WO2006095876A1 - エンジン音加工装置 - Google Patents

エンジン音加工装置 Download PDF

Info

Publication number
WO2006095876A1
WO2006095876A1 PCT/JP2006/304806 JP2006304806W WO2006095876A1 WO 2006095876 A1 WO2006095876 A1 WO 2006095876A1 JP 2006304806 W JP2006304806 W JP 2006304806W WO 2006095876 A1 WO2006095876 A1 WO 2006095876A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
sound
engine sound
signal
frequency
Prior art date
Application number
PCT/JP2006/304806
Other languages
English (en)
French (fr)
Inventor
Yoshikazu Honji
Yasuo Yoshioka
Tetsu Kobayashi
Akio Takahashi
Original Assignee
Yamaha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corporation filed Critical Yamaha Corporation
Priority to US11/886,044 priority Critical patent/US8155343B2/en
Priority to EP06728924.9A priority patent/EP1865494B1/en
Priority to JP2007507216A priority patent/JP4888386B2/ja
Publication of WO2006095876A1 publication Critical patent/WO2006095876A1/ja
Priority to US13/398,719 priority patent/US8885845B2/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/04Sound-producing devices

Definitions

  • the present invention relates to an engine sound processing apparatus that processes engine sound of an automobile and reproduces it in a vehicle interior.
  • a sine wave or a pulse sound that matches the engine speed (synchronized with the engine sound) is generated, emitted into the vehicle interior, and actually leaked into the vehicle interior.
  • you can emphasize the partial frequency band of the engine sound and hear it for example, Patent Document 1
  • Patent Document 2 or record the desired engine sound in advance
  • Reproduces the sound according to the number of revolutions to produce a desired engine sound in the passenger compartment see, for example, Patent Document 2 or microphone engine equipped in the headrest.
  • Patent Document 3 A device that can be emphasized and made to hear (for example, Patent Document 3) has been proposed.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-80790
  • Patent Document 2 Japanese Patent Laid-Open No. 7-302093
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-74994
  • An object of the present invention is to provide an engine sound processing device that can generate a real engine sound in the vehicle interior by collecting the actual engine sound outside the vehicle interior and outputting it after processing. To do.
  • the present invention employs the following means.
  • a microphone that is installed outside the passenger compartment of the automobile and picks up the engine sound of the automobile, a sensor that detects the driving situation of the automobile,
  • a signal processing unit that processes and outputs engine sound picked up by the microphone based on the detection content of the sensor
  • a speaker for outputting engine sound signal-processed by the signal processing unit
  • An engine sound processing device comprising:
  • the signal processing unit includes a sound insulation characteristic filter that simulates a sound insulation characteristic on a vehicle interior wall surface and an active filter whose characteristics change according to a driving situation.
  • the sensor is a part or all of a sensor that detects an engine speed, a sensor that detects an accelerator opening angle, and a sensor that detects a speed of an automobile.
  • the engine sound processing device further including a control unit that determines signal processing characteristics based on detection contents of the sensor and controls the signal processing unit.
  • the control unit is a parameter that stores the relationship between the detection contents of the sensor and the signal processing characteristics.
  • the engine sound power device according to (5) is a parameter that stores the relationship between the detection contents of the sensor and the signal processing characteristics.
  • the engine sound processing device further including an operation unit that is connected to the control unit and allows a user to operate a signal processing characteristic of the control unit.
  • Frequency analysis means for analyzing the frequency of the engine sound picked up by the microphone and determining the spectrum
  • the engine sound power device according to (5), wherein the signal processing unit processes the spectrum determined by the frequency analysis means and outputs the processed spectrum to the speaker.
  • Frequency analysis means for analyzing the frequency of the engine sound collected by the microphone and detecting a spectrum peak
  • control unit sets a frequency at which the signal processing unit performs a pitch shift.
  • the engine sound processing apparatus according to (5), wherein the signal processing unit outputs the modulation signal waveform generated by the waveform generation unit to a speaker.
  • the waveform generation unit generates a modulation signal waveform corresponding to each engine sound collected by the microphone
  • control unit sets the modulation period of the modulation signal waveform at a period synchronized with each of the engine sounds collected by the microphone.
  • control unit is set to output a peak of a modulation signal waveform at the same timing as each peak of engine sound to be collected.
  • chord configuration information When chord configuration information is given, a consonant audio signal having a pitch that is in a cooperative relationship with the pitch of the engine sound collected by the microphone according to the chord configuration information is generated, and the consonant
  • the engine sound processing device further comprising: a chord forming unit that outputs the sound signal added to the engine sound.
  • the control unit identifies the operating state based on a change value of a current value of the detection content of the sensor or an output signal of the sensor within a past fixed period, and a chord configuration is configured according to the operating state.
  • chord forming unit includes a pitch conversion unit that performs pitch conversion on the collected engine sound to generate a sound signal of the consonant sound. apparatus.
  • chord constituting unit includes a synthesizing unit that synthesizes a sound signal of a consonant sound having a target pitch with an ignition pulse of the engine of the vehicle as a trigger. Sound power device.
  • the signal processing section has a plurality of types of correction modes, and performs phase correction means for correcting the phase characteristics of the engine sound supplied to the speaker based on the correction mode selected by the user according to the frequency.
  • the engine sound processing device according to (1).
  • An engine speed sensor for measuring the engine speed of the vehicle is provided, and the phase correction means sets a frequency for correcting the phase characteristic based on the engine speed measured by the engine speed sensor.
  • An accelerator depression amount sensor for measuring the accelerator depression amount of the vehicle is provided,
  • the phase correction means includes an accelerator that is measured by the accelerator depression sensor.
  • the degree of distortion is dynamically changed according to at least one of the engine speed and the degree of accelerator depression (25).
  • strain type to be added is dynamically changed according to at least one of the engine speed and the degree of depression of the accelerator, according to (25).
  • Engine sound power device is dynamically changed according to at least one of the engine speed and the degree of depression of the accelerator.
  • An equalizer unit is provided between the microphone and the distortion unit, the frequency characteristic of which is dynamically changed according to at least one of the engine speed and the degree of depression of the accelerator.
  • the distortion added by the signal processing unit, the frequency characteristic of the filter, or the volume of the volume of the amplifier is dynamically changed by changing the speed of change of the engine speed or the degree of depression of the accelerator.
  • Signal generating means for generating an audio signal representing a pseudo engine sound
  • the sound having a pitch that is in harmony with the pitch of the sound signal according to the chord structure information.
  • An engine sound signal generating means including a chord constituting means for generating a sound signal of sound and adding the sound signal of the consonant sound to the sound signal to generate the engine sound signal; Control means for monitoring the driving state, generating chord configuration information according to the driving state,
  • a vehicle interior acoustic control device comprising:
  • Signal generating means for generating an engine sound signal representing a pseudo engine sound and supplying the engine sound signal to the speaker;
  • the signal generation means includes a plurality of types of correction modes, and includes phase correction means for correcting the phase characteristics of the engine sound supplied to the speaker based on the correction mode selected by the user in accordance with the frequency.
  • Engine sound generator includes a plurality of types of correction modes, and includes phase correction means for correcting the phase characteristics of the engine sound supplied to the speaker based on the correction mode selected by the user in accordance with the frequency.
  • the engine sound power device that can generate a real engine sound in the vehicle interior by collecting the actual engine sound outside the vehicle interior and outputting it after processing. Can be provided.
  • FIG. 1 is a block diagram of an engine sound power device according to the present invention.
  • FIG. 2 is a block diagram of the engine sound processing apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a view for explaining the mounting positions of the microphone and speaker of the engine sound power device according to the first embodiment.
  • FIG. 4 is a diagram for explaining a control system of the engine sound processing apparatus according to the first embodiment.
  • FIG. 5 is a diagram for explaining spectral deformation characteristics in the engine sound processing apparatus according to the first embodiment.
  • FIG. 6 is a diagram for explaining another spectral deformation characteristic in the engine sound processing apparatus according to the first embodiment.
  • FIG. 7A is a first diagram illustrating a spectrum deformation characteristic according to a sensor output in the engine sound power device according to the first embodiment.
  • FIG. 7B is a second diagram for explaining the spectrum deformation characteristics according to the sensor output in the engine sound power device according to the first embodiment.
  • FIG. 7C is a third diagram for explaining the spectrum deformation characteristic according to the sensor output in the engine sound power device according to the first embodiment.
  • FIG. 8A The first diagram explaining the relationship between the gain and rotation speed of one peak in the frequency spectrum of engine sound
  • FIG. 8B A second diagram illustrating the relationship between the gain and rotation speed of one peak in the frequency spectrum of engine sound.
  • FIG. 8C A third diagram explaining the relationship between the gain and rotation speed of one peak in the frequency spectrum of engine sound.
  • FIG. 9 is a block diagram of an engine sound power device that is an embodiment of the present invention.
  • FIG. 10 A diagram for explaining the mounting positions of the microphone and speaker of the engine sound processing apparatus.
  • ⁇ 11 A diagram for explaining the control system of the engine sound processing apparatus.
  • FIG. 13B is a second diagram for explaining the pitch shift characteristics in the engine sound processing apparatus.
  • FIG. 13C is a third diagram for explaining the pitch shift characteristics in the engine sound processing apparatus.
  • FIG. 13D is a fourth diagram for explaining the pitch shift characteristic in the engine sound processing apparatus.
  • FIG. 14A is a first diagram illustrating filter characteristics according to sensor output in the engine sound processing apparatus
  • FIG. 14B is a second diagram illustrating filter characteristics according to the sensor output in the engine sound processing apparatus.
  • FIG. 14C is a third diagram illustrating filter characteristics according to sensor output in the engine sound processing apparatus.
  • FIG. 14D is a fourth diagram for explaining the filter characteristics according to the sensor output in the engine sound processing apparatus.
  • FIG. 15 is a block diagram of an engine sound power measuring apparatus according to a third embodiment of the present invention.
  • FIG. 16 A diagram for explaining the mounting positions of the microphone and speaker of the engine sound processing apparatus.
  • FIG. 16 A diagram for explaining a control system of the engine sound processing apparatus.
  • ⁇ 18 Diagram explaining the output signal of the waveform generator in the engine sound processing device.
  • ⁇ 19 Diagram explaining the modulation depth control in the engine sound processing device.
  • FIG. 21A is a first diagram illustrating filter characteristics in the engine sound processing apparatus
  • FIG. 21B is a second diagram for explaining the filter characteristics in the engine sound processing apparatus.
  • FIG. 21C is a third diagram for explaining the filter characteristics in the engine sound processing apparatus.
  • FIG. 21D is a fourth diagram illustrating the filter characteristics in the engine sound processing apparatus.
  • ⁇ 22] A block diagram showing the configuration of the vehicle interior sound field control device according to the fourth embodiment of the present invention.
  • FIG. 23 is a block diagram showing a first configuration example of the filters 21 to 24 in the embodiment.
  • FIG. 24 is a block diagram showing a second configuration example of the filters 21 to 24 in the embodiment.
  • FIG. 25 is a block diagram showing a configuration example of the synthesis unit 205-j in the second configuration example of the fourth embodiment.
  • FIG. 26 is a waveform diagram showing an operation example of the same embodiment
  • ⁇ 27 A block diagram showing the configuration of the engine sound generation device according to the fifth embodiment of the present invention.
  • FIG. 28 is a block diagram showing a configuration example of a signal processing unit 740 in the same embodiment.
  • FIG. 29 is a diagram for explaining the details of the correction processing of amplitude characteristic data and phase characteristic data in the embodiment
  • FIG. 30 is a diagram illustrating phase characteristic data correction processing performed in the sixth embodiment of the present invention.
  • [31] A diagram for explaining a method of generating phase correction data used in the seventh embodiment of the present invention.
  • FIG. 33A is a diagram showing a configuration example of an analog distortion unit 4
  • FIG. 33B is a diagram showing a configuration example of the digital distortion unit 4
  • FIG. 34 is a diagram for explaining the contents controlled by the equalizer
  • FIG. 35A is a diagram for explaining the control of the equalizer according to the engine speed and the degree of depression of the accelerator, and shows the correspondence between the engine speed and the center frequency.
  • FIG. 35B is a diagram for explaining the control of the equalizer according to the engine speed and the degree of depression of the accelerator, and shows the correspondence between the degree of depression of the accelerator and the gain.
  • FIG. 36A is a diagram for explaining the distortion processing.
  • FIG. 36B is a diagram showing a configuration example of a distortion circuit using an analog circuit.
  • FIG. 36C is a diagram showing another configuration example of a distortion circuit using an analog circuit.
  • FIG. 36D is a diagram showing another configuration example of the distortion circuit using the analog circuit.
  • FIG.37 A diagram for explaining the DRIVE parameter (Kd) indicating the degree of distortion.
  • FIG. 38A A first diagram for explaining how the parameter Kd changes according to the engine speed and the degree of accelerator depression.
  • FIG. 38B is a second diagram for explaining how the parameter Kd varies depending on the engine speed and the degree of accelerator depression.
  • FIG. 38C A third diagram for explaining how the parameter Kd changes depending on the engine speed and the degree of accelerator depression.
  • FIG.39 A diagram for explaining the TYPE parameter (Kp) indicating the distortion pattern of distortion!
  • FIG. 40B A diagram showing the correspondence between accelerator depression and volume V (Volume)
  • FIG. 41 is a diagram showing a main configuration of an embodiment provided with a filter for simulating the transfer characteristic of a sound insulating board.
  • Fig. 1 is a block diagram of the engine sound processing apparatus.
  • the engine sound processing device 1 includes a microphone 10 for collecting engine sound, an amplifier 11 for amplifying an audio signal input from the microphone 10, and an amplified signal of 11 amplifiers.
  • An AZD converter 12 that converts the signal into a digital signal
  • a signal processing unit 2 that processes the digital signal
  • a DZA converter 19 that converts the output from the signal processing unit 2 into an analog signal
  • a speaker 41 that outputs the analog signal Prepare.
  • the engine sound power device 1 includes a sensor 30 for detecting the driving situation.
  • the detection value of the sensor is input to the control unit 3.
  • the control unit 3 determines the signal processing characteristics of the signal processing unit 2 according to the sensor output.
  • the control unit 3 outputs the determined signal processing characteristics to the signal processing unit 2 to control the signal processing.
  • An operation unit 4 is connected to the control unit 3.
  • the user operates the operation unit 4 to set the signal processing characteristics of the signal processing unit 2 in accordance with the driving situation (output of the sensor 30).
  • the signal processing unit 2 may be provided with a filter that simulates the sound insulation characteristics on the vehicle interior wall surface. That is, since the microphone 10 directly picks up sound in the engine room, the sound signal contains high-level mechanical noise, and the engine sound that the driver and other passengers listen to in the passenger compartment. It is far from. For this reason, the sound insulation characteristics of the cabin wall surface are simulated by a filter so that the sound quality (frequency distribution) is similar to the engine sound heard in the cabin, and the high frequency range is cut while leaving the low range. Process into sound. This sound insulation characteristic does not necessarily need to simulate the sound insulation characteristic of a car on which this device is mounted. It may not be necessary to simulate the sound insulation characteristic of a sports car or a luxury car.
  • microphones can be arranged at a plurality of locations on the engine intake and exhaust ports, engine head, and engine room wall surface, and a more realistic engine sound can be generated.
  • a plurality of sensors for detecting the driving situation may be arranged.
  • it is possible to detect a plurality of driving conditions such as engine speed, accelerator opening angle, and vehicle speed.
  • FIG. 2 is a block diagram of the engine sound processing apparatus.
  • Figure 3 shows the engine sound processing device. It is a figure explaining the attachment position of a microphone and a speaker.
  • the engine sound processing apparatus 101 includes two microphones 110 and 120, which are respectively attached to the engine inlet and the wall of the engine room on the vehicle interior side. Yes.
  • the microphone 110 attached to the engine intake mainly collects engine intake sound.
  • the microphone 120 attached to the wall of the engine room on the vehicle compartment side mainly collects operation sounds such as engine explosion and rotation (hereinafter referred to as engine explosion sound).
  • the position and number of microphones are not limited to this embodiment.
  • the exhaust sound may be collected near the muffler, or the mechanical sound such as a chain may be collected near the engine head.
  • the microphones attached to the respective positions can collect different sounds depending on the installation positions
  • a plurality of microphones are attached at the respective installation positions so as to mix the collected sounds. Also good.
  • a microphone attached to the wall surface of the engine compartment on the vehicle compartment side can pick up the operation sound of different parts of the engine depending on the attachment position. Therefore, a plurality of microphones may be attached to the wall surface of the engine room on the vehicle compartment side, and the sound collected by each microphone may be mixed. Based on the sound quality you need, adjust the mixing ratio and pick up the engine operating sound.
  • the microphone is not limited to an acoustic microphone.
  • it may be a vibration sensor that picks up vibration in the audible band. If this vibration sensor is attached to the engine, vibrations in the audible band of the engine can be picked up directly (before becoming sound). In other words, the vibration sensor picks up a signal as a sound source of the engine rather than detecting a vibration pulse of the engine.
  • an acoustic microphone is attached near the muffler to collect exhaust sound having a frequency peak corresponding to the engine rotation order.
  • attach a vibration sensor near the muffler attachment when collecting exhaust sound with a vibration sensor, attach a vibration sensor near the muffler attachment. In this way, an acoustic microphone and a vibration sensor can be attached according to the installation position.
  • Each speakers 141 on the front left and right and rear left and right are installed in the vehicle interior.
  • This speaker 141 is for car audio equipment and is unique to engine sound processing equipment.
  • the engine sound processing device collects and processes the engine sound, inputs the audio signal to the car audio device 105, and outputs the engine sound to the vehicle interior via the car audio device 105.
  • a microphone 110 and a microphone 120 are connected to an amplifier 111 and an amplifier 121, respectively.
  • the amplifier 111 and the amplifier 121 amplify audio signals (intake sound and engine explosion sound) input from the microphone 110 and the microphone 120, respectively.
  • the amplified audio signal is converted into a digital signal by the / D converter 112 and the A / D converter 122.
  • the audio signal converted into the digital signal is cut by the filter 113 and the filter 123 in an unnecessary frequency band that hardly includes intake sound or engine explosion sound. If the signal level is too high, it is attenuated in this filter. Therefore, the filter 113 and the filter 123 may be configured by combining a low-pass filter, a high-pass filter, an attenuator, and the like.
  • the signals whose frequency band and signal level are limited by the filters 113 and 123 are input to the signal processing unit 102.
  • the signal processing unit 102 performs signal processing on separate systems for both the intake sound collected by the microphone 110 and the engine explosion sound generated on the wall of the engine room collected by the microphone 120. This signal processing may be performed in one system after mixing both signals.
  • the filter 114 and the filter 124 are filters that simulate sound insulation characteristics on the wall surface of the passenger compartment.
  • the sound signal includes a high level of mechanical noise in the high range, and a driver or other passenger is It is far from the engine sound heard indoors.
  • the sound insulation characteristics of the passenger compartment wall are simulated by the filters 114 and 124 so that the sound signal has a sound quality (frequency distribution) similar to the engine sound heard in the passenger compartment, while leaving the low frequency range. Processes the high frequency cut sound.
  • This sound insulation characteristic may be one that simulates the sound insulation characteristic of a sports car or a high-end car, which does not necessarily need to simulate the sound insulation characteristic of a vehicle on which this device is mounted.
  • the filter characteristics (sound insulation characteristics) of the filters 114 and 124 may be fixed! / ⁇ Force It may be possible to change the frequency characteristics of the engine sound by changing the setting.
  • the signals filtered by the filter 114 and the filter 124 are input to the FFT unit 115 and the FFT unit 125.
  • the FFT unit 115 and the FFT unit 125 extract a frequency component by performing a fast Fourier transform on each input signal. A frequency spectrum is obtained from the extracted frequency components.
  • the conversion unit 116 and the conversion unit 126 to be connected are active filters that transform the shape of the frequency spectrum output from the FFT unit 115 and the FFT unit 125 in accordance with the operation state at that time.
  • the deformation characteristics of the shape of the frequency spectrum will be described later.
  • the transformed frequency spectrum output from the conversion unit 116 and the conversion unit 126 is converted into a time-axis waveform by the IFFT unit 117 and IFFT unit 127. After that, it is mixed by the mixer 118 to become one audio signal, converted to an analog audio signal by the DZA converter 119, and output to the car audio device 105.
  • This single audio signal includes stereo output (LZR).
  • mixer 118 is connected to the output side of converter 116 and converter 126, and a single IFFT unit (I FFT unit 117 or IFFT unit 127) is connected to the output side of mixer 118. Furthermore, connect so that the output signal of the IFFT section is input to the D / A converter 119.
  • a rotation speed sensor 130 for detecting the rotation speed of the engine As a sensor for detecting the driving situation, a rotation speed sensor 130 for detecting the rotation speed of the engine, an accelerator opening angle sensor 131 for detecting the opening angle of the accelerator, and a vehicle speed A vehicle speed sensor 132 is provided. The detection value of each sensor is input to the control unit 103 via the interface 133.
  • the interface 133 is assumed to incorporate an A / D converter if necessary.
  • the control unit 103 controls the engine speed based on the integrated value or pulse interval of the pulses. Try to calculate the rotation speed and vehicle speed.
  • the control unit 103 determines a parameter for determining the deformation characteristic of the frequency vector of the conversion unit 116 and the conversion unit 126 and a mixing ratio of the mixer 118 according to the sensor output.
  • the control unit 103 outputs the determined parameters and mixing ratio to the signal processing unit 102 to control the conversion unit 116, the conversion unit 126, and the mixer 118.
  • An operation unit 104 is connected to the control unit 103.
  • the operation unit 104 may be input with a signal from the operation unit of an audio device that may be shared with the car audio device 105.
  • the user operates the operation unit 104 to set the control characteristics of the conversion unit 116, the conversion unit 126, and the mixer 118 according to the driving situation (outputs of the sensor 130, sensor 131, and sensor 132). To do. Further, by operating the operation unit 4, the filter characteristics (sound insulation characteristics) of the filters 114 and 124 are set.
  • FIG. 4 shows a control system of the engine sound power device.
  • the control characteristics of the filter 114, the filter 124, the conversion unit 116, the conversion unit 126, and the mixer 118 are set by the setting of the operation unit 104.
  • the conversion unit 116, the conversion unit 126, and the mixer 118 are connected to the sensor 130.
  • the characteristics of the sensor 131 and the sensor 132 are controlled in real time according to the outputs of the sensors 131 and 132.
  • the spectral deformation characteristics and the mixing ratio are set by the operation unit 104.
  • One or more parameters may be set manually for each conversion unit.
  • one or more parameter sets may be set in advance by the control unit. It may be stored in 103, and one of the parameter sets may be selected and set.
  • a parameter set that produces a powerful engine sound effect like a V-type engine or a parameter that produces a clear engine sound effect like an inline engine.
  • it is possible to turn off the function of the engine sound power device so as not to generate the engine sound effect.
  • a connector for a flash memory or a ROM pack may be provided, and the parameter set may be supplied also with a flash memory or a ROM power. Also, the hard disk power of the car navigation device may be supplied. In addition, parameter sets may be downloaded via the Internet. Also, a LAN connector, etc. should be provided so that the power of the computer (notebook PC) connected via this connector can be used to supply parameter sets and set parameters manually.
  • the horizontal axis of the graph shown in Fig. 5 is the frequency
  • the vertical axis is the gain of the converter.
  • the graph shown in the figure shows an example of the frequency spectrum of the collected engine sound.
  • the picked-up engine sound shows a peak (white circle 152 in the figure) at predetermined intervals on the frequency axis. These peak frequencies are almost on the overtone frequency of the frequency according to the engine speed, and there is no other peak having a large level.
  • the spectrum 151 having peaks at regular intervals on the frequency axis and no other peaks having a large level is clear and distortion-free, but it is comfortable for drive enthusiasts.
  • the sound quality is not necessarily good. In other words, there is a case where the engine sound with a sense of noise and a strong feeling like V-type engine is preferred, and for such drive enthusiasts, a distorted sound quality is preferred.
  • the conversion unit 116 and the conversion unit 126 detect peaks of the input frequency spectrum force and change the spectrum shape between the peaks. Specifically, the level of the center frequency of each peak harmonic frequency (broken line portion 153 in FIG. 5) is increased to change the sound quality with a sense of distortion. Note that the frequency that increases the level is not limited to the center frequency of each peak harmonic frequency (frequency 1.5 fo, 2.5 fo, ... (For example, frequency 1.4fo, 2. 6 ⁇ ⁇ ) ⁇
  • FIG. 6 shows the gain around one peak frequency in the frequency spectrum.
  • the level of the frequency spectrum indicated by the solid line is increased as the peak frequency force increases, as shown by the broken line, without changing the level for the peak frequency.
  • the spectral components other than the peak frequency component become large, resulting in a distorted sound quality, and the sense of power of the engine sound is emphasized.
  • the conversion unit 116 and the conversion unit 126 can perform the reverse process of the above process. In other words, it is possible to emphasize the peak of the frequency spectrum and convert it to a clearer sound without distortion. In this case, increase the peak frequency level. By converting the sound into a clear and undistorted sound, it is possible to meet the needs of drivers who prefer a quiet engine sound like motor sound.
  • V type that emphasizes strength by increasing the level between peaks
  • Set parameters such as engine mode and in-line engine mode to increase the peak level and emphasize clearness so that drivers can change it.
  • the processing may be performed with the frequency band limited. For example, by emphasizing the feeling of strength only in the low range, it is possible to achieve a powerful sound quality like a small cylinder engine with a large displacement.
  • the horizontal axis represents the frequency
  • the vertical axis represents the gain of the conversion unit
  • the frequency gain of the filter displayed in the figure has the following characteristics.
  • FIG. 7A shows the spectral deformation control characteristics of engine explosion sound based on engine speed.
  • FIG. 7B shows the spectral shape control characteristic of the intake sound based on the accelerator opening angle.
  • FIG. 7C shows the overall volume control characteristics based on the vehicle speed.
  • the above rules are: “When the engine speed is low, the peak is emphasized for clear sound to emphasize quietness, but when the engine speed is high, the engine feels strong. Raise the level other than the peak in the entire frequency band to emphasize the sound.Because the engine is under load when the accelerator opening angle is large, emphasize the low-frequency peak of the intake sound and emphasize the clearness of the bass When the vehicle speed is high, engine noise such as wind noise and tire noise Since the noise other than is increased, the overall volume is increased.
  • the V-type engine mode is a rule for emphasizing the sense of power of the engine according to the actual engine sound and the driving conditions at that time.
  • the low frequency range may be determined based on the frequency distribution of the engine sound, but in general, the low frequency range may be 300 to 500 Hz.
  • control rules for the spectral deformation characteristics are not limited to those described above!
  • FIG. 8A to 8C are diagrams showing the relationship between the level of one peak and the rotational speed in the frequency spectrum of engine sound.
  • the horizontal axis of the graph shown in Fig. 8A represents time, and the vertical axis represents the gain of the converter.
  • 8B and 8C the horizontal axis represents the engine speed, and the vertical axis represents the gain of the converter.
  • FIG. 8A is a graph showing the change over time of the gain of the conversion unit with the engine speed being constant, and the engine sound level is not constant but increases and decreases irregularly as shown in the figure.
  • the engine sound level changes irregularly, but this situation is not a comfortable sound for drive enthusiasts. .
  • engine sound in which the engine volume corresponds linearly to the engine speed is preferred, and thus engine sound with a linear feeling is judged to be a good engine.
  • the conversion unit 116 and the conversion unit 126 detect a peak from the input frequency spectrum, and measure the temporal change of the peak level. If the peak level corresponds linearly to the engine speed, the temporal change of the peak level can be predicted by the engine speed. Therefore, when the measured peak level becomes smaller than the predicted peak level, the conversion unit 116 and the conversion unit 126 increase the level so that the predicted peak level is obtained according to the frequency component.
  • FIG. 8B is a graph showing the relationship between the engine speed and the gain of the conversion unit.
  • the engine sound usually changes irregularly without linearly corresponding to the engine speed.
  • an engine with low performance has a sudden output from a certain engine speed. Decreases and the volume decreases.
  • the conversion unit 116 and the conversion unit 126 are configured so that the engine sound linearly corresponds to the engine speed as shown by the broken line in FIG. 8B. To raise.
  • FIG. 8C is a graph showing the relationship between the engine speed and the gain of the conversion unit.
  • the engine speed force as shown by the broken line also peaks so that the engine sound suddenly increases. Increase the level.
  • a function with each sensor output as a variable is created, and the sensor output is input to this function to obtain the characteristics.
  • it may be obtained by Fuzzy reasoning.
  • a table for determining the spectral deformation characteristic for each predetermined step of each sensor output may be obtained, and the corresponding spectral deformation characteristic may be read by searching this table with the sensor output.
  • the parameter set set by the user includes information for determining the spectral deformation characteristics based on the sensor output!
  • FIG. 9 is a block diagram of the engine sound processing apparatus.
  • FIG. 10 is a view for explaining the mounting positions of the microphone and speaker of the engine sound processing apparatus.
  • the engine sound processing apparatus 1 includes four microphones 210, a microphone 220, a microphone 230, and a microphone 240.
  • the exhaust port (muffler) near the exhaust port (muffler).
  • Microphone 210 attached to the intake port of the engine mainly collects the intake noise of the engine.
  • the microphone 220 attached to the wall of the engine room is the main As an engine, sound of operation such as explosion and rotation of the engine (hereinafter referred to as engine explosion sound) is collected.
  • the microphone 230 attached to the engine head mainly collects mechanical sounds such as chains.
  • the microphone 240 attached near the muffler collects exhaust sound.
  • the position and number of microphones are not limited to this embodiment.
  • the microphones attached to the respective positions can collect different sounds depending on the installation positions. Therefore, a plurality of microphones are attached at the respective installation positions to mix the collected sounds. Also good. For example, a microphone attached to the wall surface of the engine compartment on the vehicle compartment side can pick up the operation sound of different parts of the engine depending on the attachment position. Therefore, a plurality of microphones may be attached to the wall surface of the engine room on the vehicle compartment side, and the sound collected by each microphone may be mixed. Based on the sound quality you need, adjust the mixing ratio and pick up the engine operating sound.
  • the microphone is not limited to an acoustic microphone.
  • it may be a vibration sensor that picks up vibration in the audible band. If this vibration sensor is attached to the engine, vibrations in the audible band of the engine can be picked up directly (before becoming sound). In other words, the vibration sensor picks up a signal as a sound source of the engine rather than detecting a vibration pulse of the engine.
  • an acoustic microphone is attached near the muffler to collect exhaust sound having a frequency peak corresponding to the engine rotation order.
  • attach a vibration sensor near the muffler attachment when collecting exhaust sound with a vibration sensor, attach a vibration sensor near the muffler attachment. In this way, an acoustic microphone and a vibration sensor can be attached according to the installation position.
  • This speaker 271 is for car audio equipment and is not unique to engine sound processing equipment. That is, this engine sound processing device collects and processes the engine sound, inputs the audio signal to the car audio device 205, and outputs the engine sound to the vehicle interior via the car audio device 205.
  • this engine sound processing device collects and processes the engine sound, inputs the audio signal to the car audio device 205, and outputs the engine sound to the vehicle interior via the car audio device 205.
  • a microphone 210, a microphone 220, a microphone 230, and a microphone 240 are connected to an amplifier 211, an amplifier 221, an amplifier 231, and an amplifier 241, respectively.
  • Amplifier 21 1, Amplifier 221, Amplifier 231, and Amplifier 241 amplify audio signals (intake sound, engine explosion sound, mechanical sound, exhaust sound) input from microphone 210, microphone 220, microphone 230, and microphone 240, respectively .
  • the amplified audio signal is converted into a digital signal by the AZD converter 212, the AZD converter 222, the A / D converter 232, and the A / D converter 242.
  • the audio signal converted into the digital signal is input to the mixer 250.
  • the mixer 250 mixes the four signals and outputs them to the pitch shifter 213 and the filter 223 of the signal processing unit 202 in two systems.
  • the signal processing unit 202 executes signal processing for each of the two mixed signals in different systems.
