24を参照して、本発明の実施の形態8について説明する。
 本実施形態のシステムは、例えば図1、および図2乃至図12に示すハードウェア構成を用いて、ECU22に図13に示すルーチンとともに後述する図24に示すルーチンを実行させることにより実現することができるものである。
[実施の形態8の異常内容特定手法]
 既述したように、内燃機関10の各気筒に生じ得る異常には、失火やA/Fインバランス等が含まれる。本実施形態では、内燃機関10に生じた異常が失火とA/Fインバランスのうちのどちらであるかを特定する手法について説明を行う。
 図24は、本発明の実施の形態8の異常内容特定手法を実現するためにECU22が実行するルーチンのフローチャートである。
 図24に示すルーチンでは、先ず、上記ステップ100で行われる処理と同様の手法で、制御目標空燃比に対するA/Fセンサ16の検出値のずれが異常検出のための所定値以上になっているか否かが判別される(ステップ800)。その結果、上記所定値以上のA/Fのずれが認められる場合には、次いで、クランク軸の回転変動が失火判定のための所定値以上になっているか否かが判別される(ステップ802)。
 上記ステップ802の判定が成立する場合、つまり、A/Fのずれとクランク軸の回転変動の双方が異常なレベルにあると判断できる場合には、今回検出された内燃機関10の異常が失火であると判定される(ステップ804)。一方、上記ステップ802の判定が不成立である場合、つまり、異常なレベルのA/Fのずれは認められるが異常なレベルのクランク軸の回転変動は認められないと判断できる場合には、今回検出された内燃機関10の異常がA/Fインバランスであると判定される(ステップ806)。
 何れかの気筒で失火が生じた場合には、その失火発生気筒では燃焼が行われないため、当該失火発生気筒からの排気ガスの空燃比は大きくリーン側にずれることになる。また、失火発生気筒ではトルクを発生させないため、異常なレベルでクランク軸の回転変動が生ずることになる。一方、A/Fインバランスの場合には、インバランスが生じた気筒から排出される排気ガスの空燃比がリッチ側或いはリーン側にずれるが、当該気筒においても燃焼が行われているため、失火発生時と比べてクランク軸が大きく回転変動することはない。
 従って、以上説明した図24に示すルーチンの処理によれば、所定値以上のA/Fのずれの有無と所定値以上のクランク軸の回転変動の有無とに基づいて、内燃機関10の何れかの気筒に発生した異常が、失火であるかA/Fインバランスであるかを特定することが可能となる。このような上記ルーチンの処理を、上述した実施の形態1~7の異常気筒特定手法と組み合わせて実行することで、失火もしくはA/Fインバランスが発生した気筒を精度良く特定することが可能となる。
 尚、上述した実施の形態8においては、ECU22が、上記ステップ802の処理を実行することにより前記第14の発明における「第1異常評価指標値判定手段」が、上記ステップ800の処理を実行することにより前記第14の発明における「第2異常評価指標値判定手段」が、上記ステップ800~806の処理を実行することにより前記第14の発明における「異常内容特定手段」が、それぞれ実現されている。

Claims (14)

