WO2006088133A1 - 固体電解質形燃料電池用発電セルおよびその燃料極の構造 - Google Patents

固体電解質形燃料電池用発電セルおよびその燃料極の構造 Download PDF

Info

Publication number
WO2006088133A1
WO2006088133A1 PCT/JP2006/302833 JP2006302833W WO2006088133A1 WO 2006088133 A1 WO2006088133 A1 WO 2006088133A1 JP 2006302833 W JP2006302833 W JP 2006302833W WO 2006088133 A1 WO2006088133 A1 WO 2006088133A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
solid electrolyte
cell
fuel
fuel electrode
Prior art date
Application number
PCT/JP2006/302833
Other languages
English (en)
French (fr)
Inventor
Takashi Yamada
Norikazu Komada
Original Assignee
Mitsubishi Materials Corporation
The Kansai Electric Power Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005041558A external-priority patent/JP2006228587A/ja
Priority claimed from JP2005152711A external-priority patent/JP5093741B2/ja
Priority claimed from JP2006030733A external-priority patent/JP2007213890A/ja
Priority claimed from JP2006030734A external-priority patent/JP2007213891A/ja
Priority claimed from JP2006030732A external-priority patent/JP2007213889A/ja
Application filed by Mitsubishi Materials Corporation, The Kansai Electric Power Co., Inc. filed Critical Mitsubishi Materials Corporation
Priority to EP06713974A priority Critical patent/EP1850411B1/en
Priority to US11/884,014 priority patent/US20090274941A1/en
Publication of WO2006088133A1 publication Critical patent/WO2006088133A1/ja
Priority to US13/406,642 priority patent/US20120171595A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • H01M4/8642Gradient in composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • H01M4/8835Screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/98Raney-type electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/40Layer in a composite stack of layers, workpiece or article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a power generation cell for a solid electrolyte fuel cell using a lanthanum gallate solid electrolyte as a solid electrolyte, and particularly to a structure of a fuel electrode of a power generation cell for a solid electrolyte fuel cell. .
  • solid oxide fuel cells can use hydrogen gas, natural gas, methanol, coal gas, etc. as fuel, so that they can promote the use of alternative energy to oil in power generation, and waste heat. It is also attracting attention from the viewpoint of resource saving and environmental problems.
  • the structure of this solid electrolyte fuel cell is generally formed by laminating an air electrode on one side of a solid electrolyte made of oxide and laminating a fuel electrode on the other side of the solid electrolyte.
  • a power generation cell and an air current collector are stacked outside the air electrode of this power generation cell, while a fuel electrode current collector is stacked outside the fuel electrode of the power generation cell.
  • This solid electrolyte fuel cell is generally capable of operating at 800 to 1000 ° C. Recently, a low temperature type fuel cell having an operating temperature of 600 to 800 ° C has been proposed.
  • a lanthanum gallate-based oxide ion conductor is used as one of the solid electrolytes incorporated in the low-temperature type solid electrolyte fuel cell, and this lanthanum gallate-based oxide ion is used.
  • the fuel electrode includes ceria (hereinafter referred to as "B-doped ceria") doped with soot (however, soot is one or more of Sm, Gd, Y, and Ca) and a nickel power.
  • B-doped ceria is known to use a general formula: Ce BO (where B is Sm, Gd 1 or 2 or more of Y, Ca, m is represented by 0 ⁇ m ⁇ 0.4), and B-doped ceria and nickel-powered sintered body are made of nickel having a porous skeleton structure. It is known that a B-doped ceria grain having a large particle diameter is formed on the surface so as to surround the nickel surface of the porous skeleton structure and adhere to the nickel surface (see Patent Document 2). .
  • B m (where B is one or more of Sm, Gd, Y, and Ca, m is 0 ⁇ m ⁇ 0.4) m m 2
  • the particle size of B-doped ceria and nickel particles changes in the thickness direction, and the particle size becomes finer as it is closer to the solid electrolyte.
  • a fuel electrode having a gradient particle size see Patent Document 3).
  • the lanthanum gallate-based oxide ion conductor is a solid electrolyte, a porous air electrode is formed on one surface of the solid electrolyte, and a porous fuel electrode is formed on the other surface.
  • the reaction at the fuel electrode mainly takes place at the three-phase interface (where the fuel electrode, electrolyte, and fuel gas coexist), so that the three-phase interface in the solid oxide fuel cell power generation cell becomes even wider.
  • the solid oxide fuel cell power generation cell described in Patent Document 3 the B-doped ceria grains and the nickel grains in the sintered body of B-doped ceria and nickel in the fuel electrode are known.
  • the particle size gradient is made finer as the particle size is closer to that of the solid electrolyte.
  • the current solid oxide fuel cell has a short service life because the output voltage decreases when used for a short period of time. Therefore, there is a solid oxide fuel cell that can be used for a long time without lowering the output voltage. It was sought after.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-335164
  • Patent Document 2 Japanese Patent Laid-Open No. 11-297333
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-55194
  • the present inventors have conducted research to develop a solid oxide fuel cell that can be used for a longer period of time. as a result,
  • the gap portion formed around the skeleton structure neck portion becomes finer. As soon as it penetrates, it can be distributed with the highest density around the neck of the skeletal structure, and can be deposited by thick deposition. Therefore, it is preferable that the B-doped ceria grains used in the present invention are in the range of an average particle diameter that is preferably as fine as possible: lOOnm or less (more preferably, 20 nm or less). These fine B-doped ceria grains are distributed with the highest density around the neck of the skeletal structure neck and deposited, and then sintered. A ring shape is formed around the neck. Therefore, the present invention
  • the B-doped ceria grains distributed and adhered most densely around the skeletal structure neck part have fine B-doped ceria grains having an average grain size of lOOnm or less in the skeletal structure neck part.
  • the fuel electrode of the power generation cell for a solid oxide fuel cell according to the above (1) is characterized by being aggregated and sintered together and surrounding the neck portion of the skeleton structure in a ring shape.
  • the B-doped ceria grains used in the present invention have a general formula: Ce B 2 O (wherein
  • B is one or more of Sm, La, Gd, Y, and Ca, and m is B doped ceria grains represented by 0 ⁇ m ⁇ 0.4). Ceria grains are already known substances. Therefore, the present invention
  • B is one or more of Sm, La, Gd, Y, Ca, m is 0 ⁇ m ⁇ 0.4), and B is a B-doped ceria power cell for solid oxide fuel cells Features of the fuel electrode It is what you have.
  • the present invention includes an invention of a power generation cell for a solid oxide fuel cell produced by incorporating the fuel electrode described in (1), (2) or (3). Therefore, the present invention
  • the fuel electrode is characterized in that the fuel electrode is a fuel electrode according to (1), (2) or (3) above the power generation cell for a solid oxide fuel cell. .
  • the electrolyte comprising the lanthanum gallate oxide ion conductor used in the power generation cell for a solid electrolyte fuel cell of the present invention has a general formula: La Sr Ga Mg AOl-X X 1-Y-Z Y Z 3
  • the lanthanum gallate-based oxide ion conductor has a general formula: La Sr Ga Mg Al 1-X X 1-Y-Z Y
  • the present invention includes a solid oxide fuel cell in which the power generation cell for a solid oxide fuel cell according to (4) or (5) is incorporated. Therefore, the present invention
  • the present invention is characterized by a solid oxide fuel cell incorporating the solid oxide fuel cell power generation cell described in (4) or (5).
  • a solid oxide fuel cell incorporating a power generation cell provided with a fuel electrode according to the present invention can further increase its service life.
  • the skeleton surface of porous nickel having a skeleton structure is finer than before.
  • the finer B-doped ceria grains are attached to the interface of the fuel electrode in contact with the solid electrolyte and the porous nickel skeleton surface in the vicinity.
  • the power generation cell for a solid electrolyte fuel cell laminated on a solid electrolyte can further widen the three-phase interface.
  • the nickel particles for producing the porous nickel are from 1 to: L0 ⁇ m of the same force as that of the conventional or the use of porous nickel produced using relatively coarse nickel particles. It is preferable because the fuel gas permeability is improved.
  • the B-doped ceria grains fixed to the skeleton surface of the porous nickel are preferably very fine B-doped ceria grains having a particle diameter of less than lOOnm.
  • the part where the most fine B-doped ceria grains are fixed to the interface of the solid electrolyte and the porous nickel skeleton in the vicinity of the interface is the thickness of the solid electrolyte in the range of 10 to 20 m. It is preferably formed over the entire thickness.
  • the second aspect of the present invention is made on the basis of hard knowledge
  • the fuel electrode has a general formula: Ce BO (formula
  • B is one or more of Sm, Gd, Y, Ca, and m is the sintered strength of B-doped ceria and nickel represented by 0 ⁇ m ⁇ 0.4)
  • m is the sintered strength of B-doped ceria and nickel represented by 0 ⁇ m ⁇ 0.4
  • B-doped ceria grains are fixed to the surface of the porous nickel skeleton having a skeletal structure, and the B-doped ceria grains are porous nickel at the interface where the fuel electrode is in contact with the solid electrolyte and in the vicinity thereof.
  • Power generation cells for solid oxide fuel cells that adhere most to the skeleton surface of
  • the B-doped ceria particles fixed to the surface of the porous nickel skeleton are fine B-doped ceria particles having a particle size of less than lOOnm, and the power generation for a solid oxide fuel cell according to (1) above Cell,
  • the power generation cell for a solid oxide fuel cell according to the above (1) or (2) is characterized in that it is formed in layers over a thickness in the range of 10 to 20 ⁇ m.
  • a solid oxide fuel cell incorporating a power generation cell provided with a fuel electrode according to the present invention can be further improved in efficiency.
  • the present inventors have conducted research to develop a solid oxide fuel cell that does not reduce power generation efficiency even when a hydrogen fuel gas mixed with a trace amount of hydrocarbon gas is used.
  • the lanthanum galade oxide oxide conductor is a solid electrolyte
  • a porous air electrode is laminated on one surface of the solid electrolyte
  • a porous fuel electrode is laminated on the other surface.
  • the fuel electrode has a general formula:
  • a solid electrolyte fuel cell with a power cell for a solid electrolyte fuel cell composed of a fuel electrode material with ruthenium metal supported on B-doped ceria is a mixture of conventional B-doped ceria and NiO powder.
  • the research results show that the power generation efficiency is further improved as compared with the solid oxide fuel cell having power generation cells with stacked fuel electrodes.
  • a third aspect of the present invention is made based on hard research results
  • La, Y, and Ca, m is a solid electrolyte composed of a fuel electrode material in which ruthenium metal is supported on B-doped ceria represented by 0 ⁇ m ⁇ 0.4) Fuel cell for fuel cell,
  • the present invention is characterized by a solid electrolyte fuel cell in which the power generation cell for a solid oxide fuel cell according to (2) is incorporated.
  • a solid oxide fuel cell incorporating a power generation cell provided with a fuel electrode manufactured using the fuel electrode material of the present invention uses hydrogen gas in which a trace amount of hydrocarbon gas remains as fuel gas. Therefore, even if power is generated, the power generation efficiency is not lowered. Therefore, it is possible to generate power with high efficiency regardless of the purity of the fuel gas.
  • a porous nickel skeleton surface having a skeleton structure in a network is formed by a general formula: Ce BO (wherein B is one or more of Sm, Gd, Y, and Ca, and m is 0 ⁇ m ⁇ 0
  • the fuel cell does not undergo sufficient reforming and a small amount of hydrocarbon gas remains, and even when hydrogen gas is used as the fuel gas, the output does not decrease.
  • the Ru-supported B-doped ceria grains are made finer than before, and the extremely fine Ru-supported B-doped ceria grains are the most on the interface where the fuel electrode is in contact with the solid electrolyte and the porous skeleton surface near the interface.
  • a solid electrolyte fuel cell power generation cell in which a fuel electrode with a fixed structure is stacked on a solid electrolyte can further widen the three-phase interface, and Ru-supported B-doped ceria is used as the fuel electrode material. Therefore, even if hydrogen gas that is mixed with a small amount of hydrocarbon gas is used as fuel gas, power generation efficiency will not be reduced.
  • the Ru-supported B-doped ceria grains fixed to the skeleton surface of the porous nickel are preferably extremely fine Ru-supported B-doped ceria grains having a particle diameter of less than lOOnm! /.
  • the portion where the most extremely fine Ru-supported B-doped ceria grains are fixed to the interface of the solid electrolyte and the porous nickel skeleton in the vicinity thereof has a thickness in the range of 10 to 20 m from the surface of the solid electrolyte. It is preferably formed over the entire thickness.
  • a fourth aspect of the present invention has been made on the basis of hard knowledge
  • a lanthanum galade oxide oxide ion conductor is used as a solid electrolyte, and one of the solid electrolytes is used.
  • the fuel electrode is made of porous nickel having a skeleton structure.
  • R U bearing B doped ceria particle skeletal surface has adhered, the Ru supported B doughs Puseria grains most often secured to the interface and skeletal surface of porous nickel in the vicinity thereof the fuel electrode is in contact with the solid electrolyte! / Power generation cells for solid electrolyte fuel cells,
  • the Ru-supported B-doped ceria grains fixed to the surface of the porous nickel skeleton are fine Ru-supported B-doped ceria grains having a particle diameter of less than lOOnm, and the solid oxide fuel cell according to (1) Power generation cell,
  • the power generation cell for a solid oxide fuel cell according to the above (1) or (2) is characterized in that it is formed in a layer form over a thickness in the range of 20 ⁇ m.
  • a solid oxide fuel cell incorporating a power generation cell provided with a fuel electrode according to the present invention uses an insufficiently reformed hydrogen gas in which an extremely small amount of hydrocarbon gas remains as a fuel gas. Since power generation efficiency is not lowered even when power is generated, power generation can be performed with high efficiency regardless of the purity of hydrogen gas, which is a fuel gas.
  • the present inventors have conducted research to develop a solid oxide fuel cell that does not reduce power generation efficiency even when hydrogen gas mixed with a small amount of unmodified hydrocarbon gas is used as the fuel gas. As a result, the following findings were obtained.
  • the Ru-supported BDC grains are made finer than before, and the extremely fine Ru-supported BDC grains are the bones of the porous mixed sintered body at and near the interface where the fuel electrode contacts the solid electrolyte.
  • the power cell for a solid electrolyte fuel cell in which the fuel electrode having the structure fixed most on the surface of the case is laminated on the solid electrolyte, can further widen the three-phase interface, and further, Ru-supported BDC can be used as the fuel electrode.
  • a small amount of unmodified hydrocarbon gas is mixed, and even if hydrogen gas is used as fuel gas, power generation efficiency is not lowered.
  • the Ru-supported BDC particles fixed to the skeleton surface of the porous mixed sintered body are preferably extremely fine Ru-supported BDC particles having a particle size of less than 1 OO nm.
  • the portion where the most fine Ru-supported BDC particles are fixed to the skeleton surface of the porous mixed sintered body in the vicinity of the interface in contact with the solid electrolyte is 10 to 20 m from the surface of the solid electrolyte. Preferably, it is formed over a range of thicknesses.
  • the fuel electrode has Ru-supported BDC particles fixed on the skeleton surface of a porous mixed sintered body having a skeleton structure in which BDC particles and acid nickel nickel particles form a network. The Ru-supported BDC particles adhere most to the interface of the fuel electrode in contact with the solid electrolyte and the skeleton surface of the porous mixed sintered body in the vicinity! /
  • the Ru-supported BDC particles fixed to the skeleton surface of the porous mixed sintered body are fine Ru-supported BDC particles having a particle size of less than 1 OOnm. Power cell for fuel cell,
  • the power generation cell for a solid oxide fuel cell according to the above (1) or (2) is characterized in that it is formed in a layer over the thickness of the range.
  • a solid oxide fuel cell incorporating a power generation cell provided with a fuel electrode according to the present invention uses an unreformed hydrogen gas in which a trace amount of hydrocarbon gas remains as a fuel gas. Since power generation efficiency is not lowered even when power is generated, power generation can be performed with high efficiency regardless of the purity of hydrogen gas, which is a fuel gas.
  • FIG. 1 is an explanatory view showing a structure of a fuel electrode in a first embodiment of the present invention.
  • FIG. 2A is an explanatory view showing a method of manufacturing a fuel electrode in the first embodiment of the present invention.
  • FIG. 2B is an explanatory view showing a method of manufacturing the fuel electrode in the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional explanatory view for explaining the configuration of a fuel electrode in a second embodiment of the present invention.
  • FIG. 4 is an explanatory cross-sectional view for explaining a method for manufacturing a fuel electrode in a second embodiment of the present invention.
  • FIG. 5 is an explanatory cross-sectional view for explaining a method for manufacturing a fuel electrode in a second embodiment of the present invention.
  • FIG. 6 is an explanatory cross-sectional view for explaining a method for manufacturing a fuel electrode in a second embodiment of the present invention.
  • FIG. 7 is an explanatory cross-sectional view for explaining the configuration of a fuel electrode in a fourth embodiment of the present invention.
  • FIG. 8 is an explanatory cross-sectional view for explaining a method for manufacturing a fuel electrode in a fourth embodiment of the present invention.
  • FIG. 9 is an explanatory cross-sectional view for explaining a method for producing a fuel electrode in a fourth embodiment of the present invention.
  • FIG. 10 is an explanatory cross-sectional view for explaining a method for producing a fuel electrode in a fourth embodiment of the present invention.
  • FIG. 11 is a cross-sectional explanatory view for explaining the configuration of a fuel electrode in a fifth embodiment of the present invention.
  • FIG. 12 is an explanatory cross-sectional view for explaining a method for manufacturing a fuel electrode in a fifth embodiment of the present invention.
  • FIG. 13 is an explanatory cross-sectional view for explaining a method for manufacturing a fuel electrode in a fifth embodiment of the present invention.
  • FIG. 14 is an explanatory cross-sectional view for explaining a method for manufacturing a fuel electrode in a fifth embodiment of the present invention.
  • FIG. 15 is an explanatory diagram of a solid oxide fuel cell.
  • This first embodiment corresponds to the first aspect of the present invention.
  • FIGS. 2A and 2B schematically illustrate a method of manufacturing a fuel electrode in a power generation cell for a solid oxide fuel cell according to the present invention.
  • a skeleton-structured porous nickel having a skeleton-structure neck portion 3 is formed on a lanthanum galade electrolyte plate 4 by sintering nickel particles 1 and nickel particles 1 to each other.
  • an organic solvent slurry 5 containing ceria grains 2 doped with porous nickel having this skeleton structure is impregnated. In this state, the doped ceria grains 2 are suspended in the organic solvent slurry 5.
  • the present invention also includes a state where the doped ceria grains 2 shown in FIG. 2 (b) are concentrated and adhered to the skeleton structure neck portion 3. After that, when sintering is performed, ⁇ -doped ceria grains 2 around the skeletal structure neck portion 3 sinter and bond to form a peripheral ring 6 of the skeleton structure neck portion 3, as shown in FIG.
  • Such a fuel electrode in the power generation cell for a solid oxide fuel cell of the present invention is formed.
  • the fuel electrode in the power generation cell for a solid oxide fuel cell according to the present invention has a force in which B-doped ceria grains are attached to the nickel surface of the porous skeleton structure.
  • the porous skeleton structure It is preferable that the B-doped ceria grains adhering to the nickel surface have a particle size that is fine enough to penetrate into the neck portion of the skeleton structure.
  • Fine B-doped ceria grains are preferable because the average particle size of B-doped ceria grains exceeds lOOnm, and the porous skeletal structure This is also because it is not preferable because the B-doped ceria grains are not filled in the gaps around the neck part of the skeletal structure, and the specific surface area of the porous skeleton structure is reduced by coarsening of the nickel grains. It is. However, when the average particle size of the B-doped ceria grains is less than 1 nm, the handling becomes difficult and the cost is increased. Therefore, it is preferable to use B-doped ceria grains having an average particle diameter of 1 nm or more.
  • the fuel electrode in the solid oxide fuel cell power generation cell of the present invention is a mixture of nickel oxide powder and an organic solvent liquid containing B-doped ceria fine powder, and further mixed with an organic binder, a dispersing agent and a surfactant.
