WO2006085635A1 - 炭化タンタル被覆炭素材料およびその製造方法 - Google Patents

炭化タンタル被覆炭素材料およびその製造方法 Download PDF

Info

Publication number
WO2006085635A1
WO2006085635A1 PCT/JP2006/302418 JP2006302418W WO2006085635A1 WO 2006085635 A1 WO2006085635 A1 WO 2006085635A1 JP 2006302418 W JP2006302418 W JP 2006302418W WO 2006085635 A1 WO2006085635 A1 WO 2006085635A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
carbon
tantalum carbide
carbon material
intermediate layer
Prior art date
Application number
PCT/JP2006/302418
Other languages
English (en)
French (fr)
Inventor
Hirokazu Fujiwara
Norimasa Yamada
Yoshihisa Abe
Original Assignee
Toyo Tanso Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005255744A external-priority patent/JP3779314B1/ja
Application filed by Toyo Tanso Co., Ltd. filed Critical Toyo Tanso Co., Ltd.
Priority to CA 2559042 priority Critical patent/CA2559042C/en
Priority to US10/592,085 priority patent/US8216667B2/en
Priority to JP2006523476A priority patent/JP5275567B2/ja
Priority to EP20060713560 priority patent/EP1852407B9/en
Publication of WO2006085635A1 publication Critical patent/WO2006085635A1/ja
Priority to HK07110415A priority patent/HK1105096A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/029Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/0025Compositions or ingredients of the compositions characterised by the crystal structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00405Materials with a gradually increasing or decreasing concentration of ingredients or property from one layer to another
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • Y10T428/249956Void-containing component is inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249961With gradual property change within a component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249981Plural void-containing components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the present invention relates to a tantalum carbide-coated carbon material and a method for producing the same. For more information,
  • the present invention relates to a tantalum carbide-coated carbon material that can be used as a member of an apparatus for forming a single crystal of a compound semiconductor such as S i C or G a N, and a manufacturing method thereof.
  • ammonia and hydrogen gas cause the carbon material to undergo a gasification reaction and convert it into methane gas, resulting in volume changes and weight loss. Due to the volume change, for example, the resistance of the heater changes and the process temperature fluctuates, and as a result, the quality of the epitaxial growth layer may be deteriorated. Also, due to the volume change, the contact surface of the susceptor holding the crystal wafer with the wafer becomes rough, resulting in a non-uniform temperature distribution of the wafer, resulting in defects in the epitaxial growth layer. Concerned. The reaction between the carbon material and the gas becomes even faster, especially above 100 ° C. In this case, the susceptor deteriorates in a very short time.
  • composite materials obtained by coating a carbon substrate on a carbon substrate by a CVD method are used as in-furnace members such as a susceptor heater.
  • gasification reaction of carbonized carbon begins at 1 300 ° C, and at temperatures as high as 1500 ° C, hydrogenated carbonized gas reacts with hydrogen and corrodes at a rate of 5-30 ⁇ ⁇ h. Is done. Such corrosion causes cracks and delamination in the susceptor coating, and the internal carbon material is corroded. I will be eaten.
  • gases such as N 2 , 0 2 , and C 0 2 remaining in the carbon material are released and these gases are taken into the crystal for the semiconductor device. Such a gas can cause a semiconductor device finally obtained to exhibit a dubbing defect.
  • defects may occur on the wafer surface.
  • causes of defects include etching of the wafer surface by a carrier gas and the like, and atoms on the wafer surface being sublimated and desorbed. Such defects are undesirable because they degrade device characteristics and increase contact resistance.
  • the occurrence of surface defects has been reduced by increasing the rate of temperature increase and decrease, in other words, by shortening the time required for temperature increase and decrease.
  • wafers are manufactured in a short period of time simply by raising and lowering the temperature rapidly in order to increase production efficiency.
  • the sapphire substrate is heated to 120 ° C. and then cooled to room temperature. At this time, the temperature of the susceptor is rapidly increased and decreased. There is a concern that cracks may occur in the film of the susceptor material due to repeated heating and cooling. Through the crack, hydrogen gas and ammonia gas as carrier gas and source gas can penetrate into the susceptor. These gases gasify the graphite material that is the base material of the susceptor, and there is concern about the above-mentioned undesirable results. Therefore, in order to improve the corrosion resistance of heaters and susceptors, an attempt was made to coat a carbon material with a tantalum carbide layer.
  • a carbon material coated with a film formed by depositing tantalum carbide fine particles by the AIP method is a heater that can be used for a longer time than before. Give me a susceptor.
  • tantalum carbide is more dense and has excellent corrosion resistance.
  • the coating film can be formed.
  • the CVD method can easily obtain a coating film made of highly crystalline TaC.
  • the coating film with high crystallinity obtained by the CVD method has a columnar structure and is less flexible and easily cracks. If ammonia or hydrogen gas corrodes the carbon substrate through the crack, the life of the carbon material will be shortened.
  • the material having the coating film described in JP-A-2004-84057 still has problems of cracks and peeling. Specifically, when this material is used several times in a mixed gas atmosphere of hydrogen and ammonia at a temperature of 150 ° C., the crystal structure and crystallinity of tantalum carbide changes, causing cracks and peeling. Separation occurs. When such a crack occurs, gases such as N 2 , 0 2 , and C 0 2 remaining in the carbon material are released, and the gas is taken into the crystal for the semiconductor device and doped in the device. Defects are likely to occur.
  • FIGS. 21 and 22 are microscopic observation images of the coating film obtained by the method of Japanese Patent Application Laid-Open No. 2004-84057.
  • Fig. 21 shows the shape of the surface
  • Fig. 22 shows the shape of the cross section.
  • uncrystallized carbon and tantalum are corroded by hydrogen and ammonia, and pinholes are generated in the coating film. Cracks occur in the coating, resulting in a significant reduction in the bulk density of the tantalum carbide coating.
  • a carbon material coated with tantalum carbide having a low overall crystallinity and close to an amorphous state will cause the coating film to deteriorate during use. That the present invention They found for the first time.
  • the present invention provides a carbonized tantalum-coated carbon material having excellent thermal shock resistance and corrosion resistance against reducing gases at high temperatures (particularly ammonia, hydrogen, hydrocarbon gas, etc.) and It is an object to provide a manufacturing method thereof.
  • a carbon base material and a coating film made of tantalum carbide crystals in which the (220) surface of tantalum carbide is specifically developed with respect to the other mirror surface on the carbon base material,
  • a tantalum carbide-coated carbon material in which the diffraction line of the (220) plane of tantalum carbide shows the maximum diffraction intensity in the X-ray diffraction pattern of the coating film.
  • the diffraction line of the (220) plane of tantalum carbide shows an intensity that is more than 4 times the diffraction intensity of the second largest diffraction line.
  • Nitrogen gas permeability of the coating film is less than 1 0- 6 cm 2 / S e c (1) ⁇
  • a method for producing a tantalum carbide-coated carbon material comprising a step of improving the crystallinity of the tantalum carbide of the coating film by subjecting to a heat treatment at ⁇ 2400 ° C.
  • the intermediate layer is a gradient material layer having a concentration gradient in which the atomic ratio of carbon Z tantalum decreases continuously or stepwise from the carbon substrate side to the coating film side.
  • (7) to (11) Any carbon material.
  • tantalum carbide is substantially oriented to the (2 2 0) plane, that is, the (2 2 0) plane of tantalum carbide is specifically developed relative to other mirror planes.
  • the above-mentioned effect is remarkably exhibited, and a coating film excellent in corrosion resistance and heat resistance can be obtained.
  • 3 and 4 are microscopic observation images of the coating film obtained in the present invention.
  • the crystallinity of tantalum carbide in the coating film is remarkably improved, so that the corrosion of the carbon substrate and the generation of pinholes in the coating film can be further reduced.
  • the corrosion of the carbon substrate and the release of gas from the carbon substrate can be more effectively suppressed by setting the thickness of the coating film and the nitrogen gas permeability within a specific range.
  • tantalum carbide can be obtained from tantalum and carbon remaining in the coating film, and a coating film with improved crystallinity can be formed.
  • the furnace material can be provided, and by using the furnace material, semiconductor devices and the like can be manufactured under stable manufacturing conditions and with a high yield.
  • an intermediate layer having a specific structure is present via a carbon substrate and a coating film. Therefore, the internal stress between the carbon substrate and the tantalum carbide coating film, which can occur during rapid temperature rise and fall, is reduced. The internal stress is caused by the difference in the degree of expansion and contraction due to heat between the carbon substrate and the coating film. According to the present invention, since the internal stress described above is reduced, cracks and peeling of the coating film can be reduced. According to a preferred embodiment of the present invention, the tantalum carbide crystals of the coating film are substantially oriented in the (2 2 0) plane, and there is an intermediate layer between the carbon substrate and the coating film. ing. Thereby, a particularly strong tantalum carbide coated carbon material is provided.
  • a tantalum carbide-coated carbon material that can be used for a long period of time in a high temperature range of, for example, 140 ° C. or higher is provided.
  • a long-life furnace material can be provided. Stable manufacturing of semiconductor devices, etc. by using the furnace material It can be manufactured with high yield under certain conditions.
  • FIG. 1 and FIG. 2 are schematic views of each form of the tantalum carbide-coated carbon material of the present invention.
  • 3 and 4 are microscopic observation images of the coating film according to the present invention.
  • Figure 5 outlines the measurement of nitrogen gas permeability.
  • Fig. 6 shows an example of the relationship between the thickness of the coating film and the nitrogen gas permeability.
  • FIG. 7 shows the outline of the high-frequency induction heating vacuum furnace.
  • FIG. 8 shows a chemical composition distribution in the tantalum carbide-coated carbon material of one embodiment of the present invention.
  • FIGS. 9 to 11 schematically show each embodiment of the tantalum carbide-coated carbon material of the present invention.
  • Figure 12 is a SEM observation image of a cross section of a tantalum carbide-coated carbon material without an intermediate layer.
  • Fig. 13 is a cross-sectional SEM observation image of a tantalum carbide-coated carbon material having an intermediate layer.
  • FIG. 14 schematically shows a tantalum carbide-coated carbon material of one embodiment of the present invention.
  • FIG. 15 to FIG. 17 represent X-ray diffraction patterns of the coating film obtained by the present invention.
  • 18 to 20 show X-ray diffraction patterns of the coating film of the comparative example.
  • Figures' 2 1 and 2 2 are microscopic images of the coating film obtained by the conventional technology.
  • 1 is a carbon substrate
  • 2 1 and 2 2 are intermediate layers
  • 2 4 is an intermediate layer in the form of a gradient material layer
  • 3 is a coating film
  • 4 is pores
  • 100 is tantalum carbide coated carbon material.
  • the tantalum carbide-coated carbon material 100 of the present invention has a carbon substrate 1 and a coating film 3. As shown in FIG. 1, the coating film 3 may be formed directly on the carbon base material 1, or as shown in FIG. 2, the coating film 3 is an intermediate layer on the carbon base material 1. 2 may be formed.
  • the coating film 3 is made of a composition containing tantalum carbide.
  • the coating film 3 is dense with crystals of tantalum carbide having a (2 20) plane developed specifically with respect to other mirror surfaces. They are gathered and formed.
  • the tantalum carbide-coated carbon material 100 is composed of a carbon substrate 1 and a carbon group. And a coating film 3 formed on the material 1.
  • the tantalum carbide-coated carbon material 100 is simply referred to as “the carbon material of the present invention” or, more simply, the “carbon material”.
  • the carbon material 100 may have an intermediate layer 2 between the carbon substrate 1 and the coating film 3.
  • the carbon substrate 1 is a substrate mainly made of carbon and does not include a coating film or an intermediate layer.
  • the coating film 3 is made of a composition containing tantalum carbide, and is mainly formed by densely gathering a large number of crystals of tantalum carbide.
  • the intermediate layer 2 is a layer that exists between the carbon substrate 1 and the coating film 3 and has a chemical composition that is clearly different from that of the carbon substrate 1 and the coating film 3. The preferred embodiments of these base layers will be described in detail below.
  • the carbon substrate 1 is not particularly limited as long as it is a substrate mainly composed of carbon.
  • the form of carbon is not particularly limited, and examples thereof include general graphite, isotropic graphite, carbon fiber reinforced carbon composite material, and glassy carbon.
  • the carbon base material 1 does not contain impurities as much as possible.
  • the pressure is preferably 10 – 4 Pa Zg or less.
  • the gas discharge pressure based on 100 ° C is the degree of desorption of gas molecules adsorbed on the surface and pores of the carbon substrate 1 at 1000 ° C in units of pressure. Specifically, it can be measured by a temperature programmed desorption spectrum (TDS) disclosed in Japanese Patent No. 2684106.
  • TDS temperature programmed desorption spectrum
  • the thermal expansion coefficient of the carbon substrate 1 is preferably 6.5 X 1 0— 6 to 9.0 X 1 0— 6 / K, and more preferably 7.0 X 1 0— 6 to 8.8 X. 1 0 6 / K. This range takes into account the fact close to the thermal expansion coefficient of tantalum carbide (6. 9 X 1 0- 6 ⁇ 7. 8 X 1 0 6 / K). If the thermal expansion coefficient of the carbon substrate 1 is too large or too small, the difference from the thermal expansion coefficient of tantalum carbide increases. As a result, when the coating film 3 is formed at a high temperature on the carbon substrate 1 optionally through the intermediate layer 2 and then the temperature is lowered, a large tensile stress or compression is applied to the coating film 3.
  • the coefficient of thermal expansion of the carbon substrate 1 can be measured with a commercially available apparatus, and an example of the apparatus is a thermal analyzer manufactured by Rigaku Corporation Thermo P 1 us 2 TMA83 10. Thermal expansion coefficient of the carbon substrate 1, using S io 2 as a reference, in an N 2 atmosphere, is measured in the temperature range of two hundred ninety-three to one 273 K.
  • the bulk specific gravity of the carbon substrate 1 is not particularly limited. Considering the improvement in the mechanical strength of the carbon substrate 1 itself and the difficulty in peeling off the intermediate layer 2 and the coating film 3 (if any) from the carbon substrate 1, the volume of the carbon substrate 1 specific gravity, preferably 1. 65 ⁇ 1 90 g_ C; a m 3, more preferably 1. 73 to:., about L. 83 g / cm 3.
  • the carbon substrate 1 is preferably porous, and the average pore radius of the carbon substrate 1 is preferably 0.0 1 to 5 ⁇ , more preferably 1 to 2 ⁇ .
  • “average pore radius J is determined by mercury intrusion method (FI SONS, Porosimeter Model 2000). Specifically, maximum pressure is 9 8 MPa, contact angle between sample and mercury 1 4 1.
  • the average pore radius is defined as the radius of the sphere that indicates the volume of the accumulated pore volume when the pressure is 72 MPa at 3 °, and if the average pore radius is 0.0 1 m or more, The so-called anchor effect is sufficiently achieved and the coating film 3 is difficult to peel off. If the average pore diameter is 5 ⁇ or less, the amount of gas released from the carbon base material 1 at high temperatures decreases.
  • Total pore volume of the carbon base material 1 is preferably 5 ⁇ 3 5 C m 3 Zg, more preferred properly is 1 0 ⁇ 20 cm 3 / g.
  • the total pore volume means the total volume of all open pores, and can be obtained simultaneously in the mercury intrusion method described above. If the total pore volume is 5 cm 3 / g or more, tantalum carbide can be impregnated into pores of sufficient depth in the carbon base material 1, so that the coating film 3 and the carbon group are interposed through the intermediate layer 2. Material 1 is more firmly attached. If the total pore volume is 35 cn ⁇ Zg or less, the mechanical strength of the carbon substrate 1 itself is sufficient, and there is no inconvenience that the amount of gas released from the carbon substrate 1 at high temperatures increases.