  • the engine explosion sound and exhaust sound collected by the microphone 220 and microphone 240 are mainly input to the pitch shifter 213, and the intake sound and mechanical sound collected by the microphone 210 and microphone 230 are input to the filter 223.
  • Mix in The mixing ratio may be fixed by force or controlled by the control unit 203.
  • the pitch shifter 213 pitch-shifts the input signal.
  • the frequency to be pitch-shifted is controlled by the control unit 203, and the characteristics change in real time according to the driving situation.
  • the pitch shifter 213 in the present invention pitch-shifts the picked-up engine sound (mainly engine explosion sound and exhaust sound here) to change it to other types of engine sound characteristics.
  • the engine is a cylinder engine
  • the engine sound having the frequency characteristics of an 8-cylinder engine is processed by pitch shifting the frequency characteristics of the collected engine sound. It is processed so that a specific order component with respect to the engine speed of the 8-cylinder engine is emphasized.
  • the filter 223 is an active filter that filters an input signal.
  • the filter characteristics are controlled by the control unit 203, and change in real time according to the driving situation.
  • the filter 223 filters the picked-up engine sound (mainly intake sound and mechanical sound in this case) and changes the engine sound characteristic to another type. For example, if the engine power is a cylinder engine, the engine sound is similar to that of an 8-cylinder engine.
  • the filter characteristics may be changed so that a specific order component with respect to the engine speed is emphasized and other frequency components are suppressed.
  • the frequency conversion ratio of the pitch shifter 213 and the filter characteristics of the filter 223 are determined by the control unit 203 reading out the ware table defined in advance. Processing The table is stored in the flash memory or the like stored in the built-in memory or the like of the control unit 203. The processing table! / I will explain in detail later.
  • the signals output from the pitch shifter 213 and the filter 223 are cut by the filter 214 and the filter 224, respectively, in unnecessary frequency bands that hardly include intake noise and engine explosion sound. If the signal level is too high, it is attenuated in this filter. Therefore, the filter 214 and the filter 224 may be configured by combining a low-pass filter, a high-pass filter, an attenuator, and the like.
  • the signal whose frequency band and signal level are limited by the filter 214 and the filter 224 is manually input to the finore 215 and the finore 225.
  • the filter 215 and the filter 225 are filters that simulate sound insulation characteristics on the wall surface of the passenger compartment. That is, microphone 210, microphone 220, and microphone 230 pick up sound directly in the engine room, and microphone 240 picks up sound outside the car near the muffler, so that the sound signal has high-frequency noise. It is included at a high level and is far from the engine sound heard by passengers such as drivers in the passenger compartment. For this reason, the sound insulation characteristics of the cabin wall surface are simulated by filters 215 and 225 so that the sound quality (frequency distribution) is similar to the engine sound heard in the passenger compartment. Is processed into a cut sound.
  • This sound insulation characteristic may be one that simulates the sound insulation characteristic of a sports car or a high-end vehicle, which does not necessarily need to simulate the sound insulation characteristic of a vehicle on which this device is mounted.
  • the filter characteristics (sound insulation characteristics) of the filters 215 and 225 may be fixed! / ⁇ Force It may be possible to change the frequency characteristics of the engine sound by changing the setting.
  • Filters 216 and 226 in the next stage are active filters whose characteristics change in real time according to the driving conditions, and engine sounds (intake sound, engine explosion sound, mechanical sound, and exhaust sound) are changed to the driving conditions. Process accordingly. This change in filter characteristics will be described later.
  • the signals output from the two-stage filters 215—filter 216 and filter 225—filter 226 are mixed by the mixer 217 into a single audio signal and converted to an analog audio signal by the DZA converter 218. Is output to the car audio device 5.
  • This single audio signal includes stereo output (LZR).
  • a rotation speed sensor 260 for detecting the rotation speed of the engine, an accelerator opening angle sensor 261 for detecting the opening angle of the accelerator, and a vehicle speed A vehicle speed sensor 262 is provided as a sensor for detecting the driving situation.
  • a rotation speed sensor 260 for detecting the rotation speed of the engine
  • an accelerator opening angle sensor 261 for detecting the opening angle of the accelerator
  • a vehicle speed A vehicle speed sensor 262 is provided as a sensor for detecting the driving situation.
  • the detection value of each sensor is input to the control unit 203 via the interface 263.
  • Interface 263 shall include an A / D converter as required.
  • control unit 203 operates the engine based on the integrated value or pulse interval of the pulse. Try to calculate the rotation speed and vehicle speed.
  • the control unit 203 determines parameters for determining the mixing ratio of the mixer 217, the pitch shift characteristic of the pitch shifter 213, and the filter characteristics of the filter 223, the filter 216, and the filter 226 according to the sensor output.
  • the control unit 203 outputs the determined parameters and mixing ratio to the signal processing unit 202, and controls the pitch shifter 213, the filter 223, the filter 216, the filter 226, and the mixer 217.
  • An operation unit 204 is connected to the control unit 203.
  • the operation unit 204 may be input with a signal from the operation unit of an audio device that may be shared with the car audio device 205.
  • the user operates the operation unit 204 to control the pitch shifter 213, the filter 223, the filter 216, and the filter 226 according to the driving situation (outputs of the sensor 260, the sensor 261, and the sensor 262). Set. Further, by operating this operation unit 4, the filter characteristics (sound insulation characteristics) of the filter 215 and the filter 225 are set.
  • FIG. 11 shows a control system of the engine sound power device.
  • the control characteristics of pitch shifter 213, filter 223, filter 215, filter 225, filter 216, filter 226, and mixer 17 are set according to the setting of operation unit 204, of which pitch shifter 213, filter 223, filter 216, filter 216
  • the characteristics of 226 and mixer 217 are controlled in real time in accordance with the outputs of sensors 260, 261, and 262.
  • the pitch shift characteristic, the filter characteristic, and the mixing ratio may be set by the operation unit 204 by setting one or more parameters for each of the pitch shifter 213, each filter, and the mixer 217 by a manual operation.
  • One or more parameter sets are stored in the control unit 203 in advance, and one of the parameter sets is selected and set. May be.
  • When preparing multiple parameter sets for example, prepare a parameter set that provides engine sound effects, such as an 8-cylinder engine, and a parameter set that provides engine sound effects, such as a 12-cylinder engine. It should be possible to switch between the cylinder engine mode and the 12-cylinder engine mode. Also, in the 8-cylinder engine mode, parameter sets such as sports car mode and cruising mode may be switched. Of course, it is possible to turn off the function of the engine sound power device so as not to generate the engine sound effect.
  • a flash memory or ROM pack connector may be provided, and the parameter set may be supplied with the flash memory or ROM power.
  • the hard disk power of the car navigation device may be supplied.
  • parameter sets may be downloaded via the Internet.
  • a LAN connector, etc. should be provided so that the power of the computer (notebook PC) connected via this connector can be used to supply parameter sets and set parameters manually.
  • the configuration of the signal processing unit 2 is not limited to the above embodiment.
  • the configuration of only one system of the pitch shifter 213 to the FIR filter 216 may be used. If the engine sound is pitch-shifted with one system of the pitch shifter 213 to the FIR filter 216, the engine sound heard by the driver or the like can be processed into almost other types of engine sounds.
  • the filter 214 (filter 224) and the FIR filter 216 (FIR filter 226) may be composed of a pitch shifter 213 and an FIR filter 215 that are not essential components of the present invention.
  • the connection order of the filters may be changed.
  • FIG. 12 is a diagram illustrating in detail the pitch shifter 213 of the engine sound power device.
  • the engine sound input to the pitch shifter 213 is input to a plurality of band pass filters (hereinafter referred to as BPF) 280, and a frequency band having a peak of a predetermined level or higher is cut out.
  • the pass frequency band of each BPF 280 is controlled by the control unit 203.
  • the control unit 203 passes the BPF 280 in real time so as to pass signals in the frequency bands corresponding to the primary rotation, secondary rotation, etc. according to the engine speed detected by the speed sensor 260. Set the frequency band.
  • the engine sounds divided into frequency bands corresponding to the rotation primary, secondary rotation,... Of the engine rotation order by the BPF 280 are input to the shift processing unit 290 connected thereto.
  • the shift processing unit 290 pitch-shifts each input engine sound to a predetermined frequency.
  • the pitch-shifted engine sounds are level-changed by the level adjustment unit 200, synthesized, and output as a single signal.
  • shift processing section 290 and level adjusting section 200 are controlled by control section 3.
  • the control unit 203 refers to the engine rotation speed detected by the rotation speed sensor 260 and the car table, and determines the pitch shift ratio (frequency conversion ratio) of the shift processing unit 290 and the level change ratio of the level adjustment unit 200.
  • the processing table is a table that defines what kind of engine speed component is generated with respect to the engine speed.
  • the pitch shifter 213 includes a plurality of systems of BPF 280, a shift processing unit 290, and a level adjustment unit 200, and a single peak for force cutting is shown as an example of cutting out a plurality of peaks. In some cases, or when a plurality of peaks are cut out together in one frequency band, one system of BPF 280, shift processing unit 290, and level adjustment unit 200 may be used.
  • the horizontal axis of the graphs shown in FIGS. 13A and 13C is the engine rotational speed read from the rotational speed sensor 260
  • the vertical axis is the frequency
  • the horizontal axis of the graphs shown in FIGS. 13B and 13D is the frequency
  • the vertical axis represents the gain.
  • the graph shown in the figure shows an example of the frequency characteristics of the collected engine sound. In this example, the engine sound of a 4-cylinder engine is collected.
  • FIG. 13A shows the relationship between engine speed and frequency for the peak of collected engine sound. It is the graph which showed.
  • the engine sound of a 4-cylinder engine has a peak above a predetermined level in one of the components of an integer multiple of the engine rotation order (1st rotation, 2nd order, 3rd order ).
  • FIG. 13B is a graph showing the frequency characteristics of the engine sound collected when the engine speed is 6 000 rpm.
  • the processing table in each engine (for example, a 4-cylinder engine, an 8-cylinder engine, etc.), what kind of rotation order (frequency) peak occurs with respect to the engine speed. It prescribes.
  • the machining table also has table power for multiple engine rotational order components such as a 4-cylinder engine table and an 8-cylinder engine table.
  • Each order component of these engine tables is associated in advance, and the control unit 3 reads the engine speed read by the speed sensor 260 and the order (frequency) component corresponding to the engine speed from each engine table.
  • the frequency conversion ratio of the shift processing unit 290 is set. Also set the level change amount of the level adjustment unit 200.
  • Each engine table may be associated in ascending order of rotation order, or a separate association-specific table may be provided and read out by the control unit 203.
  • FIG. 13C is a graph showing a peak when the collected engine sound is pitch-shifted.
  • FIG. 13D is a graph showing frequency characteristics when the engine sound collected when the engine speed is 6000 rpm is pitch-shifted.
  • pitch shifter 213 pitch-shifts the four-cylinder engine rotation secondary component and the rotation fourth-order component into the eight-cylinder engine rotation fourth-order component and eighth-order component of the collected engine sound.
  • the engine sound shows a frequency characteristic as shown in FIG. 13D, and the 8-cylinder engine rotation 4th order component and 8th order component (around 400 Hz and 800 Hz) have high level peaks.
  • the second-order component and the fourth-order component are forces that have shown the pitch shift. It is not limited to the above example, and various carpenter tables may be defined according to the engine type of the vehicle on which the engine sound processing device is mounted and the engine type of the target engine sound.
  • the engine sound collected without pitch shifting is output as it is, and when the engine speed exceeds a predetermined speed (for example, 5000 rpm), the pitch shift is performed. You can make the engine sound effect of a multi-cylinder engine.
  • the pitch shift processing is not limited to this example.
  • the frequency spectrum is obtained by performing FFT (Fast Fourier Transform) on the engine sound, and the peak shape is determined according to the frequency having a peak above a predetermined level. Even if you shift the frequency as it is,
  • these characteristic controls can change the parameter set according to the operation of the user. It is only necessary to set a parameter set that provides engine sound effects such as an 8-cylinder engine and a parameter set that provides engine sound effects such as a 12-cylinder engine so that the driver can change them.
  • the table defines an 8-cylinder engine table, a 12-cylinder engine table, and the like.
  • the filter 223 is supplied with the intake sound and mechanical sound signals collected by the microphone 210 and the microphone 230 from the mixer 250 force. Also in the filter 223, other types of engine sounds are processed based on the processing table. That is, like the pitch shifter 213 described above, when processing into engine sound of an 8-cylinder engine, the filter characteristics are changed in real time so that the order component (frequency) of the 8-cylinder engine is emphasized, and other order components Suppress.
  • the frequency to be emphasized is set by the control unit 203 based on the engine speed that is a detection value of the engine speed sensor 260 and the cache table.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the frequency gain of the filter
  • the frequency gain of the filter displayed in the figure has the following characteristics.
  • FIG. 14A shows filter control characteristics of intake sound and engine explosion sound based on engine speed.
  • FIG. 14B shows the filter control characteristic of the intake sound based on the accelerator opening angle.
  • FIG. 14C shows the overall volume control characteristics based on the vehicle speed.
  • the horizontal axis represents the accelerator opening angle value and the engine speed
  • the vertical axis represents the mixing weight.
  • Fig. 14D shows the mixing weight control characteristics of intake sound, mechanical sound, engine explosion sound, and exhaust sound based on accelerator opening angle and engine speed.
  • the mixing ratio is determined by the ratio of the mixing weight of the intake sound and the mechanical sound to the mixing weight of the engine explosion sound and the exhaust sound.
  • the above rule is: “When the engine speed is low, emphasize low sounds to give a large engine atmosphere, and when the engine speed is high, emphasize high engine speed. In addition to emphasizing the treble, increase the mixing weight of engine explosion sound and exhaust sound.When the accelerator opening angle is large, the engine is under load, so the intake sound is increased and the intake sound and mechanical sound are mixed. This is based on the idea that when the vehicle speed is high, noise other than engine noise, such as wind noise and tire noise, increases. It is.
  • the sports car mode is a rule for emphasizing the driving situation at that time in addition to the actual engine sound.
  • the center frequencies of the low and high frequencies may be determined based on the frequency distribution of the engine sound. In general, the center frequency of the low frequencies is around 500 Hz, and the center frequency of the high frequencies is It should be around lOOOHz.
  • a function with each sensor output as a variable is created, and the sensor output is input to this function to obtain the characteristic.
  • it may be obtained by fuzzy inference.
  • a table for determining the filter characteristics for each predetermined step of each sensor output may be obtained, and the corresponding filter characteristics may be read by searching this table with the sensor output.
  • the parameter set set by the user includes information for obtaining the filter deformation characteristic based on the sensor output.
  • the microphone force installed outside the passenger compartment is picked up, the actual engine sound is collected, the specific frequency component is emphasized, and the different formats are used.
  • the engine sound can be output into the passenger compartment, so it is possible to generate realistic engine sound effects with clear and light sound like a multi-cylinder engine sound with easy processing, which is comfortable for drive enthusiasts! /, Can create a cabin space.
  • FIG. 15 is a block diagram of the engine sound processing apparatus.
  • FIG. 16 is a view for explaining the mounting positions of the microphone and speaker of the engine sound processing apparatus.
  • the engine sound power device 1 includes two microphones 310 and 320, which are respectively attached to the engine inlet and the wall of the engine room on the passenger compartment side. .
  • Microphone 310 attached to the engine intake mainly collects engine intake sound.
  • the microphone 320 attached to the wall of the engine room on the vehicle compartment side mainly collects operation sounds such as engine explosion and rotation (hereinafter referred to as engine explosion sound).
  • engine explosion sound the position and number of microphones are not limited to this embodiment.
  • the exhaust sound may be collected near the muffler, or the mechanical sound such as a chain may be collected near the engine head.
  • a plurality of microphones are further attached at the respective installation positions so as to mix the collected sounds. Also good. For example, a microphone attached to the wall surface of the engine compartment on the vehicle compartment side can pick up the operation sound of different parts of the engine depending on the attachment position. Therefore, a plurality of microphones may be attached to the wall surface of the engine room on the vehicle compartment side, and the sound collected by each microphone may be mixed. Based on the sound quality you need, adjust the mixing ratio and pick up the engine operating sound.
  • the microphone is not limited to an acoustic microphone.
  • it may be a vibration sensor that picks up vibration in the audible band. If this vibration sensor is attached to the engine, vibrations in the audible band of the engine can be picked up directly (before becoming sound). In other words, the vibration sensor picks up a signal as a sound source of the engine rather than detecting a vibration pulse of the engine.
  • a vibration sensor to the intake port of the engine, it is possible to pick up only the intake sound without collecting wind noise that is unrelated to engine rotation.
  • an acoustic microphone is attached near the muffler to collect exhaust sound having a frequency peak corresponding to the engine rotation order.
  • Fig. 15 Connecting to the microphone 310 and the microphone 320 ⁇ , the amplifier 311 and the amplifier 321 are connected respectively.
  • Amplifier 311 and amplifier 321 amplify audio signals (intake sound and engine explosion sound) input from microphone 310 and microphone 320, respectively.
  • the amplified audio signal is converted into a digital signal by the / D converter 312 and the AZD converter 322.
  • the audio signal converted into the digital signal is cut by the filter 313 and the filter 323 in an unnecessary frequency band that hardly includes intake sound or engine explosion sound. If the signal level is too high, it is attenuated in this filter. Therefore, the filter 313 and the filter 323 may be configured by combining a low-pass filter, a high-pass filter, an attenuator, and the like.
  • a signal whose frequency band and signal level are limited by filters 313 and 323 is input to signal processing section 302.
  • the signal processing unit 302 performs signal processing in separate systems for both the intake sound collected by the microphone 310 and the engine explosion sound collected by the microphone 320. This signal processing may be performed in one system after mixing both signals.
  • the filter 314 and the filter 324 are filters that simulate sound insulation characteristics on the wall surface of the passenger compartment. That is, since the microphone 310 and the microphone 320 collect sound directly in the engine room, the sound signal includes a high level of mechanical noise in the high range, and a driver or other passenger is It is far from the engine sound heard indoors. For this reason, the sound insulation characteristics of the passenger compartment wall are simulated by filters 314 and 324 so that the sound quality (frequency distribution) is similar to the engine sound heard in the passenger compartment, while leaving the low frequency range. Processes the high frequency cut sound.
  • This sound insulation characteristic may be one that simulates the sound insulation characteristic of a sports car or a high-end car, which does not necessarily need to simulate the sound insulation characteristic of a vehicle on which this device is mounted.
  • the filter characteristics (sound insulation characteristics) of the filters 314 and 324 may be fixed. It is also possible to change the frequency characteristics of the engine sound by changing the force setting.
  • Filters 315 and 325 in the next stage are active filters whose characteristics change depending on the driving conditions, and engine sounds (intake sounds and engine explosion sounds collected by microphone 310 and microphone 320) are changed to driving conditions. Process accordingly. Therefore, the filter 315 and the filter 325 are active filters whose characteristics change in real time according to the driving situation. This change in filter characteristics will be described later.
  • Two-stage filter 314 filter 315 and filter 324—inspiratory sound and engine explosion sound output from filter 325 are the same as the signal output from waveform generator 330 in multiplier 316 and multiplier 326, respectively. Combined (multiplied).
  • the signal output from the waveform generation unit 330 is a signal that has been amplitude-modulated at a predetermined period, and the waveform parameter of this signal is determined by the control unit 303.
  • the waveform generator 330 can output different signals to each of the multiplier 316 and the multiplier 326.
  • the output signal of the waveform generation unit 330 is synthesized with the intake sound and the engine explosion sound, and adds a sense of modulation to each sound. Details will be described later.
  • This single audio signal includes stereo output (LZR).
  • a multiplier may be connected to the subsequent stage of the mixer 317 so that the output signal of the waveform generation unit 330 is synthesized after mixing into one system of signals. Even if the output signal of the waveform generator 330 is combined with the engine sound after the intake sound and engine explosion sound are mixed, a sense of modulation can be added to the entire engine sound.
  • a rotation speed sensor 340 for detecting the rotation speed of the engine As a sensor for detecting the driving situation, a rotation speed sensor 340 for detecting the rotation speed of the engine, an accelerator opening angle sensor 341 for detecting the opening angle of the accelerator, and a speed of the automobile A vehicle speed sensor 342 is provided.
  • the detection value of each sensor is input to the control unit 303 via the interface 343.
  • Interface 343 shall include an A / D converter as required.
  • the speed sensor 340, vehicle speed sensor 34 When 2 is an encoder that outputs a pulse in accordance with the rotation of the engine or the rotation of the axle, the control unit 303 calculates the engine speed and the vehicle speed based on the integrated value or pulse interval of this pulse. Also good. It is also possible to detect the idling pulse and calculate the number of rotations. By calculating the engine speed from the idling pulse, the engine speed can be detected without a measurement time lag.
  • the control unit 303 determines the filter characteristics of the filter 315 and the filter 325, the waveform parameter of the waveform generation unit 330, and the mixing ratio of the mixer 317 according to the sensor output.
  • the control unit 303 outputs the determined filter characteristics, waveform parameters, and mixing ratio to the signal processing unit 2, and controls the filter 315, the filter 325, the waveform generation unit 330, and the mixer 317.
  • An operation unit 304 is connected to the control unit 303.
  • the operation unit 304 may input signals to the operation unit of an audio device that may be shared with the car audio device 305.
  • the user operates this operation unit 304 to filter 315, filter 325, waveform generation unit according to the driving situation (outputs of the rotation speed sensor 340, the accelerator opening angle sensor 341, and the vehicle speed sensor 342). Set the control characteristics of 330 and mixer 317.
  • FIG. 17 shows the control system of this engine sound power device.
  • the control characteristics of filter 314, filter 324, filter 315, filter 325, waveform generator 330 and mixer 317 are set according to the setting of operation unit 304, of which filter 315, filter 325, waveform generator 330 and mixer
  • the characteristics of the motor 317 are controlled in real time according to the outputs of the rotation speed sensor 340, the accelerator opening angle sensor 341, and the vehicle speed sensor 342.
  • the filter characteristics, waveform parameters, and mixing ratio can be set using the operation unit 34.
  • one or more parameters may be set by manual operation.
  • One or more parameter sets May be stored in the control unit 303, and any of the parameter sets may be selected and set.
  • preparing multiple parameter sets for example, prepare an engine sound parameter set with a feeling of roughness, an engine sound parameter set with a feeling of smoothness, and so that these modes can be switched. Just keep it. Of course, it is possible to turn off the function of the engine sound power device to prevent the engine sound effect from being generated!
  • a flash memory or ROM pack connector may be provided to supply the flash memory or ROM power to the parameter set.
  • the hard disk power of the car navigation device may be supplied.
  • parameter sets may be downloaded via the Internet.
  • a LAN connector, etc. should be provided so that the power of the computer (notebook PC) connected via this connector can be used to supply parameter sets and set parameters manually.
  • the configuration of the signal processing unit 302 is not limited to the above embodiment. As described above, after the signals from the microphone 310 and the microphone 320 are mixed in the previous stage of the signal processing unit 302, the signal processing may be performed by one system. In addition, in order to pick up exhaust sounds and mechanical sounds, when multiple microphones are installed, each signal may be processed individually, or mixed and processed in two systems or one system. You may make it do.
  • the Fineleta 314 (Finole 'BR 324) and the Fineleta 315 (Finoleta 325) have a configuration in which the waveform generator 330 and the multiplier 316 (multiplier 326) are not necessary elements of the present invention. There may be. Each filter may be switched in the connection order.
  • waveform parameters of the waveform generation unit 330 will be described with reference to FIG.
  • the horizontal axis of the graph shown in FIG. 18 shows time
  • the vertical axis shows the amplitude ratio
  • the graph shown in FIG. 18 shows an example of the waveform of the signal output from the waveform generator 330.
  • the waveform of the signal output from the waveform generator 330 is a waveform that is amplitude-modulated at a predetermined period. This waveform is expressed by the following equation.
  • this signal waveform m (t) is a sine wave of frequency f (period lZf).
  • the frequency f is expressed by the following equation.
  • r represents the engine speed (rpm)
  • N represents the number of engine cylinders (natural number).
  • the engine speed is also read in real time according to the value detected by the speed sensor 340, and changes in real time according to the driving conditions. That is, the period of the modulation signal waveform m (t) output from the waveform generation unit 330 is substantially equal to the basic period of the engine explosion.
  • the modulated signal m (t) with such a period is synthesized with the picked-up engine sound, the engine sound has a sense of variation and can be processed into a rough sound quality.
  • temporal masking is a human auditory characteristic (a phenomenon in which a subsequent sound is masked by a previous sound when another sound is played immediately after a certain sound stops playing).
  • Temporal masking makes it impossible to distinguish the level of the output engine sound (waveform peaks and valleys), but you can feel the fluctuation component (fluctuation).
  • the state of feeling this fluctuation becomes the state of feeling the roughness of the sound, and by synthesizing such a modulated signal waveform m (t), the engine sound can be processed into a rough sound quality.
  • the period of the modulation signal waveform may be an integer multiple of the basic period of engine explosion.
  • the waveform generation unit 330 sets the modulation depth k among the waveform parameters of the modulation signal waveform m (t) according to the control unit 303.
  • the modulation depth k is set between 0 and 1 (0 ⁇ k ⁇ l).
  • the modulation component is emphasized, and the sound can be processed with a rougher sound quality.
  • the modulation waveform shown in Fig. 18 the amplitude ratio of the upper peak remains 1, and the depth of the lower peak changes according to the value of k.
  • the modulation depth k may be set manually. As described above, one or more parameter sets are stored in the control unit 303 in advance, and the V of the parameter set is set to You can also select and set!
  • the modulation depth k may be a constant! Or a function that varies depending on the driving situation (mainly engine speed).
  • An example in the case of controlling the modulation depth k according to the detection value of the rotation speed sensor 340 will be described with reference to FIG.
  • the horizontal axis of the graph shown in the figure shows the engine rotation speed (rpm), and the vertical axis shows the magnitude of k, which has the following characteristics.
  • This figure shows the control characteristic of the modulation depth k based on the engine speed.
  • This rule emphasizes the harshness of the engine by increasing k at 3000 to 5000 rpm, which is the main rotation range when the vehicle is strongly accelerated (when the shaft output of the engine is strongest). It is a rule.
  • control rule for the modulation depth k is not limited to the above. Further, the control is not limited to the control according to the detected value of the rotation speed sensor 340. For example, accelerator opening angle 50
  • control may be performed such as increasing k to emphasize the roughness.
  • modulation depth k it is also possible to set the modulation depth k to the minus side. By setting the modulation depth k to negative and increasing the level of the modulation component, it is possible to process the sound with a rough feeling.
  • the frequency f of the waveform parameters of the modulation signal m (t) is not limited to the above formula, but may be a function that further varies depending on the driving situation. Even if the engine speed is the same, if the frequency f is increased, a sense of variation can be recognized and processed into a rough engine sound. With reference to FIG. 20, an example of controlling the ratio of the frequency f according to the engine speed will be described.
  • the horizontal axis of the graph shown in FIG. 20 indicates the engine speed, and the vertical axis indicates the numerical ratio of the frequency f, which has the following characteristics.
  • This figure shows the control characteristics of the frequency f based on the engine speed.
  • This rule increases the frequency f when the engine sound level is low when idling or decelerating and the engine sound is low, further emphasizing the feeling of roughness of the engine. It is a rule for a certain engine sound. Even if the control rule of this frequency f is used, it is not limited to the above. Control based on sensors that detect other driving conditions, such as the accelerator opening angle sensor 41.
  • the modulation depth k and frequency f which are the waveform parameters
  • the modulation depth k is fixed and the frequency f is adjusted according to the operating conditions.
  • the modulation depth k may be controlled, or conversely, the modulation depth k may be changed in accordance with the driving conditions to fix the ratio of the frequency f (the value is based on the engine speed).
  • both the modulation depth k and the frequency f may be changed according to the driving situation. Of course, both are fixed (frequency f is based on engine speed).
  • which indicates the initial phase of the modulation waveform m (t) is a parameter to match the timing of the modulation peak (lowest amplitude ratio) and the engine sound peak (maximum volume). is there. By matching the peak timing of the modulation with the peak timing of the engine sound, the sense of variation can be recognized efficiently.
  • the waveform generator 330 When the waveform generator 330 outputs a plurality of modulated waveforms to process each engine sound (intake sound, engine explosion sound) under the control of the control unit 303, the waveform generator 330 must be matched with each peak timing. Set. Each timing may be controlled in real time according to the sensor that detects the driving situation. For example, when the rotational speed sensor 340 is a sensor that detects the rotational speed from an idling pulse, ⁇ is set according to this pulse (in consideration of the time lag between intake and explosion to exhaust).
  • the modulation waveform is not limited to a sine wave. Even other waveforms such as a triangular wave, rectangular wave, and sawtooth wave can be processed into a rough engine sound if they are periodic functions.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the frequency gain of the filter
  • the frequency gain of the filter displayed in the figure has the following characteristics.
  • Fig. 21A shows the filter control characteristics of the intake sound and engine explosion sound based on the engine speed.
  • FIG. 21B shows the filter control characteristics of the intake sound based on the accelerator opening angle.
  • FIG. 21C shows the overall volume control characteristics based on the vehicle speed.
  • FIG. 21D The horizontal axis of the graph shown in FIG. 21D represents the accelerator opening angle value and the engine speed, and the vertical axis represents the mixing weight.
  • Fig. 21D shows the mixing weight control characteristics of intake sound and engine explosion sound based on accelerator opening angle and engine speed.
  • the mixing ratio is determined by the ratio of the mixing weight of the intake sound and the mixing weight of the engine explosion sound.
  • the above rule is: “When the engine speed is low, emphasize low sounds to give a large engine atmosphere, and when the engine speed is high, emphasize high sounds to emphasize high engine speed. Emphasis and increase the mixing weight of the engine explosion sound, because the accelerator opening angle is large and sometimes the engine is under load, so the intake sound is increased and the mixing weight of the intake sound is increased. When loud, noise other than engine noise, such as wind noise and tire noise, increases, so the overall volume is increased. ”The actual engine sound further emphasizes the driving situation at that time. It is a rule to do.
  • the center frequency of the low and high frequencies may be determined based on the frequency distribution of the engine sound, but in general, the center frequency of the low range is around 500 Hz, and the center frequency of the high range is It should be around lOOOHz.
  • filter characteristic control rule is not limited to the above.
  • the filter characteristic control rule may also be set manually. As described above, one or more parameter sets are stored in the control unit 3 in advance, and one of the parameter sets is selected. You can also set it.
  • the microphone force installed outside the passenger compartment is picked up and the actual engine sound is collected, and the modulation waveform is synthesized according to the driving situation.
  • the modulation waveform is synthesized according to the driving situation.
  • FIG. 22 is a block diagram showing a configuration of a vehicle interior acoustic control apparatus according to the fourth embodiment of the present invention.
  • This vehicle interior acoustic control device is a device that processes engine sound collected in a vehicle and outputs it from speakers 460L and 460R.
  • intake sound, engine room sound, exhaust sound, and vehicle exterior sound are selected as components of engine sound, and microphones 411 to 414 are located at positions where they can be picked up. It is arranged in.
  • the filter unit 420 includes filters 421 to 424.
  • These filters 4 21 to 424 are functions that pre-process each electrical signal obtained from the microphones 411 to 414, and a pitch that is in a cooperative relationship with the pitch of each electrical signal according to the chord configuration information when the chord configuration information is given. It is equipped with a chord composition function that generates an audio signal of a consonant sound that is added to the preprocessed electrical signal! Instruction information regarding the pre-processing and chord composition information are given by the control unit 500. The chord configuration information, the details of the configurations of the filters 421 to 424, and the control unit 500 will be described later.
  • the mixer 430 is a device that synthesizes and outputs the engine sound signals XL and XR of the left and right channels of each output signal force of the filters 421 to 424.
  • the filter unit 440 is composed of two filters 440L and 440R. These filters 440L and 440R are composed of, for example, a convolution calculator, and the engine sound signals XL and XR are each convolved with two sets of filter coefficient sequences given from the control unit 500, and the engine obtained as a result. Outputs sound signals YL and YR.