  • the slurry can be made by forming a slurry film on the plate-like lanthanum gallate electrolyte by screen printing and drying it, and then heating and holding it in air. At this time, it is possible to change the amount of B-doped ceria fine powder deposited in the gap portion around the neck portion of the skeletal structure by changing the amount and kind of the organic binder, dispersant and surfactant.
  • This second embodiment corresponds to the second aspect of the present invention.
  • a power generation cell for a solid oxide fuel cell according to this embodiment will be specifically described with reference to the drawings.
  • FIG. 3 is a cross-sectional explanatory view showing a joining portion of the solid electrolyte and the fuel electrode in the power generation cell for the solid oxide fuel cell according to the present invention, and the air electrode is not shown.
  • 11 is a solid electrolyte
  • 12 is a fuel electrode
  • 13 is B-doped ceria grains
  • 14 is porous.
  • the anode 12 has a general formula: Ce BO (where B is one of Sm, Gd, Y, and Ca)
  • B-doped ceria grains 13 are fixed to the porous skeleton 14 surface, and these B-doped ceria grains 13
  • the fuel electrode 12 adheres most to the skeleton surface of the porous nickel 14 in the vicinity of the interface 15 in contact with the solid electrolyte 11 and the vicinity thereof.
  • FIG. 3 shows an increase in the number of solid B-doped ceria grains 13 on the skeleton surface of the porous nickel in the vicinity of the interface 15 and the B-doped ceria grains 13 are fine. It is preferable that it is less than lOOnm.
  • the interface 15 where the most B-doped ceria grains 13 are fixed, and the portion where the most B-doped ceria grains are fixed to the skeleton surface of the porous nickel in the vicinity thereof have a thickness T of solid.
  • the layer is formed in a layer shape over a thickness in the range of 10 to 20 m from the surface of the electrolyte. This is because if T is less than 10 / z m, the reaction area is too small, whereas if it is thicker than 20 / z m, the permeability of fuel gas will be inhibited.
  • the fuel electrode used in the power generation cell for a solid oxide fuel cell according to the present invention has ⁇ ⁇ ⁇ ⁇ on the skeleton surface of porous nickel in which doped ceria has a skeleton structure (where ⁇ ⁇ ⁇ is Sm, Gd, The sintered body to which the ceria doped with one or more of Y and Ca) is also fixed, and this ceria doped with B is represented by the general formula: Ce BO (wherein
  • B is one or more of Sm, Gd, Y, and Ca, m is an oxide represented by 0 ⁇ m ⁇ 0.4), and these are generally known substances.
  • a nickel oxide powder is applied to one surface of the solid electrolyte 11 by screen printing or the like.
  • the porous nickel 14 is formed by applying and baking in the atmosphere at a temperature of 1000 to 1200 ° C.
  • porous nickel 14 is impregnated with slurry 16 in which ceria grains 13 doped with B are suspended in organic solvent 17.
  • slurry 16 was left in a state where it was impregnated with porous-packet 14 for a predetermined time, B was doped as shown in FIG. Ceria grains 13 settle and deposit at interface 15 and its vicinity.
  • the organic solvent in the slurry is volatilized, and the power cell for the solid oxide fuel cell of the present invention in which B-doped ceria grains 13 are most firmly fixed on the skeleton surface of the porous nickel 14 is manufactured. can do.
  • This third embodiment corresponds to the third aspect of the present invention.
  • the fuel electrode material in the solid oxide fuel cell power generation cell of this embodiment is that polybutylpyrrolidone, ruthenium chloride and B-doped ceria are added in order to ethylene glycol, and the temperature is increased after stirring.
  • a ruthenium metal-supported mixed solution is prepared by stirring, and the resulting ruthenium metal-supported mixed solution is repeatedly washed by centrifugation.
  • a fuel electrode material made by supporting ruthenium metal on B-doped ceria A suspension is prepared, and a suspension of the fuel electrode material in which ruthenium metal is supported on this B-doped ceria can be dried and appropriately pulverized to obtain a fuel electrode material powder.
  • a fuel electrode material powder slurry in which ruthenium metal is supported on the obtained B-doped ceria is prepared, and this slurry is applied to one side of a solid electrolyte, impregnated, and then dried to prepare a fuel electrode. Can do.
  • the power generation cell using the B-doped ceria-powered fuel electrode material carrying the ruthenium metal of the present invention has a power generation efficiency higher than that of the power-generation cell using the B-doped ceria metal fuel electrode mixed with the conventional NiO powder.
  • the reason for the improvement is that a trace amount of hydrocarbon gas remains even if the hydrogen fuel gas passes through the anode current collector and reaches the anode. It is considered that the power generation efficiency does not decrease because the supported B-doped ceria is modified by contact with the ruthenium metal.
  • FIG. 7 is a cross-sectional explanatory view showing a joined portion of the solid electrolyte and the fuel electrode in the solid oxide fuel cell power generation cell of this embodiment, and the description of the air electrode is omitted.
  • 21 is a solid electrolyte
  • 22 is a fuel electrode
  • 23 is Ru-supported B-doped ceria grains
  • 24 is porous nickel having a skeleton structure. This porous nickel is produced by reducing a nickel oxide powder sintered body produced by sintering an acid-nickel nickel powder during power generation, and has a skeletal structure.
  • the anode 22 has a general formula: Ce B 0 (where is 31! 1,
  • Gd, Y, Ca 1 or more kinds of, m is 0 ⁇ m ⁇ 0 4 represented B doped ceria Le Te in) - ⁇ beam metal composed by supporting the R U bearing B doped ceria particle 23 is porous It has a structure that is fixed to the skeleton surface of high quality nickel 24.
  • the Ru-supported B-doped ceria grains 23 adhere most to the skeleton surface of the interface 25 where the fuel electrode 22 contacts the solid electrolyte 21 and the porous nickel 24 nearby! / Speak.
  • the number of Ru-supported B-doped ceria grains 23 fixed on the skeleton surface of the interface 25 where the fuel electrode 22 is in contact with the solid electrolyte 21 and the porous nickel 24 in the vicinity thereof is increased.
  • the nickel particles for producing the porous nickel may be porous nickel produced using nickel particles having a particle size of 1 to: LO m, which is the same force as before, or relatively coarser than conventional nickel particles. It is preferable from the viewpoint of improving the permeability of the fuel gas.
  • the Ru-supported B-doped ceria grains 23 are preferably less than lOOnm as finer as possible. In addition, as shown in Fig.
  • the portion where the Ru-supported B-doped ceria grains 23 adhere most is layered over a thickness in the range of 10 to 20 m from the surface of the solid electrolyte. More preferably, it is formed.
  • the thickness T is less than 10 m, the reaction area force is too high, while when the thickness T is thicker than 20 m, the permeability of the fuel gas becomes hindered.
  • the fuel electrode used in the solid oxide fuel cell power generation cell of the present invention has a Ru-supported and doped ceria grain having a skeletal structure.
  • This Ru-supported B-doped cell has a general formula: Ce BO (where B is one or more of Sm, Gd, Y, and Ca, m is 0
  • Ni oxide powder is applied to one surface of the solid electrolyte 21 by screen printing or the like. It is applied by the method and baked in the atmosphere at a temperature of 1000-1200 ° C to produce a porous acid-nickel-nickel sintered body 24a having a skeletal structure, and then Ru-supported as shown in FIG.
  • the slurry 26 in which the B-doped ceria grains 23 are suspended in the organic solvent 27 is impregnated in the porous acid / nickel sintered body 24a.
  • the porous nickel oxide sintered body 24a having a skeletal structure is reduced.
  • the porous nickel 24 having the skeleton structure shown in FIG. 7 is obtained, and the power generation cell for the solid oxide fuel cell of the present invention having the fuel electrode shown in FIG. 7 can be manufactured.
  • This fifth embodiment corresponds to the fifth aspect of the present invention.
  • FIG. 11 is a cross-sectional explanatory view showing a joining portion of the solid electrolyte and the fuel electrode in the solid oxide fuel cell power generation cell of this embodiment, and the description of the air electrode is omitted.
  • 31 is a solid electrolyte
  • 32 is a fuel electrode
  • 33 is a Ru-supported BDC particle
  • 34 is a nickel oxide particle
  • 34a is a BDC particle.
  • the nickel oxide grains 34 and the BDC grains 34a constitute a porous mixed sintered body 38 having a skeleton structure forming a network.
  • This porous mixed sintered body 38 is a mixed powder of nickel oxide powder and BDC powder. It is made by sintering the powder.
  • Fuel electrode 32 has a general formula: Ce BO (where B is Sm, Gd, Y, C
  • Ru-supported BDC particles 33 in which ruthenium metal is supported on BDC Fixed to the skeleton surface of porous mixed sintered body 38 It has a structure that The Ru-supported BDC particles 33 are most adhered to the interface 35 where the fuel electrode 32 is in contact with the solid electrolyte 31 and the skeleton surface of the porous mixed sintered body 38 in the vicinity thereof.
  • a large number of Ru-supported BDC particles 33 are fixed on the skeleton surface of the interface 35 where the fuel electrode 32 is in contact with the solid electrolyte 31 and the porous mixed sintered body 38 in the vicinity! It is shown. Further, the nickel oxide powder and the BDC powder for producing the porous mixed sintered body 38 have a particle diameter of 0.5 to: the same or a relatively coarse nickel oxide powder having a particle size of LO m. It is preferable to employ a porous mixed sintered body produced using BDC powder from the viewpoint of improving the permeability of fuel gas.
  • the Ru-supported BDC grains 33 fixed to the skeleton surface of the porous mixed sintered body 38 are preferably as fine as possible, and preferably less than 1 OOnm.
  • the portion where the Ru-supported BDC grains 33 are fixed most is layered over the thickness T ranging from 10 to 20 / ⁇ ⁇ from the surface of the solid electrolyte. More preferably, it is formed. If the thickness is less than 10 m, the reaction area is too small. On the other hand, if it exceeds 20 m, the fuel gas permeability is hindered.
  • the fuel electrode used in the power generation cell for the solid electrolyte fuel cell of the present invention is fixed to the skeleton surface of the porous mixed sintered body in which Ru-supported BDC grains have a skeleton structure.
  • This Ru-supported BDC has a general formula: Ce BO (where B is one or more of Sm, Gd, Y, and Ca, and m is 0 ⁇ m ⁇ 0.4)
  • Ni oxide powder and BDC powder are screened on one surface of the solid electrolyte 31.
  • a porous mixed sintered body having a skeletal structure in which the nickel particles 34 and the BDC particles 34a form a network by being baked at a temperature of 1000 to 1200 ° C in the atmosphere and coated by a method such as printing.
  • the porous mixed sintered body 38 is impregnated with a slurry 36 in which Ru-supported BDC particles 33 are suspended in an organic solvent 37.
  • the Ru-supported BDC particles 33 settle and the fuel electrode 32 contacts the solid electrolyte 31 as shown in FIG. Many deposits in and around 5.
  • the organic solvent in the slurry is volatilized and then fired to produce a fuel electrode in which Ru-supported BDC particles 33 are fixed to the skeleton surface of the porous mixed sintered body 38.
  • Example 1 shown below is an example of the first embodiment described above
  • Example 2 is an example of the second embodiment
  • Examples 3-7 are examples of the third embodiment
  • Example 8 is an example of the fourth embodiment
  • Example 9 is an example of the fifth embodiment.
  • This operation is repeated three times to replace the solution with water, and ethanol containing SDC ultrafine powder.
  • a solution was made.
  • a part of the obtained ethanol solution containing SDC ultrafine powder was taken out, and the particle diameter of the ceria ultrafine powder was measured by a laser diffraction method. The average particle diameter was 5 nm.
  • the resulting powder was finely pulverized with a ball mill to produce a strontium strontium cobaltite-based air electrode raw material powder having an average particle diameter of 1. 1 m.
  • a power generation cell was produced by the following method using the produced raw material powder.
  • the lanthanum gallate-based electrolyte raw material powder produced in (a) above is mixed with a toluene-ethanol mixed solvent with an organic noinder solution in which polyvinyl petroleum and N-dioctyl phthalate are dissolved to form a slurry. After being formed into a circular shape and cut into a circle, it was heated and sintered in air at 1450 ° C for 4 hours to sinter, and a disc-shaped lanthanum gallate electrolyte having a thickness of 200 m and a diameter of 120 mm was produced.
  • the powder by wet (co-precipitation) is dispersed ultra-fine powder), but it will aggregate immediately after drying.
  • an ethanol solution containing SDC ultrafine powder is used.
  • SDC aggregates on the surface of the acid nickel powder and forms an independent ceria state.
  • the fuel electrode of the present invention is obtained.
  • fine B-doped ceria grains are formed in the sintered joint. It was concentrated that it was the thickest deposit concentrated in the surrounding gap.
  • the samarium strontium cobaltite-based air electrode raw material powder prepared in (d) above is mixed with an organic binder solution in which polybutyral and N-dioctyl phthalate are dissolved in a toluene-ethanol mixed solvent to obtain a slurry.
  • the slurry was formed on the other surface of the lanthanum gallate electrolyte on which the fuel electrode was baked, and formed into a thickness of 30 ⁇ m by screen printing. After drying, the slurry was dried at 1100 ° C in air. The air electrode was formed and baked by heating for an hour.
  • the power generation cell for the solid electrolyte fuel cell of the present invention (hereinafter referred to as the power generation cell of the present invention) comprising the solid electrolyte, the fuel electrode and the air electrode is manufactured, and the power generation cell of the present invention obtained is obtained.
  • a lmm-thick porous N current electrode current collector is laminated on the fuel electrode of the present invention.
  • a current collector was stacked, and a separator was stacked on each of the fuel electrode current collector and the air electrode current collector, thereby producing a solid electrolyte fuel cell of the present invention having the configuration shown in FIG.
  • a conventional solid oxide fuel cell was fabricated by the method shown below. First, prepare 1N-nickel nitrate aqueous solution, 1N-cerium nitrate aqueous solution and 1N-samarium nitrate aqueous solution, respectively, so that NiO and (Ce Sm) 0 are 60:40 by volume ratio.
  • a power generation cell was manufactured in the same manner as in Example 1.
  • the fuel electrode formed in the power generation cell had a network structure in which samarium-doped ceria (SDC) surrounded the porous skeleton structure nickel surface.
  • SDC samarium-doped ceria
  • Example 1 Using the solid electrolyte fuel cell of Example 1 and the solid electrolyte fuel cell of Conventional Example 1 according to the present invention thus obtained, a power generation test was conducted under the following conditions, and the results were The results are shown in Table 1.
  • Oxidant gas air
  • the battery life is determined when the output voltage drops from 0.8V to 0.6V for a long time under the power generation conditions, and the time until the output voltage drops to 0.6V is also measured. Was reduced to 3 ⁇ 4kl.
  • a lanthanum gallate-based solid electrolyte raw material powder was produced.
  • the lanthanum gallate-based solid electrolyte raw material powder is mixed with a toluene-ethanol mixed solvent with an organic binder solution in which polyvinylptylal and N-phthalate are dissolved to form a slurry, formed into a thin plate by the doctor blade method, and cut into a circle. After that, it was heated and held in air at 1450 ° C for 6 hours and sintered to produce a disc-shaped lanthanum gallate solid electrolyte plate with a thickness of 200 m and a diameter of 120 mm.
  • nickel oxide powder having an average particle size of 7 ⁇ m was mixed with an organic binder solution in which polybutyral and N dioctyl phthalate were dissolved in a toluene-ethanol mixed solvent. Apply the slurry to one surface of the lanthanum gallate solid electrolyte by the screen printing method so that the average thickness is 30 ⁇ m, and heat dry to evaporate the organic binder solution. Then, a nickel porous body layer was formed on the surface of the lanthanum gallate solid electrolyte plate by sintering by heating at 1250 ° C. for 3 hours in air.
  • the slurry having the ethanol solution power containing the ultrafine powder of SDC is impregnated into the nickel porous body layer on the surface of the previously prepared lanthanum gallate solid electrolyte plate, and kept in this state for 0.5 hours.
  • the ethanol solution is evaporated by heating to 100 ° C, and then calcined in air at 700 ° C, so that it is shown on one side of the lanthanum gallate solid electrolyte.
  • the fuel electrode shown in Fig. 3 was formed by baking.
  • the average particle diameter is 60 nm. I understood.
  • the samarium strontium cobaltite-based air electrode raw material powder is mixed with an organic noinder solution in which polybutyral and N-dioctyl phthalate are dissolved in a toluene-ethanol mixed solvent.
  • a slurry was prepared, this slurry was formed on the other surface of the lanthanum gallate solid electrolyte opposite the fuel electrode by screen printing to a thickness of 30 m, dried, and then dried in air at 1100 ° C.
  • the electrode was molded and baked for 5 hours.
  • a power generation cell for a solid electrolyte fuel cell of the present invention (hereinafter referred to as the power generation cell of the present invention) comprising the solid electrolyte, the fuel electrode and the air electrode thus obtained is manufactured and the present invention obtained.
  • An anode current collector made of lmm thick porous nickel is laminated on the fuel electrode of the power generation cell, while a porous silver force of 1.2 mm thick is formed on the air electrode of the power generation cell of the present invention.
  • An air electrode current collector was laminated, and a separator was laminated on the fuel electrode current collector and the air electrode current collector to produce a solid electrolyte fuel cell of the present invention.
  • a conventional solid oxide fuel cell was fabricated by the method shown below. First, prepare a 1N-nickel nitrate aqueous solution, a 1N-cerium nitrate aqueous solution, and a 1N-samarium nitrate aqueous solution so that NiO and (Ce Sm) 0 are 60:40 in volume ratio.
  • a slurry is prepared using this oxide composite powder, applied to one surface of a lanthanum gallate solid electrolyte prepared using this slurry, and sintered to form a fuel electrode, and further an air electrode is formed.
  • a power generation cell was manufactured. Conventionally, a fuel electrode current collector is laminated on one side of this power generation cell and a separator is further laminated thereon, while an air electrode current collector is laminated on the other side of the conventional power generation cell and a separator is further laminated.
  • a solid electrolyte fuel cell was fabricated.
  • Oxidant gas air
  • the solid electrolyte fuel cell of Example 2 and the solid electrolyte fuel cell of Conventional Example 2 are the same except for the configuration of the fuel electrode.
  • the solid electrolyte fuel cell of Example 2 was superior to the solid electrolyte fuel cell of Example 2 in terms of load current density, fuel utilization, cell voltage, output, output density, and power generation efficiency. It can be seen that the value is shown.
  • the lanthanum gallate solid electrolyte raw material powder is mixed with a toluene-ethanol mixed solvent with an organic binder solution in which polyvinylptylal and N-dioctyl phthalate are dissolved to form a slurry, formed into a thin plate by the doctor blade method, and cut into a circle. After that, it was heated and held in air at 1450 ° C for 6 hours and sintered to produce a disc-shaped lanthanum gallate solid electrolyte plate having a thickness of 200 m and a diameter of 120 mm.
  • SDC Ceria doped with 8 ⁇ m samarium
  • the obtained SDC powder was added to ethylene glycol in the order of polybutyropyrrolidone, ruthenium chloride, and SDC powder, and after stirring, the mixture was further stirred while raising the temperature to obtain a ruthenium metal supported mixed solution.
  • the obtained ruthenium metal-supported mixed solution was repeatedly washed by centrifugal separation to produce a slurry of the fuel electrode material of the present invention comprising ruthenium metal-supported SDC (hereinafter Ru-supported SDC t ⁇ ⁇ ). .
  • the slurry of the fuel electrode material of the present invention was applied to one surface of the lanthanum gallate solid electrolyte plate prepared in advance to a thickness of 30 m by a screen printing method, dried, and then dried in air.
  • the fuel electrode was molded and baked at 5 ° C for 5 hours.
  • reagent grade powders of acid samarium, strontium carbonate, and acid cobalt are prepared, and weighed so as to have a composition represented by (Sm Sr) CoO, and mixed with a ball mill.
  • This samarium strontium cobaltite air electrode raw material powder is mixed with a toluene-ethanol mixed solvent with an organic noder solution in which polybutyral and N-dioctyl phthalate are dissolved to produce a slurry, and this slurry is a lanthanum gallate solid. Molded to the thickness of 30 m by the screen printing method on the other side opposite to the electrolyte fuel electrode, dried, then heated and held in air at 1100 ° C for 5 hours to form the air electrode 'I baked it.
  • the power generation cell for the solid electrolyte fuel cell of the present invention (hereinafter referred to as the power generation cell of the present invention) comprising the solid electrolyte, the fuel electrode and the air electrode thus obtained is manufactured and the present invention obtained