  1.  気筒毎に燃料を噴射可能な燃料噴射弁と、 吸気弁および排気弁の少なくとも一方のバルブの動作を気筒毎に独立して閉弁状態で休止可能な可変動弁機構と、 内燃機関の運転中に異常評価指標値を取得し、当該異常評価指標値に基づいて内燃機関の少なくとも1つの気筒に生じた異常を検出する異常検出手段と、 前記異常検出手段により異常が検出された場合に、少なくとも2つの気筒からなる第1の一部気筒を対象として、燃料供給の休止および閉弁状態での前記バルブの動作の休止を行う気筒休止を実行する第1気筒休止実行手段と、
     前記第1気筒休止実行手段による気筒休止後に、少なくとも1つの気筒からなる第2の一部気筒を対象として休止気筒を変更したうえで気筒休止を実行する第2気筒休止実行手段と、 前記第2気筒休止実行手段による休止気筒の変更に伴う前記異常評価指標値の変化に基づいて、異常発生気筒を特定する異常気筒特定手段と、 を備えることを特徴とする可変動弁機構を有する内燃機関の制御装置。  
  2.  前記第2気筒休止実行手段は、異常発生気筒の特定が進行するに従って、休止気筒数を減少させる休止気筒数減少実行手段を含むことを特徴とする請求項1記載の可変動弁機構を有する内燃機関の制御装置。
  3.  前記第1気筒休止実行手段は、休止間隔もしくは爆発間隔が等間隔もしくは最も等間隔に近くなる2つのグループ気筒の一方もしくは双方を前記第1の一部気筒として選択して気筒休止を実行し、
     前記異常気筒特定手段は、前記第1の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、前記グループ気筒の一方もしくは双方に異常発生気筒が含まれているか否かを判別する異常グループ気筒判別手段を含み、
     前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記グループ気筒内の一部気筒を前記第2の一部気筒として選択して気筒休止を実行し、
     前記異常気筒特定手段は、前記第2の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、異常発生気筒が含まれていると判別された前記グループ気筒内で、異常発生気筒を特定するグループ気筒内異常特定手段を含むことを特徴とする請求項1または2記載の可変動弁機構を有する内燃機関の制御装置。
  4.  前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記グループ気筒内に、休止間隔もしくは爆発間隔が等間隔もしくは最も等間隔に近くなる複数の他のグループ気筒が存在する場合には、当該他のグループ気筒の少なくとも1つを前記第2の一部気筒として選択して気筒休止を実行し、
     前記異常気筒特定手段は、前記第2の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、前記他のグループ気筒の少なくとも一つに異常発生気筒が含まれているか否かを判別する第2異常グループ気筒判別手段を含み、
     前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記他のグループ気筒内の一部気筒を第3の一部気筒として選択して気筒休止を実行し、
     前記グループ気筒内異常特定手段は、前記第3の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、異常発生気筒が含まれていると判別された前記他のグループ気筒内で異常発生気筒を特定することを特徴とする請求項3記載の可変動弁機構を有する内燃機関の制御装置。
  5.  前記内燃機関は、4つの気筒を有する内燃機関であって、
     第1気筒休止実行手段は、休止間隔が等間隔もしくは最も等間隔に近くなる2つの気筒からなる2つのグループ気筒の一方を前記第1の一部気筒として選択して気筒休止を実行し、
     前記異常気筒特定手段は、前記第1の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、前記グループ気筒のどちらに異常発生気筒が含まれているか否かを判別する異常グループ気筒判別手段を含み、
     前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記グループ気筒内の何れか1つの気筒を前記第2の一部気筒として選択して気筒休止を実行し、
     前記異常気筒特定手段は、前記第2の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、異常発生気筒が含まれていると判別された前記グループ気筒内で、異常発生気筒を特定するグループ気筒内異常特定手段を含むことを特徴とする請求項1または2記載の可変動弁機構を有する内燃機関の制御装置。
  6.  前記内燃機関は、4つの気筒を有する内燃機関であって、
     第1気筒休止実行手段は、休止間隔が等間隔もしくは最も等間隔に近くなる2つの気筒からなる2つのグループ気筒を順次前記第1の一部気筒として選択して気筒休止を実行し、
     前記異常気筒特定手段は、前記第1の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、前記グループ気筒の一方もしくは双方に異常発生気筒が含まれているか否かを判別する異常グループ気筒判別手段を含み、
     前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記グループ気筒内の何れか1つの気筒以外の3気筒を前記第2の一部気筒として選択して気筒休止を実行し、
