JP2004055194A - 固体酸化物形燃料電池の電極 - Google Patents

固体酸化物形燃料電池の電極 Download PDF

Info

Publication number
JP2004055194A
JP2004055194A JP2002208066A JP2002208066A JP2004055194A JP 2004055194 A JP2004055194 A JP 2004055194A JP 2002208066 A JP2002208066 A JP 2002208066A JP 2002208066 A JP2002208066 A JP 2002208066A JP 2004055194 A JP2004055194 A JP 2004055194A
Authority
JP
Japan
Prior art keywords
electrode
fuel cell
solid electrolyte
electrolyte layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002208066A
Other languages
English (en)
Inventor
Kazunori Adachi
足立 和則
Koji Hoshino
星野 孝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2002208066A priority Critical patent/JP2004055194A/ja
Publication of JP2004055194A publication Critical patent/JP2004055194A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】電池性能を向上できる固体酸化物形燃料電池の電極を提供する。
【解決手段】電極材料粉末より造粒された複合粒子粉体を固体電解質層3の両面に積層・成形して成る固体酸化物形燃料電池の電極において、粒径の異なる前記複合粒子粉体を層状に積層した多層構造として気孔率の分布を制御する。すなわち、前記固体電解質層3に接する側の前記複合粒子粉体の粒径を小さくし、積層方向に大きくする。これにより、ガスの透過性を保ちながら固体電解質層3と各電極層2、4との反応場(三相界面の長さ)を確保することができ、よって、電極反応時の分極が減少し、固体酸化物形燃料電池の発電性能が向上する。前記複合粒子粉体はスプレードライ法で造粒すると良い。
【選択図】  図1