  • An anode current collector made of lmm thick porous nickel is laminated on the fuel electrode of the power generation cell, while a porous silver force of 1.2 mm thick is formed on the air electrode of the power generation cell of the present invention.
  • An air electrode current collector was laminated, and a separator was laminated on the fuel electrode current collector and the air electrode current collector to produce a solid electrolyte fuel cell of the present invention.
  • Example 3 The SDC powder produced in Example 3 and NiO powder were mixed to produce a slurry, and this slurry was applied to one side of the lanthanum gallate solid electrolyte plate produced in Example 3 to a thickness of 30 m by screen printing. After coating and drying, a fuel electrode composed of SDC (hereinafter Ni—SDC) mixed with NiO powder by heating at 1100 ° C for 5 hours in air is formed and burned. A conventional solid oxide fuel cell was produced in the same manner as in Example 3.
  • Ni—SDC SDC
  • Example 3 Using the solid electrolyte fuel cell of Example 3 and the solid electrolyte fuel cell of Conventional Example 3 according to the present invention thus obtained, a power generation test was performed under the following conditions.
  • Fuel gas Hydrogen (containing 5% hydrocarbon),
  • Oxidant gas air
  • Power generation cell of the present invention 0.810 27.7 0.245 45.3 Solid electrolyte fuel cell (Ru supported SDC)
  • the solid electrolyte fuel cell of Example 3 and the solid electrolyte fuel cell of Conventional Example 3 are the same except for the configuration of the fuel electrode.
  • the solid electrolyte type fuel cell of Example 3 having a power generation cell using Ru-supported SDC as a fuel electrode is a solid electrolyte type fuel cell of Conventional Example 3 having a power generation cell using ordinary Ni-SDC as a fuel electrode. It can be seen that the cell voltage, output, output density, and power generation efficiency all show superior values.
  • GDC gadolinium
  • the obtained GDC powder was added to ethylene glycol in the order of polybutyropyrrolidone, ruthenium chloride, and GDC powder. After stirring, the temperature was raised and the mixture was further stirred to obtain a ruthenium metal supported mixture. A solution was prepared, and the obtained ruthenium metal-supported mixed solution was repeatedly washed by centrifugation to prepare a slurry of the fuel electrode material of the present invention comprising ruthenium metal-supported GDC (hereinafter referred to as Ru-supported GD Ct). .
  • the slurry of the fuel electrode material of the present invention was applied to one surface of the lanthanum gallate solid electrolyte plate produced in Example 3 to a thickness of 30 m by screen printing and dried. , Except for heating and holding at 1100 ° C for 5 hours in the air to form and burn the fuel electrode A power generation cell of the present invention was manufactured in the same manner as in Example 3, and a solid electrolyte fuel cell of the present invention was manufactured using this power generation cell of the present invention.
  • a slurry was prepared by mixing the GDC powder prepared in Example 4 and NiO powder, and this slurry was applied to one side of the lanthanum gallate solid electrolyte plate prepared in Example 3 to a thickness of 30 m by screen printing. After coating and drying, a fuel electrode made of GDC (hereinafter referred to as Ni—GDC) mixed with NiO powder by heating and holding at 1100 ° C for 5 hours in air is formed and burned.
  • Ni—GDC GDC
  • a conventional power generation cell was produced in the same manner as in Example 3, and a conventional solid electrolyte fuel cell was produced using this conventional power generation cell.
  • Example 4 Using the solid electrolyte fuel cell of Example 4 and the solid electrolyte fuel cell of Conventional Example 4 according to the present invention thus obtained, a power generation test was conducted under the same conditions as in Example 3. The cell voltage, output, power density and power generation efficiency were measured, and the results are shown in Table 4.
  • the solid electrolyte fuel cell of Example 4 and the solid electrolyte fuel cell of Conventional Example 4 differ only in the configuration of the fuel electrode, and the other configurations are the same.
  • the solid electrolyte fuel cell of Example 4 having a power generation cell using Ru-supported GDC as a fuel electrode is a solid electrolyte fuel cell of Conventional Example 4 having a power generation cell using ordinary Ni-GDC as a fuel electrode. It can be seen that the cell voltage, output, output density, and power generation efficiency all show superior values.
  • LDC Lanthanum-doped ceria
  • the obtained LDC powder was added to ethylene glycol in the order of polyvinylpyrrolidone, ruthenium chloride, and LDC powder. After stirring, the mixture was further stirred while raising the temperature to obtain a ruthenium metal supported mixed solution. The obtained ruthenium metal-supported mixed solution was repeatedly washed by centrifugal separation to produce a slurry of the fuel electrode material of the present invention comprising ruthenium metal-supported LDC (hereinafter Ru-supported LDC and V). .
  • Ru-supported LDC and V ruthenium metal-supported LDC
  • the slurry of the fuel electrode material of the present invention was applied to one side of the lanthanum gallate solid electrolyte plate prepared in Example 3 to a thickness of 30 m by screen printing and dried.
  • the power generation cell of the present invention was produced in the same manner as in Example 3 except that the fuel electrode was formed and baked in the air at 1100 ° C for 5 hours, and the present invention solid was produced using this power generation cell of the present invention.
  • An electrolyte fuel cell was produced.
  • a slurry was prepared by mixing the LDC powder prepared in Example 5 and NiO powder, and this slurry was applied to one side of the lanthanum gallate solid electrolyte plate prepared in Example 3 to a thickness of 30 m by screen printing. After coating and drying, the fuel electrode is made of LDC (Ni— LDC) mixed with NiO powder by heating at 1100 ° C for 5 hours in the air.
  • LDC Ni— LDC
  • NiO powder Ni— LDC
  • a conventional power generation cell was produced in the same manner as in Example 3, and a conventional solid oxide fuel cell was produced using this power generation cell of the present invention.
  • Example 5 Using the thus obtained solid oxide fuel cell of Example 5 and the solid electrolyte fuel cell of Conventional Example 5 according to the present invention, a power generation test was conducted under the same conditions as in Example 3. The cell voltage, output, power density and power generation efficiency were measured and the results are shown in Table 5.
  • the solid electrolyte fuel cell of Example 5 and the solid electrolyte fuel cell of Conventional Example 5 are the same except for the configuration of the fuel electrode.
  • the solid electrolyte fuel cell of Example 5 having a power generation cell using Ru-supported LDC as a fuel electrode is a solid electrolyte fuel cell of Conventional Example 5 having a power generation cell using ordinary Ni-LDC as a fuel electrode. It can be seen that the cell voltage, output, output density, and power generation efficiency all show superior values.
  • YDC Ceria
  • the obtained YDC powder was added to ethylene glycol in the order of polyvinylpyrrolidone, ruthenium chloride, and YDC powder. After stirring, the mixture was further stirred while raising the temperature to obtain a ruthenium metal-supported mixed solution. The obtained ruthenium metal-supported mixed solution was repeatedly washed by centrifugal separation to prepare a slurry of the fuel electrode material of the present invention composed of YDC supporting ruthenium metal (hereinafter Ru-supported YDC t ⁇ ⁇ ).
  • the slurry of the fuel electrode material of the present invention was applied to one surface of the lanthanum gallate solid electrolyte plate produced in Example 3 to a thickness of 30 m by screen printing and dried.
  • the power generation cell of the present invention was produced in the same manner as in Example 3 except that the fuel electrode was formed and baked in air at 1100 ° C for 5 hours, and the present power generation cell was used. A bright solid electrolyte fuel cell was fabricated.
  • the YDC powder and NiO powder prepared in Example 6 were mixed to prepare a slurry, and this slurry was applied to one side of the lanthanum gallate solid electrolyte plate prepared in Example 3 to a thickness of 30 m by screen printing. After coating and drying, a fuel electrode made of YDC (Ni-YDC) mixed with NiO powder by heating at 1100 ° C for 5 hours in air is formed and burned. A conventional power generation cell was produced in the same manner as in Example 3, and a conventional solid electrolyte fuel cell was produced using this conventional power generation cell.
  • Example 6 Using the thus obtained solid oxide fuel cell of Example 6 and the solid electrolyte fuel cell of Conventional Example 6 according to the present invention, a power generation test was carried out under the same conditions as in Example 3. The cell voltage, output, power density and power generation efficiency were measured and the results are shown in Table 6.
  • the solid electrolyte fuel cell of Example 6 and the solid electrolyte fuel cell of Conventional Example 6 are the same except for the configuration of the fuel electrode.
  • the solid electrolyte fuel cell of Example 6 having a power generation cell using Ru-supported YDC as a fuel electrode is a solid electrolyte fuel cell of Conventional Example 6 having a power generation cell using ordinary Ni-YDC as a fuel electrode. It can be seen that the cell voltage, output, output density, and power generation efficiency all show superior values.
  • CDC Ceria (hereinafter referred to as CDC) CDC powder doped with 8 ⁇ m calcium was prepared.
  • the obtained CDC powder was added to ethylene glycol in the order of polyvinylpyrrolidone, ruthenium chloride, and CDC powder. After stirring, the mixture was further stirred while raising the temperature to obtain a ruthenium metal supported mixed solution. The obtained ruthenium metal-supported mixed solution was repeatedly washed by centrifugal separation to prepare a slurry of the fuel electrode material of the present invention comprising ruthenium metal-supported CDC (hereinafter Ru-supported CDC t ⁇ ⁇ ).
  • the slurry of the fuel electrode material of the present invention was applied on one surface of the lanthanum gallate solid electrolyte plate produced in Example 3 to a thickness of 30 m by screen printing and dried.
  • the power generation cell of the present invention was produced in the same manner as in Example 3 except that the fuel electrode was formed and baked in air at 1100 ° C. for 5 hours. An electrolyte fuel cell was produced.
  • a slurry was prepared by mixing the CDC powder and NiO powder prepared in Example 7 and this slurry was applied to one side of the lanthanum gallate solid electrolyte plate prepared in Example 3 to a thickness of 30 m by screen printing. After coating and drying, a fuel electrode made of CDC (hereinafter referred to as Ni—CDC) mixed with NiO powder by heating at 1100 ° C for 5 hours in air is formed and burned.
  • Ni—CDC fuel electrode made of CDC
  • a conventional power generation cell was produced in the same manner as in Example 3, and a conventional solid electrolyte fuel cell was produced using this conventional power generation cell.
  • Example 7 Using the thus obtained solid electrolyte fuel cell of Example 7 and the solid electrolyte fuel cell of Conventional Example 7 according to the present invention, a power generation test was performed under the same conditions as in Example 3. The cell voltage, power, power density and power generation efficiency were measured and the results are shown in Table 7.
  • the power generation cell of the present invention 0.765 26. 1 0. 231
  • the solid electrolyte fuel cell of Example 7 and the solid electrolyte fuel cell of Conventional Example 7 are the same except for the configuration of the fuel electrode.
  • the solid electrolyte fuel cell of Example 7 having a power generation cell with a Ru-supported CDC as a fuel electrode is a solid electrolyte fuel cell of the conventional example 7 having a power generation cell with a normal Ni-CDC as a fuel electrode. It can be seen that the cell voltage, output, output density, and power generation efficiency all show superior values.
  • a lanthanum gallate-based solid electrolyte raw material powder was produced.
  • the lanthanum gallate-based solid electrolyte raw material powder is mixed with a toluene-ethanol mixed solvent with an organic binder solution in which polyvinylptylal and N-phthalate are dissolved to form a slurry, formed into a thin plate by the doctor blade method, and cut into a circle. After that, it was heated and held in air at 1450 ° C for 6 hours and sintered to produce a disc-shaped lanthanum gallate solid electrolyte plate with a thickness of 200 m and a diameter of 120 mm.
  • nickel oxide powder having an average particle size of 1 ⁇ m was mixed with an organic binder solution in which polybutyral and N-dioctyl phthalate were dissolved in a toluene-ethanol mixed solvent. Apply the slurry to one surface of the lanthanum gallate-based solid electrolyte so that the average thickness is 20 ⁇ m by screen printing, and heat dry to evaporate the organic binder solution. After letting in air, 1200 ° C A porous nickel oxide sintered body layer was formed on the surface of the lanthanum gallate solid electrolyte plate by sintering for 3 hours by heating.
  • SDC powder This ultrafine powder of SDC having this average particle size: 0.04 m is referred to as “SDC powder”).
  • a part of the resulting slurry containing the ultrafine powder of Ru-supported SDC was taken out and the particle diameter of the ultrafine powder of Ru-supported SDC was measured by a laser diffraction method.
  • the average particle diameter was 40 nm.
  • the slurry containing the ultrafine powder of Ru-supported SDC is impregnated in the porous nickel oxide sintered body layer on the surface of the previously prepared lanthanum gallate solid electrolyte plate, and is kept in a state of covering for 0.5 hour. After the suspension, the ultrafine powder of Ru-supported SDC is allowed to settle, and then the ethanol solution is evaporated by heating to 100 ° C. After that, the lanthanum gallate solid electrolyte is calcined in air at 700 ° C. A fuel electrode was baked and formed on one side of the substrate.
  • the samarium strontium cobaltite-based air electrode raw material The powder is mixed with an organic noinder solution in which polybutyral and N-dioctyl phthalate are dissolved in a toluene-ethanol mixed solvent to prepare a slurry, and this slurry is mixed with the other side of the lanthanum gallate solid electrolyte opposite to the fuel electrode.
  • a power generation cell for a solid electrolyte fuel cell of the present invention comprising an air electrode (hereinafter referred to as the present power generation cell) was produced.
  • a fuel electrode current collector made of porous nickel having a thickness of 1 mm was laminated on the fuel electrode of the obtained power generation cell of the present invention.
  • a thickness 1 was formed on the air electrode of the power generation cell of the present invention.
  • a solid electrolyte fuel cell of the present invention was produced by laminating an air electrode current collector made of 2 mm of porous silver and further laminating a separator on the fuel electrode current collector and the air electrode current collector.
  • a conventional solid oxide fuel cell was fabricated by the method shown below. First, prepare a 1N-nickel nitrate aqueous solution, a 1N-cerium nitrate aqueous solution, and a 1N-samarium nitrate aqueous solution so that NiO and (Ce Sm) 0 are 60:40 in volume ratio.
  • An oxide composite powder was obtained.
  • a slurry is prepared using this oxide composite powder, and applied to one surface of the lanthanum gallate solid electrolyte prepared previously using this slurry and sintered to form a fuel electrode, and further an air electrode is formed.
  • a power generation cell was manufactured. By laminating a fuel electrode current collector on one side of this power generation cell and further laminating a separator thereon, on the other hand, by laminating an air electrode current collector on the other side of the conventional power generation cell and laminating a separator. Conventionally, a solid oxide fuel cell was fabricated.
  • Example 8 The solid electrolyte fuel cell of Example 8 and the solid electrolyte fuel cell of Conventional Example 8 according to the present invention thus obtained were used under the following conditions (insufficient reforming as a fuel gas):
  • the power generation test was carried out under conditions using 5% hydrocarbon-containing hydrogen gas, and the results are shown in Table 8.
  • Oxidant gas air
  • the solid electrolyte fuel cell of Example 8 and the solid electrolyte fuel cell of Conventional Example 8 are the same except for the configuration of the fuel electrode.
  • the solid oxide fuel cell of Example 8 is the solid electrolyte of Conventional Example 8. It can be seen that the load current density, fuel utilization, cell voltage, output, output density, and power generation efficiency all show superior values compared to the fuel cell. It should be noted that porous nickel oxide having a skeletal structure of the fuel electrode was reduced to porous nickel having a skeletal structure by performing power generation using hydrogen gas that was insufficiently reformed as the fuel gas.
  • a lanthanum gallate-based solid electrolyte raw material powder was produced.
  • the above lanthanum gallate-based solid electrolyte raw material powder is mixed with toluene-ethanol mixed solvent polyvinyl butyral and phthalic acid N dioctyl.
  • the slurry is mixed with an organic binder solution in which water is dissolved to form a slurry, formed into a thin plate by the doctor blade method, cut into a circle, and then heated and held in air at 1450 ° C for 6 hours for sintering.
  • a disc-shaped lanthanum gallate solid electrolyte plate with a diameter of 200 m and a diameter of 120 mm was manufactured.
  • the slurry is mixed with an organic binder solution in which dibutylyl and N-dioctyl phthalate are dissolved to form a slurry, and this slurry is screen-printed with an average thickness of 20 m on one surface of the lanthanum gallate solid electrolyte.
  • heating and drying to evaporate the organic binder solution and then heating and holding in air at 1200 ° C for 3 hours, sintering is performed on the surface of the lanthanum gallate solid electrolyte plate.
  • a porous mixed sintered body layer was formed.
  • the slurry containing the Ru-supported SDC ultrafine powder is impregnated into the porous mixed sintered body layer on the surface of the previously prepared lanthanum gallate solid electrolyte plate, and this state is kept stationary for 0.5 hours. After precipitating Ru-supported SDC ultrafine powder, the ethanol solution is evaporated by heating to 100 ° C and then calcining in air at 700 ° C to obtain the lanthanum gallate solid electrolyte. A fuel electrode was baked on one side.
  • the samarium strontium cobaltite-based air electrode raw material powder is mixed with an organic noinder solution in which polybutyral and N-dioctyl phthalate are dissolved in a toluene-ethanol mixed solvent.
  • a slurry was prepared, this slurry was formed on the other surface of the lanthanum gallate solid electrolyte opposite the fuel electrode by screen printing to a thickness of 30 m, dried, and then dried in air at 1100 ° C.
  • the present power generation cell consisting of a solid electrolyte, a fuel electrode and an air electrode did.
  • a fuel electrode current collector made of porous nickel having a thickness of 0.74 mm was laminated on the fuel electrode of the obtained power generation cell of the present invention.
  • a solid electrolyte fuel cell of the present invention is formed by laminating an air electrode current collector made of porous silver of Omm, and further laminating a separator on the fuel electrode current collector and the air electrode current collector.
  • a conventional solid oxide fuel cell was fabricated by the method shown below. First, prepare 1N-nickel nitrate aqueous solution, 1N-cerium nitrate aqueous solution and 1N-samarium nitrate aqueous solution, respectively, so that the volume ratio of NiO and (Ce Sm) 0 is 60:40.
  • An oxide mixed powder was obtained.
  • a slurry is prepared using this oxide mixed powder, and applied to one side of the lanthanum gallate solid electrolyte prepared previously using this slurry and sintered.
  • a fuel electrode was formed, and an air electrode was further formed to manufacture a conventional power generation cell.
  • a fuel electrode current collector made of 1 mm thick porous nickel is laminated on one side of this conventional power generation cell, and a separator is laminated on the other side, while a thickness is formed on the other side of the conventional power generation cell. 1.
  • a conventional solid oxide fuel cell was fabricated by laminating a 2 mm porous silver-powered air electrode current collector and further laminating a separator.
  • Example 9 Using the solid electrolyte fuel cell of Example 9 and the solid electrolyte fuel cell of Conventional Example 9 according to the present invention thus obtained, the following conditions (insufficient reforming as a fuel gas) The power generation test was carried out under conditions using 5% hydrocarbon-containing hydrogen gas, and the results are shown in Table 9.
  • Fuel gas Hydrogen (containing 5% hydrocarbon),
  • Oxidant gas air
  • the solid electrolyte fuel cell of Example 9 and the solid electrolyte fuel cell of Conventional Example 9 are the same except for the configuration of the fuel electrode.
  • the solid oxide fuel cell of Example 9 is the same as the solid battery of Conventional Example 9. It can be seen that the load current density, fuel utilization, cell voltage, output, output density, and power generation efficiency are excellent!
  • the solid oxide fuel cell incorporating the power generation cell provided with the fuel electrode of the present invention can further increase its service life.
  • power generation efficiency does not decrease even when power generation is performed using insufficiently reformed hydrogen gas in which a very small amount of hydrocarbon gas remains as fuel gas, so it is related to the purity of hydrogen gas as fuel gas. Power generation with high efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明の課題は、固体電解質としてランタンガレート系電解質を用いた固体電解質形燃料電池用発電セル、特に発電セルにおける燃料極の構造を提供することにある。本発明の第1の態様に係る燃料極は、ニッケル粒(1)が相互に焼結してネットワークを組んでいる骨格構造を有する多孔質ニッケルの骨格表面に、平均粒径:100nm以下のB(ただし、BはSm、Gd、Y、Caの内の1種または2種以上を示す)ドープされたセリア粒(2)が付着している固体酸化物形燃料電池用発電セルの燃料極である。前記セリア粒(2)はニッケル粒(1)が相互に焼結し結合している骨格構造ネック部分(3)の周囲に最も高密度で付着しリング状を形成している。

Description

固体電解質形燃料電池用発電セルおよびその燃料極の構造 技術分野
[0001] この発明は、固体電解質としてランタンガレート系固体電解質を用いた固体電解質 形燃料電池用発電セルに関するものであり、特に固体電解質形燃料電池用発電セ ルの燃料極の構造に関するものである。
背景技術
[0002] 一般に、固体電解質形燃料電池は、水素ガス、天然ガス、メタノール、石炭ガスな どを燃料とすることができるので、発電における石油代替エネルギー化を促進するこ とができ、さらに廃熱を利用することができるので省資源および環境問題の観点から も注目されている。この固体電解質形燃料電池の構造は、図 15に示されるように、一 般に、酸化物からなる固体電解質の片面に空気極を積層し、固体電解質のもう一方 の片面に燃料極を積層してなる構造を有して!/、る発電セルと、この発電セルの空気 極の外側に空気極集電体を積層させ、一方、発電セルの燃料極の外側に燃料極集 電体を積層させ、前記空気極集電体および燃料極集電体の外側にそれぞれセパレ 一タを積層させた構造を有している。この固体電解質形燃料電池は、一般に 800〜 1000°Cで作動する力 近年、作動温度が 600〜800°Cの低温タイプのものが提案 されている。
[0003] 前記低温タイプの固体電解質形燃料電池に組込まれる固体電解質の一つとして、 ランタンガレート系酸ィ匕物イオン伝導体を用いることが知られており、このランタンガレ ート系酸化物イオン伝導体は、一般式: La Sr Ga Mg A O (式中、 A=Co、 l-X X 1-Y-Z Y Z 3
Fe、 Niゝ Cuの 1種または 2種以上、 X=0. 05〜0. 3、 Y=0〜0. 29、 Ζ = 0. 01〜0 . 3、 Y+Z = 0. 025-0. 3)で表される酸化物イオン伝導体であることが知られてい る (特許文献 1参照)。
[0004] また、前記燃料極としては、 Β (ただし、 Βは Sm、 Gd、 Y、 Caの 1種または 2種以上) をドープしたセリア(以下、「Bドープセリア」という)とニッケル力もなる焼結体を用いる ことが知られており、この Bドープセリアは、一般式: Ce B O (式中、 Bは Sm、 Gd 、 Y、 Caの 1種または 2種以上、 mは 0<m≤0. 4)で表されること、および Bドープセ リアとニッケル力 なる焼結体は、多孔質な骨格構造を有するニッケルの表面に大粒 径の Bドープセリア粒が前記多孔質な骨格構造のニッケル表面を取り囲むようにネッ トワーク構造を形成してニッケル表面に固着して ヽることが知られて ヽる(特許文献 2 参照)。
[0005] さらに、固体電解質形燃料電池用発電セルを構成する燃料極として、一般式: Ce
1-
B O (式中、 Bは Sm、 Gd、 Y、 Caの 1種または 2種以上、 mは 0<m≤0. 4)で表さ m m 2
れる Bドープセリアとニッケルとの焼結体からなり、この Bドープセリアとニッケルの焼 結体における Bドープセリア粒とニッケル粒の粒径が厚さ方向に変化し、その粒径は 固体電解質に近いほど微細にした傾斜粒径を有する構造の燃料極が知られている( 特許文献 3参照)。
[0006] 一般に、前記ランタンガレート系酸化物イオン伝導体を固体電解質とし、前記固体 電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成 形された固体電解質形燃料電池用発電セルにお!ヽて、前記燃料極における反応は 主として三相界面 (燃料極と電解質と燃料ガスが共存する部分)で起ることから、固体 電解質形燃料電池用発電セルにおける三相界面が一層広くなるようにすればょ 、こ とが知られており、そのために前記特許文献 3記載の固体電解質形燃料電池用発電 セルでは、燃料極の Bドープセリアとニッケルの焼結体における Bドープセリア粒と- ッケル粒の粒径を厚さ方向に変化させ、その粒径は固体電解質に近いほど微細にし た粒径傾斜を有する構造にして三相界面を一層広くさせようとしている。
[0007] しかし、特許文献 3記載の燃料極は固体電解質との界面は広がるものの、 Bドープ セリア粒とニッケル粒の粒径が固体電解質に近 、ほど微細であるために三次元的広 力 Sりに乏しぐそのために燃料ガスの透過性が悪ぐ結果的に燃料ガスとの接触面積 が少なくなり、その為に発電に必要な三相界面を実質的に広くすることができず、三 相界面が期待したほど広がることがないことから従来の燃料極を組み込んだ発電セ ルを有する固体電解質形燃料電池は十分な特性が得られて!/ヽな ヽ。
[0008] さらに、一般に固体電解質形燃料電池の燃料ガスとして純水素ガスを使用すること が最も好ましいが、純水素ガスは比較的高価であるために、固体電解質形燃料電池 用燃料ガスとして一般に炭化水素ガスを改質して製造した水素ガスが広く使用され ている。しかし、力かる炭化水素ガスを改質して作製した水素ガスには十分な改質が なされずに微量の炭化水素ガスが残留して 、るために混入して 、ることが多く、かか る微量の炭化水素ガスが混入している水素燃料ガスを用いて発電を行うと、発電効 率が低下する。したがって、微量の炭化水素ガスが混入している水素燃料ガスを用 いても発電効率を低下させることのない固体電解質形燃料電池が求められていた。
[0009] また、現在の固体電解質形燃料電池は短期間の使用で出力電圧が低下するため に使用寿命が短ぐそのために出力電圧が低下することなく一層長期間使用できる 固体電解質形燃料電池が求められていた。
特許文献 1:特開平 11― 335164号公報
特許文献 2:特開平 11― 297333号公報
特許文献 3:特開 2004 - 55194号公報
発明の開示
[0010] [本発明の第 1の態様]
本発明者等は、上述のような観点から、一層長期間使用できる固体電解質形燃料 電池を開発すべく研究を行った。その結果、
(a)固体電解質形燃料電池の寿命を短くする原因の一つとして、固体電解質形燃料 電池を長期間使用すると、ニッケル粒が相互に焼結してネットワークを組んで 、る骨 格構造の多孔質ニッケルにおけるニッケル粒の焼結が一層進行し、ニッケル粒が一 体化して粗大化するために気孔率が低下してニッケルの比表面積が低下し、そのた めに固体電解質形燃料電池の特性が低下して寿命となること、
(b)このニッケル粒相互の焼結によるニッケル粒粗大化を阻止するためには、 -ッケ ル粒が相互に焼結し結合して断面積が狭くなつている骨格構造の部分 (以下、骨格 構造ネック部分という)の周囲に Bドープされたセリア粒が骨格構造の他の部分に比 ベて高密度に分布し、骨格構造ネック部分に最も高密度に分布し付着させると、ニッ ケル粒相互の焼結による粒成長が阻止されてニッケル粒の粗大化が阻止されること 力も多孔質ニッケルにおける比表面積の減少速度が小さくなつて固体電解質形燃料 電池の寿命が一層向上する、 t 、う研究結果が得られたのである。 [0011] 本発明の第 1の態様は、力かる研究結果に基づいてなされたものであって、
(1)ニッケル粒が相互に焼結してネットワークを組んで ヽる骨格構造を有する多孔質 ニッケルの骨格表面に、 B (ただし、 Bは Sm、 La、 Gd、 Y、 Caの内の 1種または 2種 以上を示す)ドープされたセリア粒が付着している固体電解質形燃料電池用発電セ ルの燃料極において、前記セリア粒は、骨格構造ネック部分の周囲に最も高密度に 分布し付着して!/ヽる固体電解質形燃料電池用発電セルの燃料極、に特徴を有する ものである。
[0012] 前記ネットワークを組んで 、る骨格構造の多孔質ニッケルにおける骨格表面に付 着している Bドープされたセリア粒は微細であるほど骨格構造ネック部分の周囲に形 成された隙間部分に侵入しやすぐ骨格構造ネック部分の周囲に最も高密度で分布 させ厚く堆積させて付着させることができる。したがって、この発明で使用する Bドー プされたセリア粒は微細であるほど好ましぐ平均粒径: lOOnm以下(一層好ましくは 、 20nm以下)の範囲内にあることが好ましい。かかる微細な Bドープされたセリア粒 は骨格構造ネック部分の周囲に最も高密度で分布させ厚く堆積させたのち焼結する と、微細な Bドープされたセリア粒は相互に焼結し、骨格構造ネック部分を取り巻いて リング形状になる。したがって、この発明は、
(2)前記骨格構造ネック部分の周囲に最も高密度に分布し付着している Bドープされ たセリア粒は、平均粒径: lOOnm以下の Bドープされた微細なセリア粒が骨格構造 ネック部分に凝集し互いに焼結して前記骨格構造ネック部分をリング状に取り巻いて V、る前記(1)記載の固体電解質形燃料電池用発電セルの燃料極、に特徴を有する ものである。
[0013] この発明において使用する Bドープされたセリア粒は、一般式: Ce B O (式中、
1-m m 2
Bは Sm、 La、 Gd、 Y、 Ca内の 1種または 2種以上、 mは 0<m≤0. 4)で表される Bド ープされたセリア粒が使用され、この Bドープされたセリア粒はすでに知られている物 質である。したがって、この発明は、
(3)前記(1)または(2)記載の Bドープされたセリア粒は、一般式: Ce B O (式中
1-m m 2
、 Bは Sm、 La、 Gd、 Y、 Ca内の 1種または 2種以上、 mは 0<m≤0. 4)で表される B ドープされたセリアからなる固体電解質形燃料電池用発電セルの燃料極、に特徴を 有するものである。
[0014] この発明は、前記(1)、(2)または(3)記載の燃料極を組込んで作製した固体電解 質形燃料電池用発電セルの発明を含むものである。したがって、この発明は、
(4)ランタンガレード系酸化物イオン伝導体からなる電解質と、前記電解質の一方の 面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形されている固 体電解質形燃料電池用発電セルにぉ ヽて、前記燃料極は前記(1)、 (2)または(3) 記載の燃料極である固体電解質形燃料電池用発電セル、に特徴を有するものであ る。
[0015] この発明の前記固体電解質形燃料電池用発電セルで使用する前記ランタンガレ ート系酸化物イオン伝導体からなる電解質は、一般式: La Sr Ga Mg A O l-X X 1-Y-Z Y Z 3
(式中、 A=Co、 Fe、 Ni、 Cuの 1種または 2種以上、 X=0. 05〜0. 3、 Y=0〜0. 2 9、Ζ = 0. 01〜0. 3、Υ+Ζ = 0. 025〜0. 3)で表され、このランタンガレート系酸ィ匕 物イオン伝導体は一般に知られているものである。したがって、この発明は、
(5)前記ランタンガレート系酸ィ匕物イオン伝導体は、一般式: La Sr Ga Mg A l-X X 1-Y-Z Y
O (式中、 A=Co、 Fe、 Ni、 Cuの 1種または 2種以上、 X=0. 05〜0. 3、 Y=0〜
Ζ 3
0. 29、Ζ = 0. 01〜0. 3、Υ+Ζ=0. 025〜0. 3)で表される酸ィ匕物イオン伝導体で ある前記 (4)記載の固体電解質形燃料電池用発電セル、に特徴を有するものである
[0016] さらに、この発明は、前記 (4)または(5)記載の固体電解質形燃料電池用発電セル を組込んだ固体電解質形燃料電池も含むものである。したがって、この発明は、
(6)前記 (4)または(5)記載の固体電解質形燃料電池用発電セルを組込んだ固体 電解質形燃料電池、に特徴を有するものである。
[0017] この発明の燃料極を設けてなる発電セルを組込んだ固体電解質形燃料電池は、そ の使用寿命を一層高めることが可能となる。
[0018] [本発明の第 2の態様]
本発明者等は、一層の高出力の固体電解質形燃料電池を得るべく研究を行った 結果、次のような知見を得るに至った。
(a)—般式: Ce B O (式中、 Bは Sm、 Gd、 Y、 Caの 1種または 2種以上、 mは 0
i-m m 2 <m≤0. 4)で表される Bドープしたセリアが骨格構造を有する多孔質ニッケルの骨 格表面に固着した燃料極において、骨格構造を有する多孔質ニッケルの骨格表面 に従来よりも一層微細な Bドープしたセリア粒を固着させ、この一層微細な Bドープし たセリア粒は燃料極が固体電解質に接する界面およびその近傍の多孔質ニッケル の骨格表面に最も多く固着させた構造の燃料極を固体電解質に積層させた固体電 解質形燃料電池用発電セルは、三相界面を一層広くすることができる。
(b)前記多孔質ニッケルを作製するためのニッケル粒は 1〜: L0 μ mの従来と同じ力ま たは従来よりも比較的粗大なニッケル粒を使用して作製した多孔質ニッケルを採用 することが燃料ガスの透過性が向上するので好まし 、。
(c)前記多孔質ニッケルの骨格表面に固着して 、る Bドープしたセリア粒は、粒径が lOOnm未満の極めて微細な Bドープしたセリア粒であることが好ましい。
(d)前記固体電解質に接する界面およびその近傍の多孔質ニッケルの骨格表面に 極めて微細な Bドープしたセリア粒を最も多く固着させた部分は、固体電解質の表面 力も 10〜20 mの範囲の厚さにわたって形成されていることが好ましい。
本発明の第 2の態様は、力かる知見に基づいて成されたものであって、
(1)ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一 方の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形された固 体電解質形燃料電池用発電セルにおいて、前記燃料極は、一般式: Ce B O (式
1-m m 2 中、 Bは Sm、 Gd、 Y、 Caの 1種または 2種以上、 mは 0<m≤0. 4)で表される Bドー プしたセリアとニッケルの焼結体力 なり、この焼結体は、骨格構造を有する多孔質 ニッケルの骨格表面に Bドープしたセリア粒が固着しており、この Bドープしたセリア 粒は燃料極が固体電解質に接する界面およびその近傍の多孔質ニッケルの骨格表 面に最も多く固着して ヽる固体電解質形燃料電池用発電セル、
(2)前記多孔質ニッケルの骨格表面に固着している Bドープしたセリア粒は、粒径が lOOnm未満の微細な Bドープしたセリア粒である前記(1)記載の固体電解質形燃料 電池用発電セル、
(3)前記燃料極が固体電解質に接する界面およびその近傍の多孔質ニッケルの骨 格表面に Bドープしたセリア粒が最も多く固着している部分は、固体電解質の表面か ら 10〜20 μ mの範囲の厚さにわたって層状に形成されて!、る前記(1)または(2)記 載の固体電解質形燃料電池用発電セル、に特徴を有するものである。
[0020] この発明の燃料極を設けてなる発電セルを組込んだ固体酸ィ匕物型燃料電池は、 一層の高効率化が可能となる。
[0021] [本発明の第 3の態様]
本発明者等は、微量の炭化水素ガスが混入している水素燃料ガスを用いても発電 効率を低下させることのない固体電解質形燃料電池を開発すべく研究を行った。 その結果、ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電 解質の一方の面に多孔質の空気極を積層し、他方の面に多孔質の燃料極を積層し た固体電解質形燃料電池用発電セルにおいて、前記燃料極を、一般式: Ce B O
1— m m
(式中、 Bは Sm、 Gd、 La、 Y、 Caの 1種または 2種以上、 mは 0<m≤0. 4)で表さ
2
れる Bドープしたセリアにルテニウム金属を担持させてなる燃料極材料で構成した固 体電解質形燃料電池用発電セルを有する固体電解質形燃料電池は、従来の Bドー プしたセリアと NiO粉末を混合した燃料極を積層させた発電セルを有する固体電解 質形燃料電池に比べて発電効率が一層向上するという研究結果が得られたのであ る。
[0022] 本発明の第 3の態様は、力かる研究結果に基づいて成されたものであって、
(1)一般式: Ce B O (式中、 Bは Sm、 Gd、 La、 Y、 Caの 1種または 2種以上、 m
1— m m 2
は 0<m≤0. 4)で表される Bドープしたセリアにルテニウム金属を担持させてなる固 体電解質形燃料電池用発電セルにおける燃料極を構成する燃料極材料、
(2)ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一 方の面に空気極が形成され、他方の面に燃料極が成形された固体電解質形燃料電 池用発電セルにおいて、前記燃料極は、一般式: Ce B O (式中、 Bは Sm、 Gd、
1-m m 2
La、 Y、 Caの 1種または 2種以上、 mは 0<m≤0. 4)で表される Bドープしたセリアに ルテニウム金属を担持させてなる燃料極材料で構成されて 、る固体電解質形燃料 電池用発電セル、
(3)前記 (2)記載の固体電解質形燃料電池用発電セルを組み込んだ固体電解質形 燃料電池、に特徴を有するものである。 [0023] この発明の燃料極材料を用いて製造した燃料極を設けてなる発電セルを組込んだ 固体酸化物型燃料電池は、燃料ガスとして極微量の炭化水素ガスが残存する水素 ガスを用いて発電しても発電効率を低下させることがな 、ことから、燃料ガスの純度 に関係なく高効率で発電することができる。
[0024] [本発明の第 4の態様]
さらに、本発明者等は、微量の炭化水素ガスが混入している水素燃料ガスを用いて も発電効率を低下させることのない固体電解質形燃料電池を開発すべく研究を行つ た結果、次のような知見を得るに至った。
(a)ネットワークを組んで 、る骨格構造を有する多孔質ニッケルの骨格表面に、一般 式: Ce B O (式中、 Bは Sm、 Gd、 Y、 Ca内の 1種または 2種以上、 mは 0<m≤0
1— m m 2
. 4)で表される Bドープセリアにルテニウム金属を担持させてなる燃料極材料 (以下、 「Ru担持 Bドープセリア」 t 、う)の粒子が焼着して 、る燃料極を組み込んだ固体酸 化物形燃料電池は、十分な改質がなされずに微量の炭化水素ガスが残留して 、る 水素ガスを燃料ガスとして使用しても出力が落ちることがない。
(b)この Ru担持 Bドープセリア粒を従来よりも一層微細化し、この極めて微細な Ru担 持 Bドープセリア粒を燃料極が固体電解質に接する界面およびその近傍の多孔質- ッケルの骨格表面に最も多く固着させた構造を有する燃料極を固体電解質に積層さ せた固体電解質形燃料電池用発電セルは、三相界面を一層広くすることができ、さ らに Ru担持 Bドープセリアを燃料極材料として使用することにより微量の炭化水素ガ スが混入して ヽる水素ガスを燃料ガスとして用いても発電効率を低下させることがな い。
(c)前記多孔質ニッケルの骨格表面に固着して 、る Ru担持 Bドープセリア粒は、粒 径が lOOnm未満の極めて微細な Ru担持 Bドープセリア粒であることが好まし!/、。
(d)前記固体電解質に接する界面およびその近傍の多孔質ニッケルの骨格表面に 極めて微細な Ru担持 Bドープセリア粒を最も多く固着させた部分は、固体電解質の 表面から 10〜20 mの範囲の厚さにわたって形成されていることが好ましい。
[0025] 本発明の第 4の態様は、力かる知見に基づいて成されたものであって、
(1)ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一 方の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形された固 体電解質形燃料電池用発電セルにおいて、前記燃料極は、骨格構造を有する多孔 質ニッケルの骨格表面に RU担持 Bドープセリア粒が固着しており、この Ru担持 Bドー プセリア粒は燃料極が固体電解質に接する界面およびその近傍の多孔質ニッケル の骨格表面に最も多く固着して!/ヽる固体電解質形燃料電池用発電セル、
(2)前記多孔質ニッケルの骨格表面に固着して 、る Ru担持 Bドープセリア粒は、粒 径が lOOnm未満の微細な Ru担持 Bドープセリア粒である前記(1)記載の固体電解 質形燃料電池用発電セル、
(3)前記燃料極が固体電解質に接する界面およびその近傍の多孔質ニッケルの骨 格表面に Ru担持 Bドープセリア粒が最も多く固着して!/、る部分は、固体電解質の表 面から 10〜20 μ mの範囲の厚さにわたつて層状に形成されて 、る前記(1)または( 2)記載の固体電解質形燃料電池用発電セル、に特徴を有するものである。
[0026] この発明の燃料極を設けてなる発電セルを組込んだ固体酸ィ匕物型燃料電池は、 燃料ガスとして極微量の炭化水素ガスが残留する改質不十分な水素ガスを用いて発 電しても発電効率を低下させることがな 、ことから、燃料ガスである水素ガスの純度に 関係なく高効率で発電することができる。
[0027] [本発明の第 5の態様]
さらに、本発明者等は、微量の未改質炭化水素ガスが混入している水素ガスを燃 料ガスとして用いても発電効率を低下させることのない固体電解質形燃料電池を開 発すべく研究を行った結果、次のような知見を得るに至った。
(a) BDC粒と酸ィ匕ニッケル粒がネットワークを組んで 、る骨格構造を有する多孔質混 合焼結体の骨格表面に、一般式: Ce B O (式中、 Bは Sm、 Gd、 Y、 Ca内の 1種
1— m m 2
または 2種以上、 mは 0<m≤0. 4)で表される BDCにルテニウム金属を担持させて なる燃料極材料 (以下、「Ru担持 BDC」 t 、う)の粒子が焼着して 、る燃料極を組み 込んだ固体酸ィ匕物形燃料電池は、未改質の炭化水素ガスが微量残留して 、る水素 ガスを燃料ガスとして使用しても出力が落ちることがない。
(b)この Ru担持 BDC粒を従来よりも一層微細化し、この極めて微細な Ru担持 BDC 粒を燃料極が固体電解質に接する界面およびその近傍の多孔質混合焼結体の骨 格表面に最も多く固着させた構造を有する燃料極を固体電解質に積層させてなる固 体電解質形燃料電池用発電セルは、三相界面を一層広くすることができ、さらに Ru 担持 BDCを燃料極材料として使用することにより微量の未改質炭化水素ガスが混入 して 、る水素ガスを燃料ガスとして用いても発電効率を低下させることがな 、。
(c)前記多孔質混合焼結体の骨格表面に固着している Ru担持 BDC粒は、粒径が 1 OOnm未満の極めて微細な Ru担持 BDC粒であることが好ましい。
(d)前記固体電解質に接する界面およびその近傍の多孔質混合焼結体の骨格表面 に極めて微細な Ru担持 BDC粒を最も多く固着させた部分は、固体電解質の表面か ら 10〜20 mの範囲の厚さにわたって形成されていることが好ましい。
[0028] 本発明の第 5の態様は、力かる知見に基づいて成されたものであって、
(1)ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一 方の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形された固 体電解質形燃料電池用発電セルにおいて、前記燃料極は、 BDC粒と酸ィヒニッケル 粒がネットワークを組んでいる骨格構造を有する多孔質混合焼結体の骨格表面に R u担持 BDC粒が固着しており、この Ru担持 BDC粒は燃料極が固体電解質に接する 界面およびその近傍の多孔質混合焼結体の骨格表面に最も多く固着して!/、る固体 電解質形燃料電池用発電セル、
(2)前記多孔質混合焼結体の骨格表面に固着して!/、る Ru担持 BDC粒は、粒径が 1 OOnm未満の微細な Ru担持 BDC粒である前記(1)記載の固体電解質形燃料電池 用発電セル、
(3)前記燃料極が固体電解質に接する界面およびその近傍の多孔質混合焼結体の 骨格表面に Ru担持 BDC粒が最も多く固着している部分は、固体電解質の表面から 10-20 μ mの範囲の厚さにわたつて層状に形成されて 、る前記(1)または(2)記載 の固体電解質形燃料電池用発電セル、に特徴を有するものである。
[0029] この発明の燃料極を設けてなる発電セルを組込んだ固体酸ィ匕物型燃料電池は、 燃料ガスとして極微量の炭化水素ガスが残留する改質不十分な水素ガスを用いて発 電しても発電効率を低下させることがな 、ことから、燃料ガスである水素ガスの純度に 関係なく高効率で発電することができる。 図面の簡単な説明
[図 1]図 1は、本発明の第 1実施形態における燃料極の組織を示す説明図である。
[図 2A]図 2Aは、本発明の第 1実施形態における燃料極を製造する方法を示す説明 図である。
[図 2B]図 2Bは、本発明の第 1実施形態における燃料極を製造する方法を示す説明 図である。
[図 3]図 3は、本発明の第 2実施形態における燃料極の構成を説明するための断面 説明図である。
[図 4]図 4は、本発明の第 2実施形態における燃料極の製造方法を説明するための 断面説明図である。
[図 5]図 5は、本発明の第 2実施形態における燃料極の製造方法を説明するための 断面説明図である。
[図 6]図 6は、本発明の第 2実施形態における燃料極の製造方法を説明するための 断面説明図である。
[図 7]図 7は、本発明の第 4実施形態における燃料極の構成を説明するための断面 説明図である。
[図 8]図 8は、本発明の第 4実施形態における燃料極の製造方法を説明するための 断面説明図である。
[図 9]図 9は、本発明の第 4実施形態における燃料極の製造方法を説明するための 断面説明図である。
[図 10]図 10は、本発明の第 4実施形態における燃料極の製造方法を説明するため の断面説明図である。
[図 11]図 11は、本発明の第 5実施形態における燃料極の構成を説明するための断 面説明図である。
[図 12]図 12は、本発明の第 5実施形態における燃料極の製造方法を説明するため の断面説明図である。
[図 13]図 13は、本発明の第 5実施形態における燃料極の製造方法を説明するため の断面説明図である。 [図 14]図 14は、本発明の第 5実施形態における燃料極の製造方法を説明するため の断面説明図である。
圆 15]図 15は、固体電解質形燃料電池の説明図である。
符号の説明
1 ニッケル粒
2 Bドープしたセリア粒
3 骨格構造ネック部分
4 ランタンガレード電解質板
5 有機溶剤スラリー
6 リング
11 固体電解質
12 燃料極
13 Bドープしたセリア粒
14 多孔質ニッケル
15 界面
16 スラリー
17 有機溶剤
21 固体電解質
22 燃料極
23 Ru担持 Bドープセリア粒
24 多孔質ニッケル
24a 多孔質酸ィ匕ニッケル焼結体
25 界面
26 スラリー
27 有機溶剤
31 固体電解質
32 燃料極
33 Ru担持 BDC粒 34 酸化ニッケル粒
34a BDC粒
35 界 ϋί
36 スラリー
37 有機溶剤
38 多孔質混合焼結体
発明を実施するための最良の形態
[0032] [第 1実施形態]
この第 1実施形態は、本発明の第 1の態様に対応するものである。
この実施形態の固体電解質形燃料電池用発電セルにおける燃料極およびその製 造方法を、図 1、図 2Αおよび図 2Βに基づいて一層詳細に説明する。
[0033] 図 2Αおよび図 2Βは、この発明の固体電解質形燃料電池用発電セルにおける燃 料極の製造方法を模式的に描いたものである。まず、図 2Αに示されるように、ランタ ンガレード電解質板 4の上に、ニッケル粒 1とニッケル粒 1が相互に焼結して骨格構 造ネック部分 3を有する骨格構造の多孔質ニッケルを形成し、この骨格構造の多孔 質ニッケルに Βドープされたセリア粒 2を含む有機溶剤スラリー 5を含浸させる。この状 態では Βドープされたセリア粒 2は有機溶剤スラリー 5中に浮遊している。その後、有 機溶剤を蒸発させると、残った Βドープされたセリア粒 2が骨格構造ネック部分 3に濃 縮して付着する。その状態が図 2Βに示されている。この図 2Βに示される Βドープされ たセリア粒 2が骨格構造ネック部分 3に濃縮して付着している状態もこの発明に含ま れる。その後、焼結を行うと、骨格構造ネック部分 3の周囲の Βドープされたセリア粒 2 が焼結し結合して骨格構造ネック部分 3の周隨こリング 6を形成し、図 1に示されるよ うなこの発明の固体電解質形燃料電池用発電セルにおける燃料極が形成される。
[0034] このように、微細な Βドープしたセリア粒 2が骨格構造ネック部分 3の周囲にリング 6 を形成し骨格構造を有する燃料極を固体電解質形燃料電池の燃料極として使用す ると、固体電解質形燃料電池の運転を長時間行っても骨格構造ネック部分 3の周囲 に付着している Βドープしたセリア粒 2がニッケル粒 1の焼結による粗大化を阻止し、 ニッケルカゝらなる骨格構造の比表面積の減少が阻止され、この燃料極を組込んだ発 電セルを使用した固体電解質形燃料電池用発電セルの高特性が長期にわたって維 持される。
[0035] この発明の固体電解質形燃料電池用発電セルにおける燃料極は、 Bドープされた セリア粒が多孔質な骨格構造のニッケル表面に付着しているものである力 前記多 孔質な骨格構造のニッケル表面に付着して 、る Bドープされたセリア粒は、前記骨格 構造ネック部分に侵入することができる程度に微細な粒径を有することが好ましぐし たがって、平均粒径が lOOnm以下(一層好ましくは、 20nm以下)の微細な Bドープ されたセリア粒であることが好ましい、その理由は、 Bドープされたセリア粒の平均粒 径が lOOnmを越えるようになると、多孔質な骨格構造の骨格構造ネック部分の周囲 における隙間に Bドープされたセリア粒が充填しなくなり、ニッケル粒が粗大化して多 孔質な骨格構造の比表面積が減少するので好ましくない理由によるものである。しか し、 Bドープされたセリア粒の平均粒径が lnm未満になるとその取扱いが難しくなり、 コスト高となるので平均粒径が lnm以上の Bドープされたセリア粒を使用することが 好ましい。
[0036] この発明の固体電解質形燃料電池用発電セルにおける燃料極は、酸化ニッケル 粉と Bドープされたセリア微粉を含む有機溶媒液を混合し、さらに有機バインダー、分 散剤および界面活性剤と混合してスラリーとし、このスラリーをスクリーン印刷法により 前記板状のランタンガレート系電解質の上にスラリー膜を成形し乾燥させ、次いで、 空気中で加熱保持して作製することができる。この時有機バインダー、分散剤および 界面活性剤の添加量および種類を変えることにより骨格構造ネック部分の周囲の隙 間部分に堆積する Bドープされたセリア微粉の量を変えることができる。
[0037] [第 2実施形態]
この第 2実施形態は、本発明の第 2の態様に対応するものである。
この実施形態の固体電解質形燃料電池用発電セルを図面に基づいて具体的に説 明する。
図 3は、この発明の固体電解質形燃料電池用発電セルにおける固体電解質と燃料 極の接合部分を示した断面説明図であり、空気極の記載は省略してある。図 3にお いて、 11は固体電解質、 12は燃料極、 13は Bドープしたセリア粒、 14は多孔質-ッ ケルである。燃料極 12は、一般式: Ce B O (式中、 Bは Sm、 Gd、 Y、 Caの 1種ま
1— m m 2
たは 2種以上、 mは 0<m≤0. 4)で表される Bドープしたセリア粒 13が多孔質-ッケ ル 14の骨格表面に固着しており、この Bドープしたセリア粒 13は燃料極 12が固体電 解質 11に接する界面 15およびその近傍の多孔質ニッケル 14の骨格表面に最も多く 固着している。
[0038] 図 3においては、界面 15およびその近傍の多孔質ニッケルの骨格表面における固 着した Bドープしたセリア粒 13の数が多くして示されており、この Bドープしたセリア粒 13は微細であるほど好ましぐ lOOnm未満であることが好ましい。また、この Bドープ したセリア粒 13が最も多く固着している界面 15およびその近傍の多孔質ニッケルの 骨格表面に Bドープしたセリア粒が最も多く固着している部分は、その厚さ Tが固体 電解質の表面から 10〜20 mの範囲の厚さにわたって層状に形成されていること がー層好ましい。 Tが 10 /z m未満では反応面積が小さすぎ、一方、 20 /z mよりも厚く なると、燃料ガスの透過性が阻害されるようになるからである。
[0039] この発明の固体電解質形燃料電池用発電セルで使用される固体電解質は、一般 式: La Sr Ga Mg A O (式中、 A=Co、 Fe、 Ni、 Cuの 1種または 2種以上、 l-X X 1-Y-Z Y Z 3
X=0. 05〜0. 3、Y=0〜0. 29、Ζ = 0. 01〜0. 3、Υ+Ζ = 0. 025〜0. 3)で表さ れる酸化物イオン伝導体であり、また、この発明の固体電解質形燃料電池用発電セ ルで使用される燃料極は、 Βドープしたセリアが骨格構造を有する多孔質ニッケルの 骨格表面に Β (ただし、 Βは Sm、 Gd、 Y、 Caの 1種または 2種以上)をドープしたセリ ァが固着した焼結体力もなり、この Bをドープしたセリアは一般式: Ce B O (式中
1— m m 2
、 Bは Sm、 Gd、 Y、 Caの 1種または 2種以上、 mは 0<m≤0. 4)で表される酸化物 であり、これらは、一般に知られている物質である。
[0040] この発明の固体電解質形燃料電池用発電セルを製造するには、まず、図 4に示さ れるように、 Niの酸ィ匕物粉末を固体電解質 11の一方の面にスクリーン印刷などの方 法により塗布し、大気中、温度: 1000〜1200°Cで焼き付けて多孔質ニッケル 14を 形成する。次に、図 5に示されるように Bをドープしたセリア粒 13が有機溶剤 17に懸 濁したスラリー 16を多孔質ニッケル 14に含浸させる。このスラリー 16を多孔質-ッケ ル 14に含浸させた状態に所定時間放置すると、図 5に示されるように、 Bをドープした セリア粒 13が沈降し、界面 15およびその近傍に堆積する。この状態で加熱乾燥させ ると、スラリーの有機溶剤が揮発し、 Bをドープしたセリア粒 13が多孔質ニッケル 14の 骨格表面に最も多く固着したこの発明の固体電解質形燃料電池用発電セルを製造 することができる。
[0041] [第 3実施形態]
この第 3実施形態は、本発明の第 3の態様に対応するものである。
この実施形態の固体電解質形燃料電池用発電セルにおける燃料極材料は、ェチ レンダリコールに、ポリビュルピロリドン、塩化ルテニウムおよび Bドープしたセリアをそ の順に添加し、撹拌したのちさらに温度を上げながら撹拌してルテニウム金属担持混 合溶液を作製し、得られたルテニウム金属担持混合溶液を遠心分離により洗浄を繰 り返し行!ヽ、 Bドープしたセリアにルテニウム金属を担持させてなる燃料極材料の懸 濁液を作製し、この Bドープしたセリアにルテニウム金属を担持させてなる燃料極材 料の懸濁液を乾燥し適宜粉砕して燃料極材料粉末とすることができる。さらに得られ た Bドープしたセリアにルテニウム金属を担持させてなる燃料極材料粉末のスラリー を作製し、このスラリーを固体電解質の片面に塗布し含浸させたのち乾燥させること により燃料極を作製することができる。
[0042] この発明のルテニウム金属を担持した Bドープセリア力 なる燃料極材料を用いた 発電セルは、従来の NiO粉末と混合した Bドープセリアカゝらなる燃料極を用いた発電 セルに比べて発電効率が向上する理由として、極微量の炭化水素ガスが残存する 水素燃料ガスが燃料極集電体を通過して燃料極に到達しても極微量の炭化水素ガ スがこの発明の燃料極のルテニウム金属担持 Bドープセリアにおけるルテニウム金属 に接触して改質されるので発電効率が低下することがないものと考えられる。
[0043] この発明の固体電解質形燃料電池用発電セルで使用される固体電解質は、一般 式: La Sr Ga Mg A O (式中、 A=Co、 Fe、 Ni、 Cuの 1種または 2種以上、 l-X X 1-Y-Z Y Z 3
X=0. 05〜0. 3、Y=0〜0. 29、Ζ = 0. 01〜0. 3、Υ+Ζ = 0. 025〜0. 3)で表さ れる酸化物イオン伝導体であり、これは既に知られている固体電解質である。
[0044] [第 4実施形態]
この第 4実施形態は、本発明の第 4の態様に対応するものである。 この実施形態の固体電解質形燃料電池用発電セルを図面に基づいて具体的に説 明する。図 7は、この実施形態の固体電解質形燃料電池用発電セルにおける固体電 解質と燃料極の接合部分を示した断面説明図であり、空気極の記載は省略してある 。図 7において、 21は固体電解質、 22は燃料極、 23は Ru担持 Bドープセリア粒、 24 は骨格構造を有する多孔質ニッケルである。この多孔質ニッケルは酸ィ匕ニッケル粉 末を焼結して作製する酸化ニッケル粉末の焼結体が発電中に還元されて生成するも のであり、骨格構造を有している。燃料極 22は一般式: Ce B 0 (式中、 は31!1、
1-m m 2
Gd、 Y、 Caの 1種または 2種以上、 mは 0<m≤0. 4)で表される Bドープセリアにル テ -ゥム金属を担持させてなる RU担持 Bドープセリア粒 23が多孔質ニッケル 24の骨 格表面に固着している構造を有している。そして、この Ru担持 Bドープセリア粒 23は 燃料極 22が固体電解質 21に接する界面 25およびその近傍の多孔質ニッケル 24の 骨格表面に最も多く固着して!/ヽる。
[0045] 図 7では、燃料極 22が固体電解質 21に接する界面 25およびその近傍の多孔質- ッケル 24の骨格表面における固着した Ru担持 Bドープセリア粒 23の数が多くして示 されている。また、前記多孔質ニッケルを作製するためのニッケル粒は粒径が 1〜: LO mの従来と同じ力または従来よりも比較的粗大なニッケル粒を使用して作製した多 孔質ニッケルを採用することが燃料ガスの透過性の向上という観点から好ましい。こ の Ru担持 Bドープセリア粒 23は微細であるほど好ましぐ lOOnm未満であることが 好ましい。また、この Ru担持 Bドープセリア粒 23が最も多く固着している部分は、図 7 に示されるように、厚さ Tが固体電解質の表面から 10〜20 mの範囲の厚さにわた つて層状に形成されていることが一層好ましい。厚さ Tが 10 m未満では反応面積 力 、さすぎ、一方、 20 mよりも厚くなると、燃料ガスの透過性が阻害されるようにな るカゝらである。
[0046] この発明の固体電解質形燃料電池用発電セルで使用される固体電解質は、一般 式: La Sr Ga Mg A O (式中、 A=Co、 Fe、 Ni、 Cuの 1種または 2種以上、 l-X X 1-Y-Z Y Z 3
X=0. 05〜0. 3、Y=0〜0. 29、Ζ = 0. 01〜0. 3、Υ+Ζ = 0. 025〜0. 3)で表さ れる既に知られている酸化物イオン伝導体であり、また、この発明の固体電解質形燃 料電池用発電セルで使用される燃料極は、 Ru担持 Βドープセリア粒が骨格構造を有 する多孔質ニッケルの骨格表面に固着した焼結体力 なり、この Ru担持 Bドープセリ ァは一般式: Ce B O (式中、 Bは Sm、 Gd、 Y、 Caの 1種または 2種以上、 mは 0
1— m m 2
< m≤ 0. 4)で表される酸ィ匕物にルテニウム (Ru)金属を担持させてなる燃料極材料 である。
[0047] この発明の固体電解質形燃料電池用発電セルを製造するには、まず、図 8に示さ れるように、 Niの酸ィ匕物粉末を固体電解質 21の一方の面にスクリーン印刷などの方 法により塗布し、大気中、温度: 1000〜1200°Cで焼き付けて骨格構造を有する多 孔質酸ィ匕ニッケル焼結体 24aを作製し、次に、図 9に示されるように Ru担持 Bドープ セリア粒 23が有機溶剤 27に懸濁したスラリー 26を前記多孔質酸ィ匕ニッケル焼結体 2 4aに含浸させる。このスラリー 26を多孔質酸ィ匕ニッケル焼結体 24aに含浸させた状 態に所定時間放置すると、図 10に示されるように、 Ru担持 Bドープセリア粒 23が沈 降し、燃料極 22が固体電解質 21に接する界面 25およびその近傍に堆積する。図 1 0に示される状態で加熱乾燥させるとスラリーの有機溶剤が揮発し、その後、焼成す ることにより Ru担持 Bドープセリア粒 23が多孔質酸ィ匕ニッケル焼結体 24aの骨格表 面に最も多く固着した燃料極が生成する。この燃料極を用いて発電セルを作製し、こ の発電セル組み込んだ固体電解質形燃料電池に燃料ガスとしての水素ガスを流し て発電すると、骨格構造を有する多孔質酸化ニッケル焼結体 24aが還元されて図 7 に示される骨格構造を有する多孔質ニッケル 24となり、図 7に示される燃料極を有す るこの発明の固体電解質形燃料電池用発電セルを製造することができる。
[0048] [第 5実施形態]
この第 5実施形態は、本発明の第 5の態様に対応するものである。
この実施形態の固体電解質形燃料電池用発電セルを図面に基づいて具体的に説 明する。図 11は、この実施形態の固体電解質形燃料電池用発電セルにおける固体 電解質と燃料極の接合部分を示した断面説明図であり、空気極の記載は省略してあ る。図 11において、 31は固体電解質、 32は燃料極、 33は Ru担持 BDC粒、 34は酸 化ニッケル粒、 34aは BDC粒である。図 11に示されるように、酸化ニッケル粒 34と B DC粒 34aとはネットワークを組んでいる骨格構造を有する多孔質混合焼結体 38を 構成して!/、る。この多孔質混合焼結体 38は酸化ニッケル粉末と BDC粉末の混合粉 末を焼結して作製する。燃料極 32は一般式: Ce B O (式中、 Bは Sm、 Gd、 Y、 C
1— m m 2
aの 1種または 2種以上、 mは 0<m≤0. 4)で表される BDCにルテニウム金属を担持 させてなる Ru担持 BDC粒 33が多孔質混合焼結体 38の骨格表面に固着している構 造を有している。そして、この Ru担持 BDC粒 33は燃料極 32が固体電解質 31に接 する界面 35およびその近傍の多孔質混合焼結体 38の骨格表面に最も多く固着して いる。
[0049] 図 11では、燃料極 32が固体電解質 31に接する界面 35およびその近傍の多孔質 混合焼結体 38の骨格表面に Ru担持 BDC粒 33の数が多く固着して!/、ることが示さ れている。また、前記多孔質混合焼結体 38を作製するための酸化ニッケル粉末およ び BDC粉末は粒径が 0. 5〜: LO mの従来と同じかまたは従来よりも比較的粗大な 酸化ニッケル粉末および BDC粉末を使用して作製した多孔質混合焼結体を採用す ることが燃料ガスの透過性の向上という観点から好ましい。この多孔質混合焼結体 3 8の骨格表面に固着して!/、る Ru担持 BDC粒 33は微細であるほど好ましく、 1 OOnm 未満であることが好ましい。また、この Ru担持 BDC粒 33が最も多く固着している部 分は、図 11に示されるように、厚さ Tが固体電解質の表面から 10〜20 /ζ πιの範囲の 厚さにわたって層状に形成されていることが一層好ましい。厚さ Τが 10 m未満では 反応面積が小さすぎ、一方、 20 mよりも厚くなると、燃料ガスの透過性が阻害され るよう〖こなる力らである。
[0050] この発明の固体電解質形燃料電池用発電セルで使用される固体電解質は、一般 式: La Sr Ga Mg A O (式中、 A=Co、 Fe、 Ni、 Cuの 1種または 2種以上、 l-X X 1-Y-Z Y Z 3
X=0. 05〜0. 3、Y=0〜0. 29、Ζ = 0. 01〜0. 3、Υ+Ζ = 0. 025〜0. 3)で表さ れる既に知られている酸化物イオン伝導体であり、また、この発明の固体電解質形燃 料電池用発電セルで使用される燃料極は、 Ru担持 BDC粒が骨格構造を有する多 孔質混合焼結体の骨格表面に固着した焼結体力 なり、この Ru担持 BDCは一般式 : Ce B O (式中、 Bは Sm、 Gd、 Y、 Caの 1種または 2種以上、 mは 0<m≤0. 4)
1— m m 2
で表される酸化物にルテニウム (Ru)金属を担持させてなる燃料極材料である。
[0051] この発明の固体電解質形燃料電池用発電セルを製造するには、まず、図 12に示さ れるように、 Ni酸ィ匕物粉末および BDC粉末を固体電解質 31の一方の面にスクリー ン印刷などの方法により塗布し、大気中、温度: 1000〜1200°Cで焼き付けて酸ィ匕 ニッケル粒 34と BDC粒 34aとがネットワークを組んでいる骨格構造を有する多孔質 混合焼結体 38を形成し、次に、図 13に示されるように Ru担持 BDC粒 33が有機溶 剤 37に懸濁したスラリー 36を前記多孔質混合焼結体 38に含浸させる。このスラリー 36を多孔質混合焼結体 38に含浸させた状態に所定時間放置すると、図 14に示さ れるように、 Ru担持 BDC粒 33が沈降し、燃料極 32が固体電解質 31に接する界面 3 5およびその近傍に多く堆積する。図 14に示される状態で加熱乾燥させるとスラリー の有機溶剤が揮発し、その後、焼成することにより Ru担持 BDC粒 33が多孔質混合 焼結体 38の骨格表面に固着した燃料極が生成する。この燃料極を用いて発電セル を作製し、この発電セル組み込んだ固体電解質形燃料電池に燃料ガスとしての水素 ガスを流して発電すると、骨格構造を有する多孔質混合焼結体 38を構成する酸化二 ッケル粒 34が還元されて金属ニッケル粒となる。
実施例
[0052] 以下に示す実施例 1は、前述した第 1実施形態の実施例、実施例 2は、第 2実施形 態の実施例、実施例 3〜7は、第 3実施形態の実施例、実施例 8は、第 4実施形態の 実施例、実施例 9は、第 5実施形態の実施例である。
[0053] [実施例 1]
まず、発電セルを作製するための原料の製造方法を説明する。
(a)ランタンガレート系電解質原料粉末を製造:
酸ィ匕ランタン、炭酸ストロンチウム、酸化ガリウム、酸化マグネシウム、酸化コバルト の粉体を用意し、(La Sr ) (Ga Mg Co ) Oで示される組成となるよう秤量し
0.8 0.2 0.8 0.15 0.05 3
、ボールミル混合の後、空気中、 1300°Cに 3時間加熱保持し、得られた塊状焼結体 をノヽンマーミルで粗粉砕の後、ボールミルで微粉砕して、平均粒径 1. 3 mのランタ ンガレート系電解質原料粉末を製造した。
[0054] (b)サマリウムをドープしたセリア(以下、 SDCと 、う)の超微粉を含むエタノール溶液 の製造:
0. 5mol/Lの硝酸セリウム水溶液 8部と 0. 5mol/Lの硝酸サマリウム水溶液 2部の 混合水溶液に lmol/Lの水酸ィ匕ナトリウム水溶液を攪拌しながら滴下し、酸化セリウ ムと酸ィ匕サマリウムを共沈させた。次いで、生成した粉末を遠心分離機を用いて沈降 させ、上澄みを捨て、蒸留水を加えて攪拌'洗浄し、遠心分離機を用いて再度沈降さ せ、この操作を 6回繰り返して洗浄した。次いで、遠心分離機で沈降させ、水を加え て攪拌し、遠心分離機を用いて再度沈降させ、この操作を 3回繰り返して溶液を水か らエタノールに置換し、 SDCの超微粉を含むエタノール溶液を作製した。得られた S DCの超微粉を含むエタノール溶液の一部を取りだし、セリアの超微粉の粒径をレー ザ一回折法で測定したところ、平均粒径: 5nmであった。
[0055] (c)酸化ニッケル粉の製造:
lmol/Lの硝酸ニッケル水溶液に lmol/Lの水酸ィ匕ナトリウム水溶液を攪拌しなが ら滴下し、水酸ィ匕ニッケルを沈殿させ、ろ過した後、純水での攪拌洗浄とろ過を 6回 繰返して水洗し、これを空気中、 900°Cに 3時間加熱保持して、平均粒径 1. : mの 酸ィ匕ニッケル粉を製造した。
[0056] (d)サマリウムストロンチウムコバルタイト系空気極原料粉末の製造:
酸ィ匕サマリウム、炭酸ストロンチウム、酸ィ匕コバルトの粉体を用意し、(Sm Sr ) C
0.5 0.5 οθで示される組成となるよう秤量し、ボールミル混合の後、空気中、 1200°Cに 3時
3
間加熱保持し、得られた粉体をボールミルで微粉砕して、平均粒径 1. l mのサマリ ゥムストロンチウムコバルタイト系空気極原料粉末を製造した。
[0057] 次に、作製した原料粉末を用いて、下記のごとき方法により発電セルを製造した。
まず、前記 (a)で製造したランタンガレート系電解質原料粉末をトルエン-エタノー ル混合溶媒にポリビニルプチラルとフタル酸 Nジォクチルを溶解した有機ノインダー 溶液と混合してスラリーとし、ドクターブレード法で薄板状に成形し、円形に切りだし た後、空気中、 1450°Cに 4時間加熱保持して焼結し、厚さ 200 m、直径 120mmの 円板状のランタンガレート系電解質を製造した。前記 (c)で作製した酸ィ匕ニッケル粉 と前記 (b)で作製した SDCの超微粉を含むエタノール溶液を体積比率で酸ィ匕-ッケ ル: SDC = 60: 40になるように混合し、さらにトルエン-エタノール混合溶媒にポリビ -ルプチラルとフタル酸 Nジォクチルを溶解した有機バインダー溶液、界面活性剤、 スルホン酸ナトリウムカゝらなる分散剤を混合してスラリーとし、このスラリーをスクリーン 印刷法により前記円板状のランタンガレート系電解質の上に、厚さ:30 mのスラリー 膜を成形し乾燥させ、次いで、空気中、 1250°Cに 3時間加熱保持して、燃料極を前 記円板状のランタンガレート系電解質の上に成形'焼き付けた。
[0058] なお、湿式 (共沈)による粉末は分散した超微粉けノ粒)であるが、乾燥すると直ち に凝集してしまうところから、凝集を避けて微細粉のまま酸ィ匕ニッケルと混合してスラリ 一とするために、 SDCの超微粉を含むエタノール溶液を用いる。成形後、乾燥時に SDCは酸ィ匕ニッケル粉表面で凝集し、独立したセリアの状態を形成する。それを焼 成すると、本発明燃料極が得られる。このようにして得られた本発明燃料極のミクロ組 織の一部を走査形電子顕微鏡により観察した結果、図 1に示されるように、微細な B ドープされたセリア粒が焼結結合部の周囲の隙間部分に集中して最も厚く堆積して いることが分力つた。
[0059] さらに、前記 (d)で作製したサマリウムストロンチウムコバルタイト系空気極原料粉を トルエン-エタノール混合溶媒にポリビュルブチラルとフタル酸 Nジォクチルを溶解し た有機バインダー溶液と混合してスラリーを作製し、このスラリーを燃料極を焼付けた ランタンガレート系電解質の他方の面に、スクリーン印刷法により厚さ: 30 μ mになる ように成形し乾燥させたのち、空気中、 1100°Cに 5時間加熱保持して、空気極を成 形,焼き付けた。
[0060] このようにして、固体電解質、燃料極および空気極からなる本発明固体電解質形燃 料電池用発電セル (以下、本発明発電セルという)を製造し、得られた本発明発電セ ルの燃料極の上に厚さ lmmの多孔質 N ゝらなる燃料極集電体を積層し、一方、本 発明発電セルの空気極の上に厚さ 1. 2mmの多孔質 Agからなる空気極集電体を積 層し、さらに前記燃料極集電体および空気極集電体の上にそれぞれセパレータを積 層することにより図 15に示される構成の本発明固体電解質形燃料電池を作製した。
[0061] [従来例 1]
さらに比較のために、下記に示される方法で従来固体電解質形燃料電池を作製し た。まず、 1N-硝酸ニッケル水溶液、 1N-硝酸セリウム水溶液を 1N-硝酸サマリウム 水溶液をそれぞれ用意し、 NiOと(Ce Sm ) 0が体積比率で 60 :40になるように
0.8 0.2 2
秤量し、混合して、霧化器で溶液を霧化し、空気をキヤリヤーガスとして縦型管状炉 に導入、 1、000°Cにカロ熱して、 NiOと(Ce Sm ) 0が体積比率で 60 :40となる 酸化物複合粉末を得た。この酸化物複合粉末を用いてスラリーを作製し、このスラリ 一を用いて実施例 1で作製したランタンガレート系固体電解質の一方の面に塗布し 燒結して燃料極を形成し、さらに空気極を実施例 1と同様にして形成して発電セルを 製造した。この発電セルに形成された燃料極は、サマリウムをドープしたセリア(SDC )が多孔質な骨格構造のニッケル表面を取り囲むネットワーク構造を有していた。この 発電セルの片面に燃料極集電体を積層しさらにその上にセパレータを積層し、一方 、従来の発電セルの他方の片面に空気極集電体を積層しさらにセパレータを積層す ることにより図 15に示される従来固体電解質形燃料電池を作製した。
[0062] このようにして得られた本発明に係る実施例 1の固体電解質形燃料電池および従 来例 1の固体電解質形燃料電池を用いて、次の条件で発電試験を実施し、その結 果を表 1に示した。
[0063] <発電試験 >
温度: 750°C、
燃料ガス:水素、
燃料ガス流量: 0. 34L/min ( = 3cc/min/cm2)、
酸化剤ガス:空気、
酸化剤ガス流量: 1. 7LZmin ( = 15cc/min/cm2)、
の発電条件で長時間発電させ、出力電圧が 0. 8Vから 0. 6Vに低下した時点を電池 寿命とし、出力電圧が 0. 8V力も 0. 6Vに低下するまでの時間を測定し、その結果を ¾klに した。
[0064] [表 1]
出力電圧が 0. 8Vから
種別 0. 6Vに低下するまで
の時間(時間)
実施例 1
5000
固体電解質形燃料電池
従来例 1
2500
固体電解質形燃料電池 [0065] 表 1に示される結果から、実施例 1の固体電解質形燃料電池は従来例 1の固体電 解質形燃料電池と比べて約 2倍の寿命を有することが分かる。
[0066] [実施例 2]
酸ィ匕ランタン、炭酸ストロンチウム、酸化ガリウム、酸化マグネシウム、酸化コバルト の粉体を用意し、(La Sr ) (Ga Mg Co ) 0で示される組成となるよう秤量
0.8 0.2 0.8 0.15 0.05 3
し、ボールミル混合の後、空気中、 1200°Cに 3時間加熱保持し、得られた塊状焼結 体をノヽンマーミルで粗粉砕の後、ボールミルで微粉砕して、平均粒径 1. 3 mのラン タンガレート系固体電解質原料粉末を製造した。前記ランタンガレート系固体電解質 原料粉末をトルエン-エタノール混合溶媒にポリビニルプチラルとフタル酸 Nジォクチ ルを溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード法で薄板 状に成形し、円形に切りだした後、空気中、 1450°Cに 6時間加熱保持して焼結し、 厚さ 200 m、直径 120mmの円板状のランタンガレート系固体電解質板を製造した
[0067] このランタンガレート系固体電解質板の表面に平均粒径 7 μ mの酸化ニッケル粉を トルエン-エタノール混合溶媒にポリビュルブチラルとフタル酸 Nジォクチルを溶解し た有機バインダー溶液と混合してスラリーとし、このスラリーをスクリーン印刷法で、前 記ランタンガレート系固体電解質の一方の面に、平均厚さ: 30 μ mになるようにスラリ 一を塗布し、加熱乾燥して有機バインダー溶液を蒸発させたのち空気中、 1250°C に 3時間加熱保持の焼結を行うことにより、ランタンガレート系固体電解質板の表面 にニッケル多孔質体層を成形した。
[0068] 次に、 0. 5molZLの硝酸セリウム水溶液 8部と 0. 5molZLの硝酸サマリウム水溶 液 2部の混合水溶液に lmolの水酸ィ匕ナトリウム水溶液を攪拌しながら滴下し、酸ィ匕 セリウムと酸ィ匕サマリウムを共沈させた。次いで、生成した粉末を遠心分離機を用い て沈降させ、上澄みを捨て、蒸留水を加えて攪拌'洗浄し、遠心分離機を用いて再 度沈降させ、この操作を 6回繰り返して洗浄し、次いで、遠心分離機で沈降させ、ェ タノールを加えて攪拌し、遠心分離機を用いて再度沈降させ、この操作を 3回繰り返 して溶液を水力もエタノールに置換し、サマリウムをドープしたセリア(以下、 SDCとい う)の超微粉を含むエタノール溶液を作製した。得られた SDCの超微粉を含むエタノ ール溶液の一部を取りだし、セリアの超微粉の粒径をレーザー回折法で測定したとこ ろ、平均粒径 40nmであった。
[0069] 前記 SDCの超微粉を含むエタノール溶液力もなるスラリーを、先に作製したランタ ンガレート系固体電解質板の表面のニッケル多孔質体層に含浸させ、かかる状態に 0. 5時間静止保持して SDCの超微粉を沈降させた後、 100°Cに加熱乾燥すること によりエタノール溶液を蒸発させ、その後、空気中、 700°Cで焼成することによりラン タンガレート系固体電解質の一方の面に図 3に示される燃料極を焼付け形成した。
[0070] このようにして得られたランタンガレート系固体電解質の一方の面に焼きつけた燃 料極のミクロ組織の一部を走査形電子顕微鏡により観察した結果、その平均粒径は 60nmであることが分かった。
[0071] 次に、図示してはないが、前記サマリウムストロンチウムコバルタイト系空気極原料 粉をトルエン-エタノール混合溶媒にポリビュルブチラルとフタル酸 Nジォクチルを溶 解した有機ノインダー溶液と混合してスラリーを作製し、このスラリーをランタンガレー ト系固体電解質の燃料極と反対側の他方の面にスクリーン印刷法により厚さ: 30 m になるように成形し乾燥したのち、空気中、 1100°Cに 5時間加熱保持して、空気極を 成形,焼きつけた。
[0072] このようにして得られた固体電解質、燃料極および空気極からなる本発明固体電解 質形燃料電池用発電セル (以下、本発明発電セルと言う)を製造し、得られた本発明 発電セルの燃料極の上に厚さ lmmの多孔質ニッケルカゝらなる燃料極集電体を積層 し、一方、本発明発電セルの空気極の上に厚さ 1. 2mmの多孔質銀力 なる空気極 集電体を積層し、さらに前記燃料極集電体および空気極集電体の上にセパレータを 積層することにより本発明固体電解質形燃料電池を作製した。
[0073] [従来例 2]
さらに比較のために、下記に示される方法で従来固体電解質形燃料電池を作製し た。まず、 1N—硝酸ニッケル水溶液、 1N—硝酸セリウム水溶液を 1N—硝酸サマリゥ ム水溶液をそれぞれ用意し、 NiOと(Ce Sm ) 0が体積比率で 60 :40になるよう
0.8 0.2 2
に秤量し、混合して、霧化器で溶液を霧化し、空気をキヤリヤーガスとして縦型管状 炉に導入、 1000°Cに加熱して、 NiOと(Ce Sm ) 0が体積比率で 60 :40となる 酸化物複合粉末を得た。この酸化物複合粉末を用いてスラリーを作製し、このスラリ 一を用いて作製したランタンガレート系固体電解質の一方の面に塗布し燒結して燃 料極を形成し、さらに空気極を形成して発電セルを製造した。この発電セルの片面に 燃料極集電体を積層しさらにその上にセパレータを積層し、一方、従来の発電セル の他方の片面に空気極集電体を積層しさらにセパレータを積層することにより従来固 体電解質形燃料電池を作製した。
[0074] このようにして得られた本発明に係る実施例 2の固体電解質形燃料電池および従 来例 2の固体電解質形燃料電池を用いて、次の条件で発電試験を実施した。
温度: 750°C、
燃料ガス:水素、
燃料ガス流量: 1. 02LZmin ( = 9cc/nin/cm2)、
酸化剤ガス:空気、
酸化剤ガス流量: 5. lL/min (=45cc/nin/cm2)、
の発電条件で発電させ、負荷電流密度、燃料利用率、セル電圧、出力、出力密度お よび発電効率を測定し、その結果を表 2に示した。
[0075] [表 2]
Figure imgf000028_0001
[0076] 表 2に示される結果から、実施例 2の固体電解質形燃料電池と従来例 2の固体電 解質形燃料電池とは、燃料極の構成が相違するのみで、その他の構成は同じである 力 実施例 2の固体電解質形燃料電池は従来例 2の固体電解質形燃料電池と比べ て、負荷電流密度、燃料利用率、セル電圧、出力、出力密度、および発電効率がい ずれも優れた値を示すことがわかる。
[0077] [実施例 3] 先ず、酸ィ匕ランタン、炭酸ストロンチウム、酸化ガリウム、酸化マグネシウム、酸ィ匕コ バルトの粉体を用意し、(La Sr ) (Ga Mg Co ) 0で示される組成となるよ
0.8 0.2 0.8 0.15 0.05 3
う秤量し、ボールミル混合の後、空気中、 1200°Cに 3時間加熱保持し、得られた塊 状焼結体をノヽンマーミルで粗粉砕の後、ボールミルで微粉砕して、平均粒径 1. 3 μ mのランタンガレート系固体電解質原料粉末を製造した。前記ランタンガレート系固 体電解質原料粉末をトルエン-エタノール混合溶媒にポリビニルプチラルとフタル酸 Nジォクチルを溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード 法で薄板状に成形し、円形に切りだした後、空気中、 1450°Cに 6時間加熱保持して 焼結し、厚さ 200 m、直径 120mmの円板状のランタンガレート系固体電解質板を 作製した。
[0078] さらに、 0. 5molZLの硝酸セリウム水溶液 8部と 0. 5molZLの硝酸サマリウム水 溶液 2部の混合水溶液に lmolの水酸ィ匕ナトリウム水溶液を攪拌しながら滴下し、酸 化セリウムと酸ィ匕サマリウムを共沈させ、ろ過したのち純水での攪拌 ·洗浄ろ過を 6回 繰り返して水洗し、酸ィ匕セリウムと酸ィ匕サマリウムの共沈粉を作製し、これを空気中、 温度: 1000°Cに 3時間加熱保持して(Ce Sm ) 0 の組成を有する平均粒径: 0.
0.8 0.2 2
8 μ mのサマリウムをドープしたセリア(以下、 SDCと 、う) SDC粉末を作製した。
[0079] 次に、得られた SDC粉末をエチレングリコールに、ポリビュルピロリドン、塩化ルテ ユウム、 SDC粉末の順に添加し、撹拌したのちさらに温度を上げながら撹拌してルテ -ゥム金属担持混合溶液を作製し、得られたルテニウム金属担持混合溶液を遠心分 離により洗浄を繰り返し行い、ルテニウム金属を担持した SDC (以下、 Ru担持 SDC t ヽぅ)からなる本発明燃料極材料のスラリーを作製した。
[0080] この本発明燃料極材料のスラリーを先に作製したランタンガレート系固体電解質板 の一方の面にスクリーン印刷法により厚さ: 30 mになるように塗布し乾燥したのち、 空気中、 1100°Cに 5時間加熱保持して、燃料極を成形'焼きつけた。
[0081] さらに、酸ィ匕サマリウム、炭酸ストロンチウム、酸ィ匕コバルトのそれぞれ試薬級の粉 体を用意し、(Sm Sr ) CoOで示される組成となるよう秤量し、ボールミル混合の
0.5 0.5 3
後、空気中、 1000°Cに 3時間加熱保持し、得られた粉体をボールミルで微粉砕して 、平均粒径 1.: L mのサマリウムストロンチウムコバルタイト系空気極原料粉末を製造 した。このサマリウムストロンチウムコバルタイト系空気極原料粉をトルエン-エタノール 混合溶媒にポリビュルプチラルとフタル酸 Nジォクチルを溶解した有機ノ インダー溶 液と混合してスラリーを作製し、このスラリーをランタンガレート系固体電解質の燃料 極と反対側の他方の面にスクリーン印刷法により厚さ: 30 mになるように成形し乾 燥したのち、空気中、 1100°Cに 5時間加熱保持して、空気極を成形'焼きつけた。
[0082] このようにして得られた固体電解質、燃料極および空気極からなる本発明固体電解 質形燃料電池用発電セル (以下、本発明発電セルと言う)を製造し、得られた本発明 発電セルの燃料極の上に厚さ lmmの多孔質ニッケルカゝらなる燃料極集電体を積層 し、一方、本発明発電セルの空気極の上に厚さ 1. 2mmの多孔質銀力 なる空気極 集電体を積層し、さらに前記燃料極集電体および空気極集電体の上にセパレータを 積層することにより本発明固体電解質形燃料電池を作製した。
[0083] [従来例 3]
実施例 3で作製した SDC粉末と NiO粉末を混合してスラリーを作製し、このスラリー を実施例 3で作製したランタンガレート系固体電解質板の一方の面にスクリーン印刷 法により厚さ:30 mになるように塗布し乾燥したのち、空気中、 1100°Cに 5時間加 熱保持して NiO粉末を混合した SDC (以下、 Ni— SDCと 、う)からなる燃料極を成 形'焼きつける以外は実施例 3と同様にして従来固体電解質形燃料電池を作製した
[0084] このようにして得られた本発明に係る実施例 3の固体電解質形燃料電池および従 来例 3の固体電解質形燃料電池を用いて、次の条件で発電試験を実施した。
温度: 750°C、
燃料ガス:水素 (5%炭化水素含有)、
燃料ガス流量: 0. 34L/min ( = 3cc/nin/cm2)、
酸化剤ガス:空気、
酸化剤ガス流量: 1. 7LZmin ( = 15cc/nin/cm2)、
の発電条件で発電させ、セル電圧、出力、出力密度および発電効率を測定し、その 結果を表 3に示した。
[0085] [表 3] 固体電解貢形燃料電池の特性
使用した発電セ 発電セル作製に使用した
種別
ルの種類 燃料極材料
セル電圧 出力 出力密度 発電効率 LHV
(V) (W) (W/cm2) (%) 実施例 3 本発明燃料極材料
本発明発電セル 0. 810 27. 7 0. 245 45. 3 固体電解質形燃料電池 (Ru担持 SDC)
従来例 3 従来燃料極材料
従来発電セル 0. 785 26. 8 0. 237 43. 9 固体電解質形燃料電池 (Ni-SDC)
[0086] 表 3に示される結果から、実施例 3の固体電解質形燃料電池と従来例 3の固体電 解質形燃料電池とは、燃料極の構成が相違するのみで、その他の構成は同じである 力 Ru担持 SDCを燃料極とした発電セルを有する実施例 3の固体電解質形燃料電 池は、通常の Ni— SDCを燃料極とした発電セルを有する従来例 3の固体電解質形 燃料電池と比べて、セル電圧、出力、出力密度、および発電効率がいずれも優れた 値を示すことがわかる。
[0087] [実施例 4]
さらに、 0. 5molZLの硝酸セリウム水溶液 8部と 0. 5molZLの硝酸ガドリウム水溶 液 2部の混合水溶液に lmolの水酸ィ匕ナトリウム水溶液を攪拌しながら滴下し、酸ィ匕 セリウムと酸ィ匕ガドリゥムを共沈させ、ろ過したのち純水での攪拌 ·洗浄ろ過を 6回繰り 返して水洗し、酸化セリウムと酸化ガドリウムの共沈粉を作製し、これを空気中、温度: 1000°Cに 3時間加熱保持して(Ce Gd ) 0 の組成を有する平均粒径: 0. 8 m
0.8 0.2 2
のガドリゥムをドープしたセリア(以下、 GDCと 、う) GDC粉末を作製した。
[0088] 次に、得られた GDC粉末をエチレングリコールに、ポリビュルピロリドン、塩化ルテ ユウム、 GDC粉末の順に添加し、撹拌したのちさらに温度を上げながら撹拌してル テ -ゥム金属担持混合溶液を作製し、得られたルテニウム金属担持混合溶液を遠心 分離により洗浄を繰り返し行い、ルテニウム金属を担持した GDC (以下、 Ru担持 GD Ct 、う)からなる本発明燃料極材料のスラリーを作製した。
[0089] この本発明燃料極材料のスラリーを実施例 3で作製したランタンガレート系固体電 解質板の一方の面にスクリーン印刷法により厚さ: 30 mになるように塗布し乾燥し たのち、空気中、 1100°Cに 5時間加熱保持して、燃料極を成形'焼きつける以外は 実施例 3と同様にして本発明発電セルを作製し、この本発明発電セルを用いて本発 明固体電解質形燃料電池を作製した。
[0090] [従来例 4]
実施例 4で作製した GDC粉末と NiO粉末を混合してスラリーを作製し、このスラリー を実施例 3で作製したランタンガレート系固体電解質板の一方の面にスクリーン印刷 法により厚さ:30 mになるように塗布し乾燥したのち、空気中、 1100°Cに 5時間加 熱保持して NiO粉末を混合した GDC (以下、 Ni— GDCと ヽぅ)からなる燃料極を成 形'焼き付ける以外は実施例 3と同様にして従来発電セルを作製し、この従来発電セ ルを用いて従来固体電解質形燃料電池を作製した。
[0091] このようにして得られた本発明に係る実施例 4の固体電解質形燃料電池および従 来例 4の固体電解質形燃料電池を用いて、実施例 3と同じ条件で発電試験を実施し 、セル電圧、出力、出力密度および発電効率を測定し、その結果を表 4に示した。
[0092] [表 4]
Figure imgf000032_0001
[0093] 表 4に示される結果から、実施例 4の固体電解質形燃料電池と従来例 4の固体電 解質形燃料電池とは、燃料極の構成が相違するのみで、その他の構成は同じである 力 Ru担持 GDCを燃料極とした発電セルを有する実施例 4の固体電解質形燃料電 池は、通常の Ni— GDCを燃料極とした発電セルを有する従来例 4の固体電解質形 燃料電池と比べて、セル電圧、出力、出力密度、および発電効率がいずれも優れた 値を示すことがわかる。
[0094] [実施例 5]
さらに、 0. 5molZLの硝酸セリウム水溶液 8部と 0. 5molZLの硝酸ランタン水溶 液 2部の混合水溶液に lmolの水酸ィ匕ナトリウム水溶液を攪拌しながら滴下し、酸ィ匕 セリウムと酸ィ匕ランタンを共沈させ、ろ過したのち純水での攪拌 ·洗浄ろ過を 6回繰り 返して水洗し、酸化セリウムと酸化ランタンの共沈粉を作製し、これを空気中、温度: 1 000°Cに 3時間加熱保持して(Ce La ) 0の組成を有する平均粒径: 0. 8 mの
0.8 0.2 2
ランタンをドープしたセリア(以下、 LDCと ヽぅ) LDC粉末を作製した。
[0095] 次に、得られた LDC粉末をエチレングリコールに、ポリビニルピロリドン、塩化ルテ ユウム、 LDC粉末の順に添加し、撹拌したのちさらに温度を上げながら撹拌してルテ -ゥム金属担持混合溶液を作製し、得られたルテニウム金属担持混合溶液を遠心分 離により洗浄を繰り返し行い、ルテニウム金属を担持した LDC (以下、 Ru担持 LDCと V、う)からなる本発明燃料極材料のスラリーを作製した。
[0096] この本発明燃料極材料のスラリーを実施例 3で作製したランタンガレート系固体電 解質板の一方の面にスクリーン印刷法により厚さ: 30 mになるように塗布し乾燥し たのち、空気中、 1100°Cに 5時間加熱保持して、燃料極を成形'焼き付ける以外は 実施例 3と同様にして本発明発電セルを作製し、この本発明発電セルを用いて本発 明固体電解質形燃料電池を作製した。
[0097] [従来例 5]
実施例 5で作製した LDC粉末と NiO粉末を混合してスラリーを作製し、このスラリー を実施例 3で作製したランタンガレート系固体電解質板の一方の面にスクリーン印刷 法により厚さ:30 mになるように塗布し乾燥したのち、空気中、 1100°Cに 5時間加 熱保持して NiO粉末を混合した LDC (以下、 Ni— LDCと 、う)からなる燃料極を成 形-焼きつける以外は実施例 3と同様にして従来発電セルを作製し、この本発明発電 セルを用いて従来固体電解質形燃料電池を作製した。
[0098] このようにして得られた本発明に係る実施例 5の固体電解質形燃料電池および従 来例 5の固体電解質形燃料電池を用いて、実施例 3と同じ条件で発電試験を実施し 、セル電圧、出力、出力密度および発電効率を測定し、その結果を表 5に示した。
[0099] [表 5] 固体電解質形燃料電池の特性
使用した発電セ 発電セル作製に使用した燃料
種別
ルの種類 極材料
セル電圧 出力 出力密度 発電効率 LHV
(V) (W) iW/cm2) (%) 実施例 5 本発明燃料極材料
本発明発電セル 0.フ 85 0. 237 43. 9 固体電解質形燃料電池 (Ru担持 LDC)
従来例 5 從来燃料極材料
従来発電 0. 750 25. 6 0. 227 41 . 9 固体電解質形燃料電池 CNi-LDC)
[0100] 表 5に示される結果から、実施例 5の固体電解質形燃料電池と従来例 5の固体電 解質形燃料電池とは、燃料極の構成が相違するのみで、その他の構成は同じである 力 Ru担持 LDCを燃料極とした発電セルを有する実施例 5の固体電解質形燃料電 池は、通常の Ni— LDCを燃料極とした発電セルを有する従来例 5の固体電解質形 燃料電池と比べて、セル電圧、出力、出力密度、および発電効率がいずれも優れた 値を示すことがわかる。
[0101] [実施例 6]
g
さらに、 0. 5molZLの硝酸セリウム水溶液 8部と 0. 5molZLの硝酸イットリウム水 溶液 2部の混合水溶液に lmolの水酸ィ匕ナトリウム水溶液を攪拌しながら滴下し、酸 化セリウムと酸化イットリウムを共沈させ、ろ過したのち純水での攪拌 ·洗浄ろ過を 6回 繰り返して水洗し、酸ィ匕セリウムと酸化イットリウムの共沈粉を作製し、これを空気中、 温度: 1000°Cに 3時間加熱保持して(Ce Y ) 0 の組成を有する平均粒径: 0. 8
0.8 0.2 2
μ mのイットリウムをドープしたセリア(以下、 YDCという) YDC粉末を作製した。
[0102] 次に、得られた YDC粉末をエチレングリコールに、ポリビニルピロリドン、塩化ルテ ユウム、 YDC粉末の順に添加し、撹拌したのちさらに温度を上げながら撹拌してルテ -ゥム金属担持混合溶液を作製し、得られたルテニウム金属担持混合溶液を遠心分 離により洗浄を繰り返し行い、ルテニウム金属を担持した YDC (以下、 Ru担持 YDC t ヽぅ)からなる本発明燃料極材料のスラリーを作製した。
[0103] この本発明燃料極材料のスラリーを実施例 3で作製したランタンガレート系固体電 解質板の一方の面にスクリーン印刷法により厚さ: 30 mになるように塗布し乾燥し たのち、空気中、 1100°Cに 5時間加熱保持して、燃料極を成形'焼きつける以外は 実施例 3と同様にして本発明発電セルを作製し、この本発明発電セルを用いて本発 明固体電解質形燃料電池を作製した。
[0104] [従来例 6]
実施例 6で作製した YDC粉末と NiO粉末を混合してスラリーを作製し、このスラリー を実施例 3で作製したランタンガレート系固体電解質板の一方の面にスクリーン印刷 法により厚さ:30 mになるように塗布し乾燥したのち、空気中、 1100°Cに 5時間加 熱保持して NiO粉末を混合した YDC (以下、 Ni— YDCと 、う)からなる燃料極を成 形-焼きつける以外は実施例 3と同様にして従来発電セルを作製し、この従来発電セ ルを用いて従来固体電解質形燃料電池を作製した。
[0105] このようにして得られた本発明に係る実施例 6の固体電解質形燃料電池および従 来例 6の固体電解質形燃料電池を用いて、実施例 3と同じ条件で発電試験を実施し 、セル電圧、出力、出力密度および発電効率を測定し、その結果を表 6に示した。
[0106] [表 6]
Figure imgf000035_0001
[0107] 表 6に示される結果から、実施例 6の固体電解質形燃料電池と従来例 6の固体電 解質形燃料電池とは、燃料極の構成が相違するのみで、その他の構成は同じである 力 Ru担持 YDCを燃料極とした発電セルを有する実施例 6の固体電解質形燃料電 池は、通常の Ni— YDCを燃料極とした発電セルを有する従来例 6の固体電解質形 燃料電池と比べて、セル電圧、出力、出力密度、および発電効率がいずれも優れた 値を示すことがわかる。
[0108] [実施例 7]
さらに、 0. 5molZLの硝酸セリウム水溶液 8部と 0. 5molZLの硝酸カルシウム水 溶液 2部の混合水溶液に lmolの水酸ィ匕ナトリウム水溶液を攪拌しながら滴下し、酸 化セリウムと酸ィ匕カルシウムを共沈させ、ろ過したのち純水での攪拌'洗浄ろ過を 6回 繰り返して水洗し、酸ィ匕セリウムと酸ィ匕カルシウムの共沈粉を作製し、これを空気中、 温度: 1000°Cに 3時間加熱保持して(Ce Ca ) 0 の組成を有する平均粒径: 0.
0.8 0.2 2
8 μ mのカルシウムをドープしたセリア(以下、 CDCと 、う) CDC粉末を作製した。
[0109] 次に、得られた CDC粉末をエチレングリコールに、ポリビニルピロリドン、塩化ルテ ユウム、 CDC粉末の順に添加し、撹拌したのちさらに温度を上げながら撹拌してルテ -ゥム金属担持混合溶液を作製し、得られたルテニウム金属担持混合溶液を遠心分 離により洗浄を繰り返し行い、ルテニウム金属を担持した CDC (以下、 Ru担持 CDC t ヽぅ)からなる本発明燃料極材料のスラリーを作製した。
[0110] この本発明燃料極材料のスラリーを実施例 3で作製したランタンガレート系固体電 解質板の一方の面にスクリーン印刷法により厚さ: 30 mになるように塗布し乾燥し たのち、空気中、 1100°Cに 5時間加熱保持して、燃料極を成形'焼きつける以外は 実施例 3と同様にして本発明発電セルを作製し、この本発明発電セルを用いて本発 明固体電解質形燃料電池を作製した。
[0111] [従来例 7]
実施例 7で作製した CDC粉末と NiO粉末を混合してスラリーを作製し、このスラリー を実施例 3で作製したランタンガレート系固体電解質板の一方の面にスクリーン印刷 法により厚さ:30 mになるように塗布し乾燥したのち、空気中、 1100°Cに 5時間加 熱保持して NiO粉末を混合した CDC (以下、 Ni— CDCと ヽぅ)からなる燃料極を成 形-焼きつける以外は実施例 3と同様にして従来発電セルを作製し、この従来発電セ ルを用いて従来固体電解質形燃料電池を作製した。
[0112] このようにして得られた本発明に係る実施例 7の固体電解質形燃料電池および従 来例 7の固体電解質形燃料電池を用いて、実施例 3と同じ条件で発電試験を実施し 、セル電圧、出力、出力密度および発電効率を測定し、その結果を表 7に示した。
[0113] [表 7] 固体電解質形燃料電池の特性
使用した発電セ 発電セル作製に使用した
種別
ルの種類 燃料極材料
セル電圧 出力 出力密度 発電効率 LHV
(V) Cw) (W/cm2) (%) 実施例 7 本発明燃料極材料
本発明発電セル 0. 765 26. 1 0. 231
固体電解質形燃料電池 (Ru担持 CDC)
従来例 7 従来燃料極材料
従来発電セル 0. 740 0. 224 41 . 3 固体電解質形燃料電池 (Ni-CDC)
[0114] 表 7に示される結果から、実施例 7の固体電解質形燃料電池と従来例 7の固体電 解質形燃料電池とは、燃料極の構成が相違するのみで、その他の構成は同じである 力 Ru担持 CDCを燃料極とした発電セルを有する実施例 7の固体電解質形燃料電 池は、通常の Ni— CDCを燃料極とした発電セルを有する従来例 7の固体電解質形 燃料電池と比べて、セル電圧、出力、出力密度、および発電効率がいずれも優れた 値を示すことがわかる。
[0115] [実施例 8]
酸ィ匕ランタン、炭酸ストロンチウム、酸化ガリウム、酸化マグネシウム、酸化コバルト の粉体を用意し、(La Sr ) (Ga Mg Co ) 0で示される組成となるよう秤量
0.8 0.2 0.8 0.15 0.05 3
し、ボールミル混合の後、空気中、 1200°Cに 3時間加熱保持し、得られた塊状焼結 体をノヽンマーミルで粗粉砕の後、ボールミルで微粉砕して、平均粒径 1. 3 mのラン タンガレート系固体電解質原料粉末を製造した。前記ランタンガレート系固体電解質 原料粉末をトルエン-エタノール混合溶媒にポリビニルプチラルとフタル酸 Nジォクチ ルを溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード法で薄板 状に成形し、円形に切りだした後、空気中、 1450°Cに 6時間加熱保持して焼結し、 厚さ 200 m、直径 120mmの円板状のランタンガレート系固体電解質板を製造した
[0116] このランタンガレート系固体電解質板の表面に平均粒径 1 μ mの酸化ニッケル粉を トルエン-エタノール混合溶媒にポリビュルブチラルとフタル酸 Nジォクチルを溶解し た有機バインダー溶液と混合してスラリーとし、このスラリーをスクリーン印刷法で、前 記ランタンガレート系固体電解質の一方の面に、平均厚さ: 20 μ mになるようにスラリ 一を塗布し、加熱乾燥して有機バインダー溶液を蒸発させたのち空気中、 1200°C に 3時間加熱保持の焼結を行うことにより、ランタンガレート系固体電解質板の表面 に多孔質酸化ニッケル焼結体層を成形した。
[0117] さらに、 0. 5molZLの硝酸セリウム水溶液 8部と 0. 5molZLの硝酸サマリウム水 溶液 2部の混合水溶液に ImolZLの水酸ィ匕ナトリウム水溶液を攪拌しながら滴下し 、酸ィ匕セリウムと酸ィ匕サマリウムを共沈させた。次いで、生成した粉末を遠心分離機を 用いて沈降させ、上澄みを捨て、蒸留水を加えて攪拌'洗浄し、遠心分離機を用い て再度沈降させ、この操作を 6回繰り返して洗浄した。次いで、遠心分離機で沈降さ せ、エタノールを加えて攪拌し、遠心分離機を用いて再度沈降させ、この操作を 3回 繰り返して溶液を水からエタノールに置換し、 Smドープセリア(以下、 SDCという)の 超微粉を含むエタノール溶液を作製した。得られた SDC超微粉を含むエタノール溶 液の一部を取りだし、 SDCの超微粉の粒径をレーザー回折法で測定したところ、平 均粒径: 0. 04 mを有していることが分かった(この平均粒径: 0. 04 mを有する S DCの超微粉を「SDC粉末」という)。
[0118] この SDC粉末を含むエタノール溶液に、ポリビュルピロリドン、塩化ルテニウムを添 加し、撹拌したのちさらに温度を上げながら撹拌して Ru担持混合溶液を作製し、得 られた Ru担持混合溶液を遠心分離により洗浄を繰り返し行 、、 Ru担持 SDCの超微 粉を含むスラリーを作製した。
得られた Ru担持 SDCの超微粉を含むスラリーの一部を取りだし、 Ru担持 SDCの 超微粉の粒径をレーザー回折法で測定したところ、平均粒径: 40nmであった。
[0119] 前記 Ru担持 SDCの超微粉を含むスラリーを、先に作製したランタンガレート系固 体電解質板の表面の多孔質酸化ニッケル焼結体層に含浸させ、カゝかる状態に 0. 5 時間静止保持して Ru担持 SDCの超微粉を沈降させた後、 100°Cに加熱乾燥するこ とによりエタノール溶液を蒸発させ、その後、空気中、 700°Cで焼成することによりラ ンタンガレート系固体電解質の一方の面に燃料極を焼付け形成した。
[0120] このようにして得られたランタンガレート系固体電解質の一方の面に焼きつけた燃 料極のミクロ組織の一部を走査形電子顕微鏡により観察した結果、 Ru担持 SDCの 超微粉の平均粒径は 40nmであることが分かった。
[0121] 次に、図示してはないが、前記サマリウムストロンチウムコバルタイト系空気極原料 粉をトルエン-エタノール混合溶媒にポリビュルブチラルとフタル酸 Nジォクチルを溶 解した有機ノインダー溶液と混合してスラリーを作製し、このスラリーをランタンガレー ト系固体電解質の燃料極と反対側の他方の面にスクリーン印刷法により厚さ: 30 m になるように成形し乾燥したのち、空気中、 1100°Cに 3時間加熱保持して、空気極を 成形 '焼きつけることにより固体電解質、燃料極および空気極からなる本発明固体電 解質形燃料電池用発電セル (以下、本発明発電セルと言う)を製造した。
[0122] 得られた本発明発電セルの燃料極の上に厚さ lmmの多孔質ニッケル力 なる燃 料極集電体を積層し、一方、本発明発電セルの空気極の上に厚さ 1. 2mmの多孔 質銀からなる空気極集電体を積層し、さらに前記燃料極集電体および空気極集電体 の上にセパレータを積層することにより本発明固体電解質形燃料電池を作製した。
[0123] [従来例 8]
さらに比較のために、下記に示される方法で従来固体電解質形燃料電池を作製し た。まず、 1N—硝酸ニッケル水溶液、 1N—硝酸セリウム水溶液を 1N—硝酸サマリゥ ム水溶液をそれぞれ用意し、 NiOと(Ce Sm ) 0が体積比率で 60 :40になるよう
0.8 0.2 2
に秤量し、混合して、霧化器で溶液を霧化し、空気をキヤリヤーガスとして縦型管状 炉に導入、 1000°Cに加熱して、 NiOと(Ce Sm ) 0が体積比率で 60 :40となる
0.8 0.2 2
酸化物複合粉末を得た。この酸化物複合粉末を用いてスラリーを作製し、このスラリ 一を用いて先に作製したランタンガレート系固体電解質の一方の面に塗布し燒結し て燃料極を形成し、さらに空気極を形成して発電セルを製造した。この発電セルの片 面に燃料極集電体を積層しさらにその上にセパレータを積層し、一方、従来の発電 セルの他方の片面に空気極集電体を積層しさらにセパレータを積層することにより従 来固体電解質形燃料電池を作製した。
[0124] このようにして得られた本発明に係る実施例 8の固体電解質形燃料電池および従 来例 8の固体電解質形燃料電池を用いて、次の条件 (燃料ガスとして改質不十分な 5%炭化水素含有の水素ガスを用いた条件)で発電試験を実施し、その結果を表 8 に示した。
[0125] <発電試験 >
温度: 750°C、 燃料ガス:水素 (5%炭化水素含有)、
燃料ガス流量: 0. 34L/min ( = 3cc/nin/cm2)、
酸化剤ガス:空気、
酸化剤ガス流量: 1. 7LZmin ( = 15cc/nin/cm2)、
の発電条件で発電させ、セル電圧、出力、出力密度および発電効率を測定し、その 結果を表 8に示した。
[0126] [表 8]
Figure imgf000040_0001
[0127] 表 8に示される結果から、実施例 8の固体電解質形燃料電池と従来例 8の固体電 解質形燃料電池とは、燃料極の構成が相違するのみで、その他の構成は同じである 力 改質不十分なために炭化水素ガスが残留する水素ガスを燃料ガスとして用いた 条件で発電を行った場合、実施例 8の固体電解質形燃料電池は従来例 8の固体電 解質形燃料電池と比べて、負荷電流密度、燃料利用率、セル電圧、出力、出力密度 、および発電効率がいずれも優れた値を示すことがわかる。なお、改質不十分な水 素ガスを燃料ガスとして用いて発電を行うことにより燃料極の骨格構造を有する多孔 質酸化ニッケルは骨格構造を有す多孔質ニッケルに還元されていた。
[0128] [実施例 9]
酸ィ匕ランタン、炭酸ストロンチウム、酸化ガリウム、酸化マグネシウム、酸化コバルト の粉体を用意し、(La Sr ) (Ga Mg Co ) 0で示される組成となるよう秤量
0.8 0.2 0.8 0.15 0.05 3
し、ボールミル混合の後、空気中、 1200°Cに 3時間加熱保持し、得られた塊状焼結 体をノヽンマーミルで粗粉砕の後、ボールミルで微粉砕して、平均粒径 1. 3 mのラン タンガレート系固体電解質原料粉末を製造した。前記ランタンガレート系固体電解質 原料粉末をトルエン-エタノール混合溶媒にポリビニルプチラルとフタル酸 Nジォクチ ルを溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード法で薄板 状に成形し、円形に切りだした後、空気中、 1450°Cに 6時間加熱保持して焼結し、 厚さ 200 m、直径 120mmの円板状のランタンガレート系固体電解質板を製造した
[0129] このランタンガレート系固体電解質板の表面に平均粒径 1 μ mの NiO粉末および 平均粒径 0. の(Ce Sm ) 0粉末をトルエン-エタノール混合溶媒にポリビ
0.8 0.2 2
二ルブチラルとフタル酸 Nジォクチルを溶解した有機バインダー溶液と混合してスラリ 一とし、このスラリーをスクリーン印刷法で、前記ランタンガレート系固体電解質の一 方の面に、平均厚さ:20 mになるようにスラリーを塗布し、加熱乾燥して有機バイン ダー溶液を蒸発させたのち空気中、 1200°Cに 3時間加熱保持の焼結を行うことによ り、ランタンガレート系固体電解質板の表面に多孔質混合焼結体層を成形した。
[0130] さらに、 0. 5molZLの硝酸セリウム水溶液 8部と 0. 5molZLの硝酸サマリウム水 溶液 2部の混合水溶液に ImolZLの水酸ィ匕ナトリウム水溶液を攪拌しながら滴下し 、酸ィ匕セリウムと酸ィ匕サマリウムを共沈させた。次いで、生成した粉末を遠心分離機を 用いて沈降させ、上澄みを捨て、蒸留水を加えて攪拌'洗浄し、遠心分離機を用い て再度沈降させ、この操作を 6回繰り返して洗浄した。次いで、遠心分離機で沈降さ せ、エタノールを加えて攪拌し、遠心分離機を用いて再度沈降させ、この操作を 3回 繰り返して溶液を水力 エタノールに置換し、 (Ce Sm ) 0の超微粉末を含むェ
0.8 0.2 2
タノール溶液を作製した。得られた (Ce Sm ) 0超微粉末を含むエタノール溶液
0.8 0.2 2
の一部を取りだし、 (Ce Sm ) 0超微粉末の粒径をレーザー回折法で測定したと
0.8 0.2 2
ころ、平均粒径: 0. 04 mを有していることが分かった(この平均粒径: 0. 04 /z mを 有する(Ce Sm ) 0超微粉末を「SDC超微粉末」という)。
0.8 0.2 2
[0131] この SDC超微粉末を含むエタノール溶液に、ポリビュルピロリドン、塩化ルテニウム を添加し、撹拌したのちさらに温度を上げながら撹拌して Ru担持混合溶液を作製し 、得られた Ru担持混合溶液を遠心分離により洗浄を繰り返し行い、 Ru担持 SDC超 微粉末を含むスラリーを作製した。
得られた Ru担持 SDC超微粉末を含むスラリーの一部を取りだし、 Ru担持 SDC超 微粉末の粒径をレーザー回折法で測定したところ、平均粒径 40nmであった。 [0132] 前記 Ru担持 SDC超微粉末を含むスラリーを、先に作製したランタンガレート系固 体電解質板の表面の多孔質混合焼結体層に含浸させ、かかる状態に 0. 5時間静止 保持して Ru担持 SDC超微粉末を沈降させた後、 100°Cに加熱乾燥することによりェ タノール溶液を蒸発させ、その後、空気中、 700°Cで焼成することによりランタンガレ ート系固体電解質の一方の面に燃料極を焼付け形成した。
[0133] このようにして得られたランタンガレート系固体電解質の一方の面に焼きつけた燃 料極のミクロ組織の一部を走査形電子顕微鏡により観察した結果、 Ru担持 SDCの 超微粒の平均粒径は 40nmであることが分かった。
[0134] 次に、図示してはないが、前記サマリウムストロンチウムコバルタイト系空気極原料 粉をトルエン-エタノール混合溶媒にポリビュルブチラルとフタル酸 Nジォクチルを溶 解した有機ノインダー溶液と混合してスラリーを作製し、このスラリーをランタンガレー ト系固体電解質の燃料極と反対側の他方の面にスクリーン印刷法により厚さ: 30 m になるように成形し乾燥したのち、空気中、 1100°Cに 3時間加熱保持して、空気極を 成形 '焼きつけることにより固体電解質、燃料極および空気極からなる本発明固体電 解質形燃料電池用発電セル (以下、本発明発電セルと言う)を製造した。
[0135] 得られた本発明発電セルの燃料極の上に厚さ 0. 74mmの多孔質ニッケルからな る燃料極集電体を積層し、一方、本発明発電セルの空気極の上に厚さ 1. Ommの多 孔質銀からなる空気極集電体を積層し、さらに前記燃料極集電体および空気極集電 体の上にセパレータを積層することにより本発明固体電解質形燃料電池を作製した
[0136] [従来例 9]
さらに比較のために、下記に示される方法で従来固体電解質形燃料電池を作製し た。まず、 1N—硝酸ニッケル水溶液、 1N—硝酸セリウム水溶液を 1N—硝酸サマリゥ ム水溶液をそれぞれ用意し、 NiOと(Ce Sm ) 0 が体積比率で 60 :40になるよう
0.8 0.2 2
に秤量し、混合して、霧化器で溶液を霧化し、空気をキヤリヤーガスとして縦型管状 炉に導入、 1000°Cに加熱して、 NiOと(Ce Sm ) 0 が体積比率で 60 :40となる
0.8 0.2 2
酸化物混合粉末を得た。この酸化物混合粉末を用いてスラリーを作製し、このスラリ 一を用いて先に作製したランタンガレート系固体電解質の一方の面に塗布し燒結し て燃料極を形成し、さらに空気極を形成して従来発電セルを製造した。この従来発 電セルの片面に厚さ 1mmの多孔質ニッケルカゝらなる燃料極集電体を積層しさら〖こそ の上にセパレータを積層し、一方、従来の発電セルの他方の片面に厚さ 1. 2mmの 多孔質銀力 なる空気極集電体を積層しさらにセパレータを積層することにより従来 固体電解質形燃料電池を作製した。
[0137] このようにして得られた本発明に係る実施例 9の固体電解質形燃料電池および従 来例 9の固体電解質形燃料電池を用いて、次の条件 (燃料ガスとして改質不十分な 5%炭化水素含有の水素ガスを用いた条件)で発電試験を実施し、その結果を表 9 に示した。
[0138] <発電試験 >
温度: 750°C、
燃料ガス:水素 (5%炭化水素含有)、
燃料ガス流量: 0. 34L/min ( = 3cc/nin/cm2)、
酸化剤ガス:空気、
酸化剤ガス流量: 1. 7LZmin ( = 15cc/nin/cm2)、
の発電条件で発電させ、セル電圧、出力、出力密度および発電効率を測定し、その 結果を表 9に示した。
[0139] [表 9]
Figure imgf000043_0001
[0140] 表 9に示される結果から、実施例 9の固体電解質形燃料電池と従来例 9の固体電 解質形燃料電池とは、燃料極の構成が相違するのみで、その他の構成は同じである 力 改質不十分なために炭化水素ガスが残留する水素ガスを燃料ガスとして用いた 条件で発電を行った場合、実施例 9の固体電解質形燃料電池は従来例 9の固体電 解質形燃料電池と比べて、負荷電流密度、燃料利用率、セル電圧、出力、出力密度 、および発電効率が!/、ずれも優れた値を示すことがわかる。
産業上の利用可能性
この発明の燃料極を設けてなる発電セルを組込んだ固体電解質形燃料電池は、そ の使用寿命を一層高めることが可能となる。また、燃料ガスとして極微量の炭化水素 ガスが残留する改質不十分な水素ガスを用いて発電しても発電効率を低下させるこ とがないことから、燃料ガスである水素ガスの純度に関係なく高効率で発電すること ができる。