     前記異常気筒特定手段は、前記第2の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、異常発生気筒が含まれていると判別された前記グループ気筒内で、異常発生気筒を特定するグループ気筒内異常特定手段を含むことを特徴とする請求項1または2記載の可変動弁機構を有する内燃機関の制御装置。
  7.  前記内燃機関は、6つの気筒を有する内燃機関であって、
     前記第1気筒休止実行手段は、爆発間隔が等間隔もしくは最も等間隔に近くなる3つの気筒からなる2つのグループ気筒の一方を前記第1の一部気筒として選択して気筒休止を実行し、
     前記異常気筒特定手段は、前記第1の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、前記グループ気筒のどちらに異常発生気筒が含まれているか否かを判別する異常グループ気筒判別手段を含み、
     前記第2気筒休止実行手段は、爆発間隔が等間隔もしくは最も等間隔に近くなる2つの気筒からなる3つの他のグループ気筒の少なくとも1つに対して、当該他のグループ気筒に含まれる2気筒以外の4気筒を前記第2の一部気筒として選択して気筒休止を実行し、
     前記異常気筒特定手段は、前記第2の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて前記他のグループ気筒内に異常発生気筒が含まれているか否かを判別した結果と、前記異常グループ気筒判別手段による判別結果とに基づいて、異常発生気筒を特定するグループ気筒内異常特定手段を含むことを特徴とする請求項1または2記載の可変動弁機構を有する内燃機関の制御装置。
  8.  前記内燃機関は、6つの気筒を有する内燃機関であって、
     前記第1気筒休止実行手段は、爆発間隔が等間隔もしくは最も等間隔に近くなる3つの気筒からなる2つのグループ気筒を順次前記第1の一部気筒として選択して気筒休止を実行し、
     前記異常気筒特定手段は、前記第1の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、前記グループ気筒の一方もしくは双方に異常発生気筒が含まれているか否かを判別する異常グループ気筒判別手段を含み、
     前記第2気筒休止実行手段は、爆発間隔が等間隔もしくは最も等間隔に近くなる2つの気筒からなる3つの他のグループ気筒に対して、当該他のグループ気筒に含まれる2気筒以外の4気筒を順次前記第2の一部気筒として選択して気筒休止を実行し、
     前記異常気筒特定手段は、前記グループ気筒の一方のみに異常発生気筒が含まれていると判断された場合には、前記第2の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて前記他のグループ気筒内に異常発生気筒が含まれているか否かを判別した結果と、前記異常グループ気筒判別手段による判別結果とに基づいて、異常発生気筒を特定するグループ気筒内異常特定手段を含むことを特徴とする請求項1または2記載の可変動弁機構を有する内燃機関の制御装置。
  9.  前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記他のグループ気筒内の何れか1つの気筒を更に第3の一部気筒として選択して気筒休止を実行し、
     前記グループ気筒内異常特定手段は、前記グループ気筒の双方に異常発生気筒が含まれていると判断された場合には、異常発生気筒が含まれていると判別された前記他のグループ気筒内で、前記第3の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて異常発生気筒を特定することを特徴とする請求項8記載の可変動弁機構を有する内燃機関の制御装置。
  10.  前記内燃機関は、8つの気筒を有する内燃機関であって、
     前記第1気筒休止実行手段は、休止間隔が等間隔もしくは最も等間隔に近くなる4つの気筒からなる2つのグループ気筒の一方を前記第1の一部気筒として選択して気筒休止を実行し、
     前記異常気筒特定手段は、前記第1の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、前記グループ気筒のどちらに異常発生気筒が含まれているか否かを判別する異常グループ気筒判別手段を含み、
     前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記グループ気筒内で、休止間隔が等間隔もしくは最も等間隔に近くなる2つの気筒からなる2つの他のグループ気筒の一方を前記第2の一部気筒として選択して気筒休止を実行し、
     前記異常気筒特定手段は、前記第2の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、前記他のグループ気筒のどちらに異常発生気筒が含まれているか否かを判別する第2異常グループ気筒判別手段を含み、
     前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記他のグループ気筒内の何れか1つの気筒を更に第3の一部気筒として選択して気筒休止を実行し、
     前記異常気筒特定手段は、異常発生気筒が含まれていると判別された前記他のグループ気筒内で、前記第3の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて異常発生気筒を特定するグループ気筒内異常特定手段を含むことを特徴とする請求項1または2記載の可変動弁機構を有する内燃機関の制御装置。
  11.  前記内燃機関は、8つの気筒を有する内燃機関であって、
