WO2006093015A1 - 蛍光体及びその製造方法並びにその応用 - Google Patents

蛍光体及びその製造方法並びにその応用 Download PDF

Info

Publication number
WO2006093015A1
WO2006093015A1 PCT/JP2006/303279 JP2006303279W WO2006093015A1 WO 2006093015 A1 WO2006093015 A1 WO 2006093015A1 JP 2006303279 W JP2006303279 W JP 2006303279W WO 2006093015 A1 WO2006093015 A1 WO 2006093015A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
general formula
emitting device
emission
Prior art date
Application number
PCT/JP2006/303279
Other languages
English (en)
French (fr)
Inventor
Etsuo Shimizu
Masahiko Yoshino
Naoto Kijima
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP06714419A priority Critical patent/EP1854863A4/en
Priority to CN200680006387.5A priority patent/CN101128563B/zh
Priority to KR1020077019688A priority patent/KR101388470B1/ko
Priority to US11/816,920 priority patent/US20090008663A1/en
Publication of WO2006093015A1 publication Critical patent/WO2006093015A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to a phosphor emitting yellowish fluorescence, a method for producing the same, a phosphor-containing composition and a light emitting device using the phosphor, and an image display device and an illumination device using the light emitting device. . More specifically, the present invention relates to a yellow phosphor with stable emission, a method for producing the same, a phosphor-containing composition and a light emitting device using the phosphor, and an image display device and an illumination device using the light emitting device.
  • LEDs light emitting diodes
  • LDs laser diodes
  • Patent Document 1 combines a nitride semiconductor blue LED or LD chip with a cerium-activated yttrium-aluminum-garnet phosphor that has a portion of Y substituted with Lu, Sc, Gd, or La.
  • Patent Document 2 also discloses that yttrium-aluminum acid activated with cerium having at least one elemental component selected from the group force consisting of Ba, Sr, Mg, Ca and Zn and a Z or Si elemental component.
  • a color conversion mold member combining an organic fluorescent material, an LED lamp, and the like are disclosed.
  • Patent Document 3 discloses a phosphor obtained by substituting part of Y of cerium-activated yttrium 'aluminum' garnet phosphor with Sm.
  • Patent Document 4 and Patent Document 5 disclose cerium. The effect of a phosphor obtained by adding Tb to an activated yttrium aluminum garnet phosphor is disclosed.
  • the conventionally known cerium-activated yttrium 'aluminum' garnet phosphors have insufficient luminance and have insufficient light emission characteristics.
  • semiconductor light emitting devices such as LEDs and LDs have a light emission wavelength that varies depending on the usage environment such as temperature, humidity, and energization, and the light emission wavelength is generally unstable.
  • a semiconductor light emitting element causes a shift in emission wavelength due to an environmental temperature having a high temperature dependency or, in particular, heat generated by energization. It is also known that wavelength shifts occur between lots at the time of manufacture or due to deterioration of the semiconductor light emitting device itself.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-190066
  • Patent Document 2 Japanese Patent Laid-Open No. 10-247750
  • Patent Document 3 Japanese Patent Laid-Open No. 10-242513
  • Patent Document 4 Special Table 2003-505582
  • Patent Document 5 Special Table 2003-505583
  • the phosphor since it is difficult to adjust the emission wavelength of the semiconductor light-emitting element, in order to manufacture a light-emitting device that exhibits stable light emission, the phosphor has a wide excitation band, That is, the excitation spectrum is required to be wide. Further, in order to produce a light emitting device having a desired emission color, a technique for adjusting the peak emission wavelength of the phosphor is also required.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is a cerium-activated yttrium 'aluminum' garnet phosphor that emits yellow light, and has excellent light emission stability.
  • the phosphor of the first aspect contains a crystal phase having a chemical composition represented by the following general formula [1] and is excited by light having a peak in the wavelength range of 420 nm to 480 nm.
  • the average value of the change rate of the emission intensity calculated in [2] is 1.3 or less.
  • Ln is at least one element selected from the group force consisting of Y, Gd, Sc, Lu and La
  • M represents at least one element selected from the group force consisting of Al, Ga and In.
  • a and b are numbers satisfying 0.001 ⁇ a ⁇ 0.3 and 0 ⁇ b ⁇ 0.5, respectively.
  • Rate of change of emission intensity [(( ⁇ ( ⁇ + 1) — ⁇ ( ⁇ )) ⁇ ( ⁇ )] 2 — [2]
  • ⁇ ( ⁇ ) is the emission intensity of the phosphor at the excitation wavelength ⁇ nm
  • ⁇ ( ⁇ + 1) is the emission intensity of the phosphor at the excitation wavelength ( ⁇ + 1) nm.
  • the phosphor of the second aspect has an object color of L *,
  • the b * color system satisfies L * ⁇ 90, a * ⁇ —7, b * ⁇ 55, contains a crystal phase of the chemical composition represented by the following general formula [1], and has a median diameter D It is characterized by a force of 15 m or more.
  • Ln is at least one element selected from the group force consisting of Y, Gd, Sc, Lu and La
  • M represents at least one element selected from the group force consisting of Al, Ga and In.
  • a and b are numbers satisfying 0.001 ⁇ a ⁇ 0.3 and 0 ⁇ b ⁇ 0.5, respectively.
  • the method for producing the phosphor of the third aspect is a method for producing the phosphor of the first aspect by mixing the raw material compounds containing the respective constituent elements and then firing the mixture. 5Z3) ⁇ (MZ (Ln Ce Tb))
  • raw material compounds containing respective constituent elements are mixed.
  • the phosphor-containing composition of the fifth aspect includes the phosphor of the first aspect and a liquid medium.
  • the light emitting device of the sixth aspect converts the wavelength of a first light emitter that emits light in a range from ultraviolet light to visible light, and at least part of the light from the first light emitter, A light emitting device having a second light emitter that emits light in a longer wavelength region than the light of the first light emitter, wherein the second light emitter includes a phosphor of the first aspect. is there.
  • the image display device of the seventh aspect is characterized by using the light emitting device of the sixth aspect as a light source.
  • the lighting device of the eighth aspect is characterized by using the light emitting device of the sixth aspect as a light source.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a light emitting device of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of a surface-emitting illumination device using the light-emitting device of the present invention.
  • FIG. 3 is a schematic perspective view showing another embodiment of the light emitting device of the present invention.
  • FIG. 4 is a graph showing an emission spectrum of the light emitting device manufactured in Example 1.
  • FIG. 5 is a graph showing the change rate of the emission intensity of the phosphor of Example 1.
  • FIG. 6 is a graph showing the change rate of the emission intensity of the phosphor of Example 2.
  • FIG. 7 is a graph showing the change rate of the emission intensity of the phosphor of Example 3.
  • FIG. 8 is a graph showing the change rate of the emission intensity of the phosphor of Example 4.
  • FIG. 9 is a graph showing the change rate of the emission intensity of the phosphor of Example 5.
  • FIG. 10 is a graph showing the change rate of the emission intensity of the phosphor of Example 6.
  • FIG. 11 is a graph showing the change rate of the emission intensity of the phosphor of Example 7.
  • FIG. 12 is a graph showing the change rate of the emission intensity of the phosphor of Example 8.
  • FIG. 13 is a graph showing the change rate of the emission intensity of the phosphor of Example 13.
  • FIG. 14 is a graph showing the change rate of the emission intensity of the phosphor of Example 17.
  • FIG. 15 is a graph showing the change rate of the emission intensity of the phosphor of Example 18.
  • FIG. 16 is a graph showing the change rate of the emission intensity of the phosphor of Comparative Example 1.
  • FIG. 17 is a graph showing the change rate of the emission intensity of the phosphor of Comparative Example 3.
  • FIG. 18 is a graph showing the change rate of the emission intensity of the phosphor of Comparative Example 4.
  • FIG. 19 is a graph showing excitation spectra in Example 1 and Comparative Example 4.
  • the present inventors have also examined other characteristics of the phosphor in detail, and that the phosphor's object color, particle size, and circularity are within a specific range, and that the luminance is particularly high. I found it. Furthermore, the present inventors have found that this phosphor exhibits very excellent characteristics as a yellow light source and can be suitably used for applications such as a light-emitting device, thereby completing the present invention.
  • a fluorescent substance that emits yellowish fluorescent light and is excellent in light emission stability and has high brightness, and further, such a fluorescent substance is industrially stable. Can be produced. Further, by using a composition containing this phosphor, a light emitting device with high efficiency and stable light emission can be obtained. This light emitting device is suitably used for applications such as an image display device and a lighting device.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the relationship between color names and chromaticity coordinates in the specification is all based on JIS standard CFIS Z8110).
  • the phosphor of the present invention contains a crystal phase having a chemical composition represented by the following general formula [1], and has a wavelength of 420 ⁇ !
  • the average value of the rate of change of emission intensity calculated by the following formula [2] when excited with light having a peak in the range of ⁇ 480 nm is 1.3 or less. That is, 420 ⁇ !
  • the change rate of the emission intensity at each excitation wavelength is calculated by the following formula [2], and the average value is obtained for these calculated values.
  • the average value is 1.3 or less.
  • Ln is at least one element selected from the group force consisting of Y, Gd, Sc, Lu and La
  • M represents at least one element selected from the group force consisting of Al, Ga and In.
  • a and b are numbers that satisfy 0.001 ⁇ a ⁇ 0.3 and 0 ⁇ b ⁇ 0.5, respectively.
  • Rate of change in luminescence intensity [((+ ( ⁇ + 1) — ⁇ ( ⁇ )) ⁇ ( ⁇ )] 2 — [2]
  • ⁇ ( ⁇ ) is the emission intensity of the phosphor at the excitation wavelength ⁇ nm
  • ⁇ ( ⁇ + 1) is the emission intensity of the phosphor at the excitation wavelength ( ⁇ + 1) nm.
  • Ln is at least one element selected from the group force consisting of Y, Gd, Sc, Lu, and La. Ln may contain any one of these elements alone, or may contain two or more of them in any combination and Z or in any ratio. Among these, it is particularly preferable that Ln contains at least Y, and Y is the main constituent element.
  • Y and Lu coexist as Ln in the general formula [1].
  • the lower limit of the Lu composition ratio is usually 0.03 or more, preferably 0.05 or more, more preferably 0.06 or more.
  • the upper limit of the Lu composition ratio is usually 1 or less, preferably 0.6 or less, and more preferably 0.15 or less.
  • composition ratio of Lu corresponds to q when the general formula [1] is expressed by the following general formula [1A].
  • M, a and b have the same meaning as in general formula [1]
  • p and q represent the compositions of Y and Lu, respectively
  • Y Lu Ln.
  • Gd or La may be contained together with Y.
  • the main emission wavelength can be lengthened, which is suitable for light bulb colored white LEDs.
  • M is at least one element selected from the group consisting of Al, Ga and In. As M, any one of these elements may be contained alone, or two or more of them may be contained in any combination and Z or in any ratio. Among them, M preferably contains at least A1.
  • M may include Ga together with A1.
  • the main emission wavelength can be shortened.
  • the lower limit of the composition ratio of Ga is usually 0.2 or more, preferably 0.5 or more.
  • the upper limit of the composition ratio of Ga is usually 3 or less, preferably 2.5 or less, and more preferably 2 or less. If the Ga compositional ratio is greater than 3, the emission peak wavelength becomes too short and the emission efficiency tends to decrease.
  • the Ga composition ratio corresponds to r when the general formula [1] is expressed by the following general formula [1B].
  • a which represents the molar ratio of Ce, is a force satisfying 0.001 ⁇ a ⁇ 0.3, and the lower limit is preferably a ⁇ 0.01 in that the emission intensity increases.
  • A> 0.01 is more preferred a ⁇ 0.02 is more preferred, and the upper limit is preferably a ⁇ 0.2.2 force S, more preferably a ⁇ 0.18 force, and a ⁇ 0.15 force S more preferred .
  • the emission wavelength and the luminance can be adjusted by the composition of the phosphor.
  • the phosphor of the present invention has the following characteristics when the excitation spectrum is measured.
  • the main peak wavelength (nm) of the excitation vector is usually 420 nm or more, particularly 430 nm or more, from the relationship with the emission wavelength of the first light emitter described later.
  • the half width of the above-described excitation spectrum is usually larger than 93 nm, and preferably 95 nm or more. If this FWHM is too narrow, the light emission is not stable, which may reduce the light emission intensity, which is not preferable.
  • the shape of the excitation spectrum of the phosphor of the present invention is at a wavelength (420 ⁇ ! To 480 nm) before and after the emission peak wavelength of the first phosphor described below combined with the phosphor of the present invention! / It is preferred that it be very flat, ie have a broad peak. The flatter the excitation spectrum at the wavelength before and after the emission peak wavelength of the first illuminant, the smaller the average value of the rate of change of emission intensity, which will be described later, and the more preferable the emission is.
  • the phosphor of the present invention has an average power of 1.3 or less, preferably 1.1 in the excitation spectrum in the excitation wavelength range of 420 nm to 480 nm, in the excitation spectrum. Below, more preferably 1.0 or less.
  • Rate of change in luminescence intensity [((+ ( ⁇ + 1) — ⁇ ( ⁇ )) ⁇ ( ⁇ )] 2 — [2]
  • ⁇ ( ⁇ ) is the emission intensity of the phosphor at the excitation wavelength ⁇ nm
  • ⁇ ( ⁇ + 1) is the emission intensity of the phosphor at the excitation wavelength ( ⁇ + 1) nm.
  • the phosphor of the present invention has such a small rate of change in emission intensity and a wide wavelength region, so that excitation light (the emission wavelength of the first light emitter in the light-emitting device of the present invention) can be adapted.
  • the width can be expanded.
  • the emission wavelength of the first phosphor such as a semiconductor light-emitting element
  • the emission wavelength of the first phosphor is shifted, resulting in the emission color of the phosphor as the second phosphor.
  • the lower limit of the average value of the change rate of the emission intensity the closer to 0, the more stable the emission, which is preferable.
  • the average value of the change rate of the emission intensity can be obtained by the method described in the Examples section below. At this time, if the half width of the excitation spectrum is wide, the average value of the change rate of the emission intensity tends to be small, which is preferable.
  • this half-width is preferably 93 or more, especially 95 or more.
  • the inventors of the present invention have made the following studies on the particle size of the phosphor.
  • the phosphor layer has many structural defects and low light emission efficiency. Therefore, a phosphor having a larger particle size has a lower ratio of the low-emission part of the surface to the whole particle, and the luminous efficiency is better.
  • phosphors generally have a median diameter of D force ⁇ m.
  • Display devices often require high resolution. In order to reproduce high-definition images, the size of one pixel must be small. On the other hand, in order for the excitation light incident on the phosphor film to efficiently collide with the phosphor without being transmitted as it is, about three phosphor particle layers in the phosphor film are required. For example, in the case of a direct-view cathode ray tube (CRT), the highest-definition ones have a blue / green / red phosphor stripe coating width of 30 / ⁇ ⁇ , and even ordinary products are 100 m long. The body size is at most 7 m to 8 m.
  • CTR cathode ray tube
  • a projection CRT In a projection CRT, one color phosphor is applied to one tube, so there is no need to form fine pixels, but the diffusion of light due to scattering when light passes through the phosphor layer is proportional to the film thickness. For this reason, it is necessary to obtain a high-resolution image that the thickness of the phosphor film is as thin as possible. For this reason, phosphors with a particle size of about 10 m at most are used.
  • the weight average median diameter D is obtained from a frequency-based particle size distribution curve.
  • the frequency-based particle size distribution curve can be obtained by measuring the particle size distribution by a laser diffraction / scattering method. Specifically, the phosphor is dispersed in an aqueous solution containing a dispersant and measured with a laser diffraction particle size distribution analyzer (Horiba LA-300) in a particle size range of 0.1 ⁇ to 600 / ⁇ m. And obtained. In this frequency-based particle size distribution curve, the particle size value when the integrated value is 50% is the weight average median diameter D (hereinafter referred to as “medium”).
  • a small QD means a narrow particle size distribution.
  • the phosphor of the present invention usually has a substantially normal particle size distribution, and the median diameter D
  • the lower limit of 50 is 10 ⁇ m or more, preferably 14 ⁇ m or more, particularly preferably 15 ⁇ m or more, and further preferably 17 ⁇ m or more.
  • the upper limit of the median diameter D is 40 ⁇ m or less.
  • it is 30 m or less, and particularly preferably 25 m or less.
  • the particle size distribution QD value of the phosphor of the present invention is usually 0.5 or less, preferably 0.3 or less, particularly preferably 0.25 or less.
  • the mixed phosphor When mixed and used, the mixed phosphor may have a QD greater than 0.3.
  • the average circularity is used as an index that quantitatively represents the sphericalness of the phosphor particles.
  • the average circularity of the phosphor is less than 0.86, the luminous efficiency of the light emitting device using the phosphor may not be sufficient. Therefore, the average circularity of the phosphor of the present invention is 0.86 or more, particularly
  • 0.9 or more is preferable, and 0.9 to 1 is particularly preferable.
  • the shape of the phosphor is an irregular shape such as a needle shape, a plate shape, or a ball shape formed by fusion of particles, it is difficult to obtain a uniform phosphor film that easily aggregates in the dispersion medium. It is not preferable.
  • the emission distribution may be biased.
  • the present inventors examined improvement in luminous efficiency of cerium-activated yttrium 'aluminum' garnet phosphors, and the color of the substance changed greatly even with phosphors of the same composition and the same crystal system. I found. Furthermore, the object color of the phosphor of the present invention has a strong correlation with the luminance when mounted on a light-emitting device, and L * and a * are at the same level as conventional phosphors, but b * is a certain level. It has been found that the efficiency of the light emitting device tends to increase when a phosphor having a higher value is used.
  • the phosphor of the present invention has an object color of L *, When expressed in the b * color system, it is preferable that the L * value, a * value, and V value satisfy the following formula.
  • the phosphor of the present invention has an object color that satisfies the above conditions, a light emitting device with high luminous efficiency can be realized when used in a light emitting device described later.
  • the phosphor of the present invention does not exceed 100 as the upper limit of L * because it generally handles objects that do not emit light with irradiation light, but the phosphor of the present invention is an irradiation light source.
  • the upper limit of L * is usually L * ⁇ 115.
  • the lower limit of L * is usually L * ⁇ 90. From the above range When L * is small, the light emission is weak.
  • the upper limit of a * is usually a * ⁇ -7, preferably a * ⁇ -10.
  • the lower limit of a * is usually a * ⁇ -30, preferably a * ⁇ -25. If a * is too large, the total luminous flux tends to decrease, and it is desirable that the value of a * be small.
  • b * is usually b * ⁇ 55, preferably b * ⁇ 80, more preferably b * ⁇ 85, and even more preferably b * ⁇ 90. Those having a small b * are unsuitable for improving the luminous efficiency of the light-emitting device, and the phosphor of the present invention preferably has a high b * value.
  • the upper limit of b * is theoretically b * ⁇ 200, usually b * ⁇ 120.
  • the phosphor of the present invention preferably has a photon absorptance ⁇ of 0.6 or more, particularly 0.65 or more obtained by the method described later.
  • the upper limit of the value that ⁇ can take is substantially 1.
  • elementary excitation means energy excitation by changing the spin state of Ce (generally referred to as “emission center excitation”), and the average number of electrons with existence probability near each ion changes.
  • Energy excitation generally called “CT excitation”
  • band excitation energy excitation due to interband transition of electrons.
  • a phosphor sample in a powder form to be measured is packed in a cell with a sufficiently smooth surface so that measurement accuracy is maintained, and is attached to a spectrophotometer with an integrating sphere.
  • An example of this spectrophotometer is “MCPD2000” manufactured by Otsuka Electronics Co., Ltd.
  • Using an integrating sphere makes it possible to count all photons reflected by the sample and photons emitted by the photoluminescence from the sample. Because.
  • a light source that excites the phosphor is attached to the spectrophotometer. This light source is, for example, an Xe lamp, and the emission peak wavelength is 465 nm. Adjustment is performed using a filter or the like.
  • this measurement spectrum includes the photon emitted from the excitation light source (hereinafter simply referred to as excitation light) and the sample force emitted by photoluminescence, as well as the excitation light reflected from the sample.
  • excitation light the photon emitted from the excitation light source
  • sample force emitted by photoluminescence as well as the excitation light reflected from the sample.
  • Huotong The contributions of Huotong are overlapping.
  • the absorptance ⁇ is the photon number N of the excitation light absorbed by the sample.
  • the total photon number N of the latter excitation light is obtained as follows. That is, a substance having a reflectance of almost 100% with respect to the excitation light, for example, “Spectralonj (with a reflectance of 98% with respect to the excitation light of 465 nm) manufactured by Labsphere, is attached to the spectrophotometer as a measurement target. , The emission spectrum I ( ⁇ ) is measured, where this emission spectrum
  • the integration interval may be performed only in the interval where I ( ⁇ ) has a significant value.
  • the former N is proportional to the amount obtained in [4] below.
  • I ( ⁇ ) is a light emission spectrum when an object sample to be ⁇ is attached to obtain ⁇ .
  • the integration range in [4] is the same as the integration range defined in [3].
  • the first term ⁇ ⁇ ⁇ ( ⁇ ) in [4] corresponds to the photon number generated by the target sample reflecting the excitation light, that is, the target sample. This corresponds to all the photons generated from the photons excluding photons generated by photoluminescence from the excitation light. Since actual spectrum measurements are generally obtained as digital data divided by a certain finite bandwidth related to fly, the integrals of [3] and [4] are obtained by the sum based on the bandwidth. From the above,
  • the phosphor of the present invention comprises a raw material of the metal element Ln in the above general formula [1] (hereinafter referred to as “Ln source” as appropriate), a raw material of Ce (hereinafter referred to as “Ce source” t ⁇ ), Tb raw material (hereinafter referred to as “Tb source” t ⁇ ), and metal element M raw material (hereinafter referred to as “M source” as appropriate) are mixed (mixing step), and the resulting mixture is fired. (Baking process) It can be manufactured from Kouko.
  • the phosphor of the present invention has been unable to be manufactured by a conventional manufacturing method.
  • the M source in excess of the stoichiometric composition, that is, the charged molar ratio is (5Z3) ⁇ (M / (Ln Ce Tb) (M element 2 types
  • the total number of moles is mixed.
  • ⁇ -alumina is preferably used. In this way, by using an excessive amount of the source, a phosphor satisfying the average value of the composition of the above general formula [1] and the emission intensity change rate of the formula [2] with stable emission can be industrially produced. It can be produced stably. Furthermore, by using the phosphor production method of the present invention, crystal growth is promoted and the particle size tends to increase.
  • a method for industrially and stably producing a cerium-activated yttrium 'aluminum' garnet phosphor having a large particle diameter is not described in Patent Document 4 or Patent Document 5, and is known. Absent.
  • the Ln source, Ce source, Tb source, and M source used in the production of the phosphor of the present invention include oxides, hydroxides, carbonates, nitrates, sulfates, oxalates, and carboxylic acids of each element. Examples thereof include salts and halides. Of these, the reactivity to the composite oxide and the low generation amount of halogen, NO, SO, etc. during firing are selected. [0068] Specific examples of the Ln source are listed for each type of Ln element as follows.
  • Y sources include Y O, Y (OH), YC1, YBr, Y (CO) 3 ⁇ 0, Y (NO
  • Gd sources include GdO, Gd (OH), GdCl, Gd (NO) 5 ⁇ 0, Gd (C
  • La source examples include La O, La (OH), LaCl, LaBr, La (CO) -H 0, La
  • Sc source is as follows: Sc O, Sc (OH), ScCl, Sc (NO) -nH O, Sc (SO)
  • Lu sources include Lu O, LuCl, Lu (NO) 8 ⁇ 0, Lu (OCO) -6H O
  • A1 sources include a-AlO, ⁇ -AlO, Al O, Al (OH), AIOO
  • Ga source examples include GaO, Ga (OH), Ga (NO) ⁇ ⁇ 0, Ga (SO), Ga
  • In sources include In O, In (OH), In (NO) -nH 0, In (SO), InCl, etc.
  • Ce source examples include CeO, Ce (SO), Ce (CO) ⁇ 5 ⁇ 0, Ce (NO) -6H
  • Tb sources include Tb O, Tb (SO), Tb (NO) ⁇ ⁇ 0, Tb (CO) ⁇ 10
  • Each raw material mixture may be used alone or in combination of two or more.
  • the charged molar ratio is (5Z3) ⁇ (MZ (Ln Ce Tb) (when two or more M elements are used, It is characterized by mixing the M source so that the total number of moles), that is, the M element is in excess of the stoichiometric composition.
  • the M source should be 1% to 10% excess (ie, 5.0 5 / 3 ⁇ (MZ (Ln Ce Tb) ⁇ 5.5 / 3) relative to the stoichiometric composition. Preferred to add, stoichiometry group
  • the amount of M source added excessively is less than 1% compared to the composition, the resulting phosphor has a small particle size, and the light emission tends to be unstable, which is not preferable.
  • the upper limit when adding an excessive amount of M source is usually 10%. This is because the effect of excess added calories is saturated.
  • A1 it is preferable to select A1 as the M element. Furthermore, it is preferable to use a alumina as the A1 source. That is, it is preferable to use ⁇ -alumina as the A1 source because a phosphor having a large particle size tends to be obtained. Moreover, the phosphor produced when ⁇ -alumina is added in excess of the stoichiometric composition using A1 as the source has an object color of L * ⁇ 90, a * in the L *, a *, b * color system. ⁇ -7, b * ⁇ 55 is satisfied, and b * increases in proportion to the amount of a-alumina added, so the object color can be optimized. Therefore, it is particularly preferable to produce a phosphor using OC alumina as the A1 source compound.
  • the phosphor of the present invention has a chemical analysis result within the analytical accuracy.
  • the stoichiometric composition is shown.
  • Uniform mixing of raw materials is essential for obtaining a phosphor having a uniform composition.
  • coprecipitation examples include the following methods.
  • a rare earth raw material such as Ce are dissolved in a mineral acid such as hydrochloric acid and nitric acid to prepare a rare earth mixed solution.
  • a solution of oxalic acid or the like as a precipitant is gradually added to the rare earth mixed solution to prepare a complex rare earth oxalate precipitate.
  • the precipitate is washed with pure water, followed by filtration, and then fired in the atmosphere at 850 ° C. to 1100 ° C., for example, about 1000 ° C. to obtain a composite rare earth oxide.
  • the composite rare earth oxide obtained in this way is Ln A raw material in which other elements, such as elemental elements, and rare earth elements, such as Ce, are distributed almost uniformly in the mixing ratio [0078]
  • the method of mixing the Ln source, Ce source, Tb source and M source is not particularly limited, but examples include the following dry method and wet method.