  • the control unit 500 switches filter coefficient sequences to be given to the filters 440L and 440R in accordance with an operation of an operator (not shown). In a preferred embodiment, the control unit 500 adjusts the feeling of spread of the reproduced sound of the speaker by adjusting the correlation coefficient of the two sets of filter coefficient sequences given to the filters 440L and 440R.
  • the signal processing unit 450 is a circuit that performs predetermined signal processing on the engine sound signals YL and YR, respectively, and outputs them to the left and right speakers 460L and 460R.
  • the engine sound signals YL and YR are ATT (attenuator) 451L and 451R, HPF (high-pass filter) 452L and 452R, LPF (low-pass filter) corresponding to the left and right channels in the signal processor 450.
  • 453L and 453R, sound insulation characteristic filters 454L and 454R, and dynamic filters 455L and 455R are sequentially passed through and output as final engine sound signals ZL and ZR to speakers 460L and 460R, respectively.
  • ATT451L and 451R are circuits for adjusting the levels of the engine sound signals YL and YR to a level suitable for the driving force.
  • HPF452L and 452R and LPF45 3L and 453R remove unwanted high and low frequency components that are not suitable for output from speakers 460L and 460R from the output signals of ATT451L and 451R.
  • the sound insulation characteristic filters 454L and 454R are filters simulating the sound insulation characteristic of the vehicle body, that is, the characteristic of the sound transmission system from the engine through the vehicle body to the driver's ear.
  • the dynamic filters 455L and 455R are filters capable of controlling the frequency vs. gain characteristics.
  • a force corresponding to the engine speed for example, when the engine speed per unit time is around 3000 rpm, for example, in a frequency band around 400 Hz.
  • the gain in the frequency band around 1 kHz is increased, and so on.
  • the control unit 500 identifies the driving state of the vehicle by monitoring the measurement results of various sensors such as the engine speed sensor 511, the accelerator depression amount sensor 512, and the shift position sensor 513. Each part is controlled according to the above.
  • the parameter memory 520 stores parameters used for controlling each part in association with various predefined operating states. Among these parameters, there is a chord configuration information as a main one. When a certain operation state is specified, the control unit 500 reads out a parameter associated with the operation state from the parameter memory 520, and gives the chord configuration information included in the parameter to the filters 421 to 424.
  • Filters 421 to 424 may have various configurations.
  • Figure 2 shows filters 421 ⁇
  • the preprocessing unit 601 is a device that performs preprocessing on an output signal from the microphone 411 or the like. There are three types of pre-processing:
  • characteristic overtone components in the input audio signal that is, characteristic overtone components determined by the type of sound source, such as intake sound, engine room sound, exhaust sound, and exterior sound.
  • the parameter associated with the operation state includes information specifying the type of preprocessing.
  • the control unit 500 takes out information specifying the type of preprocessing for the parameter force and gives it to the preprocessing unit 601. Then, the preprocessing unit 401 performs the preprocessing instructed by the given information on the output signal of the microphone 411 or the like.
  • the pitch converter 602-j Upon receiving the pitch conversion instruction and the pitch conversion ratio Pj, the pitch converter 602-j converts the output audio signal into an audio signal having a pitch Pj times the original pitch. Output.
  • the pitch of each sound constituting the chord is determined by the pitch of the audio signal output from the pre-processing unit 601 and one or more pitch conversion ratios Pj included in the chord configuration information, thereby forming the chord.
  • FIG. 3 is a block diagram showing a second configuration example of the filters 421 to 424.
  • the pitch conversion ratio Pj is given to the synthesizing unit 605-j to which the pitch conversion instruction is given.
  • a sweep signal force PLL606 having a sweep frequency obtained by multiplying the frequency of the engine ignition pulse by the pitch conversion ratio Pj is generated once.
  • One cycle of engine sound waveform sample data is read for each sweep and supplied to the subsequent multiplier 603-j.
  • the pitch of the sample data read from the waveform memory 207 is P ⁇ of the pitch of the output signal of the preprocessing unit 601. j times the pitch.
  • the original sound when the audio signal output from the pre-processing unit 601 of the filters 421 to 24 is, for example, a C sound (hereinafter referred to as the original sound), for example, the original sound is as follows.
  • a related harmony is generated by pitch conversion or synthesis.
  • chord configuration information for composing a chord that combines the original sound and one or more sounds in each of the above sounds is associated with various operating states, The information stored in advance in the memory 520 and corresponding to the operation state at that time is read out by the control unit 500 and applied to the filters 421 to 424 during operation.
  • FIG. 26 shows an operation example obtained by such control.
  • the engine speed obtained by the engine speed sensor 511 is in an operating state, and various chord configuration information, that is, one or a plurality of chord configuration information corresponding to various operating states (engine speeds).
  • the chord configuration information is read out according to the driving state (engine speed) and given to the filters 421 to 424, and a chord whose configuration changes according to the engine speed as shown in the figure. Generated by filters 421 to 424 and output through speakers 460L and 460R.
  • the F sound is added to the original C sound.
  • pitch conversion or synthesis for obtaining the G sound is started, and the multiplication coefficient applied to the F sound is decreased while the multiplication coefficient applied to the G sound is increased.
  • Control is performed and the sound added to the original sound is crossfaded from the F sound to the G sound.
  • B sound is added to the sound added to the original sound. In this way, a chord that gives the impression that it is powerfully accelerated and lightly stretched is obtained, and the driver can feel the driving state by listening to this chord.
  • the state that is grasped from the current value of the sensor output signal is used as the operating state.
  • the state of the temporal change of the sensor output signal is operated. Use as a state.
  • multiple types of changes in the output signal of one or more sensors within a certain period are defined as motion states, and chord configuration information is stored in advance in the parameter memory 520 in correspondence with these motion states. Keep it.
  • the changes in the output signal of each sensor and the parameter Pattern matching with each driving state stored in the memory 520 is performed, and an engine sound that is a chord is generated using the chord configuration information corresponding to the matching motion state.
  • the following complicated control can be performed.
  • the chord configuration is changed according to the output signal of one sensor.
  • the chord configuration may be changed according to the combination of the output signals of a plurality of sensors. For example, when a shift-up operation is detected by the shift position sensor 513, the sound added to the original sound is added to the original sound as the gear is shifted up to 2nd, 3rd, 4th, 5th. , G sound, A sound, etc. At that time, the volume of the sound to be added is made proportional to the accelerator depression amount detected by the accelerator depression amount sensor 512.
  • the engine sound collected by the vehicle is added with a sound having a different pitch from the original sound according to the driving state, and reproduced as a chord from the speaker.
  • the driver can feel comfortable driving the engine sound power that is regenerated and can drive comfortably.
  • the current position of the vehicle may be treated as a driving state. More specifically, a navigation device is provided in the vehicle, and the chord configuration information is stored in the parameter memory 520 in association with the current position of the vehicle in the driving state. Then, the control unit 500 reads out the chord configuration information corresponding to the current position information (operating state) obtained from the navigation device from the parameter memory 520 and gives it to the filters 421 to 424. According to this mode, for example, when the road along the coast is run, the F and G sounds are added to the original sound.
  • the force provided to the filters 421 to 424 in the preceding stage of the mixer 430 by the device that constitutes the chord by pitch conversion or synthesis may be provided in the subsequent stage of the mixer 430.
  • both the front and rear stages of the mixer 430 are equipped with devices that compose chords, and either the front stage or the rear stage is selected by operating the control or depending on the operating status, and the chord is created in the selected equipment. Let it be executed.
  • a force in which a device for forming a chord is provided in all of the filters 421 to 424.
  • This device may be provided in only some filters.
  • all of the filters 421 to 424 may be provided with a device that forms a chord, and the device that executes the processing that forms the chord may be selected by operating the operation element or depending on the operating state.
  • the engine sound is picked up, and the sound field effect is given to it to reproduce the speaker power.
  • the engine sound waveform data is read from the memory that stores the engine sound waveform data in advance at a reading speed corresponding to the engine speed, and the simulated engine sound signal is reproduced. Then, a chord corresponding to the driving state may be generated from the pseudo engine sound signal. According to this aspect, an effect similar to that of the above embodiment can be obtained even in a vehicle that does not have an engine and travels by a motor.
  • the engine sound may be reproduced by a multi-channel speaker such as a 4-channel, 5.1-channel, etc. force that reproduces the engine sound by a 2-channel speaker.
  • FIG. 27 is a block diagram showing a configuration of an engine sound generation apparatus according to the fifth embodiment of the present invention.
  • This engine sound generation device is a device that applies a calorie to the engine sound collected by the vehicle and outputs the engine sound from the speakers 760L and 760R into the vehicle.
  • microphones 711 and 712 are provided at two places where characteristic components of engine sound can be collected.
  • the output signals of microphones 711 and 712 are connected to amplifiers 721 and 722. Is mixed by a mixer 730 and output.
  • the mixing ratio of the mixer 730 is determined so that each characteristic frequency component of the engine sound appears in the output signal of the mixer 730 in an appropriate balance.
  • a filter that extracts a characteristic frequency component of the engine sound may be inserted between the amplifiers 721 and 722 and the mixer 730.
  • the signal processing unit 740 is a device that performs various types of signal processing on the output signal of the mixer 730, and can be configured by, for example, a DSP (Digital Signal Processor).
  • the signal processing unit 740 is connected to an engine speed sensor 811 for measuring the engine speed and an accelerator depression amount sensor 812 for measuring an accelerator depression amount.
  • the signal processing unit 740 performs necessary correction on the frequency characteristics of the output signal of the mixer 730 based on the output signals of the engine speed sensor 811 and the accelerator depression amount sensor 812, and the corrected signal An engine sound signal for in-vehicle reproduction is synthesized from the frequency characteristics.
  • the engine sound signal for in-vehicle reproduction obtained by such processing is separated into L-channel and R-channel engine sound signals and output from the signal processing unit 740.
  • the engine sound signals of the L channel and R channel are amplified by the amplifiers 750L and 750R and output from the 760L and 760R.
  • FIG. 28 is a block diagram showing a configuration example of the signal processing unit 740.
  • the AZD conversion 741 samples the output signal of the mixer 730, which is an analog audio signal, with a sampling clock having a predetermined frequency, and converts it into a digital audio signal.
  • the FFT unit 742 performs FFT (Fast Fourier Transform) on the digital audio signal obtained by the AZD converter 7 41 to obtain a frequency characteristic H (j co), and amplitude characteristic data IH (j co) I and phase characteristic data arg ⁇ H (j ⁇ ) ⁇ representing its declination are output.
  • FFT Fast Fourier Transform
  • the amplitude characteristic correction unit 743 is a device that corrects the amplitude characteristic data IH (j co) I based on the output signals of the engine speed sensor 811 and the accelerator depression amount sensor 812.
  • the phase characteristic correction unit 744 is a device that corrects the phase characteristic data arg ⁇ H (j ⁇ ) ⁇ based on the output signals of the engine speed sensor 811 and the accelerator depression amount sensor 812.
  • the greatest feature of this embodiment is the correction of the phase characteristic data arg ⁇ H (j co) ⁇ performed by the phase characteristic correction unit 44.
  • the frequency at which the phase is corrected is the engine speed sensor 81.
  • the phase correction amount is controlled according to the accelerator depression amount measured by the accelerator depression amount sensor 812.
  • a plurality of modes of correction of amplitude characteristic data IH (j ⁇ ) I and phase characteristic data arg ⁇ H (j ⁇ ) ⁇ (hereinafter referred to as correction mode for convenience) are assumed.
  • Parameters for causing the amplitude characteristic correction unit 743 and the phase characteristic correction unit 744 to perform correction in each correction mode are stored in the parameter memory 748.
  • the driver (user) can select a desired correction mode by operating an operator (not shown).
  • a parameter corresponding to the selected correction mode is read from the parameter memory 748.
  • the amplitude characteristic correction unit 743 and the phase characteristic correction unit 744 are set to perform correction in the correction mode. Note that details of the correction of the phase characteristic data and the amplitude characteristic data will be clarified in the operation description of the present embodiment in order to avoid duplication of explanation.
  • the inverse FFT unit 745 performs inverse FFT on the amplitude characteristic data corrected by the amplitude characteristic correction unit 743 and the phase characteristic data corrected by the phase characteristic correction unit 744, and the engine sound that is a time signal A device for synthesizing signals.
  • the volume 746 is a device that amplifies the engine sound signal output from the inverse FFT unit 745 and outputs it. In a preferred embodiment, the gain of the volume 746 is increased or decreased according to the output signals of the engine speed sensor 811 and the accelerator depression amount sensor 812.
  • the output signal of the volume 746 is analogized by the DZA converter 747 and becomes the engine sound signal for in-vehicle reproduction described above.
  • FIG. 29 is a diagram illustrating amplitude characteristic data IH (j co) I and phase characteristic data arg ⁇ H (j co) ⁇ obtained from the FFT unit 742 in the present embodiment.
  • the amplitude characteristic data IH (j co) I has a characteristic in which a plurality of peaks are arranged in the direction of the angular frequency axis as shown in the figure, when the angular frequency ⁇ of the engine sound spectrum is represented on the horizontal axis.
  • a component that is considered to be a component caused by an engine explosion is selected from the engine sound spectrum corresponding to the top of these peaks, and the amplitude and other components of this component are used as a reference. Phase correction is performed.
  • the component caused by the engine explosion is estimated by the engine speed force measured by the engine speed sensor 811. Is done. For example, in the case of a 4-cylinder engine, two explosions occur during one revolution of the engine. For this reason, among the peaks of the amplitude characteristic data IH (jco) I, the highest frequency and the angular frequency corresponding to twice the engine speed is the rotation caused by the explosion of the engine. The secondary angular frequency is estimated to be ⁇ 2.
  • the amplitude characteristic correction unit 743 determines the amplitude characteristic according to the parameter corresponding to the correction mode read from the parameter memory 748 in a state where the amplitude characteristic data
  • the type of correction to be performed and the extent to which the peaks and valleys are raised or lowered depend on the correction mode.
  • phase characteristic correction unit 744 calculates the phase correction data ⁇ according to, for example, the following equation (1).
  • ⁇ 2 is the value of the phase characteristic data at the rotational secondary angular frequency ⁇ 2 arg ⁇ H (j ⁇ 2) ⁇
  • ⁇ 1 is the value of the phase characteristic data at the rotational primary angular frequency ⁇ 1 arg ⁇ H (j ⁇ 1) ⁇ .
  • DO and D1 are parameters defined for each correction mode.
  • the phase characteristic correction unit 744 uses the phase characteristic data arg ⁇ H (j ⁇ 1) ⁇ at the rotation primary angular frequency ⁇ 1 as the phase correction data ⁇ .
  • the phase characteristic data arg ⁇ H (j ⁇ ) ⁇ ( ⁇ ⁇ 2) in the frequency region below the rotation secondary angular frequency ⁇ 2 is used as the phase characteristic data arg ⁇ H (j ⁇ 1) Perform a correction to increase or decrease uniformly according to the increase or decrease of ⁇ .
  • the amplitude characteristic data IH (j co) I and the phase characteristic data arg ⁇ H (j ⁇ ) ⁇ that have undergone the above correction are sent to the inverse FFT unit 45 and are time signals.
  • the engine sound signal is synthesized and output from the speakers 760L and 760R.
  • the corrected phase characteristic data arg ⁇ H (j ⁇ 1) ⁇ is the phase characteristic data as the accelerator depression amount increases by zero. & Approaches ⁇ 1 ⁇ 0) 2) ⁇ .
  • the phase difference of the phase of the rotation primary angular frequency component relative to the phase of the rotation secondary angular frequency component in the engine sound is increased or decreased according to the accelerator depression amount,
  • the sense of distance to the engine position felt by the driver can be changed. Therefore, according to this embodiment, the engine sound heard by the driver can be greatly changed as compared with the case where the amplitude characteristic is adjusted using the graphic equalizer.
  • the driver changes the parameters (D0, D1 in the above example) used to correct the phase of the rotation primary angular frequency component according to the accelerator depression amount by changing the correction mode to be selected. Since the correction mode can be changed, an appropriate correction mode can be selected to enjoy the engine sound of your favorite impression.
  • the sense of distance of the engine sound can be changed by depressing the accelerator, so that the engine sound suitable for the driving operation can be obtained.
  • the frequency component for correcting the phase is selected according to the engine speed in accordance with the engine speed, the engine sound actually generated in the vehicle and the signal processing are selected.
  • the engine sound synthesized by the unit 740 and output from the speakers 760L and 760R is in harmony, and even if both are mixed, there is no sense of incongruity in hearing.
  • the frequency characteristics of the engine sound that is actually collected by the vehicle force are corrected, and the speaker 7 Since the engine sound output from 60L and 760R is synthesized,
  • phase characteristic correction unit 744 in the fifth embodiment the configuration of the phase characteristic correction unit 744 in the fifth embodiment is changed.
  • the parameter memory 748 (see FIG. 28) stores phase correction data ⁇ ( ⁇ ) that is a function of the angular frequency ⁇ in association with various correction modes.
  • FIG. 30 shows phase correction data ⁇ a ( ⁇ ) and phase correction data ⁇ b ( ⁇ ) as an example.
  • the phase correction data ⁇ ( ⁇ ) corresponding to the correction mode selected by the driver is selected.
  • phase characteristic data arg ⁇ H (j ⁇ ) ⁇ is output from the FFT unit 742, a correction for adding the selected phase correction data ⁇ ( ⁇ ) is performed by the adder 744a.
  • the corrected phase characteristic data is sent to the inverse FFT unit 745 (see Fig. 28).
  • the following operation is obtained.
  • the rotation primary angular frequency and rotation secondary angular frequency of engine sound collected by the vehicle are located in the region where the phase correction data ⁇ & ( ⁇ ) decreases as the angular frequency increases.
  • the engine sound which can also obtain the speaker 760L and 760R force, changes the phase difference between the phase of the rotational secondary angular frequency component and the phase of the rotational secondary angular frequency component as the engine speed increases, The sound is unstable with the impression that it is moving fast.
  • the rotation primary angular frequency and rotation secondary angular frequency of the engine sound collected by the vehicle are located in a region where the gradient of the phase correction data ⁇ a ( ⁇ ) is small with respect to the angular frequency ⁇ . .
  • the engine sound that can also obtain the power of the speakers 760L and 760R is a calm and comfortable sound.
  • the rotation primary angular frequency and the rotation secondary angular frequency of the engine sound picked up by the vehicle are phase corrected at low speed. Since the data ⁇ ⁇ ⁇ ) is in a region with a small gradient with respect to the angular frequency ⁇ , the engine sound that can also obtain the speaker 760L and 760R force is a calm sound. And At medium and high speeds, the primary angular frequency and secondary angular frequency of engine sound collected by the vehicle are located in the region where the phase correction data ⁇ ⁇ b ( ⁇ ) increases as the angular frequency increases. Therefore, the engine sound that can also obtain the power of the speakers 760L and 760R is an unstable sound that gives the impression that the vehicle is moving fast.
  • the driver can change the correction mode to be selected to change the engine sound phase correction mode and enjoy the engine sound of his / her favorite impression. be able to. Further, there is no need to select a frequency for phase correction according to the engine speed or adjust the degree of correction according to the amount of accelerator depression as in the fifth embodiment. There is an advantage that the processing of 740 can be simplified.
  • phase correction data ⁇ ( ⁇ ) stored in advance in the parameter memory 748 (see FIG. 28) in the sixth embodiment.
  • various preferences relating to engine sound more specifically, preferences relating to the engine speed dependency of the sense of distance of the engine that the driver feels from the engine sound are assumed, and the target is a function of the angular frequency ⁇ .
  • phase characteristic data ⁇ t ( ⁇ ) are available.
  • vehicle force engine sound on which the engine sound generation device is mounted is collected, and FFT is applied to the actually measured engine sound to obtain actually measured phase characteristic data ⁇ ⁇ ( ⁇ ). It is done.
  • phase correction data ⁇ ( ⁇ ) associated with various preferences are stored in the parameter memory 748 in association with different correction modes.
  • the processing content of the correction of the phase characteristic of the engine sound using the phase correction data ⁇ ( ⁇ ) is the same as that in the sixth embodiment.
  • the measured phase characteristic data ⁇ ⁇ ( ⁇ ) changes rapidly from the slow phase to the leading phase in the process of changing from the low speed to the medium speed, and then the speed (angular frequency). ) And increase while pulsing. Assuming that the engine sound is output from the speaker power with such phase characteristics, the so-called color reproduction is applied to the speaker playback sound in the middle and high speed range. Chillon is generated and the sound quality is poor. On the other hand, when the phase characteristic of the engine sound that is also picked up by the vehicle is corrected using the complementary data + ⁇ ( ⁇ ) obtained as described above, the corrected phase characteristic data is This is consistent with the target phase characteristic data ⁇ t ( ⁇ ) as shown.
  • phase of the speaker playback sound rotates as the speed increases in the low speed range, but at medium and high speeds, the phase rotation is subdued and the engine sound has a calm impression.
  • a correction mode corresponding to phase correction data prepared for such engine sound may be selected.
  • the phase correction data ⁇ ⁇ (in the region where the phase correction data ⁇ ⁇ ( ⁇ ) has a strong dependence on the angular frequency according to the accelerator depression amount. You may make it change the inclination of the slope of (omega)). In this case, when the accelerator depression amount is increased, the driver may select whether to increase or decrease the slope of the slope of the phase correction data ⁇ ( ⁇ ). Yes.
  • the vehicle force engine sound is collected, processed and reproduced from the spin force.
  • the waveform data is read from the memory in which engine sound waveform data is stored in advance at a read speed corresponding to the engine speed, and the pseudo engine sound signal is read.
  • the engine sound signal may be generated by processing the pseudo engine sound signal by the signal processing unit 740. According to this aspect, an effect similar to that of each of the above embodiments can be obtained even in a vehicle that does not have an engine and travels by a motor.
  • FIG. 32 is a block diagram showing the configuration of the eighth embodiment of the engine sound power device of the present invention.
  • reference numerals 901a and 901b denote microphones or sensors (hereinafter referred to as microphones) that are installed in an engine room or the like in a vehicle and collect engine sounds.
  • microphones 901a and 901b are installed at 902 locations in the engine room (for example, near the intake port and near the engine), and the engine sound is output at two locations. Power to pick up sound It is not limited to this. Engine sound can be picked up at one or more points.
  • the engine sounds collected by the microphones 901a and 901b are amplified by the corresponding head amplifiers 902a and 902b, input to the mixer 903, and added to the mixer 903 after the noise is removed.
  • the engine sound signal added by the mixer 903 is input to a distortion unit 904, which is a signal processing unit, and is given a distortion effect.
  • a distortion unit 904 which is a signal processing unit, and is given a distortion effect.
  • the distortion effect given according to the engine speed data (Cycle) 905 supplied via the in-vehicle net and the accelerator depression data (Accelerator) 906 also supplied from the in-vehicle net is controlled. Is done.
  • the engine sound to which distortion is applied by the distortion unit 904 is amplified by the power amplifiers 907a and 907b, respectively, and reproduced by the speakers 908a and 908b installed in the passenger compartment.
  • the speakers 908a and 908b are installed in the passenger compartment, but the number of speakers can be any number.
  • the distortion unit 4 can be realized by any difference between an analog system using an analog circuit and a digital system using a DSP (Digital Signal Processor).
  • 33A and 33B are diagrams showing a configuration example of the distortion unit 4.
  • FIG. 33A shows an analog system
  • FIG. 33B shows a digital system.
  • the analog distortion unit 904 includes an equalizer 911 by an analog circuit to which the engine sound signal of 903 is input, and a distortion circuit by an analog circuit to which the output of the equalizer 911 is input. 912 and an amplifier 913 capable of controlling the gain to which the output of the distortion circuit 912 is inputted, and these circuits include the engine speed data (Cycle) 905 and the accelerator depression degree. Accelerator 906 is supplied as a control parameter!
  • the digital distortion unit 904 includes an AZD conversion 921 that converts the engine sound signal from the mixer unit 903 into digital data, and a digital signal to which the output of the AZD converter 921 is input.
  • Equalizer means 922 for data Distortion means 923 for digital data to which the output of the digital equalizer means 922 is input, amplification means 924 for digital data to which the output of the digital distortion means 923 is input, and output data of the amplification means 924 to analog signals It consists of DZA transformation 925 to convert.
  • the equalizer means 922, the distortion means 923, and the amplification means 924 are supplied with the engine speed data (Cycle) 905 and the accelerator depression degree data (Accelerator) 906. These characteristics are controlled according to the conditions.
  • the equalizer unit 922, the distortion unit 923, and the amplification unit 924 are realized by a DSP, for example.
  • the equalizer 91 1 and the equalizer means 922 perform filter processing such as BPF (Band Pass Filter) or HPF (High Pass Filter) ⁇ LPF (Low Pass Filter) on the engine sound signal from the mixer 903. And select the frequency region to which distortion is to be applied. At this time, based on the engine speed data (Cycle) 905 and the accelerator depression degree data (Accelerator) 906, the characteristics of the filter are dynamically changed.
  • the equalizer 91 1 or the equalizer means 922 may be a parametric equalizer or a graphic equalizer of the same type! /.
  • Fig. 34 shows the case of a parametric equalizer.
  • the passband center frequency (f0), its frequency bandwidth (Wise Q), gain Change (G) dynamically.
  • the engine sound frequency increases as the engine speed increases.
  • the frequency characteristics of the equalizer dynamically, it becomes possible to follow changes in the frequency of the engine sound, and there is no sense of incongruity between the processed sound and the engine sound. A natural effect can be achieved.
  • FIGS. 35A and 35B show the center frequency (f0), gain (G), or width (Q) according to the engine speed data (Cycle) 905 and the accelerator depression degree data (Accelerator) 906, respectively.
  • FIG. 35A is a diagram showing the correspondence between the engine speed and the center frequency
  • FIG. 35B is a diagram showing the correspondence between the degree of depression of the accelerator and the gain. is there.
  • control is performed so that the center frequency (fO) increases as the engine speed increases.
  • the fundamental frequency of the engine sound may be set as the center frequency fO, or overtones may be selected as the center frequency fO.
  • the user may be able to select whether the center frequency is the fundamental frequency, the second harmonic, or the third harmonic.
  • the center frequency fO is controlled so as to increase sharply as shown by the curve CL-1 in the figure.
  • the center frequency may be controlled to gradually increase as indicated by the curve indicated by CL3. Good.
  • the center frequency is dynamically controlled. Accordingly, it becomes possible to obtain a force sound corresponding to the driving operation of the user.
  • control is performed so that the gain (G) increases as the degree of depression of the accelerator increases.
  • the gain increases rapidly as shown by CL-1 in the figure, and when it is moderate, it increases linearly (CL-2). If the accelerator is depressed slowly, increase it gradually (CL 3)! / ⁇ .
  • the center frequency may be changed in the same manner as in FIG. 35A according to the degree of depression of the accelerator, and the gain G may be changed as shown in FIG. 35B according to the engine rotation frequency. Further, the width Q may be changed in the same manner as in FIG. 35A or FIG. 35B according to the engine speed or the degree of depression of the accelerator. In other words, control is performed so that the width becomes wider as the engine speed or the degree of accelerator depression increases.
  • the distortion circuit 912 and the distortion means 923 add a distortion effect to the engine sound signal output from the equalizer 911 or the equalizer means 922.
  • a parameter (DRIVE) indicating how much to distort
  • a parameter (TYPE) indicating how to distort
  • FIGS. 36A and 36B are diagrams for explaining the distortion processing by the distortion circuit 912 or the distortion means 923.
  • FIG. 36A the distortion circuit 912 or the distortion means 923 basically distorts the input engine sound signal by tapping the amplitude of the input signal.
  • the head of the waveform of the output signal (the part that exceeds the allowable input) is cut off. This is called clipping or clipping. Since this waveform contains innumerable harmonics, the sound becomes clogged and the sound becomes muddy.
  • 36A and 36B are diagrams showing a configuration example of the distortion circuit 12 using an analog circuit. As shown in this figure, it can be realized by an analog clipping circuit. In the case of FIG. 36A, asymmetric clipping is performed.
  • FIG. 37 is a diagram for explaining the DRIVE parameter indicating how much distortion is caused.
  • the parameter Kd indicating the degree of distortion shown in Fig. 37 is the DRIVE parameter.
  • the value of Kd is dynamically changed according to the values of the engine speed data (Cycle) 905 and the accelerator depression degree data (Accelerator) 906.
  • FIGS. 38A to 38C are diagrams for explaining how to change the parameter Kd according to the engine speed and the degree of depression of the accelerator.
  • FIG. 38A is a diagram showing a mode in which the degree of distortion Kd is changed in accordance with the engine speed, and as shown in this figure, control is performed so that the degree of distortion Kd increases as the engine speed increases.
  • the curve of the linearity varies depending on the acceleration of the engine speed, that is, whether the engine speed increased in a short time or slowly.
  • the degree of distortion Kd may be changed accordingly. That is, when the engine speed increases rapidly, the distortion degree Kd also increases rapidly as shown by the curve CL-1, and when it increases slowly, the distortion condition Kd gradually increases as shown by the curve CL3. Try to increase. If it is moderate, it may be changed linearly as shown by curve CL-2.
  • FIG. 38B is a diagram showing how the degree of distortion Kd changes with respect to the degree of depression of the accelerator.
  • control is performed so that the degree of distortion Kd increases as the degree of depression of the accelerator increases.
  • the degree of distortion may be gradually increased as shown by the curve shown in 3.
  • it When it is moderate, it may be changed linearly as shown by the curve shown in CL-2.
  • FIG. 38C is a diagram showing another example of a mode in which the degree of distortion Kd is changed according to the engine speed.
  • Kd is controlled according to a curve having an inflection point that is conspicuous at low revolutions.
  • the degree of distortion Kd changes greatly at low engine speeds and decreases at high engine speeds. For example, a quiet engine sound with a low degree of distortion is obtained during high-speed driving on a highway.
  • the degree of distortion Kd may be changed with the same curve as in FIG. 38C.
  • FIG. 39 is a diagram for explaining the TYPE parameter indicating how distortion is performed.
  • the parameter Kp indicating the distortion pattern shown in Fig. 39 is the TYPE parameter.
  • This distortion pattern Kp (TYPE parameter) is the same as the distortion Kd. It has the form of chemistry. That is, as shown in FIGS. 38A and 38B, the distortion pattern Kp is controlled to increase as the engine speed (Cycle) or accelerator depression (Accelerator) increases. When the engine speed or the degree of accelerator depression changes rapidly, changes moderately, and changes slowly, the above-mentioned change curves with different linearities (CL-1 to CL-3) You can change the distortion pattern according to).
  • the gain controllable amplifier 913 or amplifying means 924 controls the gain according to the engine speed data (Cycle) 905 or the accelerator depression data (Accelerator) 906.
  • the volume V (Vol ume) of the processed engine sound reproduced by is controlled.
  • FIGS. 40A to 40C are diagrams showing the relationship between the engine speed or the degree of depression of the accelerator and the volume V (Volume) in the amplifier 913 or the amplifying means 924, and FIG. 4 OA is the engine speed and volume.
  • FIG. 40B shows the relationship between the degree of accelerator depression and the volume V.
  • control is performed so that the volume of the engine sound that has been cached increases as the engine speed increases.
  • the mode of increase in volume is controlled according to the speed of increase in engine speed, and when the engine speed increases rapidly, the volume increases rapidly (CL-1) When the volume increases, the volume may be gradually increased (CL-3).
  • the relationship between the degree of depression of the accelerator and the volume V may be controlled in the same manner as the relationship with the engine speed.
  • a characteristic curve having an inflection point that is conspicuous when the engine speed is low may be used.
  • the curve shown in Fig. 40C may be used for the degree of accelerator depression.
  • the user should be able to arbitrarily set which curve CL 1 to CL 3 is to be controlled according to the changing speed of the engine speed and the changing speed of the accelerator pedal! ,.
  • curves CL-1 to CL-3 may be editable by the user, and the number of curves to be used may be arbitrarily set by the user.
  • the engine sound collected by the microphones 901a and 901b installed in the engine room is input to the distortion unit 4.
  • a sound insulation board is provided between the engine room and the compartment of the automobile, and the user listens to the engine sound that has passed through the sound insulation board. Therefore, a filter for simulating the sound insulation characteristic (transfer characteristic) of the sound insulation plate is provided, and the sound obtained by passing the filter through the engine sound collected by the microphones 901a and 901b is input to the distortion unit 4 as described above. Even if it is processed, it is good.
  • FIG. 41 is a diagram illustrating a configuration of a main part of the embodiment in which a filter for simulating the transfer characteristic of the sound insulating plate is provided.
  • the transmission characteristics of the sound insulating plate are changed.
  • the signals are passed through the filters 93 la and 931 b to be simulated and input to the mixer 903.
  • the force equalizer 9 explained in the case where the equalizer 911 or the equalizer means 922, the distortion circuit 912 or the distortion means 923, and the amplifier 913 or the amplifying means 924 are all provided in the distortion section 4 is described. 11 or the equalizer means 922 and the amplifier 913 or the amplifying means 924 may be provided with the minimum distortion circuit 912 or the distortion means 923 which are not necessarily essential.