  • a 1 is 0.3 13111 or less
  • 6 is 1.
  • O p pm or less Mg is 0. lp pm or less
  • the total ash content of carbon substrate 1 is preferably 10 p pm or less, more preferably 2 p pm or less.
  • Ash content can be measured according to the ash content analysis method specified in JI S_R-7223.
  • the means for obtaining the carbon substrate 1 having a low impurity concentration as described above a treatment in a halogen-based gas atmosphere and atmospheric pressure at 1800 to 2200 ° C. for 5 to 30 hours can be given.
  • the halogen-based gas is a gas of halogen or a compound thereof.
  • chlorine, a chlorinated compound, fluorine, a fluorine compound, a compound containing chlorine and fluorine in the same molecule (monochlorotrifluoromethane) , Trichloro-monochloromethane, dichlorofluoroethane, trichloro-monochloroethane, etc.).
  • the halogen-based gas reacts with impurities contained in the carbon base material such as metal impurities to generate a halide, which is evaporated or volatilized and removed from the carbon base material 1. Subsequently, after flowing a halogen-based gas for a predetermined time in the same processing furnace, hydrogen gas is supplied into the reaction vessel, and impurities such as sulfur are precipitated as hydrides to be removed from the carbon substrate 1. As a result, the carbon base material 1 has very few impurities, and is within the range described above.
  • the surface of the carbon base material 1 is washed to remove excess particles and the like attached thereto.
  • Cleaning can be performed by scrubbing or using an organic solvent, acid or alkali solution in an ultrasonic cleaner.
  • organic solvents include acetone, trichlorethylene, methanol, isopropyl alcohol, and examples of acids and alkalis include hydrochloric acid, nitric acid, hydrofluoric acid, and KOH.
  • the solvent or solution is washed away with pure water, and then dried in a vacuum dryer at 140 ° C. for 24 hours, for example.
  • the carbon material 100 of the present invention has a coating film 3 on the surface of a carbon substrate 1 with an intermediate layer 2 interposed therebetween.
  • the coating film 3 is made of a composition containing tantalum carbide.
  • the composition preferably comprises 99.99% by weight or more of tantalum carbide, more preferably all tantalum carbide except for inevitable impurities.
  • the tantalum carbide is a compound that can be expressed by the chemical formula Ta x C, and this X is preferably 0.8 to 1.2.
  • Thermal expansion coefficient of the coating film 3 is preferably 6. 9 X 1 0 one 6 ⁇ 7. 8 X 1 0- 6 / K.
  • the thermal expansion coefficient of the coating film 3 is the same as the thermal expansion coefficient of the carbon substrate 1 described above, using a thermal analyzer Thermo P 1 us 2 TMA 8 3 1 0 manufactured by Rigaku Corporation as a reference S Measured with i 0 2 and heated from 293 to 1 273 K in N 2 atmosphere.
  • the coating film 3 is substantially composed of a tantalum carbide crystal whose (220) plane is specifically developed with respect to another mirror plane.
  • a coating film made of tantalum carbide oriented in many crystal planes or tantalum carbide with reduced crystallinity.
  • tantalum carbide is oriented in a specific crystal plane, that is, (220) plane.
  • the carbon material 100 excellent in corrosion resistance and thermal shock resistance can be obtained.
  • the coating film 3 is formed on at least a part of the carbon substrate 1 and is preferably formed so as to cover the entire surface of the carbon substrate 1.
  • the coating film 3 may be formed directly on the carbon substrate 1 or may be formed via an intermediate layer described later.
  • the tantalum carbide coating film 3 is formed by specifically developing the (220) surface of tantalum carbide with respect to other mirror surfaces, as long as it does not hinder the operation and effect of the present invention.
  • tantalum carbide oriented in other crystal planes may exist.
  • the degree of orientation of the tantalum carbide constituting the coating film 3 can be quantified by X-ray diffraction.
  • the diffraction line of the surface shows the maximum diffraction intensity.
  • the X-ray rotation of the coating film 3 In the folded pattern, the diffraction line of the (220) plane of tantalum carbide exhibits an intensity four times or more, more preferably eight times or more the diffraction intensity of the second largest diffraction line.
  • the half-value width of the diffraction line of the (220) plane of tantalum carbide is preferably 0.2 ° or less, more preferably from 0.10 ° to 0.16 °. It is.
  • the X-ray diffraction pattern of the coating film 3 is obtained by measuring the intensity of the diffraction line when the coating film 3 is irradiated with X-rays, and plotting the diffraction angle (2 ⁇ ) on the horizontal axis and the diffraction intensity on the vertical axis. This is the curve obtained.
  • the diffraction line of (220) plane of tantalum carbide appears at a diffraction angle of about 58 ° in the above X-ray diffraction pattern.
  • the high diffraction intensity means the maximum height of the peak.
  • the half width of the diffraction line means the width of the peak at the maximum intensity of 12 and is an index of the crystallinity of the crystal plane derived from the peak.
  • the X-ray diffraction pattern of the coating film 3 can be obtained by a known method. Specifically, Cu is applied to the surface of the coating film 3 of tantalum carbide to be measured formed on the carbon substrate 1. This is done by irradiating X-rays from the tube.
  • An example of the X-ray analysis apparatus is X-ray DiffractomeRINTNT 2000 manufactured by Rigaku Corporation.
  • the X-ray diffraction pattern is obtained by measuring the crystal profile of the coating film 3 and performing appropriate correction processing due to the apparatus and crystal structure, and the diffraction line intensity and half bandwidth are obtained from the pattern. .
  • Nitrogen gas permeability of the coating film 3 is preferably not more than 10- 6 cm 2, sec, more preferably 1 0- 8 ⁇ 10- 11 cm 2 / sec. A low nitrogen gas permeability is preferable because the coating film 3 is dense and strong.
  • the nitrogen gas permeability of graphite as the substrate 1 is .1 0- 2 ⁇ 1 0- 3 cm 2 / sec. Covering film ⁇
  • Nitrogen gas permeability of 3 is 10 — 6 c
  • the sec or less means that the nitrogen gas permeability of graphite is 1 Z 1000 or less. Therefore, it can be said that the coating film 3 is sufficiently dense within the above range.
  • the method for measuring the nitrogen gas permeability of the coating film is outlined with reference to FIG.
  • the measurement sample is a disk with a diameter of 30 mm or more, and is thoroughly dried before measurement. Place the sample to be measured in the cell, and connect the primary and secondary tanks to the rotary vacuum pump. Depressurize with a molecular pump until a certain vacuum value is reached. Then stop the vacuum pump and close the valve. Apply N 2 gas to the primary tank at a constant test pressure. The 1 ⁇ 2 gas passes from the primary side through the sample to be measured and moves to the secondary tank. As a result, the secondary tank pressure begins to rise. Measure the rate of pressure rise. Gas permeability
  • K is the nitrogen gas permeability
  • Q is the air flow rate
  • ⁇ ⁇ is the pressure difference between the primary tank and the secondary tank
  • is the permeation area
  • L is the thickness of the sample to be measured
  • p is the secondary tank.
  • Initial pressure p 2 is the secondary tank final pressure
  • V Is the volume of the secondary tank and t is the measurement time.
  • the nitrogen gas permeability (K 2 ) of the coating film 3 first, the nitrogen gas permeability (KJ) of the carbon material 100 having the carbon base material 1 and the coating film 3 provided thereon. The coating film 3 is then removed by polishing, and the nitrogen gas permeability of the carbon substrate 1 only
  • the thickness of the coating film 3 is preferably 10 to 10 O / zm, more preferably 30 to 8 ⁇ . As shown in FIG. 6, when the thickness of the coating film 3 is 10 ⁇ m or more, the nitrogen gas permeability of the coating film is significantly reduced. Further, if the thickness of the coating film 3 is 1 O / z m ⁇ , the crystallinity of tantalum carbide in the coating film 3 is remarkably improved, and the corrosion resistance and thermal shock resistance of the coating film 3 are improved. On the other hand, when the thickness of the coating film 3 is increased, the internal stress of the coating film 3 is increased, and the coating film 3 is easily peeled off, and there is a concern that the thermal shock resistance is lowered. Therefore, the film thickness is preferably 100 ⁇ m or less.
  • the tantalum carbide tantalum source of the coating film 3 is not limited as long as it contains tantalum.
  • the coating 3 is formed by chemical vapor deposition (CV
  • Fig. 7 is a schematic diagram of a high-frequency induction heating vacuum furnace.
  • the vacuum furnace can be used as a CVD apparatus for carrying out the above manufacturing method.
  • a double quartz tube is disposed in the reaction chamber, and a heating device comprising a heat insulating material, a graphite furnace wall serving as an inductive load, and a high-frequency coil for heating the reaction chamber are disposed inside the reaction chamber.
  • a gas introduction pipe for introducing the raw material gas is arranged in this reaction chamber, and an exhaust port for exhausting the reaction chamber is provided.
  • a variable valve is installed at the exhaust port, and the pressure in the reaction chamber can be adjusted by operating this valve.
  • a mixed gas of Ta source gas, hydrocarbon gas, hydrogen gas and argon gas is supplied from the gas introduction pipe upstream of the reaction tube.
  • the Ta source gas is supplied by heating and vaporizing the tantalum halide described above in the source tank.
  • a high purity hydrogen gas or argon gas having a purity of 99.99% or more and an oxygen content of 5 ppm or less.
  • manufacturing is performed by vacuuming, heating, CVD treatment, heat treatment, and cooling. First, after putting one or more carbon substrates 1 in the reaction chamber, the pressure in the reaction chamber is lowered to about 1.33 Pa to l3.3 Pa.
  • H 2 gas is introduced into the reaction chamber at 7 OOO cc / min and heated to about 1100 ° C to degas the reaction chamber. Thereafter, the reaction chamber is cooled to about 750 to 950 ° C., preferably about 800 to 950 ° C., and CVD treatment is performed on the carbon substrate 1 at this temperature to coat tantalum carbide.
  • the temperature of the carbon substrate 1 in the reaction chamber is 750 to 950 ° C, preferably 800 to 950 ° C (and more preferably 800 to 900 ° C, and the pressure in the reaction chamber is 133 Pa to 5 3.3 k Pa
  • the coating film 3 having an atomic ratio of Ta to C atoms of 1.5 is easily formed, and the desired carbonization is achieved. Tantalum Coating film 3 is easy to obtain. Further, it is preferable to perform C VD treatment at 950 and below 53.3 kPa because tantalum carbide can be easily obtained in the form of a film rather than fine powder.
  • the source gas may be introduced into the reaction chamber after the carbon substrate 1 in the reaction chamber reaches a predetermined temperature and pressure.
  • the gas flow rate at this time is, for example, T a C l 5
  • the growth rate can be controlled to 1 to 50 / im / hr by appropriately combining CVD conditions such as temperature, pressure, gas flow rate and processing time.
  • the covering film 3 can be formed.
  • the heat treatment is performed after the tantalum carbide coating film 3 is formed.
  • excess tantalum and carbon remaining in the coating film 3 are activated and converted to tantalum carbide, thereby improving crystallinity.
  • the pressure in the reaction chamber is reduced to about 1.33 Pa to 13.3 Pa.
  • H 2 gas, Ar gas, He gas, or a mixture of these gases with a small amount of hydrocarbon gas is introduced at 100 to 5 000 c C / ⁇ in, and the pressure in the reaction chamber is reduced.
  • 1 2 ⁇ Reheat the reaction chamber while adjusting to L 0 1 k Pa, preferably 53.3 k Pa.
  • the heating temperature is 1600 to 2400 ° C, preferably 1600 to 2000 ° C, and the treatment is performed at this temperature for 5 to 10 hours.
  • the reaction chamber is cooled to a predetermined temperature, and the carbon material 100 as a product is taken out from the reaction chamber. At this time, it is desirable to reduce the thermal stress generated in the coating film 3 by setting the temperature rise and fall temperature to 50 ° C / min or less.
  • the carbon substrate 1, the intermediate layer 2, and the coating film 3 are laminated in this order.
  • the intermediate layer 2 exists between two different types of layers, the carbon base material 1 and the tantalum carbide coating film 3, and is a layer that alleviates the difference in physical properties such as thermal expansion and lattice mismatch.
  • it consists of a composition containing carbon and tantalum.
  • the composition of the intermediate layer 2 may be, for example, a compound containing both a carbon element and a tantalum element (eg, tantalum carbide having a composition different from that of the coating film 3), or a material containing a carbon element and tantalum. It may be a mixture with a material containing an element. A preferred embodiment of the composition constituting the intermediate layer 2 will be described later.
  • the intermediate layer 2 is more porous than the coating film 3 or has a non-uniform chemical composition distribution than the coating film 3.
  • the intermediate layer 2 preferably has a thickness of 1 ⁇ m or more in consideration of sufficient adhesion to the carbon substrate 1 and the tantalum carbide coating film 3. A more preferable thickness will be described later because it varies depending on the mode of the intermediate layer 2.
  • the intermediate layer 2 is more porous than the coating film 3, an anchor effect occurs between the coating film '3 and the porous intermediate layer 2, and the coating film 3 is firmly formed. There is expected. As a result, it is expected that the vacancies in the intermediate layer 2 absorb and relax the mismatch due to the thermal contraction of the carbon base material 1 to reduce the thermal stress on the coating film 3.
  • the intermediate layer 2 or the tantalum carbide coating 3 is more porous can be confirmed by observation with an optical microscope or scanning electron microscope, the mercury intrusion method described above, or the like. Therefore, the intermediate layer 2 obtained by converting the surface layer portion of the porous carbon substrate 1 to tantalum carbide, which will be described later, is measured to be more porous than the coating film 3 obtained by chemical vapor deposition, for example. Obviously it is obvious.
  • the intermediate layer 2 has a non-uniform chemical composition distribution than the coating film 3, the intermediate layer 2 has a higher bonding force with both the coating film 3 and the carbon substrate 1, and as a result, It is expected that the coating film 3 and the carbon substrate 1 are firmly bonded via the intermediate layer 2 and cracking is reduced. If the intermediate layer 2 has a chemical composition distribution that changes continuously or stepwise from the carbon substrate 1 side to the coating film 3 side, the thermal expansion coefficient, thermal conductivity, etc. of the intermediate layer 2 The physical properties of the material are also not steep from the carbon substrate 1 side to the coating film 3 side. It changes step by step. Therefore, it is expected that the thermal stress of the coating film 3 is reduced.
  • the heterogeneity of the chemical composition distribution of the intermediate layer 2 can be evaluated by the variation in chemical composition when many areas that are sufficiently smaller than the size of the intermediate layer 2 and the coating film 3 are measured. It can be evaluated and confirmed by known means such as chemical composition analysis using backscattered electron images and chemical composition analysis using Auger electron spectroscopy.
  • tantalum carbide is embedded in the pores of the surface layer portion of the carbon base material 1 to achieve a non-uniform chemical composition distribution, or carbon Z tantalum from the carbon base material 1 side to the coating film 3 side.
  • FIG. 8 schematically shows the chemical composition distribution of the carbon material 100 according to this embodiment. The chemical composition distribution continuously changes from the carbon substrate 1 to the coating film 3 through the intermediate layer 2. ing.
  • FIG. 9 schematically shows a carbon material according to this preferred embodiment (hereinafter also referred to as the first embodiment), and the first preferred intermediate layer 21 is drawn with emphasis.