  • Dry method After pulverizing the above raw material mixture using a dry pulverizer such as a hammer mill, roll mill, ball mill, jet mill, etc., mixing with a blender such as a ribbon blender, V-type blender or Henschel mixer To do. Alternatively, after mixing the above raw material compounds, they are pulverized using a dry pulverizer.
  • a dry pulverizer such as a hammer mill, roll mill, ball mill, jet mill, etc.
  • a blender such as a ribbon blender, V-type blender or Henschel mixer
  • the element source compound of the luminescent center ion it is necessary to uniformly mix and disperse a small amount of the compound throughout, and therefore it is preferable to use a liquid medium.
  • the wet method is preferable from the viewpoint of obtaining uniform mixing throughout the other element source compounds.
  • a mixture of raw materials such as Ln source, Ce source, Tb source and M source obtained by the above mixing step is usually low in reactivity with each raw material! It is carried out by heating in a heat-resistant container such as a crucible or tray of material (alumina, quartz, etc.).
  • the temperature during firing is usually 1350 ° C or higher, preferably 1400 ° C or higher, more preferably 1430 ° C or higher, and usually 1650 ° C or lower, preferably 1630 ° C or lower, more preferably 1600 °. C or less. If the firing temperature is too low, particle growth may be suppressed, which is not preferable.
  • the pressure during firing varies depending on the firing temperature or the like, but is usually performed at normal pressure or higher.
  • the firing time varies depending on the temperature and pressure during firing, it is usually in the range of 10 minutes to 24 hours.
  • the atmosphere at the time of firing is not particularly limited! However, as specific examples, among gases such as air, nitrogen, argon, carbon monoxide, hydrogen, etc., either one kind alone atmosphere or two kinds Perform in the above mixed atmosphere. Although the optimum conditions for firing vary depending on the material, composition ratio, preparation batch size, etc., a reducing atmosphere is usually preferred. In this case, the phosphor of the present invention cannot be obtained if the degree of reduction is too weak or too strong.
  • a phosphor having the object color specified in the present invention can be obtained by using a relatively strong reducing atmosphere, specifically, an atmosphere such as a mixed gas of nitrogen and hydrogen containing 2% to 4% by volume of hydrogen. There is a tendency.
  • an atmosphere such as a mixed gas of nitrogen and hydrogen containing 2% to 4% by volume of hydrogen.
  • carbon carbon beads, graphite, etc.
  • the reducing power tends to become too strong, so it is better to use it as needed.
  • a flux coexists in the reaction system from the viewpoint of growing good crystals.
  • the type of flux is not particularly limited, but for example NH C1
  • Examples thereof include fluorides such as sF, CaF, BaF, SrF, and A1F.
  • fluorides such as sF, CaF, BaF, SrF, and A1F.
  • BaF, A1F fluorides such as sF, CaF, BaF, SrF, and A1F.
  • BaF, A1F fluorides such as sF, CaF, BaF, SrF, and A1F.
  • the amount of flux used varies depending on the type of raw material and the material of the flux, etc. Usually 0.01% by weight or more, further 0.1% by weight or more, and usually 20% by weight or less with respect to the total weight of the raw material. Furthermore, the range of 10% by weight or less is preferable. If the amount of flux used is too small, the effect of the flux will not appear. There is a case.
  • the present invention is characterized in that the fired product obtained by firing is washed with an acid. Further, when the obtained phosphor is dispersed in a dispersion medium as will be described later, a known surface treatment can be performed as necessary.
  • the fired product obtained by firing is lightly pulverized, dispersed in an acidic aqueous solution in the form of particles, and then washed with water.
  • an acidic aqueous solution to be used it is usually preferable to use an aqueous acid solution having a concentration of 0.5 molZl or more and 4 molZl or less. Yes.
  • Specific examples include one or more inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, with hydrochloric acid being preferred.
  • the phosphor of the present invention has the advantage of being excellent in light emission stability and luminance, so that the phosphor-containing composition, various light-emitting devices (“light-emitting device of the present invention” described later), and image display It can be suitably used for a device, a lighting device, and the like.
  • a phosphor of the present invention which is a yellow phosphor
  • a blue light emitting semiconductor light emitting element or the like as the first light emitter
  • the phosphor of the present invention When the phosphor of the present invention is used for a light emitting device or the like, it is preferable to use the phosphor in a form dispersed in a liquid medium.
  • the phosphor of the present invention dispersed in a liquid medium will be referred to as “the phosphor-containing composition of the present invention” as appropriate.
  • liquid medium that can be used in the phosphor-containing composition of the present invention exhibits a liquid property under the desired use conditions, and preferably disperses the phosphor of the present invention and performs an undesirable reaction. Anything that does not occur can be selected according to the purpose.
  • liquid media include addition reaction type silicone resin, condensation reaction type silicone resin, modified silicone resin, epoxy resin, polybule resin, polyethylene resin, polypropylene resin, polyester resin, etc. Is mentioned. These liquid media may be used alone or in combination of two or more in any combination and Z or in any ratio.
  • the amount of the liquid medium to be used may be appropriately adjusted according to the application and the like, but generally the weight ratio of the liquid medium to the phosphor of the present invention is usually 3% by weight or more, preferably 5%. It is in the range of not less than wt%, usually not more than 30 wt%, preferably not more than 20 wt%.
  • the phosphor-containing composition of the present invention includes Other optional components may be contained depending on the purpose of use.
  • other components include a diffusing agent, a thickener, a bulking agent, and a light interference agent.
  • Specific examples include silica fine powder such as Aerosil, alumina and the like.
  • Such a phosphor-containing composition of the present invention is suitably used for the production of a light-emitting device.
  • the light emitting device of the present invention includes a first light emitter that emits light in a range from ultraviolet light to visible light, and wavelength conversion of at least a part of the light having the first light emitter power to light from the first light emitter. And at least a second light emitter that emits light in a longer wavelength region.
  • the light emitting device of the present invention is characterized by including the above-described phosphor of the present invention as a second light emitter.
  • the first light emitter in the light emitting device of the present invention emits light that excites a second light emitter described later.
  • the emission wavelength of the first illuminant is not particularly limited as long as it overlaps the absorption wavelength of the second illuminant described later, and an illuminant having a wide emission wavelength region can be used.
  • an illuminant having an emission wavelength from the purple region to the blue region is used, and specific values are usually 420 nm or more, preferably 430 nm or more, and usually 500 nm or less, preferably 490 nm or less.
  • the luminescent material is used.
  • the wavelength of the first illuminant to be combined is usually 445 nm or more, preferably 450 nm or more, and usually 460 nm or less. , More preferably 455 nm or less.
  • a semiconductor light emitting element is generally used, and specifically, an LED, LD, or the like can be used.
  • GaN-based LEDs and LDs are extremely bright at very low power by combining with the above phosphors, which have significantly higher emission output and external quantum efficiency than SiC-based LEDs that emit light in this region. It is also the power to obtain luminescence.
  • GaN-based LEDs and LDs usually have a light emission intensity that is 100 times that of SiC To do.
  • GaN-based LDs that have a Ga N light-emitting layer are particularly preferred because their emission intensity is very strong.
  • the multi-quantum well structure has very high emission intensity.
  • the value of X + Y is usually a value in the range of 0.8 to 1.2.
  • these light-emitting layers doped with Zn or Si and those without dopants are preferred for adjusting the light-emitting characteristics.
  • GaN-based LEDs have these light-emitting layers, p-layers, n-layers, electrodes, and substrates as the basic components.
  • the light-emitting layers are n-type and p-type AlGaN layers, GaN layers, or In. Support with Ga N layer, etc.
  • the power of having a heterostructure in the form of a niche switch The structure of a heterostructure having a quantum well structure is more preferable because the light emission efficiency is higher.
  • the second light emitter in the light emitting device of the present invention includes a wavelength conversion material that emits visible light when irradiated with light from the first light emitter described above.
  • the second phosphor is characterized by containing the phosphor of the present invention (yellowish phosphor), and appropriately contains a phosphor of any composition or color as described later according to its use. You can also.
  • phosphors that can be used in combination with the phosphor of the present invention will be exemplified below.
  • green phosphor examples include Ca Sc Si O: Ce 3+ , (Sr, Ca, Mg) Ga S: Eu,
  • red phosphor examples include (Ca, Sr) S: Eu, Ca AlSiN: Eu 2+ and the like. Saraco, Reflector, Diffuser BaSO, MgO, CaHP
  • White materials such as O can be used in combination with the phosphor of the present invention.
  • a method of combining these phosphors a method of stacking each phosphor in the form of a powder, a method of mixing in a resin and laminating in a film, and a method of mixing in the form of a powder
  • a method of dispersing in a resin, a method of laminating thin film crystals, and the like can be used.
  • the method of mixing and managing the powder in the form of powder is preferable because white light can be obtained easily and inexpensively.
  • the second illuminant may contain only one of the phosphors of the present invention. It may further include one or more yttrium / aluminum / garnet phosphors activated with cerium and Z or terbium. Accordingly, a desired emission color can be obtained by adjusting the emission spectrum of the second light emitter corresponding to the characteristic (light emission wavelength) of the first light emitter.
  • the present invention discloses the following three methods. Yttrium / Aluminum In the garnet phosphor, (1) a part of aluminum is replaced with gallium, (2) a part of yttrium is replaced with lutetium, and (3) the amount of activator is adjusted. Further, the first phosphor and the second phosphor having different compositions may be included.
  • the emission peak wavelength of the phosphor contained in the second illuminant is longer than the emission peak wavelength of the first illuminant. It is preferable to set so that This makes it possible to emit white light efficiently.
  • the other configurations of the light-emitting device of the present invention are not particularly limited as long as the light-emitting device includes the above-described first light-emitting body and second light-emitting body.
  • the above-described first light-emitting apparatus is mounted on an appropriate frame.
  • a light emitter and a second light emitter are arranged.
  • the second light emitter is excited by the light emission of the first light emitter to emit light, and the light emission of the first light emitter and the light emission of Z or the second light emitter are taken out to the outside. Will be arranged as follows.
  • a sealing material is usually used. Specifically, the sealing material is formed by dispersing the first phosphor and the Z or second phosphor described above to form the second light emitter, or the first light emitter and the second light emitter. It is also used for the purpose of bonding between frames.
  • Examples of the sealing material to be used usually include thermoplastic resin, thermosetting resin, and photocurable resin. Specifically, methacrylic resin such as polymethylmethacrylate; styrene resin such as polystyrene and styrene-acrylonitrile copolymer; polycarbonate resin; polyester resin; phenoxy resin; petital resin; Alcohol: Ethanolosenorelose.Senorelose such as cenololose acetate, cenololose acetate butyrate Examples thereof include epoxy resin, epoxy resin, phenol resin, and silicone resin.
  • inorganic materials such as siloxane bonds, which are solidified solid solutions of inorganic materials such as metal alkoxides, ceramic precursor polymers or solutions containing metal alkoxides by hydrolytic polymerization using a sol-gel method, or combinations thereof, are used. It is possible to use inorganic materials!
  • the present invention is not limited to the following embodiments, and does not depart from the gist of the present invention.
  • the range can be arbitrarily modified and implemented.
  • the light-emitting device of the present invention is a light-emitting device with high emission intensity, and can be used as a light source for an image display device such as a color display or a lighting device such as surface emission.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a light emitting device of the present invention having a first light emitter (light emitter generating light with a wavelength of 420 nm to 500 nm) and a second light emitter.
  • FIG. 2 is a schematic cross-sectional view showing an example of a surface-emitting illumination device incorporating the light-emitting device shown in FIG. 1 and 2, 1 is a light emitting device, 2 is a mount lead, 3 is an inner lead, 4 is a first light emitter, 5 is a phosphor containing portion as a second light emitter, and 6 is a conductive wire. 7 is a mold member, 8 is a surface emitting illumination device, 9 is a diffusion plate, and 10 is a holding case.
  • the light-emitting device 1 of the present invention has, for example, a general bullet shape as shown in FIG.
  • a first light emitter 4 made of a GaN blue light emitting diode or the like is bonded in the upper cup of the mount lead 2.
  • the phosphor of the present invention and, if necessary, another phosphor are mixed and dispersed in a sealing material such as epoxy resin, acrylic resin, silicone resin, and poured into a cup.
  • a sealing material such as epoxy resin, acrylic resin, silicone resin, and poured into a cup.
  • the phosphor-containing portion 5 is formed.
  • the first light emitter 4 is covered and fixed with the phosphor-containing portion 5.
  • the first light emitter 4 and the mount lead 2, and the first light emitter 4 and the inner lead 3 are electrically connected by conductive wires 6 and 6, respectively. Covered and protected by
  • FIG. 2 shows a surface emitting illumination device 8 in which the light emitting device 1 is inserted.
  • a large number of light emitting devices 1 are provided on the bottom surface of a rectangular holding case 10 having an inner surface that is opaque to light such as a white smooth surface, and a power source and a circuit for driving the light emitting device 1 are provided on the outside thereof (not shown).
  • a diffusion plate 9 such as a milky white acrylic plate is fixed to a portion corresponding to the lid of the holding case 10.
  • the surface emitting illumination device 8 is driven to apply blue voltage to the first light emitter 4 of the light emitting device 1 to emit blue light or the like.
  • Part of the emitted light is absorbed in the phosphor-containing portion 5 by the phosphor of the present invention, which is a wavelength conversion material, and another phosphor added as necessary, and converted into light having a longer wavelength.
  • Light emission with high brightness is obtained by mixing with blue light that has not been absorbed. This light passes through the diffusion plate 9 and is emitted upward in the drawing, and illumination light with uniform brightness can be obtained within the surface of the diffusion plate 9 of the holding case 10.
  • the first light emitter 4 is a light source that emits excitation light of the phosphor contained in the phosphor containing portion 5, and as a component of light emitted from the light emitting device 1. It is also a light source for emitting light. That is, a part of the light emitted also by the first light emitter 4 is absorbed as the excitation light by the light emitting substance in the phosphor containing portion 5, and another part is emitted from the light emitting device 1. It has become.
  • the phosphor-containing portion 5 in the light emitting device 1 has the following effects. That is, the light from the first light emitter and the light of the phosphor power of the second light emitter are usually directed in all directions, but when the phosphor powder of the second light emitter is dispersed in the sealing material, Since part of the light is reflected when it goes out of the phosphor-containing portion 5, the direction of the light can be aligned to some extent. Therefore, since light can be guided to a certain degree in an efficient direction, it is preferable to use a material in which the phosphor powder is dispersed in a sealing material.
  • the total irradiation area of the light with the first illuminant force on the second illuminant increases, so the emission intensity with the second illuminant force increases.
  • sealing material examples include silicone resin, modified silicone resin, epoxy resin, polyvinyl resin, polyethylene resin, polypropylene resin, and polyester resin.
  • Various types such as fat can be used singly or in combination of two or more.
  • epoxy resin is preferable from the viewpoint of good dispersibility of the phosphor powder. If necessary, it is preferable to add a specific surface area 150m 2 Zg ⁇ 300m 2 Zg about shea silica thickener (Aerojiru (registered trademark), etc.).
  • the weight ratio of the phosphor powder to the total of the phosphor powder and the sealing material is usually 5% by weight, preferably 10% by weight, and usually 50% by weight or less. Preferably it is 30 wt% or less. If there is too much phosphor within this range, the luminous efficiency may be reduced due to aggregation of the phosphor powder, and if it is too small, the luminous efficiency may be lowered due to light absorption or scattering by the resin.
  • a surface-emitting type illuminant in particular, a surface-emitting GaN-based laser diode, as the first illuminant because the luminous efficiency of the entire light-emitting device is increased.
  • a surface-emitting light emitter is a light emitter that emits intense light in the direction of the surface of the film.
  • the crystal growth of the light-emitting layer, etc. is controlled, and the reflective layer, etc. By devising, light emission in the plane direction can be made stronger than the edge direction of the light emitting layer.
  • the surface emission type Compared with the type that emits light from the edge of the light-emitting layer, the surface emission type has a larger light emission cross-sectional area per unit light emission, and as a result, the phosphor of the second light emitter is irradiated with that light.
  • the irradiation area can be made very large with the same amount of light, and the irradiation efficiency can be improved, so that stronger light emission can be obtained from the phosphor that is the second light emitter.
  • the phosphor of the second luminous body includes the phosphor of the present invention described above, that is, the phosphor having a specific composition represented by the general formula [1], and further having a specific median diameter D and Object color phosphor
  • a wider range can be obtained by adopting an appropriate combination in which a plurality of phosphors having different composition ratios can be contained or other phosphors other than the phosphor of the present invention can be mixed and mixed.
  • a white region and a high color rendering index can be realized.
  • Other phosphors are not particularly limited, but emit light that is complementary to the light of the first light emitter, or emit green light and red light, and combine with the light of the first light emitter.
  • a phosphor that turns white can be used.
  • the second light emitter is preferably formed into a film. That is, since the cross-sectional area of the light from the surface-emitting type illuminant is sufficiently large, when the second illuminant is formed into a film shape in the direction of the cross-section, the irradiation cross-sectional area of the phosphor with the first illuminant force becomes the fluorescence. Since it increases per body unit amount, the intensity of light emitted from the phosphor can be increased.
  • the film-like second directly on the light-emitting surface of the first light emitter. It is preferable to have a shape in which the phosphors are in contact with each other. Contact here means creating a state in which the first light emitter and the second light emitter are in perfect contact with each other without air or gas. As a result, it is possible to avoid light loss such that light from the first light emitter is reflected by the film surface of the second light emitter and oozes out, so that the light emission efficiency of the entire apparatus can be improved. .
  • FIG. 3 is a schematic perspective view showing an example of a light-emitting device using a surface-emitting type as the first light emitter and a film-like one as the second light emitter as described above.
  • 11 is a film-like second light emitter having the phosphor
  • 12 is a surface-emitting GaN-based LD as the first light emitter
  • 13 is a substrate.
  • the LD of the first light emitter 12 and the second light emitter 11 may be formed separately, and their surfaces may be brought into contact with each other by an adhesive or other means.
  • the second light emitter 11 may be formed (molded) on the light emitting surface of the LD 12. As a result, the LD 12 and the second light emitter 11 can be brought into contact with each other.
  • the excitation spectrum of the phosphor relative to the emission peak wavelength was measured.
  • the rate of change in emission intensity at intervals of 1 nm of the excitation wavelength can be calculated using the following equation, and the wavelength is 420 ⁇ ! Excitation wavelength dependence with average change rate of emission intensity at 480nm showed that.
  • Rate of change in emission intensity [( ⁇ ( ⁇ + ⁇ ) — ⁇ ( ⁇ )) ⁇ ( ⁇ )] 2
  • a 150 W xenon lamp was used as an excitation light source in a fluorescence measuring apparatus manufactured by JASCO Corporation. Pass the light of the xenon lamp through a diffraction grating spectrometer with a focal length of 10 cm, and 450 ⁇ ! The phosphor was irradiated through the optical fiber only with ⁇ 475 nm light. The light generated by the irradiation of excitation light was dispersed with a diffraction grating spectrometer with a focal length of 25 cm, and the emission intensity of each wavelength from 300 nm to 800 nm was measured with a multi-channel CCD detector “C7041” manufactured by Hamamatsu Photo-TAS. . Subsequently, an emission spectrum was obtained through signal processing such as sensitivity correction by a personal computer.
  • Chromaticity coordinates X and y in the XYZ color system specified by JIS Z8701 were calculated from the data in the wavelength region of 480 nm to 800 nm of this emission spectrum.
  • the relative luminance was calculated with the value of the stimulus value Y of the phosphor in Comparative Example 4 described later as 100%.
  • the chromaticity and luminance were measured by cutting excited blue light.
  • an ultrasonic disperser manufactured by Kaijo Co., Ltd.
  • the frequency was 19 KHz
  • the intensity of the ultrasonic wave was 5 W
  • the sample was ultrasonically dispersed for 25 seconds.
  • a small amount of a surfactant was added to the dispersion to prevent reaggregation.
  • a 50 Z scattering type particle size distribution measuring device (manufactured by Horiba, Ltd.) was used.
  • the sample was completely dissolved in a platinum crucible using a strong acid and analyzed using an ICP chemical analyzer “JY 38S” manufactured by Jobibon.
  • MCPD2000 manufactured by Otsuka Electronics Co., Ltd. was used in combination with a 1-inch integrating sphere, and the above method was used.
  • a light emitting device having the configuration shown in FIG. 1 was prepared and measured by combining a spectrometer manufactured by Ocean Photovitas and a 1-inch integrating sphere.
  • a phosphor slurry (phosphor-containing composition) was prepared by mixing phosphor in the mixed sealing material at a ratio of 5% by weight. The obtained phosphor slurry was poured into the upper recess of the mount lead 2 and cured to form the phosphor-containing portion 5.
  • the amount of phosphor used was 0.02 mg to 0.1 mg per bullet-type LED.
  • a silica-based thickener specific surface area 150 to 300 m 2 Zg, Aerosil was added to prevent sedimentation and deposition of the phosphor particles.
  • the manufactured light emitting device was driven at 20 mA at room temperature (about 24 ° C.). The results are shown as relative values with the total luminous flux in Comparative Example 1 as 100.
  • the QD values of the phosphors of the present invention used in the following Examples 1 to 19 were in the range of 0.19-0.2.
  • Yttrium oxide Y O (Purity 99. 99%, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Acid Cerium CeO (Purity 99. 99%, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Acid terbium Tb O (Purity 99. 99%, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Barium fluoride BaF (manufactured by Kanto Igaku)
  • the weighed raw material mixture was put into a 2 L polyethylene wide-mouthed container, added with 1 kg of nylon-coated iron balls, and rotated and mixed for 3 hours.
  • This raw material mixture was filled into an alumina crucible and baked at 1450 ° C for 6 hours in a nitrogen-hydrogen mixed gas stream containing 4 vol% hydrogen.
  • the fired product that exhibited a yellow color upon firing was crushed lightly.
  • it was washed with 1.5 mol Zl of hydrochloric acid to disperse the fired product as particles, and then thoroughly washed with water. Thereafter, classification treatment was performed to obtain a target phosphor.
  • the obtained phosphor was dispersed in water, an alkali metal phosphate solution and a calcium salt solution were added and stirred, and the phosphoric acid particle surface was coated with calcium phosphate salt. This phosphor was separated by filtration and dried, and then sieved with a nylon mesh (opening size 50 ⁇ m) to obtain a phosphor with good dispersibility.
  • the raw material preparation composition the chemical composition of the phosphor, the emission peak wavelength, the average value of the change rate of the emission intensity, the half width of the excitation spectrum, the median diameter D, the average
  • Comparative Example 1 with "*" in the column of total luminous flux indicates that measurement was performed using an LED with a wavelength of 453 nm.
  • Examples 1 to 3 without “*” were measured using an LED with a wavelength of 463 nm. The same applies to Tables 4, 6, 8, and 10.
  • Example 1 The excitation spectra in Example 1 and Comparative Example 4 are as shown in FIG.
  • the raw material charge amount was prepared with ⁇ - ⁇ 1 ⁇ with a stoichiometric composition.
  • a phosphor was produced in the same manner as in Examples 1 to 4 except that the firing conditions were 1400 ° C and 2 hours at normal pressure in a 4% by volume hydrogen-containing nitrogen-hydrogen mixed gas stream, and the same evaluation was performed. The results are shown in Tables 3 and 4.
  • Comparative Example 4 has low luminance and total luminous flux.
  • Examples 1 to 4 are the same as those described in Table 5 except that the raw material charge amount is as described in Table 5, and the firing condition is 1550 ° C at normal pressure for 2 hours in a 4% by volume hydrogen-containing nitrogen-hydrogen stream Similarly, phosphors were manufactured and evaluated in the same manner, and the results are shown in Tables 5 and 6.
  • Lu source material compound of Examples 6 to 11 lutetium oxide LuO (Shinetsu)
  • the light wavelength is slightly shortened.
  • Examples 1 to 4 were the same as those described in Table 7, except that the raw material charge was as described in Table 7, and the firing conditions were 1 vol. Similarly, phosphors were manufactured and evaluated in the same manner, and the results are shown in Tables 7 and 8.
  • the amount of Ce was changed. As the amount of Ce decreases, the emission wavelength of the phosphor decreases to the short wavelength side, and b * decreases and the object color changes to pale yellow.
  • the excitation wavelength of the phosphors of Examples 12 to 15 whose emission wavelengths are short is closer to white, so that 453 nm is preferable to 465 nm.
  • Examples 1 to 4 are the same as those described in Table 9 except that the amount of raw materials charged is as described in Table 9 and the firing conditions are 1 vol. Similarly, phosphors were manufactured and evaluated in the same manner, and the results are shown in Tables 9 and 10.
  • gallium oxide GaO (purity 9 manufactured by Mitsui Kinzoku Co., Ltd.)
  • Example 19 lutetium oxide LuO (Shin-Etsu Chemical Co., Ltd.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