Abstract

 エンジンの吸気口およびエンジンルームの車室側壁面にそれぞれマイクを設け、エンジン音を収音する。このエンジン音を信号処理部で加工して車室内に設けたスピーカから出力する。信号処理部には、車室における遮音特性をシミュレートするフィルタおよび、運転状況に応じてエンジン音を加工する変換部が設けられている。エンジン回転数センサ、アクセル開角センサ、車速センサの検出値に応じて変換部のスペクトル変形特性が決定され、この特定でエンジン音のスペクトルを変形することによってエンジン音を強調する。

Description

明 細 書
エンジン音加工装置
技術分野
[0001] この発明は、自動車のエンジン音を加工して車室内で再生するエンジン音加工装 置に関する。
背景技術
[0002] 近年、自動車の騒音規制の観点から、特にエンジン音について静粛性が要求され ており、エンジンルームや排気ラインに遮音材を取り付ける等して、静粛性が高めら れている。また、燃費性能を重視する観点からもエンジン回転数が低く抑えられ、ェ ンジン音が低減されるような設計がなされて 、る。
[0003] しかし、上記のような高い静粛性力 自動車の乗員にとって快適な運転環境である とは、必ずしも言えない。すなわち、ドライブ愛好家などの運転者にとっては、車室内 に適度なエンジン音が聴こえている状況がより快適な運転環境である場合がある。
[0004] このようなドライブ愛好家の嗜好を実現するために、車室内に人工的にエンジン音 を発生する装置が提案されて!、る。
[0005] このような装置としては、たとえば、エンジンの回転数に合わせた(エンジン音に同 期した)正弦波やパルス音を発生して車室内に放音して実際に車室内に漏れてくる エンジン音に付加することにより、エンジン音の一部周波数帯を強調して聴力せるこ とができるもの(たとえば特許文献 1)や、予め所望のエンジン音を録音しておき、これ をエンジンの回転数に応じて再生することによって車室内に所望のエンジン音を響 かせるもの(たとえば特許文献 2参照)や、ヘッドレストに備えたマイクロフォン力 車 室内のエンジン音を収音し、一部周波数帯域を強調して聴力せることができるもの( たとえば特許文献 3)が提案されている。
特許文献 1:特開平 5— 80790号公報
特許文献 2:特開平 7— 302093号公報
特許文献 3:特開 2004— 74994号公報
発明の開示 発明が解決しょうとする課題
[0006] しかし、特許文献 1、 2、 3のいずれに記載されているものも、その自動車の実際の エンジン音とは異なる別の音を発生するものであるため、いかに多種類のセンサを用 V、て運転状況を検出しても、その運転状況に応じた実際のエンジン音を正確に反映 した音声を発生できるとは限らな力つた。
[0007] この発明は、実際のエンジン音を車室外で収音して加工後に出力することにより、 車室内によりリアルなエンジン音を発生させることができるエンジン音加工装置を提 供することを目的とする。
課題を解決するための手段
[0008] 上記課題を解決するために本発明では以下の手段を採用している。
(1) 自動車の車室外に設置され、該自動車のエンジン音を収音するマイクと、 該自動車の運転状況を検出するセンサと、
前記センサの検出内容を基に前記マイクが収音したエンジン音を信号処理して出 力する信号処理部と、
前記信号処理部で信号処理されたエンジン音を出力するスピーカと
を備えるエンジン音加工装置。
(2) 前記信号処理部は、車室壁面における遮音特性をシミュレートする遮音特性フ ィルタと運転状況に応じて特性が変化するアクティブフィルタとを有する(1)に記載の エンジン音加工装置。
(3) 前記マイクは複数設けられ、前記エンジンの吸気口、排気口、エンジンヘッド、 エンジンルームの壁面の一部または複数部に配置されている(1)に記載のエンジン 音加工装置。
(4) 前記センサは、エンジン回転数を検出するセンサ、アクセル開角を検出するセ ンサ、自動車の速度を検出するセンサの一部または全部である(1)に記載のェンジ ン音加工装置。
(5) 前記センサの検出内容を基に信号処理特性を決定し、前記信号処理部を制御 する制御部を備える(1)に記載のエンジン音加工装置。
(6) 前記制御部は、センサの検出内容と信号処理特性との関係を記憶したパラメ一 タテーブルを備える(5)に記載のエンジン音力卩ェ装置。
(7) 前記制御部に接続され、ユーザが前記制御部の信号処理特性を操作可能な 操作部を備える(5)に記載のエンジン音加工装置。
(8) 前記マイクが収音したエンジン音を周波数分析して、スペクトルを割り出しする 周波数分析手段とを備え、
前記信号処理部は前記周波数分析手段で割り出しされたスペクトルを加工して前 記スピーカに出力する(5)に記載のエンジン音力卩ェ装置。
(9) 前記制御部は、前記周波数分析手段が決定したスペクトルのピークを強調する (8)に記載のエンジン音力卩ェ装置。
(10) 前記制御部は、前記周波数分析手段が決定したスペクトルのピークの谷間の レベルを上げる(8)に記載のエンジン音力卩ェ装置。
(11) 前記マイクが収音したエンジン音を周波数分析して、スペクトルのピークを検 出する周波数分析手段とを備え、
前記信号処理部は、前記周波数分析手段で決定されたスペクトルのピークをピッチ シフトして、特定周波数成分を強調して出力し、
前記制御部は、前記信号処理部がピッチシフトする周波数を設定する(5)に記載 のエンジン音加工装置。
(12) 変調信号波形を生成する波形生成部を備え、
前記信号処理部は、前記波形生成部が生成した変調信号波形をスピーカに出力 する(5)に記載のエンジン音加工装置。
(13) 前記制御部は、前記センサの検出内容に基づいて変調周期を設定する(12) に記載のエンジン音力卩ェ装置。
(14) 前記制御部は、前記センサの検出内容に基づいて変調の深さを設定する(1 2)に記載のエンジン音力卩ェ装置。
(15) 前記波形生成部は、前記マイクの収音するエンジン音のそれぞれに対応する 変調信号波形を生成し、
前記制御部は、前記マイクの収音するエンジン音のそれぞれと同期した周期で前 記変調信号波形の変調周期を設定する(12)に記載のエンジン音加工装置。 (16) 前記制御部は、収音するエンジン音のそれぞれのピークと同じタイミングで変 調信号波形のピークを出力するように設定する(15)に記載のエンジン音加工装置。
(17) 和音構成情報が与えられた場合に、前記和音構成情報に従って前記マイク により収音された前記エンジン音のピッチと協和関係にあるピッチを有する協和音の 音声信号を生成し、前記協和音の音声信号を前記エンジン音に付加して出力する 和音構成手段を含む(5)に記載のエンジン音加工装置。
(18) 前記制御手段は、前記センサの検出内容に応じて和音構成情報を生成し、 前記和音構成手段に与える(17)に記載のエンジン音加工装置。
(19) 前記制御部は、前記センサの検出内容の現在値または前記センサの出力信 号の過去一定期間内における変化の態様に基づいて前記運転状態を特定し、前記 運転状態に応じて和音構成情報を生成することを特徴とする(17)に記載のエンジン 音加工装置。
(20) 前記和音構成手段は、収音された前記エンジン音にピッチ変換を施して前記 協和音の音声信号を生成するピッチ変換部を有することを特徴とする(17)に記載の エンジン音加工装置。
(21) 前記和音構成手段は、前記車両のエンジンの点火パルスをトリガとして、目的 とするピッチを有する協和音の音声信号を合成する合成部を有することを特徴とする (17)に記載のエンジン音力卩ェ装置。
(22) 前記信号処理部は、複数種類の補正モードを有し、ユーザにより選択された 補正モードに基づき前記スピーカに供給するエンジン音の位相特性に対し、周波数 に応じた補正を施す位相補正手段を具備する(1)に記載のエンジン音加工装置。
(23) 前記車両のエンジン回転数を測定するエンジン回転数センサを具備し、 前記位相補正手段は、前記エンジン回転数センサにより測定されるエンジン回転 数に基づき、前記位相特性の補正を行う周波数を決定する(22)に記載のエンジン 音生成装置。
(24) 前記車両のアクセル踏み込み量を測定するアクセル踏み込み量センサを具 備し、
前記位相補正手段は、前記アクセル踏み込み量センサにより測定されるアクセル 踏み込み量に応じて、前記位相特性の補正量を増減させる(22)に記載のエンジン 音生成装置。
(25) 前記信号処理部は該マイクロフォンで収音されたエンジン音に対して歪みを 付加する(1)に記載のエンジン音生成装置。
(26) 前記歪みの度合いは、エンジン回転数又はアクセルの踏み込み度の少なくと も!ヽずれか一方に応じて動的に変更されるようになされて!、ることを特徴とする(25) に記載のエンジン音力卩ェ装置。
(27) 前記付加される歪みのタイプは、エンジン回転数又はアクセルの踏み込み度 の少なくともいずれか一方に応じて動的に変更されるようになされていることを特徴と する(25)に記載のエンジン音力卩ェ装置。
(28) 前記マイクロフォンと前記ディストーション部との間に、少なくともエンジン回転 数又はアクセルの踏み込み度のいずれか一方に応じて周波数特性が動的に変更さ れるイコライザ部が設けられていることを特徴とする(25)に記載のエンジン音加工装 置。
(29) 前記歪みが付加されたエンジン音を、少なくともエンジン回転数又はアクセル の踏み込み度に応じて動的に制御される音量で前記スピーカに出力する増幅器を 有することを特徴とする(25)に記載のエンジン音加工装置。
(30) 前記信号処理部により付加される歪み、前記フィルタにおける周波数特性又 は前記増幅器における音量の動的に変更される態様は、前記エンジン回転数の変 化の速度又はアクセルの踏み込み度の変化の速度に応じて変更されるようになされ ていることを特徴とする(25)に記載のエンジン音力卩ェ装置。
(31) 車両内に設けられたスピーカと、
擬似的なエンジン音を表す音声信号を生成する信号生成手段と、
前記音声信号からエンジン音信号を生成して前記スピーカに供給する手段であつ て、和音構成情報が与えられた場合に、前記和音構成情報に従って前記音声信号 のピッチと協和関係にあるピッチを有する協和音の音声信号を生成し、前記協和音 の音声信号を前記音声信号に付加して前記エンジン音信号を生成する和音構成手 段を含むエンジン音信号生成手段と、 運転状態を監視し、運転状態に応じて和音構成情報を生成し、前記和音構成手段 に与える制御手段と
を具備することを特徴とする車室内音響制御装置。
(32) 車両内に設けられたスピーカと、
擬似的なエンジン音を表すエンジン音信号を生成して前記スピーカに供給する信 号生成手段とを具備し、
前記信号生成手段は、複数種類の補正モードを有し、ユーザにより選択された補 正モードに基づき前記スピーカに供給するエンジン音の位相特性に対し、周波数に 応じた補正を施す位相補正手段を具備するエンジン音生成装置。
[0009] 上記の構成によれば、実際のエンジン音を車室外で収音して加工後に出力すること により、車室内によりリアルなエンジン音を発生させることができるエンジン音力卩ェ装 置を提供することができる。
図面の簡単な説明
[0010] [図 1]この発明に係るエンジン音力卩ェ装置のブロック図
[図 2]この発明の第 1の実施形態であるエンジン音加工装置のブロック図
[図 3]第 1の実施形態であるエンジン音力卩ェ装置のマイクおよびスピーカの取り付け 位置を説明する図
[図 4]第 1の実施形態であるエンジン音加工装置の制御系統を説明する図
[図 5]第 1の実施形態であるエンジン音加工装置におけるスペクトル変形特性を説明 する図
[図 6]第 1の実施形態であるエンジン音加工装置における別のスペクトル変形特性を 説明する図
[図 7A]第 1の実施形態であるエンジン音力卩ェ装置におけるセンサ出力に応じたスぺ タトル変形特性を説明する第 1の図
[図 7B]第 1の実施形態であるエンジン音力卩ェ装置におけるセンサ出力に応じたスぺ タトル変形特性を説明する第 2の図
[図 7C]第 1の実施形態であるエンジン音力卩ェ装置におけるセンサ出力に応じたスぺ タトル変形特性を説明する第 3の図 [図 8A]エンジン音の周波数スペクトルのうち、一つのピークのゲインと回転数の関係 を説明する第 1の図
[図 8B]エンジン音の周波数スペクトルのうち、一つのピークのゲインと回転数の関係 を説明する第 2の図
[図 8C]エンジン音の周波数スペクトルのうち、一つのピークのゲインと回転数の関係 を説明する第 3の図
[図 9]この発明の実施形態であるエンジン音力卩ェ装置のブロック図
[図 10]同エンジン音加工装置のマイクおよびスピーカの取り付け位置を説明する図 圆 11]同エンジン音加工装置の制御系統を説明する図
圆 12]同エンジン音加工装置のピッチシフタを詳細に説明する図
圆 13A]同エンジン音加工装置におけるピッチシフト特性を説明する第 1の図
[図 13B]同エンジン音加工装置におけるピッチシフト特性を説明する第 2の図
[図 13C]同エンジン音加工装置におけるピッチシフト特性を説明する第 3の図
[図 13D]同エンジン音加工装置におけるピッチシフト特性を説明する第 4の図
[図 14A]同エンジン音加工装置におけるセンサ出力に応じたフィルタ特性を説明する 第 1の図
[図 14B]同エンジン音加工装置におけるセンサ出力に応じたフィルタ特性を説明する 第 2の図
[図 14C]同エンジン音加工装置におけるセンサ出力に応じたフィルタ特性を説明する 第 3の図
[図 14D]同エンジン音加工装置におけるセンサ出力に応じたフィルタ特性を説明する 第 4の図
[図 15]この発明の第 3の実施形態であるエンジン音力卩ェ装置のブロック図
[図 16]同エンジン音加工装置のマイクおよびスピーカの取り付け位置を説明する図 圆 17]同エンジン音加工装置の制御系統を説明する図
圆 18]同エンジン音加工装置における波形生成部の出力信号を説明する図 圆 19]同エンジン音加工装置における変調の深さ制御を説明する図
圆 20]同エンジン音加工装置における変調周波数制御を説明する図 [図 21A]同エンジン音加工装置におけるフィルタ特性を説明する第 1の図
[図 21B]同エンジン音加工装置におけるフィルタ特性を説明する第 2の図
[図 21C]同エンジン音加工装置におけるフィルタ特性を説明する第 3の図
[図 21D]同エンジン音加工装置におけるフィルタ特性を説明する第 4の図
圆 22]この発明の第 4の実施形態である車室内音場制御装置の構成を示すブロック 図
[図 23]同実施形態におけるフィルタ 21〜24の第 1の構成例を示すブロック図
[図 24]同実施形態におけるフィルタ 21〜24の第 2の構成例を示すブロック図
[図 25]第 4の実施形態の第 2の構成例における合成部 205— jの構成例を示すブロッ ク図
[図 26]同実施形態の動作例を示す波形図
圆 27]この発明の第 5の実施形態であるエンジン音生成装置の構成を示すブロック 図
[図 28]同実施形態における信号処理部 740の構成例を示すブロック図
[図 29]同実施形態における振幅特性データおよび位相特性データの補正処理の内 容を説明する図
[図 30]この発明の第 6の実施形態において行われる位相特性データの補正処理を 説明する図
圆 31]この発明の第 7実施形態において用いられる位相補正データの生成方法を説 明する図
圆 32]本発明の第 8の実施形態の構成を示すブロック図
[図 33A]アナログ方式のディストーション部 4の構成例を示す図
[図 33B]デジタル方式のディストーション部 4の構成例を示す図
[図 34]イコライザにおいて制御される内容について説明するための図
[図 35A]エンジン回転数及びアクセルの踏み込み度に応じたイコライザの制御につい て説明する図であり、エンジン回転数と中心周波数との対応関係を示す図
[図 35B]エンジン回転数及びアクセルの踏み込み度に応じたイコライザの制御につい て説明する図であり、アクセルの踏み込み度とゲインとの対応関係を示す図 [図 36A]ディストーション処理について説明するための図
[図 36B]アナログ回路によるディストーション回路の構成例を示す図
[図 36C]アナログ回路によるディストーション回路の他の構成例を示す図
[図 36D]アナログ回路によるディストーション回路の他の構成例を示す図
[図 37]ディストーションの歪み具合を示す DRIVEパラメータ (Kd)につ ヽて説明する ための図
[図 38A]エンジン回転数やアクセルの踏み込み度に応じたパラメータ Kdの変化の態 様について説明するための第 1の図
[図 38B]エンジン回転数やアクセルの踏み込み度に応じたパラメータ Kdの変化の態 様について説明するための第 2の図
[図 38C]エンジン回転数やアクセルの踏み込み度に応じたパラメータ Kdの変化の態 様について説明するための第 3の図
[図 39]ディストーションの歪みパターンを示す TYPEパラメータ(Kp)につ!/、て説明す るための図
[図 40Α]エンジン回転数と音量 V (Volume)との対応関係を示す図
[図 40B]アクセルの踏み込み度と音量 V (Volume)の対応関係を示す図
[図 40C]エンジン回転数と音量 V (Volume)との対応関係を示す図
[図 41]遮音板の伝達特性をシミュレートするフィルタを設けた実施の形態の要部構成 を示す図
発明を実施するための最良の形態
図面を参照してこの発明の実施形態であるエンジン音加工装置について説明する 。図 1はエンジン音加工装置のブロック図である。
エンジン音加工装置 1は、自動車の車室外に配置された、エンジン音を収音するた めのマイク 10と、マイク 10から入力された音声信号を増幅するアンプ 11と、アンプ 11 力もの増幅信号をデジタル信号に変換する AZDコンバータ 12と、デジタル信号を 信号処理する信号処理部 2と、信号処理部 2からの出力をアナログ信号に変換する DZAコンバータ 19と、アナログ信号を出力するスピーカ 41とを備える。
さらに、エンジン音力卩ェ装置 1は、運転状況を検出するためのセンサ 30を備えてい る。センサの検出値は制御部 3に入力される。
制御部 3は、このセンサ出力に応じて信号処理部 2の信号処理特性を決定する。制 御部 3は、この決定した信号処理特性を信号処理部 2に出力して、信号処理を制御 する。
制御部 3には、操作部 4が接続されている。利用者 (運転者)は、この操作部 4を操 作して、運転状況 (センサ 30の出力)に応じ信号処理部 2の信号処理特性を設定す る。
[0012] 以上の構成によれば、マイク力 実際のエンジン音を収音し、運転状況に応じて信 号処理をすることで、リアルなエンジン音を発生させることができる。
また、信号処理部 2において、車室壁面における遮音特性をシミュレートするフィル タを設けてもよい。すなわち、マイク 10は、直接エンジンルーム内で音声を収音して いるため、その音声信号は高音域の機械ノイズが高レベルで含まれており、運転者 等の乗員が車室内で聴くエンジン音とはかけ離れている。このため、この音声信号を 車室で聴くエンジン音と類似した音質 (周波数分布)となるように、フィルタで車室壁 面の遮音特性をシミュレートし、低音域は残しつつ高音域をカットした音に加工する。 この遮音特性は必ずしもこの装置が搭載される自動車の遮音特性をシミュレートする 必要はなぐスポーツカーや高級車の遮音特性をシミュレートするものであってもよい
[0013] また、上記の構成では、マイクは一つしか設けられて ヽな 、が、複数のマイクを設け ることもできる。この場合、前記エンジンの吸気口、排気口、エンジンヘッド、エンジン ルームの壁面のうちの複数の個所にマイクを配置することができ、よりリアルなェンジ ン音を発生させることができる。
また、上記の構成では、運転状況を検出するためのセンサを複数配置してもよい。 この場合、エンジン回転数、アクセル開角、自動車の速度など、複数の運転状況を 検出することが可能になる。
[0014] 以下、より具体的な本発明の実施形態を説明する。
[0015] 図面を参照してこの発明の実施形態であるエンジン音加工装置について説明する 。図 2は同エンジン音加工装置のブロック図である。図 3は同エンジン音加工装置の マイクおよびスピーカの取り付け位置を説明する図である。
[0016] 図 3に示すように、エンジン音加工装置 101は、 2つのマイク 110、マイク 120を備え ており、それぞれエンジンの吸気口およびエンジンルームの車室側の壁面にそれぞ れ取り付けられている。エンジンの吸気口に取り付けられたマイク 110は、主としてェ ンジンの吸気音を収音する。また、エンジンルームの車室側の壁面に取り付けられた マイク 120は、主としてエンジンの爆発や回転等の動作音(以下、エンジン爆発音と 言う。)を収音する。ただし、マイクの設置位置および個数はこの実施形態に限定され るものではない。例えば、マフラー付近に取り付けて排気音を収音してもよいし、ェン ジンヘッド付近に取り付けてチェーン等の機械音を収音してもよい。
[0017] なお、それぞれの位置に取り付けるマイクは、その設置位置により異なる音を収音 することができるので、それぞれの設置位置においてさらに複数のマイクを取り付け て収音した音をミキシングするようにしてもよい。例えば、エンジンルームの車室側の 壁面に取り付けるマイクは、その取り付け位置によりエンジンの異なる部分の動作音 を収音することができる。したがって、マイクをエンジンルームの車室側の壁面に複数 取り付けて、それぞれのマイクが収音した音をミキシングしてもよい。必要とする音質 に基づ!/、てミキシング比率を調整し、エンジン動作音を収音すればょ 、。
[0018] また、マイクは音響マイクに限定されるもではない。例えば可聴帯域の振動をピック アップする振動センサ等であってもよ 、。この振動センサをエンジンに取り付ければ、 エンジンの可聴帯域の振動を直接 (音になる前に)収音することができる。すなわち、 振動センサはエンジンの振動パルスを検出するのではなぐエンジンの音源としての 信号をピックアップするものである。また、エンジンの吸気口に振動センサを取り付け ることで、エンジン回転に関わらない風切り音等を収音することなぐ純粋に吸気音の みを収音することが可能である。一方、マフラー付近は音響マイクを取り付け、ェンジ ン回転次数に対応する周波数ピークを有する排気音を収音する。また、排気音を振 動センサにより収音する場合は、マフラーの取付部付近に振動センサを取り付ける。 このように、設置位置に応じて音響マイクと振動センサをそれぞれ取り付ければよ 、。
[0019] 車室内にはフロント左右およびリャ左右の 4個のスピーカ 141が設置されている。こ のスピーカ 141は、カーオーディオ機器のものであり、エンジン音加工装置独自のも のではない。すなわち、このエンジン音加工装置は、エンジン音を収音して加工した のち、そのオーディオ信号をカーオーディオ機器 105に入力し、カーオーディオ機器 105を介して車室内にエンジン音を出力するようにして 、る。
[0020] 図 2において、マイク 110、マイク 120は、それぞれアンプ 111、アンプ 121に接続 されている。アンプ 111、アンプ 121は、それぞれマイク 110、マイク 120から入力さ れた音声信号 (吸気音、エンジン爆発音)を増幅する。増幅された音声信号は、 / Dコンバータ 112、 A/Dコンバータ 122でデジタル信号に変換される。デジタル信 号に変換された音声信号は、フィルタ 113、フィルタ 123で吸気音やエンジン爆発音 をほとんど含まない不要な周波数帯をカットされる。また、信号レベルが大きすぎる場 合には、このフィルタにおいてアツテネートされる。したがって、フィルタ 113、フィルタ 123は、ローパスフィルタ、ハイパスフィルタ、アツテネータ等を組み合わせたもので 構成すればよい。
[0021] フィルタ 113、フィルタ 123で周波数帯域および信号レベルを制限された信号は、 信号処理部 102に入力される。信号処理部 102では、マイク 110で収音された吸気 音およびマイク 120で収音されたエンジンルーム壁面におけるエンジン爆発音の両 方に対してそれぞれ別系統で信号処理を実行する。なお、この信号処理は、両方の 信号をミキシングしたのち 1系統で行うようにしてもょ 、。
[0022] 信号処理部 102において、フィルタ 114、フィルタ 124は、車室壁面における遮音 特性をシミュレートするフィルタである。すなわち、マイク 110およびマイク 120は、直 接エンジンルーム内で音声を収音しているため、その音声信号は高音域の機械ノィ ズが高レベルで含まれており、運転者等の乗員が車室内で聴くエンジン音とはかけ 離れている。このため、この音声信号を車室で聴くエンジン音と類似した音質 (周波 数分布)となるように、フィルタ 114、フィルタ 124で車室壁面の遮音特性をシミュレ一 トし、低音域は残しつつ高音域をカットした音に加工する。この遮音特性は必ずしもこ の装置が搭載される自動車の遮音特性をシミュレートする必要はなぐスポーツカー や高級車の遮音特性をシミュレートするものであってもよい。
[0023] なお、このフィルタ 114、フィルタ 124のフィルタ特性(遮音特性)は、固定でもよ!/ヽ 力 設定変更を可能にしてエンジン音の周波数特性を変えられるようにしてもよい。 [0024] フィルタ 114、フィルタ 124でフィルタリングされた信号は、 FFT部 115、 FFT部 12 5に入力される。 FFT部 115、 FFT部 125は、それぞれの入力信号を高速フーリエ 変換して周波数成分を抽出する。抽出した周波数成分から周波数スペクトルを得る。
[0025] 次に接続される変換部 116、変換部 126は、 FFT部 115、 FFT部 125から出力さ れた周波数スペクトルの形状をそのときの運転状況に応じて変形するアクティブフィ ルタである。この周波数スペクトルの形状の変形特性にっ 、ては後で説明する。
[0026] 変換部 116、変換部 126から出力された変形後の周波数スペクトルは、 IFFT部 11 7、 IFFT部 127で時間軸波形に変換する。その後、ミキサ 118でミキシングされて 1 系統の音声信号となり、 DZAコンバータ 119でアナログのオーディオ信号に変換さ れて、カーオーディオ機器 105に出力される。なお、この 1系統の音声信号は、ステ レオ出力(LZR)を含むものである。
[0027] なお、変形後の周波数スペクトルを先にミキサでミキシングして 1系統の信号にして から IFFT部で時間軸波形に変換するように接続してもよい。この場合、変換部 116、 変換部 126の出力側にミキサ 118を接続し、ミキサ 118の出力側に単一の IFFT部 (I FFT部 117、または IFFT部 127)を接続する。さらに IFFT部の出力信号が D/Aコ ンバータ 119に入力されるように接続する。
[0028] 運転状況を検出するためのセンサとして、エンジンの回転数を検出するための回転 数センサ 130、アクセルの開角を検出するためのアクセル開角センサ 131、自動車 の速度を検出するための車速センサ 132を備えている。各センサの検出値はインタ フェース 133を介して制御部 103に入力される。インタフェース 133は、必要に応じて A/Dコンバータを内蔵しているものとする。また、回転数センサ 130、車速センサ 13 2がエンジンの回転または車軸の回転に応じてパルスを出力するエンコーダの場合 には、このパルスの積算値またはパルス間隔に基づいて制御部 103がエンジンの回 転数や車速を算出するようにしてもょ ヽ。
[0029] 制御部 103は、このセンサ出力に応じて前記変換部 116、変換部 126の周波数ス ベクトルの変形特性を決定するパラメータおよびミキサ 118のミキシング比率を決定 する。制御部 103は、この決定したパラメータおよびミキシング比率を信号処理部 10 2に出力して、変換部 116、変換部 126およびミキサ 118を制御する。 [0030] 制御部 103には、操作部 104が接続されている。この操作部 104は、カーオーディ ォ機器 105と共有であってもよぐオーディオ機器の操作部力も信号を入力するよう にしてもよい。利用者 (運転者)は、この操作部 104を操作して、運転状況 (センサ 13 0、センサ 131、センサ 132の出力)に応じた変換部 116、変換部 126、ミキサ 118の 制御特性を設定する。また、この操作部 4を操作して、フィルタ 114、フィルタ 124のフ ィルタ特性 (遮音特性)を設定する。
[0031] すなわち、このエンジン音力卩ェ装置の制御系統を図示すると図 4のようになる。操作 部 104の設定により、フィルタ 114、フィルタ 124、変換部 116、変換部 126、および、 ミキサ 118の制御特性が設定され、このうち変換部 116、変換部 126、およびミキサ 1 18は、センサ 130、センサ 131、センサ 132の出力に応じてリアルタイムにその特性 が制御される。
[0032] 操作部 104によるスペクトル変形特性、ミキシング比率の設定は、各変換部につい て 1または複数のパラメータをマニュアル操作で設定するようにしてもよぐ予め 1また は複数のパラメータセットを制御部 103に記憶しておき、そのパラメータセットのいず れかを選択して設定するようにしてもよい。複数のパラメータセットを準備する場合に は、たとえば、 V型エンジンのような力強さ感のあるエンジン音効果が得られるパラメ ータセット、直列エンジンのようなクリア感のあるエンジン音効果が得られるパラメータ セットなどを準備しておき、 V型エンジンモード、直列エンジンモードなどのモード切り 換えができるようにしておけばよい。なお、このエンジン音力卩ェ装置の機能をオフして エンジン音効果を発生させな 、ようにすることも当然可能である。
[0033] また、フラッシュメモリや ROMパックのコネクタを設けておき、パラメータセットをフラ ッシュメモリや ROM力も供給するようにしてもよい。また、カーナビゲーシヨン装置の ハードディスク力も供給を受けるようにしてもよい。さらに、インターネットを介してパラ メータセットをダウンロードできるようにしてもよい。また、 LANコネクタなどを設けてお き、このコネクタを介して接続されたコンピュータ(ノートパソコン)力もパラメータセット の供給やパラメータのマニュアル設定ができるようにしてもょ 、。
[0034] 次に、図 5を参照して変換部 116、変換部 126のスペクトル変形特性制御の例につ いて説明する。図 5に示すグラフの横軸は周波数、縦軸は変換部のゲインを示し、同 図に示すグラフは、収音したエンジン音の周波数スペクトルの一例を示すものである 。このように、収音したエンジン音は、周波数軸上で所定間隔にピーク(同図中の白 丸 152)を示す。これらのピーク周波数は、エンジン回転数に応じた周波数のほぼ倍 音周波数上にあり、それ以外に大きなレベルを持つピークは存在しない。
[0035] 一般に、このように周波数軸上で等間隔にピークを示し、それ以外に大きなレベル をもつピークが存在しないスペクトル 151は、クリアで歪みのない音質となるが、ドライ ブ愛好家にとって快適な音質であるとは必ずしも言えない。すなわち、 V型エンジン のようにノイズ感があり、力強さ感のあるエンジン音が好まれる場合があり、このような ドライブ愛好家にとっては歪み感のある音質が好まれる。
[0036] 変換部 116、変換部 126は、入力した周波数スペクトル力もピークを検出し、ピーク 間のスペクトル形状を変更する。具体的には、各ピーク倍音周波数の中心周波数( 図 5中の破線部 153)のレベルを上昇させて、歪み感のある音質に変更する。なお、 レベルを上昇させる周波数は、厳密に各ピーク倍音周波数の中心周波数 (起音を周 波数 foとすると、周波数 1. 5fo、 2. 5fo、 · · · )に限らず、各ピーク倍音周波数の間で あればよい(例えば、周波数 1. 4fo、 2. 6ίο · · · ) ο
[0037] なお、以下のように各ピーク周波数周辺のレベルを変更するようにしてもょ 、。図 6 は、周波数スペクトルのうち、一つのピーク周波数周辺のゲインを示した図である。同 図に示すように、実線で示された周波数スペクトルを、ピーク周波数についてはレべ ルを変化させずに、破線で示すようにピーク周波数力 離れるにしたがってレベルを 上昇させる。この場合、ピーク周波数成分以外のスペクトル成分が大きくなり、歪み感 のある音質となって、エンジン音の力強さ感が強調される。
[0038] 一方で、本実施形態においては、変換部 116、変換部 126は、上記処理の逆の処 理を行うこともできる。すなわち、周波数スペクトルのピークを強調して、よりクリアで歪 み感の無い音質に変換することも可能である。この場合、ピーク周波数のレベルを上 昇させるようにする。クリアで歪み感の無い音に変換することで、モータ音のように静 粛感のあるエンジン音を好む運転者のニーズに対応することが可能となる。
[0039] 上述したように、これらの特性制御は、利用者の操作に応じてそのパラメータセット を変更できるものである。ピーク間のレベルを上昇させて力強さ感を強調する V型ェ ンジンモードや、ピークのレベルを上昇させてクリア感を強調する直列エンジンモード 等のパラメータセットを設定して、運転者等が変更できるようにすればょ 、。
[0040] なお、上記の処理は全周波数帯域につ!、て行う例を示したが、周波数帯域を限定 して処理を行ってもよい。例えば低域のみ力強さ感を強調することで、大排気量で少 気筒エンジンのような迫力のある音質にすることができる。
[0041] 次に、図 7A〜7Cを参照してセンサ 130、センサ 131、およびセンサ 132の検出値 に応じてスペクトル変形特性を制御する場合にっ 、て説明する。図 7A〜7Cに示す グラフの横軸は周波数、縦軸は変換部のゲインを示し、同図に表示するフィルタの周 波数ゲインは以下のような特徴を有して 、る。
[0042] 図 7Aは、エンジン回転数に基づくエンジン爆発音のスペクトル変形制御特性を示 しており、
(a)エンジン回転数が低いときは、全周波数帯域でピークを強調する。
(b)エンジン回転数が高いときは、全周波数帯域でピーク以外のレベルを上げる。 と 、うルールに基づくものである。
[0043] 図 7Bは、アクセル開角に基づく吸気音のスペクトル形状制御特性を示しており、
(c)アクセル開角が小さいときは、スペクトル形状を変形しない。
(d)アクセル開角が大きいときは、吸気音の低音のピークを強調する。
と 、うルールに基づくものである。
[0044] 図 7Cは、車速に基づく全体音量の制御特性を示しており、
(e)車速が小さいときは、スペクトル形状を変形しない。
(£)車速が大きいときは、全周波数帯域でスペクトル形状はそのまま、全体音量を大 さくする。
と 、うルールに基づくものである。
[0045] 以上のルールは、「エンジンの回転数が低いときは静粛感を強調するためにピーク を強調してクリアな音質とするが、エンジンの回転数が高いときはエンジンの力強さ感 を強調するために全周波数帯域でピーク以外のレベルを上げる。アクセル開角が大 きいときはエンジンに負荷が掛カつているため、吸気音の低域ピークを強調して低音 のクリア感を強調する。車速が大きいときは、風切り音やタイヤノイズなどエンジン音 以外のノイズが大きくなるため、全体の音量を大きくする。」という趣旨に基づくもので あり、 V型エンジンモードに相当するルールである。 V型エンジンモードは、実際のェ ンジン音にさらにそのときの運転状況に応じてエンジンの力強さ感を強調するための ルールである。
[0046] なお、低音域の周波数帯域は、エンジン音の周波数分布に基づ 、て決定すればよ いが、一般的には、低音域の周波数帯域は 300〜500Hzにすればよい。
また、スペクトル変形特性の制御ルールは上記のものに限定されな!、。
[0047] 以下、別の例における変換部 116、変換部 126のスペクトル変形特性制御につい て説明する。図 8A〜8Cは、エンジン音の周波数スペクトルのうち、一つのピークのレ ベルと回転数の関係を示した図である。図 8Aに示すグラフの横軸は時間を表し、縦 軸は変換部のゲインを表している。図 8Bおよび 8Cに示すグラフの横軸はエンジン回 転数を表し、縦軸は変換部のゲインを表している。
[0048] 図 8Aは、エンジン回転数一定のもと、変換部のゲインの時間変化を表したグラフで あり、図中のようにエンジン音のレベルは一定ではなく不規則に増減する。一般には 、図 8Aに示すように、エンジン回転数が一定であってもエンジン音のレベルは一定 ではなぐ不規則に変化するが、このような状況はドライブ愛好家にとって快適な音と は言えない。すなわち、ドライブ愛好家にとっては、エンジンの回転数にリニアにェン ジン音量が対応するエンジン音が好まれ、このようにリニア感のあるエンジン音が質 の良いエンジンであると判断される。
[0049] 変換部 116、変換部 126は、入力した周波数スペクトルカゝらピークを検出し、ピーク レベルの時間変化を測定する。ピークレベルは、エンジンの回転数にリニアに対応す るとすれば、エンジン回転数によってピークレベルの時間変化は予測することができ る。したがって、変換部 116、変換部 126は、測定したピークレベルが予測したピーク レベルよりも小さくなつた場合に、その周波数成分にっ 、て予測したピークレベルに なるようにレベルを上昇させる。
[0050] 図 8Bは、エンジン回転数と変換部のゲインの関係を表したグラフである。図 8Bの 実線に示すように、通常、エンジン音はエンジン回転数にリニアに対応せずに不規 則に変化する。また、性能の低いエンジンは、あるエンジン回転数から出力が急激に 低下して音量も低下する。変換部 116、変換部 126は、予測したピークレベルよりも 測定したピークレベルが小さくなつた場合に、図 8Bの破線に示すように、エンジン音 がエンジン回転数にリニアに対応するようにピークレベルを上昇させる。
[0051] 図 8Cは、エンジン回転数と変換部のゲインの関係を表したグラフである力 図 8C においては、破線に示すようにあるエンジン回転数力も急激にエンジン音が大きくな るようにピークレベルを上昇させる。
[0052] これにより、エンジン回転数に応じて音圧が上昇するリニア感を再現することが可能 となり、また、あるエンジン回転数力 急激に音圧が上昇するターボエンジンのような 非リニア感を再現することも可能となる。
[0053] なお、これらの処理は全周波数帯域で、検出したピークすべてに行ってもよいし、 周波数帯域を限定して行ってもょ 、。
[0054] 以上のルールをスペクトル変形特性に的確に反映させるためには、たとえば、各セ ンサ出力を変数にした関数を作成しておき、この関数にセンサ出力を入力して特性 を求めるようにしてもよぐフアジィ推論によって求めるようにしてもよい。また、各セン サ出力の所定ステップ毎にスペクトル変形特性を決定するテーブルを求めておき、セ ンサ出力でこのテーブルを検索して該当するスペクトル変形特性を読み出すようにし てもよい。いずれにしても利用者によって設定される上記パラメータセットにはこのセ ンサ出力に基づ!/、てスペクトル変形特性を求めるための情報が含まれて 、るものと する。
[0055] 〔第 2の実施形態〕
[0056] 図面を参照してこの発明の第 2の実施形態であるエンジン音加工装置について説 明する。図 9は同エンジン音加工装置のブロック図である。図 10は同エンジン音加工 装置のマイクおよびスピーカの取り付け位置を説明する図である。
図 11に示すように、エンジン音加工装置 1は、 4つのマイク 210、マイク 220、マイク 230、およびマイク 240を備えており、それぞれエンジンの吸気口、エンジンルーム の車室側の壁面、エンジンヘッド、および排気口(マフラー)付近にそれぞれ取り付け られている。エンジンの吸気口に取り付けられたマイク 210は、主としてエンジンの吸 気音を収音する。エンジンルームの車室側の壁面に取り付けられたマイク 220は、主 としてエンジンの爆発や回転等の動作音 (以下、エンジン爆発音と言う。)を収音する
。エンジンヘッドに取り付けられたマイク 230は、主としてチェーン等の機械音を収音 する。また、マフラー付近に取り付けたマイク 240は、排気音を収音する。ただし、マ イクの設置位置および個数はこの実施形態に限定されるものではない。
[0057] なお、それぞれの位置に取り付けるマイクは、その設置位置により異なる音を収音 することができるので、それぞれの設置位置においてさらに複数のマイクを取り付け て収音した音をミキシングするようにしてもよい。例えば、エンジンルームの車室側の 壁面に取り付けるマイクは、その取り付け位置によりエンジンの異なる部分の動作音 を収音することができる。したがって、マイクをエンジンルームの車室側の壁面に複数 取り付けて、それぞれのマイクが収音した音をミキシングしてもよい。必要とする音質 に基づ!/、てミキシング比率を調整し、エンジン動作音を収音すればょ 、。
[0058] また、マイクは音響マイクに限定されるもではない。例えば可聴帯域の振動をピック アップする振動センサ等であってもよ 、。この振動センサをエンジンに取り付ければ、 エンジンの可聴帯域の振動を直接 (音になる前に)収音することができる。すなわち、 振動センサはエンジンの振動パルスを検出するのではなぐエンジンの音源としての 信号をピックアップするものである。また、エンジンの吸気口に振動センサを取り付け ることで、エンジン回転に関わらない風切り音等を収音することなぐ純粋に吸気音の みを収音することが可能である。一方、マフラー付近は音響マイクを取り付け、ェンジ ン回転次数に対応する周波数ピークを有する排気音を収音する。また、排気音を振 動センサにより収音する場合は、マフラーの取付部付近に振動センサを取り付ける。 このように、設置位置に応じて音響マイクと振動センサをそれぞれ取り付ければよ 、。
[0059] 車室内にはフロント左右およびリャ左右の 4個のスピーカ 271が設置されている。こ のスピーカ 271は、カーオーディオ機器のものであり、エンジン音加工装置独自のも のではない。すなわち、このエンジン音加工装置は、エンジン音を収音して加工した のち、そのオーディオ信号をカーオーディオ機器 205に入力し、カーオーディオ機器 205を介して車室内にエンジン音を出力するようにして 、る。
[0060] 図 9において、マイク 210、マイク 220、マイク 230、およびマイク 240は、それぞれ アンプ 211、アンプ 221、アンプ 231、およびアンプ 241【こ接続されて!ヽる。アンプ 21 1、アンプ 221、アンプ 231、およびアンプ 241は、それぞれマイク 210、マイク 220、 マイク 230、およびマイク 240から入力された音声信号 (吸気音、エンジン爆発音、機 械音、排気音)を増幅する。増幅された音声信号は、 AZDコンバータ 212、 AZDコ ンノ ータ 222、 A/Dコンバータ 232、および A/Dコンバータ 242でデジタル信号に 変換される。デジタル信号に変換された音声信号は、ミキサ 250に入力される。
[0061] ミキサ 250は、 4つの信号をミキシングした後 2系統で信号処理部 202のピッチシフ タ 213とフィルタ 223に出力する。信号処理部 202では、ミキシングされた 2つの信号 に対してそれぞれ別系統で信号処理を実行する。主としてマイク 220、マイク 240で 収音したエンジン爆発音、排気音をピッチシフタ 213に入力されるようにし、マイク 21 0、マイク 230、で収音した吸気音、機械音をフィルタ 223に入力されるようにミキシン グする。ミキシング比率はあら力じめ固定であってもよいし、制御部 203によって制御 されるようにしてちょい。
[0062] ピッチシフタ 213は、入力された信号をピッチシフトする。ピッチシフトする周波数は 、制御部 203によって制御され、運転状況に応じてリアルタイムに特性が変化する。 この発明におけるピッチシフタ 213は、収音したエンジン音(ここでは主にエンジン爆 発音と排気音)をピッチシフトし、他の形式のエンジン音特性に変化させる。例えばェ ンジン力 気筒エンジンであるとして、収音したエンジン音の周波数特性をピッチシフ トすることで 8気筒エンジンの周波数特性を有するエンジン音に加工する。 8気筒ェ ンジンのエンジン回転数に対する特定の次数成分が強調されるように加工する。
[0063] フィルタ 223は、入力された信号をフィルタリングするアクティブフィルタである。その フィルタ特性は、制御部 203によって制御され、運転状況に応じてリアルタイムに変 化する。フィルタ 223は、収音したエンジン音 (ここでは主に吸気音と機械音)をフィル タリングし、他の形式のエンジン音特性に変化させる。例えばエンジン力 気筒ェンジ ンであれば、 8気筒エンジンのようなエンジン音にカ卩ェする。エンジン回転数に対す る特定の次数成分が強調され、かつ他の周波数成分が抑制されるようにフィルタ特 性を変化させればよい。
[0064] ピッチシフタ 213の周波数変換比率およびフィルタ 223のフィルタ特性は、あらかじ め規定しておいたカ卩工テーブルを制御部 203が読み出すことで決定される。加工テ 一ブルは制御部 203の内蔵メモリ等に記憶されている力 フラッシュメモリ等に記憶し てお 、てもよ 、。加工テーブルにつ!/、ては後ほど詳細に述べる。
[0065] ピッチシフタ 213、フィルタ 223から出力される信号はそれぞれ、フィルタ 214、フィ ルタ 224で吸気音やエンジン爆発音をほとんど含まない不要な周波数帯をカットされ る。また、信号レベルが大きすぎる場合には、このフィルタにおいてアツテネートされ る。したがって、フィルタ 214、フィルタ 224は、ローパスフィルタ、ハイパスフィルタ、 アツテネータ等を組み合わせたもので構成すればよい。
[0066] フィルタ 214、フィルタ 224で周波数帯域および信号レベルを制限された信号は、 フイノレタ 215、およびフイノレタ 225に人力される。
[0067] フィルタ 215、フィルタ 225は、車室壁面における遮音特性をシミュレートするフィル タである。すなわち、マイク 210、マイク 220およびマイク 230は、直接エンジンルーム 内で音声を収音し、マイク 240はマフラー付近の車外で音声を収音しているため、そ の音声信号は高音域のノイズが高レベルで含まれており、運転者等の乗員が車室内 で聴くエンジン音とはかけ離れている。このため、この音声信号を車室で聴くエンジン 音と類似した音質 (周波数分布)となるように、フィルタ 215、フィルタ 225で車室壁面 の遮音特性をシミュレートし、低音域は残しつつ高音域をカットした音に加工する。こ の遮音特性は必ずしもこの装置が搭載される自動車の遮音特性をシミュレートする必 要はなぐスポーツカーや高級車の遮音特性をシミュレートするものであってもよい。
[0068] なお、このフィルタ 215、フィルタ 225のフィルタ特性(遮音特性)は、固定でもよ!/ヽ 力 設定変更を可能にしてエンジン音の周波数特性を変えられるようにしてもよい。
[0069] 次段のフィルタ 216、フィルタ 226は、運転状況に応じてリアルタイムに特性が変化 するアクティブフィルタであり、エンジン音(吸気音、エンジン爆発音、機械音、および 排気音)を運転状況に応じて加工する。このフィルタ特性の変化については後で説 明する。
[0070] 2段のフィルタ 215—フィルタ 216、およびフィルタ 225—フィルタ 226から出力され た信号はミキサ 217でミキシングされて 1系統の音声信号となり、 DZAコンバータ 21 8でアナログのオーディオ信号に変換されて、カーオーディオ機器 5に出力される。な お、この 1系統の音声信号は、ステレオ出力(LZR)を含むものである。 [0071] 運転状況を検出するためのセンサとして、エンジンの回転数を検出するための回転 数センサ 260、アクセルの開角を検出するためのアクセル開角センサ 261、自動車 の速度を検出するための車速センサ 262を備えて 、る。各センサの検出値はインタ フェース 263を介して制御部 203に入力される。インタフェース 263は、必要に応じて A/Dコンバータを内蔵しているものとする。また、回転数センサ 260、車速センサ 26 2がエンジンの回転または車軸の回転に応じてパルスを出力するエンコーダの場合 には、このパルスの積算値またはパルス間隔に基づいて制御部 203がエンジンの回 転数や車速を算出するようにしてもょ ヽ。
[0072] 制御部 203は、このセンサ出力に応じて前記ミキサ 217のミキシング比率、ピッチシ フタ 213のピッチシフト特性、およびフィルタ 223、フィルタ 216、フィルタ 226のフィル タ特性を決定するパラメータを決定する。制御部 203は、この決定したパラメータおよ びミキシング比率を信号処理部 202に出力して、ピッチシフタ 213、フィルタ 223、フ ィルタ 216、フィルタ 226およびミキサ 217を制御する。
[0073] 制御部 203には、操作部 204が接続されている。この操作部 204は、カーオーディ ォ機器 205と共有であってもよぐオーディオ機器の操作部力も信号を入力するよう にしてもよい。利用者 (運転者)は、この操作部 204を操作して、運転状況 (センサ 26 0、センサ 261、センサ 262の出力)に応じたピッチシフタ 213、フィルタ 223、フィルタ 216、およびフィルタ 226の制御特性を設定する。また、この操作部 4を操作して、フ ィルタ 215、フィルタ 225のフィルタ特性 (遮音特性)を設定する。
[0074] すなわち、このエンジン音力卩ェ装置の制御系統を図示すると図 11のようになる。操 作部 204の設定により、ピッチシフタ 213、フィルタ 223、フィルタ 215、フィルタ 225、 フィルタ 216、フィルタ 226、および、ミキサ 17の制御特性が設定され、このうちピッチ シフタ 213、フィルタ 223、フィルタ 216、フィルタ 226およびミキサ 217は、センサ 26 0、センサ 261、センサ 262の出力に応じてリアルタイムにその特性が制御される。
[0075] 操作部 204によるピッチシフト特性、フィルタ特性、ミキシング比率の設定は、ピッチ シフタ 213、各フィルタ、ミキサ 217のそれぞれについて 1または複数のパラメータを マ-ユアル操作で設定するようにしてもよぐ予め 1または複数のパラメータセットを制 御部 203に記憶しておき、そのパラメータセットのいずれかを選択して設定するように してもよい。複数のパラメータセットを準備する場合には、たとえば、 8気筒エンジンの ようなエンジン音効果が得られるパラメータセット、 12気筒エンジンのようなエンジン 音効果が得られるパラメータセットなどを準備しておき、 8気筒エンジンモード、 12気 筒エンジンモードなどのモード切り換えができるようにしておけばよい。また、 8気筒ェ ンジンモードの中でもスポーツカーモード、クルージングモード等のパラメータセット を切り換えできるようにしてもよい。なお、このエンジン音力卩ェ装置の機能をオフして エンジン音効果を発生させな 、ようにすることも当然可能である。
[0076] また、フラッシュメモリや ROMパックのコネクタを設けておき、パラメータセットをフラ ッシュメモリや ROM力も供給するようにしてもよい。また、カーナビゲーシヨン装置の ハードディスク力も供給を受けるようにしてもよい。さらに、インターネットを介してパラ メータセットをダウンロードできるようにしてもよい。また、 LANコネクタなどを設けてお き、このコネクタを介して接続されたコンピュータ(ノートパソコン)力もパラメータセット の供給やパラメータのマニュアル設定ができるようにしてもょ 、。
[0077] なお、信号処理部 2の構成は上記実施形態に限るものではな 、。例えば、ピッチシ フタ 213〜FIRフィルタ 216の 1系統だけの構成であってもよい。ピッチシフタ 213〜 FIRフィルタ 216の 1系統でエンジン音をピッチシフトすれば、運転者等に聞こえるェ ンジン音をほぼ他の型式のエンジン音に加工することができる。また、フィルタ 214 ( フィルタ 224)や FIRフィルタ 216 (FIRフィルタ 226)は、本発明の必須の構成要素で はなぐピッチシフタ 213、および FIRフィルタ 215からなる構成であってもよい。また 、各フィルタは接続順序を入れ替えてもよ ヽものである。
[0078] 次に、図 12、および図 13を参照してピッチシフト特性の例について説明する。
[0079] 図 12は、エンジン音力卩ェ装置のピッチシフタ 213を詳細に説明する図である。同図 に示すように、ピッチシフタ 213に入力されたエンジン音は、複数のバンドパスフィル タ(以下 BPFと言う) 280に入力され、所定のレベル以上のピークを有する周波数帯 域が切り出される。それぞれの BPF280の通過周波数帯域は、制御部 203によって 制御される。制御部 203は、回転数センサ 260の検出値であるエンジン回転数に応 じて回転 1次、回転 2次、 · · ·に相当する周波数帯域についてそれぞれ信号を通過 するようにリアルタイムに BPF280の通過周波数帯域を設定する。 [0080] なお、高い回転次数のピークまで全て切り出す必要はなぐ主要な低次のピークを 切り出してピッチシフトすれば、運転者等に聞こえるエンジン音を、ほぼ他の型式の エンジン音にカ卩ェすることができる。切り出すピークは 1つ〜複数であればよい。また 、複数のピークをまとめて切り出すようにしてもよい。例えばエンジン音が 100Hz、 20 OHzにピークを有する場合には、これらを含む周波数帯域をまとめて 1つの BPF280 で切り出すように設定してもよ!/、。
[0081] BPF280でエンジン回転次数の回転 1次、回転 2次、 · · ·に相当する周波数帯域に 分割されたエンジン音は、それぞれに接続されるシフト処理部 290に入力される。シ フト処理部 290は、それぞれ入力されたエンジン音を所定の周波数にピッチシフトす る。ピッチシフトされたエンジン音は、それぞれレベル調整部 200でレベル変更され た後、合成され 1系統の信号として出力される。
[0082] ここで、シフト処理部 290およびレベル調整部 200は、制御部 3によって制御される 。制御部 203は、回転数センサ 260の検出値であるエンジン回転数とカ卩工テーブル を参照してシフト処理部 290のピッチシフト比率 (周波数変換比率)とレベル調整部 2 00のレベル変更比率を設定する。加工テーブルは、エンジン回転数に対して、どの ようなエンジン回転次数の成分が発生するかを規定したテーブルである。
[0083] なお、図 12においてピッチシフタ 213は、複数の系統の BPF280、シフト処理部 29 0、およびレベル調整部 200を備え、複数のピークを切り出す例を示した力 切り出 すピークが単一である場合、または複数のピークをまとめて 1つの周波数帯域で切り 出す場合などは、 1系統の BPF280、シフト処理部 290、およびレベル調整部 200で あってもよいものである。
[0084] 次に、図 13A〜13Dを用いて加工テーブルについて説明する。
[0085] 図 13A、および図 13Cに示すグラフの横軸は回転数センサ 260から読み出したェ ンジン回転数、縦軸は周波数を示し、図 13Bおよび図 13Dに示すグラフの横軸は周 波数、縦軸はゲインを示す。同図に示すグラフは、収音したエンジン音の周波数特 性の一例を示すものである。この例においては、 4気筒エンジンのエンジン音を収音 するものとする。
[0086] 図 13Aは、収音したエンジン音のピークについて、エンジン回転数と周波数の関係 を示したグラフである。図 13Aに示すように、 4気筒エンジンのエンジン音は、ェンジ ン回転次数の整数倍(回転 1次、 2次、 3次 · · ·)の成分のいずれかに所定レベル以 上のピークを有する。この例においては回転 2次、回転 4次に所定レベル以上のピー クを有する。これを図 13Bにおいて詳細に説明する。図 13Bは、エンジン回転数が 6 000回転の場合に収音したエンジン音の周波数特性を示したグラフである。このよう に、エンジン回転数が 6000回転であるとすると、回転 2次に相当する周波数 200Hz と、回転 4次に相当する周波数 400Hzにレベルの大きいピークを有する。この例にお いては、回転 2次、回転 4次の成分がレベルの大きいピークとして発生している力 ェ ンジンによって発生する次数成分は異なる。
[0087] 加工テーブルは、図 13Aのようにそれぞれのエンジン(例えば 4気筒エンジン、 8気 筒エンジンなど)において、エンジン回転数に対してどのような回転次数 (周波数)の ピークが発生するかを規定している。つまり、加工テーブルは 4気筒エンジンテープ ル、 8気筒エンジンテーブルなど複数のエンジン回転次数成分のテーブル力もなる。 これらのエンジンテーブルの各次数成分は予め対応付けされており、制御部 3は、回 転数センサ 260で読み出したエンジン回転数と、それぞれのエンジンテーブルから エンジン回転数に対応する次数 (周波数)成分を読み出して、シフト処理部 290の周 波数変換比率を設定する。さら〖こ、レベル調整部 200のレベル変更量も設定する。 なお、それぞれのエンジンテーブルの対応付けは、低い回転次数から順に対応付け ておいてもよいし、別途対応付け専用テーブルを設けておき、これを制御部 203が 読み出してもよい。
[0088] 図 13Cは、収音したエンジン音をピッチシフトした場合のピークを示したグラフであ る。図 13Dは、エンジン回転数が 6000回転の場合に収音したエンジン音をピッチシ フトした場合の周波数特性を示したグラフである。このように、ピッチシフタ 213は、収 音したエンジン音のうち、 4気筒エンジン回転 2次成分、および回転 4次成分を 8気筒 エンジン回転 4次成分、および 8次成分にピッチシフトする。ピッチシフトすることで、 エンジン音は図 13Dに示すような周波数特性を示し、 8気筒エンジン回転 4次成分、 8次成分(400Hz、 800Hz付近)がレベルの大きいピークとなる。
[0089] 上記実施形態では 2次成分、 4次成分にっ 、てのピッチシフトを示した力 無論、こ の例に限るものではなぐこのエンジン音加工装置を搭載する自動車のエンジン型式 と、 目的とするエンジン音のエンジン型式に応じて様々なカ卩工テーブルを規定してお けばよいものである。
[0090] なお、上記においては、加工テーブルに規定された次数成分についてピッチシフト をする例を示した力 いずれか 1つの成分についてのみピッチシフトするようにしても よい。最もレベルの大きい成分、または最も高い周波数の成分だけをピッチシフトす るようにしてちょい。
[0091] また、エンジン回転数が低回転の場合、ピッチシフトをせずに収音したエンジン音 をそのまま出力し、所定の回転数 (例えば 5000回転等)以上となった場合にピッチシ フトを行 、、多気筒エンジンのエンジン音効果を発生させるようにしてもよ 、。
[0092] なお、ピッチシフト処理は、この例に限るものではなぐエンジン音を FFT (Fast F ourie Transform)することで周波数スペクトルを求め、所定レベル以上のピークを 有する周波数にっ 、て、ピーク形状をそのままに周波数シフトをするようにしてもょ 、
[0093] 上述したように、これらの特性制御は、利用者の操作に応じてそのパラメータセット を変更できるものである。 8気筒エンジンのようなエンジン音効果が得られるパラメ一 タセット、 12気筒エンジンのようなエンジン音効果が得られるパラメータセット等を設 定して、運転者等が変更できるようにすればよい。この場合、上記テーブルは 8気筒 エンジンテーブル、 12気筒エンジンテーブル等をそれぞれ規定しておく。
[0094] 次に、フィルタ 223のフィルタ特性について説明する。フィルタ 223は、ミキサ 250力 ら主としてマイク 210、マイク 230で収音した吸気音、機械音の信号が入力される。フ ィルタ 223においても、加工テーブルに基づいて他の形式のエンジン音に加工する 。すなわち、上述したピッチシフタ 213のように、 8気筒エンジンのエンジン音に加工 する場合は 8気筒エンジンの次数成分 (周波数)が強調されるようにフィルタ特性をリ アルタイムに変化させ、他の次数成分を抑制する。強調する周波数は、エンジン回転 数センサ 260の検出値であるエンジン回転数にとカ卩ェテーブルに基づいて制御部 2 03が設定する。
[0095] なお、マイク 210、マイク 230で収音した吸気音、機械音のピークに関しては、マイ ク 220、マイク 240で収音したエンジン爆発音、排気音のピークに比較して、エンジン の気筒数に起因する割合が小さい。したがって、フィルタ 223においては、収音した エンジン音のピークを極端に抑制するものではない。
[0096] 次に、図 14A〜14Dを参照してフィルタ 216、フィルタ 226の特性制御の一例につ いて説明する。図 14A〜14Cに示すグラフの横軸は周波数、縦軸はフィルタの周波 数ゲインを示し、同図に表示するフィルタの周波数ゲインは以下のような特徴を有し ている。
[0097] 図 14Aは、エンジン回転数に基づく吸気音、エンジン爆発音のフィルタ制御特性を 示しており、
(a)エンジン回転数が低いときは、低音を強調し、高音を抑制する。
(b)エンジン回転数が高いときは、低音を抑制し、高音を強調する。
と 、うルールに基づくものである。
[0098] 図 14Bは、アクセル開角に基づく吸気音のフィルタ制御特性を示しており、
(c)アクセル開角が小さいときは、吸気音の低音を抑制する。
(d)アクセル開角が大きいときは、吸気音の低音を強調する。
と 、うルールに基づくものである。
[0099] 図 14Cは、車速に基づく全体音量の制御特性を示しており、
(e)車速が小さいときは、全体音量を小さくする。
(£)車速が大きいときは、全体音量を大きくする。
と 、うルールに基づくものである。
[0100] 図 14Dに示すグラフの横軸はアクセル開角値およびエンジン回転数、縦軸はミキ シングウェイトを示している。図 14Dは、アクセル開角およびエンジン回転数に基づく 吸気音、機械音、およびエンジン爆発音、排気音のミキシングウェイト制御特性を示 しており、
(g)アクセル開角が大きくなるにつれて、吸気音、機械音のミキシングウェイトを大き くする。
(h)エンジン回転数が大きくなるにつれて、エンジン爆発音、排気音のミキシングゥ エイトを大きくする。 と 、うルールに基づくものである。
[0101] なお、ミキシング比率は、吸気音、機械音のミキシングウェイトとエンジン爆発音、排 気音のミキシングウェイトの比率によって決定される。以上のルールは、「エンジンの 回転数が低 、ときは大排気量のエンジンの雰囲気を出すために低音を強調し、ェン ジンの回転数が高いときはエンジンの高速回転を強調するために高音を強調すると ともにエンジン爆発音、排気音のミキシングウェイトを大きくする。アクセル開角が大き いときはエンジンに負荷が掛カつているため、吸気音を大きくするとともに吸気音、機 械音のミキシングウェイトを大きくする。車速が大きいときは、風切り音やタイヤノイズ などエンジン音以外のノイズが大きくなるため、全体の音量を大きくする。」という趣旨 に基づくものであり、スポーツカーモードに相当するルールである。スポーツカーモー ドは、実際のエンジン音にさらにそのときの運転状況を強調するためのルールである
[0102] なお、低音域、高音域の中心周波数は、エンジン音の周波数分布に基づいて決定 すればよいが、一般的には、低音域の中心周波数は 500Hz前後、高音域の中心周 波数は lOOOHz前後にすればよい。
[0103] 以上のルールをフィルタ特性に的確に反映させるためには、たとえば、各センサ出 力を変数にした関数を作成しておき、この関数にセンサ出力を入力して特性を求め るようにしてもよく、フアジィ推論によって求めるようにしてもよい。また、各センサ出力 の所定ステップ毎にフィルタ特性を決定するテーブルを求めておき、センサ出力でこ のテーブルを検索して該当するフィルタ特性を読み出すようにしてもよい。いずれに しても利用者によって設定される上記パラメータセットにはこのセンサ出力に基づい てフィルタ変形特性を求めるための情報が含まれているものとする。
[0104] 以上のように、本発明の実施形態であるエンジン音加工装置においては、車室外 に設置したマイク力 実際のエンジン音を収音し、特定の周波数成分を強調加工し て、異なる形式のエンジン音を車室内に出力することができるため、容易な処理で多 気筒エンジン音のようなクリアで軽やかな音質を持つリアルなエンジン音効果を発生 させることができ、ドライブ愛好家にとって心地よ!/、車室空間を作り出すことができる。
[0105] 〔第 3の実施形態〕 [0106] 図面を参照してこの発明の実施形態であるエンジン音加工装置について説明する 。図 15は同エンジン音加工装置のブロック図である。図 16は同エンジン音加工装置 のマイクおよびスピーカの取り付け位置を説明する図である。
図 17に示すように、エンジン音力卩ェ装置 1は、 2つのマイク 310、マイク 320を備え ており、それぞれエンジンの吸気口およびエンジンルームの車室側の壁面にそれぞ れ取り付けられている。エンジンの吸気口に取り付けられたマイク 310は、主としてェ ンジンの吸気音を収音する。また、エンジンルームの車室側の壁面に取り付けられた マイク 320は、主としてエンジンの爆発や回転等の動作音(以下、エンジン爆発音と 言う。)を収音する。ただし、マイクの設置位置および個数はこの実施形態に限定され るものではない。例えば、マフラー付近に取り付けて排気音を収音してもよいし、ェン ジンヘッド付近に取り付けてチェーン等の機械音を収音してもよい。
[0107] なお、それぞれの位置に取り付けるマイクは、その設置位置により異なる音を収音 することができるので、それぞれの設置位置においてさらに複数のマイクを取り付け て収音した音をミキシングするようにしてもよい。例えば、エンジンルームの車室側の 壁面に取り付けるマイクは、その取り付け位置によりエンジンの異なる部分の動作音 を収音することができる。したがって、マイクをエンジンルームの車室側の壁面に複数 取り付けて、それぞれのマイクが収音した音をミキシングしてもよい。必要とする音質 に基づ!/、てミキシング比率を調整し、エンジン動作音を収音すればょ 、。
[0108] また、マイクは音響マイクに限定されるもではない。例えば可聴帯域の振動をピック アップする振動センサ等であってもよ 、。この振動センサをエンジンに取り付ければ、 エンジンの可聴帯域の振動を直接 (音になる前に)収音することができる。すなわち、 振動センサはエンジンの振動パルスを検出するのではなぐエンジンの音源としての 信号をピックアップするものである。また、エンジンの吸気口に振動センサを取り付け ることで、エンジン回転とは無関係な風切り音等を収音することなぐ純粋に吸気音の みを収音することが可能である。一方、マフラー付近は音響マイクを取り付け、ェンジ ン回転次数に対応する周波数ピークを有する排気音を収音する。また、排気音を振 動センサにより収音する場合は、マフラーの取付部付近に振動センサを取り付ける。 このように、設置位置に応じて音響マイクと振動センサをそれぞれ取り付ければよ 、。 [0109] 車室内にはフロント左右およびリャ左右の 4個のスピーカ 51が設置されている。こ のスピーカ 351は、カーオーディオ機器のものであり、エンジン音加工装置独自のも のではない。すなわち、このエンジン音加工装置は、エンジン音を収音して加工した のち、そのオーディオ信号をカーオーディオ機器 305に入力し、カーオーディオ機器 305を介して車室内にエンジン音を出力するようにして 、る。
[0110] 図 15【こお!ヽて、マイク 310、マイク 320ίま、それぞれアンプ 311、アンプ 321【こ接続 されている。アンプ 311、アンプ 321は、それぞれマイク 310、マイク 320から入力さ れた音声信号 (吸気音、エンジン爆発音)を増幅する。増幅された音声信号は、 / Dコンバータ 312、 AZDコンバータ 322でデジタル信号に変換される。デジタル信 号に変換された音声信号は、フィルタ 313、フィルタ 323で吸気音やエンジン爆発音 をほとんど含まない不要な周波数帯をカットされる。また、信号レベルが大きすぎる場 合には、このフィルタにおいてアツテネートされる。したがって、フィルタ 313、フィルタ 323は、ローパスフィルタ、ハイパスフィルタ、アツテネータ等を組み合わせたもので 構成すればよい。
[0111] フィルタ 313、フィルタ 323で周波数帯域および信号レベルを制限された信号は、 信号処理部 302に入力される。信号処理部 302では、マイク 310で収音された吸気 音およびマイク 320で収音されたエンジン爆発音の両方に対してそれぞれ別系統で 信号処理を実行する。なお、この信号処理は、両方の信号をミキシングしたのち 1系 統で行うようにしてもよい。
[0112] 信号処理部 302において、フィルタ 314、フィルタ 324は、車室壁面における遮音 特性をシミュレートするフィルタである。すなわち、マイク 310およびマイク 320は、直 接エンジンルーム内で音声を収音しているため、その音声信号は高音域の機械ノィ ズが高レベルで含まれており、運転者等の乗員が車室内で聴くエンジン音とはかけ 離れている。このため、この音声信号を車室で聴くエンジン音と類似した音質 (周波 数分布)となるように、フィルタ 314、フィルタ 324で車室壁面の遮音特性をシミュレ一 トし、低音域は残しつつ高音域をカットした音に加工する。この遮音特性は必ずしもこ の装置が搭載される自動車の遮音特性をシミュレートする必要はなぐスポーツカー や高級車の遮音特性をシミュレートするものであってもよい。 [0113] なお、このフィルタ 314、フィルタ 324のフィルタ特性(遮音特性)は、固定でもよい 力 設定変更を可能にしてエンジン音の周波数特性を変えられるようにしてもよい。
[0114] 次段のフィルタ 315、フィルタ 325は、運転状況に応じて特性が変化するアクティブ フィルタであり、エンジン音(マイク 310、マイク 320で収音した吸気音およびエンジン 爆発音)を運転状況に応じて加工する。したがって、このフィルタ 315、フィルタ 325 は、運転状況に応じてリアルタイムに特性が変化するアクティブフィルタである。この フィルタ特性の変化については後で説明する。