  • the layer 21 obtained by converting the surface layer portion of the carbon substrate 1 into tantalum carbide is an intermediate layer. Since the carbon substrate 1 is generally porous, the intermediate layer 21 in this embodiment is also porous. That is, in this embodiment, the average pore radius of the intermediate layer 21 is preferably 0.0 1 to 5 / zm, more preferably 1 to 2 ⁇ m, and the total pore volume is preferably 5 a ⁇ 3 5 cm 3 / g, more preferably Ru 1 0 ⁇ 20 c mS / ⁇ g der.
  • the average pore radius of the intermediate layer 21 is preferably 0.0 1 to 5 / zm, more preferably 1 to 2 ⁇ m, and the total pore volume is preferably 5 a ⁇ 3 5 cm 3 / g, more preferably Ru 1 0 ⁇ 20 c mS / ⁇
  • the pore 4 is emphasized and depicted to represent that the carbon substrate 1 and the intermediate layer 21 are porous.
  • the pores 4 may be open pores that penetrate the intermediate layer 21 in the thickness direction, or may be closed pores that do not penetrate the intermediate layer 21 in the thickness direction.
  • the intermediate layer 21 may include a mixture of open pores and closed pores.
  • the intermediate layer 2
  • the thickness t of 1 is preferably 1 ⁇ m or more, more preferably 30 to 200 / m 2. If the thickness t is 1 / xm or more, the intermediate layer 2 1 is transferred to the carbon substrate 1 and the coating film 3. Adhere sufficiently.
  • the intermediate layer 21 may be thick, but the effect of the present invention is saturated even if it exceeds 200 / xm.
  • a method for forming the intermediate layer 21 by converting the carbon substrate 1 is exemplified below.
  • the method exemplified here is a method including covering the carbon substrate 1 with tantalum by a CVD method.
  • the tantalum coating is not limited to the CVD method such as thermal CVD or plasma CVD, but may be a method classified as a PVD method such as a vacuum deposition method, a sputtering method, or an ion plating method.
  • the carbon substrate 1 is embedded in fine tantalum oxide powder and heated to 1000 ° C or higher in an inert atmosphere to convert the surface layer of the carbon substrate 1 into tantalum carbide. You can also.
  • the CVD method is desirable because the thickness t of the intermediate layer 21 can be more easily controlled.
  • the CVD method can be performed using the high frequency induction heating type vacuum furnace illustrated in FIG. 7 described in the method of forming the coating film. '
  • tantalum coating A specific example of tantalum coating will be described.
  • a mixed gas of Ta raw material gas, hydrogen gas and argon gas is supplied from the gas introduction pipe upstream of the reaction pipe.
  • the T a raw material gas limited as long as it contains tantalum is not the sole, for example, T a C l 5, T a F 5 halogen compounds, such as are preferred.
  • the above-mentioned tantalum halide is heated and vaporized in the raw material tank and supplied. It is preferable to use hydrogen gas or argon gas having a purity of 99.99% or more and an oxygen content of 5 ppm or less.
  • the intermediate layer 21 is obtained by vacuuming, heating, coating of tantalum with CVD, and conversion to tantalum carbide.
  • the pressure in the reaction chamber is lowered to about 1.33 Pa to 13.3 Pa.
  • H 2 gas is introduced into the reaction chamber at a flow rate of 7 OOO cc / min, heated to about 1 800 ° C, and degassed in the reaction chamber.
  • reaction chamber is cooled to about 1 200 to 1 600 ° C, and at this temperature, CV
  • the CVD process is performed by setting the temperature of the carbon substrate 1 in the reaction chamber to 1 200 to 1600 ° C and the pressure in the reaction chamber to 1.33 kPa to 5 3. Set to 3 k Pa. If the temperature is 1,200 ° C. or higher, the halogen compound as a tantalum raw material can be sufficiently decomposed to suitably coat tantalum. Between a 1600 ° C temperature below were and 5 3. 3 k P a pressure below, tantalum raw material gas is decomposed at an appropriate rate, so prone growth on the surface of the carbon base material 1 As a result, a good tantalum coating is achieved.
  • the raw material gas supplied into the reaction chamber is introduced into the reaction chamber after the carbon substrate 1 in the reaction chamber reaches a predetermined temperature and pressure.
  • the gas flow rates at this time are, for example, 20 cc / min for Ta C 15 gas, 1000 cc / min for hydrogen gas, and 4000 cc / min for a / legon gas.
  • the growth rate can be controlled to 1-50 ⁇ m / hr, and carbon substrate 1 can be coated with tantalum with a desired thickness. Can be formed.
  • the thickness of the tantalum coating should be adjusted at this stage.
  • the coating should be about 0.8 to 1.2 // m thick.
  • the tantalum source gas remaining in the reaction chamber is sufficiently replaced with hydrogen gas and argon gas, and used for the reaction of converting the surface layer portion of the carbon substrate 1 into tantalum carbide.
  • “Conversion” means that carbon in the surface layer portion of the carbon substrate 1 is reacted with tantalum at a high temperature to obtain tantalum carbide.
  • the gas atmosphere for conversion is preferably a hydrogen gas or argon gas atmosphere, and more preferably a gas atmosphere in which hydrocarbon gas such as C 3 H 8 or CH 4 is mixed with hydrogen gas or argon gas. is there.
  • the pressure for the conversion is preferably 13.3 kPa or more, more preferably 53.3 kPa to 10.31.3 kPa.
  • the temperature for conversion is preferably 1800 ° C or higher, more preferably 2 200 to 3000 ° C.
  • the time required for the conversion is usually 5 to 20 hours, preferably 10 to 20 hours. After the conversion is completed, the temperature in the reaction chamber is lowered to the temperature for forming the coating film 3 described above.
  • FIG. 10 schematically shows a carbon material according to this embodiment (hereinafter also referred to as a second embodiment).
  • the second preferred intermediate layer 22 is depicted with emphasis.
  • tantalum carbide is embedded in the pores of the surface layer portion of the carbon substrate 1, and the layer 22 including the portion in which tantalum carbide is embedded is recognized as an intermediate layer.
  • the intermediate layer 22 has a portion 222 made of carbon derived from the carbon base material 1 and a portion 22 1 made of tantalum carbide embedded in the pores before the treatment.
  • the chemical composition distribution of the intermediate layer 22 is not uniform.
  • it is not necessary that tantalum carbide is embedded in all the pores existing in the intermediate layer 22, and some of the pores may exist as they are.
  • the thickness t of the intermediate layer is preferably 1 tm or more, and more preferably 50-30 ⁇ . If the thickness t is 1 / zm or more, the intermediate layer 22 is sufficiently adhered to the carbon substrate 1 and the coating film 3.
  • the intermediate layer 22 may be thick, but the effect of the present invention is saturated even if it exceeds 300 zm.
  • a method for forming the intermediate layer 22 by embedding tantalum carbide in the pores of the carbon substrate 1 will be exemplified below.
  • the method exemplified here includes impregnating the carbon substrate 1 with tantalum by the chemical vapor impregnation (CVI) method.
  • CVI chemical vapor impregnation
  • the tantalum is coated on the carbon substrate 1 by the CVD method or PVD method as in the first embodiment, and then heated to 3000 ° C or higher to melt the tantalum.
  • the pores of the carbon substrate 1 may be impregnated.
  • the CVI method is desirable because the thickness t of the intermediate layer 22 can be controlled more easily.
  • the CVI method can be performed using the high-frequency induction heating vacuum furnace illustrated in FIG. 7 described in the first preferred embodiment.
  • a mixed gas of Ta source gas, hydrogen gas and argon gas is supplied as in the case of the first embodiment.
  • the Ta source gas, hydrogen gas, and argon gas the same gas as in the first embodiment can be used.
  • the gas reaction rate is low because the gas penetration depth becomes deep. Therefore, the reaction rate is relatively slow T a C 1
  • manufacturing is evacuated, heated, and contains tantalum by CVI.
  • Intermediate layer 22 is obtained by conversion to immersion tantalum carbide.
  • the vacuuming and degassing treatment is preferably performed under the same conditions as in the first embodiment.
  • the reaction chamber is cooled to about 750 to 1200 ° C., and CVI treatment is performed at this temperature to embed tantalum in the pores of the carbon substrate 1.
  • CVI treatment is performed with the temperature of the carbon substrate in the reaction chamber set to 750 to 1200 ° C and the pressure in the reaction chamber set to 1.33 Pa and 33 kPa.
  • the temperature is 750 ° C. or higher, the halogen compound as a tantalum raw material is sufficiently decomposed and can be suitably impregnated with tantalum.
  • the gas of the tantalum material decomposes at an appropriate rate, and the diffusion distance of tantalum to the carbon substrate 1 becomes appropriate. As a result, it becomes easy to impregnate tantalum to the target depth.
  • the raw material gas supplied into the reaction chamber is introduced into the reaction chamber after the carbon substrate 1 in the reaction chamber reaches a predetermined temperature and pressure.
  • the gas flow rates at this time are, for example, 20 cc / min for Ta C 15 gas, 1000 cc / min for hydrogen gas, and 4 OOO cc / min for anoregon gas.
  • the impregnation depth of tantalum can be controlled to 1 to 10 ⁇ ⁇ .
  • CVI conditions such as temperature, pressure, gas flow rate, and processing time
  • the impregnation depth of tantalum can be controlled to 1 to 10 ⁇ ⁇ .
  • the temperature in the reaction chamber is decreased, the pressure in the reaction chamber is decreased, and the pressure in the reaction chamber is changed in a pulsed manner.
  • the tantalum source gas remaining in the reaction chamber is sufficiently replaced with hydrogen gas and argon gas, and the impregnated tantalum reacts with the carbon of the carbon substrate 1 present in the surrounding area to produce tantalum carbide.
  • the pressure for the conversion is preferably 13.3 kPa or more, more preferably 53.3 kPa to 101.3 k
  • the temperature for conversion is preferably 1 800 ° C or higher, more preferably
  • the time required for conversion is usually 5 to 20 hours, preferably 10 to 20 hours.
  • the reaction chamber is cooled to a temperature for forming the coating film 3 described above.
  • FIG. 11 shows such an embodiment, and the intermediate layer 22 is made of tantalum carbide 221 embedded in the pores of the carbon substrate, and a region 222 formed by converting the carbon material around the tantalum carbide 221 into tantalum carbide. And a region 223 in which carbon derived from the substrate remains as it is.
  • Fig. 13 is an SEM observation image of the cross section of the carbon material having such an embodiment.
  • Fig. 12 is a SEM observation image of a cross section of a carbon material without an intermediate layer.
  • the CVD method and the CVI method related to tantalum coating Z impregnation are performed by similar operations, and the CVD method and the CVI method can be basically distinguished by temperature and pressure. However, depending on the temperature and pressure, both tantalum coating and impregnation are performed at the same time. As a result, the surface layer part of the carbon substrate as shown in Fig. 9 is converted to tantalum carbide (the first A suitable intermediate layer 21) and a layer in which tantalum carbide is embedded in the pores of the layer 21 (second preferred intermediate layer 22) 'may coexist. Is included.
  • FIG. 14 schematically shows a carbon material according to this embodiment (hereinafter also referred to as a third embodiment), and a third preferred intermediate layer 23 is depicted with emphasis.
  • a gradient material layer 23 as an intermediate layer is formed on the surface of the carbon substrate 1.
  • This gradient material layer 23 is composed of an atomic ratio of carbonnotaranta from the carbon substrate 1 side to the coating film 3 side.
  • the C / Ta ratio has a concentration gradient that decreases continuously or stepwise.
  • the CZTa ratio is high on the carbon substrate 1 side, and the CZTa ratio becomes lower toward the coating film 3 side.
  • the intermediate layer 23 has a non-uniform chemical composition distribution because the CZTa ratio is different within the layer.
  • the thickness t of the intermediate layer 23 is preferably 1 / m or more, more preferably 1 to 10 ⁇ , and even more preferably 3 to 5 / xm. If the thickness t is 1 / m or more, the intermediate layer 23 is sufficiently adhered to the carbon substrate 1 and the coating film 3.
  • a composition close to the carbon base material 1 is preferable as close as possible to the carbon base material 1, and is not limited to close to the coating film 3.
  • a composition close to that of the coating film 3 is preferable.
  • the maximum value of the CZTa ratio in the gradient material layer 23 is preferably 10 or more, more preferably 1000 or more, and the minimum value is preferably 0.8 to 1.2.
  • the gradient material layer 23 preferably has a material region having a CZTa ratio of more than 1 ⁇ 2 and less than 10 in a thickness of 1 ⁇ or more.
  • the gradient material layer 23 is preferably as dense as a tantalum carbide coating film 3 described later.
  • a method for forming the gradient material layer 23 is exemplified below.
  • the method illustrated here includes coating the carbon substrate 1 with tantalum carbide while controlling the atomic ratio of carbon to tantalum by CVD.
  • the CVD method can be performed using the high-frequency induction heating vacuum furnace illustrated in FIG. 7 described in the first embodiment.
  • the Ta source gas hydrogen gas, and argon gas, the same gas as in the first embodiment can be used.
  • the carbon raw material hydrocarbon gas is preferably used, more preferably an alkane gas having 1 to 4 carbon atoms, and more preferably CH 4 or C 3 H 8 .
  • the intermediate layer 23, that is, the gradient material layer is obtained by evacuation, heating, and CVD.
  • the vacuuming and degassing treatment is preferably performed under the same conditions as in the first embodiment.
  • the reaction chamber is cooled to about 750-950 ° C and the CVD process is started.
  • the temperature of the carbon substrate 1 in the reaction chamber is preferably 750 to 950 ° C.
  • the pressure in the reaction chamber is preferably 1 33 Pa to 53.3 kPa. If the temperature is 750 ° C or higher, the C / T a ratio can be easily controlled ', and if it is 950 ° C or lower and the pressure is 53.3 kPa or lower, tantalum carbide will not become fine powder.
  • C 3 H 8 gas is 200 to 400 cc / min
  • hydrogen gas is 100 to 2000 cc / min
  • argon gas is 2000 to 5000 cc / min.
  • CZ is controlled by controlling the Si H 4 gas supply rate to gradually increase within the range of 0.01 to 20 cc / min while supplying at a flow rate.
  • the Ta ratio can be controlled.
  • the growth rate can be controlled to 1 to 50 ⁇ / hr by appropriately combining the CVD conditions such as the gap, and the intermediate layer 23 having a desired thickness can be formed. After the formation of the intermediate layer 23, the tantalum carbide coating film 3 can be subsequently formed.
  • thermal shock resistance test method in a reducing gas atmosphere is shown.
  • thermal shock test methods There are two types of thermal shock test methods: a test that simulates normal epitaxial growth, ⁇ thermal shock test 1>, a test that assumes severe conditions, and a thermal shock test 2>.
  • ⁇ Thermal Shock Test 2> is a test under conditions that are much stricter than normal use, and it can be said that a carbon material that does not generate cracks or the like in the test has very excellent characteristics. Even if a crack or the like occurs in the thermal shock test 2>, the carbon material that does not generate a crack in the thermal shock test 1> sufficiently exhibits the effect of the present invention. .
  • the vacuum furnace is a high-frequency induction heating furnace having a quartz tube as a reaction chamber, and a carbon material 100 to be tested is installed in the reaction chamber.
  • a gas mixture of 30 000 cc / min hydrogen and 5 000 cc / min ammonia into the reaction chamber to reduce the pressure to 7 Control to 6 0 Torr.