 下記一般式[1]で表される化学組成の結晶相を含有し、かつ、波長420nm~480nmの範囲にピークを有する光で励起した時の下記式[2]で算出される発光強度の変化率の平均値が、1.3以下であることを特徴とする蛍光体。   (Ln1-a-bCeaTbb)3M5O12  …[1]  但し、LnはY、Gd、Sc、Lu及びLaよりなる群から選ばれる少なくとも1種の元素であり、MはAl、Ga及びInよりなる群から選ばれる少なくとも1種の元素を示す。a、bは、それぞれ0.001≦a≦0.3、0≦b≦0.5を満足する数である。  発光強度の変化率=[(I(λ+1)-I(λ))/I(λ)]2 …[2]  但し、I(λ)は励起波長λnmにおける蛍光体の発光強度であり、I(λ+1)は励起波長(λ+1)nmにおける蛍光体の発光強度である。

Description

蛍光体及びその製造方法並びにその応用
技術分野
[0001] 本発明は、黄色系の蛍光を発する蛍光体及びその製造方法と、その蛍光体を用い た蛍光体含有組成物及び発光装置、並びにその発光装置を用いた画像表示装置 及び照明装置に関する。より詳しくは、発光の安定した黄色系蛍光体及びその製造 方法と、その蛍光体を用いた蛍光体含有組成物及び発光装置、並びにその発光装 置を用いた画像表示装置及び照明装置に関する。
背景技術
[0002] 発光ダイオード (LED)やレーザーダイオード (LD)等の半導体発光素子は可視領 域の光から紫外線を発するものまで開発されて!、る。こうした多色の半導体発光素子 を組み合わせた表示装置がディスプレイや交通信号機として用いられて 、る。さらに 半導体発光素子の発光色を蛍光体で色変換させた発光装置も提案されている。
[0003] また、近年では、青色発光の半導体発光素子として注目されている発光効率の高 V、窒化ガリウム (GaN)系 LEDや LDと、波長変換材料としての蛍光体とを組み合わ せて構成される白色発光の発光装置が、画像表示装置や照明装置の発光源として 提案されている。例えば、特許文献 1には窒化物系半導体の青色 LED又は LDチッ プにセリウム付活イットリウム ·アルミニウム ·ガーネット系蛍光体の Yの一部を Lu、 Sc 、 Gd、 La置換した蛍光体を組み合わせ、青色光と蛍光体から発生する黄色光の混 色で得られる白色発光装置が示されている。また、特許文献 2には、 Ba、 Sr、 Mg、 C a及び Znからなる群力も選択される少なくとも 1種の元素成分及び Z又は Si元素成 分を有するセリウムで付活されたイットリウム'アルミニウム酸ィ匕物系蛍光物質を組み 合わせた色変換モールド部材や、 LEDランプ等が開示されて 、る。
[0004] また、特許文献 3にはセリウム付活イットリウム 'アルミニウム 'ガーネット系蛍光体の Yの一部を Smで置換した蛍光体が開示されており、特許文献 4や特許文献 5にはセ リウム付活イットリウム'アルミニウム ·ガーネット系蛍光体に Tbを添加した蛍光体の効 果が開示されている。 [0005] し力しながら、従来公知のセリウム付活イットリウム 'アルミニウム 'ガーネット系蛍光 体は、輝度が不十分であり、発光特性は未だ十分ではない。
[0006] 一方、 LEDや LD等の半導体発光素子は、温度、湿度、通電量等の使用環境によ つて発光波長が変化するものであり、その発光波長は不安定なものであることが一般 的によく知られている。特に、半導体発光素子は、温度依存性が高ぐ環境温度や、 とりわけ通電による発熱によって発光波長のズレを生じる。また、製造時のロット間に よって、あるいは、半導体発光素子自体の劣化によっても波長のズレを生じることが 知られている。しかし、現在の技術では、半導体発光素子の発光波長を抑制し、半 導体発光素子から一定の波長の光を発光させることは難しい。
[0007] 従って、前述した公知のセリウム付活イットリウム ·アルミニウム ·ガーネット系蛍光体 では、半導体発光素子と組み合わせて白色系に発光する発光装置を作製した場合 において、発光強度が不十分であり、また、半導体発光素子の発光波長が不安定な ことから、発光装置としての発光波長も安定しな 、と 、う問題点があった。
特許文献 1 :特開平 10— 190066号公報
特許文献 2:特開平 10— 247750号公報
特許文献 3 :特開平 10— 242513号公報
特許文献 4:特表 2003— 505582号公報
特許文献 5:特表 2003 - 505583号公報
[0008] 前述したように、半導体発光素子は、その発光波長の調整が困難であることから、 安定した発光を示す発光装置を製造するためには、蛍光体として、励起帯が広いこ と、すなわち、励起スペクトルが幅広いことが求められる。また、所望の発光色を有す る発光装置を作製するためには、蛍光体のピーク発光波長を調整する技術も求めら れている。
[0009] し力しながら、上記特許文献 1〜5記載のものに代表される既存のセリウム付活イツ トリウム 'アルミニウム'ガーネット系蛍光体は、発光の安定性及び輝度の点で、何れも 不十分なものであった。このため、上記目的に適う高性能の黄色系蛍光体が望まれ ていた。
発明の概要 [0010] 本発明は上述の課題に鑑みてなされたものであり、その目的は、黄色の発光を発 するセリウム付活イットリウム 'アルミニウム 'ガーネット系蛍光体であって、発光の安定 性に優れた、高輝度な蛍光体、及びこの蛍光体を安定に製造する方法を提供すると 共に、この蛍光体を用いた蛍光体含有組成物及び発光装置と、この発光装置を用い た画像表示装置及び照明装置を提供することである。
[0011] 第 1アスペクトの蛍光体は、下記一般式 [1]で表される化学組成の結晶相を含有し 、かつ、波長 420nm〜480nmの範囲にピークを有する光で励起した時の下記式 [2 ]で算出される発光強度の変化率の平均値が、 1. 3以下であることを特徴とするもの である。
(Ln CeTb ) M O '··[1]
1-a-b a b 3 5 12
但し、 Lnは Y、 Gd、 Sc、 Lu及び Laよりなる群力 選ばれる少なくとも 1種の元素で あり、 Mは Al、 Ga及び Inよりなる群力も選ばれる少なくとも 1種の元素を示す。 a、 bは 、それぞれ 0.001≤a≤0. 3、 0≤b≤0. 5を満足する数である。
発光強度の変化率 =[(Ι(λ+1)— ι(λ))Ζι(λ)]2 —[2]
但し、 Ι(λ)は励起波長 λ nmにおける蛍光体の発光強度であり、 Ι(λ+1)は励起 波長( λ + 1) nmにおける蛍光体の発光強度である。
[0012] 第 2アスペクトの蛍光体は、物体色が L*、
Figure imgf000005_0001
b*表色系にお 、て L*≥ 90、 a*≤— 7、 b*≥55を満足し、下記一般式 [1]で表される化学組成の結晶相を含有し、メジアン 径 D 力 15 m以上であることを特徴とするものである。
50
(Ln CeTb ) M O '··[1]
1-a-b a b 3 5 12
但し、 Lnは Y、 Gd、 Sc、 Lu及び Laよりなる群力 選ばれる少なくとも 1種の元素で あり、 Mは Al、 Ga及び Inよりなる群力も選ばれる少なくとも 1種の元素を示す。 a、 bは 、それぞれ 0.001≤a≤0. 3、 0≤b≤0. 5を満足する数である。
[0013] 第 3アスペクトの蛍光体の製造方法は、各構成元素を含む原料化合物を混合した 後焼成して第 1アスペクトの蛍光体を製造する方法であって、原料化合物の仕込み モル比を (5Z3) < (MZ (Ln Ce Tb )とし、焼成により得られた焼成物を酸洗浄
1-a-b a b
することを特徴とするものである。
[0014] 第 4アスペクトの蛍光体の製造方法は、各構成元素を含む原料化合物を混合した 後焼成して第 2アスペクトの蛍光体を製造する方法であって、原料化合物の仕込み モル比を (5Z3) < (MZ (Ln Ce Tb )とし、焼成により得られた焼成物を酸洗浄
1 b b
することを特徴とするものである。
[0015] 第 5アスペクトの蛍光体含有組成物は、第 1アスペクトの蛍光体と液体媒体とを含む ことを特徴とするものである。
[0016] 第 6アスペクトの発光装置は、紫外光から可視光の範囲の光を発光する第 1の発光 体と、該第 1の発光体からの光の少なくとも一部を波長変換し、該第 1の発光体の光 よりも長波長領域の光を発光する第 2の発光体とを有する発光装置において、該第 2 の発光体が第 1アスペクトの蛍光体を含むことを特徴とするものである。
[0017] 第 7アスペクトの画像表示装置は、第 6アスペクトの発光装置を光源とすることを特 徴とするちのである。
[0018] 第 8アスペクトの照明装置は、第 6アスペクトの発光装置を光源とすることを特徴とす るものである。
図面の簡単な説明
[0019] [図 1]本発明の発光装置の実施の形態を示す模式的断面図である。
[図 2]本発明の発光装置を用いた面発光照明装置の一例を示す模式的断面図であ る。
[図 3]本発明の発光装置の他の実施の形態を示す模式的な斜視図である。
[図 4]実施例 1で作製した発光装置の発光スペクトルを示す図である。
[図 5]実施例 1の蛍光体の発光強度の変化率を示すグラフである。
[図 6]実施例 2の蛍光体の発光強度の変化率を示すグラフである。
[図 7]実施例 3の蛍光体の発光強度の変化率を示すグラフである。
[図 8]実施例 4の蛍光体の発光強度の変化率を示すグラフである。
[図 9]実施例 5の蛍光体の発光強度の変化率を示すグラフである。
[図 10]実施例 6の蛍光体の発光強度の変化率を示すグラフである。
[図 11]実施例 7の蛍光体の発光強度の変化率を示すグラフである。
[図 12]実施例 8の蛍光体の発光強度の変化率を示すグラフである。
[図 13]実施例 13の蛍光体の発光強度の変化率を示すグラフである。 [図 14]実施例 17の蛍光体の発光強度の変化率を示すグラフである。
[図 15]実施例 18の蛍光体の発光強度の変化率を示すグラフである。
[図 16]比較例 1の蛍光体の発光強度の変化率を示すグラフである。
[図 17]比較例 3の蛍光体の発光強度の変化率を示すグラフである。
[図 18]比較例 4の蛍光体の発光強度の変化率を示すグラフである。
[図 19]実施例 1及び比較例 4における励起スペクトルを示すグラフである。
詳細な説明
[0020] 本発明者等は上記課題に鑑み、蛍光体の組成比及び製造方法を詳細に検討した 結果、特定の組成範囲を有し、且つ、その 420ηπ!〜 480nmの範囲の波長で励起さ せたときの発光強度の変化率の平均値がより小さい蛍光体が、黄色系蛍光体として 発光の安定性に優れ、かつ、高輝度であることを見出した。さらにこのような蛍光体は 、 AlZGa及び Z又は In元素源をィ匕学量論組成の理論値よりも過剰に添加して製造 し、かつ、酸洗浄を行うことによって得られることを見出した。また、本発明者等は、蛍 光体のその他の特性についても詳細に検討し、蛍光体の物体色、粒径、及び円形 度が特定の範囲内にあるものが、特に輝度が高いことを見出した。さらに、本発明者 等はこの蛍光体が黄色光源として非常に優れた特性を示し、発光装置等の用途に 好適に使用できることを見出して、本発明を完成させた。
[0021] 本発明によれば、黄色系の蛍光を発する蛍光体であって、発光の安定性に優れた 、高輝度な蛍光体が提供され、さらに、このような蛍光体を工業的に安定に生産する ことができる。また、この蛍光体を含有する組成物を用いることによって、高効率で発 光の安定した発光装置を得ることができる。この発光装置は、画像表示装置や照明 装置等の用途に好適に用いられる。
[0022] 以下に本発明の実施の形態を説明するが、以下に記載する構成要件の説明は、 本発明の実施態様の一例 (代表例)であり、本発明はその要旨を超えない限り、これ らの内容に特定はされない。
[0023] なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載さ れる数値を下限値及び上限値として含む範囲を意味する。また、明細書における色 名と色度座標との関係は、すべて JIS規格 CFIS Z8110)に基づく。 [0024] [蛍光体]
本発明の蛍光体は、下記一般式 [1]で表される化学組成の結晶相を含有し、かつ 、波長 420ηπ!〜 480nmの範囲にピークを有する光で励起した時の、下記式 [2]で 算出される発光強度の変化率の平均値が、 1. 3以下であることを特徴とする。即ち、 420ηπ!〜 480nmの範囲の励起波長を用いて、励起波長 lnm間隔で変化させたと き、各励起波長における発光強度の変化率を下記式 [2]で算出し、これらの算出値 について、平均値を求めた場合、その平均値が 1. 3以下となる。
(Ln Ce Tb ) M O ' · · [1]
1-a-b a b 3 5 12
但し、 Lnは Y、 Gd、 Sc、 Lu及び Laよりなる群力 選ばれる少なくとも 1種の元素で あり、 Mは Al、 Ga及び Inよりなる群力も選ばれる少なくとも 1種の元素を示す。 a、 bは 、それぞれ 0. 001≤a≤0. 3、 0≤b≤0. 5を満足する数である。
発光強度の変化率 = [ (Ι ( λ + 1)— ι( λ ))Ζι( λ )]2 —[2]
但し、 Ι ( λ )は励起波長 λ nmにおける蛍光体の発光強度であり、 Ι ( λ + 1)は励起 波長( λ + 1) nmにおける蛍光体の発光強度である。
[0025] [化学組成]
前記一般式 [1]において、 Lnは Y、 Gd、 Sc、 Lu及び Laよりなる群力 選ばれる少 なくとも 1種の元素である。 Lnとしては、これらの元素のうち何れか一種を単独で含有 して ヽてもよく、二種以上を任意の組み合わせ及び Z又は任意の比率で併有して ヽ てもよい。中でも、 Lnは少なくとも Yを含有し、 Yが主構成元素であることが特に好ま しい。
[0026] 前記一般式 [1]中の Lnとして、 Yと Luを共存させることが特に好ましい。 Yと Luを共 存させることで、主発光波長を短波長化させ、輝度を高めることができる。この場合の Luの組成比の下限としては、通常 0. 03以上、好ましくは 0. 05以上、より好ましくは 0. 06以上である。 Luの組成比の上限としては、通常 1以下、好ましくは 0. 6以下、よ り好ましくは 0. 15以下である。 Luの組成比力 1より大きいと粒子成長が抑制され、 メジアン径が低下すると共に輝度が低下する傾向にある。
[0027] ただし、ここで、 Luの組成比とは、前記一般式 [1]を下記一般式 [1A]で表したとき の qに相当する。 Y Lu Ce Tb M O 〜[1A]
p q 3a 3b 5 12
上記 [1A]式中、 M, a, bは一般式 [1]におけると同義であり、 p, qはそれぞれ Y, Luの組成を示し、 Y Lu =Ln である。
p q 3- 3a- 3b
[0028] 前記一般式 [1]中の Lnとして、 Yと共に、 Gd又は Laを含ませることもできる。これに より、主発光波長を長波長化させることができることから、電球色白色 LED用に適し ている。
[0029] Mは Al、 Ga及び Inよりなる群から選ばれる少なくとも 1種の元素である。 Mとしては 、これらの元素のうち何れか一種を単独で含有していてもよぐ二種以上を任意の組 み合わせ及び Z又は任意の比率で併有していてもよい。中でも、 Mとしては、少なく とも A1を含むことが好まし 、。
[0030] Mとして A1と共に Gaを含むこともできる。これにより、主発光波長を短波長化するこ とができる。この場合の Gaの組成比の下限としては、通常 0. 2以上、好ましくは 0. 5 以上である。 Gaの組成比の上限としては、通常 3以下、好ましくは 2. 5以下、より好ま しくは 2以下である。 Gaの組成比力 3より大きいと発光ピーク波長が短波長になり過 ぎ、発光効率が低下する傾向にある。
[0031] 但し、ここで Gaの組成比とは、前記一般式 [1]を下記一般式 [1B]で表したときの r に相当する。
(Ln Ce Tb ) M' Ga O - -- [IB]
1-a-b a b 3 5-r r 12
上記 [IB]式中、 Ln, a, bは一般式 [1]におけると同義であり、 M'は Ga以外の M ( Mは一般式 [1]におけると同義である。 )を表し、 M' Ga =Mである。
5-r r 5
[0032] Ceのモル比を表す aは、 0. 001≤a≤0. 3を満足する数である力 発光強度が高く なる点で、下限としては a≥0. 01が好ましぐ a>0. 01がより好ましぐ a≥0. 02がさ らに好ましく、上限としては、 a≤0. 2力 S好ましく、 a≤0. 18力より好ましく、 a≤0. 15 力 Sさらに好ましい。
[0033] 以上のように、蛍光体の組成によって、発光波長や輝度を調節することができる。
従って、本発明の蛍光体と半導体発光素子とを組み合わせて発光装置を作製する 際は、本発明の蛍光体の組成を変更することによって、発光色や発光強度を調整し 、所望の発光色を得ることが可能となる。 [0034] [励起スペクトルに関する特徴]
本発明の蛍光体は、励起スペクトルを測定した場合に、以下の特徴を有する。 まず、本発明の蛍光体は、後述する第 1の発光体の発光波長との関係から、励起ス ベクトルの主ピーク波長え (nm)が、通常 420nm以上、中でも 430nm以上、また、
P
通常 500nm以下、中でも 490nm以下の範囲であることが好まし!/、。
本発明の蛍光体は、上述の励起スペクトルの半値幅(foil width at half maximum 。以下適宜「FWHM」と略称する。)が、通常 93nmより大きく、中でも 95nm以上で あることが好ましい。この FWHMが狭過ぎると、発光が安定しないことから発光強度 が低下するおそれがあり、好ましくない。
[0035] また、本発明の蛍光体の励起スペクトルの形状は、本発明の蛍光体と組み合わせ る後述の第 1の発光体の発光ピーク波長の前後の波長(420ηπ!〜 480nm)にお!/ヽ て平らであること、すなわち、幅広いピークを有することが好ましい。第 1の発光体の 発光ピーク波長の前後の波長において励起スペクトルが平らであるほど、後述する 発光強度の変化率の平均値が小さくなり、発光が安定する傾向にあり、好ましい。