     前記第1気筒休止実行手段は、休止間隔が等間隔もしくは最も等間隔に近くなる4つの気筒からなる2つのグループ気筒を順次前記第1の一部気筒として選択して気筒休止を実行し、
     前記異常気筒特定手段は、前記第1の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、前記グループ気筒の一方もしくは双方に異常発生気筒が含まれているか否かを判別する異常グループ気筒判別手段を含み、
     前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記グループ気筒内で、休止間隔が等間隔もしくは最も等間隔に近くなる2つの気筒からなる4つの他のグループ気筒の少なくとも2つに対して、当該他のグループ気筒に含まれる2気筒以外の4気筒を順次前記第2の一部気筒として選択して気筒休止を実行し、
     前記異常気筒特定手段は、前記第2の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて、異常発生気筒が含まれていると判別された前記グループ気筒に含まれる2つの前記他のグループ気筒の少なくとも一方に異常発生気筒が含まれているか否かを判別する第2異常グループ気筒判別手段を含み、
     前記第2気筒休止実行手段は、異常発生気筒が含まれていると判別された前記他のグループ気筒内の何れか1つの気筒を第3の一部気筒として選択して気筒休止を実行し、
     前記異常気筒特定手段は、異常発生気筒が含まれていると判別された前記他のグループ気筒内で、前記第3の一部気筒を対象とした前記気筒休止時の前記異常評価指標値に基づいて異常発生気筒を特定するグループ気筒内異常特定手段を含むことを特徴とする請求項1または2記載の可変動弁機構を有する内燃機関の制御装置。
  12.  燃料カットの実行要求の有無を判別する燃料カット要求判別手段と、
     前記燃料カットの実行要求が認められる場合に、所定の1気筒以外の他の気筒を対象とし、かつ、前記所定の1気筒を順次変更しながら気筒休止を実行する第3気筒休止実行手段とを更に備え、
     前記異常気筒特定手段は、前記第3気筒休止実行手段による気筒休止時の前記異常評価指標値に基づいて、異常発生気筒を特定する第2異常気筒特定手段を含むことを特徴とする請求項1乃至11の何れか1項記載の可変動弁機構を有する内燃機関の制御装置。
  13.  前記異常検出手段は、排気通路を流れる排気ガスの空燃比を前記異常評価指標値とし、所定の判定値に対する当該空燃比のずれ量に基づいて、前記異常を検出する手段であって、
     前記内燃機関の制御装置は、前記異常検出手段により検出された異常が無くなるように、前記第2異常気筒特定手段によって特定される異常発生気筒から排出される排気ガスの空燃比を補正する空燃比補正手段を更に備えることを特徴とする請求項12記載の可変動弁機構を有する内燃機関の制御装置。
  14.  前記異常検出手段は、
     クランク軸の回転変動を前記異常評価指標値とし、前記クランク軸の回転変動が所定の判定値以上であるか否かを判定する第1異常評価指標値判定手段と、
     排気通路を流れる排気ガスの空燃比を前記異常評価指標値とし、前記空燃比のずれ量が所定の判定値以上であるか否かを判定する第2異常評価指標値判定手段とを含み、
     前記内燃機関の制御装置は、前記クランク軸の回転変動が前記判定値以上である場合には、前記異常が失火であると判定し、前記クランク軸の回転変動が前記判定値以上ではないが前記空燃比のずれ量が前記判定値以上である場合に、前記異常が空燃比インバランスであると判定する異常内容特定手段を更に備えることを特徴とする請求項1乃至13の何れか1項記載の可変動弁機構を有する内燃機関の制御装置。
PCT/JP2008/073736 2008-12-26 2008-12-26 可変動弁機構を有する内燃機関の制御装置 WO2010073369A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2008/073736 WO2010073369A1 (ja) 2008-12-26 2008-12-26 可変動弁機構を有する内燃機関の制御装置
CN2008801066210A CN101861453B (zh) 2008-12-26 2008-12-26 具有可变气门机构的内燃机的控制装置
US12/677,640 US8285469B2 (en) 2008-12-26 2008-12-26 Control apparatus for internal combustion engine including variable valve operating mechanism
JP2010508138A JP5099216B2 (ja) 2008-12-26 2008-12-26 可変動弁機構を有する内燃機関の制御装置
EP08876900.5A EP2372132B1 (en) 2008-12-26 2008-12-26 Device for controlling internal combustion engine using variable valve mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/073736 WO2010073369A1 (ja) 2008-12-26 2008-12-26 可変動弁機構を有する内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2010073369A1 true WO2010073369A1 (ja) 2010-07-01