  • the carbon material is heated to 150 ° C. by induction heating at a temperature rising rate of 150 ° C. Zmin. Then, hold the carbon material at 1550 ° C. for 3 hours. After that, cool down to room temperature at a temperature drop rate of 30 (TCZin i. This is one cycle, and 100 cycles (total of about 300 hours) are performed.
  • the carbon material 100 is heated by induction heating to 150 ° C. at a heating rate of 100 ° C. Zni in. Then, the carbon material 100 0 is held at 15 500 ° C for 3 hours. Then, it is cooled to room temperature at a temperature drop rate of 300 ° C_min. These are defined as one cycle, and 100 cycles (total of 300 hours) are implemented.
  • Examples 1 to 3 The X-ray diffraction results of Examples 1 to 3 are shown in FIGS.
  • diffraction lines on (220) plane were mainly observed, and slight diffraction lines on (1 1 1), (200) and (3 1 1) were observed.
  • the diffraction line of the (220) plane showed the strongest diffraction intensity, and the half width of the (220) plane was 0.13 to 0.15.
  • the intensity ratio between (2 20) and the second strongest (3 1 1) was 10 or more in terms of the intensity ratio of the diffraction lines' (Example 1).
  • the coating film 3 having the strongest diffraction intensity on the (220) plane was dense and excellent in gas impermeability.
  • a coating film 3 of tantalum carbide was formed on the same carbon substrate 1 as used in Examples 1 to 3 by the CVD method.
  • CVD conditions in the temperature 850 ° C, a pressure between 1 330 P a constant, the C 3 H 8 and T a C 1 5 1 ⁇ the growth rate of tantalum carbide by changing the flow rate of 30 / zm / hr Varyed in range.
  • heat treatment was performed in a hydrogen gas atmosphere at 2000 ° C. for 10 hours.
  • the intensity ratio of the diffraction lines on the (220) plane was the strongest, and the intensity was more than four times that of the second strongest diffraction line. .
  • the half width of the diffraction line on the (220) plane of the coating film 3 was in the range of 0.1 1 to 0.14 °. All of these coating films were excellent because cracks did not peel off before the thermal shock test in a reducing gas atmosphere.
  • a tantalum carbide coating film 3 was formed on the same carbon substrate as used in Examples 1 to 3 by the CVD method.
  • the heat treatment in a hydrogen gas atmosphere was omitted.
  • the intensity ratio of the diffraction lines on the (220) plane was the strongest, but as shown in Table 3, the growth rate was changed.
  • Carbon materials 100 were produced using various graphite substrates 1 having the characteristics shown in Table 4.
  • the above-mentioned halogen treatment was applied to a graphite substrate having a diameter of 60 mm and a thickness of 10 mm having various thermal expansion coefficients (CTE) listed in Table 4, and the ash content of the graphite substrate was adjusted to 10 ppm or less.
  • CTE thermal expansion coefficients
  • Example 18 the halogen treatment was omitted, and the ash content of the graphite substrate 1 was 16 pm.
  • the (220) plane showed the strongest diffraction intensity, and was more than four times the intensity of the second strongest diffraction line, and the (220) plane had a half-value width of 0.2 ° or less. As shown in Table 4, it was confirmed that all carbon materials 100 were excellent materials without cracking or peeling after ⁇ thermal shock test 1>. Table 4
  • the measurement temperature range is 293 1273 K. Examples are further described below. The evaluation methods performed in the following examples will be described. (Microscopic observation)
  • the surface of the produced carbon material 100 was observed with a scanning electron microscope (SEM) to evaluate the presence or absence of cracks.
  • the thickness of the intermediate layer 2 was measured by cross-sectional observation using SEM.
  • the SEM device used was Hitachi S-320 ON. Secondary electron image (SEI) and backscattered electron image (BE I) of the cross section after cleaving and polishing were obtained.
  • SEI Secondary electron image
  • BE I backscattered electron image
  • the backscattered electron image makes it possible to use element dependence, and as a result, it is possible to grasp the chemical composition of the observation surface two-dimensionally, and as a result, the chemical composition in the intermediate layer 2 The distribution is obvious at a glance. Using this, we focused on carbon and tantalum carbide, and evaluated the conversion and impregnation depth of tantalum carbide.
  • tantalum carbide conversion, impregnation depth, and gradient material layer thickness were measured by cross-sectional observation using an X-ray microanalyzer (XMA).
  • XMA X-ray microanalyzer
  • An EMAX-7000 manufactured by Horiba Ltd. was used as the XMA device.
  • the molar ratio of carbon and tantalum in the analysis on the specific line in the cross section after cleaving and polishing was measured, and the depth and film thickness of the intermediate layer were evaluated.
  • Auger electron spectroscopy Using a combination of Auger electron spectroscopy (AE S) and sputtering with a rare gas, a depth direction analysis from the surface to the inside of the carbon substrate 1 was performed, and the molar ratio of carbon to tantalum in the depth direction was measured. The depth and film thickness of the intermediate layer 2 were evaluated.
  • an Auger electron spectrometer PH I 700 manufactured by ULVAC-FAI was used.
  • Auge electron spectroscopy the sample surface is irradiated with an electron beam in a high vacuum, and the core electrons of the atoms on the sample surface are ejected. As a result, electrons are generated when outer electrons are compensated for the generated empty orbit. This generated electron is called an Auger electron, and the kinetic energy of the Auge electron is unique to the element. Therefore, by analyzing the kinetic energy, elemental analysis in the region several nm from the surface can be performed.
  • thermal shock resistance test in a reducing gas atmosphere in the following examples was carried out according to the above-described ⁇ thermal shock resistance test 2> procedure. After that, temperature increase and high temperature cycles were performed for 1 000 to 3000 cycles (a total of 1000 to 3000 hours). After this cycle, the surface was observed with the SEM described above, and the presence or absence of cracks in the tantalum carbide coating film 3 was evaluated.
  • the coating thickness of tantalum that is, the weight of tantalum to be coated, was changed as shown in Table 5 below. Subsequently, it was treated for 20 hours at 2200 ° C. in an argon atmosphere of 10 1.3 kPa. As a result, the carbon in the surface layer portion of the black lead substrate 1 and the infiltrated tantalum reacted to convert to tantalum carbide, and a porous tantalum carbide layer (intermediate layer 2) was formed. Table 5 shows the thickness of the intermediate layer 2 obtained.
  • a dense tantalum carbide coating film 3 made of tantalum carbide having a CZTa composition ratio of 1 to 1.2 and a thickness of 42 ⁇ was formed on the intermediate layer 2 by the CVD method. .
  • the obtained carbon material 100 was subjected to the thermal shock resistance test. First, all samples were subjected to a 100-cycle test, and then the cycle was repeated until the coating film 3 was cracked or peeled off. If no cracks or peeling occurred in the coating film 3 until 300,000 cycles, the test was terminated at that point. As is clear from the test results summarized in Table 5, the coating film of the carbon material 100 provided with the intermediate layer 2 was strong. Further, when the crystal structure of the coating film 3 of Example 19 was examined by X-ray diffraction, the intensity ratio of the diffraction lines on the (2 20) plane was the strongest, 3 10 times that of the second strongest diffraction line. The half-width of the diffraction line on the (2 2 0) plane was about 0.1 3 °. Table 5