[0115] 2段のフィルタ 314—フィルタ 315、およびフィルタ 324—フィルタ 325から出力され た吸気音およびエンジン爆発音はそれぞれ乗算器 316、および乗算器 326におい て波形生成部 330から出力された信号と合成 (乗算)される。波形生成部 330が出力 する信号は、所定の周期で振幅変調した信号であり、この信号の波形パラメータは制 御部 303によって決定される。波形生成部 330は、乗算器 316、乗算器 326のぞれ ぞれに対して異なる信号を出力することが可能である。波形生成部 330の出力信号 は、吸気音、およびエンジン爆発音と合成され、それぞれの音に変調感を付加する。 詳細は後述する。その後、吸気音およびエンジン爆発音は、ミキサ 317でミキシング されて 1系統の音声信号となり、ゲインコントローラ 318でレベルコントロールされ、 D ZAコンバータ 319でアナログのオーディオ信号に変換されて、カーオーディオ機器 305〖こ出力される。なお、この 1系統の音声信号は、ステレオ出力(LZR)を含むもの である。
[0116] なお、ミキサ 317の後段に乗算器を接続して、 1系統の信号にミキシングした後に波 形生成部 330の出力信号を合成するようにしてもよい。吸気音とエンジン爆発音がミ キシングされた後のエンジン音に波形生成部 330の出力信号を合成しても、ェンジ ン音全体に変調感を付加することができる。
[0117] 運転状況を検出するためのセンサとして、エンジンの回転数を検出するための回転 数センサ 340、アクセルの開角を検出するためのアクセル開角センサ 341、自動車 の速度を検出するための車速センサ 342を備えて 、る。各センサの検出値はインタ フェース 343を介して制御部 303に入力される。インタフェース 343は、必要に応じて A/Dコンバータを内蔵しているものとする。また、回転数センサ 340、車速センサ 34 2がエンジンの回転または車軸の回転に応じてパルスを出力するエンコーダの場合 には、このパルスの積算値またはパルス間隔に基づいて制御部 303がエンジンの回 転数や車速を算出するようにしてもよい。また、イダ-ッシヨンのパルスを検出して、回 転数を算出するようにしてもょ ヽ。イダ-ッシヨンのパルスから回転数を算出すること で、測定タイムラグなくエンジン回転数を検出することができる。
[0118] 制御部 303は、このセンサ出力に応じてフィルタ 315、フィルタ 325のフィルタ特性 、波形生成部 330の波形パラメータおよびミキサ 317のミキシング比率を決定する。 制御部 303は、この決定したフィルタ特性、波形パラメータ、およびミキシング比率を 信号処理部 2に出力して、フィルタ 315、フィルタ 325、波形生成部 330およびミキサ 317を制御する。
[0119] 制御部 303には、操作部 304が接続されている。この操作部 304は、カーオーディ ォ機器 305と共有であってもよぐオーディオ機器の操作部力も信号を入力するよう にしてもよい。利用者 (運転者)は、この操作部 304を操作して、運転状況(回転数セ ンサ 340、アクセル開角センサ 341、車速センサ 342の出力)に応じたフィルタ 315、 フィルタ 325、波形生成部 330、およびミキサ 317の制御特性を設定する。
[0120] すなわち、このエンジン音力卩ェ装置の制御系統を図示すると図 17のようになる。操 作部 304の設定により、フィルタ 314、フィルタ 324、フィルタ 315、フィルタ 325、波 形生成部 330およびミキサ 317の制御特性が設定され、このうちフィルタ 315、フィル タ 325、波形生成部 330およびミキサ 317は、回転数センサ 340、アクセル開角セン サ 341、車速センサ 342の出力に応じてリアルタイムにその特性が制御される。
[0121] 操作部 34によるフィルタ特性、波形パラメータ、ミキシング比率の設定は、各構成部 について 1または複数のパラメータをマ-ユアル操作で設定するようにしてもよぐ予 め 1または複数のパラメータセットを制御部 303に記憶しておき、そのパラメータセット の!ヽずれかを選択して設定するようにしてもょ ヽ。複数のパラメータセットを準備する 場合には、たとえば、粗さ感のあるエンジン音パラメータセット、滑ら力さ感のあるェン ジン音パラメータセットなどを準備しておき、これらのモード切り換えができるようにし ておけばよい。なお、このエンジン音力卩ェ装置の機能をオフしてエンジン音効果を発 生させな!/ヽよう〖こすることも当然可能である。 [0122] また、フラッシュメモリや ROMパックのコネクタを設けておき、パラメータセットをフラ ッシュメモリや ROM力も供給するようにしてもよい。また、カーナビゲーシヨン装置の ハードディスク力も供給を受けるようにしてもよい。さらに、インターネットを介してパラ メータセットをダウンロードできるようにしてもよい。また、 LANコネクタなどを設けてお き、このコネクタを介して接続されたコンピュータ(ノートパソコン)力もパラメータセット の供給やパラメータのマニュアル設定ができるようにしてもょ 、。
[0123] なお、信号処理部 302の構成は上記実施形態に限るものではない。上述したように 、マイク 310、マイク 320からの信号を信号処理部 302の前段でミキシングしたのち 1 系統で信号処理を行うようにしてもよい。また、排気音や機械音等を収音するため、さ らに複数のマイクを設置する場合において、それぞれの信号を個別に処理してもよ いし、ミキシングして 2系統、または 1系統で処理するようにしてもよい。
[0124] また、フイノレタ 314 (フィノレ 'BR 324)ゃフイノレタ 315 (フィノレタ 325)は、本発明の必 須の構成要素ではなぐ波形生成部 330、および乗算器 316 (乗算器 326)力もなる 構成であってもよい。また、各フィルタは接続順序を入れ替えてもよいものである。
[0125] 次に、図 18を参照して、波形生成部 330の波形パラメータについて説明する。図 1 8に示すグラフの横軸は時間、縦軸は振幅割合を示し、同図に示すグラフは、波形 生成部 330の出力する信号の波形の一例を示すものである。このように、波形生成 部 330の出力する信号の波形は、所定の周期で振幅変調した波形である。この波形 は、以下のような式で表される。
[0126] [数 1]
, 、 , , sin(2^ - f - t + 0) + l
[0127] ここで、 tは時間、 kは変調の深さ、 fはこの変調信号波形の基本周波数 (Ηζ)、 Θは 初期位相を表す。すなわち、この信号波形 m(t)は、周波数 f (周期 lZf)の正弦波と なる。周波数 fは以下のような式で表される。
[0128] [数 2] _ r x N ― 2 x 60
[0129] ここで、 rはエンジン回転数 (rpm)、 Nはエンジン気筒数(自然数)を表す。エンジン 回転数は、回転数センサ 340の検出値力も読み取り、運転状況に応じてリアルタイム に変化する。つまり、波形生成部 330の出力する変調信号波形 m (t)の周期は、ェン ジン爆発の基本周期とほぼ等しくなる。このような周期の変調信号 m(t)を収音したェ ンジン音と合成すると、エンジン音に変動感が生じ、粗さ感のある音質に加工するこ とができる。これは、人間の聴覚特性であるテンポラルマスキング (ある音が鳴り止ん だ直後に別の音を鳴らした場合、後の音が前の音にマスキングされる現象)を利用す るものである。テンポラルマスキングにより、出力されるエンジン音について、レベルの 大小 (波形の山、谷)を聞き分けることはできないが、変動の成分 (変動感)を感じるこ とができる。この変動を感じている状態が音の粗さを感じている状態となり、このような 変調信号波形 m (t)を合成することでエンジン音を粗さ感のある音質に加工すること ができる。なお、変調信号波形の周期はエンジン爆発の基本周期の整数倍周期とし てもよい。
[0130] 波形生成部 330は、変調信号波形 m (t)の波形パラメータのうち変調の深さ kを制 御部 303に従って設定する。変調の深さ kは 0〜1の間に設定する(0≤k≤l)。変調 の深さ kを大きくすると変調成分が強調されて、より粗さ感のある音質に加工すること 力 Sできる。図 18に示す変調波形おいては、上側ピークは振幅割合が 1のままで、下 側ピークの深さが kの値に応じて変化する。
[0131] 変調の深さ kは、マニュアル操作で設定するようにしてもよぐ上述したように予め 1 または複数のパラメータセットを制御部 303に記憶しておき、そのパラメータセットの V、ずれかを選択して設定するようにしてもよ!、。
[0132] 変調の深さ kは、定数としてもよ!、し、運転状況 (主にエンジン回転数)に応じて変 化する関数としてもよい。図 19を参照して回転数センサ 340の検出値に応じて変調 の深さ kを制御する場合の 1例について説明する。同図に示すグラフの横軸はェンジ ン回転数 (rpm)、縦軸は kの大きさを示し、以下のような特徴を有している。 [0133] 同図は、エンジン回転数に基づく変調の深さ kの制御特性を示しており、
(a)エンジン回転数がおよそ 3000回転以下のときは、 kを小さくして(同図において は 0. 4にして)粗さ感を強調しな 、(滑ら力さ感のある)エンジン音とする
(b)エンジン回転数が 3000〜5000回転のときは、 kを大きくして(同図においては 0. 8にして)粗さ感を強調したエンジン音とする
(c)エンジン回転数がおよそ 5000回転以上のときは、 kを小さくして(同図において は 0. 4にして)滑ら力さ感のあるエンジン音とする
と 、うルールに基づくものである。
[0134] このルールは、自動車を強く加速させるとき(エンジンの軸出力が最も強くなるとき) の主たる回転域である 3000〜5000回転のときに kを大きくしてエンジンの荒々しさ を強調するルールである。
[0135] なお、変調の深さ kの制御ルールは上記のものに限定されない。また、回転数セン サ 340の検出値に応じた制御に限定されるものではない。例えば、アクセル開角 50
%以上のときに kを大きくして粗さ感を強調する等の制御をしてもよい。
[0136] なお、変調の深さ kをマイナス側に設定することも可能である。変調の深さ kをマイナ スに設定して、変調成分のレベルを増大させることでも粗さ感のある音質に加工する ことができる。
[0137] また、変調信号 m (t)の波形パラメータのうち周波数 fについても上記数式に限定せ ずに、運転状況に応じてさらに変化する関数としてもよい。同じエンジン回転数であ つても周波数 fを高くすると、さらに変動感が認識されて粗いエンジン音に加工するこ とができる。図 20を参照してエンジン回転数に応じて周波数 fの割合を制御する場合 の 1例について説明する。図 20に示すグラフの横軸はエンジン回転数、縦軸は周波 数 fの数値割合を示し、以下のような特徴を有して 、る。
[0138] 同図は、エンジン回転数に基づく周波数 fの制御特性を示しており、
(a)エンジン回転数が 3000回転以下のときは、周波数 fを高くして(同図においては 1. 2倍にして)粗さ感をさらに強調したエンジン音とする
(b)エンジン回転数が 3000回転以上のときは、周波数 fを通常設定にして(同図に ぉ 、ては 1. 0倍にして)若干粗さ感のあるエンジン音とする と 、うルールに基づくものである。
[0139] このルールは、アイドリング中や減速中などエンジン回転数が低ぐエンジン音のレ ベルが小さいときに周波数 fを大きくしてエンジンの粗さ感をさらに強調し、低回転で も迫力のあるエンジン音とするルールである。この周波数 fの制御ルールにっ ヽても 上記に限定されるものではない。アクセル開角センサ 41等、他の運転状況を検出す るセンサに基づ 、て制御するようにしてもょ 、。
[0140] 波形パラメータである上記変調の深さ kと周波数 fを運転状況 (主にエンジン回転数 )に応じて制御する場合、変調の深さ kを固定にして周波数 fを運転状況に応じて制 御するようにしてもょ 、し、この逆に変調の深 kを運転状況に応じて変化させて周波 数 fの割合を固定 (数値はエンジン回転数に基づく)ようにしてもよい。また、変調の深 さ kと周波数 fの両方を運転状況に応じて変化させるようにしてもよい。無論、両方を 固定 (周波数 fの数値はエンジン回転数に基づく)にしてもょ 、。
[0141] 変調波形 m(t)の初期位相を示す Θは変調のピーク (最も振幅割合が低い)タイミ ングとエンジン音のピーク (最も音量が大きくなる)タイミングを一致させるためのパラメ ータである。変調のピークタイミングとエンジン音のピークタイミングを一致させること で、効率よく変動感を認識させることができる。波形生成部 330は、制御部 303の制 御によって、複数の変調波形を出力してそれぞれのエンジン音(吸気音、エンジン爆 発音)を加工する場合、それぞれのピークタイミングと一致するよう〖こ Θを設定する。 それぞれのタイミングは、運転状況を検出するセンサに応じてリアルタイムに制御す ればよい。例えば、回転数センサ 340がイダ-ッシヨンのパルスから回転数を検出す るセンサである場合は、このパルスに応じて(吸気、爆発〜排気のタイムラグも考慮し て) Θを設定する。
[0142] なお、変調波形は正弦波に限るものではない。三角波、矩形波、のこぎり波等他の 波形であっても周期関数であれば粗さ感のあるエンジン音に加工することができる。
[0143] 以上のルールを変調波形パラメータに的確に反映させるためには、上述のように各 センサ出力を変数にした関数を作成しておき、この関数にセンサ出力を入力して求 めるようにしてもよぐフアジィ推論によって求めるようにしてもよい。また、各センサ出 力の所定ステップ毎に変調波形パラメータを決定するテーブルを求めておき、センサ 出力でこのテーブルを検索して該当する波形パラメータを読み出すようにしてもよい 。いずれにしても利用者によって設定される上記パラメータセットにはこのセンサ出力 に基づ!/、て波形パラメータを求めるための情報が含まれて 、るものとする。
[0144] 以上の制御を行い、変調波形をエンジン音に合成することでエンジンの粗さ感ゃ滑 らカさ感等を表現したリアルなエンジン音効果を発生させることができる。
[0145] 次に、図 21A〜21Dを参照してフィルタ 315,フィルタ 325の特性制御の一例につ いて説明する。図 21A〜21Cに示すグラフの横軸は周波数、縦軸はフィルタの周波 数ゲインを示し、同図に表示するフィルタの周波数ゲインは以下のような特徴を有し ている。
[0146] 図 21Aは、エンジン回転数に基づく吸気音、エンジン爆発音のフィルタ制御特性を 示しており、
(a)エンジン回転数が低いときは、低音を強調し、高音を抑制する。
(b)エンジン回転数が高いときは、低音を抑制し、高音を強調する。
と 、うルールに基づくものである。
[0147] 図 21Bは、アクセル開角に基づく吸気音のフィルタ制御特性を示しており、
(c)アクセル開角が小さいときは、吸気音の低音を抑制する。
(d)アクセル開角が大きいときは、吸気音の低音を強調する。
と 、うルールに基づくものである。
[0148] 図 21Cは、車速に基づく全体音量の制御特性を示しており、
(e)車速が小さいときは、全体音量を小さくする。
(£)車速が大きいときは、全体音量を大きくする。
と 、うルールに基づくものである。
[0149] 図 21Dに示すグラフの横軸はアクセル開角値およびエンジン回転数、縦軸はミキ シングウェイトを示している。図 21Dは、アクセル開角およびエンジン回転数に基づく 吸気音、エンジン爆発音のミキシングウェイト制御特性を示しており、
(g)アクセル開角が大きくなるにつれて、吸気音のミキシングウェイトを大きくする。
(h)エンジン回転数が大きくなるにつれて、エンジン爆発音のミキシングウェイトを大 さくする。 と 、うルールに基づくものである。
[0150] なお、ミキシング比率は、吸気音のミキシングウェイトとエンジン爆発音のミキシング ウェイトの比率によって決定される。以上のルールは、「エンジンの回転数が低いとき は大排気量のエンジンの雰囲気を出すために低音を強調し、エンジンの回転数が高 いときはエンジンの高速回転を強調するために高音を強調するとともにエンジン爆発 音のミキシングウェイトを大きくする。アクセル開角が大き 、ときはエンジンに負荷が 掛カつているため、吸気音を大きくするとともにこの吸気音のミキシングウェイトを大き くする。車速が大きいときは、風切り音やタイヤノイズなどエンジン音以外のノイズが 大きくなるため、全体の音量を大きくする。」という趣旨に基づくものであり、実際のェ ンジン音にさらにそのときの運転状況を強調するためのルールである。
[0151] なお、低音域、高音域の中心周波数は、エンジン音の周波数分布に基づいて決定 すればよいが、一般的には、低音域の中心周波数は 500Hz前後、高音域の中心周 波数は lOOOHz前後にすればよい。
また、フィルタ特性の制御ルールは上記のものに限定されない。フィルタ特性の制 御ルールもマ-ユアル操作で設定するようにしてもよぐ上述したように予め 1または 複数のパラメータセットを制御部 3に記憶しておき、そのパラメータセットのいずれか を選択して設定するようにしてもょ ヽ。
[0152] 以上のように、本発明の実施形態であるエンジン音力卩ェ装置においては、車室外 に設置したマイク力 実際のエンジン音を収音し、運転状況に応じた変調波形を合 成することで、安易な処理でエンジンの粗さ感ゃ滑ら力さ感等を表現したリアルなェ ンジン音効果を発生させることができ、ドライブ愛好家にとって心地よ 、車室空間を 作り出すことができる。
[0153] 図 22は、この発明の第 4の実施形態である車室内音響制御装置の構成を示すプロ ック図である。この車室内音響制御装置は、車両において収音されたエンジン音に 加工を施してスピーカ 460Lおよび 460Rから出力する装置である。図 22に示す例で は、吸気音、エンジンルーム内の音、排気音、車外音がエンジン音の構成要素として 選択されており、マイク 411〜414は、それらの音を収音可能な各位置に配置されて いる。フィルタ部 420は、フィルタ 421〜424により構成されている。これらのフィルタ 4 21〜424は、マイク 411〜414から得られる各電気信号に前処理を施す機能と、和 音構成情報が与えられた場合に、和音構成情報に従い、各電気信号のピッチと協和 関係にあるピッチを有する協和音の音声信号を生成して、前処理を経た電気信号に 付加する和音構成機能を備えて!/、る。前処理に関する指示情報および和音構成情 報は、制御部 500により与えられる。なお、和音構成情報、フィルタ 421〜424の構 成の詳細および制御部 500については後述する。ミキサ 430は、フィルタ 421〜424 の各出力信号力 左右 2チャネルのエンジン音信号 XLおよび XRを合成して出力す る装置である。
[0154] フィルタ部 440は、 2個のフィルタ 440Lおよび 440Rにより構成されている。これら のフィルタ 440Lおよび 440Rは、例えば畳み込み演算器により構成されており、ェン ジン音信号 XLおよび XRに対し、制御部 500から与えられる 2組のフィルタ係数列を 各々畳み込み、その結果得られるエンジン音信号 YLおよび YRを出力する。制御部 500は、例えば、図示しない操作子の操作に応じて、フィルタ 440Lおよび 440Rに 与えるフィルタ係数列を切り換える。好ましい態様において、制御部 500は、フィルタ 440Lおよび 440Rに与える 2組のフィルタ係数列の相関係数を調節することにより、 スピーカ再生音の広がり感の調節を行う。すなわち、スピーカ再生音の音像を広範囲 に分散させる場合には、ともにフラットなフィルタ特性に対応し、かつ、相関の低い 2 組のフィルタ係数列が制御部 500からフィルタ 440Lおよび 440Rに与えられ、スピー 力再生音の音像を狭い範囲に集中させる場合には、ともにフラットなフィルタ特性に 対応し、かつ、相関の低い 2組のフィルタ係数列が制御部 500からフィルタ 440Lおよ び 440Rに与えられる。
[0155] 信号処理部 450は、エンジン音信号 YLおよび YRに各々所定の信号処理を施して 左右 2チャネルのスピーカ 460Lおよび 460Rに出力する回路である。エンジン音信 号 YLおよび YRは、この信号処理部 450内の、左右の各チャネルに対応した ATT( 減衰器) 451Lおよび 451Rと、 HPF (高域通過フィルタ) 452Lおよび 452Rと、 LPF (ローパスフィルタ) 453Lおよび 453Rと、遮音特性フィルタ 454Lおよび 454Rと、動 的フィルタ 455Lおよび 455Rとを順次通過し、最終的なエンジン音信号 ZLおよび Z Rとしてスピーカ 460Lおよび 460Rに各々出力される。 [0156] ここで、 ATT451Lおよび 451Rは、エンジン音信号 YLおよび YRのレベルをスピ 一力駆動に適したレベルに調整する回路である。 HPF452Lおよび 452Rと LPF45 3Lおよび 453Rは、スピーカ 460Lおよび 460Rから出力するのに適さない不要な高 域成分および低域成分を ATT451Lおよび 451Rの各出力信号から除去する。遮音 特性フィルタ 454Lおよび 454Rは、車両のボディの遮音特性、すなわち、エンジンか ら車両のボディを介して運転者の耳に至る音の伝達系の特性をシミュレートしたフィ ルタである。そして、動的フィルタ 455Lおよび 455Rは、周波数対利得特性の制御 が可能なフィルタである。好ましい態様では、運転者に聴取されるエンジン音に対し 、エンジン回転数に応じた迫力を与えるため、例えば単位時間当たりのエンジン回転 数が例えば 3000rpm付近である場合には、 400Hz付近の周波数帯域の利得を持 ち上げ、単位時間当たりのエンジン回転数が例えば 6000rpm付近である場合には 、 1kHz付近の周波数帯域の利得を持ち上げる、という具合に、この動的フィルタ 45 5Lおよび 455Rの周波数対利得特性の制御が行われる。
[0157] 制御部 500は、エンジン回転数センサ 511、アクセル踏み込み量センサ 512、シフ トポジションセンサ 513などの各種のセンサの計測結果を監視することにより、車両の 運転状態を特定し、この運転状態に応じて、各部の制御を行う。パラメータメモリ 520 には、予め定義された各種の運転状態に対応つけて、各部の制御に用いるパラメ一 タが記憶されている。このパラメータのうち主要なものとして和音構成情報がある。制 御部 500は、何らかの運転状態を特定した場合、その運転状態に対応つけられたパ ラメータをパラメータメモリ 520から読み出し、そのパラメータに含まれる和音構成情 報をフィルタ 421〜424に与える。
[0158] フィルタ 421〜424として、各種の構成のものが考えられる。図 2は、フィルタ 421〜
424の第 1の構成例を示すブロック図である。この第 1の構成例であるフィルタ 421〜 424は、前処理部 601と、 n個のピッチ変換部 602—; j (j = l〜n)と、 n+ 1個の乗算 器 603—j (j = 0〜n)と、加算器 604とにより構成されて 、る。
前処理部 601は、マイク 411等の出力信号に対して前処理を施す装置である。前 処理としては、次の 3通りがある。
a.何もしない。 b.入力音声信号に対して雑音抑圧処理を施す。
C .入力音声信号における特徴的な倍音成分、すなわち、吸気音、エンジンルーム内 の音、排気音、車外音といった音源の種類により定まる特徴的な倍音成分を選択し て出力する。
[0159] 上述したパラメータメモリ 520において、運転状態に対応つけられたパラメータには 、この前処理の種類を指定する情報が含まれている。制御部 500は、運転状態に対 応したパラメータをパラメータメモリ 520から読み出した場合に、このパラメータ力も前 処理の種類を指定する情報を取り出し、前処理部 601に与える。そして、前処理部 6 01は、与えられた情報により指示された前処理をマイク 411等の出力信号に施すの である。
[0160] n個のピッチ変換部 602— j (j = l〜n)は、各々前処理部 601の出力信号に対して ピッチ変換を施して出力する装置である。制御部 500から各フィルタ 421〜424に与 えられる和音構成情報は、 1または複数のピッチ変換部 602— jに対するピッチ変換 の指示と、それらのピッチ変換に用いるピッチ変換比 P—; j (j = l〜! 1)を含んでおり、 これらは、該当するピッチ変換部 602— jに与えられるようになつている。ピッチ変換の 指示およびピッチ変換比 P—jを受け取ったピッチ変換部 602— jは、前処理部 601 力 出力される音声信号を元のピッチの P— j倍のピッチの音声信号に変換して出力 する。
[0161] 乗算器 603—; j (j = 0〜n)は、前処理部 601またはピッチ変換部 602— k(k= l〜n )の各出力信号に乗算係数 kj (j = 0〜! i)を乗算して出力する。制御部 500から各フィ ルタ 421〜424に与えられる和音構成情報には、この乗算係数 kj (j = 0〜n)も含ま れる。加算器 604は、前処理部 601の出力信号および乗算器 603—; j (j = 0〜n)の 各出力信号を加算して、和音の音声信号を生成し、ミキサ 430に出力する。その際、 和音を構成する各音のピッチは、前処理部 601から出力される音声信号のピッチと 和音構成情報に含まれる 1または複数のピッチ変換比 P— jにより決定され、和音を構 成する各音の音量バランスは、乗算係数 kj (j = 0〜n)により決定される。
[0162] 図 3は、フィルタ 421〜424の第 2の構成例を示すブロック図である。この第 2の構 成例では、第 1の構成例におけるピッチ変換部 602—; j (j = l〜n)が、合成部 605— j (j = l〜n)に置き換えられている。図 4は、各合成部 605—; j (j = l〜n)の構成例であ る。第 1の構成例と同様、ピッチ変換の指示が与えられる合成部 605— jにはピッチ変 換比 P— jが与えられる。また、各合成部 605—; j (j = l〜n)には、エンジンの点火タイ ミングにおいて発生する点火パルスが供給される。合成部 605—; j (j = l〜n)は、点 火パルスに位相同期し、かつ、点火パルスの周波数の P— j倍の周波数を有する鋸 歯状波形の掃引信号を出力する PLL (Phase Locked Loop ;位相同期ループ) 606と 、 1周期分のエンジン音波形のサンプルデータを記憶し、掃引信号がアドレス信号と して供給される波形メモリ 607とにより構成されている。合成部 605— jでは、ピッチ変 換の指示が与えられることにより、エンジンの点火パルスの周波数にピッチ変換比 P jを乗じた掃引周波数の掃引信号力 PLL606により発生され、この掃引信号の 1回 の掃引毎に 1周期分のエンジン音波形のサンプルデータが読み出され、後段の乗算 器 603— jに供給される。ここで、点火パルスの周波数は、前処理部 601の出力信号 のピッチに対応しているので、波形メモリ 207から読み出されるサンプルデータのピッ チは、前処理部 601の出力信号のピッチの P— j倍のピッチとなる。
以上が本実施形態の構成の詳細である。
以下、具体例を挙げ、本実施形態の動作について説明する。
<第 1の具体例 >
本実施形態では、フィルタ 421〜24の前処理部 601から出力される音声信号を例 えば C音(以下、元の音という)とした場合に、この元の音に対して例えば以下のよう な関係を有する協和音をピッチ変換または合成により生成する。
D:元の音のピッチの 9Z8倍のピッチを有する音
E:元の音のピッチの 5Z4倍のピッチを有する音
F:元の音のピッチの 4Z3倍のピッチを有する音
G:元の音のピッチの 3Z2倍のピッチを有する音
A:元の音のピッチの 5Z3倍のピッチを有する音
B:元の音のピッチの 15Z8倍のピッチを有する音
E :元の音のピッチの 6Z5倍のピッチを有する音
B :元の音のピッチの 9Z5倍のピッチを有する音 [0164] 本実施形態では、元の音と上記の各音における 1または複数の音とを組み合わせ た和音を構成するための各種の和音構成情報が、各種の運転状態に対応つけて、 ノ ラメータメモリ 520に予め記憶され、運転の際には、その時点における運転状態に 対応したものが制御部 500によって読み出され、フィルタ 421〜424に与えられる。
[0165] 図 26はこのような制御により得られる動作例を示している。この動作例では、ェンジ ン回転数センサ 511により得られるエンジン回転数が運転状態とされており、各種の 運転状態 (エンジン回転数)に対応つけて各種の和音構成情報、すなわち、 1または 複数のピッチ変換部 602— jまたは合成部 605— jに対する指示、それらに与える 1ま たは複数のピッチ変換比 P— j、乗算係数 kj (j = 0〜n)がパラメータメモリ 520に格納 されている。そして、運転時においては、運転状態 (エンジン回転数)に応じて和音構 成情報が読み出されてフィルタ 421〜424に与えられ、図示のようにエンジン回転数 に応じて構成の変化する和音がフィルタ 421〜424により生成され、スピーカ 460L および 460Rを介して出力される。
[0166] 図示の例では、エンジンの回転数の増加に伴って、元の音である C音に F音が付カロ される。さらにエンジン回転数が増加することにより、 G音を得るためのピッチ変換ま たは合成が開始され、 F音に適用される乗算係数を減少させる一方において G音に 適用される乗算係数を増加させる制御が行われ、元の音に付加される音が F音から G音にクロスフェードされる。さらにエンジン回転数が増加すると、元の音に付加され る音に B音がさらに追加される。このようにして、力強く加速して軽やかに伸びる、とい う印象を与える和音が得られ、運転者は、この和音を聴くことにより運転状態を体感 することができる。
[0167] <第 2の具体例 >
上記第 1の具体例では、運転状態として、センサの出力信号の現在値により把握さ れる状態を用いたが、この第 2の具体例では、センサの出力信号の時間的変化の態 様を運転状態として用いる。具体的には、一定期間内における 1または複数のセンサ の出力信号の変化の態様を運動状態として複数種類定義し、これらの運動状態に対 応つけて和音構成情報をパラメータメモリ 520に予め記憶しておく。そして、運転時 には、過去一定時間内における各センサの出力信号の変化の態様と、パラメ一タメ モリ 520内に記憶された各運転状態とのパターンマッチングを行い、一致する運動状 態に対応した和音構成情報を用いて和音であるエンジン音を生成するのである。こ れにより、例えば次のような複雑な制御を行うことが可能となる。まず、シフトポジショ ンセンサ 513によりシフトダウンが検出された場合には、元の音である C音に対して F 音を付加する。その後、エンジン回転数センサ 511により検出されるエンジン回転数 が上昇するにつれ、さらに G音を追加する。そして、エンジン回転数の上昇が収まる につれて F音と G音のレベルを下げ、定常走行になると、元の C音のみにするのであ る。
[0168] <第 3の具体例 >
上記第 1の具体例では、 1つのセンサの出力信号に応じて和音の構成を変化させ たが、複数のセンサの出力信号の組み合わせに応じて和音の構成を変化させてもよ い。例えば、シフトポジションセンサ 513によりシフトアップ操作が検出される場合、ギ ァが 2速、 3速、 4速、 5速とシフトアップされるにつれて、元の音に付加する音を D音 、 E音、 G音、 A音という具合に切り換える。その際、付加する音の音量を、アクセル踏 み込み量センサ 512により検出されるアクセル踏み込み量に比例させる。
[0169] 以上説明したように、本実施形態によれば、車両において収音したエンジン音に対 し、運転状態に応じて、元の音とピッチの異なる音を付加し、和音としてスピーカから 再生するようにしたので、運転者は、再生されるエンジン音力 運転の手ごたぇを感 じ、快適な運転をすることができる。
[0170] 以上、この発明の一実施形態について説明したが、この発明にはこれ以外にも他 の実施形態が考えられる。例えば次の通りである。
(1)車両の現在位置を運転状態として扱ってもよい。より具体的には、車両にナビゲ ーシヨン装置を設けるとともに、ノ ラメータメモリ 520には、運転状態である車両の現 在位置に対応つけて和音構成情報を記憶しておくのである。そして、制御部 500は、 ナビゲーシヨン装置から得られる現在位置の情報 (運転状態)に対応した和音構成情 報をパラメータメモリ 520から読み出し、フィルタ 421〜424に与えるのである。この態 様によれば、例えば海岸沿いの道を走ると、 F音と G音が元の音に付加される、といつ た動作が可能になる。 (2)上記実施形態では、ピッチ変換または合成により和音を構成する装置をミキサ 4 30の前段のフィルタ 421〜424に設けた力 この和音を構成する装置をミキサ 430 の後段に設けてもよい。あるいはミキサ 430の前段と後段の両方に、和音を構成する 装置を設け、操作子の操作により、あるいは運転状態により、前段か後段のいずれか を選択し、選択した装置に和音を構成する処理を実行させるようにしてもょ ヽ。
(3)上記実施形態では、フィルタ 421〜424の全てに、和音を構成する装置を設け た力 一部のフィルタのみにこの装置を設けてもよい。あるいはフィルタ 421〜424の 全てに和音を構成する装置を設け、操作子の操作により、あるいは運転状態により、 和音を構成する処理を実行させる装置を選択するようにしてもょ ヽ。
(4)運動状態に応じて、エンジン音の和音の構成を変化させることに加えて、フィルタ 440Lおよび 440Rに与える 2組のフィルタ係数列の相関係数を変化させ、音の広が りを変化させるようにしてもょ 、。
(5)上記実施形態では、エンジン音を収音して、これに音場効果を付与してスピーカ 力も再生した。しかし、このように実際にエンジン音を収音する代わりに、エンジン音 の波形データを予め記憶したメモリから、エンジンの回転数に応じた読み出し速度で 波形データを読み出して、擬似エンジン音信号を再生し、この擬似エンジン音信号 から、運転状態に応じた和音を生成するようにしてもよい。この態様によれば、ェンジ ンを有しておらず、モータにより走行する車両においても上記実施形態と同様な効果 を得ることができる。
(6)上記実施形態では、 2チャネルのスピーカによりエンジン音の再生を行った力 4 チャネル、 5. 1チャネルなどの多チャネルのスピーカによりエンジン音の再生を行うよ うにしてもよい。
<第 5の実施形態 >