[0036] [発光強度の変化率の平均値]
本発明の蛍光体は、励起スペクトルにおいて、下記式 [2]で算出される発光強度の 変化率の、励起波長 420nm〜480nmの範囲における平均値力 1. 3以下、好まし くは 1. 1以下、より好ましくは 1. 0以下であることを特徴とする。
発光強度の変化率 = [ (Ι ( λ + 1)— ι( λ ))Ζι( λ )]2 —[2]
但し、 Ι ( λ )は励起波長 λ nmにおける蛍光体の発光強度であり、 Ι ( λ + 1)は励起 波長( λ + 1) nmにおける蛍光体の発光強度である。
[0037] 本発明の蛍光体は、このように発光強度の変化率の小さ 、波長領域が幅広 、こと により、励起光 (本発明の発光装置における第 1の発光体の発光波長)の適合許容 幅を拡げることができる。
[0038] 発光強度の変化率の平均値が 1. 3を超えると半導体発光素子等の第 1の発光体 の発光波長のズレが生じることによって、第 2の発光体である蛍光体の発光色が大き く変化するため、好ましくない。発光強度の変化率の平均値の下限については、 0に 近いほど、発光が安定するので好ましい。 [0039] なお、発光強度の変化率の平均値は、後述の実施例の項で記載される方法で求 めることができる。このとき、励起スペクトルの半値幅が広いと発光強度の変化率の平 均値が小さい傾向にあり、好ましい。前述の如ぐこの半値幅は特に 93以上、とりわ け 95以上であることが好まし 、。
[0040] [重量平均メジアン径 D ]
50
本発明者らは蛍光体の粒径にっ 、ては、次のような検討を行った。
蛍光体は一般的に表面層は構造的な欠陥が多く発光効率が低い。それゆえ粒径 が大きい蛍光体ほど表面の低発光部分の粒子全体に対する割合が少なく発光効率 が良い。しかしながら、従来において、蛍光体は、一般的にメジアン径 D 力 μ mか
50
ら 10 mのものが多く用いられている。
[0041] ディスプレイ装置においては高解像度が要求される場合が多い。高精細の画像を 再現するには一画素の大きさが小さい必要がある。一方で、蛍光体膜に入射した励 起光がそのまま透過することなく蛍光体に効率よく衝突するには、蛍光体膜中の蛍 光体の粒子層は 3層程度が必要となる。一例を挙げれば、直視型の陰極線管 (CRT )の場合、最も高精細のものは青、緑、赤各色蛍光体ストライプの塗布幅が 30 /ζ πι、 普通品でも 100 mであるから、蛍光体の大きさは大きくとも 7 m〜8 mである。 投射型 CRTでは 1管に 1色の蛍光体が塗布されるから微細な画素形成の必要はな いが、光が蛍光体層を通過するときの散乱による光の拡散は膜厚に比例する。この ため蛍光体膜の厚みができるだけ薄いことが高解像度の画像を得るのに必要である 。そのため蛍光体の粒径は大きくとも 10 m程度のものが多く使用されている。
[0042] 一方、照明装置においては解像度の問題はないが、例えば蛍光ランプに見られる ように蛍光体の粒径が大きすぎると沈降速度が速すぎるため、ランプ管壁に蛍光体 膜を安定に作製するには困難が生じる。このため 1 πι〜4 /ζ mの粒径範囲が適当 であった。
[0043] さらに、製造方法については高温、長時間焼成すれば平均的に粒径を大きくする ことは原理的に可能であるが、局所的な異常粒成長、蛍光体粒子同士の融着などの 理由により、結果的に粒径が大きくなり、粒径分布の極端に広い蛍光体とならざるを 得な力つた。それゆえ、必要な粒度分布を得るには大幅な篩別によらざるを得ず、製 品歩留まりは極端に低かった。
[0044] このようなことから、従来においては、粒径の小さな蛍光体が用いられていた。しか し、本発明の蛍光体においては、粒径が大きいと、輝度が高くなる傾向にあり、好まし い。
[0045] 本明細書において、重量平均メジアン径 D とは、頻度基準粒度分布曲線により得
50
られる値である。前記頻度基準粒度分布曲線は、レーザー回折 ·散乱法により粒度 分布を測定し得られるものである。具体的には、分散剤を含む水溶液中に蛍光体を 分散させ、レーザー回折式粒度分布測定装置 (堀場製作所 LA— 300)により、粒 径範囲 0. 1 μ πι〜600 /ζ mにて測定し、得られたものである。この頻度基準粒度分 布曲線において、積算値が 50%のときの粒径値を重量平均メジアン径 D (以下「メ
50 ジアン径 D 」と称す。)とする。積算値が 25%及び 75%の時の粒径値をそれぞれ D
50 2
、D と表記する。標準偏差 (4分偏差) QD= (D — D ) / (D +D )と定義する。
5 75 75 25 75 25
QDが小さ 、ことは粒度分布が狭 、ことを意味する。
[0046] 本発明の蛍光体は、通常、粒径分布はほぼ正規分布を有し、そのメジアン径 D の
50 下限としては 10 μ m以上、好ましくは 14 μ m以上、特に好ましくは 15 μ m以上、さら に好ましくは 17 μ m以上である。一方、メジアン径 D の上限としては 40 μ m以下が
50
好ましぐさらに好ましくは 30 m以下であり、特に 25 m以下が好ましい。
[0047] メジアン径 D 力 10 mより小さいと青色励起光の吸光率が低くなり、高輝度な蛍光
50
体が得られない。一方、メジアン径 D 力 0 mより大きいと、実用上、ノズル装置な
50
どで不都合が生じる場合がある。
[0048] 本発明の蛍光体の粒径分布 QD値は、通常 0. 5以下であり、好ましくは 0. 3以下、 特に好ましくは 0. 25以下である。
なお、発光効率、吸光効率を高めるために、メジアン径 D の異なる複数の蛍光体
50
を混合して用いる時は、混合蛍光体の QDは 0. 3よりも大きくなる場合がある。
[0049] [形状]
本発明者等は本発明の発光装置に使用する蛍光体の粒子形状を種々検討した結 果、球状に近い蛍光体ほど効率の高い発光装置を得ることができることを見出した。 そこで、蛍光体粒子の球状性を数量的に表す指標として平均円形度を用いた。ここ で平均円形度は粒子の投影図において各粒径の真円との近似程度を表す円形度( 円形度 =粒子の投影面積に等しい真円の周囲長さ Z粒子の投影の周囲長さ)を言う
。完全な球であれば平均円形度は 1となる。
[0050] 蛍光体の平均円形度が 0. 86未満であると、これを用いた発光装置の発光効率が 十分でない場合がある。従って、本発明の蛍光体の平均円形度は 0. 86以上、特に
0. 88以上であることが好ましぐとりわけ 0. 9〜1であることが好ましい。
[0051] また、蛍光体の形状が、針状、板状さらには粒子同志の融着による団子状のような 異形であると分散媒中で凝集しやすく均一な蛍光体膜が得られにくぐ好ましくない。 また、蛍光体により波長が変換された光が蛍光体力 放出される場合、形状に異方 性があると発光分布に偏りを生ずる場合がある。
[0052] [物体色]
本発明者等は、セリウム付活イットリウム 'アルミニウム 'ガーネット系蛍光体について 発光効率の改善を検討する中で、全く同じ組成、同じ結晶系の蛍光体であっても物 体色が大きく変化することを見出した。さらに、本発明の蛍光体の物体色は発光装置 に実装したときの輝度と強い相関があり、従来の蛍光体に比べて、 L*、 a*は同レベル であるが、 b*をある一定値以上に高くした蛍光体を用いると、発光装置の効率が高く なる傾向があることを見出した。
[0053] 本発明の蛍光体は、物体色が L*、
Figure imgf000013_0001
b*表色系で表した場合に、 L*値、 a*値及ひ V 値が以下の式を満たすことが好ま 、。
L*≥90
a*≤ - 7
b*≥55
[0054] 本発明の蛍光体は、上記条件を満たす物体色を有することにより、後述する発光装 置に利用した場合に高発光効率の発光装置を実現することができる。
[0055] 具体的に、本発明の蛍光体は、 L*の上限としては、一般的に照射光で発光しない 物体を扱うので 100を超える事は無いが、本発明の蛍光体は照射光源で励起されて 発光が反射光に重畳されるので 100を超えることもある。従って、 L*の上限値として は通常 L*≤ 115である。また、 L*の下限としては、通常 L*≥90である。上記範囲より L*が小さいものは、発光が弱くなる。
[0056] また、 a*の上限は、通常 a*≤— 7、好ましくは a*≤— 10である。一方、 a*の下限は、 通常 a*≥— 30、好ましくは a*≥— 25である。 a*が大きすぎると、全光束が小さくなる傾 向にあり、 a*の値は小さいものが望ましい。
[0057] また、 b*は、通常 b*≥55であり、 b*≥ 80であることが好ましぐ b*≥85がより好ましく 、 b*≥ 90であることがさらに好ましい。 b*が小さいものは発光装置の発光効率の向上 に不適当であり、本発明の蛍光体の b*値は高い方が好ましい。 b*の上限は、理論上 は b*≤200であり、通常は b*≤ 120である。
[0058] [吸収率 α ]
本発明の蛍光体は、後述の方法で求められるフオトンの吸収率 αが 0. 6以上、特 に 0. 65以上であることが好ましい。ここで、実質的に、 αの取りうる値の上限は 1であ る。蛍光体がこの条件を満たしている場合、後述の本発明の発光装置において、第 1 の発光体力 発せられたフオトンのうち、第 2の発光体中の蛍光体内で素励起可能な ものの数が多くなり、結果として蛍光体から単位時間当たりに放出されるフオトンの数 を増加させることができる。即ち高い発光強度を有する発光装置を得ることができる。 ここで、素励起とは、 Ceのスピン状態が変化することによるエネルギー励起 (一般に「 発光中心励起」と呼称される。)、各イオン近傍に存在確率を持つ電子の平均的な数 が変化することによるエネルギー励起 (一般に「CT励起」と呼称される。)、電子のバ ンド間遷移によるエネルギー励起 (一般に「バンド励起」と呼称される。)などのことを 指す。
[0059] 以下に、吸収率 exを求める方法を説明する。
まず、測定対象となる粉末状などにした蛍光体試料を、測定精度が保たれるように 、十分に表面を平滑にしてセルに詰め、積分球などがついた分光光度計に取り付け る。この分光光度計としては、例えば大塚電子株式会社製「MCPD2000」などがあ る。積分球などを用いるのは、試料で反射したフオトン及び試料カゝらフォトルミネッセ ンスで放出されたフオトンを全て計上できるようにする、即ち、計上されずに測定系外 へ飛び去るフオトンをなくすためである。この分光光度計に蛍光体を励起する発光源 を取り付ける。この発光源は、例えば Xeランプ等であり、発光ピーク波長が 465nmと なるようにフィルタ一等を用いて調整がなされる。この 465nmの波長ピークを持つよう に調整された発光源からの光を測定しょうとしている試料に照射し、その発光スぺタト ルを測定する。この測定スペクトルには、実際には、励起発光光源からの光(以下で は単に励起光と記す。 )でフォトルミネッセンスにより試料力 放出されたフオトンの他 に、試料で反射された励起光の分のフオトンの寄与が重なって 、る。
[0060] 吸収率 αは、試料によって吸収された励起光のフオトン数 N を励起光の全フォト
abs
ン数 Nで割った値である。まず、後者の励起光の全フオトン数 Nは、次のように求める 。即ち、励起光に対してほぼ 100%の反射率を持つ物質、例えば Labsphere製「Sp ectralonj (465nmの励起光に対して 98%の反射率を持つ。)を測定対象として該 分光光度計に取り付け、発光スペクトル I ( λ )を測定する。ここでこの発光スペクトル
ref
I ( λ )から下記 [3]で求められた数値は、 Νに比例する。
ref
ί λ ·Ι (λ)άλ ---[3]
ref
[0061] ここで、積分区間は実質的に I (λ)が有意な値を持つ区間のみで行ったもので良
ref
い。前者の N は下記 [4]で求められる量に比例する。
abs
ί λ ·ΐ(λ)άλ - ί λ ·Ι (λ)άλ 〜[4]
ref
[0062] ここで、 I ( λ )は、 αを求めようとして 、る対象試料を取り付けたときの発光スぺタト ルである。 [4]の積分範囲は [3]で定めた積分範囲と同じにする。このように積分範 囲を限定することで、 [4]の第一項 λ·Ι(λΜλ)は、対象試料が励起光を反射 することによって生じたフオトン数に対応したもの、即ち、対象試料カゝら生ずる全フォト ンのうち励起光によるフォトルミネッセンスで生じたフオトンを除いたものに対応したも のになる。実際のスペクトル測定値は、一般にはえに関するある有限のバンド幅で区 切ったデジタルデータとして得られるため、 [3]及び [4]の積分は、そのバンド幅に基 づいた和分によって求まる。以上より、
α=Ν /Ν=[3]/[4]
abs
と求まる。
[0063] 一般に、吸収率 aを高めること自体は、試料内に取り込まれる励起光源のフオトン 数を上昇させることにつながるので発光輝度が高まる期待はある。しかし、実際には、 例えば発光中心である Ce等の濃度を上昇させることなどで aの上昇を試みると、フォ トンが最終的なフォトルミネッセンスの過程に到達する前に、そのエネルギーを試料 結晶内のフオノンの励起に変えてしまう確率が高まり、十分な発光強度を得ることが できなかった。しかしながら、励起光源の波長を特に 420ηπ!〜 500nmに選び、かつ 発光装置の第 2の発光体として吸収率 αの高い蛍光体を用いると、前記非フォトルミ ネッセンス過程が抑制され、高発光強度の発光装置が実現されることが見出された。
[0064] [蛍光体の製造方法]
本発明の蛍光体の製造方法について説明する。本発明の蛍光体は、前述の一般 式 [1]における、金属元素 Lnの原料 (以下適宜「Ln源」という。)、 Ceの原料 (以下適 宜「Ce源」 t\、う。 )、 Tbの原料(以下適宜「Tb源」 t\、う。 )、及び、金属元素 Mの原 料 (以下適宜「M源」という。)を混合し (混合工程)、得られた混合物を焼成する (焼 成工程)こと〖こより製造することができる。
[0065] 本発明の蛍光体は、従来の製造方法によっては、製造することができな力つた。本 発明の蛍光体の製造方法は、混合工程において、 M源が化学量論組成よりも過剰 になるように、即ち、仕込みモル比が(5Z3) < (M/ (Ln Ce Tb ) (M元素を 2種
1 b b
以上使用する場合は、その合計モル数)となるように、混合することを特徴とする。ま た、 M源としては、 α アルミナを使用することが好ましい。このように、 Μ源を過剰に 用いることにより、発光の安定した前述の一般式 [ 1 ]の組成と式 [2]の発光強度の変 化率の平均値を満足する蛍光体を工業的に安定に生産することができる。さらに、本 発明の蛍光体の製造方法を用いることで、結晶成長が促進され、粒径が大きくなる 傾向にある。
[0066] なお、大粒径のセリウム付活イットリウム 'アルミニウム'ガーネット系蛍光体を工業的 に安定して生産できる方法は、特許文献 4や特許文献 5にも記載されておらず、知ら れていない。
[0067] 原料
本発明の蛍光体の製造に使用される Ln源、 Ce源、 Tb源、及び M源としては、各元 素の酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、蓚酸塩、カルボン酸塩、ハロゲン 化物等が挙げられる。これらの中から、複合酸化物への反応性や、焼成時における ハロゲン、 NO、 SO等の発生量の低さ等を考慮して選択される。 [0068] Ln源の具体例を、 Ln元素の種類毎に分けて列挙すると、以下の通りである。
Y源の具体例としては、 Y O、 Y(OH)、 YC1、 YBr、 Y (CO ) ·3Η 0、 Y(NO
2 3 3 3 3 2 3 3 2 3
) ·6Η 0、 Y (SO ) 、 Y (C O ) -9H O等が挙げられる。
3 2 2 4 3 2 2 4 3 2
Gd源の具体例としては、 Gd O、 Gd(OH) 、 GdCl、 Gd(NO ) ·5Η 0、 Gd (C
2 3 3 3 3 3 2 2 2
O ) · 10H O等が挙げられる。
4 3 2
La源の具体例としては、 La O、 La (OH) 、 LaCl、 LaBr、 La (CO ) -H 0、 La
2 3 3 3 3 2 3 3 2
(NO ) ·6Η 0、 La (SO )、 La (C O ) ·9Η O等が挙げられる。
3 3 2 2 4 3 2 2 4 3 2
Sc源の具体 f列としては、 Sc O、 Sc(OH) 、 ScCl、 Sc(NO ) -nH O, Sc (SO )
2 3 3 3 3 3 2 2 4
•nH 0、 Sc (C O ) -nH O等が挙げられる。
3 2 2 2 4 3 2
Lu源の具体例としては、 Lu O、 LuCl、 Lu(NO ) ·8Η 0、 Lu (OCO) -6H O
2 3 3 3 3 2 2 3 2 等が挙げられる。
[0069] また、 M源の具体例を、 M元素の種類毎に分けて列挙すると以下の通りである。
A1源の具体例としては、 a - Al O、 γ— Al O、などの Al O、 Al(OH) 、 AIOO
2 3 2 3 2 3 3
H、 Al(NO ) ·9Η 0、 Al (SO ) 、 AlCl等が挙げられる。中でも、 a— Al Oが特
3 3 2 2 4 3 3 2 3 に好ましい。
Ga源の具体例としては、 Ga O、 Ga(OH) 、 Ga(NO ) ·ηΗ 0、 Ga (SO ) 、 Ga
2 3 3 3 3 2 2 4 3
CI等が挙げられる。
3
In源の具体例としては In O、 In (OH)、 In (NO ) -nH 0、 In (SO )、 InCl等が
2 3 3 3 3 2 2 4 3 3 挙げられる。
[0070] Ce源の具体例としては、 CeO、 Ce (SO )、 Ce (CO ) ·5Η 0、 Ce(NO ) -6H
2 2 4 3 2 3 3 2 3 3 2
0、 Ce (C O ) -9H 0、 Ce(OH) CeCl等が挙げられる。
2 2 4 3 2 3、 3
Tb源の具体例としては、 Tb O、 Tb (SO )、 Tb (NO ) ·ηΗ 0、 Tb (CO ) · 10
4 7 2 4 3 3 3 2 2 2 4 3
H 0、 TbCl等が挙げられる。
2 3
[0071] 各原料ィ匕合物は各々 1種を単独で用いても良ぐ 2種以上を混合して用いても良い
M源について
本発明の蛍光体の製造方法においては、前述の原料を混合するに当たり、仕込み モル比が(5Z3) < (MZ (Ln Ce Tb ) (M元素を 2種以上使用する場合は、その 合計モル数)となるように、即ち、 M元素が化学量論組成よりも過剰になるように M源 を混合することを特徴とする。
[0073] さらに、 M源を、化学量論組成として必要な量に対して 1%〜10%過剰 (即ち 5. 0 5/3≤ (MZ (Ln Ce Tb )≤5. 5/3)に添加することが好まし 、。化学量論組
1 b b
成と比較して、 M源を過剰に添加する量が 1%未満では、得られる蛍光体の粒径が 小さぐ発光が安定しない傾向にあり、好ましくない。また、化学量論組成と比較して 、 M源を過剰に添加する場合の上限としては、通常 10%である。これは、過剰添カロ による効果が飽和してしまうためである。
[0074] また、 M元素としては A1を選択することが好ましい。さらに、 A1源としては、 a アル ミナを用いることが好ましい。即ち、 A1源として α アルミナを用いた場合には、粒径 の大きな蛍光体を得ることができる傾向にあり、好ましい。しかも、 α アルミナを A1 源として化学量論組成よりも過剰に添加した場合に製造された蛍光体は、その物体 色が L*、 a*、 b*表色系において L*≥90、 a*≤— 7、 b*≥55を満足し、 a—アルミナ添 加量に比例して b*が増大することから、物体色を最適化することができる。従って、 A1 源化合物として特に OC アルミナを用いて蛍光体を製造することが特に好ましい。
[0075] なお、このように M源をィ匕学量論組成より過剰に添加して製造した場合であっても、 本発明の蛍光体は、その化学分析の結果は、分析精度内で化学量論組成を示す。
[0076] Ce源について
原料を均一に混合することは、均一組成の蛍光体を得るために必須である。特に、 発光中心イオンとなる Ce等の希土類原料を均一に混合することが重要である。従つ て、 Ce等の希土類原料は、後述する通常の混合工程の前に Ln源等、他の原料と共 に共沈させておくことが好ま 、。
[0077] 共沈としては、以下の方法が挙げられる。
例えば、 Ln源等の他の原料と Ce等の希土類原料を、塩酸、硝酸等の鉱酸に溶解 して希土類混合溶液を調製する。続いて、希土類混合溶液に沈殿剤として蓚酸等の 溶液を徐々に添加し、複合希土類蓚酸塩沈殿物を調製する。前記沈殿物を純水で 洗浄し、続いて、濾別した後、大気中で、 850°C〜1100°C、例えば約 1000°Cで焼 成し、複合希土類酸化物を得る。このようにして得られる複合希土類酸ィ匕物は、 Ln元 素等の他の元素と Ce等の希土類元素が調合比率でほぼ均一に分布した原料となる [0078] 混合工程
Ln源、 Ce源、 Tb源及び M源を混合する手法は特に制限はないが、例としては、次 のような、乾式法及び湿式法が挙げられる。
(1)乾式法:ハンマーミル、ロールミル、ボールミル、ジェットミル等の乾式粉砕機を用 いて上記の原料ィ匕合物を粉砕した後、リボンブレンダー、 V型ブレンダー、ヘンシェ ルミキサー等の混合機により混合する。又は、上記の原料化合物を混合した後、乾 式粉砕機を用いて粉砕する。
(2)湿式法:水等の媒体中に上記の原料化合物を加え、媒体攪拌式粉砕機等の湿 式粉砕機を用いて粉砕及び混合する。又は、上記の原料化合物を乾式粉砕機によ り粉砕した後、水等の媒体中に加えて混合することにより調製されたスラリーを、噴霧 乾燥等により乾燥させる。
[0079] これらの粉砕混合法の中では、特に、発光中心イオンの元素源化合物においては 、少量の化合物を全体に均一に混合、分散させる必要があることから、液体媒体を用 いることが好ましい。また、他の元素源化合物において全体に均一な混合が得られる 面からも、湿式法が好ましい。
[0080] 焼成工程
焼成工程は、通常、上述の混合工程により得られた Ln源、 Ce源、 Tb源及び M源 等の原料の混合物を、各原料と反応性の低!、材料 (アルミナや石英等)の坩堝やトレ ィ等の耐熱容器中に入れ、加熱することにより行なう。
[0081] 焼成時の温度は、通常 1350°C以上、好ましくは 1400°C以上、さらに好ましくは 14 30°C以上、また通常 1650°C以下、好ましくは 1630°C以下、さらに好ましくは 1600 °C以下である。焼成温度が低過ぎると、粒子成長が抑制されるおそれがあり、好まし くない。
[0082] 焼成時の圧力は、焼成温度等によっても異なるが、通常、常圧以上で行う。
[0083] 焼成時間は、焼成時の温度や圧力等によっても異なるが、通常 10分以上、 24時間 以下の範囲である。 [0084] 焼成時の雰囲気は特に制限されな!、が、具体例としては、空気、窒素、アルゴン、 一酸化炭素、水素等の気体のうち、何れか一種単独の雰囲気下、あるいは、二種以 上の混合雰囲気下で行う。なお、材料や組成比、作成バッチサイズ等により焼成の 最適条件は異なってくるが、通常、還元雰囲気が好ましい。この場合、還元度が弱す ぎても、強すぎても本発明の蛍光体は得られない。通常、比較的強い還元雰囲気、 具体的には水素を 2体積%〜4体積%含む窒素一水素の混合ガスのような雰囲気と することで、本発明で規定する物体色の蛍光体が得られる傾向にある。他には、カー ボン (カーボンビーズや黒鉛など)を用いて還元雰囲気としても良いが、還元力が強く なりすぎる傾向にあるので、必要に応じて使用すると良い。
[0085] フラックス
焼成工程においては、良好な結晶を成長させる観点から、反応系にフラックスを共 存させることが好ましい。フラックスの種類は特に制限されないが、例としては NH C1
4
、 LiCl、 NaCl、 KC1、 CsCl、 CaCl、 BaCl、 SrCl等の塩化物、 LiFゝ NaFゝ KF、 C
2 2 2
sF、 CaF、 BaF、 SrF、 A1F等のフッ化物などが挙げられる。中でも、 BaF、 A1F
2 2 2 3 2 3 が好ましい。フラックスの使用量は、原料の種類やフラックスの材料等によっても異な る力 原料の全重量に対して通常 0. 01重量%以上、さらには 0. 1重量%以上、また 、通常 20重量%以下、さらには 10重量%以下の範囲が好ましい。フラックスの使用 量が少な過ぎると、フラックスの効果が現れず、フラックスの使用量が多過ぎると、フラ ックス効果が飽和したり、母体結晶に取り込まれて発光色を変化させたり、輝度低下 を引き起こす場合がある。
[0086] 後処理
上述の焼成工程後、必要に応じて、洗浄、分散処理、乾燥、分級等がなされる。特 に、本発明においては、焼成により得られた焼成物を酸で洗浄することを特徴とする 。また、得られた蛍光体を後述するように分散媒体中に分散させる場合には、必要に 応じて公知の表面処理を施すこともできる。
[0087] 焼成物の酸洗浄を行うには、まず、焼成により得られた焼成物を軽く粉砕した後、 酸性の水溶液中に粒子状に分散させた後、水洗する。使用する酸性の水溶液として は、通常 0. 5molZl以上、 4molZl以下の程度の酸の水溶液を用いることが好まし い。具体的には、塩酸、硫酸、硝酸等の無機酸の 1種又は 2種以上が挙げられ、好ま しくは塩酸である。
このような酸洗浄を行うことにより未反応物、副成物、融剤を溶解し、分別除去でき る。この酸洗浄に用いる酸水溶液の濃度力 molZlを超えると蛍光体表面を溶解す るおそれがあるため、好ましくなぐ 0. 5molZl未満では洗浄効果が小さいため好ま しくない。
[0088] [蛍光体の用途]
本発明の蛍光体は、発光の安定性及び輝度に優れているという特性を生カゝして、 蛍光体含有組成物、各種の発光装置 (後述する「本発明の発光装置」)、画像表示 装置、及び照明装置等に好適に用いることができる。黄色系蛍光体である本発明の 蛍光体に、第 1の発光体として青色発光の半導体発光素子等を組み合わせれば、 発光強度の高い白色発光装置を実現することができる。
[0089] [蛍光体含有組成物]
本発明の蛍光体を発光装置等の用途に使用する場合には、これを液体媒体中に 分散させた形態で用いることが好ましい。本発明の蛍光体を液体媒体中に分散させ たものを、適宜「本発明の蛍光体含有組成物」と呼ぶものとする。
[0090] 本発明の蛍光体含有組成物に使用可能な液体媒体としては、所望の使用条件下 において液状の性質を示し、本発明の蛍光体を好適に分散させると共に、好ましくな い反応等を生じないものであれば、任意のものを目的等に応じて選択することが可能 である。液体媒体の例としては、付加反応型シリコーン榭脂、縮合反応型シリコーン 榭脂、変性シリコーン榭脂、エポキシ榭脂、ポリビュル系榭脂、ポリエチレン系榭脂、 ポリプロピレン系榭脂、ポリエステル系榭脂等が挙げられる。これらの液体媒体は一 種を単独で使用してもよぐ二種以上を任意の組み合わせ及び Z又は任意の比率で 併用してちょい。
[0091] 液状媒体の使用量は、用途等に応じて適宜調整すればよいが、一般的には、本発 明の蛍光体に対する液状媒体の重量比で、通常 3重量%以上、好ましくは 5重量% 以上、また、通常 30重量%以下、好ましくは 20重量%以下の範囲である。
[0092] また、本発明の蛍光体含有組成物は、本発明の蛍光体及び液状媒体に加え、そ の用途等に応じて、その他の任意の成分を含有していてもよい。その他の成分として は、拡散剤、増粘剤、増量剤、光干渉剤等が挙げられる。具体的には、ァエロジル等 のシリカ系微粉、アルミナ等が挙げられる。
[0093] このような本発明の蛍光体含有組成物は、発光装置の製造に好適に利用される。
[0094] [発光装置]
次に、本発明の発光装置について説明する。
本発明の発光装置は、紫外光から可視光の範囲の光を発光する第 1の発光体と、 この第 1の発光体力 の光の少なくとも一部を波長変換して第 1の発光体の光よりも 長波長領域の光を発光する第 2の発光体とを、少なくとも備えて構成される。本発明 の発光装置は、第 2の発光体として前述の本発明の蛍光体を含むことを特徴とする。
[0095] 第 1の発光体
本発明の発光装置における第 1の発光体は、後述する第 2の発光体を励起する光 を発光するものである。第 1の発光体の発光波長は、後述する第 2の発光体の吸収 波長と重複するものであれば、特に制限されず、幅広い発光波長領域の発光体を使 用することができる。通常は、紫色領域から青色領域までの発光波長を有する発光 体が使用され、具体的数値としては、通常 420nm以上、好ましくは 430nm以上、ま た、通常 500nm以下、好ましくは 490nm以下の発光波長を有する発光体が使用さ れる。
[0096] また、第 2の発光体の発光ピーク波長が 555nm付近よりも短波長である場合、組み 合わせる第 1の発光体の波長は、通常 445nm以上、好ましくは 450nm以上、また通 常 460nm以下、好ましくは 455nm以下であることがさらに好まし 、。
[0097] この第 1の発光体としては、一般的には半導体発光素子が用いられ、具体的には L EDや LD等が使用できる。
[0098] 中でも、第 1の発光体としては、 GaN系化合物半導体を使用した GaN系 LEDや L Dが好ましい。なぜなら、 GaN系 LEDや LDは、この領域の光を発する SiC系 LED等 に比し、発光出力や外部量子効率が格段に大きぐ前記蛍光体と組み合わせること によって、非常に低電力で非常に明るい発光が得られる力もである。例えば、 20mA の電流負荷に対し、通常 GaN系 LEDや LDは SiC系の 100倍以上の発光強度を有 する。 GaN系 LEDや LDにおいては、 Al Ga N発光層、 GaN発光層、または In Ga
X Υ X
Ν発光層を有しているものが好ましい。 GaN系 LEDにおいては、それらの中で In
Y X
Ga N発光層を有するものが発光強度が非常に強いので、特に好ましぐ GaN系 LD
Y
においては、 In Ga N層と GaN層の多重量子井戸構造のものが発光強度が非常に
X Y
強いので、特に好ましい。
[0099] なお、上記において X+Yの値は通常 0. 8〜1. 2の範囲の値である。 GaN系 LED にお!/、て、これら発光層に Znや Siをドープしたものやドーパント無しのものが発光特 性を調節する上で好まし 、ものである。
[0100] GaN系 LEDはこれら発光層、 p層、 n層、電極、および基板を基本構成要素とした ものであり、発光層を n型と p型の Al Ga N層、 GaN層、または In Ga N層などでサ
X Y X Y
ンドイッチにしたへテロ構造を有しているもの力 発光効率が高ぐ好ましぐさらにへ テロ構造を量子井戸構造にしたものが、発光効率がさらに高ぐより好ましい。
[0101] 第 2の発光体
本発明の発光装置における第 2の発光体は、上述した第 1の発光体からの光の照 射によって可視光を発する波長変換材料を含むものである。第 2の発光体は、本発 明の蛍光体 (黄色系蛍光体)を含有することを特徴とし、その用途等に応じて適宜、 後述するように任意の組成又は色の蛍光体を含有させることもできる。
[0102] 第 2の発光体として、本発明の蛍光体と併用できる蛍光体を以下に例示する。
緑色蛍光体としては、具体的に Ca Sc Si O : Ce3+、(Sr、 Ca、 Mg) Ga S: Euや、
3 2 3 12 2 4
ZnS : Cu、 Al等が挙げられる。赤色蛍光体としては、具体的に(Ca、 Sr) S :Eu、 Ca AlSiN: Eu2+等が挙げられる。さら〖こ、反射剤、拡散剤として BaSO、 MgO、 CaHP
3 4
Oなどの白色物質を本発明の蛍光体と組み合わせて、使用することができる。
4
[0103] これらの蛍光体を組み合わせる方法としては、各蛍光体を粉末の形態で膜状に積 層する方法、榭脂中に混合して膜状に積層する方法、粉末の形態で混合する方法、 榭脂中に分散させる方法、薄膜結晶状に積層する方法などが利用できる。中でも、 粉末の形態で混合して管理、使用する方法が最も容易で安価に白色光を得られる ので好ましい。
[0104] 第 2の発光体には、本発明の蛍光体の 1種のみが含まれていても良ぐ組成の異な る l種以上の、セリウム及び Z又はテルビウムで付活されたイットリウム ·アルミニウム · ガーネット系蛍光体をさらに含むようにしてもよい。これによつて、第 1の発光体の特 性 (発光波長)に対応して、第 2の発光体の発光スペクトルを調整して、所望の発光 色を得ることができる。
[0105] 第 2の発光体の発光波長を調整する方法として、本発明では次の 3つの方法を開 示している。イットリウム ·アルミニウム 'ガーネット系蛍光体において、(1)アルミニウム の一部をガリウムに置換する、(2)イットリウムの一部をルテシゥムに置換する、(3)付活 剤の量を調整する。また、互いに組成の異なる第 1の蛍光体と第 2の蛍光体とを含む ようにしてもよい。
[0106] さらに、前記第 1の発光体の発光ピーク波長 420nm〜500nmに対して、第 2の発 光体に含まれる蛍光体の発光ピーク波長が、第 1の発光体の発光ピーク波長より長く なるように設定することが好ましい。これによつて、白色系の光を効率よく発光させるこ とがでさる。
[0107] 発光装置の構成
本発明の発光装置は、上述の第 1の発光体及び第 2の発光体を備えていれば、そ のほかの構成は特に制限されないが、通常は、適当なフレーム上に上述の第 1の発 光体及び第 2の発光体を配置してなる。この際、第 1の発光体の発光によって第 2の 発光体が励起されて発光を生じ、且つ、この第 1の発光体の発光及び Z又は第 2の 発光体の発光が、外部に取り出されるように配置されることになる。
[0108] 上述の第 1の発光体、第 2の発光体及びフレームに加えて、通常は封止材料が用 いられる。具体的に、この封止材料は、上述の第 1の蛍光体及び Z又は第 2の蛍光 体を分散させて第 2の発光体を構成したり、第 1の発光体、第 2の発光体及びフレー ム間を接着したりする目的で採用される。
[0109] 使用される封止材料としては、通常、熱可塑性榭脂、熱硬化性榭脂、光硬化性榭 脂等が挙げられる。具体的には、ポリメタアクリル酸メチル等のメタアクリル榭脂;ポリ スチレン、スチレン—アクリロニトリル共重合体等のスチレン榭脂;ポリカーボネート榭 脂;ポリエステル榭脂;フエノキシ榭脂;プチラール榭脂;ポリビュルアルコール;ェチ ノレセノレロース.セノレロースアセテート、セノレロースアセテートブチレート等のセノレロー ス系榭脂;エポキシ榭脂;フエノール榭脂;シリコーン榭脂等が挙げられる。また、無 機系材料、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコ キシドを含有する溶液をゾルーゲル法により加水分解重合して成る溶液又はこれら の組み合わせを固化した無機系材料、例えばシロキサン結合を有する無機系材料を 用!/、ることができる。
[0110] 発光装置の実施形態
以下、本発明の発光装置について、具体的な実施の形態を挙げて、より詳細に説 明するが、本発明は以下の実施形態に限定されるものではなぐ本発明の要旨を逸 脱しな 、範囲にぉ 、て任意に変形して実施することができる。
[0111] 本発明の発光装置は、発光強度が高い発光装置であり、カラーディスプレイ等の画 像表示装置や面発光等の照明装置等の光源として用いることができる。
[0112] 図 1は、第 1の発光体(波長 420nm〜500nmの光を発生する発光体)と第 2の発 光体とを有する本発明の発光装置の一実施例を示す模式的断面図である。図 2は、 図 1に示す発光装置を組み込んだ面発光照明装置の一実施例を示す模式的断面 図である。図 1及び図 2において、 1は発光装置、 2はマウントリード、 3はインナーリー ド、 4は第 1の発光体、 5は第 2の発光体としての蛍光体含有部、 6は導電性ワイヤー 、 7はモールド部材、 8は面発光照明装置、 9は拡散板、 10は保持ケースである。