  • a graphite substrate 1 similar to that used in Example 19 was subjected to the above-described clogging treatment, and then tantalum was embedded in the pores of the surface layer portion of the graphite substrate 1 by the CVI method.
  • the conditions for CVI are: reaction temperature 800 ° C, reaction pressure 1 3 3.3 Pa, Ding & Yes 15 gas supply rate 20 cc / min, hydrogen gas supply rate 1000 cc / min.
  • the supply amount of argon gas was set to 4000 cc / min.
  • the reaction time was changed from 15 to 150 hours, and the tantalum embedding depth, that is, the weight of the embedded tantalum was changed as shown in Table 6 below. Subsequently, it was treated at 220 ° C.
  • a graphite substrate 1 similar to that used in Example 19 was subjected to the above-described clogging treatment, and then a gradient material layer 23 was formed on the graphite substrate 1 by the CVD method.
  • the gradient material layer 23 was provided with a concentration gradient such that the CZT a ratio continuously decreased as the distance from the graphite substrate 1 side increased.
  • the conditions for CVD of this time the reaction temperature of 8 50 ° C, the reaction pressure 1. 3 3 k P a, C 3 H 8 supply amount of 2 50 cc / min of gas, the supply amount of hydrogen gas
  • the supply rate of argon gas was 1000 cc / min and 4000 cc / min.
  • the gradient material layer 23 was obtained by changing the supply amount of Si H 4 gas. For example, in order to obtain a concentration gradient in which the CZT a ratio changes from 1000 to 1, the flow rate of Si H 4 gas is continuously increased from 0.02 to 20 ccZmin in proportion to the reaction time. Increased.
  • Example 19 Thereafter, the same CVD treatment and heat treatment as in Example 19 were performed on the intermediate layer .23 to obtain a carbon material 100 including the coating film 3 made of tantalum carbide.
  • the obtained carbon material 100 was subjected to the same thermal shock resistance test as in Example 19. As is clear from the test results summarized in Table 7, the carbon material coating film 3 provided with the intermediate layer 23 was strong. Table 7

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明の課題は、高温において、還元性ガスに対する優れた耐食性および耐熱衝撃性を有する炭化タンタル被覆炭素材料およびその製造方法を提供することである。本発明によれば、炭素基材と、前記炭素基材上に、直接的にまたは中間層を介して形成される被覆膜とを有する炭化タンタル被覆炭素材料が提供される。被覆膜は、炭化タンタルの多数の微結晶が緻密に集合して形成されていて、好ましくは被覆膜のX線回折パターンにおいて、炭化タンタルの(220)面に基く回折強度が最大の強度を示し、より好ましくは、前記回折強度は2番目に大きな強度の回折強度の4倍以上の強度を示す。

Description

明細書
炭化タンタル被覆炭素材料おょぴその製造方法
技術分野
本発明は炭化タンタル被覆炭素材料およびその製造方法に関する。 詳しくは、
S i Cや G a Nなどといった化合物半導体の単結晶を形成する装置の部材として 使用し得る炭化タンタル被覆炭素材料およびその製造方法に関する。
背景技術
従来から、 S i、 Ga N、 S i Cなどといった半導体用単結晶の製造において、 ェピタキシャル成長を行うための MOC VDや MOV P Eと呼ばれる C VD装置 や MB E装置などが使用されてきた。 S i Cの製造では、 1 500°C以上、 特に は 1 800°C以上の高温を要する昇華法や HTC VD法 (高温 CVD法) などが しばしば用いられる。 これらの半導体用単結晶の製造では、 キャリアガスや原料 ガスとして水素、 アンモニア、 炭化水素ガスなどが一般的に使用されている。
800°C以上の高温では、 アンモニアや水素ガスによって炭素材料はガス化反 応を起こしてメタンガスへと変換してしまい、 結果として、 容積変化と重量減少 が生じる。 容積変化によって、 例えば、 ヒーターの抵抗が変化し、 プロセス温度 が変動して、 結果としてェピタキシャル成長層の品質の悪化が懸念される。 また、 容積変化によって、 結晶ウェハーを保持するサセプタの、 ウェハーとの接触面が 粗くなり、 それによつて、 ウェハーの温度分布が不均一になって、 結果としてェ ピタキシャル成長層に欠陥が生じることが懸念される。 炭素材料とガスとの反応 は、 特に 1 00 o°c以上でさらに速くなる。 この場合、 極めて短時間でヒーター ゃサセプタが劣化する。 炭素材料のメタン化を抑制するため、 サセプタゃヒータ 一などといった炉内部材として、 炭素基材上に緻密な炭化ケィ素を CVD法によ つて被覆して得られる複合材料が使用されている。 しかし、 1 300°Cで炭化ケ ィ素のガス化反応が始まり、 そして、 1 500°C以上の高温では、 水素によって 炭化ケィ素がガス化反応して 5〜 30 μπιノ hの速度で腐食される。 このような 腐食によって、 サセプタの被膜にクラックや剥離が生じて、 内部の炭素材料が腐 食されてしまう。 この場合、 炭素材料中に残留していた N 2、 0 2、 C 0 2などの ガスが放出してしまい、 半導体デバイス用の結晶にこれらのガスが取り込まれる ことが懸念される。 このようなガスは、 最終的に得られる半導体デバイスがドー ビング不良を呈する原因となり得る。
結晶成長のために単結晶ウェハーを昇温したり、 結晶成長後に該ウェハーを室 温にまで冷却したりする際に、 ウェハー表面に欠陥が発生する場合がある。 欠陥 の原因として、 キャリアガスなどによってウェハー表面がエッチングされること や、 ウェハー表面の原子が昇華して脱離したりすることが挙げられる。 こういつ た欠陥はデバイスの特性を低下させたり、 コンタクト抵抗を増大させたりして、 好ましくない。 最近では、 結晶成長において、 昇温速度および降温速度を速くす ることで、 換言すると昇温おょぴ降温のための時間を短縮することで、 表面の欠 陥の発生を減少させている。 また、 単に製造効率を上げるために、 急速に昇温お よび降温を行うことによって、 短時間でウェハーを製造する場合もある。 このよ うに急速に昇温や降温を行うと、 単結晶を形成する装置の一部であるサセプタに 剥離ゃクラックが発生するという新たな問題が生じる。 サセプタに多大な熱応力 が発生するからである。
例えば、 G a Nのェピタキシャル成長の場合、 1 2 0 0 °Cまでサファイア基板 を加熱し、 次いで室温まで冷却する。 このとき、 サセプタを急速に昇温おょぴ降 温する。 昇温と降温を繰り返すことでサセプタの材料の被膜にクラックが発生す ることが懸念される。 クラックを通して、 キャリアガスや原料ガスとしての水素 ガスやアンモユアガスがサセプタ内部に浸透し得る。 これらのガスによって、 サ セプタの基材である黒鉛材料がガス化し、 上述した不所望な結果が懸念される。 そこで、 ヒーターゃサセプタなどの耐食性を高めるために、 炭素材料上に炭化 タンタル層を被覆することが試みられた。 特開平 10 - 236892号公報および特開平 10 - 245285号公報の開示によれば、 A I P法で炭化タンタル微粒子を堆積してな る膜で被覆された炭素材料は、 従来よりも長く使用し得るヒーターゃサセプタを 与える。 また、 C V D法を用いると、 さらに緻密で耐食性に優れた炭化タンタル の被覆膜を形成することができる。 その結果、 さらに長寿命の炭素材料の提供が 期待できる。 なぜなら、 C V D法では高い結晶性の T a Cからなる被覆膜を容易 に得ることができるためである。 しかし、 C V D法により得られた高い結晶性を もつ被覆膜は、 柱状構造をもち柔軟性が低下してクラックが生じやすい。 クラッ クを通してアンモニアガスや水素ガスが炭素基材を腐食すると、 炭素材料の寿命 が短くなってしまう。
そこで、 C V D法で得られる被覆膜において、 炭化タンタルの結晶性を全体的 に低く して、 被覆膜をアモルファス状態に近くすることでクラックや剥離の発生 を抑制することが試みられた (特開 2004- 84057号公報) 。 この炭化タンタルの 被覆膜は緻密性や柔軟性に優れる。
発明の開示
しカゝし、 本発明者らの試験によれば、 特開 2004 - 84057号公報に記載の被覆膜 を持つ材料は、 依然としてクラックや剥離の問題が有ることが分かった。 具体的 には、 水素とアンモニアとの混合ガス雰囲気中、 1 5 0 0 °Cの温度にて、 この材 料を数回使用すると、 炭化タンタルの結晶構造や結晶性が変化してクラックや剥 離が生じてしまう。 このようなクラックが生じると、 炭素材料中に残留していた N 2、 0 2、 C 0 2などのガスが放出されて、 該ガスが半導体デバイス用の結晶に 取り込まれて、 該デバイスにおいてドーピング不良が発生しやすくなる。 また、 高温では、 炭素は水素やアンモニアに対して非常に弱く、 タンタルは水素を吸収 して脆化する。 図 2 1および図 2 2は、 特開 2004-84057号公報の方法で得られ る被覆膜の顕微鏡観察像である。 図 2 1は表面の形態を、 図 2 2は断面の形態を それぞれ表す。 1 5 0 0 °Cにおける数回の使用によって、 結晶化していない炭素 やタンタルが水素やアンモニアによって腐食して、 被覆膜にピンホールが発生し、 さらに、 結晶構造や結晶性の変化によって被覆膜にクラックが発生して、 結果と して炭化タンタルの被覆膜の嵩密度が著しく減少する。 特開 2004- 84057号公報 に記載されるように、 全体的に結晶性が低く、 アモルファスに近い状態の炭化タ ンタルで被覆された炭素材料は、 '使用中に被覆膜が劣化してしまうことを本発明 者らは初めて見出した。
このような状況を鑑みて、 本発明は、 高温下の還元性ガス (特に、 アンモニア, 水素、 炭化水素ガスなど) に対して、 優れた耐熱衝撃性や耐食性を有する炭化タ ンタル被覆炭素材料およびその製造方法を提供することを課題とする。
本発明の特徴は以下のとおりである。
(1) 炭素基材と、 前記炭素基材上に炭化タンタルの (220) 面が他のミラー 面に対して特異的に発達している炭化タンタルの結晶からなる被覆膜とを有し、 被覆膜の X線回折パターンにおいて、 炭化タンタルの (220) 面の回折線が最 大の回折強度を示す、 炭化タンタル被覆炭素材料。
(2) 被覆膜の X線回折パターンにおいて、 炭化タンタルの (220) 面の回折 線の半価幅が 0. 2° 以下である (1) の炭素材料。
(3) 被覆膜の X線回折パターンにおいて、 炭化タンタルの (220) 面の回折 線が、 2番目に大きな回折線の回折強度の 4倍以上の強度を示す、 (1) または
(2) の炭素材料。
(4) 被覆膜の窒素ガス透過率が 1 0— 6 c m2/ S e c以下である ( 1 ) 〜
(3) のいずれかの炭素材料。
(5) 被覆膜の厚さが 10〜10 O /xmである (1) 〜 (4) のいずれかの炭素 材料。
(6) 炭素基材と、 前記炭素基材上に形成された炭化タンタルからなり X線回折 パターンにおいて炭化タンタルの (220) 面の回折線が最大の回折強度を示す 被覆膜とを、 1600〜 2400°Cの熱処理に供して被覆膜の炭化タンタルの結 晶性を向上させる工程を有する、 炭化タンタル被覆炭素材料の製造方法。
(7) 炭素基材と、 炭素およびタンタルを含む組成物からなり炭素基材上に設け られた中間層と、 中間層上に設けられた炭化タンタルを含む組成物からなる被覆 膜と、 を有する炭化タンタル被覆炭素材料。
(8) 中間層が被覆膜よりも化学組成分布が不均一である (7) の炭素材料。
(9) 中間層が被覆膜よりも多孔質である (7) または (8) の炭素材料。 (10) 中間層が、 炭素基材の表層部分を炭化タンタルに転化して得られた多孔 質層である、 (9) の炭化タンタル被覆炭素材料。
(1 1) 中間層が、 炭素基材の表層部分の気孔中に炭化タンタルを埋設して得ら れる層である、 (8) の炭素材料。
(12) 中間層が、 炭素基材側から被覆膜側へと炭素 Zタンタルの原子比が連続 的または段階的に低くなる濃度勾配をもつ傾斜材料層である、 (7) 〜 (1 1) のいずれかの炭素材料。
(13) 傾斜材料層における炭素ノタンタルの原子比の最大値が 10以上であり、 最小値が 0. 8〜1. 2である、 (1 2) の炭素材料。
(14) 中間層の厚みが 1 m以上である (7) 〜 (13) のいずれかの炭素材 料。
(15) 被覆膜が炭化タンタルの化学蒸着膜である (7) 〜 (14) のいずれか の炭素材料。
(16) 被覆膜における炭素 タンタルの原子比が 0. 8〜1. 2である (7) 〜 (1 5) のいずれかの炭素材料。
(17) 被覆膜の X線回折パターンにおいて、 炭化タンタルの (220) 面の回 折線が最大の回折強度を示す (7) 〜 (16) のいずれかの炭素材料。
(18) 被覆膜の X線回折パターンにおいて、 炭化タンタルの (220) 面の回 折線が、 2番目に大きな回折線の回折強度の 4倍以上の強度を示す、 (17) の 灰 材料。
(19) 被覆膜の X線回折パターンにおいて、 炭化タンタルの (220) 面の回 折線の半価幅が 0. 2° 以下である (17) または (18) の炭素材料。
(20) 被覆膜が、 炭化タンタルの化学蒸着膜を 1600〜2000°Cの加熱処 理に供して得られるものである (17) 〜 (19) のいずれかの炭素材料。
(21) 20°Cから 1000°Cへ加熱することによって測定される被覆膜の熱膨 張係数が 6. 9 X 10— 6〜 7. 8 X 10-6ZKである (1 7) 〜 (20) のい ずれかの炭素材料。 本発明の一実施態様によれば、 被覆膜の炭化タンタルを実質的に一つの結晶面 に配向させることで、 被覆膜の熱膨張係数、 熱伝導率、 ヤング率といった物性値 が平準化して、 歪や熱応力に起因する内部応力が発生し難くなる。 その結果、 急 昇温や急冷却時においても被覆膜にクラックや剥離が発生し難くなる。 本発明者 らの新知見によれば、 炭化タンタルを ( 2 2 0 ) 面に実質的に配向させる、 つま り炭化タンタルの (2 2 0 ) 面を他のミラー面に対して特異的に発達させること で上記効果が顕著にあらわれ、 耐食性、 耐熱衝搫性に優れた被覆膜を得ることが できる。 図 3および図 4は、 本発明で得られる被覆膜の顕微鏡観察像である。 好適態様によれば、 被覆膜の炭化タンタルの結晶性を著しく向上させることで、 炭素基材の腐食や被覆膜におけるピンホールの発生をより低減できる。 好適態様 によれば、 被覆膜の厚さや窒素ガス透過率を特定範囲内にすることで炭素基材の 腐食および炭素基材の中からのガスの放出をより効果的に抑制できる。 本発明の 好適な製造方法によれば、 被覆膜に残留するタンタルと炭素から炭化タンタルを 得ることができ、 結晶性をより向上させた被覆膜を形成でき、 その結果、 例えば、 長寿命の炉材を提供することができ、 該炉材を用いることにより半導体デバイス 等を安定した製造条件で高い歩留まりで製造することができる。
本発明の別の実施態様では、 特定の構造の中間層が炭素基材と被覆膜とを介し て存在している。 そのため、 急速な昇温および降温の際に生じ得る、 炭素基材と 炭化タンタルの被覆膜との間の内部応力が低減される。 該内部応力は、 炭素基材 と被覆膜とで、 熱による膨張や収縮の程度が異なることに起因する。 本発明によ れば、 上述した内部応力が低減するから、 被覆膜のクラックや剥離を低減するこ とができる。 本発明の好適態様によれば、 被覆膜の炭化タンタルの結晶は、 (2 2 0 ) 面に実質的に配向し、 さらに、 炭素基材と被覆膜との間に中間層が存在し ている。 それによつて、 とりわけ強固な炭化タンタル被覆炭素材料が提供される。 結果として、 本発明によれば、 例えば 1 4 0 0 °C以上の高温域で長期間使用でき る炭化タンタル被覆炭素材料が提供され、 その結果、 例えば、 長寿命の炉材を提 供することができ、 該炉材を用いることにより半導体デバイス等を安定した製造 条件で高い歩留まりで製造することができる。
図面の簡単な説明
図 1およぴ図 2は、 本発明の炭化タンタル被覆炭素材料の各形態の模式図であ る。 図 3および図 4は、 本発明による被覆膜の顕微鏡観察像である。 図 5は、 窒 素ガス透過率の測定の概要を示す。 図 6は、 被覆膜の厚さと窒素ガス透過率との 関係の一例を表す。 図 7は、 高周波誘導加熱式真空炉の該略を示す。 図 8は、 本 発明の一態様の炭化タンタル被覆炭素材料における化学組成分布を示す。 図 9〜 図 1 1は、 本発明の炭化タンタル被覆炭素材料の各態様を模式的に示す。 図 1 2 は、 中間層を設けない炭化タンタル被覆炭素材料の断面の S E M観察像である。 図 1 3は、 中間層を有する炭化タンタル被覆炭素材料の断面 S E M観察像である。 図 1 4は、 本発明の一態様の炭化タンタル被覆炭素材料を模式的に示す。 図 1 5 〜図 1 7は、 本発明で得られる被覆膜の X線回折パターンを表す。 図 1 8〜図 2 0は、 比較例の被覆膜の X線回折パターンを表す。 図' 2 1およぴ図 2 2は、 従来 技術で得られる被覆膜の顕微鏡観察像である。
図中に付した符号はそれぞれ以下のものを意味する : 1は炭素基材、 2、 2 1 および 2 2は中間層、 2 4は傾斜材料層の形態の中間層、 3は被覆膜、 4は気孔、 1 0 0は炭化タンタル被覆炭素材料。
発明を実施するための最良の形態
図 1および図 2は、 本発明の炭化タンタル被覆炭素材料を模式的に表す。 本発 明の炭化タンタル被覆炭素材料 1 0 0は、 炭素基材 1と被覆膜 3とを有する。 図 1に示されるように、 被覆膜 3は炭素基材 1上に直接に形成されていてもよいし、 図 2に示されるように、 被覆膜 3は炭素基材 1上に中間層 2を介して形成されて いてもよい。
被覆膜 3は炭化タンタルを含む組成物からなり、 好適には、 被覆膜 3は他のミ ラー面に対して (2 2 0 ) 面が特異的に発達した炭化タンタルの結晶が緻密に集 まって形成されている。
本発明によれば、 炭化タンタル'被覆炭素材料 1 0 0は、 炭素基材 1と、 炭素基 材 1上に形成されている被覆膜 3とを有する。 炭化タンタル被覆炭素材料 1 00 は、 単に "本発明の炭素材料" 、 あるいは、 もっと簡単に "炭素材料" とも表記 される。 炭素材料 1 00は、 炭素基材 1と被覆膜 3との間に中間層 2を有してい てもよい。 炭素基材 1は、 主として炭素からなる基材であり、 被覆膜や中間層を 含まない。 被覆膜 3は、 炭化タンタルを含む組成物からなり、 主として、 炭化タ ンタルの多数の結晶が緻密に集合して形成される。 中間層 2は、 炭素基材 1と被 覆膜 3との間に存在して、 炭素基材 1および被覆膜 3とは化学的な組成が明確に 異なる層である。 これら基材ゃ層の好適態様は以下に詳述する。
<炭素基材>
本発明では、 炭素基材 1は、 主として炭素からなる基材であれば特に限定され ない。 炭素の形態は特に限定されず、 一般黒鉛、 等方性黒鉛、 炭素繊維強化炭素 複合材料、 ガラス状炭素などが例示される。
本発明の炭素材料 1 0 0を半導体製造用装置の炉内部材などとして用いること を考慮すると、 炭素基材 1は不純物を極力含まないことが好ましく、 具体的には、 炭素基材 1の 1000°C基準のガス放出圧力は少なければ少ないほどよく、 好ま しくは 1 0— 4P a Zg以下である。 1 0 0 0°C基準のガス放出圧力とは、 炭素 基材 1の表面および細孔に吸着していたガス分子が 1000°Cにて脱離する程度 を圧力の単位で表したものであり、 具体的には、 特許第 2684106号公報に 開示される昇温脱離スペクトル (TDS) などにより測定することができる。 炭素基材 1の熱膨張係数は、 好ましくは 6. 5 X 1 0— 6〜9. 0 X 1 0— 6/ Kであり、 より好ましくは 7. 0 X 1 0— 6〜8. 8 X 1 0 6/Kである。 この 範囲は、 炭化タンタルの熱膨張係数 (6. 9 X 1 0— 6〜 7. 8 X 1 0 6/K) に近いことを考慮している。 炭素基材 1の熱膨張係数が大きすぎたり小さすぎた りすると、 炭化タンタルの熱膨張係数との差が大きくなる。 その結果、 炭素基材 1上に、 任意的に中間層 2を介して、 高温にて被覆膜 3を形成して、 その後に降 温するときに、 被覆膜 3に大きな引張応力または圧縮応力が生じる。 その結果、 被覆膜 3に亀裂が生じたり、 被覆'膜 3が炭素基材 1から剥離したりする懸念があ る。 炭素基材 1の熱膨張係数は市販の装置で測定することができ、 装置の一例と して、 株式会社リガク製熱分析装置 T h e r mo P 1 u s 2 TMA83 10 が挙げられる。 炭素基材 1の熱膨張係数は、 リファレンスとして S i o2を用い、 N 2雰囲気中で、 293〜1 273 Kの温度範囲で測定される。
炭素基材 1の嵩比重は特に限定されない。 炭素基材 1自体の機械的強度の向上 と、 炭素基材 1からの (もし有れば) 中間層 2や被覆膜 3の剥離しにくさとを考 慮すると、 炭素基材 1の嵩比重は、 好ましくは 1. 65〜1. 90 g_ C;m3で あり、 より好ましくは 1. 73〜: L. 83 g/c m3程度である。
炭素基材 1は好ましくは多孔質であり、 炭素基材 1の平均気孔半径は、 好まし くは 0. 0 1〜5 μπα、 より好ましくは 1〜2 μπιである。 ここで 「平均気孔半 径 J は、 水銀圧入法 (F I SONS社製、 ポロシメーター 2000型) により求 められる。 具体的には、 最大圧力 9 8MP a、 試料と水銀との接触角 1 4 1. 3° 、 圧力が 72MP aのときの累積気孔容積の 1ノ' 2の容積を示す球の半径と して平均気孔半径が定義される。 平均気孔半径が 0. 0 1 m以上であれば、 い わゆるアンカー効果が十分奏されて、 被覆膜 3が剥離しにくくなる。 平均気孔半 径が 5 μπι以下であれば、 高温における炭素基材 1からの放出ガスの量が少なく なる。
炭素基材 1の全細孔容積は、 好ましくは 5〜 3 5 Cm3Zgであり、 より好ま しくは 1 0〜20 cm3/gである。 ここで、 全細孔容量は全ての開気孔の容積 の合計を意味し、 上述の水銀圧入法において同時に求めることができる。 全細孔 容量が 5 cm3/g以上であれば、 炭素基材 1の十分な深さの気孔にまで炭化タ ンタルが含浸し得るので、 中間層 2を介して被覆膜 3と炭素基材 1とがより強固 に密着する。 全細孔容量が 35 cn^Zg以下であれば、 炭素基材 1自体の機械 的な強度は十分であり、 高温において炭素基材 1から放出するガスの量が増大す る不都合がない。
炭素基材 1に存在する不純物は少ないほど好ましく、 不純物として含まれる各 元素は、 各々好ましくは、 A 1は 0. 3 13111以下、 6は1. O p pm以下、 Mgは 0. l p pm以下、 S H 0. 1 p pm以下であり、 炭素基材 1の総灰分 (本明細書では、 単に灰分ともいう) は好ましくは 10 p pm以下、 より好まし くは 2 p pm以下である。 前記範囲内であれば、 高温で炭化タンタルと化学反応 する不純物の量が少なく、 中間層 2を介した被覆膜 3が炭素基材 1から剥離しに くくなり好ましい。 灰分は、 J I S_R— 7223で規定される灰分の分析方法 に準じて測定することができる。
上記のように不純物濃度が低い炭素基材 1を得る手段の限定的ではない一例と して、 ハロゲン系ガス雰囲気、 大気圧中、 1800〜 2200 °C、 5〜30時間 の処理が挙げられる (特開平 9— 100162号公報) 。 ここで、 ハロゲン系ガ スとは、 ハロゲンまたはその化合物のガスのことであり、 例えば塩素、 塩素化合 物、 フッ素、 フッ素化合物、 塩素とフッ素とを同一分子内に含む化合物 (モノク ロロ トリフルオルメタン、 トリクロ口モノフルオルメタン、 ジクロルフルオルェ タン、 トリクロ口モノフルオルエタン等) などが挙げられる。 ハロゲン系ガスと、 金属不純物などといった炭素基材に含まれる不純物とが反応してハロゲン化物が 生成し、 このハロゲン化物が蒸発または揮散して、 炭素基材 1から除去される。 引続き、 同じ処理炉で、 ハロゲン系ガスを所定時間流した後、 水素ガスを反応容 器内に供給し、 硫黄分等の不純物を水素化物として析出させることにより、 炭素 基材 1から除去する。 これにより、 炭素基材 1の不純物は極めて少なくなり、 上 述したような範囲内になる。
好ましくは、 中間層 2や炭化タンタルの被覆膜 3を形成する前に、 炭素基材 1 の表面を洗浄して、. 付着した余剰なパーティクルなどを除去する。 洗浄は、 スク ラブ洗浄、 あるいは、 超音波洗浄器中で有機溶剤、 酸やアルカリ溶液を用いる方 法が挙げられる。 有機溶剤としては、 アセトン、 トリクロロエチレン、 メタノー ル、 イソプロピルアルコールなどが挙げられ、 酸やアルカリとしては、 塩酸、 硝 酸、 フッ酸、 KOHなどが挙げられる。 洗浄後、 純水で溶剤や溶液を洗い流した 後、 例えば、 140°Cの真空乾燥器中で 24時間乾燥させるのが好ましい。
ぐ被覆膜 > 本発明の炭素材料 100は、 炭素基材 1の表面に、 中間層 2を任意的に介して、 被覆膜 3を有する。 被覆膜 3は、 炭化タンタルを含む組成物からなる。 該組成物 は、 好ましくは 99. 9 9重量%以上を炭化タンタルが占め、 より好ましくは不 可避的な不純物以外は全て炭化タンタルから構成される。 本発明における炭化タ ンタルは、 T a XCなる化学式で表現し得る化合物であり、 この Xは好ましくは 0. 8〜1. 2である。 被覆膜 3の熱膨張係数は、 好ましくは 6. 9 X 1 0一6 〜7. 8 X 1 0— 6/Kである。 被覆膜 3の熱膨張係数は、 上述の炭素基材 1の 熱膨張係数と同様に、 株式会社リガク製熱分析装置 Th e r mo P 1 u s 2 TMA 8 3 1 0を用いて、 リファレンスとして S i 02を用い、 N2雰囲気中で、 293から 1 273 Kへと加熱しながら測定される。
好ましくは、 被覆膜 3は、 (220) 面が他のミラー面に対して特異的に発達 している炭化タンタルの結晶から実質的になる。 特開 2004- 84057号公報に記載 されるように、 従来は、 数多くの結晶面に配向した炭化タンタルや、 結晶性を低 下させた炭化タンタルからなる被覆膜を用いることが指向されていた。 本発明の 好適態様では、 従来技術とは全く異なり、 炭化タンタルを特定の結晶面、 つまり (220) 面に配向させる。 それによつて、 耐食性および耐熱衝撃性に優れた炭 素材料 100を得ることができる。 この実施態様では、 被覆膜 3は炭素基材 1の 少なくとも一部の上に形成され、 好ましくは炭素基材 1の全表面を覆うように形 成される。 被覆膜 3は炭素基材 1上に直接に形成されていてもよいし、 後述する 中間層を介して形成されていてもよい。
この実施態様で 、 炭化タンタルの被覆膜 3は、 炭化タンタルの (220) 面 を他のミラー面に対して特異的に発達させることで形成され、 本発明の作用 ·効 果を阻害しない限りにおいて、 該被覆膜 3には、 他の結晶面に配向した炭化タン タルが存在していてもよい。 被覆膜 3を構成する炭化タンタルの配向の程度は、 X線回折によって定量化することができる。
好ましくは、 被覆膜 3の X線回折パターンにおいて、 炭化タンタルの (2 2
0) 面の回折線は最大の回折強虔を示す。 また、 好ましくは、 被覆膜 3の X線回 折パターンにおいて、 炭化タンタルの (220) 面の回折線は、 2番目に大きな 回折線の回折強度の 4倍以上、 さらに好ましくは 8倍以上の強度を示す。 被覆膜 3の X線回折パターンにおいて、 炭化タンタルの (220) 面の回折線の半価幅 は、 好ましくは 0. 2° 以下であり、 より好ましくは 0. 10° 〜0. 1 6° で ある。 被覆膜 3の X線回折パターンは、 被覆膜 3に X線を照射したときの回折線 の強度を測定し、 横軸に回折角 (2 Θ) 、 縦軸に回折強度をプロットして得られ る曲線である。 炭化タンタルの (220) 面の回折線は、 上記 X線回折パターン の約 58° の回折角に表れる。 回折強度の高さとは、 ピークの最大高さを意味す る。 回折線の半価幅は、 最大高さの 1 2の強度におけるピークの幅を意味し、 当該ピークに由来する結晶面の結晶性の指標となる。
被覆膜 3の X線回折パターンは、 公知の方法によって求めることができ、 具体 的には、 炭素基材 1上に形成された測定対象の炭化タンタルの被覆膜 3の表面に、 C uの管球からの X線を照射して行う。 X線分析装盧として、 リガク社製 X— r a y D i f f r a c t ome t e r R I NT 2000が例示される。 被覆膜 3の結晶プロファイルを測定して、 装置や結晶構造などに起因する適切な補正処 理をして、 X線回折パターンが得られ、 該パターンから回折線の強度および半価 幅を求める。
被覆膜 3の窒素ガス透過率は、 好ましくは 10—6 cm2, s e c以下であり、 より好ましくは 1 0— 8〜 10— 11 c m2/ s e cである。 窒素ガス透過率が小さ ければ被覆膜 3が緻密かつ強固であり好ましい。 一般に、 基材 1としての黒鉛の 窒素ガス透過率は.1 0— 2〜 1 0— 3 c m2/ s e cである。 被覆膜 ·3の窒素ガス 透過率が 1 0— 6 c
Figure imgf000014_0001
s e c以下であることは、 黒鉛の窒素ガス透過率の 1 Z 1000以下であることを意味する。 よって、 上記範囲内であれば、 被覆膜 3は 十分に緻密であるといえる。
被覆膜の窒素ガス透過率の測定方法を図 5を参照して概説する。 測定試料は、 直径 30mm以上の円板状であり、 測定前に十分乾燥する。 測定試料をセル内に 設置し、 セル一次側および二次側のタンクをロータリ一式真空ポンプおょぴター ポ分子ポンプで一定の真空値になるまで減圧する。 次いで、 真空ポンプを停止し てバルブを閉める。 一次側のタンクに N2ガスを一定の試験圧で加える。 1^2ガ スは一次側から、 測定試料を透過して、 二次側のタンクへと移動する。 その結果、 二次側のタンクの圧力が上昇し始める。 その圧力上昇率を測定する。 ガス透過率
(K) は、 次の式 (1 ) 、 (2) にしたがって算出する。
K= (Q L) / (Δ PA) … ( 1 )
Q= { (p 2- P!) V0} / t - ( 2)
ここで、 Kは窒素ガス透過率、 Qは通気量、 Δ Ρは一次側タンクと二次側タン クの圧力差、 Αは透過面積、 Lは測定試料の厚さ、 p は二次側タンクの初期圧 力、 p 2は二次側タンクの最終圧力、 V。は二次側タンクの容積、 tは測定時間 である。
被覆膜 3の窒素ガス透過率 (K2) を求めるには、 まず、 炭素基材 1とその上 に設けられた被覆膜 3とを有する炭素材料 1 0 0の窒素ガス透過率 (KJ を測 定し、 次いで研磨により被覆膜 3を除去し、 炭素基材 1のみの窒素ガス透過率
α) を測定する。 そして、 次の関係式 (3) から Κ2を算出する。
(L x + L 2) ZK。 = L1ZK1+ L2ZK2", ( 3 )
ここで、 は炭素基材の厚さ、 L 2は炭化タンタルの被覆膜の厚さである。
本発明では、 被覆膜 3の厚さは、 好ましくは 1 0〜1 0 O /z mであり、 より好 ましくは 3 0〜 8 Ο μ ΐηである。 図 6に示されるように被覆膜 3の厚さが 1 0 μ m以上であれば、 被覆膜の窒素ガス透過率が著しく小さくなる。 また、 被覆膜 3 の厚さが 1 O /z m^上であれば、 被覆膜 3の炭化タンタルの結晶性が著しく向上 し、 被覆膜 3の耐食性や耐熱衝撃性が向上する。 一方、 被覆膜 3の厚さが増すと 被覆膜 3の内部応力が増大して被覆膜 3が剥離し易くなり、 耐熱衝撃性が低下す ることが懸念される。 このため、 膜厚は 1 0 0 μ m以下が好ましい。
被覆膜 3の炭化タンタルのタンタル源は、 タンタルを含むものであれば限定さ れない。 好適には、 ただし限定するものではないが、 被覆膜 3は化学蒸着 (CV
D) によって形成される。 CVDの実施においては、 丁 &〇 1 5ゃ丁 & 5など といったタンタルのハロゲン化合物、 ならびに、 炭化水素、 好ましくは炭素数 1 〜 4のアルカン、 より好ましくは CH4や C3H8など、 の原料ガスに、 水素ガス やアルゴンガスを添加した混合ガスを得て、 得られた混合ガスを熱分解反応に供 し、 該反応によって得られる炭化タンタルを炭素基材 1に堆積させて被覆膜 3を 得る。
図 7は、 高周波誘導加熱式真空炉の模式図である。 該真空炉は、 上記の製造方 法を実施するための CVD装置として用いることができる。 反応室には二重石英 管、 その内側に、 断熱材、 誘導負荷となる黒鉛炉壁、 および、 反応室を加熱する ための高周波コイルなどからなる加熱装置、 が配設されている。 この反応室に原 料ガスを導入するためのガス導入管を配置し、 反応室内を排気するための排気口 を設ける。 排気口には可変バルブを設置しており、 このバルブの操作により反応 室内の圧力を調整することができる。
C V Dによつて被覆膜 3を製造する際には、 反応管'上流のガス導入管から T a 原料ガス、 炭化水素ガス、 水素ガスおよびアルゴンガスの混合ガスを供給する。 T a原料ガスは、 上述した、 タンタルのハロゲン化物等を原料タンク内で加熱、 気化させて供給する。 なお、.水素ガスやアルゴンガスとしては純度 99. 99% 以上、 酸素含有量 5 p pm以下の高純度のものを用いることが好ましい。 通常、 製造は真空引き、 加熱、 CVD処理、 熱処理、 冷却の手順で行う。 まず、 炭素基 材 1を反応室内に 1個又は複数個入れた後、 反応室内の圧力を 1. 33 P a〜l 3. 3 P a程度まで下げる。 次いで反応室内に H2ガスを 7 O O O c c /m i n 導入し 1100°C程度まで加熱し反応室内の脱ガス処理を行う。 その後反応室内 を 750〜 950°C程度、 好ましくは 800〜950°C程度にまで冷却し、 この 温度で炭素基材 1上に CVD処理を行って炭化タンタルを被覆する。 C VD処理 中は、 反応室内の炭素基材 1の温度を 750〜 950 °C、 好ましくは 800〜 9 50° (、 より好ましくは 800〜900°Cに、 反応室内の圧力を 133 P a~5 3. 3 k P aにする。 750°C以上にて C VD処理を施すと、 C原子に対する T a原子の原子比が 1. 5である被覆膜 3が形成され易く、 目的の炭化タンタルの 被覆膜 3が得易い。 また、 9 50で以下かっ5 3. 3 k P a以下にて C VD処理 を施すと、 炭化タンタルは微粉ではなく膜の形態で得られ易いので好ましい。 反応室内の炭素基材 1が所定の温度おょぴ圧力になった後に、 原料ガスを該反 応室内に導入してもよい。 このときのそれぞれのガス流量は、 例えば、 T a C l 5ガスでは 2〜2 O O c c /m i n、 好ましくは 5〜30 c c /m i n、 C 3H8 ガスでは 25〜2500 c c /m i n、 好ましくは 60〜 450 c c m i n、 水素ガスでは 1 00〜1 0000 c c /m i n、 好ましくは 250〜 1 300 c c/m i n、 アルゴンガスでは 400〜 40000 c c /m i n、 好ましくは 1 000〜 6000 c c/m i nである。 温度、 圧力、 各ガス流量および処理時間 などの CVD条件を適宜組み合わせることにより成長速度を 1〜50 /i m/h r に制御することができ、 炭素基材 1上に所望の厚みの炭化タンタルの被覆膜 3を 形成することができる。
好ましくは、 炭化タンタルの被覆膜 3を形成した後に熱処理を行う。 この熱処 理によって被覆膜 3に残っている余剰なタンタルと炭素とが活性化して炭化タン タルへと転化し、 それによつて結晶性が向上する。 具体的には、 まず、 CVD処 理の後、 炭素材料 1 00を反応室内に設置した状態で、 反応室内の圧力を 1. 3 3 P a〜1 3. 3 P a程度にまで下げる。 次いで、 H2ガス、 Arガス、 H eガ ス、 または、 これらのガスに微量な炭化水素ガスを混合したガスを、 1 00〜5 000 c C /ΧΆ i nで導入し、 反応室内の圧力を 1 2〜: L 0 1 k P a、 好ましく は 53. 3 k P aに調整しながら反応室内を再加熱する。 加熱する温度は 1 60 0〜 2400 °C、 好ましくは 1 600〜 2000 °Cであり、 この温度で 5〜 10 時間処理する。 処理操作の終了後は、 反応室内を所定温度まで冷却した後、 製品 としての炭素材料 1 00を反応室から取り出す。 この時の昇温および降温温度は 50°C/m i n以下として被覆膜 3に発生する熱応力を低減することが望ましい。 ぐ中間層 >
本発明の好適な実施態様では、 炭素基材 1、 中間層 2および被覆膜 3がこの順 に積層している。 中間層 2は、 炭素基材 1と炭化タンタルの被覆膜 3という 2種類の異質な層の 間に存在しており、 熱膨張や格子不整合など物性の差異を緩和する層であり、 好 ましくは炭素とタンタルとを含む組成物からなる。 中間層 2の組成物としては、 例えば、 炭素元素とタンタル元素とを両方含む化合物 (例、 被覆膜 3とは異なる 組成の炭化タンタル) であってもよいし、 炭素元素を含む材料とタンタル元素を 含む材料との混合物であってもよい。 中間層 2を構成する組成物の好適態様は後 述する。
本発明の好適態様によれば、 中間層 2は、 被覆膜 3よりも多孔質であるかまた は被覆膜 3よりも化学組成分布が不均一である。 中間層 2は、 炭素基材 1および 炭化タンタルの被覆膜 3への十分な密着を考慮すると、 好ましくは 1 μ m以上の 厚さを有する。 より好ましい厚さは、 中間層 2の態様によって異なるので後述す る。
中間層 2が被覆膜 3よりも多孔質であれば、 被覆膜' 3と多孔質である中間層 2 との間でアンカー効果が生じて、 被覆膜 3が強固に形成されることが期待される。 その結果、 中間層 2の空孔が炭素基材 1の熱収縮によるミスマッチを吸収、 緩和 して被覆膜 3への熱応力が軽減されることが期待される。 中間層 2と炭化タンタ ルの被覆膜 3のいずれがより多孔質であるかは、 光学顕微鏡や走査型電子顕微鏡 による観察や上述した水銀圧入法等によって確かめることができる。 伹し、 後述 する、 多孔質の炭素基材 1の表層部分を炭化タンタルに転化して得られる中間層 2は、 例えば、 化学蒸着によって得られる被覆膜 3よりも多孔質であることは測 定するまでもなく明らかである。
—方、 中間層 2が被覆膜 3よりも化学組成分布が不均一であれば、 中間層 2は、 被覆膜 3および炭素基材 1の両方と結合力が高くなり、 結果的に、 被覆膜 3と炭 素基材 1とが中間層 2を介して強固に結びついて、 クラックゃ剥離が低減するこ とが期待される。 また、 中間層 2が、 炭素基材 1側から被覆膜 3側へと、 連続的 または段階的に変化する化学組成分布を有する場合には、 中間層 2の熱膨張係数 や熱伝導率などの物性もまた、 炭素基材 1側から被覆膜 3側へと、 急峻ではなく 段階的に変化する。 よって、 被覆膜 3の熱応力が低減することが期待される。 中 間層 2の化学組成分布の不均一性は、 中間層 2や被覆膜 3の大きさより十分に小 さい領域を数多く測定したときの化学組成のバラツキの大小で評価でき、 電子顕 微鏡の反射電子像を利用した化学組成分析や、 オージ 電子分光法を利用した化 学組成分析など公知の手段により評価 ·確認することができる。 具体例として、 炭素基材 1の表層部分の気孔中に炭化タンタルが埋設されることで不均一な化学 組成分布を実現したり、 炭素基材 1側から被覆膜 3側へと炭素 Zタンタルの原子 比が次第に低くなる濃度勾配を中間層 2に付与することで不均一な化学組成分布 を実現する例を後述する。 図 8は、 この実施態様による炭素材料 1 00の化学組 成分布を模式的に表しており、 炭素基材 1から被覆膜 3へ中間層 2を介して連続 的に化学組成分布が変化している。
以下、 好適な中間層の三態様をより詳細に説明するが、 本発明の炭素材料 10 0が有する中間層はそれらに限定されるわけではない。
<中間層一好適態様 1 >
図 9は、 この好適態様 (以下、 第 1の態様ともいう) による炭素材料を模式的 に表していて、 第 1の好適な中間層 2 1が強調して描写されている。 第 1の態様 では、 炭素基材 1の表層部分を炭化タンタルに転化して得られた層 2 1が中間層 である。 一般に炭素基材 1は多孔質であるから、 この態様における中間層 2 1も また多孔質である。 つまり、 この態様では、 中間層 2 1の平均気孔半径は、 好ま しくは 0. 0 1〜5 /zm、 より好ましくは 1〜2 μ mであり、 全細孔容積は、 好 ましくは 5〜 3 5 c m3/ gであり、 より好ましくは 1 0〜20 c mS/^gであ る。 図 9では、 気孔 4を強調して描写することで、 炭素基材 1と中間層 2 1とが 多孔質であることを表現している。 気孔 4は、 中間層 2 1を厚み方向に貫く開気 孔であってもよいし、 中間層 2 1を厚み方向には貫かない閉気孔であってもよい。 中間層 2 1には開気孔と閉気孔が混在していてもよい。 この態様では、 中間層 2
1の厚さ tは、 好ましくは 1 μ m以上であり、 より好ましくは 30〜200 / m である。 厚さ tが 1 /xm以上であれば中間層 2 1は炭素基材 1および被覆膜 3へ 十分に密着する。 中間層 21は厚くてもよいが、 200 /xmを超えても本発明の 効果が飽和する。
炭素基材 1の転化によって中間層 2 1を形成する方法を以下に例示する。
ここで例示する方法 (図示せず) は、 炭素基材 1に CVD法でタンタルを被覆 することを含む方法である。 ただし、 タンタルの被覆は、 熱 CVDやプラズマ C VDなどといった CVD法に限らず、 真空蒸着法、 スパッタリング法、 イオンプ レーティング法などといった PVD法として分類される方法であってもよい。 こ れら蒸着法ではなく、 酸化タンタル微粉中に炭素基材 1を埋設し、 不活性雰囲気 で 1000°C以上に加熱することで、 炭素基材 1の表層部分を炭化タンタルへと 転化することもできる。 しカゝし、 中間層 2 1の厚さ tをより容易に制御できる点 で CVD法が望ましい。
CVD法は、 被覆膜の形成法において説明した、 図 7に例示される高周波誘導 加熱式真空炉を用いて行うことができる。 '
タンタルの被覆の具体例を説明する。 反応管上流のガス導入管から T a原料ガ ス、 水素ガスおよびアルゴンガスの混合ガスを供給する。 T a原料ガスとしては、 タンタルを含むものであれば限定はされず、 例えば、 T a C l 5、 T a F5など といったハロゲン化合物が好ましい。 上述のタンタルのハロゲン化物等を原料タ ンク内で加熱、 気化させて供給する。 なお、 水素ガスやアルゴンガスとしては純 度 99. 9 9%以上、 酸素含有量 5 p pm以下の高純度のものを用いることが好 ましい。 通常、 真空引き、 加熱、 CVDによるタンタルの被覆および炭化タンタ ルへの転化によって中間層 2 1を得る。 まず炭素基材 1を反応室内に 1個又は複 数個入れた後、 反応室内の圧力を 1. 33 P a~1 3. 3 P a程度にまで下げる。 次いで、 反応室内に H2ガスを 7 O O O c c /m i nの流速で導入し 1 800 °C 程度まで加熱し反応室内の脱ガス処理を行う。
その後、 反応室内を 1 200〜 1 600°C程度にまで冷却し、 この温度で CV
D処理を行って炭素基材 1にタンタルを被覆する。 CVD処理は反応室内の炭素 基材 1の温度を 1 200〜1 600°Cに、 反応室内の圧力を 1. 33 k P a〜5 3. 3 k P aにして行う。 温度が 1 200°C以上であれば、 タンタル原料である ハロゲン化合物等が十分に分解して好適にタンタルを被覆することができる。 ま た 1600°C以下の温度でありかつ 5 3. 3 k P a以下の圧力では、 タンタル原 料のガスが適切な速度で分解して、 炭素基材 1の表面での成長が生じ易いので、 結果として良好なタンタルの被覆が達成される。 反応室内に供給する原料ガスは、 反応室内の炭素基材 1が所定の温度および圧力になった後に、 該反応室内に導入 する。 このときのそれぞれのガス流量は、 例えば、 T a C 15ガスでは 20 c c /m i n、 水素ガスでは 1000 c c /m i n、 ァ /レゴンガスでは 4000 c c /m i nである。 温度、 圧力、 各ガス流量および処理時間などの CVD条件を適 宜組み合わせることにより成長速度を 1〜50 ^m/h rに制御することができ、 炭素基材 1に所望の厚みのタンタルの被覆を形成することができる。 転化による 中間層 21の厚さ tを制御するためには、 この段階でタンタルの被覆の厚さを調 節すればよく、 中間層 2 1 φ厚さ tを 1 /zm増すため は、 タンタルの被覆をお よそ 0. 8〜1. 2 //m厚くすればよい。
タンタルを被覆した後、 反応室内に残留するタンタル原料ガスを水素ガスおよ ぴアルゴンガスで十分に置換して、 炭素基材 1の表層部分を炭化タンタルへと転 化する反応に供する。 「転化」 とは、 炭素基材 1の表層部分の炭素をタンタルと 高温下で反応させて、 炭化タンタルを得ることを意味する。 転化のためのガス雰 囲気は、 好ましくは水素ガスやアルゴンガス雰囲気であり、 より好ましくは水素 ガスおょぴアルゴンガスに C 3H8や C H4などの炭化水素ガスを混合したガス雰 囲気である。 転化のための圧力は、 好ましくは 1 3. 3 k P a以上、 より好まし くは 5 3. 3 k P a〜1 0 1. 3 k P aである。 転化のための温度は、 好ましく は 1 800°C以上、 より好ましくは 2 200〜 3000°Cである。 転化に要する 時間は、 通常、 5〜 20時間、 好ましくは 10〜 20時間である。 転化の終了後、 上述した被覆膜 3を形成するための温度にまで反応室内を降温する。
く中間層一好適態様 2 >
図 1 0は、 この態様 (以下、 第 2の態様ともいう) による炭素材料を模式的に 表していて、 第 2の好適な中間層 22が強調して描写されている。 第 2の態様で は、 炭素基材 1の表層部分の気孔に炭化タンタルが埋設されていて、 そのように 炭化タンタルが埋設された部分を含む層 22を中間層であると認識する。 この態 様では、 中間層 22は、 炭素基材 1に由来する炭素からなる部分 222と、 処理 前は気孔であったところに埋め込まれている炭化タンタルからなる部分 22 1と を有する。 そのため、 結果として、 中間層 22の化学組成分布は不均一である。 但し、 中間層 22に存在する気孔全てに炭化タンタルが埋め込まれる必要はなく、 一部は気孔のままで存在していてもよい。 第 2の態様では、 中間層の厚さ tは、 好ましくは 1 t m以上であり、 より好ましくは 50〜30 Ο μπιである。 厚さ t が 1 /zm以上であれば、 中間層 22は炭素基材 1および被覆膜 3へ十分に密着す る。 中間層 22は厚くてもよいが、 300 z mを超えても本発明の効果が飽和す る。
炭素基材 1の気孔に炭化タンタルを埋め込んで中間層 22を形成する方法を以 下に例示する。
ここで例示する方法 (図示せず) は、 炭素基材 1に化学気相含浸 (CV I ) 法 でタンタルを含浸させることを含む。 ただし、 CV I法を適用せずに、 上述の第 1の態様のように CVD法や PVD法によってタンタルを炭素基材 1に被覆した 後に 3000°C以上に加熱して該タンタルを溶融して炭素基材 1の気孔中へ含浸 させてもよい。 し力 し、 中間層 22の厚さ tをより容易に制御できる点で CV I 法が望ましい。
CV I法は、 第 1の好適な態様で説明した、 図 7に例示される高周波誘導加熱 式真空炉を用いて行うことができる。 タンタルの含浸に際しては、 第 1の態様の 場合と同様に、 T a原料ガス、 水素ガスおよびアルゴンガスの混合ガスを供給す る。 T a原料ガス、 水素ガスおょぴアルゴンガスは、 第 1の態様の場合と同様の ものを用いることができる。 但し、 CV I法ではガス反応速度が遅いほうがガス の浸透深さが深くなるから好ましい。 よって、 反応速度が比較的に遅い T a C 1
5の使用が好ましい。 通常、 製造は真空引き、 加熱、 CV Iによるタンタルの含 浸おょぴ炭化タンタルへの転化によって中間層 22を得る。 真空引きおよび脱ガ ス処理は第 1の態様と同様の条件で行うのが好ましい。
その後反応室内を 750〜 1 200°C程度にまで冷却し、 この温度で CV I処 理を行って炭素基材 1の気孔内にタンタルを埋め込む。 C V I処理は反応室内の 炭素基材の温度を 750〜 1 200°Cに、 反応室内の圧力を 1. 33 P a〜し 3 3 k P aにして行う。 温度が 750°C以上であれば、 タンタル原料であるハロ ゲン化合物等が十分に分解して好適にタンタルを含浸させることができる。 また 1 200°C以下の温度でありかつ 1. 33 k P a以下の圧力では、 タンタル原料 のガスが適切な速度で分解して、 タンタルの炭素基材 1への拡散距離が適切にな るから、 結果として目標の深さにまでタンタルを含浸させ易くなる。 反応室内に 供給する原料ガスは、 反応室内の炭素基材 1が所定の温度および圧力になつた後 に、 該反応室内に導入する。 このときのそれぞれのガス流量は、 例えば、 T a C 1 5ガスでは 20 c c /m i n、 水素ガスでは 1000 c c /m i n、 ァノレゴン ガスでは 4 O O O c c/m i nである。 温度、 圧力、 各ガス流量および処理時間 などの CV I条件を適宜組み合わせることによりタンタルの含浸深さを 1〜 10 Ο μπιに制御できる。 例えば、 タンタルの含浸深さを大きくするためには、 反応 室内の温度を低下させること、 反応室内の圧力を低下させること、 ならびに反応 室内の圧力をパルス的に変化させることが挙げられる。