図 27は、この発明の第 5の実施形態であるエンジン音生成装置の構成を示すプロ ック図である。このエンジン音生成装置は、車両において収音されたエンジン音にカロ ェを施してスピーカ 760Lおよび 760Rから車両内に出力する装置である。図 27に示 す例では、マイク 711および 712は、エンジン音の特徴的な成分を収音可能な 2箇 所に設けられている。マイク 711および 712の各出力信号は、アンプ 721および 722 により増幅され、ミキサ 730によりミキシングされて出力される。ここで、ミキサ 730のミ キシング比は、エンジン音の特徴的な各周波数成分が適切なバランスでミキサ 730 の出力信号中に現れるように定められて 、る。アンプ 721および 722とミキサ 730との 間にエンジン音の特徴的な周波数成分を抽出するフィルタを介挿してもよい。
[0172] 信号処理部 740は、ミキサ 730の出力信号に対して各種の信号処理を施す装置で あり、例えば DSP (Digital Signal Processor)などにより構成可能である。この信号処 理部 740には、エンジンの回転数を測定するエンジン回転数センサ 811とアクセル 踏み込み量を測定するアクセル踏み込み量センサ 812とが接続されて 、る。信号処 理部 740は、ミキサ 730の出力信号の周波数特性に対して、エンジン回転数センサ 8 11およびアクセル踏み込み量センサ 812の各出力信号に基づ 、て必要な補正を施 し、補正後の周波数特性から車両内再生用のエンジン音信号を合成する。こうした 処理により得られる車両内再生用のエンジン音信号は、 Lチャネルおよび Rチャネル のエンジン音信号に分離され、信号処理部 740から出力される。この Lチャネルおよ び Rチャネルのエンジン音信号は、アンプ 750Lおよび 750Rによって増幅され、スピ 一力 760Lおよび 760Rから出力される。
[0173] 図 28は信号処理部 740の構成例を示すブロック図である。 AZD変翻 741は、 アナログ音声信号であるミキサ 730の出力信号を所定周波数のサンプリングクロック によりサンプリングし、デジタル音声信号に変換する。 FFT部 742は、 AZD変換器 7 41により得られるデジタル音声信号に対して FFT (高速フーリエ変換)を施し、周波 数特性 H (j co )を求め、その絶対値を示す振幅特性データ I H (j co ) Iと、その偏角 を表す位相特性データ arg{H (j ω ) }を出力する。
[0174] 振幅特性補正部 743は、エンジン回転数センサ 811およびアクセル踏み込み量セ ンサ 812の各出力信号に基づいて振幅特性データ I H (j co ) Iの補正を行う装置で ある。また、位相特性補正部 744は、エンジン回転数センサ 811およびアクセル踏み 込み量センサ 812の各出力信号に基づいて位相特性データ arg{H (j ω ) }の補正を 行う装置である。本実施形態の最大の特徴は、この位相特性補正部 44によって行わ れる位相特性データ arg{H (j co ) }の補正にある。本実施形態では、この位相特性デ ータ arg{H (j ω ) }の補正の際、位相の補正を行う周波数がエンジン回転数センサ 81 1によって測定されるエンジン回転数に基づ 、て決定され、位相の補正量がアクセル 踏み込み量センサ 812によって測定されるアクセル踏み込み量に応じて制御される
[0175] 本実施形態では、振幅特性データ I H (j ω ) Iおよび位相特性データ arg{H (j ω ) }の補正の態様 (以下、便宜上、補正モードという)が複数種類想定されており、それ らの各補正モードでの補正を振幅特性補正部 743および位相特性補正部 744に行 わせるためのパラメータがパラメータメモリ 748に記憶されている。運転者 (ユーザ)は 、図示しない操作子の操作により所望の補正モードを選択することができ、本実施形 態では、この選択された補正モードに対応したパラメータがパラメータメモリ 748から 読み出されて振幅特性補正部 743および位相特性補正部 744に設定され、当該補 正モードでの補正が行われるようになつている。なお、位相特性データおよび振幅特 性データの補正の詳細については、説明の重複を避けるため、本実施形態の動作 説明にお 、て明らかにする。
[0176] 逆 FFT部 745は、振幅特性補正部 743による補正後の振幅特性データと位相特 性補正部 744による補正後の位相特性データとに対して逆 FFTを施し、時間信号で あるエンジン音信号を合成する装置である。ボリューム 746は、この逆 FFT部 745か ら出力されるエンジン音信号を増幅して出力する装置である。好ましい態様では、ボ リューム 746の利得は、エンジン回転数センサ 811およびアクセル踏み込み量センサ 812の各出力信号に応じて増減される。ボリューム 746の出力信号は、 DZA変換器 747によってアナログィ匕され、上述した車両内再生用のエンジン音信号となる。
[0177] 以下、本実施形態の動作を説明する。図 29は本実施形態における FFT部 742か ら得られる振幅特性データ I H (j co ) Iおよび位相特性データ arg{H (j co ) }を例示 する図である。振幅特性データ I H (j co ) Iは、エンジン音のスペクトルの角周波数 ωを横軸として表すと、図示のように、角周波数軸方向に複数の山が並んだ特性とな る。本実施形態では、これらの山の頂上部に相当するエンジン音のスペクトルの中か らエンジンの爆発に起因した成分と考えられるものが選択され、この成分を基準とし て、他の成分の振幅および位相の補正が行われる。その際、エンジンの爆発に起因 した成分は、エンジン回転数センサ 811によって測定されるエンジン回転数力 推定 される。例えば 4気筒エンジンの場合、エンジンが 1回転する間に 2回の爆発が発生 する。このため、振幅特性データ I H(jco) Iの各山頂部のうち、最も高ぐかつ、ェ ンジン回転数の 2倍に相当する角周波数付近にあるものの角周波数がエンジンの爆 発に起因した回転 2次角周波数 ω 2と推定される。
[0178] 振幅特性補正部 743は、回転 2次角周波数 ω 2における振幅特性データ | H(jco 2) Iを固定した状態において、パラメータメモリ 748から読み出される補正モードに 対応したパラメータに従い、振幅特性データ I H(jco) Iの山頂部を上昇させる補正 、山頂部を下降させる補正、振幅特性データ I H(jco) Iの谷の部分を上昇させる 補正、または谷の部分を下降させる補正などが行われる。どのような種類の補正を行 うか、また、どの程度、山頂部や谷を上昇もしくは下降させるかは、補正モードにより 異なる。
[0179] 次に位相特性データ arg{H(j ω) }の補正について説明する。本実施形態では、振 幅特性データ I H(jco) Iの各山頂部の角周波数のうち回転 2次角周波数 ω 2の 1 Ζ2付近のもの力 エンジンの回転数に対応した回転 1次角周波数 ω 1として推定さ れる。そして、この回転 1次角周波数 ωΐが位相特性補正部 744による位相の補正が 行われる角周波数となる。位相特性補正部 744は、アクセル踏み込み量センサ 812 により測定されるアクセル踏み込み量を DACCとした場合、例えば次式(1)に従い、 位相補正データ Δ φを算出する。
Δ = ( 2- 1) (D0 + D1-DACC) …… (1)
ここで、 φ 2は、回転 2次角周波数 ω 2における位相特性データの値 arg{H(j ω 2) } 、 φ 1は、回転 1次角周波数 ω 1における位相特性データの値 arg{H(j ω 1) }である 。また、 DOおよび D1は、補正モード毎に定められたパラメータである。
[0180] そして、位相特性補正部 744は、次式(2)に示すように、回転 1次角周波数 ω 1に おける位相特性データ arg{H(j ω 1) }が位相補正データ Δ φだけ現状値から増減 するように、回転 2次角周波数 ω 2以下の周波数領域における位相特性データ arg{ H (j ω ) } ( ωく ω 2)を、位相特性データ arg{H (j ω 1) }の増減に合わせて一律増減 させる補正を行う。
arg{H (j ω 1) } =arg{H(j ω1)} + Δ …… (2)
[0181] 本実施形態では、以上のような補正を経た振幅特性データ I H (j co ) Iおよび位 相特性データ arg{H (j ω ) }が逆 FFT部 45に送られ、時間信号であるエンジン音信 号が合成され、スピーカ 760Lおよび 760Rから出力されるのである。ここで、図示の ように、 φ 2> φ 1である場合、補正後の位相特性データ arg{H (j ω 1) }は、アクセル 踏み込み量0八じじが増加するに従ぃ、位相特性データ& {1^ 0) 2) }に近づく。そ して、アクセル踏み込み量 DACCが小さぐエンジン音における回転 2次角周波数 ω 2の成分の位相と回転 1次角周波数 ω ΐの成分の位相との間に大きな隔たりがある場 合、そのエンジン音を聴いた運転者は、エンジンが前方の遠くにあるように感じる。一 方、アクセル踏み込み量 DACCが大きぐエンジン音における回転 2次角周波数 ω 2 の成分の位相と回転 1次角周波数 ω 1の成分の位相とが接近している場合、そのェ ンジン音を聴 、た運転者は、エンジンが近くにあるように感じる。
[0182] 以上のように、本実施形態によれば、アクセル踏み込み量に応じて、エンジン音に おける回転 2次角周波数成分の位相に対する回転 1次角周波数成分の位相の位相 差を増減し、運転者が感じるエンジンの位置までの距離感を変えることができる。従 つて、本実施形態によれば、グラフィックイコライザを用いて振幅特性の調整を行う場 合に比べ、運転者によって聴取されるエンジン音を大きく様変わりさせることができる 。また、運転者は、選択する補正モードを変えることにより、アクセル踏み込み量に応 じた回転 1次角周波数成分の位相の補正に用いるパラメータ(上記の例では D0、 D 1)を変化させ、位相の補正の態様を変化させることができるので、適切な補正モード を選択して自分の好みの印象のエンジン音を楽しむことができる。また、本実施形態 によれば、アクセルを踏み込む操作により、エンジン音の距離感を変化させることが できるので、運転動作に合ったエンジン音が得られる。また、本実施形態では、ェン ジン回転数に応じて、エンジン音にぉ ヽて位相の補正を行う周波数成分を選択する ようにしているので、車両において実際に発生するエンジン音と、信号処理部 740に よって合成されてスピーカ 760Lおよび 760Rから出力されるエンジン音とは調和した ものとなり、両者が混じりあったとしても、聴感上違和感を生じない。また、本実施形 態では、実際に車両力 収音されるエンジン音の周波数特性を補正して、スピーカ 7 60Lおよび 760Rから出力するエンジン音を合成しているので、
自然なエンジン音を得ることができる。
[0183] <第 6の実施形態 >
次に図 30を参照し、この発明の第 6の実施形態について説明する。本実施形態は 、上記第 5の実施形態における位相特性補正部 744の構成を変更したものである。 本実施形態において、パラメータメモリ 748 (図 28参照)には、各種の補正モードに 対応付けて、角周波数 ωの関数である位相補正データ Δ φ ( ω )が記憶されている。 図 30にはその一例である位相補正データ Δ φ a ( ω )と位相補正データ Δ φ b ( ω ) が図示されている。本実施形態における位相特性補正部では、これらの位相補正デ ータ Δ φ ( ω )のうち運転者によって選択された補正モードに対応付けられたものが 選択される。そして、 FFT部 742から位相特性データ arg{H (j ω ) }が出力された場 合に、これに対し、加算器 744aにより、選択された位相補正データ Δ φ ( ω )を加算 する補正が行われ、補正後の位相特性データが逆 FFT部 745 (図 28参照)に送られ る。
[0184] ここで、位相補正データとして Δ φ a ( ω )が選択されたとすると、次のような動作が 得られる。まず、低速では、車両において収音されるエンジン音の回転 1次角周波数 および回転 2次角周波数は、角周波数の増加に応じて位相補正データ Δ φ & ( ω )が 下降する領域に位置する。このため、スピーカ 760Lおよび 760R力も得られるェンジ ン音は、その回転 2次角周波数成分の位相と回転 2次角周波数成分の位相の位相 差がエンジン回転数の増加に応じて変化し、車両がフワーツと動いているような印象 の不安定な音となる。そして、中高速になると、車両において収音されるエンジン音 の回転 1次角周波数および回転 2次角周波数は、位相補正データ φ a ( ω )の角周波 数 ωに対する勾配の小さい領域に位置する。このため、スピーカ 760Lおよび 760R 力も得られるエンジン音は、落ち着 、た感じの音となる。
[0185] 一方、位相補正データとして Δ φ b ( ω )が選択されたとすると、低速では、車両に おいて収音されるエンジン音の回転 1次角周波数および回転 2次角周波数は、位相 補正データ φ Μ ω )の角周波数 ωに対する勾配の小さい領域にあるため、スピーカ 760Lおよび 760R力も得られるエンジン音は、落ち着いた感じの音となる。そして、 中高速では、車両において収音されるエンジン音の回転 1次角周波数および回転 2 次角周波数は、角周波数の増加に応じて位相補正データ Δ φ b ( ω )が増加する領 域に位置するため、スピーカ 760Lおよび 760R力も得られるエンジン音は、車両が フワーツと動 、て 、るような印象の不安定な音となる。
[0186] 以上のように、本実施形態によれば、運転者は、選択する補正モードを変えること により、エンジン音の位相の補正の態様を変化させ、自分の好みの印象のエンジン 音を楽しむことができる。また、上記第 5の実施形態のようなエンジン回転数に応じて 位相の補正を行う周波数を選択したり、補正の程度をアクセル踏み込み量に応じて 調節する処理が不要であるため、信号処理部 740の処理を簡単ィ匕することができる という利点がある。
[0187] <第 7の実施形態 >
次に図 31を参照し、この発明の第 7の実施形態について説明する。本実施形態は 、上記第 6の実施形態においてパラメータメモリ 748 (図 28参照)に予め記憶しておく 位相補正データ Δ φ ( ω )の生成方法に関するものである。本実施形態では、ェンジ ン音に関する各種の嗜好、より具体的には運転者がエンジン音から感じるエンジンの 距離感のエンジン回転数依存性に関する嗜好を各種想定し、角周波数 ωの関数で ある目標位相特性データ φ t ( ω )が各種用意されて ヽる。本実施形態の実施に当た つては、エンジン音生成装置が搭載される車両力 エンジン音が収音され、この実測 のエンジン音に FFTが施され、実測位相特性データ φ πι ( ω )が求められる。そして、 この実測位相特性データ φ m ( ω )を各種の目標位相特性データ φ t ( ω )から減算 することにより、各種の嗜好に対応付けられた位相補正データ Δ φ ( ω )が求められ、 各々異なる補正モードに対応付けてパラメータメモリ 748に格納するのである。この 位相補正データ Δ φ ( ω )を用いたエンジン音の位相特性の補正の処理内容は上記 第 6の実施形態と同様である。
[0188] 図 31に示す例において、実測位相特性データ φ πι ( ω )は、低速から中速に変化 する過程において、急激に位相が遅相から進相に変化し、その後、速度 (角周波数) の増加に従い、脈打ちつつ増加する。エンジン音をこのような位相特性のままスピー 力から出力したとすると、中高速域において、スピーカ再生音にいわゆるカラーレー シヨンが生じ、音質が悪くなつてしまう。これに対し、上記のようにして得られた位相補 正データ Δ φ ( ω )を用いて、車両カも収音されるエンジン音の位相特性を補正する と、補正後の位相特性データは、図示のような目標位相特性データ φ t ( ω )と一致し たものとなる。この場合、スピーカ再生音は、低速域において速度の増加に応じて位 相が回転するが、中高速では、位相の回転が収まり、落ち着いた印象のエンジン音と なる。他の印象のエンジン音をスピーカ力も再生する場合には、そのようなエンジン 音を想定して用意された位相補正データに対応した補正モードを選択すればよい。
[0189] 以上、この発明の一実施形態について説明したが、この発明にはこれ以外にも他 の実施形態が考えられる。例えば次の通りである。
(1)上記第 6の実施形態または第 7の実施形態において、アクセル踏み込み量に応 じて、位相補正データ Δ φ ( ω )の角周波数に対する依存性の強い領域における位 相補正データ Δ φ ( ω )のスロープの傾きを変化させるようにしてもよい。この場合に おいて、アクセル踏み込み量が増加した場合に、位相補正データ Δ φ ( ω )のスロー プの傾きを増カロさせるのか減少させるのかを運転者が選択し得るように構成してもよ い。
(2)上記各実施形態では、車両力 エンジン音を収音して、これに加工を施してスピ 一力から再生した。しかし、このように実際にエンジン音を収音する代わりに、ェンジ ン音の波形データを予め記憶したメモリから、エンジンの回転数に応じた読み出し速 度で波形データを読み出して、擬似エンジン音信号を再生し、この擬似エンジン音 信号に信号処理部 740による処理を施してエンジン音信号を生成するようにしてもよ い。この態様によれば、エンジンを有しておらず、モータにより走行する車両において も上記各実施形態と同様な効果を得ることができる。
[0190] 図 32は、本発明のエンジン音力卩ェ装置の第 8の実施の形態の構成を示すブロック 図である。
この図において、 901a, 901bは車内のエンジンルームなどに設置され、エンジン 音を収音するマイクロフォン又はセンサー(以下、マイクロフォンであるとする。)である 。この実施の形態においては、エンジンルーム内の 902箇所(例えば、吸気口の近 傍とエンジンの近傍)にマイクロフォン 901aと 901bを設置し、 2箇所でエンジン音を 収音するようにしている力 これに限られることはなぐ 1箇所又は 3箇所以上のポイン トでエンジン音を収音するようにしても良 、。
マイクロフォン 901a及び 901bで収音されたエンジン音は、それぞれ対応するへッ ドアンプ 902a及び 902bで増幅された後、ミキサ 903に入力され、該ミキサ 903にお V、てノイズが除去された後加算される。
ミキサ 903で加算されたエンジン音の信号は、信号処理部であるディストーション部 904に入力され、歪み (ディストーション)効果を付与される。このとき、車内ネットを介 して供給されるエンジン回転数のデータ (Cycle) 905や同じく車内ネットから供給され るアクセルの踏み込み度のデータ(Accelerator) 906に応じて付与されるディストーシ ヨン効果が制御される。
なお、この詳細については後述する。
ディストーション部 904で歪みが付与されたエンジン音は、パワーアンプ 907a及び 907bでそれぞれ増幅され、車室内に設置されたスピーカ 908a及び 908b力 再生 される。なお、この例では車室内に 908a及び 908bで示す 2個のスピーカを設置して いるがスピーカの個数は任意の個数とすることができる。
前記ディストーション部 4はアナログ回路を使用したアナログ方式、 DSP (Digital Sig nal Processor)などを使用したデジタル方式の ヽずれでも実現することができる。 図 33A、 33Bは、前記ディストーション部 4の構成例を示す図であり、図 33Aはアナログ 方式の場合、図 33Bはデジタル方式の場合を示して ヽる。
図 33Aに示すように、アナログ方式のディストーション部 904は、前記ミキサ部 903 力ものエンジン音の信号が入力されるアナログ回路によるイコライザ 911、該ィコライ ザ 911の出力が入力されるアナログ回路によるディストーション回路 912、及び、該デ イストーシヨン回路 912の出力が入力されるゲインが制御可能な増幅器 913を有して おり、これらの回路には、前記エンジン回転数のデータ(Cycle) 905及びアクセル踏 み込み度のデータ (Accelerator) 906が制御パラメータとして供給されて!、る。
また、図 33Bに示すように、デジタル方式のディストーション部 904は、前記ミキサ 部 903からのエンジン音の信号をデジタルデータに変換する AZD変翻 921、該 AZD変換器 921の出力が入力されるデジタルデータに対するイコライザ手段 922、 該デジタルイコライザ手段 922の出力が入力されるデジタルデータに対するディスト ーシヨン手段 923、該デジタルディストーション手段 923の出力が入力されるデジタル データに対する増幅手段 924、及び、該増幅手段 924の出力データをアナログ信号 に変換する DZA変翻 925から構成されている。ここで、前記イコライザ手段 922、 ディストーション手段 923及び増幅手段 924には、前記エンジン回転数のデータ (Cy cle) 905及びアクセル踏み込み度のデータ(Accelerator) 906が供給されており、こ れらのデータに応じてそれらの特性が制御されるようになされている。前記イコライザ 手段 922、前記ディストーション手段 923及び増幅手段 924は、例えば、 DSPにより 実現されている。
[0192] 前記イコライザ 91 1及びイコライザ手段 922は、前記ミキサ 903からのエンジン音の 信号に対して、 BPF (Band Pass Filter)や HPF (High Pass Filter)ゝ LPF (Low Pass Filter)といったフィルター処理を行い、歪みを付与する対象となる周波数領域を選択 する処理を行う。このとき、前記エンジン回転数のデータ(Cycle) 905や前記アクセル 踏み込み度のデータ(Accelerator) 906に基づいて、そのフィルタの特性を動的に変 化させる。このイコライザ 91 1又はイコライザ手段 922としては、パラメトリックイコライザ 又はグラフィックイコライザの 、ずれもタイプのものであってもよ!/、。
図 34は、パラメトリックイコライザの場合を示す図であり、エンジン回転数 905ゃァク セル踏み込み度 906に基づ 、て、通過帯域の中心周波数 (f0)やその周波数帯域 幅 (ワイズ Q)、ゲイン (G)を動的に変化させる。例えば、エンジン回転数が上昇して いくとエンジン音の周波数も高くなる。これに応じて、イコライザの周波数特性を動的 に変化させることにより、エンジン音の周波数の変化に追従することが可能となり、聴 感上、加工音とエンジン音との間の違和感が生じることなぐ自然な効果付けができ ることとなる。
[0193] 図 35A、 35Bは、前記エンジン回転数のデータ(Cycle) 905及び前記アクセルの 踏み込み度のデータ (Accelerator) 906に応じて、前記中心周波数 (f0)、ゲイン (G) 又はワイズ (Q)を動的に変化させる態様について説明する図であり、図 35Aはェン ジン回転数と中心周波数との対応を示す図、図 35Bはアクセルの踏み込み度とゲイ ンとの対応を示す図である。 図 35Aに示すように、基本的に、エンジンの回転数が高くなるに従って、中心周波 数 (fO)も高くなるように制御する。中心周波数 fOとしては、エンジン音の基本周波数 を中心周波数 fOとしてもよいし、倍音を中心周波数 fOとして選択しても良い。ユーザ により、中心周波数を基本周波数とするか 2倍音又は 3倍音とするかを選択すること ができるようにしてもよい。
[0194] そして、エンジンの回転数が短期間に高くなるときは、図中 CL— 1で示す曲線のよ うに中心周波数 fOも急激に高くなるように制御し、中程度の速度で高くなるときは CL - 2で示す曲線のようにリニアに高くなるようにし、回転数がゆっくりと高くなるときは中 心周波数も CL 3で示す曲線のように徐々に高くなるように制御するようにしてもよ い。このように、エンジン回転数の変化の速度に応じて、リニアリティの振れ幅 Cvの中 で異なる変化の態様を示す曲線 CL 1〜CL 3を選択して中心周波数を動的に制 御することにより、ユーザの運転動作により対応した力卩ェ音を得ることができるように なる。
また、図 35Bに示すように、アクセルの踏み込み度が大きくなるに従って前記ゲイン (G)も大きくなるように制御する。ここで、上記と同様に、アクセルが急激に踏まれたと きには図中 CL—1で示すようにゲインも急激に増カロさせ、中程度のときはリニアに増 カロさせ(CL— 2)、アクセルがゆっくりと踏み込まれていったときには徐々に増加させ る(CL 3)ようにしてもよ!/ヽ。
なお、アクセルの踏み込み度に応じて中心周波数を図 35Aと同様に変化させても 良 、し、エンジンの回転周波数に応じてゲイン Gを図 35Bのように変化させても良!ヽ 。さらに、ワイズ Qをエンジン回転数又はアクセルの踏み込み度に応じて図 35A又は 図 35Bと同様に変化させても良い。すなわち、エンジン回転数又はアクセルの踏み 込み度の増加にともなって、ワイズを広くするように制御する。
[0195] 前記ディストーション回路 912及び前記ディストーション手段 923は、前記ィコライ ザ 911又はイコライザ手段 922から出力されるエンジン音の信号に対して、歪ませ (D istortion)効果を付与する。このとき、前記エンジン回転数のデータ(Cycle) 905及び 前記アクセル踏み込み度のデータ(Accelerator) 906に応じて、どれくらい歪ませる かを示すパラメータ(DRIVE)及びどのように歪ませるかを示すパラメータ (TYPE)を 動的に変化させる。
図 36A、 36Bは、ディストーション回路 912又はディストーション手段 923によるディ ストーシヨン処理について説明するための図である。図 36Aに示すように、ディスト一 シヨン回路 912又はディストーション手段 923は、基本的には、入力信号の振幅をタリ ップすることにより入力されたエンジン音信号を歪ませる。
入力信号が規定の入力レベルを超えると、出力信号の波形の頭部 (許容入力を超 えた部分)が削り取られた状態になる。これをクリッピング又はクリップという。この波形 には無数の高調波が含まれているので、音がつまって、音色としては濁った感じにな る。
図 36A、 36Bは、アナログ回路によるディストーション回路 12の構成例を示す図で ある。この図に示すように、アナログのクリッピング回路により実現することができる。図 36Aの場合は非対称なクリッピングが行われる。
なお、例えば、非線形特性を利用するなど、クリップ処理以外の方法で歪みを付与 するようにしてちょい。
[0196] 図 37は、どれくらい歪ませるかを示す DRIVEパラメータについて説明するための 図である。
図 37に示す歪み具合を示すパラメータ Kdが DRIVEパラメータとされる。この歪み 具合を示すパラメータ Kdは、図 37に示すように、元波形の最大振幅が 1Z2まで縮 まる度合いを示すパラメータであり、 0%〜100%までの値をとる。 Kd=0%のときは クリップされず、 Kd= 100%のときは元波形の振幅の 1Z2の振幅にクリップされる。 前記エンジン回転数のデータ(Cycle) 905や前記アクセルの踏み込み度のデータ( Accelerator) 906の値に応じて、 Kdの値は動的に変化される。
[0197] 図 38A〜38Cは、エンジン回転数やアクセルの踏み込み度に応じたパラメータ Kd の変化のさせ方について説明するための図である。
図 38Aはエンジン回転数に応じて歪み具合 Kdを変化させる態様を示す図であり、 この図に示すように、エンジン回転数が高くなるにつれて歪み具合 Kdも上昇するよう に制御する。このとき、エンジン回転数の加速度、すなわち、エンジン回転数が短期 間で上昇したか、あるいは、ゆっくり上昇したかに応じてリニアリティの異なる曲線に 応じて歪み具合 Kdを変化させるようにしてもよい。すなわち、エンジン回転数が急激 に上昇したときには、曲線 CL—1のように歪み具合 Kdも急激に増加するようにし、ゆ つくりと上昇したときは、曲線 CL 3のように歪み具合 Kdが徐々に増加するようにす る。中程度の場合には、曲線 CL— 2のようにリニアに変化させればよい。
図 38Bはアクセルの踏み込み度に対する歪み具合 Kdの変化の態様を示す図であ る。この図に示すように、アクセルの踏み込み度が大きくなるにつれて歪み具合 Kdも 大きくなるように制御する。このとき、前述の場合と同様に、アクセルを急激に踏み込 んだときには、 CL—1で示す曲線のように歪み具合を急激に増加するようにし、ゆつ くりと踏み込んでいったときには、 CL— 3で示す曲線のように歪み具合を徐々に増加 するようにしてもよい。中程度のときは、 CL— 2で示す曲線のようにリニアに変化させ ればよい。
図 38Cは、前記エンジン回転数に応じて歪み具合 Kdを変化させる態様の他の例 を示す図である。
この図に示す例は、低回転数のときに目立つような変曲点を持った曲線に従って K dを制御する。この場合には、低回転数のときに歪み具合 Kdが大きく変化し、高回転 数のときには小さくなるので、例えば高速道路などにおける高速運転時には歪み具 合が小さぐ静かなエンジン音となる。
アクセルの踏み込み度についても図 38Cと同様の曲線で歪み具合 Kdを変化させ るようにしても良い。
図 39は、どのように歪ませるかを示す TYPEパラメータについて説明するための図 である。
図 39に示す歪みパターンを示すパラメータ Kpが TYPEパラメータとされる。この歪 みパターンを示すパラメータ Kpは、図 39に示すように、ディストーションをかけられた 信号がどれだけ矩形波的になるかを表すパラメータであり、歪ませられた波形のクリツ ビングレベルでの横幅力 元波形の横幅の 1Z2まで縮まる度合いを示している。 Κρ は 0%〜100%までの値をとり、 Kp = 0%のときは元波形の横幅と同じであることを示 し、 Κρ= 100%のときは元波形の横幅の 1Z2であることを示している。
この歪みパターン Kp (TYPEパラメータ)についても、前記歪み具合 Kdと同様の変 化の態様を有している。すなわち、前記図 38A及び 38Bに示したように、エンジン回 転数(Cycle)又はアクセルの踏み込み度 (Accelerator)が大きくなるにつれて歪みパ ターン Kpも大きくなるように制御される。そして、エンジン回転数又はアクセルの踏み 込み度が急激に変化したとき、中程度に変化したとき、及び、ゆっくりと変化したときと で、前述したリニアリティの異なる変化曲線 (CL— 1〜CL— 3)に従って歪みパター ンを変化させるようにしても良 、。
さらに、図 38Cに示したようなエンジンが低回転数のとき又はアクセルの踏み込み 度が小さいときに目立つような変曲点を持った曲線に従って変化させるようにしても 良い。
[0199] 前記ゲインが制御可能な増幅器 913又は増幅手段 924は、前記エンジン回転数の データ(Cycle) 905又は前記アクセルの踏み込み度のデータ(Accelerator) 906に応 じてそのゲインが制御され、これにより再生される加工されたエンジン音の音量 V (Vol ume)が制御される。
図 40A〜40Cは、前記エンジン回転数又は前記アクセルの踏み込み度と前記増 幅器 913又は増幅手段 924における音量 V (Volume)との関係を示す図であり、図 4 OAはエンジン回転数と音量 Vの関係、図 40Bはアクセルの踏み込み度と音量 Vの関 係を示す図である。
図 40Aに示すように、エンジン回転数が増加するとカ卩ェされたエンジン音の音量も 増加するように制御される。ここで、エンジン回転数の増加の速度に応じて、音量の 増加の態様も変化するように制御し、エンジン回転数が急激に増加したときは音量も 急激に増加させ (CL—1)、ゆっくりと増加したときは音量も徐々に増加する(CL— 3) ように制御しても良い。
また、図 40Bに示すように、アクセルの踏み込み度と音量 Vとの関係も、エンジン回 転数との関係と同様に制御するようにしても良い。
さらに、図 40Cに示すように、エンジン回転数が低回転数のときに目立つような変 曲点を有する特性曲線としても良い。アクセルの踏み込み度に対しても、図 40Cに示 すような曲線としても良い。
[0200] なお、前記図 35A、 35B、 38A、 38B、 38C、 40A、 40B及び 40Cに示したェンジ ン回転数やアクセルの踏み込み度に対する各パラメータの変化特性は、本発明のェ ンジン音加工装置が搭載されるエンジンの特性に応じて設定するのが望ましい。 また、上記図 35A、 35B、 38A、 38B、 38C、 40A、 40B及び 40C【こお!/、て ίま、ェ ンジン回転数及びアクセルの踏み込み度に応じた各パラメータを変化特性を 3本の 曲線に従って制御する場合について説明した力 これに限られることはなぐ任意の 本数の曲線を用いて制御を行うことができる。
さらに、エンジン回転数の変化速度やアクセルの踏み込み度の変化速度に応じて どの曲線 CL 1〜CL 3に従った制御を行うかについてユーザが任意に設定する ことがでさるようにしてちょ!、。
さらにまた、曲線 CL—1〜CL— 3をユーザが編集することができるようにしてもよい し、使用する曲線数もユーザが任意に設定することができるようにしてもよい。
前記図 32に示した実施の形態においては、前記エンジンルーム内に設置されたマ イク口フォン 901a, 901bで収音されたエンジン音をディストーション部 4に入力して いた。通常、自動車のエンジンルームと車室の間には遮音板が設けられており、ユー ザは該遮音板を通過してきたエンジン音を聞いている。そこで、遮音板の遮音特性( 伝達特性)をシミュレートするフィルタを設け、前記マイクロフォン 901a, 901bで収音 されたエンジン音に該フィルタを通過させた音を前記ディストーション部 4に入力して 上述した加工を施すようにしても良 ヽ。
図 41は、遮音板の伝達特性をシミュレートするフィルタを設けた実施の形態の要部 構成を示す図である。
この図に示すように、この実施の形態においては、エンジンルーム内に配置された マイクロフォン 901a, 901bで収音されたエンジン音をヘッドアンプ 902a, 902bで増 幅した後、遮音板の伝達特性をシミュレートするフィルタ 93 la, 931bを通過させて前 記ミキサ 903に入力している。
これにより、前記マイクロフォン 901a, 90 lbで収音されたエンジン音に含まれてい るメカ-カルノイズ等を除去することができ、ユーザが通常聞きなれて 、るエンジン音 を素材として上述した加工が施されることとなり、人間にとってより自然なエンジン音と することが可能となる。 なお、上記においては、前記ディストーション部 4内に、イコライザ 911又はィコライ ザ手段 922、ディストーション回路 912又はディストーション手段 923、及び、増幅器 913又は増幅手段 924が全て設けられている場合について説明した力 イコライザ 9 11又はイコライザ手段 922、及び、増幅器 913又は増幅手段 924は必ずしも必須で はなぐ最低限ディストーション回路 912又はディストーション手段 923が設けられて いればよい。

Claims

請求の範囲
[1] 自動車の車室外に設置され、該自動車のエンジン音を収音するマイクと、
該自動車の運転状況を検出するセンサと、
前記センサの検出内容を基に前記マイクが収音したエンジン音を信号処理して出 力する信号処理部と、
前記信号処理部で信号処理されたエンジン音を出力するスピーカと
を備えるエンジン音加工装置。
[2] 前記信号処理部は、車室壁面における遮音特性をシミュレートする遮音特性フィル タと運転状況に応じて特性が変化するアクティブフィルタとを有する請求項 1に記載 のエンジン音加工装置。
[3] 前記マイクは複数設けられ、前記エンジンの吸気口、排気口、エンジンヘッド、ェン ジンルームの壁面の一部または複数部に配置されて 、る請求項 1に記載のエンジン 音加工装置。
[4] 前記センサは、エンジン回転数を検出するセンサ、アクセル開角を検出するセンサ 、自動車の速度を検出するセンサの一部または全部である請求項 1に記載のェンジ ン音加工装置。
[5] 前記センサの検出内容を基に信号処理特性を決定し、前記信号処理部を制御す る制御部を備える請求項 1に記載のエンジン音加工装置。
[6] 前記制御部は、センサの検出内容と信号処理特性との関係を記憶したパラメータ テーブルを備える請求項 5に記載のエンジン音加工装置。
[7] 前記制御部に接続され、ユーザが前記制御部の信号処理特性を操作可能な操作 部を備える請求項 5に記載のエンジン音加工装置。
[8] 前記マイクが収音したエンジン音を周波数分析して、スペクトルを割り出しする周波 数分析手段とを備え、
前記信号処理部は前記周波数分析手段で割り出しされたスペクトルを加工して前 記スピーカに出力する請求項 5に記載のエンジン音加工装置。
[9] 前記制御部は、前記周波数分析手段が決定したスペクトルのピークを強調する請 求項 8に記載のエンジン音加工装置。
[10] 前記制御部は、前記周波数分析手段が決定したスペクトルのピークの谷間のレべ ルを上げる請求項 8に記載のエンジン音加工装置。
[11] 前記マイクが収音したエンジン音を周波数分析して、スペクトルのピークを検出する 周波数分析手段とを備え、
前記信号処理部は、前記周波数分析手段で決定されたスペクトルのピークをピッチ シフトして、特定周波数成分を強調して出力し、
前記制御部は、前記信号処理部がピッチシフトする周波数を設定する請求項 5に 記載のエンジン音加工装置。
[12] 変調信号波形を生成する波形生成部を備え、
前記信号処理部は、前記波形生成部が生成した変調信号波形をスピーカに出力 する請求項 5に記載のエンジン音加工装置。
[13] 前記制御部は、前記センサの検出内容に基づいて変調周期を設定する請求項 12 に記載のエンジン音力卩ェ装置。
[14] 前記制御部は、前記センサの検出内容に基づいて変調の深さを設定する請求項 1
2に記載のエンジン音力卩ェ装置。
[15] 前記波形生成部は、前記マイクの収音するエンジン音のそれぞれに対応する変調 信号波形を生成し、
前記制御部は、前記マイクの収音するエンジン音のそれぞれと同期した周期で前 記変調信号波形の変調周期を設定する請求項 12に記載のエンジン音加工装置。
[16] 前記制御部は、収音するエンジン音のそれぞれのピークと同じタイミングで変調信 号波形のピークを出力するように設定する請求項 15に記載のエンジン音加工装置。
[17] 和音構成情報が与えられた場合に、前記和音構成情報に従って前記マイクにより 収音された前記エンジン音のピッチと協和関係にあるピッチを有する協和音の音声 信号を生成し、前記協和音の音声信号を前記エンジン音に付加して出力する和音 構成手段を含む請求項 5に記載のエンジン音加工装置。
[18] 前記制御手段は、前記センサの検出内容に応じて和音構成情報を生成し、前記和 音構成手段に与える請求項 17に記載のエンジン音加工装置。
[19] 前記制御部は、前記センサの検出内容の現在値または前記センサの出力信号の 過去一定期間内における変化の態様に基づいて前記運転状態を特定し、前記運転 状態に応じて和音構成情報を生成することを特徴とする請求項 17に記載のエンジン 音加工装置。
[20] 前記和音構成手段は、収音された前記エンジン音にピッチ変換を施して前記協和 音の音声信号を生成するピッチ変換部を有することを特徴とする請求項 17に記載の エンジン音加工装置。
[21] 前記和音構成手段は、前記車両のエンジンの点火パルスをトリガとして、目的とす るピッチを有する協和音の音声信号を合成する合成部を有することを特徴とする請 求項 17に記載のエンジン音力卩ェ装置。
[22] 前記信号処理部は、複数種類の補正モードを有し、ユーザにより選択された補正 モードに基づき前記スピーカに供給するエンジン音の位相特性に対し、周波数に応 じた補正を施す位相補正手段を具備する請求項 1に記載のエンジン音加工装置。
[23] 前記車両のエンジン回転数を測定するエンジン回転数センサを具備し、
前記位相補正手段は、前記エンジン回転数センサにより測定されるエンジン回転 数に基づき、前記位相特性の補正を行う周波数を決定する請求項 22に記載のェン ジン音生成装置。
[24] 前記車両のアクセル踏み込み量を測定するアクセル踏み込み量センサを具備し、 前記位相補正手段は、前記アクセル踏み込み量センサにより測定されるアクセル 踏み込み量に応じて、前記位相特性の補正量を増減させる請求項 22に記載のェン ジン音生成装置。
[25] 前記信号処理部は該マイクロフォンで収音されたエンジン音に対して歪みを付カロ する請求項 1に記載のエンジン音生成装置。
[26] 前記歪みの度合いは、エンジン回転数又はアクセルの踏み込み度の少なくともい ずれか一方に応じて動的に変更されるようになされていることを特徴とする請求項 25 記載のエンジン音加工装置。
[27] 前記付加される歪みのタイプは、エンジン回転数又はアクセルの踏み込み度の少 なくとも 、ずれか一方に応じて動的に変更されるようになされて!、ることを特徴とする 請求項 25に記載のエンジン音加工装置。
[28] 前記マイクロフォンと前記ディストーション部との間に、少なくともエンジン回転数又 はアクセルの踏み込み度のいずれか一方に応じて周波数特性が動的に変更される イコライザ部が設けられていることを特徴とする請求項 25に記載のエンジン音加工装 置。
[29] 前記歪みが付加されたエンジン音を、少なくともエンジン回転数又はアクセルの踏 み込み度に応じて動的に制御される音量で前記スピーカに出力する増幅器を有す ることを特徴とする請求項 25に記載のエンジン音加工装置。
[30] 前記信号処理部により付加される歪み、前記フィルタにおける周波数特性又は前 記増幅器における音量の動的に変更される態様は、前記エンジン回転数の変化の 速度又はアクセルの踏み込み度の変化の速度に応じて変更されるようになされて ヽ ることを特徴とする請求項 25に記載のエンジン音加工装置。
[31] 車両内に設けられたスピーカと、
擬似的なエンジン音を表す音声信号を生成する信号生成手段と、
前記音声信号からエンジン音信号を生成して前記スピーカに供給する手段であつ て、和音構成情報が与えられた場合に、前記和音構成情報に従って前記音声信号 のピッチと協和関係にあるピッチを有する協和音の音声信号を生成し、前記協和音 の音声信号を前記音声信号に付加して前記エンジン音信号を生成する和音構成手 段を含むエンジン音信号生成手段と、
運転状態を監視し、運転状態に応じて和音構成情報を生成し、前記和音構成手段 に与える制御手段と
を具備することを特徴とする車室内音響制御装置。
[32] 車両内に設けられたスピーカと、
擬似的なエンジン音を表すエンジン音信号を生成して前記スピーカに供給する信 号生成手段とを具備し、
前記信号生成手段は、複数種類の補正モードを有し、ユーザにより選択された補 正モードに基づき前記スピーカに供給するエンジン音の位相特性に対し、周波数に 応じた補正を施す位相補正手段を具備するエンジン音生成装置。
PCT/JP2006/304806 2005-03-11 2006-03-10 エンジン音加工装置 WO2006095876A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/886,044 US8155343B2 (en) 2005-03-11 2006-03-10 Engine sound processing system
EP06728924.9A EP1865494B1 (en) 2005-03-11 2006-03-10 Engine sound processing device
JP2007507216A JP4888386B2 (ja) 2005-03-11 2006-03-10 エンジン音加工装置
US13/398,719 US8885845B2 (en) 2005-03-11 2012-02-16 Engine sound processing system

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2005069726 2005-03-11
JP2005-069726 2005-03-11
JP2005-089283 2005-03-25
JP2005089283 2005-03-25
JP2005-134278 2005-05-02
JP2005134278 2005-05-02
JP2005-189201 2005-06-29
JP2005189201 2005-06-29
JP2005-190903 2005-06-30
JP2005190903 2005-06-30
JP2005235790 2005-08-16
JP2005-235790 2005-08-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/886,044 A-371-Of-International US8155343B2 (en) 2005-03-11 2006-03-10 Engine sound processing system
US13/398,719 Division US8885845B2 (en) 2005-03-11 2012-02-16 Engine sound processing system

Publications (1)

Publication Number Publication Date
WO2006095876A1 true WO2006095876A1 (ja) 2006-09-14

Family

ID=36953465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304806 WO2006095876A1 (ja) 2005-03-11 2006-03-10 エンジン音加工装置

Country Status (4)

Country Link
US (2) US8155343B2 (ja)
EP (1) EP1865494B1 (ja)
JP (1) JP4888386B2 (ja)
WO (1) WO2006095876A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340343A (ja) * 2005-05-09 2006-12-14 Sony Computer Entertainment Europe Ltd 音声処理
JP2008094328A (ja) * 2006-10-13 2008-04-24 Yamaha Corp エンジン音加工装置
JP2008120320A (ja) * 2006-11-15 2008-05-29 Yamaha Corp 燃費報知装置
JP2008145659A (ja) * 2006-12-08 2008-06-26 Yamaha Corp エンジン音再生装置
JP2008216783A (ja) * 2007-03-06 2008-09-18 Honda Motor Co Ltd 効果音発生装置
JP2014051149A (ja) * 2012-09-05 2014-03-20 Yamaha Corp エンジン音加工装置
JP2015514626A (ja) * 2012-04-02 2015-05-21 ボーズ・コーポレーションBosecorporation エンジンハーモニックス増強制御
JP2015147516A (ja) * 2014-02-07 2015-08-20 日産自動車株式会社 車両の付加音量算出方法および付加音量算出装置
JP2017021212A (ja) * 2015-07-10 2017-01-26 株式会社スクウェア・エニックス 音声生成方法、音声生成装置、プログラム、及び記録媒体
KR101734578B1 (ko) * 2011-11-16 2017-05-24 현대자동차주식회사 차량 소음 합성 및 재생 시스템
KR20170128938A (ko) * 2016-05-16 2017-11-24 현대자동차주식회사 엔진진동 및 주행상태를 반영한 엔진소음 제어장치

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4140607B2 (ja) * 2004-03-10 2008-08-27 ヤマハ株式会社 エンジン音加工装置
JP4539634B2 (ja) * 2006-10-06 2010-09-08 ヤマハ株式会社 エンジン音加工装置
DE102006055012B4 (de) * 2006-11-22 2021-01-14 Robert Bosch Gmbh Verfahren zur Diagnose einer Brennkraftmaschine in einem Kraftfahrzeug
US20090066499A1 (en) * 2007-07-17 2009-03-12 Enhanced Vehicle Acoustics, Inc. External sound generating system and method
JP4384681B2 (ja) * 2007-07-25 2009-12-16 本田技研工業株式会社 能動型効果音発生装置
JP4946723B2 (ja) * 2007-08-21 2012-06-06 ヤマハ株式会社 エンジン音加工装置
US8081772B2 (en) * 2008-11-20 2011-12-20 Gentex Corporation Vehicular microphone assembly using fractional power phase normalization
JP5272920B2 (ja) * 2009-06-23 2013-08-28 富士通株式会社 信号処理装置、信号処理方法、および信号処理プログラム
US8666088B2 (en) * 2009-06-24 2014-03-04 Ford Global Technologies Tunable, sound enhancing air induction system for internal combustion engine
JP5440087B2 (ja) * 2009-10-13 2014-03-12 ヤマハ株式会社 エンジン音生成装置
WO2011092833A1 (ja) * 2010-01-29 2011-08-04 パイオニア株式会社 擬似音発生装置及び擬似音発生方法
US8320581B2 (en) * 2010-03-03 2012-11-27 Bose Corporation Vehicle engine sound enhancement
AT508606A3 (de) * 2010-04-16 2011-11-15 Bdp Sicherheitstechnologien Gmbh Geschwindigkeitsabhängige wiedergabe von motorgeräuschen mittels sound-generator von hybrid-/elektroautos
DE102010045996A1 (de) 2010-09-18 2012-03-22 Volkswagen Ag Fahrzeug mit Elektroantrieb
US8938079B2 (en) 2010-10-29 2015-01-20 GM Global Technology Operations LLC Engine sound enhancement implementation through varying vehicle conditions
US20120173191A1 (en) * 2011-01-03 2012-07-05 Moeller Lothar B Airspeed And Velocity Of Air Measurement
US9299337B2 (en) * 2011-01-11 2016-03-29 Bose Corporation Vehicle engine sound enhancement
JP5201225B2 (ja) * 2011-02-04 2013-06-05 日産自動車株式会社 加速情報伝達装置
WO2012141325A1 (ja) * 2011-04-14 2012-10-18 ヤマハ発動機株式会社 車両用音響装置および車両用音響方法
FR2974441B1 (fr) * 2011-04-19 2014-09-12 Renault Sa Generation d'un son de machine tournante d'un appareil
US9386366B2 (en) * 2011-12-02 2016-07-05 Eberspächer Exhaust Technology GmbH & Co. KG Active design of exhaust sounds
US8892046B2 (en) * 2012-03-29 2014-11-18 Bose Corporation Automobile communication system
US8878043B2 (en) * 2012-09-10 2014-11-04 uSOUNDit Partners, LLC Systems, methods, and apparatus for music composition
US9330655B2 (en) * 2013-02-05 2016-05-03 Ford Global Technologies, Llc Increasing the number of cylinders in an internal combustion engine in a virtual fashion
JP5864638B2 (ja) * 2014-02-14 2016-02-17 本田技研工業株式会社 車両用音生成装置
CN103895567B (zh) * 2014-03-26 2016-06-29 北京长安汽车工程技术研究有限责任公司 一种电动汽车的声音模拟发声方法及装置
US9881602B2 (en) 2014-07-11 2018-01-30 Tenneco Gmbh Sound system for a motor vehicle
KR101592419B1 (ko) 2014-08-18 2016-02-05 현대자동차주식회사 가상 엔진음을 발생시키는 방법 및 이를 이용한 가상 엔진음 발생 장치
US9772378B2 (en) * 2014-08-28 2017-09-26 Teradyne, Inc. Multi-stage equalization
KR101631872B1 (ko) * 2014-11-21 2016-06-20 현대자동차주식회사 차량, 차량의 제어 방법 및 차량 주행 음 제어 장치
ITUB20159781A1 (it) * 2015-01-13 2017-06-30 Ask Ind Spa Sistema di arricchimento del suono del motore in un veicolo.
US9574472B1 (en) * 2015-08-25 2017-02-21 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for increasing engine sound during a downshift
US9682652B2 (en) * 2015-10-06 2017-06-20 Honda Motor Co., Ltd. Vehicle acoustic apparatus, and methods of use and manufacture thereof
KR101762790B1 (ko) * 2015-12-07 2017-07-28 김성진 전동기의 엔진음/배기음 발생 및 튜닝장치
US10020788B2 (en) * 2016-03-02 2018-07-10 Bose Corporation Vehicle engine sound management
JP6465059B2 (ja) * 2016-03-31 2019-02-06 マツダ株式会社 車両用効果音発生装置
JP6637173B2 (ja) * 2016-06-15 2020-01-29 本田技研工業株式会社 能動型効果音発生装置
US20170374460A1 (en) * 2016-06-23 2017-12-28 Hyundai Motor Company Apparatus and method of processing sound from engine, vehicle, and method of controlling the vehicle
US10071686B2 (en) 2016-06-30 2018-09-11 GM Global Technology Operations LLC Electric vehicle sound enhancement systems and methods
US9944127B2 (en) * 2016-08-12 2018-04-17 2236008 Ontario Inc. System and method for synthesizing an engine sound
US9793870B1 (en) 2016-08-24 2017-10-17 GM Global Technology Operations LLC Vehicle sound enhancement systems and methods for vehicle deceleration
US9758096B1 (en) * 2016-08-24 2017-09-12 GM Global Technology Operations LLC Systems and methods for variable engine and electric motor sound control
KR101804772B1 (ko) * 2016-08-25 2017-12-05 현대자동차주식회사 사운드 제어장치, 차량 및 그 제어방법
KR101840205B1 (ko) * 2016-09-02 2018-05-04 현대자동차주식회사 사운드 제어장치, 차량 및 그 제어방법
KR101742774B1 (ko) * 2016-11-17 2017-06-01 김영준 가상 배기음 출력 제어방법 및 이를 위한 컴퓨터 프로그램용 기록매체
US10160302B2 (en) * 2017-01-13 2018-12-25 GM Global Technology Operations LLC Dynamically adjustable engine mounts for a motor vehicle
US10140970B1 (en) * 2017-07-31 2018-11-27 GM Global Technology Operations LLC Engine sound production systems and methods
US10587983B1 (en) * 2017-10-04 2020-03-10 Ronald L. Meyer Methods and systems for adjusting clarity of digitized audio signals
KR102398881B1 (ko) * 2017-10-20 2022-05-17 현대자동차주식회사 하이브리드 차량의 소리 제어방법
SE541331C2 (en) 2017-11-30 2019-07-09 Creo Dynamics Ab Active noise control method and system
US10418020B2 (en) * 2017-12-18 2019-09-17 Ford Global Technologies, Llc Vehicle adaptive cruise control noise cancelation
EP3503089B1 (en) * 2017-12-22 2023-10-18 Marelli Europe S.p.A. Apparatus for the active control of the sound of the engine of a land vehicle and corresponding method
US10065561B1 (en) 2018-01-17 2018-09-04 Harman International Industries, Incorporated System and method for vehicle noise masking
JP6646080B2 (ja) * 2018-01-22 2020-02-14 本田技研工業株式会社 能動型効果音発生装置
SE1850077A1 (en) 2018-01-24 2019-07-25 Creo Dynamics Ab Active noise control method and system using variable actuator and sensor participation
US10611323B2 (en) * 2018-02-20 2020-04-07 GM Global Technology Operations LLC Engine sound enhancement systems and methods for gear shifts
KR20210003806A (ko) * 2018-05-31 2021-01-12 하만인터내셔날인더스트리스인코포레이티드 정상 상태 차량 음향 합성을 위한 시스템 및 방법
US11011152B2 (en) 2018-09-05 2021-05-18 Harman International Industries, Incorporated Multiple sound localizations for improved internal sound synthesis
US11351916B2 (en) 2018-09-27 2022-06-07 Harman International Industries, Incorporated Vehicle sound synthesis during engine start conditions
EP3890359A4 (en) 2018-11-26 2022-07-06 LG Electronics Inc. VEHICLE AND ASSOCIATED OPERATING METHOD
CN110718206B (zh) * 2019-09-02 2022-02-11 中国第一汽车股份有限公司 一种主动发声系统声音目标设定方法及主动发声系统
US11285871B2 (en) * 2019-10-17 2022-03-29 Hyundai Motor Company Method and system of controlling interior sound of vehicle
KR20210116272A (ko) * 2020-03-16 2021-09-27 하만인터내셔날인더스트리스인코포레이티드 차량 사운드 향상을 위한 시스템 및 방법
KR20220000655A (ko) * 2020-06-26 2022-01-04 현대자동차주식회사 주행음 라이브러리, 주행음 라이브러리 생성 장치 및 주행음 라이브러리를 포함하는 차량
US20220178324A1 (en) * 2020-12-09 2022-06-09 Transportation Ip Holdings, Llc Systems and methods for diagnosing equipment
KR20230090058A (ko) * 2021-12-14 2023-06-21 현대자동차주식회사 차량 사운드 발생 장치 및 방법

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04152394A (ja) * 1990-10-16 1992-05-26 Mazda Motor Corp 走行模擬音発生装置
JPH04178698A (ja) * 1990-11-13 1992-06-25 Toyota Central Res & Dev Lab Inc 波形生成装置
JPH04107299U (ja) * 1991-02-28 1992-09-16 株式会社ケンウツド 音響信号合成装置
JPH0580790A (ja) 1991-09-21 1993-04-02 Hitachi Ltd 車室内音響制御装置
JPH07182587A (ja) * 1993-12-21 1995-07-21 Honda Motor Co Ltd 電気車両用擬似音発生装置
JPH07302093A (ja) 1994-04-28 1995-11-14 Nippon Seiki Co Ltd エンジン音生成装置
JPH10277263A (ja) * 1997-04-09 1998-10-20 Yamaha Motor Co Ltd エンジン模擬音発生装置
JPH11288291A (ja) * 1998-04-02 1999-10-19 Sony Corp 電気自動車
DE19945259C1 (de) 1999-09-21 2001-01-11 Bayerische Motoren Werke Ag Vorrichtung zur elektroakustischen Geräuscherzeugung bei einem Kraftfahrzeug
JP2001290489A (ja) * 2000-04-07 2001-10-19 Fuji Heavy Ind Ltd エンジン音質の制御装置
JP2004074994A (ja) 2002-08-21 2004-03-11 Mazda Motor Corp 車室内音制御装置
JP2004085235A (ja) * 2002-08-23 2004-03-18 Bridgestone Corp 騒音予測装置及び方法
JP2004093438A (ja) * 2002-09-02 2004-03-25 Toyota Motor Corp エンジンの吸気音解析
JP2005134749A (ja) * 2003-10-31 2005-05-26 Roland Corp 自動車音処理装置
JP2005289354A (ja) * 2004-03-10 2005-10-20 Yamaha Corp エンジン音加工装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371802A (en) * 1989-04-20 1994-12-06 Group Lotus Limited Sound synthesizer in a vehicle
JPH04107299A (ja) 1990-08-27 1992-04-08 Mitsubishi Cable Ind Ltd チップ供給装置
GB2254979B (en) * 1991-04-20 1994-08-31 Rover Group Active enhancement of recurring sounds
US6023513A (en) * 1996-01-11 2000-02-08 U S West, Inc. System and method for improving clarity of low bandwidth audio systems
US6504935B1 (en) * 1998-08-19 2003-01-07 Douglas L. Jackson Method and apparatus for the modeling and synthesis of harmonic distortion
WO2000039786A1 (fr) * 1998-12-24 2000-07-06 Korg Incorporated Procede et appareil de production d'effet sonore et support de stockage d'un programme
DE19951650A1 (de) * 1999-10-27 2001-05-03 Volkswagen Ag Anordnung zur Anpassung von Motorschall
US6959094B1 (en) * 2000-04-20 2005-10-25 Analog Devices, Inc. Apparatus and methods for synthesis of internal combustion engine vehicle sounds
US6859539B1 (en) * 2000-07-07 2005-02-22 Yamaha Hatsudoki Kabushiki Kaisha Vehicle sound synthesizer
DE10140407A1 (de) * 2001-08-17 2003-03-06 Werner Baur Vorrichtung zum Beeinflussen der Klangkulisse in einem Kraftfahrzeug
JP4173891B2 (ja) * 2005-03-22 2008-10-29 本田技研工業株式会社 移動体用効果音発生装置
JP4450803B2 (ja) * 2006-03-23 2010-04-14 本田技研工業株式会社 車両用能動音響制御装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04152394A (ja) * 1990-10-16 1992-05-26 Mazda Motor Corp 走行模擬音発生装置
JPH04178698A (ja) * 1990-11-13 1992-06-25 Toyota Central Res & Dev Lab Inc 波形生成装置
JPH04107299U (ja) * 1991-02-28 1992-09-16 株式会社ケンウツド 音響信号合成装置
JPH0580790A (ja) 1991-09-21 1993-04-02 Hitachi Ltd 車室内音響制御装置
JPH07182587A (ja) * 1993-12-21 1995-07-21 Honda Motor Co Ltd 電気車両用擬似音発生装置
JPH07302093A (ja) 1994-04-28 1995-11-14 Nippon Seiki Co Ltd エンジン音生成装置
JPH10277263A (ja) * 1997-04-09 1998-10-20 Yamaha Motor Co Ltd エンジン模擬音発生装置
JPH11288291A (ja) * 1998-04-02 1999-10-19 Sony Corp 電気自動車
DE19945259C1 (de) 1999-09-21 2001-01-11 Bayerische Motoren Werke Ag Vorrichtung zur elektroakustischen Geräuscherzeugung bei einem Kraftfahrzeug
JP2001290489A (ja) * 2000-04-07 2001-10-19 Fuji Heavy Ind Ltd エンジン音質の制御装置
JP2004074994A (ja) 2002-08-21 2004-03-11 Mazda Motor Corp 車室内音制御装置
JP2004085235A (ja) * 2002-08-23 2004-03-18 Bridgestone Corp 騒音予測装置及び方法
JP2004093438A (ja) * 2002-09-02 2004-03-25 Toyota Motor Corp エンジンの吸気音解析
JP2005134749A (ja) * 2003-10-31 2005-05-26 Roland Corp 自動車音処理装置
JP2005289354A (ja) * 2004-03-10 2005-10-20 Yamaha Corp エンジン音加工装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1865494A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340343A (ja) * 2005-05-09 2006-12-14 Sony Computer Entertainment Europe Ltd 音声処理
JP2008094328A (ja) * 2006-10-13 2008-04-24 Yamaha Corp エンジン音加工装置
JP2008120320A (ja) * 2006-11-15 2008-05-29 Yamaha Corp 燃費報知装置
JP2008145659A (ja) * 2006-12-08 2008-06-26 Yamaha Corp エンジン音再生装置
JP2008216783A (ja) * 2007-03-06 2008-09-18 Honda Motor Co Ltd 効果音発生装置
KR101734578B1 (ko) * 2011-11-16 2017-05-24 현대자동차주식회사 차량 소음 합성 및 재생 시스템
JP2015514626A (ja) * 2012-04-02 2015-05-21 ボーズ・コーポレーションBosecorporation エンジンハーモニックス増強制御
US9908466B2 (en) 2012-04-02 2018-03-06 Bose Corporation Engine harmonic enhancement control
JP2014051149A (ja) * 2012-09-05 2014-03-20 Yamaha Corp エンジン音加工装置
JP2015147516A (ja) * 2014-02-07 2015-08-20 日産自動車株式会社 車両の付加音量算出方法および付加音量算出装置
JP2017021212A (ja) * 2015-07-10 2017-01-26 株式会社スクウェア・エニックス 音声生成方法、音声生成装置、プログラム、及び記録媒体
KR20170128938A (ko) * 2016-05-16 2017-11-24 현대자동차주식회사 엔진진동 및 주행상태를 반영한 엔진소음 제어장치
US9911405B2 (en) 2016-05-16 2018-03-06 Hyundai Motor Company Apparatus for controlling engine noise reflecting engine vibration and driving conditions
KR101876022B1 (ko) * 2016-05-16 2018-08-02 현대자동차주식회사 엔진진동 및 주행상태를 반영한 엔진소음 제어장치

Also Published As

Publication number Publication date
JP4888386B2 (ja) 2012-02-29
JPWO2006095876A1 (ja) 2008-08-21
EP1865494A4 (en) 2011-01-05
EP1865494A1 (en) 2007-12-12
US20080192954A1 (en) 2008-08-14
EP1865494B1 (en) 2016-11-09
US8885845B2 (en) 2014-11-11
US20120148066A1 (en) 2012-06-14
US8155343B2 (en) 2012-04-10

Similar Documents

Publication Publication Date Title
WO2006095876A1 (ja) エンジン音加工装置
JP6250772B2 (ja) 車両エンジン音強調
JP7324005B2 (ja) 車両ノイズマスキングのためのシステム及び方法
US8320581B2 (en) Vehicle engine sound enhancement
JP4140607B2 (ja) エンジン音加工装置
US7203321B1 (en) Device for electroacoustic sound generation in a motor vehicle
US8526630B2 (en) Active sound control apparatus
JP4946723B2 (ja) エンジン音加工装置
JP2020095260A (ja) 車両サウンドクオリティインデックスベースの人工知能エンジン音色制御システムおよび方法
JP2020091474A (ja) Ev車両の駆動音制御装置および制御方法
CN108713228B (zh) 车辆引擎声音管理
JP5061585B2 (ja) 燃費報知装置
JP4957168B2 (ja) エンジン音加工装置
CN117813648A (zh) 用于掩盖不期望的干扰噪声的方法及车辆
JP3375531B2 (ja) エンジン発生音の制御装置
JP5125203B2 (ja) 音加工装置
US11282494B2 (en) Method for generating an audio signal, in particular for active control of the sound of the engine of a land vehicle, and corresponding apparatus
JP4887988B2 (ja) エンジン音加工装置
JP4635931B2 (ja) 波形生成装置およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007507216

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2006728924

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006728924

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11886044

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006728924

Country of ref document: EP