Claims

請求の範囲
[1] ニッケル粒が相互に焼結してネットワークを組んで 、る骨格構造を有する多孔質二 ッケルの骨格表面に、 B (ただし、 Bは Sm、 La、 Gd、 Y、 Caの内の 1種または 2種以 上を示す)ドープされたセリア粒が付着している固体電解質形燃料電池用発電セル の燃料極において、前記セリア粒は、ニッケル粒が相互に焼結し結合して断面積が 狭くなつて!/ヽる骨格構造の部分 (以下、骨格構造ネック部分と!/ヽぅ)の周囲に最も高 密度に分布し付着していることを特徴とする固体電解質形燃料電池用発電セルの燃 料極。
[2] 前記骨格構造ネック部分の周囲に最も高密度に分布し付着している Bドープされた セリア粒は、平均粒径: lOOnm以下の Bドープされた微細なセリア粒が骨格構造ネッ ク部分に凝集し互いに焼結して前記骨格構造ネック部分をリング状に取り卷 、て 、る ことを特徴とする請求項 1記載の固体電解質形燃料電池用発電セルの燃料極。
[3] 前記 Bドープされたセリア粒は、一般式: Ce B O (式中、 Bは Sm、 Gd、 Y、 Ca
1-m m 2
内の 1種または 2種以上、 mは 0<m≤0. 4)で表される Bドープされたセリアからなる ことを特徴とする請求項 1記載の固体電解質形燃料電池用発電セルの燃料極。
[4] ランタンガレード系酸化物イオン伝導体からなる電解質と、前記電解質の一方の面 に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形されている固体 電解質形燃料電池用発電セルにぉ ヽて、
前記燃料極は、ニッケル粒が相互に焼結してネットワークを組んで 、る骨格構造を 有する多孔質ニッケルの骨格表面に、 B (ただし、 Bは Sm、 La、 Gd、 Y、 Caの内の 1 種または 2種以上を示す)ドープされたセリア粒が付着している燃料極であって、前 記セリア粒は、ニッケル粒が相互に焼結し結合して断面積が狭くなつて 、る骨格構造 の部分の周囲に最も高密度に分布し付着していることを特徴とする固体電解質形燃 料電池用発電セル。
[5] 前記ランタンガレート系酸ィ匕物イオン伝導体は、一般式: La Sr Ga Mg A l-X X 1-Y-Z Y z
O (式中、 A=Co、 Fe、 Ni、 Cuの 1種または 2種以上、 X=0. 05〜0. 3、 Y=0〜0
3
. 29、Ζ = 0. 01〜0. 3、 Y+Z=0. 025〜0. 3)で表される酸ィ匕物イオン伝導体で あることを特徴とする請求項 4記載の固体電解質形燃料電池用発電セル。
[6] 固体電解質形燃料電池用発電セルを組込んだ固体電解質形燃料電池にお!ヽて、 前記固体電解質形燃料電池用発電セルの燃料極は、ニッケル粒が相互に焼結し てネットワークを組んで ヽる骨格構造を有する多孔質ニッケルの骨格表面に、 Β (た だし、 Βは Sm、 La、 Gd、 Y、 Caの内の 1種または 2種以上を示す)ドープされたセリア 粒が付着している燃料極であって、前記セリア粒は、ニッケル粒が相互に焼結し結合 して断面積が狭くなつている骨格構造の部分の周囲に最も高密度に分布し付着して いることを特徴とする固体電解質形燃料電池。
[7] ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方 の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形された固体 電解質形燃料電池用発電セルにぉ ヽて、
前記燃料極は、一般式: Ce B O (式中、 Bは Sm、 Gd、 Y、 Caの 1種または 2種
1— m m 2
以上、 mは 0<m≤0. 4)で表される Bドープしたセリアとニッケルの焼結体力 なり、 この焼結体は、骨格構造を有する多孔質ニッケルの骨格表面に Bドープしたセリア粒 が固着しており、この Bドープしたセリア粒は燃料極が固体電解質に接する界面およ びその近傍の多孔質ニッケルの骨格表面に最も多く固着していることを特徴とする固 体電解質形燃料電池用発電セル。
[8] 前記多孔質ニッケルの骨格表面に固着している Bドープしたセリア粒は、粒径が 10 Onm未満の微細な Bドープしたセリア粒であることを特徴とする請求項 7記載の固体 電解質形燃料電池用発電セル。
[9] 前記燃料極が固体電解質に接する界面およびその近傍の多孔質ニッケルの骨格 表面に Bドープしたセリア粒が最も多く固着している部分は、固体電解質の表面から 10〜20 mの範囲の厚さにわたって層状に形成されていることを特徴とする請求項 7記載の固体電解質形燃料電池用発電セル。
[10] 固体電解質形燃料電池用発電セルを組み込んだ固体電解質形燃料電池にお!、 て、
前記固体電解質形燃料電池用発電セルの燃料極は、一般式: Ce B O (式中、
1-m m 2
Bは Sm、 Gd、 Y、 Caの 1種または 2種以上、 mは 0<m≤0. 4)で表される Bドープし たセリアとニッケルの焼結体力 なり、この焼結体は、骨格構造を有する多孔質-ッケ ルの骨格表面に Bドープしたセリア粒が固着しており、この Bドープしたセリア粒は燃 料極が固体電解質に接する界面およびその近傍の多孔質ニッケルの骨格表面に最 も多く固着していることを特徴とする固体電解質形燃料電池。
[11] 一般式: Ce B O (式中、 Bは Sm、Gd、: La、 Y、Caの 1種または 2種以上、 mは 0
1— m m 2
<m≤0. 4)で表される Bドープしたセリアにルテニウム金属を担持させてなることを 特徴とする固体電解質形燃料電池用発電セルにおける燃料極を構成する燃料極材 料。
[12] ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方 の面に空気極が形成され、他方の面に燃料極が成形された固体電解質形燃料電池 用発電セルにおいて、
前記燃料極は、一般式: Ce B O (式中、 Bは Sm、 Gd、 La、 Y、 Caの 1種または
1— m m 2
2種以上、 mは 0<m≤0. 4)で表される Bドープしたセリアにルテニウム金属を担持 させてなる燃料極材料で構成されて!ヽることを特徴とする固体電解質形燃料電池用 発電セル。
[13] 固体電解質形燃料電池用発電セルを組み込んだ固体電解質形燃料電池にお!、 て、 前記固体電解質形燃料電池用発電セルの燃料極は、一般式: Ce B O
1-m m 2 (式中、
Bは Sm、 Gd、 La、 Y、 Caの 1種または 2種以上、 mは 0<m≤0. 4)で表される Bドー プしたセリアにルテニウム金属を担持させてなる燃料極材料で構成されていることを 特徴とする固体電解質形燃料電池。
[14] ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方 の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形された固体 電解質形燃料電池用発電セルにぉ ヽて、
前記燃料極は、ネットワークを組んで ヽる骨格構造を有する多孔質ニッケルの骨格 表面に、一般式: Ce B O (式中、 Bは Sm、Gd、 Y、Ca内の 1種または 2種以上、
1-m m 2
mは 0<m≤0. 4)で表される Bドープされたセリアにルテニウム金属を担持させてな る燃料極材料 (以下、この燃料極材料を「Ru担持 Bドープセリア」 、う)の粒が固着 しており、この Ru担持 Bドープセリア粒は燃料極が固体電解質に接する界面および その近傍の多孔質ニッケルの骨格表面に最も多く固着していることを特徴とする固体 電解質形燃料電池用発電セル。
[15] 前記多孔質ニッケルの骨格表面に固着している Ru担持 Bドープセリア粒は、粒径 が lOOnm未満の微細な Ru担持 Bドープセリア粒であることを特徴とする請求項 14記 載の固体電解質形燃料電池用発電セル。
[16] 前記燃料極が固体電解質に接する界面およびその近傍の多孔質ニッケルの骨格 表面に Ru担持 Bドープセリア粒が最も多く固着して!/、る部分は、固体電解質の表面 力も 10〜20 mの範囲の厚さにわたって層状に形成されていることを特徴とする請 求項 14記載の固体電解質形燃料電池用発電セル。
[17] 固体電解質形燃料電池用発電セルを組み込んだ固体電解質形燃料電池にお!、 て、
前記固体電解質形燃料電池用発電セルの燃料極は、ネットワークを糸且んで!ヽる骨 格構造を有する多孔質ニッケルの骨格表面に、一般式: Ce B O (式中、 Bは Sm
1— m m 2
、 Gd、 Y、 Ca内の 1種または 2種以上、 mは 0<m≤0. 4)で表される Bドープされた セリアにルテニウム金属を担持させてなる燃料極材料 (Ru担持 Bドープセリア)の粒 が固着しており、この Ru担持 Bドープセリア粒は燃料極が固体電解質に接する界面 およびその近傍の多孔質ニッケルの骨格表面に最も多く固着していることを特徴とす る固体電解質形燃料電池。
[18] ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方 の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形された固体 電解質形燃料電池用発電セルにぉ ヽて、
前記燃料極は、一般式: Ce B O (式中、 Bは Sm、 Gd、 Y、 Ca内の 1種または 2
1— m m 2
種以上、 mは 0<m≤0. 4)で表される Bドープされたセリア(以下、 BDCという)粒と 酸ィ匕ニッケル粒とがネットワークを組んでいる骨格構造を有する多孔質混合焼結体 の骨格表面に、 BDCにルテニウム金属を担持させてなる燃料極材料 (以下、この燃 料極材料を「Ru担持 BDC」という)の粒が固着しており、この Ru担持 BDC粒は燃料 極が固体電解質に接する界面およびその近傍の多孔質混合焼結体の骨格表面に 最も多く固着していることを特徴とする固体電解質形燃料電池用発電セル。
[19] 前記多孔質混合焼結体の骨格表面に固着している Ru担持 BDC粒は、粒径が 10 Onm未満の微細な Ru担持 BDC粒であることを特徴とする請求項 18記載の固体電 解質形燃料電池用発電セル。
[20] 前記燃料極が固体電解質に接する界面およびその近傍の多孔質混合焼結体の骨 格表面に Ru担持 BDC粒が最も多く固着して!/ヽる部分は、固体電解質の表面から 10 〜20 mの範囲の厚さにわたって層状に形成されていることを特徴とする請求項 18 記載の固体電解質形燃料電池用発電セル。
[21] 固体電解質形燃料電池用発電セルを組み込んだ固体電解質形燃料電池にお!、 て、
前記固体電解質形燃料電池用発電セルの燃料極は、一般式: Ce B O
1-m m 2 (式中、
Bは Sm、 Gd、 Y、 Ca内の 1種または 2種以上、 mは 0<m≤0. 4)で表される Bドープ されたセリア (BDC)粒と酸ィ匕ニッケル粒とがネットワークを組んで 、る骨格構造を有 する多孔質混合焼結体の骨格表面に、 BDCにルテニウム金属を担持させてなる燃 料極材料 (Ru担持 BDC)の粒が固着しており、この Ru担持 BDC粒は燃料極が固体 電解質に接する界面およびその近傍の多孔質混合焼結体の骨格表面に最も多く固 着していることを特徴とする固体電解質形燃料電池。
PCT/JP2006/302833 2005-02-18 2006-02-17 固体電解質形燃料電池用発電セルおよびその燃料極の構造 WO2006088133A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06713974A EP1850411B1 (en) 2005-02-18 2006-02-17 Power generation cell for solid electrolyte fuel battery and structure of fuel electrode in said cell
US11/884,014 US20090274941A1 (en) 2005-02-18 2006-02-17 Power Generation Cell for Solid Electrolyte Fuel Cell and Structure of Fuel Electrode Thereof
US13/406,642 US20120171595A1 (en) 2005-02-18 2012-02-28 Power generation cell for solid electrolyte fuel cell and structure of fuel electrode thereof

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2005-041558 2005-02-18
JP2005041558A JP2006228587A (ja) 2005-02-18 2005-02-18 固体電解質型燃料電池用発電セルの燃料極
JP2005152711A JP5093741B2 (ja) 2005-05-25 2005-05-25 固体電解質形燃料電池用発電セル及びその製造方法
JP2005-152711 2005-05-25
JP2006030733A JP2007213890A (ja) 2006-02-08 2006-02-08 固体電解質形燃料電池用発電セルにおける燃料極を構成する燃料極材料
JP2006-030732 2006-02-08
JP2006030734A JP2007213891A (ja) 2006-02-08 2006-02-08 固体電解質形燃料電池用発電セル
JP2006030732A JP2007213889A (ja) 2006-02-08 2006-02-08 固体電解質形燃料電池用発電セル
JP2006-030733 2006-02-08
JP2006-030734 2006-02-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/406,642 Division US20120171595A1 (en) 2005-02-18 2012-02-28 Power generation cell for solid electrolyte fuel cell and structure of fuel electrode thereof

Publications (1)

Publication Number Publication Date
WO2006088133A1 true WO2006088133A1 (ja) 2006-08-24

Family

ID=36916530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302833 WO2006088133A1 (ja) 2005-02-18 2006-02-17 固体電解質形燃料電池用発電セルおよびその燃料極の構造

Country Status (3)

Country Link
US (2) US20090274941A1 (ja)
EP (1) EP1850411B1 (ja)
WO (1) WO2006088133A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193062A1 (en) * 2022-04-06 2023-10-12 Commonwealth Scientific And Industrial Research Organisation Electrode compositions

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110130264A (ko) * 2010-05-27 2011-12-05 삼성전자주식회사 고체산화물 전해질, 이를 포함하는 고체산화물 연료전지 및 이의 제조방법
KR20130121914A (ko) * 2010-12-03 2013-11-06 페더럴-모걸 코오포레이숀 세리아 및/또는 이트리아로 함침된 분말 금속 부품 및 제조 방법
EP2756899B1 (en) 2011-09-16 2020-04-08 Japan Science And Technology Agency A plurality of ruthenium nanoparticles, use and method for producing same
WO2014081178A1 (ko) * 2012-11-20 2014-05-30 지브이퓨얼셀 삼상계면길이가 증가된 박막형 sofc 및 그 제조방법
EP3340349A1 (de) * 2016-12-21 2018-06-27 sunfire GmbH Schwefeltoleranter katalysator für festoxid-brennstoffzelle sowie herstellungsverfahren
CN110085909B (zh) * 2019-05-05 2021-06-22 中南大学 一种复合固体电解质材料及其制备方法和应用
CN113764709A (zh) * 2020-12-31 2021-12-07 厦门大学 一种基于复合材料的二次燃料电池
KR102648904B1 (ko) * 2021-08-11 2024-03-18 (주)원익머트리얼즈 암모니아 연료용 고체산화물 연료전지

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192261A (ja) * 1990-11-27 1992-07-10 Ngk Insulators Ltd 固体電解質型燃料電池の燃料電極及びその製造方法
JPH06140048A (ja) * 1992-07-27 1994-05-20 Nippon Oil Co Ltd 固体電解質型燃料電池
JPH08213028A (ja) * 1995-02-06 1996-08-20 Fujikura Ltd 固体電解質型燃料電池の燃料電極とその成膜方法
JPH1021932A (ja) * 1996-06-27 1998-01-23 Kyocera Corp 固体電解質型燃料電池セルおよびその製造方法
JPH11297333A (ja) 1998-04-03 1999-10-29 Kansai Electric Power Co Inc:The 燃料極及びそれを用いた固体電解質型燃料電池
JPH11335164A (ja) 1997-08-29 1999-12-07 Yusaku Takita 酸化物イオン伝導体とその用途
JP3297610B2 (ja) * 1996-10-30 2002-07-02 京セラ株式会社 固体電解質型燃料電池セルの製法
JP2002260677A (ja) * 2001-02-28 2002-09-13 Kyocera Corp 固体電解質型燃料電池セルおよび燃料電池
JP2003197219A (ja) * 2001-12-04 2003-07-11 Kansai Electric Power Co Inc:The 固体酸化物形燃料電池および製造方法
JP2003346864A (ja) * 2002-05-27 2003-12-05 Japan Science & Technology Corp アノード支持固体酸化物型燃料電池及びその製造方法
JP2004055194A (ja) 2002-07-17 2004-02-19 Mitsubishi Materials Corp 固体酸化物形燃料電池の電極
JP2005044601A (ja) * 2003-07-28 2005-02-17 Mitsubishi Materials Corp 固体酸化物型燃料電池
WO2005045962A1 (ja) 2003-11-10 2005-05-19 Mitsubishi Materials Corporation 固体電解質型燃料電池用発電セル

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582766A (en) * 1985-03-28 1986-04-15 Westinghouse Electric Corp. High performance cermet electrodes
AU2003211783A1 (en) * 2002-03-11 2003-09-22 Mitsubishi Materials Corporation Solid oxide fuel cell

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192261A (ja) * 1990-11-27 1992-07-10 Ngk Insulators Ltd 固体電解質型燃料電池の燃料電極及びその製造方法
JPH06140048A (ja) * 1992-07-27 1994-05-20 Nippon Oil Co Ltd 固体電解質型燃料電池
JPH08213028A (ja) * 1995-02-06 1996-08-20 Fujikura Ltd 固体電解質型燃料電池の燃料電極とその成膜方法
JPH1021932A (ja) * 1996-06-27 1998-01-23 Kyocera Corp 固体電解質型燃料電池セルおよびその製造方法
JP3297610B2 (ja) * 1996-10-30 2002-07-02 京セラ株式会社 固体電解質型燃料電池セルの製法
JPH11335164A (ja) 1997-08-29 1999-12-07 Yusaku Takita 酸化物イオン伝導体とその用途
JPH11297333A (ja) 1998-04-03 1999-10-29 Kansai Electric Power Co Inc:The 燃料極及びそれを用いた固体電解質型燃料電池
JP2002260677A (ja) * 2001-02-28 2002-09-13 Kyocera Corp 固体電解質型燃料電池セルおよび燃料電池
JP2003197219A (ja) * 2001-12-04 2003-07-11 Kansai Electric Power Co Inc:The 固体酸化物形燃料電池および製造方法
JP2003346864A (ja) * 2002-05-27 2003-12-05 Japan Science & Technology Corp アノード支持固体酸化物型燃料電池及びその製造方法
JP2004055194A (ja) 2002-07-17 2004-02-19 Mitsubishi Materials Corp 固体酸化物形燃料電池の電極
JP2005044601A (ja) * 2003-07-28 2005-02-17 Mitsubishi Materials Corp 固体酸化物型燃料電池
WO2005045962A1 (ja) 2003-11-10 2005-05-19 Mitsubishi Materials Corporation 固体電解質型燃料電池用発電セル

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1850411A4 *
UCHIDA ET AL., J. ELECTROCHEM. SOC., vol. 145, no. 2, February 1998 (1998-02-01), pages 615 - 620

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193062A1 (en) * 2022-04-06 2023-10-12 Commonwealth Scientific And Industrial Research Organisation Electrode compositions

Also Published As

Publication number Publication date
US20120171595A1 (en) 2012-07-05
EP1850411B1 (en) 2012-04-18
EP1850411A4 (en) 2009-07-29
US20090274941A1 (en) 2009-11-05
EP1850411A1 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
WO2006088133A1 (ja) 固体電解質形燃料電池用発電セルおよびその燃料極の構造
RU2403655C2 (ru) Инфильтрация исходного материала и способ покрытия
WO2007061043A1 (ja) 固体酸化物形燃料電池
JP2008519404A (ja) 電気化学的電池構造体および制御粉末法によるその製造方法
JP2009064640A (ja) 固体酸化物電気化学セルの燃料極、その製造方法、及び固体酸化物電気化学セル
JP5613286B2 (ja) 固体酸化物電気化学セルの燃料極及び固体酸化物電気化学セル
JP2019521496A (ja) メタンの効率的な利用に適合された中温型燃料電池
JP6255358B2 (ja) 固体酸化物形燃料電池用の電極材料とその利用
JP5509142B2 (ja) 複合材料およびその利用
JP7115873B2 (ja) 固体酸化物形燃料電池とこれに用いる電極材料
JP2007200664A (ja) 固体電解質型燃料電池の製造方法
JP2007213891A (ja) 固体電解質形燃料電池用発電セル
JP2006228587A (ja) 固体電解質型燃料電池用発電セルの燃料極
WO2005045962A1 (ja) 固体電解質型燃料電池用発電セル
JP4845296B2 (ja) 固体電解質型燃料電池セル及び燃料電池
JP2010232135A (ja) 耐久性のある燃料極およびこの燃料極を組み込んだ固体酸化物形燃料電池
JP5093741B2 (ja) 固体電解質形燃料電池用発電セル及びその製造方法
JP2007095673A (ja) 固体電解質型燃料電池用発電セル
US20120189944A1 (en) Solid electrolyte for solid oxide fuel cell, and solid oxide fuel cell including the solid electrolyte
JP7208764B2 (ja) 固体酸化物形燃料電池とこれに用いる集電部形成用材料
KR101335063B1 (ko) 고출력 고체산화물 연료전지 단위셀 제조기술
US20150147677A1 (en) FABRICATION OF SOLID OXIDE FUEL CELLS WITH A THIN (LA0.9SR0.1)0.98(GA0.8MG0.2)O3-delta ELECTROLYTE ON A SR0.8LA0.2TIO3 SUPPORT
JP2006024545A (ja) 固体電解質型燃料電池用発電セル
JP2005166640A (ja) 固体電解質型燃料電池用発電セル
JP2007213889A (ja) 固体電解質形燃料電池用発電セル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006713974

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006713974

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11884014

Country of ref document: US