Family

ID=42287037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073736 WO2010073369A1 (ja) 2008-12-26 2008-12-26 可変動弁機構を有する内燃機関の制御装置

Country Status (5)

Country Link
US (1) US8285469B2 (ja)
EP (1) EP2372132B1 (ja)
JP (1) JP5099216B2 (ja)
CN (1) CN101861453B (ja)
WO (1) WO2010073369A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102414423B (zh) * 2010-01-18 2013-09-25 丰田自动车株式会社 内燃机的控制装置
JP5731248B2 (ja) * 2011-03-23 2015-06-10 大阪瓦斯株式会社 エンジン制御装置
US9133775B2 (en) * 2012-08-21 2015-09-15 Brian E. Betz Valvetrain fault indication systems and methods using engine misfire
US10030593B2 (en) 2014-05-29 2018-07-24 Cummins Inc. System and method for detecting air fuel ratio imbalance
CN109139278B (zh) * 2014-11-10 2021-01-01 图拉技术公司 控制内燃发动机的方法和发动机控制器
US10330040B2 (en) * 2016-06-14 2019-06-25 Ford Global Technologies, Llc Method and system for air-fuel ratio control
US10961930B2 (en) * 2018-12-12 2021-03-30 Denso International America, Inc. Control system for variable displacement engine
US20210071598A1 (en) * 2019-09-06 2021-03-11 Aisan Kogyo Kabushiki Kaisha Evaporated fuel treatment apparatus
US11168627B2 (en) * 2019-11-18 2021-11-09 GM Global Technology Operations LLC Cylinder imbalance correction system and method
CN111779572B (zh) * 2020-06-24 2021-07-27 中国第一汽车股份有限公司 一种失火诊断方法、装置、设备及存储介质
CN112963253A (zh) * 2021-03-23 2021-06-15 潍柴动力股份有限公司 一种发动机点火缸的控制方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118031A (ja) * 1985-11-18 1987-05-29 Nissan Motor Co Ltd 内燃機関の失火検出装置
JPS6397855A (ja) * 1986-10-10 1988-04-28 Nippon Denso Co Ltd 内燃機関用制御装置
JPH06229881A (ja) * 1993-01-29 1994-08-19 Mazda Motor Corp エンジンの検査方法
JP2002201972A (ja) * 2000-10-23 2002-07-19 Honda Motor Co Ltd ハイブリッド車両の制御装置
WO2006098133A1 (ja) * 2005-02-23 2006-09-21 Toyota Jidosha Kabushiki Kaisha 内燃機関の動弁装置
JP2007085176A (ja) * 2005-09-20 2007-04-05 Hitachi Ltd 気筒別燃料噴射弁故障診断
JP2008064077A (ja) * 2006-09-11 2008-03-21 Denso Corp 内燃機関の制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689707B2 (ja) 1986-03-29 1994-11-09 三菱自動車工業株式会社 多気筒エンジンにおける特定気筒の失火判別方法
JP2000154740A (ja) * 1998-11-19 2000-06-06 Nissan Motor Co Ltd 可変動弁エンジンの制御装置
JP3607246B2 (ja) * 2001-11-30 2005-01-05 本田技研工業株式会社 ハイブリッド車両の制御装置
JP3706335B2 (ja) 2001-12-12 2005-10-12 本田技研工業株式会社 内燃機関の故障判定装置
JP4075368B2 (ja) * 2001-12-14 2008-04-16 三菱自動車工業株式会社 内燃機関の制御装置
JP4282280B2 (ja) * 2002-07-11 2009-06-17 三菱電機株式会社 Vvt制御を行う内燃機関の気筒判別装置
FR2846050B1 (fr) * 2002-10-18 2006-10-06 Renault Sa Procede pour preserver le catalyseur d'un moteur a allumage commande en cas de rates de combustion
JP4096835B2 (ja) * 2003-08-06 2008-06-04 トヨタ自動車株式会社 内燃機関の制御装置および内燃機関の失火判定方法
JP2005163696A (ja) * 2003-12-04 2005-06-23 Denso Corp 内燃機関の失火検出装置
US6999868B2 (en) * 2003-12-10 2006-02-14 Caterpillar Inc. Diagnostic test for variable valve mechanism
US7487035B2 (en) * 2006-11-15 2009-02-03 Denso Corporation Cylinder abnormality diagnosis unit of internal combustion engine and controller of internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118031A (ja) * 1985-11-18 1987-05-29 Nissan Motor Co Ltd 内燃機関の失火検出装置
JPS6397855A (ja) * 1986-10-10 1988-04-28 Nippon Denso Co Ltd 内燃機関用制御装置
JPH06229881A (ja) * 1993-01-29 1994-08-19 Mazda Motor Corp エンジンの検査方法
JP2002201972A (ja) * 2000-10-23 2002-07-19 Honda Motor Co Ltd ハイブリッド車両の制御装置
WO2006098133A1 (ja) * 2005-02-23 2006-09-21 Toyota Jidosha Kabushiki Kaisha 内燃機関の動弁装置
JP2007085176A (ja) * 2005-09-20 2007-04-05 Hitachi Ltd 気筒別燃料噴射弁故障診断
JP2008064077A (ja) * 2006-09-11 2008-03-21 Denso Corp 内燃機関の制御装置