[0113] 本発明の発光装置 1は、例えば図 1に示すように、一般的な砲弾型の形態を有して いる。マウントリード 2の上部カップ内に、 GaN系青色発光ダイオード等からなる第 1 の発光体 4を接着する。本発明の蛍光体と必要に応じて別の蛍光体 (例えば赤色発 光蛍光体)をエポキシ榭脂、アクリル榭脂、シリコーン榭脂等の封止材料に混合、分 散させ、カップ内に流し込むことにより蛍光体含有部 5を形成する。蛍光体含有部 5 で、第 1の発光体 4を被覆し、固定している。一方、第 1の発光体 4とマウントリード 2、 及び第 1の発光体 4とインナーリード 3は、それぞれ導電性ワイヤー 6、 6で導通されて おり、これら全体がエポキシ榭脂等によるモールド部材 7で被覆、保護されている。
[0114] また、この発光装置 1を^ aみ込んだ面発光照明装置 8を、図 2に示す。内面を白色 の平滑面等の光不透過性とした方形の保持ケース 10の底面に、多数の発光装置 1 を、その外側に発光装置 1の駆動のための電源及び回路等(図示せず。)を設けて 配置する。発光の均一化のために、保持ケース 10の蓋部に相当する箇所に、乳白 色としたアクリル板等の拡散板 9を固定して 、る。
[0115] そして、面発光照明装置 8を駆動して、発光装置 1の第 1の発光体 4に電圧を印加 することにより青色光等を発光させる。その発光の一部を、蛍光体含有部 5において 波長変換材料である本発明の蛍光体と必要に応じて添加した別の蛍光体が吸収し、 より長波長の光に変換し、蛍光体に吸収されなかった青色光等との混色により、高輝 度の発光が得られる。この光が拡散板 9を透過して、図面上方に出射され、保持ケー ス 10の拡散板 9面内において均一な明るさの照明光が得られることとなる。
[0116] ここで、第 1の発光体 4は、蛍光体含有部 5内に含有される蛍光体の励起光を発す る光源であり、また、発光装置 1が放出する光の一成分としての光を発するための光 源でもある。即ち、第 1の発光体 4力も発せられる光のうちの一部は、蛍光体含有部 5 内の発光物質に励起光として吸収され、また別の一部は、発光装置 1から放出される ようになっている。
[0117] なお、上記発光装置 1における蛍光体含有部 5は、次のような効果を有する。即ち、 第 1の発光体からの光や第 2の発光体の蛍光体力 の光は通常四方八方に向いて いるが、第 2の発光体の蛍光体粉を封止材料中に分散させると、光が蛍光体含有部 5の外に出る時にその一部が反射されるので、ある程度光の向きを揃えられる。従つ て、効率の良い向きに光をある程度誘導できるので、第 2の発光体としては、前記蛍 光体の粉を封止材料中へ分散したものを使用することが好ましい。また、蛍光体を蛍 光体含有部中に分散させると、第 1の発光体力 の光の第 2の発光体への全照射面 積が大きくなるので、第 2の発光体力もの発光強度を大きくすることができるという利 点ち有する。
[0118] この蛍光体含有部に使用できる封止材料としては、例えばシリコーン榭脂、変性シ リコーン榭脂、エポキシ榭脂、ポリビニル系榭脂、ポリエチレン系榭脂、ポリプロピレン 系榭脂、ポリエステル系榭脂等各種のものを、 1種を単独で又は 2種以上を混合して 用いることができる。中でも、蛍光体粉の分散性が良い点でエポキシ榭脂ゃシリコー ン榭脂が好ましい。また、必要に応じて、比表面積 150m2Zg〜300m2Zg程度のシ リカ系増粘剤 (ァエロジル (登録商標)等)を添加することが好ま 、。蛍光体の粉を封 止材料中に分散させる場合、前記蛍光体粉と封止材料との合計に対するその蛍光 体粉の重量割合は、通常 5重量%、好ましくは 10重量%であり、また、通常 50重量 %以下、好ましくは 30重量%以下である。この範囲よりも蛍光体が多すぎると蛍光体 粉の凝集により発光効率が低下することがあり、少なすぎると今度は榭脂による光の 吸収や散乱のため発光効率が低下することがある。
[0119] 本発明においては、面発光型の発光体、特に面発光型 GaN系レーザーダイオード を第 1の発光体として使用することは、発光装置全体の発光効率を高めることになる ので、好ましい。面発光型の発光体とは、膜の面方向に強い発光を有する発光体で あり、面発光型 GaN系レーザーダイオードにおいては、発光層等の結晶成長を制御 し、かつ、反射層等をうまく工夫することにより、発光層の縁方向よりも面方向の発光 を強くすることができる。面発光型のものを使用することによって、発光層の縁から発 光するタイプに比べ、単位発光量あたりの発光断面積が大きくとれる結果、第 2の発 光体の蛍光体にその光を照射する場合、同じ光量で照射面積を非常に大きくするこ とができ、照射効率を良くすることができるので、第 2の発光体である蛍光体からより 強い発光を得ることができる。
[0120] また、第 2の発光体の蛍光体には、前述の本発明の蛍光体、即ち、前記一般式 [1] で表される特定組成の蛍光体、さらには特定のメジアン径 D 及び物体色の蛍光体
50
のみならず、異なる組成比の複数の蛍光体を含有させたり、本発明の蛍光体以外の 他の蛍光体を組み合わせて混合したりしても良ぐ適当な組み合わせを採用すること により、より広い白色領域と高い演色性指数を実現することができる。他の蛍光体とし ては、特に制限は無いが、第 1の発光体の光と補色関係にある光を発光するもの又 は緑色光並びに赤色光を発し、第 1の発光体の光とあわせて白色となる蛍光体が使 用できる。
[0121] また、本発明の発光装置において、特に第 1の発光体として面発光型のものを使用 する場合、第 2の発光体を膜状とするのが好ましい。即ち、面発光型の発光体からの 光は断面積が十分大きいので、第 2の発光体をその断面の方向に膜状とすると、第 1 の発光体力 の蛍光体への照射断面積が蛍光体単位量あたり大きくなるので、蛍光 体からの発光の強度をより大きくすることができる。 [0122] また、第 1の発光体として面発光型のものを使用し、第 2の発光体として膜状のもの を用いる場合、第 1の発光体の発光面に、直接膜状の第 2の発光体を接触させた形 状とするのが好ましい。ここでいう接触とは、第 1の発光体と第 2の発光体とが空気や 気体を介さないでぴたりと接している状態をつくることを言う。その結果、第 1の発光 体からの光が第 2の発光体の膜面で反射されて外にしみ出るという光量損失を避け ることができるので、装置全体の発光効率を良くすることができる。
[0123] 図 3は、このように、第 1の発光体として面発光型のものを用い、第 2の発光体として 膜状のものを適用した発光装置の一例を示す模式的斜視図である。図 3中、 11は、 前記蛍光体を有する膜状の第 2の発光体、 12は第 1の発光体としての面発光型 Ga N系 LD、 13は基板を表す。相互に接触した状態をつくるために、第 1の発光体 12の LDと第 2の発光体 11とそれぞれ別個につくっておいてそれらの面同士を接着剤や その他の手段によって接触させても良いし、 LD12の発光面上に第 2の発光体 11を 製膜 (成型)させても良い。これらの結果、 LD12と第 2の発光体 11とを接触した状態 とすることができる。
実施例
[0124] 以下に、本発明を実施例によりさらに具体的に説明する力 本発明はその要旨を 超えない限り以下の実施例に限定されるものではない。
[0125] 後述の各実施例及び各比較例において、各種の評価は、以下の手法で行なった。
〈励起スペクトル〉
日立製作所製 F— 4500形分光蛍光光度計を用いて測定した。励起波長を変化さ せながら、実施例及び比較例で製造した蛍光体の発光スペクトルのピーク波長にお ける発光強度をモニターした。励起側スリット Z蛍光側スリットは、 2. 5nm/10. On mで測定した。
また、測定した励起スペクトルから、励起スペクトルの半値幅を求めた。
[0126] 〈発光強度の変化率の平均値〉
分光蛍光光度計(日立製「F4500」 )を使用して、蛍光体の発光ピーク波長に対す る励起スペクトルを測定した。励起波長 lnm間隔での発光強度の変化率を次式で求 め、波長 420ηπ!〜 480nmにおける発光強度の変化率の平均値で励起波長依存性 を示した。
発光強度の変化率 = [(ι( λ +ι)— ι( λ ))Ζι( λ )]2
[0127] 〈発光スペクトル、色度、及び輝度〉
日本分光社製蛍光測定装置において、励起光源として 150Wキセノンランプを用 いた。キセノンランプの光を焦点距離 10cmの回折格子分光器に通し、 450ηπ!〜 47 5nmの光のみを光ファイバ一を通じて蛍光体に照射した。励起光の照射により発生 した光を焦点距離 25cmの回折格子分光器により分光し、浜松フォト-タス社製マル チチャンネル CCD検出器「C7041」によって 300nm〜800nmの各波長の発光強 度を測定した。続いて、パーソナルコンピュータによる感度補正等の信号処理を経て 発光スペクトルを得た。
この発光スペクトルの 480nm〜800nmの波長領域のデータから、 JIS Z8701で 規定される XYZ表色系における色度座標 Xと yを算出した。
また、 JIS Z8724に準拠して算出した XYZ表色系における刺激値 Yから、後述す る比較例 4における蛍光体の刺激値 Yの値を 100%とした相対輝度を算出した。 尚、色度及び輝度は、励起青色光をカットして測定した。
[0128] 〈重量平均メジアン径 D >
50
測定前に、超音波分散器((株)カイジョ製)を用いて周波数を 19KHz、超音波の 強さを 5Wとし、 25秒間試料を超音波で分散させた。なお、分散液には、再凝集を防 止するため界面活性剤を微量添加した。
重量平均メジアン径 D の測定においては、レーザー回折
50 Z散乱式粒度分布測定 装置 (堀場製作所製)を使用した。
[0129] 〈平均円形度〉
前述の重量平均メジアン径 D の場合と同様に試料を分散させた後、フロー式粒子
50
像分析装置 (シスメッタス製「FPIA— 2100」 )を用いて測定した。
[0130] 〈化学組成〉
白金ルツボ中で、強酸を用いて試料を完全に溶解し、ジョバイボン社製 ICP化学分 析装置「JY 38S」を使用して分析した。
[0131] 〈物体色〉 蛍光体の粉末を内径 10mmのセルにつめ、 1mm厚の合成石英板を介して、色彩 色差計 (ミノルタ製「CR— 300」 )により標準光 D65照射モードで色彩測定をすること により、 L*、
Figure imgf000030_0001
b*を求めた。
[0132] 〈吸収率〉
分光光度計として、大塚電子株式会社製「MCPD2000」を 1インチ積分球と組み 合わせて使用し、前述の方法で求めた。
[0133] 〈全光束〉
後述するように、図 1に示す構成の発光装置を作成し、オーシャンフォト二タス社製 スぺクトロメーターと 1インチ積分球を組み合わせて測定した。
第 1の発光体 4としては、波長 453nm又は 463nmの光を発生する LEDを用い、ェ ポキシ榭脂 (ジャパンエポキシレジン (株)社製ェピコート(登録商標) 828EX)と硬化 剤を 1: 1で混合した封止材料中に、蛍光体を 5重量%の割合で混合して蛍光体スラ リー (蛍光体含有組成物)を作製した。得られた蛍光体スラリーをマウントリード 2の上 部の凹部に注入し、硬化させ、蛍光体含有部 5を形成した。
実施例及び比較例の全光束の値は、白色(色温度 7000K, x= 0. 31 ± 0. 03)に なるように励起波長及び蛍光体の塗布量を調整して LEDを作製した際のデータであ る。蛍光体の使用量は、砲弾型の LED1個あたり、 0. 02mg〜0. lmgとした。なお、 蛍光体の粒径が大きい場合は、蛍光体粒子の沈降沈積を防ぐため、シリカ系増粘剤 (比表面積 150〜300m2Zg、ァエロジル)を添加した。作製した発光装置は、室温( 約 24°C)において、 20mAで駆動した。結果は、比較例 1の場合の全光束を 100とし 、相対値で示した。
[0134] <QD>
以下の実施例 1〜19で使用した本発明の蛍光体の QD値は、 0. 19-0. 2の範囲 であった。
[0135] 実施例 1〜4、及び比較例 1
次の原料ィ匕合物を表 1に示す仕込み量に秤量した。
酸化イットリウム Y O (信越化学工業社製 純度 99. 99%)
2 3
酸ィ匕セリウム CeO (信越化学工業社製 純度 99. 99%) 酸ィ匕テルビウム Tb O (信越化学工業社製 純度 99. 99%)
4 7
酸ィ匕アルミニウム AI O タイプ、住友ィ匕学工業社製 純度 99. 99%)
2 3
フッ化バリウム BaF (関東ィ匕学社製)
2
[0136] 次に、秤量した原料ィ匕合物を 2L容量のポリエチレン製広口容器に投入し、ナイ口 ン被覆鉄ボール lkgを加えて 3時間回転混合した。この原料混合物をアルミナ製るつ ぼに充填し、 4体積%水素含有窒素-水素混合気流中、常圧で 1450°Cで 6時間焼 成した。焼成によって黄色を呈した焼成物を軽く解砕した。続いて、 1. 5molZlの塩 酸で洗浄し、焼成物を粒子として分散させた後、十分に水洗した。その後、分級処理 を施し、 目的の蛍光体を得た。得られた蛍光体を水中に分散させて、アルカリ金属リ ン酸塩溶液、及びカルシウム塩溶液を添加、攪拌し、蛍光体粒子表面にリン酸カル シゥム塩をコートした。この蛍光体を濾別して乾燥し、その後、ナイロン製メッシュ (ォ ープユングサイズ 50 μ m)にて篩 、、分散性の良好な蛍光体を得た。
[0137] 得られた蛍光体につ!ヽて、原料仕込み組成と、蛍光体の化学組成、発光ピーク波 長、発光強度の変化率の平均値及び励起スペクトルの半値幅、メジアン径 D 、平均
50 円形度、物体色 (L*、
Figure imgf000031_0001
b*)、吸収率 (吸光効率)、色度座標、輝度、並びに全光束の 測定結果を表 1 , 2に示した。また、実施例 1のものについては、発光スペクトルを測 定して結果を図 4に示した。
[0138] なお、表 2において、全光束の欄に厂※」が付してある比較例 1は、波長 453nmの L EDを用いて測定したことを示す。厂※」が付してない実施例 1〜3は、波長 463nmの LEDを用いて測定したものである。表 4, 6, 8, 10においても同様である。
実施例 1及び比較例 4における励起スペクトルは図 19に示す通りである。
[0139] [表 1]
Figure imgf000032_0001
[z [owo] .ZCOC/900Zdf/X3d ST0C60/900Z OAV
Figure imgf000034_0001
[0141] 比較例 2〜4
原料仕込み量を表 3に記載したように、 α -Α1 Οをィ匕学量論組成の調合したこと
2 3
、焼成条件を 4体積%水素含有窒素—水素混合気流中、常圧で 1400°C、 2時間と したこと以外は、実施例 1〜4と同様に蛍光体を製造し、同様に評価を行って、結果 を表 3, 4に示した。
なお、比較例 4の Gd源原料ィ匕合物としては、酸ィ匕ガドリニウム Gd O (信越化学ェ
2 3
業社製 純度 99. 99%)を用いた。
得られた蛍光体は、メジアン径 D がいずれも 10 m以下であった。また、同一量
50
の付活剤を含む実施例 1〜4と、比較例 4を比較すると、比較例 4は、輝度、及び全 光束が低い。
[0142] [表 3]
Figure imgf000036_0001
.ZC0C/900Zdf/X3d ST0C60/900Z OAV
Figure imgf000038_0001
[0144] 実施例 5〜11
原料仕込み量を表 5に記載したようにしたこと、焼成条件を 4体積%水素含有窒素 —水素混合気流中、常圧で 1550°C、 2時間としたこと以外は、実施例 1〜4と同様に 蛍光体を製造し、同様に評価を行って、結果を表 5, 6に示した。
なお、実施例 6〜11の Lu源原料ィ匕合物としては、酸化ルテチウム Lu O (信越ィ匕
2 3 学工業社製 純度 99. 99%)を用いた。
実施例 5〜 11から、 Yを Luに置換することで、蛍光体の発光が短波長化しているこ と、 Lu Oを最適量カ卩えると、輝度及び全光束が向上することが分かる。また、 Lu O
2 3 2 Ξ を原料仕込み組成比で 0.6以上とすると、メジアン径 D 力 、さくなる傾向にあり、発
50
光波長はわずかに短波長化する。
[0145] [表 5]
Figure imgf000040_0001
[9挲] [9W0]
6C
.ZC0C/900Zdf/X3d ST0C60/900Z OAV
Figure imgf000042_0001
[0147] 実施例 12〜15
原料仕込み量を表 7に記載したようにしたこと、焼成条件を 4体積%水素含有窒素 —水素混合気流中、常圧で 1550°C、 2時間としたこと以外は、実施例 1〜4と同様に 蛍光体を製造し、同様に評価を行って結果を表 7, 8に示した。
実施例 12〜15は、 Ceの量を変化させたものである。 Ce量を減少させると共に蛍光 体の発光波長が短波長側に、また、 b*が小さくなり、物体色が淡黄色に変化している ことが分力ゝる。
また、発光波長が短波長である実施例 12〜 15の蛍光体の励起波長としては、より 白色に近づくことから、 465nmよりも 453nmが好ましいことも分かる。
[0148] [表 7]
Figure imgf000044_0001
[8挲] [6W0] .ZC0C/900Zdf/X3d ST0C60/900Z OAV
Figure imgf000046_0001
[0150] 実施例 16〜19
原料仕込み量を表 9に記載したようにしたこと、焼成条件を 4体積%水素含有窒素 —水素混合気流中、常圧で 1550°C、 2時間としたこと以外は、実施例 1〜4と同様に 蛍光体を製造し、同様に評価を行って、結果を表 9, 10に示した。
なお、実施例 17〜19の Ga源としては、酸ィ匕ガリウム Ga O (三井金属社製 純度 9
2 3
9. 99%)を用い、実施例 19の Lu源としては、酸化ルテチウム Lu O (信越化学工業
2 3
社製 純度 99. 99%)を用いた。
実施例 16〜19から、 A1を Gaに置換することで、蛍光体の発光ピークが短波長化 することが分力ゝる。
[0151] [表 9]
Figure imgf000048_0001
Lt
.ZC0C/900Zdf/X3d ST0C60/900Z OAV
Figure imgf000050_0001
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れるこ となく様々な変更が可能であることは当業者に明らかである。
なお、本出願は、 2005年 2月 28日付で出願された日本特許出願 (特願 2005— 0 53676)に基づいており、その全体が引用により援用される。

Claims

請求の範囲
[1] 下記一般式 [1]で表される化学組成の結晶相を含有し、かつ、波長 420ηπ!〜 480 nmの範囲にピークを有する光で励起した時の下記式 [2]で算出される発光強度の 変化率の平均値が、 1. 3以下であることを特徴とする蛍光体。
(Ln CeTb ) M O '··[1]
1-a-b a b 3 5 12
但し、 Lnは Y、 Gd、 Sc、 Lu及び Laよりなる群力 選ばれる少なくとも 1種の元素で あり、 Mは Al、 Ga及び Inよりなる群力も選ばれる少なくとも 1種の元素を示す。 a、 bは 、それぞれ 0.001≤a≤0. 3、 0≤b≤0. 5を満足する数である。
発光強度の変化率 =[(Ι(λ+1)— ι(λ))Ζι(λ)]2 —[2]
但し、 Ι(λ)は励起波長 λ nmにおける蛍光体の発光強度であり、 Ι(λ+1)は励起 波長( λ + 1) nmにおける蛍光体の発光強度である。
[2] 請求項 1において、前記発光強度の変化率の平均値が 1. 1以下であることを特徴 とする蛍光体。
[3] 請求項 1にお 、て、重量平均メジアン径 D 力 10 m以上であることを特徴とする
50
蛍光体。
[4] 請求項 1にお 、て、重量平均メジアン径 D が 14 μ m以上であることを特徴とする
50
蛍光体。
[5] 請求項 1において、前記一般式 [1]の Lnとして少なくとも Yを含み、かつ、 Mとして 少なくとも A1を含むことを特徴とする蛍光体。
[6] 請求項 1にお ヽて、前記一般式の a, b力それぞれ 0.02≤a≤0. 15、 0.02<b≤
0. 5であることを特徴とする蛍光体。
[7] 請求項 5において、前記一般式 [1]の Lnとして少なくとも Yと Luを含むことを特徴と する蛍光体。
[8] 請求項 7において、 Luの糸且成比が 0.03〜1であることを特徴とする蛍光体。
但し、 Luの組成比とは、前記一般式 [1]を下記一般式 [1A]で表したときの qに相 当する。
YLuCe Tb MO 〜[1A]
p q 3a 3b 5 12
上記 [1A]式中、 M, a, bは一般式 [1]におけると同義であり、 p, qはそれぞれ Y, Luの組成を示し、 Y Lu =Ln である。
p q 3- 3a- 3b
[9] 請求項 5において、前記一般式 [ 1]の Mとして少なくとも Alと Gaを含むことを特徴と する蛍光体。
[10] 請求項 9において、 Gaの糸且成比が 0. 2〜3であることを特徴とする蛍光体。
但し、 Gaの組成比とは、前記一般式 [ 1]を下記一般式 [ 1B]で表したときの rに相 当する。
(Ln Ce Tb ) M' Ga O - - - [ IB]
1-a-b a b 3 5-r r 12
上記 [ IB]式中、 Ln, a, bは一般式 [ 1]におけると同義であり、 M 'は Ga以外の M ( Mは一般式 [ 1]におけると同義である。 )を表し、 M' Ga = Mである。
5-r r 5
[11] 請求項 1において、平均円形度が 0. 86以上であることを特徴とする蛍光体。
[12] 請求項 1において、物体色が L*、
Figure imgf000053_0001
b*表色系において L*≥90、 a*≤— 7、 b*≥55 を満足することを特徴とする蛍光体。
[13] 物体色が L*、
Figure imgf000053_0002
b*表色系において L*≥90、 a*≤— 7、 b*≥55を満足し、下記一般 式 [ 1]で表される化学組成の結晶相を含有し、メジアン径 D
50力 15 m以上であるこ とを特徴とする蛍光体。
(Ln Ce Tb ) M O ' · · [ 1]
1-a-b a b 3 5 12
但し、 Lnは Y、 Gd、 Sc、 Lu及び Laよりなる群力 選ばれる少なくとも 1種の元素で あり、 Mは Al、 Ga及び Inよりなる群力も選ばれる少なくとも 1種の元素を示す。 a、 bは 、それぞれ 0. 001≤a≤0. 3、 0≤b≤0. 5を満足する数である。
[14] 請求項 13において、平均円形度が 0. 86以上であることを特徴とする蛍光体。
[15] 各構成元素を含む原料化合物を混合した後焼成して請求項 1に記載の蛍光体を 製造する方法であって、原料化合物の仕込みモル比を(5Z3) < (MZ (Ln Ce
1-a-b a
Tb )とし、焼成により得られた焼成物を酸洗浄することを特徴とする蛍光体の製造方 b
法。
[16] 請求項 15において、前記一般式 [ 1]の Mとして少なくとも A1を含み、かつ、 A1源と して アルミナを用いることを特徴とする蛍光体の製造方法。
[17] 各構成元素を含む原料ィ匕合物を混合した後焼成して請求項 13に記載の蛍光体を 製造する方法であって、原料化合物の仕込みモル比を(5Z3) < (MZ (Ln Ce Tb )とし、焼成により得られた焼成物を酸洗浄することを特徴とする蛍光体の製造方 b
法。
[18] 請求項 17において、前記一般式 [1]の Mとして少なくとも A1を含み、かつ、 A1原料 化合物として a アルミナを用いることを特徴とする蛍光体の製造方法。
[19] 請求項 1に記載の蛍光体と液体媒体とを含むことを特徴とする蛍光体含有組成物。
[20] 紫外光から可視光の範囲の光を発光する第 1の発光体と、該第 1の発光体からの 光の少なくとも一部を波長変換し、該第 1の発光体の光よりも長波長領域の光を発光 する第 2の発光体とを有する発光装置において、該第 2の発光体が請求項 1に記載 の蛍光体を含むことを特徴とする発光装置。
[21] 請求項 20において、前記第 1の発光体がレーザーダイオード又は発光ダイオード であることを特徴とする発光装置。
[22] 請求項 20に記載の発光装置を光源とすることを特徴とする画像表示装置。
[23] 請求項 20に記載の発光装置を光源とすることを特徴とする照明装置。
PCT/JP2006/303279 2005-02-28 2006-02-23 蛍光体及びその製造方法並びにその応用 WO2006093015A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06714419A EP1854863A4 (en) 2005-02-28 2006-02-23 LUMINOPHORE, PROCESS FOR PRODUCING THE SAME, AND APPLICATION
CN200680006387.5A CN101128563B (zh) 2005-02-28 2006-02-23 荧光体、其制造方法及其应用
KR1020077019688A KR101388470B1 (ko) 2005-02-28 2006-02-23 형광체 및 그 제조 방법, 및 그 응용
US11/816,920 US20090008663A1 (en) 2005-02-28 2006-02-23 Phosphor and method for production thereof, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-053676 2005-02-28
JP2005053676 2005-02-28

Publications (1)

Publication Number Publication Date
WO2006093015A1 true WO2006093015A1 (ja) 2006-09-08

Family

ID=36941049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303279 WO2006093015A1 (ja) 2005-02-28 2006-02-23 蛍光体及びその製造方法並びにその応用

Country Status (7)

Country Link
US (1) US20090008663A1 (ja)
EP (1) EP1854863A4 (ja)
JP (1) JP4325733B2 (ja)
KR (1) KR101388470B1 (ja)
CN (1) CN101128563B (ja)
TW (1) TW200704754A (ja)
WO (1) WO2006093015A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032812A1 (en) * 2006-09-15 2008-03-20 Mitsubishi Chemical Corporation Phosphor, method for producing the same, phosphor-containing composition, light-emitting device, image display and illuminating device
WO2008136619A2 (en) * 2007-05-04 2008-11-13 Seoul Semiconductor Co., Ltd. Light emitting device
JP2009173905A (ja) * 2007-12-28 2009-08-06 Mitsubishi Chemicals Corp 蛍光体、蛍光体の製造方法、蛍光体含有組成物および発光装置
JP2011249822A (ja) * 2006-12-15 2011-12-08 Cree Inc 発光ダイオードのための反射性マウント基板
US8128840B2 (en) * 2008-02-01 2012-03-06 Samsung Sdi Co., Ltd. Phosphor composition for display device
US8137585B2 (en) * 2008-02-05 2012-03-20 Samsung Sdi Co., Ltd. Phosphor composition and display device including the same

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7974760B2 (en) 2003-10-20 2011-07-05 Nmhg Oregon, Inc. Advanced power-shift transmission control system
US8135531B2 (en) 2002-06-12 2012-03-13 Nmhg Oregon, Llc Predictive vehicle controller
US8775039B2 (en) 2003-10-20 2014-07-08 Nmhg Oregon, Llc Dynamically adjustable inch/brake overlap for vehicle transmission control
JP2008050493A (ja) * 2006-08-25 2008-03-06 Mitsubishi Chemicals Corp 蛍光体及びそれを用いた発光装置
US8529791B2 (en) * 2006-10-20 2013-09-10 Intematix Corporation Green-emitting, garnet-based phosphors in general and backlighting applications
US9120975B2 (en) 2006-10-20 2015-09-01 Intematix Corporation Yellow-green to yellow-emitting phosphors based on terbium-containing aluminates
US8133461B2 (en) 2006-10-20 2012-03-13 Intematix Corporation Nano-YAG:Ce phosphor compositions and their methods of preparation
US8475683B2 (en) 2006-10-20 2013-07-02 Intematix Corporation Yellow-green to yellow-emitting phosphors based on halogenated-aluminates
JP2008150276A (ja) * 2006-11-21 2008-07-03 Canon Inc 紫外光用ガラス組成物及びそれを用いた光学装置
US8178888B2 (en) * 2008-02-01 2012-05-15 Cree, Inc. Semiconductor light emitting devices with high color rendering
JP5402008B2 (ja) * 2009-01-16 2014-01-29 日亜化学工業株式会社 蛍光体の製造方法及び蛍光体並びにこれを用いた発光装置
DE102009037730A1 (de) 2009-08-17 2011-02-24 Osram Gesellschaft mit beschränkter Haftung Konversions-LED mit hoher Farbwiedergabe
TWI383036B (zh) * 2009-11-10 2013-01-21 China Glaze Co Ltd 螢光粉組成物及包含其之白光發光二極體裝置
TWI394827B (zh) * 2010-04-20 2013-05-01 China Glaze Co Ltd 螢光材料與白光發光裝置
DE102010021341A1 (de) * 2010-05-22 2011-11-24 Merck Patent Gmbh Leuchtstoffe
JP5323131B2 (ja) 2010-06-09 2013-10-23 信越化学工業株式会社 蛍光粒子及び発光ダイオード並びにこれらを用いた照明装置及び液晶パネル用バックライト装置
JP6369774B2 (ja) 2010-10-29 2018-08-08 株式会社光波 発光装置
JP5450559B2 (ja) * 2010-11-25 2014-03-26 シャープ株式会社 植物栽培用led光源、植物工場及び発光装置
US9617469B2 (en) 2011-01-06 2017-04-11 Shin-Etsu Chemical Co., Ltd. Phosphor particles, making method, and light-emitting diode
US8747697B2 (en) * 2011-06-07 2014-06-10 Cree, Inc. Gallium-substituted yttrium aluminum garnet phosphor and light emitting devices including the same
DE102011078402A1 (de) 2011-06-30 2013-01-03 Osram Ag Konversionselement und Leuchtdiode mit einem solchen Konversionselement
DE102011113802A1 (de) 2011-09-20 2013-03-21 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement und Modul mit einer Mehrzahl von derartigen Bauelementen
TWI515922B (zh) * 2011-10-25 2016-01-01 奇美實業股份有限公司 螢光體及使用其之發光裝置
TWI538980B (zh) * 2011-11-29 2016-06-21 奇美實業股份有限公司 螢光體及使用其之發光裝置
KR101335522B1 (ko) 2012-02-29 2013-12-02 한국화학연구원 청색광 여기용 형광체, 이의 제조방법 및 이를 포함하는 백색 발광 다이오드
CN102604515A (zh) * 2012-03-01 2012-07-25 上海祥羚光电科技发展有限公司 大功率蓝光led远程激发灯罩专用静电喷涂黄色荧光粉复合白光涂料
WO2013161683A1 (ja) 2012-04-24 2013-10-31 株式会社光波 蛍光体及びその製造方法、並びに発光装置
KR20150071024A (ko) * 2012-10-16 2015-06-25 덴끼 가가꾸 고교 가부시키가이샤 형광체, 발광장치 및 조명장치
JP6261196B2 (ja) * 2013-06-12 2018-01-17 信越化学工業株式会社 発光装置
JP5620562B1 (ja) * 2013-10-23 2014-11-05 株式会社光波 単結晶蛍光体及び発光装置
TWI518170B (zh) * 2013-12-26 2016-01-21 奇美實業股份有限公司 螢光粉體與發光裝置
JP2015183084A (ja) * 2014-03-24 2015-10-22 三菱化学株式会社 紫光励起用蛍光体、該蛍光体を用いた蛍光体含有組成物及び発光装置、並びに、該発光装置を用いた照明装置及び画像表示装置
JP6833683B2 (ja) * 2015-06-12 2021-02-24 株式会社東芝 蛍光体およびその製造方法、ならびにledランプ
JP6944104B2 (ja) 2016-11-30 2021-10-06 日亜化学工業株式会社 発光装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190066A (ja) 1996-12-27 1998-07-21 Nichia Chem Ind Ltd 発光ダイオード及びそれを用いたled表示装置
JPH10242513A (ja) 1996-07-29 1998-09-11 Nichia Chem Ind Ltd 発光ダイオード及びそれを用いた表示装置
JPH10247750A (ja) 1997-03-05 1998-09-14 Nichia Chem Ind Ltd Ledランプ
JP2002189080A (ja) * 2000-12-21 2002-07-05 Hitachi Medical Corp 酸化物蛍光体及びそれを用いた放射線検出器、並びにx線ct装置
WO2002059982A1 (en) * 2001-01-24 2002-08-01 Nichia Corporation Light emitting diode, optical semiconductor elemet and epoxy resin composition suitable for optical semiconductor element and production methods therefor
JP2003505583A (ja) 1999-07-23 2003-02-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 発光物質装置、波長変換注入成形材および光源
JP2003505582A (ja) 1999-07-23 2003-02-12 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング 光源用発光物質および発光物質を有する光源
JP2005053676A (ja) 2003-08-06 2005-03-03 Daihatsu Motor Co Ltd 吊下げ搬送機
JP2005150691A (ja) * 2003-08-28 2005-06-09 Mitsubishi Chemicals Corp 発光装置及び蛍光体
JP2005264062A (ja) * 2004-03-19 2005-09-29 Nemoto & Co Ltd 蛍光体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541287A (en) * 1977-06-03 1979-01-08 Sony Corp Fluorescent substance
US5851428A (en) * 1996-03-15 1998-12-22 Kabushiki Kaisha Toshiba Phosphor and manufacturing method thereof
DE19638667C2 (de) * 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mischfarbiges Licht abstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement
KR20050053798A (ko) * 1996-06-26 2005-06-08 오스람 게젤샤프트 미트 베쉬랭크터 하프퉁 발광 변환 소자를 포함하는 발광 반도체 소자
US6608332B2 (en) * 1996-07-29 2003-08-19 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device and display
TW383508B (en) * 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
US6613247B1 (en) * 1996-09-20 2003-09-02 Osram Opto Semiconductors Gmbh Wavelength-converting casting composition and white light-emitting semiconductor component
CN1101442C (zh) * 1998-11-23 2003-02-12 中国科学院长春物理研究所 稀土石榴石绿色荧光体及制备方法
US6552487B1 (en) * 1999-10-27 2003-04-22 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Phosphor for light sources, and associated light source
US6596195B2 (en) * 2001-06-01 2003-07-22 General Electric Company Broad-spectrum terbium-containing garnet phosphors and white-light sources incorporating the same
US7038370B2 (en) * 2003-03-17 2006-05-02 Lumileds Lighting, U.S., Llc Phosphor converted light emitting device
WO2005022032A1 (ja) * 2003-08-28 2005-03-10 Mitsubishi Chemical Corporation 発光装置及び蛍光体
KR20060000313A (ko) * 2004-06-28 2006-01-06 루미마이크로 주식회사 대입경 형광 분말을 포함하는 색변환 발광 장치 그의 제조방법 및 그에 사용되는 수지 조성물

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242513A (ja) 1996-07-29 1998-09-11 Nichia Chem Ind Ltd 発光ダイオード及びそれを用いた表示装置
JPH10190066A (ja) 1996-12-27 1998-07-21 Nichia Chem Ind Ltd 発光ダイオード及びそれを用いたled表示装置
JPH10247750A (ja) 1997-03-05 1998-09-14 Nichia Chem Ind Ltd Ledランプ
JP2003505583A (ja) 1999-07-23 2003-02-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 発光物質装置、波長変換注入成形材および光源
JP2003505582A (ja) 1999-07-23 2003-02-12 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング 光源用発光物質および発光物質を有する光源
JP2002189080A (ja) * 2000-12-21 2002-07-05 Hitachi Medical Corp 酸化物蛍光体及びそれを用いた放射線検出器、並びにx線ct装置
WO2002059982A1 (en) * 2001-01-24 2002-08-01 Nichia Corporation Light emitting diode, optical semiconductor elemet and epoxy resin composition suitable for optical semiconductor element and production methods therefor
JP2005053676A (ja) 2003-08-06 2005-03-03 Daihatsu Motor Co Ltd 吊下げ搬送機
JP2005150691A (ja) * 2003-08-28 2005-06-09 Mitsubishi Chemicals Corp 発光装置及び蛍光体
JP2005264062A (ja) * 2004-03-19 2005-09-29 Nemoto & Co Ltd 蛍光体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1854863A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032812A1 (en) * 2006-09-15 2008-03-20 Mitsubishi Chemical Corporation Phosphor, method for producing the same, phosphor-containing composition, light-emitting device, image display and illuminating device
JP2008291203A (ja) * 2006-09-15 2008-12-04 Mitsubishi Chemicals Corp 蛍光体及びその製造方法、並びに、蛍光体含有組成物、発光装置、画像表示装置及び照明装置
US8021576B2 (en) 2006-09-15 2011-09-20 Mitsubishi Chemical Corporation Phosphor and production method thereof, and phosphor-containing composition, light emitting device, image display and lighting system
JP2011249822A (ja) * 2006-12-15 2011-12-08 Cree Inc 発光ダイオードのための反射性マウント基板
US9178121B2 (en) 2006-12-15 2015-11-03 Cree, Inc. Reflective mounting substrates for light emitting diodes
WO2008136619A2 (en) * 2007-05-04 2008-11-13 Seoul Semiconductor Co., Ltd. Light emitting device
WO2008136619A3 (en) * 2007-05-04 2008-12-24 Seoul Semiconductor Co Ltd Light emitting device
US8487525B2 (en) 2007-05-04 2013-07-16 Seoul Semiconductor Co., Ltd. Light emitting device including optical lens
JP2009173905A (ja) * 2007-12-28 2009-08-06 Mitsubishi Chemicals Corp 蛍光体、蛍光体の製造方法、蛍光体含有組成物および発光装置
US8128840B2 (en) * 2008-02-01 2012-03-06 Samsung Sdi Co., Ltd. Phosphor composition for display device
US8137585B2 (en) * 2008-02-05 2012-03-20 Samsung Sdi Co., Ltd. Phosphor composition and display device including the same

Also Published As

Publication number Publication date
EP1854863A1 (en) 2007-11-14
JP2009001809A (ja) 2009-01-08
KR101388470B1 (ko) 2014-04-23
EP1854863A4 (en) 2012-02-22
TW200704754A (en) 2007-02-01
CN101128563B (zh) 2012-05-23
US20090008663A1 (en) 2009-01-08
CN101128563A (zh) 2008-02-20
JP4325733B2 (ja) 2009-09-02
KR20070106536A (ko) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4325733B2 (ja) 蛍光体及びその製造方法並びにそれを使用した発光装置
JP4325629B2 (ja) 蛍光体及びその製造方法並びにそれを使用した発光装置
JP2006265542A5 (ja)
US7274045B2 (en) Borate phosphor materials for use in lighting applications
US7329371B2 (en) Red phosphor for LED based lighting
JP5503871B2 (ja) 照明用途において使用するための電荷補償窒化物蛍光体
US7332106B2 (en) Light-emitting device and phosphor
US7439668B2 (en) Oxynitride phosphors for use in lighting applications having improved color quality
US20060284196A1 (en) Red garnet phosphors for use in LEDs
JP2004300247A (ja) 蛍光体及びそれを用いた発光装置、並びに照明装置
US8440104B2 (en) Kimzeyite garnet phosphors
WO2009099234A1 (ja) 発光装置およびその製造方法
JP2008050493A (ja) 蛍光体及びそれを用いた発光装置
JP4916651B2 (ja) 発光装置及び蛍光体
JP5402008B2 (ja) 蛍光体の製造方法及び蛍光体並びにこれを用いた発光装置
JP4972904B2 (ja) 蛍光体、その蛍光体の製造方法、その蛍光体を用いた発光装置、画像表示装置及び照明装置
JP2010196049A (ja) 蛍光体及びその製造方法、蛍光体含有組成物、並びに、該蛍光体を用いた発光装置、画像表示装置及び照明装置
JP4098354B2 (ja) 白色発光装置
WO2008065567A1 (en) Illumination system comprising hetero- polyoxometalate
JP5326986B2 (ja) 発光装置に用いる蛍光体
JP2004253747A (ja) 発光装置及びそれを用いた照明装置
WO2023139823A1 (ja) 蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯
WO2023139824A1 (ja) 蛍光体、発光装置、照明装置、画像表示装置及び車両用表示灯
JP2004217723A (ja) 発光装置及びそれを用いた照明装置並びにディスプレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006714419

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11816920

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680006387.5

Country of ref document: CN

Ref document number: 1020077019688

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006714419

Country of ref document: EP