Description

【0001】
【発明の属する技術分野】
本発明は、固体酸化物形燃料電池の電極構造に関するものである。
【0002】
【従来の技術】
酸化物イオン伝導体からなる固体電解質層を空気極層(酸化剤極層)と燃料極層との間に挟んだ積層構造を持つ固体酸化物形燃料電池は、第三世代の発電用燃料電池として開発が進んでいる。固体酸化物形燃料電池では、空気極側に酸素(空気)が、燃料極側には燃料ガス(H2 、CO等)が供給される。空気極と燃料極は、ガスが固体電解質との界面に到達することができるように、いずれも多孔質とされている。
【0003】
空気極側に供給された酸素は、空気極層内の気孔を通って固体電解質層との界面近傍に到達し、この部分で、空気極から電子を受け取って酸化物イオン(O2−)にイオン化される。この酸化物イオンは、燃料極の方向に向かって固体電解質層内を拡散移動する。燃料極との界面近傍に到達した酸化物イオンは、この部分で、燃料ガスと反応して反応生成物(H O、CO2 等)を生じ、燃料極に電子を放出する。
【0004】
燃料に水素を用いた場合の電極反応は次のようになる。
空気極: 1/2 O +     2e−  → O2−
燃料極:     H +     O2−  → H2 O+2e− 
全体 :     H2 + 1/2 O2   → H2 
【0005】
上記電極反応、例えば、空気極側で起こる酸素分子から酸化物イオンへのイオン化反応 (1/2O2 +2e− →O2−) は、酸素分子と電子と酸化物イオンの三者が関与することから、酸化物イオンを運ぶ固体電解質層と、電子を運ぶ空気極層と、酸素分子を供給する気相 (空気) 、の三相の界面でしか起こらないと言われている。燃料極側でも同様に、固体電解質層と、燃料極層と、気相の燃料ガスとの三相界面で電極反応が起こる。従って、この三相界面を増大させることが電極反応の円滑な進行に有効であると考えられている。
【0006】
ここで、固体電解質層は、酸化物イオンの移動媒体であると同時に、燃料ガスと空気を直接接触させないための隔壁としても機能するので、ガス不透過性の緻密な構造となっている。この固体電解質層は、酸化物イオン伝導性が高く、空気極側の酸化性雰囲気から燃料極側の還元性雰囲気までの条件下で化学的に安定で、熱衝撃に強い材料から構成する必要があり、かかる要件を満たす材料としてイットリアを添加した安定化ジルコニア(YSZ)が一般的に使用されている。
【0007】
一方、電極である空気極(カソード)層と燃料極(アノード)層はいずれも電子伝導性の高い材料から構成する必要がある。空気極材料は、700℃前後の高温の酸化性雰囲気中で化学的に安定でなければならないため、金属は不適当であり、電子伝導性を持つペロブスカイト型酸化物材料、具体的にはLaMnO3 もしくはLaCoO 、または、これらのLaの一部をSr、Ca等に置換した固溶体が一般に使用されている。また、燃料極材料は、Ni、Coなどの金属、或いはNi−YSZ、Co−YSZなどのサーメットが一般的である。各電極層はガスを透過させることができるように多孔質の層とする必要がある。相界面における電極層のガス透過性(拡散性)、電子伝導性が良ければ電極反応が活性化され、発電性能が向上する。
【0008】
図2は、固体酸化物形燃料電池における発電セル1の内部構造を示しており、図中、符号2は空気極層、符号3は固体電解質層、符号4は燃料極層である。従来では、本図のように、固体電解質層上に単層で成る電極を形成した構造の発電セル1が一般的である。通常、各電極層は、溶射法、EVD法、スラリーを用いたシート成型法、スクリーン印刷法等により形成される。
【0009】
【発明が解決しようとする課題】
既述したように、固体酸化物形燃料電池の各電極層は、ガスが透過し易いように多孔質とされるが、気孔率(気孔径)を余り大きくし過ぎると逆に固体電解質層と電極層との反応場(三相界面の長さ)が減少するため、電極反応が制限され、分極が大きくなって電池性能が低下するという問題が発生する。
【0010】
本発明は、上記問題に鑑みて成されたもので、固体電解質層に接する側の各電極層の気孔率を小さくすると共に、固体電解質層から離れるに伴って気孔率を大きくすることにより、ガスの透過性を保ちながら反応場を確保するようにした固体酸化物形燃料電池の電極を提供することを目的としている。
【0011】
【課題を解決するための手段】
すなわち、請求項1に記載の本発明は、電極材料粉末より造粒された複合粒子粉体を固体電解質層の両面に積層・成形して成る固体酸化物形燃料電池の電極において、粒径の異なる前記複合粒子粉体を層状に積層した多層構造として、気孔率の分布を制御したことを特徴としている。
【0012】
また、請求項2に記載の本発明は、請求項1に記載の固体酸化物形燃料電池の電極において、前記固体電解質層に接する側の前記複合粒子粉体の粒径を小さくし、積層方向に大きくすることを特徴としている。
【0013】
また、請求項3に記載の本発明は、請求項1または請求項2の何れかに記載の固体酸化物形燃料電池の電極において、前記複合粒子粉体がスプレードライ法により造粒されていることを特徴としている。