Also Published As

Publication number Publication date
US8285469B2 (en) 2012-10-09
EP2372132A4 (en) 2017-05-10
US20110276250A1 (en) 2011-11-10
EP2372132A1 (en) 2011-10-05
EP2372132B1 (en) 2018-09-12
CN101861453A (zh) 2010-10-13
JPWO2010073369A1 (ja) 2012-05-31
CN101861453B (zh) 2013-01-16
JP5099216B2 (ja) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5099216B2 (ja) 可変動弁機構を有する内燃機関の制御装置
US9222419B2 (en) Control apparatus for internal combustion engine including valve stop mechanism
JP4807471B2 (ja) 内燃機関の異常検出装置
US8875680B2 (en) Control device for internal combustion engine
US20090292441A1 (en) Control Apparatus for Internal Combustion Engine
JP5245874B2 (ja) 内燃機関の制御装置
US10683819B2 (en) Internal combustion engine and method for controlling same
JP2010190231A (ja) 気筒休止内燃機関
JP4327050B2 (ja) 気筒休止内燃機関
JP2015075052A (ja) 内燃機関
JP2006077586A (ja) 気筒休止内燃機関
JP4702430B2 (ja) 内燃機関の可変動弁機構
JP4104518B2 (ja) 可変気筒内燃機関
JP2006132385A (ja) 可変気筒内燃機関の制御装置
JP6149801B2 (ja) エンジンの制御装置
JP4901337B2 (ja) 内燃機関の制御装置及び変速制御装置
JP2010223126A (ja) 内燃機関の制御装置
JP2001020798A (ja) 可変動弁装置の異常検出装置
JP2019120235A (ja) エンジン
JP4941443B2 (ja) 内燃機関の動弁システム
KR101216452B1 (ko) 내연기관 제어 방법 및 장치
JP2016089812A (ja) 内燃機関の可変気筒制御装置
JP2010059891A (ja) 内燃機関の制御装置
JP2010031694A (ja) 可変動弁機構の制御装置
JP2007071115A (ja) 可変動弁機構を有する内燃機関

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880106621.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010508138

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12677640

Country of ref document: US

Ref document number: 2008876900

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08876900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE