WO2006090655A1 - バッテリ式産業車両の荷役回生方法及び荷役回生システム - Google Patents

バッテリ式産業車両の荷役回生方法及び荷役回生システム Download PDF

Info

Publication number
WO2006090655A1
WO2006090655A1 PCT/JP2006/302899 JP2006302899W WO2006090655A1 WO 2006090655 A1 WO2006090655 A1 WO 2006090655A1 JP 2006302899 W JP2006302899 W JP 2006302899W WO 2006090655 A1 WO2006090655 A1 WO 2006090655A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
hydraulic
lift
motor
battery
Prior art date
Application number
PCT/JP2006/302899
Other languages
English (en)
French (fr)
Inventor
Kensuke Nihashi
Hiroshi Satou
Masataka Kawaguchi
Tomohiro Akagi
Fujio Eguchi
Keizo Ogino
Shingo Yuguchi
Kazushi Kawashima
Michio Akao
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to EP06714040A priority Critical patent/EP1852387B1/en
Priority to JP2007504695A priority patent/JP4727653B2/ja
Publication of WO2006090655A1 publication Critical patent/WO2006090655A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/24Electrical devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention uses a hydraulic pump that supplies pressurized fluid to a lift cylinder as a hydraulic motor by using the hydraulic fluid recovered from the lift oil chamber of the lift cylinder when the lift device is lowered.
  • a cargo handling regeneration method and system for recovering (regenerating) the position energy of a lift device by operating an electric motor that drives a hydraulic pump as a generator the operation related to regeneration is performed with a simple device configuration.
  • a forklift as a battery-powered industrial vehicle equipped with an electric motor that drives a pump of a cargo handling hydraulic system.
  • a hydraulic pump that functions as a motor by return oil from a lift cylinder when the fork descends is used.
  • the battery power is collected (regenerated) by using the motor as a generator.
  • an electromagnetic clutch is provided between the electric motor and the hydraulic pump, and when the lift is lowered, a sufficient lowering speed is achieved due to insufficient load weight of the lift device. Therefore, if regenerative operation is not possible due to a lack of recovered hydraulic fluid, the power transmission between the hydraulic pump and the motor is interrupted by the electromagnetic clutch. This saves energy.
  • Japanese Patent Laid-Open No. 2 0 3-2 5 2 5 8 8 discloses that when the lift energy is regenerated, the rotation speed of the hydraulic pump acting as an electric motor and a hydraulic motor is controlled so that the lowering speed of the lift device is reduced.
  • a means for controlling the flow rate and pressure of pressure oil (hydraulic oil) so as to achieve a set descending speed and thereby eliminating energy loss due to pressure loss and heat generation is disclosed.
  • US Pat. No. 5,500,033 requires a plurality of sets of hydraulic pumps and electric motors, and there is a problem that the structure becomes complicated and the weight increases.
  • the present invention provides a cargo handling regenerative system for a lift device for a battery-type industrial vehicle, which uses a simple device configuration to supply hydraulic oil to other hydraulic pressure actuators during operation related to regeneration.
  • the purpose is to realize a cargo handling regeneration method and its system that can supply and improve the operability by preventing the occurrence of hydraulic pulsation during regeneration of lift energy and improving the regeneration efficiency.
  • the cargo handling regeneration method of the present invention achieves such an object.
  • a lift cylinder that lifts and lowers a lift device, an electric motor driven by a battery power source, and an electric motor that operates by the electric motor to discharge pressure fluid to the lift cylinder.
  • a control valve that is interposed between the lift cylinder and the hydraulic pump, and when the lift device is lowered, the load applied to the lift cylinder is changed from the lift cylinder to the hydraulic pump.
  • the hydraulic pump is connected to the hydraulic pump when the lift device is lowered.
  • the lowering speed of the lift device is controlled by controlling the opening degree of the control valve for controlling the pressure fluid return amount and the rotational speed of the electric motor.
  • the opening degree of the control valve is set to be larger than a return amount of the hydraulic fluid set by the rotation speed control of the electric motor, and the lowering speed of the lift device is determined by the rotation speed of the electric motor. To control.
  • the cargo handling regeneration method of the present invention can also be applied to a case where the hydraulic device includes a second actuator that supplies pressurized fluid from the hydraulic pump via a second control valve.
  • the rotational speed of the electric motor is set corresponding to only the lowering speed of the lift device.
  • the second actuate is a tilt cylinder that tilts the mast with a forklift that can be moved up and down, a drive unit that moves the fork pawl, a single steering, a brake device, and other attachments.
  • the cargo handling regeneration system of the present invention also includes a lift cylinder that lifts and lowers the lift device, an electric motor that is driven by a battery power source, a hydraulic pump that is operated by the electric motor and discharges pressurized liquid to the lift cylinder to raise the lift device.
  • the lift silin When the hydraulic fluid is returned from the lift cylinder to the hydraulic pump by the load applied to the lift cylinder when the lift device is lowered
  • the pressure fluid return amount to the hydraulic pump is controlled when the lift device is lowered
  • a controller is provided for controlling the descending speed of the lift device by controlling the opening degree of the control valve and the rotational speed of the electric motor.
  • the controller when performing energy regeneration when the lift device is lowered, controls the lowering speed of the lift device by controlling the opening degree of the control valve and the rotation speed of the electric motor. To do.
  • a hydraulic motor driven by receiving the pressure liquid from the lift cylinder is installed in a pipe for collecting the pressure liquid from the lift cylinder to the pressure liquid storage tank via the control valve.
  • the present invention can also be applied to a hydraulic apparatus having a configuration in which the same hydraulic pressure and the motor are connected by a one-way clutch that transmits a driving torque only from the same hydraulic pressure to the same motor.
  • one-way clutch means a generic term for “transmission means that can transmit drive torque from a hydraulic motor to an electric motor and cannot transmit drive torque from the electric motor to the hydraulic motor”.
  • the cargo handling regeneration system of the present invention includes a second actuator that performs other operations separately from the lift cylinder, for example, a tilt cylinder that tilts a mast on which a fork of a forklift is installed, and the second actuator.
  • the present invention can also be applied to a hydraulic apparatus configured to supply pressurized liquid from the hydraulic pump via a second control valve overnight.
  • the controller includes an arithmetic circuit that slows down the responsiveness of the rotational speed change of the electric motor in response to the electric motor rotational speed change command. This suppresses a rapid change in the rotational speed of the electric motor.
  • the hydraulic device is equipped with a second actuator overnight, if the hydraulic device simultaneously performs the regenerative operation of the lift energy and the pressurized fluid supply to the second actuator overnight, the motor will respond normally. If there is no change, the rotational speed of the motor will change suddenly and sudden pressure will PT / JP2006 / 302899
  • the hydraulic motor has a theoretical volume larger than the theoretical volume of the hydraulic pump, and the motor speed at the rated speed of the second actuator and the descending rated speed of the lift device are used.
  • the number of rotations of the motor is substantially the same.
  • a pressure sensor for detecting the pressure cylinder chamber pressure of the lift cylinder is provided, and the response sensitivity of the electric motor is changed based on the detection value of the pressure sensor.
  • the response sensitivity of the motor is lowered to widen the fine operation range.
  • a pressure sensor for detecting the pressure inside the lift cylinder of the lift cylinder is provided, and the controller calculates a pulsation value from the detection value of the pressure sensor, and a reverse phase of the pulsation value.
  • an arithmetic circuit for adding to the rotational speed command value of the electric motor to attenuate the hydraulic pulsation.
  • the lift of the control valve for controlling the return amount of the hydraulic fluid to the hydraulic pump when the lift device is lowered and the rotational speed of the motor are controlled.
  • the opening degree of the control valve is set to be larger than the pressure fluid return amount set by the rotation speed control of the motor, and the lift device is lowered by the rotation speed of the motor.
  • the motor By rotating the valve before the control valve is opened, the initial operation as a hydraulic motor of the hydraulic pump can be reliably performed during regeneration.
  • the hydraulic device includes a second actuator that supplies the hydraulic fluid from the hydraulic pump via a second control valve, and the lift device is lowered. Simultaneous operation and operation of the second action 9
  • the cargo handling regeneration system of the present invention by controlling the opening degree of the control valve that controls the return amount of the hydraulic fluid to the hydraulic pump when the lift device is lowered, and the rotational speed of the electric motor, By providing a controller that controls the descent speed of the lift device, it is possible to prevent hydraulic pulsation during regeneration of lift energy, improve operability, and improve regeneration efficiency.
  • a hydraulic motor driven by receiving the pressurized liquid from the lift cylinder is connected to a pipe for collecting the pressurized liquid from the lift cylinder to the pressurized liquid storage tank via the control valve.
  • the lift device when the lift device is raised and the hydraulic pump is operated by the electric motor, the movement of the hydraulic pump is not transmitted to the hydraulic motor, so the drive torque is transmitted from the electric motor to the hydraulic motor.
  • the hydraulic motor When the hydraulic motor is driven unnecessarily, energy can be prevented from being wasted, and when the lift device is lowered, the hydraulic motor is driven for energy regeneration.
  • the drive torque can be reliably transmitted to the electric motor from overnight.
  • the driving of the hydraulic pump is not hindered by the driving of the hydraulic pump, and the hydraulic pump can be driven using the driving torque from the hydraulic motor.
  • the electric motor for supplying hydraulic fluid that drives the hydraulic pump and the electric motor for energy regeneration driven by hydraulic pressure are combined, a generator (or electric motor) is provided separately. Compared with, the installation space is small, and the overall weight of the system can be reduced.
  • the said controller is, By providing an arithmetic circuit that slows down the responsiveness of the speed change of the motor when the motor speed change command is received, the responsiveness of the speed change of the motor is slowed down to Therefore, it is possible to control operability and ensure operability.
  • the hydraulic motor uses a motor whose theoretical volume is larger than the theoretical volume of the hydraulic pump, and the electric motor at the rated speed of the second actuate overnight. If the rotation speed and the motor rotation speed at the descending rated speed of the lift device are substantially the same, the regenerative operation of the lift energy and the supply of pressurized fluid to the second actuate can be performed simultaneously. Sudden changes in rotational speed can be suppressed, and the operability of the hydraulic device can be secured.
  • a pressure sensor for detecting a bottom oil chamber pressure of the lift cylinder is provided, and the response sensitivity of the electric motor is changed based on a detection value of the pressure sensor.
  • the response sensitivity of the motor can be lowered to suppress a rapid change in the motor speed.
  • a pressure sensor for detecting a bottom oil chamber pressure of the lift cylinder is provided, and the controller calculates a pulsation value from a detection value of the pressure sensor.
  • FIG. 1 is a system diagram showing a first embodiment of the present invention.
  • FIG. 2 is a diagram showing the control amounts of the electric motor rotation speed X and the opening degree y of the control valve 14 with respect to the lever operation amount in the first embodiment.
  • FIG. 3 is a diagram corresponding to FIG. 2 according to the second embodiment of the present invention.
  • FIG. 4 is a diagram showing a control example according to the third embodiment of the present invention.
  • FIG. 5 is a control circuit diagram of the fourth embodiment of the present invention.
  • FIG. 6 is a system diagram showing a fifth embodiment of the present invention.
  • FIG. 7 is a diagram showing the rotation speed of the electric motor and the opening degree of the control valve with respect to the lever operation amount in the fifth embodiment.
  • FIG. 8 is a diagram corresponding to FIG. 7 according to the sixth embodiment of the present invention.
  • FIG. 9 is a diagram showing a lever operation amount, an electric motor rotation speed, and a lift displacement amount according to the seventh embodiment of the present invention.
  • FIG. 10 is an arithmetic circuit diagram according to the eighth embodiment of the present invention.
  • FIG. 11 is a diagram corresponding to FIG. 9 according to the ninth embodiment of the present invention.
  • FIG. 12 is a diagram showing the relationship between the lever operation amount and the electric motor rotational speed according to the 10th embodiment of the present invention.
  • FIG. 1 is a system diagram showing a first embodiment in which the present invention is applied to a cargo handling device for a fork riffle.
  • FIG. 2 is an electric motor rotation speed X and control with respect to a lever operation amount in the first embodiment.
  • FIG. 4 is a diagram showing a control amount of an opening y of a valve 14.
  • 1 is a lift cylinder for raising and lowering a fork F (lift device) of a forklift
  • 1 a is a bottom oil chamber of the lift cylinder
  • 2 is a hydraulic cylinder constituting a second actuator.
  • It is a hydraulic cylinder such as a drive unit for driving other attachments of the forklift, for example, a claw (not shown) of the fork F.
  • 3 is a hydraulic pump that is driven by the electric motor 4 to supply pressure oil from the storage tank 6 to the hydraulic chambers of the lift cylinder 1 and the hydraulic cylinder 2
  • 5 is a battery power source of the electric motor 4.
  • Reference numeral 7 denotes a second hydraulic pump, which is driven by an electric motor 8 and injects pressure oil into a storage tank 6 via a valve unit 9 and tilts a mast in which another fork F, for example, a fork F can be moved up and down.
  • 1 4 is a control valve provided in the pressure oil supply line 2 3 between the lift cylinder 1 and the hydraulic pump 3
  • 15 is a pressure oil supply line 2 4 branched from the line 2 3 and This is a control valve installed in the pressure oil recovery line 25.
  • 2 1 is a relief valve
  • 2 2 is a check valve provided in the pressure oil recovery line 29.
  • 16 is an operation lever for raising or lowering the lift cylinder 1.
  • Arrow 16a indicates an operation direction when ascending
  • arrow 16b indicates an operation direction when descending.
  • 1 7 is the operation command by the operation lever 1 6 and the pressure sensor 3 that detects the pressure in the bottom oil chamber 1 a. 3
  • the detection value of 0 is input, and the control valve 1 4 is opened and closed based on these inputs. It is a controller that controls the rotational speed of the electric motor 4 through the inverter 18 while controlling the motor.
  • the operation lever 1 16 is operated in the direction of arrow 16 a to align the b port of the lift control valve 14 with the supply line 23.
  • the hydraulic oil is supplied from the supply pipe line 2 3 to the bottom oil chamber 1 a of the lift cylinder 1 by the hydraulic pump 3.
  • adjust the control valve 15 from the neutral position a port to the b port or c port to the supply line 24, so that the right oil chamber 2a or left oil chamber of the hydraulic cylinder 2 2 Supply pressure oil to b.
  • the control valve 14 by opening the control valve 14 before the increase in the rotation speed of the electric motor 4 with respect to the lever operation amount, it is possible to prevent the occurrence of excessive pressure, The valve pressure loss is reduced, the energy efficiency that can be regenerated can be increased, and the operability can be prevented from being lowered.
  • Fig. 3 shows another control example (second example) when the lift device is lowered (lift energy regeneration) for the rotation speed of the electric motor 4 and the opening of the control valve 14, as shown in Fig. 3.
  • the descending speed is adjusted by adjusting the opening of the control valve 14, and in the region where the speed is high such as the rated speed, the opening of the control valve 14 is Fully open, and lowering speed is controlled by the number of revolutions of electric motor 4. This makes it possible to improve the energy efficiency of regeneration while ensuring fine operability.
  • FIG. 4 is a diagram showing still another control example (third embodiment).
  • the cylinder pressure P of the bottom oil chamber 1a of the lift cylinder 1 determined by the loading capacity of the fork F is detected by the pressure sensor 30 and is finely adjusted according to the detected value P.
  • the opening degree of the control valve 14 and the rotation speed of the electric motor 4 are changed with respect to the lever operation amount in the small operation region.
  • the larger the load weight of the fork F the smoother the fork F can be moved up and down, and the energy efficiency that can be regenerated can be increased. .
  • FIG. 5 is a control circuit diagram of the fourth embodiment.
  • the detection value P detected by the pressure sensor 30 in FIG. 1 Add the gain G2 calculated from the reverse phase of the pulsation value to the gain G1 set based on the manipulated variable R of 6 with the adder 41 to obtain the command rotational speed N of the electric motor 4. Therefore, the electric motor 4 is rotated by the command rotational speed N.
  • the hydraulic pulsation generated during the regenerative operation can be attenuated, and wasteful energy loss can be suppressed.
  • FIG. 6 is a system diagram of the fifth embodiment
  • FIG. 7 is a diagram showing the rotation speed of the electric motor and the opening degree of the control valve with respect to the lever operation amount.
  • 5 1 is a lift cylinder for raising and lowering a fork F (lift device) of the fork lift
  • 5 2 is a tilt cylinder for tilting the mast on which the fork F is installed
  • 5 3 is an electric motor 5 Hydraulic pump that is driven by 4 to supply pressure oil from the storage tank 5 8 to the hydraulic chambers of the lift cylinder 5 1 and tilt cylinder 5
  • 5 5 is an electric motor 5 4 battery power source
  • the hydraulic pump 53 is driven to rotate by the pressure oil, and this causes the electric motor 54 to operate as a generator. After the conversion, the battery power source 54 connected to the chamber overnight 54 is charged with electric power for driving the electric motor 4 revolutions.
  • the electric motor 54 is a hydraulic motor connected to the pressure oil recovery pipe 70 connected to the pottom oil chamber 51 of the lift cylinder 51 and driven by the recovered pressure oil.
  • the electric motor 54 connected to the inverter 54 has a function of charging the battery power source 5 5 for driving four revolutions.
  • 5 7 is connected to the rotating shaft of the electric motor 5 4 and the rotating shaft of the hydraulic motor 5 6, respectively, and can transmit the drive torque from the hydraulic motor 5 6 to the electric motor 5 4 only in one direction.
  • This is a one-way clutch that does not transmit the drive torque to the hydraulic motor 56 by idling with respect to the drive torque from 4.
  • 5 8 and 5 9 are tanks for storing pressure oil
  • 60 is a control valve that controls the supply of pressure oil to the lift cylinder 51
  • 6 1 is a supply of pressure oil to the tilt cylinder 52. Control valve to control.
  • 6 2 is an operation lever for operating the control valve 60
  • 6 3 is an operation lever for operating the control valve 61
  • 6 4 is provided in the pressure oil recovery line 7 2, and a pressure oil supply pipe This is a relief valve that opens pipe 65 to release pressure oil to tank 58 when pressure exceeding the allowable pressure is applied to line 65.
  • the pressure oil is returned to the tank 59 through the pipe lines 65, 71.
  • the control lever 6 2 is operated and the c port of the lift control valve 60 is aligned with the supply line 65. From the supply line 65 with the hydraulic pump 53, the line 6 6, 6 Supply pressure oil to the bottom oil chamber 5 1 a of the lift cylinder 5 1 through 7.
  • control lever 6 3 is operated to align the b port or c port of the tilt control valve 61 with the supply pipe 6 5, and the supply pipe 6 8 or 6 Fork F can be tilted forward or forward by supplying pressure oil to right oil chamber 5 2 a or left oil chamber 5 2 b of tilt cylinder 52 through 9.
  • the driving torque of the hydraulic motor 5 6 is transmitted to the electric motor 5 4 and the hydraulic pump 53 by the one-way clutch 5 7, but the driving torque from the electric motor 5 4 is transferred to the hydraulic motor 5 6. Not transmitted.
  • the driving torque of the hydraulic pump 5 3 is the hydraulic motor 5 6 Since the drive torque is transmitted from the electric motor 54 to the hydraulic motor 56, the hydraulic motor 56 is driven unnecessarily, and energy is wasted. Can be prevented.
  • the hydraulic pump 53 can be driven using the driving torque from the hydraulic motor 56, and the electric motor 54 can be driven by the electric motor that drives the hydraulic pump 53 and the hydraulic motor 56. Since it is also used as an electric motor for driving energy regeneration, it requires less installation space than a separate generator (or motor), and the weight of the entire system can be reduced. It has.
  • d and e indicate the opening degree of the control valve 60 and the rotational speed of the electric motor 54 according to the present invention
  • f and g are those when the regenerative operation is not performed in the conventional control method. Shows the opening of the control valve and the motor speed.
  • the opening degree of the control valve 60 is quickly increased with respect to the operation amount of the lever 62, and the lowering speed of the fork F is controlled by the rotation speed of the electric motor 54.
  • the lever operation amount is a small initial descent
  • the fork F descending speed is controlled by the opening degree of the control valve 54. After that, as described above, the fork F rotates at the rotation speed of the electric motor 54. Control the descent speed.
  • the lowering operation can be reliably performed at the time of the initial movement of the lowering, and the operability can be ensured.
  • h is the amount of operation of the lift lever 6 2 (times Live operation)
  • i is the operation amount of the tilt lever 63
  • j is the number of rotations of the electric motor 54 corresponding to the lift lever operation amount h
  • k is the total of the lift lever operation amount and the tilt lever operation amount
  • the number of rotations of the electric motor 54, 1 is the descending amount of the fork F corresponding to the curve] ′
  • m is the descending amount of the fork F corresponding to the curve k.
  • the eighth embodiment uses a hydraulic apparatus in which the operation circuit shown in FIG. 10 is incorporated in the controller 73 of the fifth embodiment shown in FIG.
  • N s is the command rotational speed of the electric motor at the time of simultaneous operation of lift and tilt
  • the electric motor 5 4 detected by a detector (not shown) by the adder 80 is added to the command rotational speed N s.
  • the actual rotation speed N t is added, and then a gain G s that slows down the responsiveness of the rotation speed change of the electric motor 5 4 is given by the calculator 8 1 via the switch 8 2, and the electric motor 5 4 Motor torque command T s is issued.
  • the electric motor 54 If the electric motor 54 is kept in the normal response, the motor speed will change drastically, resulting in tilt speed change and sudden pressure change, etc. It can slow down the performance, suppress sudden changes, and ensure operability.
  • curve o represents the tilt lever operation amount
  • P represents the lift lever operation amount.
  • the hydraulic motor 56 shown in FIG. 6 is used whose theoretical volume is larger than the theoretical volume of the hydraulic pump 53, and the electric motor rotation speed at the tilt rated speed and the lift lowering rated speed are used.
  • the electric motor rotation speed is made to be almost the same.
  • q indicates the electric motor speed when the electric motor speed at the rated tilt speed is substantially the same as the electric motor speed at the lift lowering rated speed
  • r indicates the speed of both electric motors. The change in the electric motor speed when the difference is large is shown.
  • s indicates the tilt displacement when both electric motor rotation speeds are the same
  • t indicates the tilt displacement when the difference between both electric motor rotation speeds is large.
  • the pressure sensor 30 shown in Fig. 1 is configured to detect the pressure in the bottom oil chamber 51 of the lift cylinder 51 and change the sensitivity of the electric motor 54 to the amount of lever operation based on the detected value.
  • the curve u indicates the electric motor rotation speed when the fork F has no load
  • w indicates the load with the rated load
  • V indicates the intermediate load between the two. Indicates quantity.
  • a cargo handling regenerative system for a battery-powered industrial vehicle such as a forklift

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Geology (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

 本発明は、バッテリ式産業車両のリフト装置に係る荷役回生システムにおいて、簡単な装置構成で、回生に係る動作中に他の油圧アクチュエータへ作動油を供給できるとともに、圧油の脈動を防止し、回生効率の良い荷役回生システムを実現する。フォークFを昇降させるリフトシリンダ1と、バッテリ電源5によって作動する電動モータ4と、リフトシリンダ1に圧油を供給する油圧ポンプ3と、圧液供給路23に介設したコントロール弁14とを備え、フォークFの下降時リフトシリンダ1に加わる負荷により圧油が油圧ポンプ3に戻るときに生じるモータ作用で電動機4を発電機として機能させバッテリ電源5で動力回収を行なう際に、フォークFの下降時に油圧ポンプ3への圧油戻り量を制御するコントロール弁14の開度と、電動機5の回転数とを制御するコントローラ17を設けた。

Description

バッテリ式産業車両の荷役回生方法及び荷役回生システム 技術分野
本発明は、 フォークリフトを始めとする各種バッテリ式産業車両において、 リ フトシリンダに圧液を供給する液圧ポンプをリフト装置の下降時リフトシリンダ のポトム油室から回収される圧液によって液圧モータとして作用させ、 液圧ポン プを駆動する電動機を発電機として作用させることにより、 リフト装置の位置ェ ネルギーを回収 (回生) する荷役回生方法及びそのシステムに関し、 簡単な装置 構成で、 回生に係る動作中に他の油圧ァクチユエ一夕へ作動油を供給できるとと もに、リフトエネルギーの回生中に油圧脈動の発生を防止して、操作性を改善し、 回生効率を向上することを可能にしたものである。 背景技術
荷役用油圧装置のポンプを駆動する電動機を備えたバッテリ駆動式産業車両と して例えばフォークリフトがあるが、 フォークリフトにおいては、 フォークの降 下時リフトシリンダからの戻り油によりモータとして機能する油圧ポンプを使用 し、 電動機を発電機として作用させてバッテリ電源の回収 (回生) を行なってい る。
このリフト装置下降時の回生システムとして、 例えば特開平 2— 1 6 9 4 9 9 号公報及び米国特許第 5 5 0 5 0 4 3号公報に記載のように、 リフト下降時にリ フトシリンダから押し出される作動油で油圧ポンプを逆転させて、 油圧モ一夕と して作動させ、 油圧ポンプに連結された電動機を発電機として作動させることに より、 発電機に接続されたバッテリを充電する方式がある。
なお特開平 2— 1 6 9 4 9 9号公報に開示された方式では、 電動機と油圧ボン プとの間に電磁クラッチを設け、 リフト下降時にリフト装置の積載重量の不足に より十分な下降速度が得られず、 そのため回収される作動油の不足により回生動 作が不能であれば、 電磁クラッチにより油圧ポンプと電動機との動力伝達を遮断 し、 これによつてエネルギーの節約を図るようにしている。
また米国特許第 5 5 0 5 0 4 3号公報に開示された構成は、 リフトシリンダへ の給油と他の負荷への給油とにそれぞれ 1組ずつの液圧ポンプ及び直流モータを 有している。
また特開 2 0 0 3— 2 5 2 5 8 8号公報には、 リフトエネルギーの回生操作時 に、 電動機及び油圧モータとして作用する油圧ポンプの回転制御を行なって、 リ フト装置の降下速度が設定された降下速度となるように、圧油(作動油)の流量、 圧力を制御し、 これによつて圧力損失や熱の発生によるエネルギーロスをなくす 手段が開示されている。
しかしながら特開平 2— 1 6 9 4 9 9号公報及び米国特許第 5 5 0 5 0 4 3号 公報に開示されている回生システムでは、 位置エネルギーの有効利用を図ること はできるが、 リフトシリンダへの作動油供給中又はリフト装置の位置エネルギー の回生中に、 同じ油圧ポンプ及び電動機を使って他の動作を行なうァクチユエ一 夕に圧油を供給できないという問題がある。
また米国特許第 5 5 0 5 0 4 3号公報においては、 複数組の油圧ポンプ及び電 動機を要し、 構造が複雑になり、 重量も増えるという問題がある。
また特開 2 0 0 3— 2 5 2 5 8 8号公報に開示された手段では、 リフトェネル ギ一の回生操作中に油圧脈動が発生して、それが回生システムの操作性を悪くし、 エネルギー回生効率を低下させる原因となる問題点がある。 発明の開示
本発明は、 力かる従来技術の課題に鑑み、 パッテリ式産業車両のリフト装置に 係る荷役回生システムにおいて、 簡単な装置構成で、 回生に係る動作中に他の油 圧ァクチユエ一夕へ作動油を供給できるとともに、 リフトエネルギーの回生中に 油圧脈動の発生を防止して、 操作性を改善し、 回生効率を向上し得る荷役回生方 法及びそのシステムを実現することを目的とする。
本発明の荷役回生方法は、 かかる目的を達成するもので、 リフト装置を昇降さ せるリフトシリンダと、 バッテリ電源によって駆動する電動機と、 同電動機によ つて作動し前記リフトシリンダに圧液を吐出してリフト装置を上昇させる液圧ポ ンプと、 同リフトシリンダと同液圧ポンプとの間に介設されたコント口一フレ弁と を備え、 同リフト装置の下降時前記リフトシリンダに加わる負荷により同リフト シリンダから同液圧ポンプに圧液を戻したときに生じるモータ作用で前記電動機 を発電機として機能させ前記バッテリ電源で動力回収を行なうバッテリ式産業車 両の液圧装置において、 前記リフト装置の下降時に前記液圧ポンプへの圧液戻り 量を制御する前記コントロール弁の開度と、 前記電動機の回転数とを制御するこ とにより前記リフ卜装置の下降速度を制御することを特徴とする。
本発明の荷役回生方法において、 好ましくは、 前記コントロール弁の開度を前 記電動機の回転数制御により設定される圧液戻り量より大きくし、 同電動機の回 転数により前記リフト装置の下降速度を制御する。
さらにリフト装置の下降時に初動トルクが大きくて、 リフト装置の積載重量で 液圧ポンプを液圧モ一夕として作動させるトルクが不足する場合は、 前記構成に 加えて、 前記リフト装置の下降初動時に前記電動機を前記コントロール弁が開く 前に回転させるようにする。
また本発明の荷役回生方法は、 前記液圧装置が第 2のコントロール弁を介して 前記液圧ポンプから圧液を供給する第 2のァクチユエ一夕を備えた場合にも適用 でき、 この場合、 前記リフト装置の下降動作と前記第 2ァクチユエ一夕の作動と を同時に行なう場合、 好ましくは、 前記電動機の回転数を同リフト装置の下降速 度にのみ対応して設定する。
リフト装置の下降動作中に第 2のァクチユエ一夕に圧液を供給する指令が発せ られると、 電動機の回転数の急激な変化を招くおそれがある。 このため電動機の 回転数を同リフト装置の下降速度にのみ対応して設定することにより電動機の回 転数の急激な変化を抑制し、 リフト装置の急激な速度変化を防止する。
第 2のァクチユエ一夕としては、 フォークリフトのフォークを昇降可能に設置 したマストを傾動させるチルトシリンダ、 フォークの爪を動かす駆動装置、 パヮ 一ステアリング、 ブレーキ装置、 その他のアタッチメントがある。
また本発明の荷役回生システムは、リフト装置を昇降させるリフトシリンダと、 パッテリ電源によって駆動する電動機と、 同電動機によって作動し前記リフトシ リンダに圧液を吐出してリフト装置を上昇させる液圧ポンプと、 同リフトシリン ダと同液圧ポンプとの間に介設されたコントロール弁とを備え、 同リフト装置の 下降時前記リフトシリンダに加わる負荷により同リフトシリンダから同液圧ボン プに圧液を戻したときに生じるモー夕作用で前記電動機を発電機として機能させ 前記パッテリで動力回収を行なうバッテリ式産業車両の液圧装置において、 前記 リフト装置の下降時に前記液圧ポンプへの圧液戻り量を制御する前記コントロー ル弁の開度と、 前記電動機の回転数とを制御することにより前記リフト装置の下 降速度を制御するコントローラを設けたことを特徴とする。
本発明の荷役回生システムにおいては、 リフト装置の下降時にエネルギー回生 を行なうに際し、 前記コントローラにより、 前記コントロール弁の開度と前記電 動機の回転数とを制御することによってリフト装置の下降速度を制御する。
本発明の荷役回生システムは、 リフトシリンダから前記コントロール弁を介し て前記圧液貯留タンクに圧液を回収する配管に同リフトシリンダからの圧液を受 けて駆動される液圧モータを介設し、 同液圧モ一夕及び前記電動機間を、 同液圧 モ一夕から同電動機にのみ駆動トルクを伝達するワンウェイクラツチで接続した 構成の液圧装置にも適用可能である。
なお本発明において、 「ワンウェイクラッチ」 とは、 「液圧モータから電動機に 駆動トルクを伝達可能で、 かつ電動機から液圧モータに駆動トルクを伝達不可能 な伝達手段」 の総称を意味する。
また本発明の荷役回生システムは、 前記リフトシリンダとは別に他の動作をさ せる第 2のァクチユエ一夕、 例えばフォークリフトのフォークを設置したマスト を傾動させるチルトシリンダ等を備え、 同第 2のァクチユエ一夕に第 2のコント ロール弁を介して前記液圧ポンプから圧液を供給するようにした構成の液圧装置 にも適用可能である。
また本発明の荷役回生システムは、 好ましくは、 前記コントローラが、 前記電 動機回転数の変更指令に対し同電動機の回転数速度変化の応答性を遅くする演算 回路を備えるようにする。これによつて電動機の回転数の急激な変化を抑制する。 液圧装置が第 2のァクチユエ一夕を備えているとき、 液圧装置がリフトェネル ギ一の回生動作と第 2のァクチユエ一夕への圧液供給とを同時に行なうと、 電動 機が通常の応答性のままでは、 電動機の回転数変化が急激に起こり、 急激な圧力 P T/JP2006/302899
5 変化が生じてしまう。 これに対し前記演算回路によって、 電動機回転数の急激な 変化を抑制する。
また好ましくは、 前記液圧モータはその理論容積が前記液圧ポンプの理論容積 より大きいものを使用し、 前記第 2のァクチユエ一夕の定格速度時の電動機回転 数とリフト装置の下降定格速度時の電動機回転数とを実質的に同一とする。
また好ましくは、 前記リフトシリンダのポトム油室内圧力を検出する圧力セン サを設け、 同圧力センサの検出値に基づいて前記電動機の応答感度を変えるよう に構成する。 即ちリフト装置の積載量が重いときは、 電動機の応答感度を下げて 微操作域を広げるようにする。
さらに好ましくは、 前記リフトシリンダのポトム油室内圧力を検出する圧力セ ンサを設け、 前記コントローラが、 同圧力センサの検出値から脈動値を算出する バンドパスフィル夕と、 同脈動値の逆位相を前記電動機の回転数指令値に加算す る演算回路とを備え、 液圧脈動を減衰させる。
本発明の荷役回生方法によれば、 前記リフト装置の下降時に前記液圧ポンプへ の圧液戻り量を制御する前記コントロール弁の開度と、 前記電動機の回転数とを 制御して、 前記リフト装置の下降速度を制御することにより、 リフトエネルギー の回生中に油圧脈動の発生を防止して、操作性を改善し、回生効率を向上し得る。 本発明の荷役回生方法において、 好ましくは、 前記コントロール弁の開度を前 記電動機の回転数制御により設定される圧液戻り量より大きくし、 同電動機の回 転数により前記リフ卜装置の下降速度を制御することにより、 前記コント口一ル 弁での圧損を小さくすることができ、 回生効率を向上することができる。
さらにリフト装置の下降時に初動トルクが大きくて、 リフト装置の積載重量で 液圧ポンプを液圧モータとして作動させるトルクが不足する場合は、 前記構成に 加えて、 前記リフト装置の下降初動時に前記電動機を前記コントロール弁が開く 前に回転させるようにすることにより、 回生時において液圧ポンプの液圧モータ としての初期作動を確実に行なうことができる。
また本発明の荷役回生方法において、 好ましくは、 前記液圧装置が第 2のコン トロール弁を介して前記液圧ポンプから圧液を供給する第 2のァクチユエ一夕を 備え、 前記リフト装置の下降動作と前記第 2ァクチユエ一夕の作動とを同時に行 9
6 うに際し、 前記電動機の回転数を同リフ卜装置の下降速度にのみ対応して設定す ることにより、 電動機の回転数の急激な変化を抑制し、 リフト装置の急激な速度 変化を防止して、 操作性を確保することができる。
本発明の荷役回生システムによれば、 前記リフト装置の下降時に前記液圧ボン プへの圧液戻り量を制御する前記コントロール弁の開度と、 前記電動機の回転数 とを制御することにより前記リフト装置の下降速度を制御するコントローラを設 けたことにより、 リフトエネルギーの回生中に油圧脈動の発生を防止して、 操作 性を改善し、 回生効率を向上することができる。
また本発明の荷役回生システムにおいて、 前記リフトシリンダから前記コント ロール弁を介して前記圧液貯留タンクに圧液を回収する配管に同リフトシリンダ からの圧液を受けて駆動される液圧モータを介設し、 同液圧モータ及び前記電動 機間を、 同液圧モータから同電動機にのみ駆動トルクを伝達するワンウェイクラ ツチで接続した構成の液圧装置に適用した場合、 簡単な装置構成で、 回生に係る 動作中に他の油圧ァクチユエ一夕へ作動油を供給できるとともに、 リフトェネル ギ一の回生中に油圧脈動の発生を防止して、 操作性を改善し、 回生効率を向上す ることができる。
またリフト装置が上昇している時で液圧ポンプが電動機により作動していると き、 液圧ポンプの動きは液圧モータには伝わらないため、 電動機から液圧モータ へ駆動トルクが伝達されて液圧モータが無用に駆動され、 エネルギを無駄にする ことを防止することができるとともに、 リフト装置が下降している時、 エネルギ 回生のため液圧モータが駆動しているときは、 液圧モ一夕から電動機へ確実に駆 動トルクを伝達することができる。
また液圧ポンプの駆動によつて液圧モー夕の駆動が妨げられることはなく、 む しろ液圧モー夕からの駆動トルクを利用して液圧ポンプを駆動することができる。 しかも液圧ポンプを駆動する圧液供給用の電動機と、 液圧モ一夕によつて駆動 されるエネルギ回生用の電動機とを兼用しているので、 別に発電機 (あるいは電 動機) を設ける場合に比べて設置スペースが少なくて済み、 システム全体として の重量を軽くすることができる。
また本発明の荷役回生システムにおいて、 好ましくは、 前記コントローラが、 前記電動機回転数の変更指令を受けたときに同電動機の回転数速度変化の応答性 を遅くする演算回路を備えるようにしたことにより、 電動機の回転数速度変化の 応答性を遅くしてその急激な変化を抑制し、 操作性を確保することができる。 また本発明の荷役回生システムにおいて、 好ましくは、 前記液圧モータはその 理論容積が前記液圧ポンプの理論容積より大きいものを使用し、 前記第 2のァク チユエ一夕の定格速度時の電動機回転数とリフト装置の下降定格速度時の電動機 回転数とを実質的に同一とすることにより、 リフトエネルギーの回生操作と第 2 のァクチユエ一夕への圧液供給とを同時に行なう場合、 電動機の回転数の急激な 変化を抑えることができ、 液圧装置の操作性を確保することができる。
また本発明の荷役回生システムにおいて、 好ましくは、 前記リフトシリンダの ボトム油室内圧力を検出する圧力センサを設け、 同圧力センサの検出値に基づい そ前記電動機の応答感度を変えるように構成したことにより、 リフト装置の積載 重量が重いとき、 電動機の応答感度を下げて、 電動機回転数の急激な変化を抑え ることができる。
また本発明の荷役回生システムにおいて、 好ましくは、 前記リフトシリンダの ボトム油室内圧力を検出する圧力センサを設け、 前記コントローラが、 同圧力セ ンサの検出値から脈動値を算出するバンドパスフィル夕と、 同脈動値の逆位相を 前記電動機の回転数指令値に加算する演算回路とを備えたことにより、 リフトェ ネルギー回生動作中に生じる液圧脈動を減衰させ、 無駄なエネルギー損出を抑え ることができる。 図面の簡単な説明
第 1図は、 本発明の第 1実施例を示す系統図である。
第 2図は、 前記第 1実施例において、 レバ一操作量に対する電動モ一夕回転数 X及びコントロール弁 1 4の開度 yの制御量を示す線図である。
第 3図は、 本発明の第 2実施例に係る図 2に相当する線図である。
第 4図は、 本発明の第 3実施例に係る制御例を示す線図である。
第 5図は、 本発明の第 4実施例の制御回路図である。
第 6図は、 本発明の第 5実施例を示す系統図である。 第 7図は、 前記第 5実施例において、 レバ一操作量に対する電動モータの回転 数及びコントロール弁の開度を示す線図である。
第 8図は、 本発明の第 6実施例に係る図 7に相当する線図である。
第 9図は、 本発明の第 7実施例に係り、 レバー操作量、 電動モータ回転数及び リフト変位量を示す線図である。
第 1 0図は、 本発明の第 8実施例に係る演算回路図である。
第 1 1図は、 本発明の第 9実施例に係る図 9に相当する線図である。
第 1 2図は、 本発明の第 1 0実施例に係る、 レバ一操作量と電動モータ回転数 との関係を示す線図である。 発明を実施するための最良の形態
以下、 本発明を図に示した実施例を用いて詳細に説明する。 但し、 この実施例 に記載されている構成部品の寸法、 材質、 形状、 その相対配置などは特に特定的 な記載がない限り、 この発明の範囲をそれのみに限定する趣旨ではなく、 単なる 説明例にすぎない。
〔実施例 1〕
図 1は、 本発明をフォークリフ卜の荷役装置に適用した第 1実施例を示す系統 図、 図 2は、 前記第 1実施例において、 レバー操作量に対する電動モ一夕回転数 X及ぴコントロール弁 1 4の開度 yの制御量を示す線図である。
図 1において、 1は、 フォークリフトのフォーク F (リフト装置) を昇降させ るためのリフトシリンダ、 1 aはリフトシリンダ 1のボトム油室、 2は、 第 2の ァクチユエ一タを構成する油圧シリンダで、 フォークリフトの他のアタッチメン ト、 例えばフォーク Fの図示しない爪を駆動する駆動装置等の油圧シリンダであ る。 3は、 電動モータ 4に駆動されて圧油を貯留タンク 6からリフトシリンダ 1 及び油圧シリンダ 2の各油圧室に供給する油圧ポンプ、 5は電動モータ 4のパッ テリ電源である。
7は、 第 2の油圧ポンプであり、 電動モータ 8によって駆動され、 貯留タンク 6に圧油をバルブュニッ卜 9を介して、 他のァクチユエ一夕、 例えばフォーク F を昇降可能に設置したマストを傾動させるチルトシリンダ、パワーステアリング、 ブレーキ装置、 その他に供給する圧油管路 1 0〜1 3に供給する。 1 4は、 リフ トシリンダ 1と油圧ポンプ 3との間の圧油供給管路 2 3に介設されたコントロー ル弁、 1 5は、 管路 2 3から分岐した圧油供給管路 2 4及び圧油回収管路 2 5に 介設されたコントロール弁である。 2 1はリリーフ弁であり、 2 2は、 圧油回収 管路 2 9に設けられた逆止弁である。
1 6は、 リフトシリンダ 1を上昇又は下降させるための操作レバ一で、 矢印 1 6 aは上昇時の操作方向、 矢印 1 6 bは下降時の操作方向を示す。 1 7は、 操作 レバー 1 6による操作指令及びボトム油室 1 a内の圧力を検知する圧力センサ 3 0の検出値を入力して、 これらの入力に基づいてコント口一ル弁 1 4の開閉を制 御するとともに、 インバー夕 1 8を介して電動モー夕 4の回転数を制御するコン トロ一ラである。
かかる第 1実施例の装置において、 フォーク Fを上昇させるときは、 操作レバ 一 1 6を矢印 1 6 a方向に操作して、 リフト用コントロール弁 1 4の bポートを 供給管路 2 3に合わせることにより、 圧油を油圧ポンプ 3により供給管路 2 3か ら、 リフトシリンダ 1のボトム油室 1 aに供給する。 また同時にアタッチメント を駆動させる場合には、 コントロール弁 1 5を中立位置の aポートから bポート または cポートを供給管路 2 4に合わせることにより、 油圧シリンダ 2の右油室 2 a又は左油室 2 bに圧油を供給する。
またフォーク Fを下降させる時は、 操作レバー 1 6を矢印 1 6 b方向に操作す る。 これによつてリフトシリンダ 1のボトム油室 1 aへの圧油供給を止め、 逆に フォーク Fの積載重量によりフォーク Fの下降が始まり、 ボトム油室 1 a内の圧 油が供給管路 2 3を通って油圧ポンプ 3に戻ってくる。 そのとき油圧ポンプ 3が 圧油によって回転駆動され、これによつて電動モ一夕 4を発電機として作動させ、 その発電電力をィンバ一夕 2 4で直流変換した後にィンバー夕 2 4に接続された バッテリ電源 5を充電する。
一方他のァクチユエ一夕には、 油圧ポンプ 7により圧油供給管路 2 6からバル ブュニット 9及び管路 1 0〜 1 3を経て圧油が供給され、 他のァクチユエ一夕の 作動が行なわれる。 なお、 1 9は逆止弁、 2 0はフィルタ、 2 7は圧油の回収管 路である。 従来はコントロール弁 1 4の絞り量により、 リフト装置 (フォーク F) のリフ ト速度を制御していたが、 第 1実施例では、 リフト装置の下降時の回生動作時に は、図 2に示すように、レバー操作量に対してコントロール弁 1 4をすぐに開き、 電動モ一タ 4の回転数でフォーク Fの下降速度を制御する。
このように第 1実施例によれば、 レバー操作量に対する電動モータ 4の回転数 の上昇よりも先にコント口一ル弁 1 4の開放を行なうことにより、 過度圧の発生 を防止できるとともに、 バルブ圧損が減り、 回生可能なエネルギー効率を上げる ことができ、 また操作性の低下を防止することができる。
〔実施例 2〕
図 3は、 電動モータ 4の回転数及びコントロール弁 1 4の開度についてリフト 装置の下降時 (リフトエネルギー回生時) の別の制御例 (第 2実施例) を示し、 図 3のように、 下降速度の小さな細かな操作が必要な初期の領域ではコントロー ル弁 1 4の開度調整によって下降速度を調整し、 定格速度のような速度の大きい 領域では、 コントロール弁 1 4の開度を一気に全開させ、 電動モー夕 4の回転数 によって下降速度を制御する。 これによつてきめ細かな操作性を確保しつつ、 回 生できるエネルギー効率を向上させることができる。
〔実施例 3〕
図 4は、 さらに別の制御例 (第 3実施例) を示す線図である。 図 1の第 1実施 例の装置において、 フォーク Fの荷役積載量で決まるリフトシリンダ 1のボトム 油室 1 aのシリンダ圧 Pを圧力センサ 3 0で検知し、 同検出値 Pに合わせて、 微 小操作領域でのレバ一操作量に対するコントロール弁 1 4の開度及び電動モータ 4の回転数を変化させる。
このようなフォーク Fの積載重量を考慮した制御を行なうことにより、 フォー ク Fの積載重量が大きいほど、 フォーク Fの昇降を滑らかに行なうことができ、 かつ回生可能なエネルギー効率を上げることができる。
〔実施例 4〕
次に本発明の荷役回生システムの第 4実施例を図 5に基づいて説明する。 図 5 は、 第 4実施例の制御回路図である。 図において、 図 1の圧力センサ 3 0で検出 した検出値 Pに対して、 バンドパスフィル夕 4 0で脈動値を算出し、 操作レバー 1 6の操作量 Rに基づいて設定したゲイン G 1に対して、 前記脈動値の逆位相を 算出したゲイン G 2を加算器 4 1で加算して、 電動モータ 4の指令回転数 Nを求 め、 この指令回転数 Nによって電動モ一タ 4を回転させる。 これによつて回生動 作中に生じる油圧脈動を減衰させ、無駄なエネルギー損失を抑えることができる。 〔実施例 5〕
次に本発明の荷役回生システムの第 5実施例を図 6〜 7に基づいて説明する。 図 6は第 5実施例の系統図、 図 7は、 レバー操作量に対する電動モータの回転数 及びコントロール弁の開度を示す線図である。 図 6において、 5 1は、 フォーク リフトのフォーク F (リフト装置)を昇降させるためのリフトシリンダ、 5 2は、 フォーク Fを設置したマストを傾動させるチルトシリンダ、 5 3は、 電動モ一夕 5 4に駆動されて圧油を貯留タンク 5 8からリフトシリンダ 5 1及びチルトシリ ンダ 5 2の各油圧室に供給する油圧ポンプ、 5 5は電動モー夕 5 4のバッテリ電 源で、 ィンバ一夕 7 4に接続されており、 油圧ポンプ 5 3が圧油によって回転駆 動され、 これによつて電動モータ 5 4を発電機として作動させ、 電動モータ 5 4 の発電電力をィンバ一夕 5 4で直流変換した後にィンバ一夕 5 4に接続されたバ ッテリ電源 5 4に電動モータ 4回転駆動用の電力が充電される。
5 6は、 リフトシリンダ 5 1のポトム油室 5 1 aに接続された圧油回収管路 7 0に介設されて、 回収される圧油によって駆動される油圧モ一夕で、 これによつ て電動モー夕 5 4を発電機として作動させることにより、 ィンバー夕 5 4に接続 された電動モータ 5 4回転駆動用のバッテリ電源 5 5を充電する作用をもつ。
5 7は、 電動モータ 5 4の回転軸及び油圧モータ 5 6の回転軸にそれぞれ連結 され、 油圧モータ 5 6から電動モータ 5 4への一方向にのみ駆動トルクを伝達可 能で、 電動モータ 5 4からの駆動トルクに対しては空転して油圧モータ 5 6への 駆動トルクの伝達を行なわないワンウェイクラッチである。 5 8及び 5 9は、 圧 油を貯留するタンクであり、 6 0は、 リフトシリンダ 5 1への圧油供給を制御す るコントロール弁、 6 1は、 チルトシリンダ 5 2への圧油供給を制御するコント ロール弁である。
6 2は、 コントロール弁 6 0を操作する操作レバー、 6 3は、 コントロール弁 6 1を操作する操作レバー、 6 4は、 圧油回収管路 7 2に設けられ、 圧油供給管 路 6 5に許容圧を超える圧力が付加された時に、 管路 6 5を開放して圧油をタン ク 5 8に逃がすリリーフ弁である。
また 7 3は、 操作レバー 6 2及び 6 3の操作量を入力し、 それらの入力値に基 づいて設定された電動モータ 5 の回転数をィンパー夕 7 4を介して電動モータ 5 4に指令し、 インバ一夕 7 4では電動モータ 5 4の実回転数を取り込んで電動 モータ 5 4の回転数を設定値に制御する。
かかる第 5実施例の構成において、 リフトシリンダ 5 1及びチルトシリンダ 5 2を作動させないときは、圧油は管路 6 5 , 7 1を通ってタンク 5 9に戻される。 フォーク Fの上昇時には、 操作レバー 6 2を操作して、 リフト用コントロール 弁 6 0の cポートを供給管路 6 5に合わせ、 油圧ポンプ 5 3により供給管路 6 5 から、 管路 6 6、 6 7を通って圧油をリフトシリンダ 5 1のボトム油室 5 1 aに 供給する。 また同時にフォーク Fの傾動が必要なときは、 操作レバー 6 3を操作 して、 チルト用コントロール弁 6 1の bポート又は cポートを供給管路 6 5に合 わせ、 供給管路 6 8又は 6 9を通ってチルトシリンダ 5 2の右油室 5 2 a又は左 油室 5 2 bに圧油を供給することにより、 フォーク Fを手前又は前方に傾動する ことができる。
またフォーク Fを下降させる時は、 操作レバー 6 2を作動させて、 リフト用コ ントロール弁 6 0の bポートを回収管路 7 0に合わせることにより、 リフトシリ ンダ 5 1のボトム油室 5 1 aから圧油が回収管路 7 0を通って回収される。 その とき回収管路 7 0に介設された油圧モ一夕 5 6が圧油によって回転駆動され、 こ れによって電動モータ 5 4を発電機として作動させ、 ィンバ一夕 5 4に接続され た電動モータ 4回転駆動用のバッテリ電源 5 5を充電する。
なおワンウェイクラッチ 5 7によって、 油圧モ一タ 5 6の駆動トルクは、 電動 モ一タ 5 4及び油圧ポンプ 5 3に伝達させるが、 電動モータ 5 4からの駆動トル クは油圧モー夕 5 6に伝達されない。
このように第 5実施例によれば、 フォーク Fが上昇している時で油圧ポンプ 5 3が電動モー夕 5 4により作動しているとき、 油圧ポンプ 5 3の駆動トルクは油 圧モータ 5 6には伝わらないため、 電動モー夕 5 4から油圧モータ 5 6へ駆動ト ルクが伝達されて油圧モータ 5 6が無用に駆動され、 エネルギを無駄にすること を防止することができる。
また油圧モ一夕 5 6からの駆動トルクを利用して油圧ポンプ 5 3を駆動するこ とができるとともに、 電動モータ 5 4が、 油圧ポンプ 5 3を駆動する電動モータ と、 油圧モータ 5 6によって駆動されるエネルギ回生用の電動モータとを兼用し ているので、 別に発電機 (あるいは電動機) を設ける場合に比べて設置スペース が少なくて済み、 システム全体としての重量も低減することができるという利点 をもつ。
このような液圧装置を用いて、 操作レバ一 6 2の操作量に対して電動モータ 5 4の回転数及びリフト用コントロール弁 6 0の開度を図 7に示すように制御する。 図 7において、 d及び eは、 本発明によるコントロール弁 6 0の開度及び電動モ —タ 5 4の回転数を示し、 f及び gは、 従来の制御方式において回生動作をして いない場合のコント口一ル弁の開度及び電動モ一夕の回転数を示す。
このようにレバー 6 2の操作量に対して、 コントロール弁 6 0の開度を早く大 きくし、 電動モータ 5 4の回転数によりフォーク Fの下降速度を制御する。 なお レバ一操作量が小さい初期降下のときは、 コントロール弁 5 4の開度によりフォ ーク Fの下降速度を制御するが、 その後は前述のように電動モータ 5 4の回転数 でフォーク Fの下降速度を制御する。
このためコントロール弁 6 0での圧損を小さくすることができ、 回生効率を向 上することができる。
〔実施例 6〕
またフォーク Fが下降時に初動トルクが大きくて、 フォーク Fの積載重量によ つては油圧モータ 5 6を回転させるトルクが不足する場合 (第 6実施例) は、 図 8に示すように、 下降初動時にレバー操作量に対して、 電動モータ 5 4をコント ロール弁 6 0が開く前に回転させる。
これによつて下降初動時に確実に下降動作を行なわしむることができ、 操作性 を確保することができる。
〔実施例 7〕
次に図 6の第 5実施例の油圧装置を用いた制御方法に係る本発明の第 7実施例 を図 9に基づいて説明する。図 9において、 hは、 リフトレバー 6 2の操作量(回 生操作)、 iはチルトレバー 6 3の操作量、 jは、 リフトレバ一操作量 hに対応し た電動モータ 5 4の回転数、 kは、 リフトレバー操作量及びチルトレバー操作量 の合計に対応した電動モータ 5 4の回転数、 1は、 曲線〕'に対応したフォーク F の下降量、 mは、 曲線 kに対応したフォーク Fの下降量を示す。
リフトシリンダ 5 1によるフォーク Fの下降とチルトシリンダ 5 2の作動とを 同時に行なう場合において、 1つの電動モ一夕 5 4でそれらの制御を行なうため に、 チルトレバ一操作量 iを無視し、 リフトレバ一操作量 hのみに対応した電動 モータ回転数 jとすることにより、フォーク Fの急激な下降速度の変化を制御し、 操作性を確保することができる。
〔実施例 8〕
次に本発明の第 8実施例を図 1 0に基づいて説明する。 第 8実施例は、 図 6の 第 5実施例のコントローラ 7 3に図 1 0に示す演算回路を組み込んでなる油圧装 置を使用する。
図 1 0において、 N sは、 リフトとチルトの同時操作時における電動モータの 指令回転数であり、 この指令回転数 N sに加算器 8 0で図示しない検出器で検出 された電動モータ 5 4の実回転数 N tが加算され、 その後電動モータ 5 4の回転 数速度変化の応答性を遅くするゲイン G sがスィッチ 8 2を介して演算器 8 1で 付与され、 電動モータ 5 4に対しモータトルク指令 T sが発せられる。
電動モータ 5 4が通常の応答性のままでは、モータ回転数変化が激しく起こり、 チルト速度変化及び急激な圧力変化等が発生してしまうが、 第 8実施例による制 御を行なうことによって、 応答性を遅くし、 急激な変化を抑制し、 操作性を確保 することができる。
〔実施例 9〕
次に図 6の第 5実施例の油圧装置を用いた制御方法に係る本発明の第 9実施例 を図 1 1に基づいて説明する。図 1 1において、曲線 oは、チルトレバー操作量、 Pは、 リフトレバー操作量を示す。 第 9実施例は、 図 6に図示される油圧モータ 5 6を理論容積が油圧ポンプ 5 3の理論容積より大きいものを使用し、 チルト定 格速度時の電動モータ回転数とリフト下降定格速度時の電動モータ回転数をほぼ 同一となるようにする。 これによつてリフトとチルトとを同時に操作する場合に、 電動モ一タ 5 4の回 転数変化量を抑えることが き、 チルト速度変化を抑制し、 油圧装置の操作性を 確保することができる。 図 1 1中、 qはチルト定格速度時の電動モータ回転数と リフト下降定格速度時の電動モータ回転数をほぼ同一とした場合の電動モータ回 転数を示し、 rは両者の電動モータ回転数の差が大きい場合の電動モータ回転数 の変化を示す。 また sは両者の電動モータ回転数が同一の場合のチルト変位量を 示し、 tは両者の電動モータ回転数の差が大きい場合のチルト変位量を示す。 〔実施例 1 0〕
次に図 6の第 5実施例の油圧装置を用いた制御方法に係る本発明の第 1 0実施 例を図 1 2に基づいて説明する。 図 1に図示される圧力センサ 3 0でリフトシリ ンダ 5 1のボトム油室 5 1 aの圧力を検出し、 その検出値の基づいてレバー操作 量に対する電動モー夕 5 4の感度を変えるように構成する。即ち図 1 2において、 曲線 uは、 フォーク Fの積載量がない空荷の場合の電動モータ回転数を示し、 w は、 定格負荷の積載量を有する場合、 Vは、 前記両者の中間の積載量の場合を示 す。
このようにフォーク Fの積載重量が重いときは、 電動モータ 5 4の感度を下げ ることにより、 微操作域を広げ、 急激な操作を回避できて、 安全性を高めること ができる。 産業上の利用可能性
本発明によれば、 フォークリフトを始めとするバッテリ式産業車両の荷役回生 システムにおいて、 簡単な装置構成で、 回生に係る動作中に他の油圧ァクチユエ 一夕へ作動油を同時に供給できるとともに、 リフトエネルギーの回生中に油圧脈 動の発生を防止して、 操作性を改善し、 かつ回生効率を向上し得る荷役回生方法 及びそのシステムを実現することができる。

Claims

請 求 の 範 囲
1 . リフト装置を昇降させるリフトシリンダと、 バッテリ電源によって駆動 する電動機と、 同電動機によって作動し前記リフトシリンダに圧液を吐出してリ フト装置を上昇させる液圧ポンプと、 同リフトシリンダと同液圧ポンプとの間に 介設されたコントロール弁とを備え、 同リフト装置の下降時前記リフトシリンダ に加わる負荷により同リフトシリンダから同液圧ポンプに圧液を戻したときに生 じるモータ作用で前記電動機を発電機として機能させ前記パッテリ電源で動力回 収を行なうバッテリ式産業車両の液圧装置において、 前記リフト装置の下降時に 前記液圧ポンプへの圧液戻り量を制御する前記コントロール弁の開度と、 前記電 動機の回転数とを制御することにより前記リフト装置の下降速度を制御すること を特徴とするバッテリ式産業車両の荷役回生方法。
2 . 前記コントロール弁の開度を前記電動機の回転数制御により設定される 圧液戻り量より大きくし、 同電動機の回転数により前記リフト装置の下降速度を 制御することを特徴とする請求項 1記載のパッテリ式産業車両の荷役回生方法。
3 . 前記リフト装置の下降初動時に前記電動機を前記コントロール弁が開く 前に回転させることを特徴とする請求項 2記載のパッテリ式産業車両の荷役回生 方法。
4. 前記液圧装置が第 2のコントロール弁を介して前記液圧ポンプから圧液 を供給する第 2のァクチユエ一夕を備え、 前記リフト装置の下降動作と前記第 2 ァクチユエ一夕の作動とを同時に行なうに際し、 前記電動機の回転数を同リフト 装置の下降速度にのみ対応して設定することを特徴とする請求項 2記載のバッテ リ式産業車両の荷役回生方法。
5 . リフト装置を昇降させるリフトシリンダと、 バッテリ電源によって駆動 する電動機と、 同電動機によって作動し前記リフトシリンダに圧液を吐出してリ フト装置を上昇させる液圧ポンプと、 同リフトシリンダと同液圧ポンプとの間に 介設されたコントロール弁とを備え、 同リフ卜装置の下降時前記リフトシリンダ に加わる負荷により同リフトシリンダから同液圧ポンプに圧液を戻したときに生 じるモ一夕作用で前記電動機を発電機として機能させ前記バッテリで動力回収を 行なうバッテリ式産業車両の液圧装置において、 前記リフト装置の下降時に前記 液圧ポンプへの圧液戻り量を制御する前記コントロール弁の開度と、 前記電動機 の回転数とを制御することにより前記リフト装置の下降速度を制御するコント口 ーラを設けたことを特徴とするバッテリ式産業車両の荷役回生システム。
6 . 前記リフトシリンダから前記コントロール弁を介して前記圧液貯留タンク に圧液を回収する配管に同リフトシリンダからの圧液を受けて駆動される液圧モ 一夕を介設し、 同液圧モータ及び前記電動機間を、 同液圧モ一夕から同電動機に のみ駆動トルクを伝達するワンウェイクラッチで接続したことを特徴とする請求 項 5記載のバッテリ式産業車両の荷役回生システム。
7 . 前記リフトシリンダとは別に他の動作をさせる第 2のァクチユエ一夕を 備え、 同第 2のァクチユエ一夕に第 2のコントロール弁を介して前記液圧ポンプ から圧液を供給するようにしたことを特徴とする請求項 5又は 6記載のバッテリ 式産業車両の荷役回生システム。
8 . 前記第 2のァクチユエ一夕がフォークリフトのフォークを設置したマス トを傾動させるチルトシリンダであることを特徴とする請求項 6記載のバッテリ 式産業車両の荷役回生システム。
9 . 前記コントローラが、 前記電動機回転数の変更指令に対し同電動機の回 転数速度変化の応答性を遅くする演算回路を備えていることを特徴とする請求項 5記載のバッテリ式産業車両の荷役回生システム。
1 0 . 前記液圧モータはその理論容積が前記液圧ポンプの理論容積より大きい ものを使用し、 前記第 2のァクチユエ一夕の定格速度時の電動機回転数とリフト 装置の下降定格速度時の電動機回転数とを実質的に同一としたことを特徴とする 請求項 7記載のバッテリ式産業車両の荷役回生システム。
1 1 . 前記リフトシリンダのボトム油室内圧力を検出する圧力センサを設け、 同圧力センサの検出値に基づいて前記電動機の応答感度を変えるように構成した ことを特徴とする請求項 5記載のバッテリ式産業車両の荷役回生システム。
1 2 . 前記リフトシリンダのボトム油室内圧力を検出する圧力センサを設け、 前記コントローラが、 同圧力センサの検出値から脈動値を算出するバンドパスフ ィル夕と、 同脈動値の逆位相を前記電動機の回転数指令値に加算する演算回路と を備えたことを特徴とする請求項 5記載のバッテリ式産業車両の荷役回生システ ム。
PCT/JP2006/302899 2005-02-25 2006-02-13 バッテリ式産業車両の荷役回生方法及び荷役回生システム WO2006090655A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06714040A EP1852387B1 (en) 2005-02-25 2006-02-13 Load handling regeneration method and load handling regeneration system of battery type industrial vehicle
JP2007504695A JP4727653B2 (ja) 2005-02-25 2006-02-13 バッテリ式産業車両の荷役回生方法及び荷役回生システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005052162 2005-02-25
JP2005-052162 2005-02-25

Publications (1)

Publication Number Publication Date
WO2006090655A1 true WO2006090655A1 (ja) 2006-08-31

Family

ID=36927295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302899 WO2006090655A1 (ja) 2005-02-25 2006-02-13 バッテリ式産業車両の荷役回生方法及び荷役回生システム

Country Status (4)

Country Link
US (1) US7770697B2 (ja)
EP (1) EP1852387B1 (ja)
JP (1) JP4727653B2 (ja)
WO (1) WO2006090655A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075753A (ja) * 2006-09-21 2008-04-03 Kobelco Contstruction Machinery Ltd 油圧式作業機械の制御装置
KR20110126284A (ko) * 2010-05-17 2011-11-23 두산산업차량 주식회사 전동지게차의 에너지 회수 시스템
US8336305B2 (en) 2006-11-28 2012-12-25 Kobelco Construction Machinery Co., Ltd. Hydraulic drive device and working machine with the same
CN102869601A (zh) * 2010-05-20 2013-01-09 斗山工业用车辆株式会社 电动铲车的能量回收系统

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4667801B2 (ja) * 2004-09-10 2011-04-13 日本輸送機株式会社 油圧システム及びこれを備えたフォークリフト
JP4072183B1 (ja) * 2006-11-09 2008-04-09 三菱重工業株式会社 作業車両および作業車両の動力制御方法
US8689943B2 (en) * 2010-03-01 2014-04-08 The Raymond Corporation Energy storage on an elevated platform and transfer method
US8869944B2 (en) * 2010-03-01 2014-10-28 The Raymond Corporation Energy storage on an elevated platform and transfer method
US8362629B2 (en) * 2010-03-23 2013-01-29 Bucyrus International Inc. Energy management system for heavy equipment
US9587658B2 (en) * 2010-11-25 2017-03-07 Mitsubishi Heavy Industries, Ltd Hydraulic cylinder system
CN102108948B (zh) 2010-12-28 2012-11-28 山河智能装备股份有限公司 一种适用于装卸搬运电动车的能量再生发电系统
CN104039682B (zh) * 2012-01-09 2017-04-12 伊顿公司 用于使用单一输入获得全范围升降速度的方法
DE102012101949A1 (de) * 2012-03-08 2013-09-12 Linde Material Handling Gmbh Hubvorrichtung eines Flurförderzeugs
CN102633213B (zh) 2012-04-28 2014-10-22 安徽合力股份有限公司 能量再生式叉车液压系统
CN202926765U (zh) * 2012-05-22 2013-05-08 山河智能装备股份有限公司 工作装置势能回收液压系统
EP2767500B1 (en) * 2013-02-15 2020-08-05 Zapi S.P.A. Electric lifter
WO2015171692A1 (en) 2014-05-06 2015-11-12 Eaton Corporation Hydraulic hybrid propel circuit with hydrostatic option and method of operation
WO2016069485A1 (en) 2014-10-27 2016-05-06 Eaton Corporation Hydraulic hybrid propel circuit with hydrostatic option and method of operation
CN104961075A (zh) * 2015-06-25 2015-10-07 重庆川渝精工机械配件开发有限公司 叉车起升系统调速装置及方法
US10183852B2 (en) * 2015-07-30 2019-01-22 Danfoss Power Solutions Gmbh & Co Ohg Load dependent electronic valve actuator regulation and pressure compensation
EP3358201B1 (en) * 2015-09-29 2023-02-15 Hitachi Construction Machinery Co., Ltd. Pressure oil energy regeneration device of work machine
WO2017070248A1 (en) * 2015-10-19 2017-04-27 Axel Michael Sigmar Method and apparatus for moving heavy objects
CN107906063B (zh) * 2017-12-03 2024-05-14 长沙汽电汽车零部件有限公司 升降作业设备及其动力系统
US10800275B2 (en) * 2018-01-12 2020-10-13 Ford Global Technologies, Llc Hybrid vehicle system
EP3597934A1 (en) * 2018-06-15 2020-01-22 Dana Italia S.r.L. Hydraulic circuit
CN109488662A (zh) * 2018-12-07 2019-03-19 浙江鼎诚炉业科技有限公司 一种步进加热炉液压控制系统
FR3101867B1 (fr) * 2019-10-10 2021-10-08 Manitou Bf Engin de manutention de charge équipé d'un moteur thermique et procédé de commande de la vitesse en rotation du moteur thermique d'un tel engin
EP3839269A1 (en) 2019-12-20 2021-06-23 Dana Motion Systems Italia S.R.L. Hydraulic system with energy recovery
DE202019005838U1 (de) 2019-12-20 2022-06-14 Dana Motion Systems Italia S.R.L. Hydrauliksystem mit Energierückgewinnung
CN113790180B (zh) * 2021-09-14 2023-04-25 恒天九五重工有限公司 一种旋挖钻机二级加压电液控制系统和控制方法
CN113845032A (zh) * 2021-11-30 2021-12-28 杭叉集团股份有限公司 一种电动正面吊伸缩臂节能液压系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281856A (en) * 1975-12-26 1977-07-08 Shinko Electric Co Ltd Freight handling control device for battery type fork lift truck
JPS55155503A (en) * 1979-05-24 1980-12-03 Toyo Umpanki Co Ltd Control unit for loading/unloading dc shunt motor in storage battery type fork lift truck
JPS5770975A (en) * 1980-10-18 1982-05-01 Nikkiso Co Ltd Non-pulsation metering pump
JPH0228499A (ja) * 1988-07-13 1990-01-30 Toyota Autom Loom Works Ltd バッテリ式産業用車両の油圧装置
JPH04179698A (ja) * 1990-07-13 1992-06-26 Toyota Autom Loom Works Ltd バッテリ式産業車両における油圧装置
JPH04347381A (ja) * 1991-05-22 1992-12-02 Shimadzu Corp 液圧機構の動力回収装置
JP2539648Y2 (ja) * 1991-12-11 1997-06-25 日本輸送機株式会社 フォーク昇降用の油圧モータ制御装置
JPH11165995A (ja) * 1997-12-05 1999-06-22 Toyota Autom Loom Works Ltd バッテリ式産業車両における油圧装置
JP2000351574A (ja) * 1999-06-14 2000-12-19 Ishikawajima Harima Heavy Ind Co Ltd 液圧発生装置
JP2004084470A (ja) * 2002-07-31 2004-03-18 Komatsu Ltd 建設機械

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512072A (en) * 1967-11-13 1970-05-12 Allis Chalmers Mfg Co Elevated load potential energy recovery in an electric truck
FR2390546A1 (fr) * 1977-05-09 1978-12-08 Albaret Sa Procede et dispositif pour le reglage en frequence des vibrations appliquees a un sol pour un engin de compactage, et engin de compactage equipe d'un tel dispositif
DE3104549C2 (de) * 1981-02-10 1986-07-10 Jungheinrich Unternehmensverwaltung Kg, 2000 Hamburg Hubvorrichtung
DE3602510A1 (de) * 1986-01-28 1987-07-30 Steinbock Gmbh Hydraulisches hubwerk
US4761954A (en) * 1987-03-16 1988-08-09 Dynamic Hydraulic Systems, Inc. Fork-lift system
DE4317782C2 (de) * 1993-05-28 1996-01-18 Jungheinrich Ag Hydraulische Hubvorrichtung für batteriegetriebene Flurförderzeuge oder dergleichen
JP2880887B2 (ja) 1993-11-08 1999-04-12 株式会社島津製作所 バッテリ式産業用車両の液圧装置
JP2000136806A (ja) * 1998-11-04 2000-05-16 Komatsu Ltd 圧油のエネルギー回収装置および圧油のエネルギー回収・再生装置
DE10128582A1 (de) * 2001-06-13 2002-12-19 Linde Ag Hydrauliksystem für ein Flurförderzeug
JP2003252592A (ja) * 2002-03-01 2003-09-10 Nippon Yusoki Co Ltd フォークリフトの制御装置及び制御方法
JP3957061B2 (ja) * 2002-07-08 2007-08-08 株式会社小松製作所 複数の圧油エネルギー選択回収装置及びその選択回収方法
US7249457B2 (en) * 2005-02-18 2007-07-31 Timberjack Inc. Hydraulic gravitational load energy recuperation
US7600612B2 (en) * 2005-04-14 2009-10-13 Nmhg Oregon, Llc Hydraulic system for an industrial vehicle
US7269947B2 (en) * 2005-12-09 2007-09-18 Caterpillar Inc. Vibration control method and vibration control system for fluid pressure control circuit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281856A (en) * 1975-12-26 1977-07-08 Shinko Electric Co Ltd Freight handling control device for battery type fork lift truck
JPS55155503A (en) * 1979-05-24 1980-12-03 Toyo Umpanki Co Ltd Control unit for loading/unloading dc shunt motor in storage battery type fork lift truck
JPS5770975A (en) * 1980-10-18 1982-05-01 Nikkiso Co Ltd Non-pulsation metering pump
JPH0228499A (ja) * 1988-07-13 1990-01-30 Toyota Autom Loom Works Ltd バッテリ式産業用車両の油圧装置
JPH04179698A (ja) * 1990-07-13 1992-06-26 Toyota Autom Loom Works Ltd バッテリ式産業車両における油圧装置
JPH04347381A (ja) * 1991-05-22 1992-12-02 Shimadzu Corp 液圧機構の動力回収装置
JP2539648Y2 (ja) * 1991-12-11 1997-06-25 日本輸送機株式会社 フォーク昇降用の油圧モータ制御装置
JPH11165995A (ja) * 1997-12-05 1999-06-22 Toyota Autom Loom Works Ltd バッテリ式産業車両における油圧装置
JP2000351574A (ja) * 1999-06-14 2000-12-19 Ishikawajima Harima Heavy Ind Co Ltd 液圧発生装置
JP2004084470A (ja) * 2002-07-31 2004-03-18 Komatsu Ltd 建設機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1852387A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075753A (ja) * 2006-09-21 2008-04-03 Kobelco Contstruction Machinery Ltd 油圧式作業機械の制御装置
US8336305B2 (en) 2006-11-28 2012-12-25 Kobelco Construction Machinery Co., Ltd. Hydraulic drive device and working machine with the same
KR20110126284A (ko) * 2010-05-17 2011-11-23 두산산업차량 주식회사 전동지게차의 에너지 회수 시스템
KR101665713B1 (ko) * 2010-05-17 2016-10-13 주식회사 두산 전동지게차의 에너지 회수 시스템
CN102869601A (zh) * 2010-05-20 2013-01-09 斗山工业用车辆株式会社 电动铲车的能量回收系统
CN102869601B (zh) * 2010-05-20 2014-12-31 斗山株式会社 电动铲车的能量回收系统

Also Published As

Publication number Publication date
EP1852387A1 (en) 2007-11-07
JP4727653B2 (ja) 2011-07-20
EP1852387B1 (en) 2013-04-03
US7770697B2 (en) 2010-08-10
EP1852387A4 (en) 2012-02-01
US20080128214A1 (en) 2008-06-05
JPWO2006090655A1 (ja) 2008-07-24

Similar Documents

Publication Publication Date Title
JP4727653B2 (ja) バッテリ式産業車両の荷役回生方法及び荷役回生システム
JP4681600B2 (ja) バッテリ式産業車両の荷役回生システム
JP5858818B2 (ja) 建設機械
JP5078692B2 (ja) ハイブリッド建設機械の制御装置
JP5378061B2 (ja) ハイブリッド建設機械の制御装置
KR101834598B1 (ko) 하이브리드식 건설 기계
JP5000430B2 (ja) ハイブリッド型作業機械の運転制御方法および同方法を用いた作業機械
US20130312399A1 (en) System for driving working machine
JP5078693B2 (ja) ハイブリッド建設機械の制御装置
WO2011046184A1 (ja) 作業機械の油圧システム
WO2009119705A1 (ja) ハイブリッド建設機械の制御装置
JP3828680B2 (ja) 作業機械用液圧回路およびハイブリッド作業機械
EP3037589B1 (en) Construction machine
WO2009128418A1 (ja) ハイブリッド建設機械の制御装置
KR101747519B1 (ko) 하이브리드식 건설 기계
CN112594240B (zh) 一种工作装置液压系统、控制方法及电动装载机
JP2001012418A (ja) ハイブリッド作業機械
JP2596107B2 (ja) バッテリ式産業車両における油圧装置
JPH02231398A (ja) バッテリ式産業車両における油圧装置
EP3178778B1 (en) Hydraulic system for energy regeneration and industrial truck with said hydraulic system
JPH02215700A (ja) バッテリ式産業車両における油圧装置
JPH02209400A (ja) バッテリ式産業車両における油圧装置
JP4796350B2 (ja) 回生機能付き流体圧制御回路
JPH02305800A (ja) バッテリ式産業車両における油圧装置
JPH0323197A (ja) バッテリ式産業車両における油圧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007504695

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006714040

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11663534

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006714040

Country of ref document: EP