【0014】
ここで、請求項1および請求項2に記載の構成では、固体電解質層に接する側の電極の気孔率(気孔孔)を小さくすることにより、十分な反応場を確保することができ、よって、電極反応時の分極を減らすことができるとともに、固体電解質層から離れるに伴って気孔率を大きくすることにより、同時にガスの透過性(拡散性)も保つことができる。これにより、電極反応が活性化され、発電性能が向上する。
また、請求項3に記載の構成では、電極材料粉末を液中に溶解・分散し、このスプレードライ法により乾燥すると、電極材料粉末が均一に分散した微細で高活性な粒子粉体を得ることができる。造粒される粒子径は、スプレードライ時の気化温度、ガス流速、液の供給量等の条件を変えることで制御できる。
従って、スプレードライ法で粒径の異なる電極材料粉体を調製し、それを積層し、プレス成形・焼結すれば、孔径分布が異なる多層構造の電極を形成できる。
【0015】
【発明の実施の形態】
本発明は、電極材料粉末より造粒された複合粒子粉体(電極粉体)を固体電解質層の両面に積層・成形・焼成して電極層を形成する際、粒径の異なる電極粉体を層状に積層した多層構造として気孔率の分布を制御することにより、固体電解質層と各電極層との反応場(三相界面の長さ)を確保し、電池性能の向上を図るものである。
【0016】
以下、図1に基づいて本発明の一実施形態を説明する。図1は本発明が適用された発電セル1の内部構造を示し、符号2は空気極層、符号3は固体電解質層、符号4は燃料極層である。
【0017】
本実施形態では、スプレードライ法で造粒した電極粉体を用いた燃料極層4の形成について説明する。
【0018】
先ず、燃料極材料の硝酸塩であるCe(NO )3 ・6H2 O、Sm(NO )3 ・6H2 O、Ni(NO ) ・6H2 Oを所定量蒸留水に加えて溶解させる。
次に、この溶解液にNaOHをpH13になるよう少しづづ滴下し、電極構成材料となる水酸化物Ce(OH)3 、Sm(OH)3 、Ni(OH)2 を沈殿させる。
次に、この沈殿物を遠心分離によって溶液の上澄み液と濃縮された沈殿物を分離した後、蒸留水を加えて攪拌、再度遠心分離を5〜6回繰り返して洗浄する。
最後に、蒸留水中に均一に分散した水酸化物の複合体を上記スプレードライ法を用いて加熱、分解、および乾燥させることにより、CeO 、Sm O3 、NiOが均一に分散した微細で高活性な球状の複合粒子粉体、即ち、電極粉体が得られる。
【0019】
ここで、造粒される粒子径は、スプレードライの気化温度、ガス流速、液の供給量等の条件を変えることで制御できるため、上記諸条件を適宜設定して粒径の異なる電極粉体を調製する。例えば、本実施形態では、大粒径、中粒径、小粒径の3種類の電極粉体を調製した。
【0020】
また、スプレードライ法は、乾燥中の粒子の滞留時間がほんの数秒間であり、造粒に多くの時間を要さないことから、連続生産性、大量生産性に優れており、よって、電極を安価に、且つ容易に形成することができる。
【0021】
次いで、この電極粉体を用いて電極を形成する場合、先ず、上記電極粉体に有機物結着剤を配合し、攪拌してペースト状とし、公知のブレード法やスクリーン印刷等により固体電解質層の表面に塗布・積層する。
この際、図1に示すように、固体電解質層3に接する側に小粒径のペースト状粉体を塗布して第1層4aを形成し、次に、その上に中粒径のペースト状粉体を塗布して第2層4bを形成し、最後に、その上に大粒径のペースト状粉体を塗布して第3層4cを形成し、その後、乾燥、プレス成形、焼成して図示する3層構造の燃料極層4を形成する。
尚、スプレードライ法で造粒される粉体粒子は真球状となるので、これを用いて形成した各層の気孔率(気孔孔)は各々安定したものになる。
【0022】
また、空気極層2についても、上記と同様の要領でそれぞれ粒径の異なる空気極用の電極粉体を造粒し、各々を積層・成形して多層構造とすれば良い。
【0023】
以上のように、本実施形態では、固体電解質層3に接する側の各電極層の気孔率を小さくすることにより、十分な反応場を確保することができ、よって電極反応時の分極を減らすことができるとともに、固体電解質層3から離れるに伴って気孔率を大きくすることにより、同時にガスの透過性(拡散性)も保つことができる。これにより、電極反応が活性化され、発電性能が向上する。
【0024】
【発明の効果】
以上説明したように、請求項1および請求項2に記載の本発明によれば、ガスの透過性を保ちながら固体電解質層と各電極層との反応場(三相界面の長さ)を確保することができ、固体酸化物形燃料電池の発電性能が向上する。
【0025】
また、請求項3に記載の本発明によれば、スプレードライの気化温度、ガス流速、液の供給量等の条件を適宜設定することで造粒の粒径を制御できるため、気孔率分布が異なる多層構造の電極を容易に、且つ安価に形成することができる。
【図面の簡単な説明】
【図1】本発明が適用された発電セルの内部構造を示す図。
【図2】従来の発電セルの内部構造を示す図。
【符号の説明】
1 発電セル
2 空気極層
3 固体電解質層
4(4a〜4c) 燃料極層

Claims (3)

  1. 電極材料粉末より造粒された複合粒子粉体を固体電解質層の両面に積層・成形して成る固体酸化物形燃料電池の電極において、
    粒径の異なる前記複合粒子粉体を層状に積層した多層構造として、気孔率の分布を制御したことを特徴とする固体酸化物形燃料電池の電極。
  2. 前記固体電解質層に接する側の前記複合粒子粉体の粒径を小さくし、積層方向に大きくすることを特徴とする請求項1に記載の固体酸化物形燃料電池の電極。
  3. 前記複合粒子粉体がスプレードライ法により造粒されていることを特徴とする請求項1または請求項2の何れかに記載の固体酸化物形燃料電池の電極。
JP2002208066A 2002-07-17 2002-07-17 固体酸化物形燃料電池の電極 Pending JP2004055194A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208066A JP2004055194A (ja) 2002-07-17 2002-07-17 固体酸化物形燃料電池の電極

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002208066A JP2004055194A (ja) 2002-07-17 2002-07-17 固体酸化物形燃料電池の電極

Publications (1)

Publication Number Publication Date
JP2004055194A true JP2004055194A (ja) 2004-02-19

Family

ID=31932313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208066A Pending JP2004055194A (ja) 2002-07-17 2002-07-17 固体酸化物形燃料電池の電極

Country Status (1)

Country Link
JP (1) JP2004055194A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088133A1 (ja) 2005-02-18 2006-08-24 Mitsubishi Materials Corporation 固体電解質形燃料電池用発電セルおよびその燃料極の構造
WO2007034835A1 (ja) * 2005-09-20 2007-03-29 Kyocera Corporation 燃料電池セルおよびその製法
JP2007115536A (ja) * 2005-10-20 2007-05-10 Tokyo Electric Power Co Inc:The 多孔質固体酸化物形燃料電池用電極の製造方法
EP2043187A1 (en) 2007-09-28 2009-04-01 Dai Nippon Printing Co., Ltd. Solid oxide fuel cell and manufacturing method thereof
JP2009522748A (ja) * 2006-01-09 2009-06-11 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 多孔質電極を有する燃料電池構成体
JP2011514644A (ja) * 2008-03-18 2011-05-06 テクニカル ユニヴァーシティー オブ デンマーク 全セラミックス固体酸化物形電池
JP2013511795A (ja) * 2009-11-18 2013-04-04 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 高温燃料電池のためのアノードならびにその製造
JP2014216297A (ja) * 2013-04-30 2014-11-17 日本特殊陶業株式会社 燃料電池用単セル,燃料電池,および燃料電池用単セルの製造方法
JP2015201440A (ja) * 2014-03-31 2015-11-12 Dowaエレクトロニクス株式会社 燃料電池空気電極用複合酸化物粉末とその製造方法、燃料電池空気電極並びに燃料電池
WO2018021484A1 (ja) * 2016-07-27 2018-02-01 日本碍子株式会社 電気化学セル
WO2019159276A1 (ja) * 2018-02-15 2019-08-22 日産自動車株式会社 メタルサポートセル

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088133A1 (ja) 2005-02-18 2006-08-24 Mitsubishi Materials Corporation 固体電解質形燃料電池用発電セルおよびその燃料極の構造
WO2007034835A1 (ja) * 2005-09-20 2007-03-29 Kyocera Corporation 燃料電池セルおよびその製法
JP4825215B2 (ja) * 2005-09-20 2011-11-30 京セラ株式会社 燃料電池セルおよびその製法
JP2007115536A (ja) * 2005-10-20 2007-05-10 Tokyo Electric Power Co Inc:The 多孔質固体酸化物形燃料電池用電極の製造方法
JP2009522748A (ja) * 2006-01-09 2009-06-11 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 多孔質電極を有する燃料電池構成体
KR101154217B1 (ko) 2006-01-09 2012-06-18 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 다공성 전극들을 갖는 연료 전지 부품
US8628892B2 (en) 2007-09-28 2014-01-14 Dai Nippon Printing Co., Ltd. Solid oxide fuel cell and manufacturing method thereof
EP2043187A1 (en) 2007-09-28 2009-04-01 Dai Nippon Printing Co., Ltd. Solid oxide fuel cell and manufacturing method thereof
JP2011514644A (ja) * 2008-03-18 2011-05-06 テクニカル ユニヴァーシティー オブ デンマーク 全セラミックス固体酸化物形電池
JP2013511795A (ja) * 2009-11-18 2013-04-04 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 高温燃料電池のためのアノードならびにその製造
JP2014216297A (ja) * 2013-04-30 2014-11-17 日本特殊陶業株式会社 燃料電池用単セル,燃料電池,および燃料電池用単セルの製造方法
JP2015201440A (ja) * 2014-03-31 2015-11-12 Dowaエレクトロニクス株式会社 燃料電池空気電極用複合酸化物粉末とその製造方法、燃料電池空気電極並びに燃料電池
WO2018021484A1 (ja) * 2016-07-27 2018-02-01 日本碍子株式会社 電気化学セル
JP2018026339A (ja) * 2016-07-27 2018-02-15 日本碍子株式会社 電気化学セル
US11005120B2 (en) 2016-07-27 2021-05-11 Ngk Insulators, Ltd. Electrochemical cell
WO2019159276A1 (ja) * 2018-02-15 2019-08-22 日産自動車株式会社 メタルサポートセル

Similar Documents

Publication Publication Date Title
JP3230156B2 (ja) 固体酸化物型燃料電池の電極とその製造方法
CN107851810B (zh) 燃料电池
JP6658754B2 (ja) 固体酸化物形燃料電池、および電解質層−アノード接合体の製造方法
Liu et al. Impregnated nickel anodes for reduced-temperature solid oxide fuel cells based on thin electrolytes of doped LaGaO3
US20150099061A1 (en) Formation of solid oxide fuel cells
JP2001307750A (ja) 固体電解質型燃料電池、およびその製造方法
JP2003317740A (ja) 薄膜機能構造体、これを用いた固体電解質型燃料電池用単セル及びその製造方法
JP2003197219A (ja) 固体酸化物形燃料電池および製造方法
JP2004055194A (ja) 固体酸化物形燃料電池の電極
JP6717531B2 (ja) 固体酸化物燃料電池
JP2004186116A (ja) 固体高分子型燃料電池のセパレータおよびセパレータの製造方法
JP5389378B2 (ja) 複合セラミック電解質構造、その製造方法及び関連物品
JP5425441B2 (ja) 燃料電池用電極層の形成材料、燃料電池用膜電極接合体、燃料電池、燃料電池用電極層の形成材料の製造方法、燃料電池用電極層の製造方法
JP4512911B2 (ja) 固体電解質型燃料電池
JPH10172590A (ja) 固体電解質型燃料電池
US10418657B2 (en) Formation of solid oxide fuel cells by spraying
JP2007510271A (ja) 薄膜電極を形成する方法
JP2005310607A (ja) 燃料電池用カソードおよびその製造方法
JP2004355814A (ja) 固体酸化物形燃料電池用セル及びその製造方法
JP5550223B2 (ja) セラミック電解質の処理方法および関連製品
KR20240024311A (ko) 금속지지형 전기 화학 소자용의 전극층 부착 기판, 전기 화학 소자, 전기 화학 모듈, 고체 산화물형 연료 전지, 및 제조 방법
JP2004265739A (ja) 燃料電池セル
JP2004055193A (ja) 固体酸化物形燃料電池の電極用材料の製造方法
KR20120030788A (ko) 금속지지체형 고체산화물 연료전지용 셀의 제조방법
JP4676680B2 (ja) イオン移動利用デバイスの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080729