タンタルを含浸した後、 反応室内に残留するタンタル原料ガスを水素ガスおよ ぴアルゴンガスで十分に置換して、 含浸したタンタルをその周囲に存在する炭素 基材 1の炭素と反応させて炭化タンタルへと転化させる。 転化のための圧力は、 好ましくは 1 3. 3 k P a以上、 より好ましくは 53. 3 k P a〜10 1. 3 k
P aである。 転化のための温度は、 好ましくは 1 800°C以上、 より好ましくは
2200〜 3000°Cである。 転化に要する時間は、 通常、 5〜20時間、 好ま しくは 10〜20時間である。 転化の終了後、 上述の被覆膜 3を形成するための 温度にまで反応室内を冷却する。
上述のように気孔中のタンタルを炭化タンタルへと転化させる際には、 同時に、 該気孔の周囲の炭素材料が炭化タンタルへと転化される可能性がある。 図 1 1は そのような態様を示しており、 中間層 22は、 炭素基材の気孔に埋設された炭化 タンタル 221、 該炭化タンタル 221の周囲の炭素材料が炭化タンタルに転化 してなる領域 222、 および、 基材に由来する炭素がそのまま残存している領域 223を有していてもよい。 図 1 3は、 このような態様の炭素材料の断面の S E M観察像である。 尚、 図 12は、 中間層を設けない炭素材料の断面の SEM観察 像であ -3 o
上述のように、 タンタルの被覆 Z含浸に関連する CVD法おょぴ CV I法は類 似した操作によってなされ、 温度や圧力によって CVD法と CV I法とを基本的 には区別し得る。 しカゝし、 温度や圧力によってはタンタルの被覆と含浸の両方が 同時になされて、 結果的に図 9に示すような炭素基材の表層部分が炭化タンタル に転化してなる層 (第 1の好適な中間層 21) と、 該層 21の気孔内に炭化タン タルが埋設されてなる層 (第 2の好適な中間層 22) 'とが共存する場合もあり、 そのような態様も本発明に包含される。
ぐ中間層一好適態様 3 >
図 14は、 この態様 (以下、 第 3の態様ともいう) による炭素材料を模式的に 表していて、 第 3の好適な中間層 23が強調して描写されている。 第 3の態様で は、 炭素基材 1の表面に中間層としての傾斜材料層 23が形成されている。 この 傾斜材料層 23は、 炭素基材 1側から被覆膜 3側へと炭素ノタンタルの原子比
(以下、 C/T a比ともいう) が連続的または段階的に低くなる濃度勾配を有す る。 言い換えれば、 炭素基材 1側では CZT a比が高く、 被覆膜 3側へ向うにつ れて CZT a比が低くなつていく。 このように、 中間層 23は CZT a比が層内 で異なっているから不均一な化学組成分布である。 この態様では、 中間層 23の 厚さ tは、 好ましくは 1 / m以上であり、 より好ましくは 1〜10 ζπι、 さらに 好ましくは 3〜5 /xmである。 厚さ tが 1 / m以上であれば、 中間層 23は炭素 基材 1およぴ被覆膜 3へと十分に密着する。 傾斜材料層 23では、 炭素基材 1の 直近では限りなく炭素基材 1に近い組成が好ましく、 被覆膜 3の直近では限りな く被覆膜 3に近い組成が好ましい。 具体的には、 傾斜材料層 23における CZT a比の最大値は、 好ましくは 10以上、 より好ましくは 1000以上であり、 最 小値は好ましくは 0. 8〜1. 2である。 傾斜材料層 23には CZT a比が 1 · 2を超え 10未満である材料の領域が 1 μιη以上の厚さ存在することが好ましい。 本態様では、 傾斜材料層 23は後述する炭化タンタルの被覆膜 3と同程度に緻密 であることが好ましい。
傾斜材料層 23を形成する方法を以下に例示する。
ここで例示する方法 (図示せず) は、 炭素基材 1に CVD法で炭素とタンタル の原子比をコントロールしながら炭化タンタルを被覆することを含む。 CVD法 は、 第 1の態様で説明した、 図 7に例示される高周波誘導加熱式真空炉を用いて 行うことができる。 T a原料ガス、 水素ガスおょぴアルゴンガスは、 第 1の態様 の場合と同様のものを用いることができる。 炭素の原料としては、 炭化水素ガス が好適に用いられ、 より好ましくは炭素数 1〜4のアルカンのガス、 さらに好ま しくは CH4や C3H8などが用いられる。
通常、 真空引き、 加熱、 CVDによって中間層 23、 すなわち傾斜材料層を得 る。 真空引きおよび脱ガス処理は第 1の態様と同様の条件で行うのが好ましい。 その後反応室内を 750〜 950°C程度まで冷却し、 CVD処理を開始する。 C VD処理中は、 反応室内の炭素基材 1の温度を、 好ましくは 750〜950°C、 反応室内の圧力を好ましくは 1 33 P a〜53. 3 k P aで行う。 温度が 75 0°C以上であれば、 C/T a比のコントロールが容易になり'、 950°C以下であ つて圧力が 53. 3 k P a以下であれば炭化タンタルが微粉にはならないから、 優れた傾斜材料層 23を得ることができる。 傾斜材料層 23を得るために、 例え ば、 CVD処理において、 C 3H8ガスを 200〜400 c c /m i n、 水素ガ スを 100〜 2000 c c /m i n、 アルゴンガスを 2000〜 5000 c c / m i nの流量で供給しつつ、 S i H4ガスを時間あたりの供給量が 0. 01から 20 c c/m i nの範囲内で次第に多くなるようにコントロールすることで CZ
T a比をコントロールすることができる。 温度、 圧力、 各ガス流量おょぴ処理時 間などの C V D条件を適宜組み合わせることにより成長速度を 1〜5 0 μ πι/ h rに制御することができ、 所望の厚さの中間層 2 3を形成することができる。 中 間層 2 3の形成後、 引き続き、 炭化タンタルの被覆膜 3を形成することができる。 実施例
以下、 実施例を用いて本発明をより詳しく説明するが、 これらの例は本発明を 何ら限定するものではない。
まず、 還元性ガス雰囲気における耐熱衝撃性試験の方法を示す。 耐熱衝撃試験 の方法は 2種類あり、 通常のェピタキシャル成長を模擬した試験、 <熱衝撃試験 1 >、 および厳しい条件下を想定した試験、 く熱衝撃試験 2 >、 がある。 <熱衝 撃試験 2 >は、 通常の使用よりもずっと厳しい条件による試験であって、 該試験 でクラック等が発生しない炭素材料は、 非常に優れた特性を有するといえる。 仮 にそのようなく熱衝撃試験 2 >ではクラック等が発生したとしても、 く熱衝撃試 験 1 >においてクラック等が発生しない炭素材料は、 十分に本発明の効果を奏し ているということができる。
真空炉は、 反応室としての石英管を有する高周波誘導加熱炉であり、 反応室内 部に試験対象の炭素材料 1 0 0を設置する。 反応室内の圧力を 0 . 0 1 T o r r 以下にまで下げた後、 反応室内に 3 0 0 0 c c /m i nの水素と 5 0 0 c c /m i nのアンモニアの混合ガスを供給して、 圧力を 7 6 0 T o r rに制御する。 く熱衝撃試験 1 >では、 炭素材料を誘導加熱によって 1 5 0 °CZm i nの昇温 速度で 1 5 0 0 °Cまで加熱する。 そして、 炭素材料を 1 5 0 0 °Cで 3時間保持す る。 その後、 3 0 (TCZin i nの降温速度で室温まで冷却する。 これらを 1サイ クルとして、 1 0 0サイクル (合計約 3 0 0時間) 実施する。
く熱衝撃試験 2 >では、 炭素材料 1 0 0を誘導加熱によって 1 0 0 0 °CZni i nの昇温速度で 1 5 0 0 °Cまで加熱する。 そして、 炭素材料 1 0 0を 1 5 0 0 °C で 3時間保持する。 その後、 3 0 0 °C_ m i nの降温速度で室温まで冷却する。 これらを 1サイクルとして、 1 0 0 0サイクル (合計約 3 0 0 0時間) 実施する。
〔実施例;!〜 3〕 熱膨張係数が 7. 8 X 10— 6_ K:、 1 000°C基準のガス放出圧力が 1 0一6 P a/g, 灰分が 2 p pmである直径 6 Omm、 厚さ 10 mmの黒鉛基板を上述 したハロゲン処理に供し、 その後、 下記表 1の CVD条件によって該炭素基板上 に炭化タンタルの被覆膜を形成した。 このとき、 被覆膜の C/T aの組成比は C 3H8流量によって、 1. 0〜1. 2に調整した。 表 1に示す CVD条件を用い て、 反応時間を 1 1、 1 8、 25時間と変えることで膜厚を 2 1、 34、 44 μ mと変えた。 その後、 さらに水素ガス雰囲気中で 2000°Cで 10時間、 熱処理 を施して被覆膜 3の結晶性をさらに向上させた。 実施例 1〜 3の X線回折結果を 図 1 5〜図 1 7に示す。 X線回折では、 主として (220) 面の回折線が確認さ れ、 わずかに、 (1 1 1) 、 (200) 、 (3 1 1) の各面の回折線が認められ た。 具体的には、 (220) 面の回折線が最も強い回折強度を示し、 (220) 面の半価幅は 0. 1 3〜0. 1 5であった。 (2 20) と 2番目に強い (3 1 1) の強度比は、 回折線の強度比で 1 0以上であった'(実施例 1) 。 また、 表 2 に示すように水素とアンモユアガスを混合した還元性ガス雰囲気におけるく熱衝 撃試験 1 >後のガス透過率は 5 X 1 0— 10〜2 X 1 0_7 cm2/s e cであった , く熱衝撃試験 2 >後のガス透過率は 4 X 1 0— 10〜 2 X 1 0— 7 cm2/ s e cで あった。 このように、 (220) 面が最も強い回折強度を示す被覆膜 3は緻密で あり、 ガスの不透過性に優れていた。
〔比較例 1〜 3〕
CVDの条件を表 1のように変えたこと、 および、 被覆膜を形成した後の熱処 理を省略したことのほかは、 実施例 1〜3と同様に炭素材料を製造した。 比較例 1〜3の X線回折結果を図 1 8〜図 20に示す。 実施例 1〜3とは異なり、 (2 00) 面や (1 1 1) 面の回折線が強いプロファイルが得られた。 この場合、 表 2に示すようにコーティング後に炭化タンタルの被覆膜にクラックが発生してお り、 水素とアンモユアガスを混合したく熱衝撃試験 1 >後のガス透過率は 2 X 1 0一5〜 9 X 1 0_5 c m2/ s e c、 く熱衝撃試験 2 >後のガス透過率は 2 X 1
0一4〜 7 X 1 0— 4 c m2ZS e Cと緻密性に欠けるものであり、 黒鉛基材のガ ス化反応によって重量減少が確認された。 このように、 炭化タンタル結晶が主と して (2 2 0 ) 面に配向する場合以外は、 緻密性に劣っていた。
表 1
Figure imgf000028_0001
表 2
Figure imgf000029_0001
〔実施例 4〜8〕
実施例 1〜 3で用いたのと同様の炭素基材 1上に C VD法によって炭化タンタ ルの被覆膜 3を形成した。 CVD条件は、 温度を 850°C、 圧力を 1 330 P a と一定にして、 C3H8と T a C 15の流量を変えて炭化タンタルの成長速度を 1 〜 30 /z m/h rの範囲で変化させた。 実施例 4〜 6では、 被覆膜 3の形成後、 水素ガス雰囲気中で 2000°Cで 10時間、 熱処理した。 得られた被覆膜 3の結 晶構造を X線回折により調べたところ、 (220) 面の回折線の強度比が最強で あり、 2番目に強い回折線の 4倍以上の強度であった。 表 3に示すように被覆膜 3の (220) 面の回折線の半価幅は 0. 1 1〜0. 14° の範囲であった。 こ のような被覆膜はいずれも、 還元性ガス雰囲気における耐熱衝撃試験前はクラッ クゃ剥離が生じず優れていた。 とりわけ、 0. 2° 以下という小さな半価幅を示 す被覆膜は、 <熱衝撃試験 1 >および非常に厳しい条件である <熱衝撃試験 2 > の後であってもクラックや剥離が生じずきわめて優れ T 、た。
実施例 7〜 8では、 実施例 1〜 3で用いたのと同様の炭素基材上に C VD法に よって炭化タンタルの被覆膜 3を形成した。 CVD条件は、 温度を 850°C、 圧 力を 1 3 30 P aと一定にして、 C3H8と T a C 1 5の流量を変えて炭化タンタ ルの成長速度を 3 1〜50 μ m/h rの範囲で変化させた。 実施例 7〜 8では、 水素ガス雰囲気中での熱処理を省略した。 得られた被覆膜 3の結晶構造を X線回 折により調べたところ、 (220) 面の回折線の強度比が最強であるが、 成長速 度を変えたことによって、 表 3に示すように結晶の発達の程度 (結晶性) が変化 しており、 半価幅が 0. 3 1〜 0. 75° であった。 実施例 7〜 8の半価幅が大 きい被覆膜は、 非常に厳しい条件である <熱衝撃試験 2 >の後においてはガス透 過率の増加が見られたが (実施例 8) 、 <熱衝撃試験 1 >の後ではクラックや剥 離が生じない優れた被覆膜であり、 実用では問題のない品質であった。 表 3
Figure imgf000031_0001
〔実施例 9 18〕
表 4に記載の特性をもつ種々の黒鉛基材 1を用いて炭素材料 100を製造した。 表 4に記載の種々の熱膨張係数 (CTE) を有する直径 60mm、 厚さ 10mm の黒鉛基板に上述のハロゲン処理を施し、 黒鉛基材の灰分を 10 p pm以下とし た。 但し、 実施例 18では該ハロゲン処理を省略し、 黒鉛基材 1の灰分が 16 p mであった。 実施例 1 3と同様の条件で基板上に炭化タンタルの被覆膜 3
(厚み 43 /zm) を形成した。 被覆膜 3の CZT aの組成比は C3H8流量によ つて、 1. 0 1. 2に調整した。 被覆膜 3を形成後、 水素ガス雰囲気中、 20 00°Cで 10時間、 熱処理を施した。 実施例 9 18における被覆膜ではすべて
(220) 面が最も強い回折強度を示し、 かつ 2番目に強い回折線の 4倍以上の 強度であり、 (220) 面の半価幅が 0. 2° 以下であった。 表 4に示すように、 いずれの炭素材料 100も <熱衝撃試験 1 >の後ではクラックや剥離が生じるこ とはなく優れた材料であることが確認された。 表 4
Figure imgf000032_0001
*) 測定温度範囲は 293 1273 Kである。 以下、 実施例をさらに挙げる。 以下の実施例で行った評価方法を説明する。 (顕微鏡観察)
製造した炭素材料 100の表面を走査電子顕微鏡 (SEM) で観察して、 クラ ックゃ剥離の有無を評価した。 また、 SEMを用いた断面観察によって中間層 2 の厚みを測定した。 SEM装置は日立製 S— 320 ONを使用した。 へキ開後と 研磨後の断面の、 二次電子像 (S E I ) および反射電子像 (BE I ) を求めた。 特に、 反射電子像によれば、 元素依存性を利用することができ、 その結果、 観察 面の化学組成を二次元的に把握することができ、 結果的に、 中間層 2中の化学組 成分布が一目瞭然となる。 このことを利用して、 炭素と炭化タンタルに特に着目 して、 炭化タンタルの転化や含浸深さを評価した。
(X線分析)
さらに、 X線マイクロアナライザー (XMA) を用いた断面観察によって、 炭 化タンタルの転化や含浸深さ、 傾斜材料層の厚みを測定した。 XMA装置として は堀場製作所製 EMAX— 7000を使用した。 へキ開後と研磨後の断面内の特 定線上分析における炭素とタンタルのモル比を測定し、 中間層の深さや膜厚を評 価した。
(ォージェ電子分光)
ォージェ電子分光法 (AE S) と、 希ガスによるスパッタリングとを併用して 表面から炭素基材 1内部までの深さ方向分析を実施し、 深さ方向における炭素と タンタルのモル比を測定して、 中間層 2の深さや膜厚を評価した。 以下の実施例 では、 ォージェ電子分光装置 (アルバックフアイ社製 PH I 700) を用いた。 オージ 電子分光法では、 高真空中で試料表面に電子線を照射して試料表面の原 子の内殻電子を弾き出す。 それによつて生成した空軌道に外殻電子が補填される ときに電子が発生する。 この発生した電子をォージェ電子と呼び、 オージュ電子 の運動エネルギーは元素固有である。 そのため、 その運動エネルギーを調べるこ とにより、 表面から数 nmの領域の元素分析を行うことができる。
(耐熱衝撃性試験)
以下の実施例における還元性ガス雰囲気における耐熱衝撃性試験は、 上述した <耐熱衝撃性試験 2 >の手順で実施した。 伹し、 昇温および高温のサイクルを 1 000〜 3000サイクル (合計 1000〜3000時間) 実施した。 このサイ クルの後に上述した S EMによる表面観察を行なって、 炭化タンタルの被覆膜 3 のクラックゃ剥離の有無を評価した。
〔実施例 1 9〜 22〕
熱膨張係数が 7. 8 X 1 0— 6/K:、 1 000°C基準のガス放出圧力が 1 0一6
P aZg、 灰分が 2 pmである直径 6 Omm, 厚さ 1 Ommの黒鉛基板 1を上 述したハロゲン処理に供した後、 C V D法によって黒鉛基板 1上にタンタルを被 覆した。 このときの CVDの条件としては、 反応温度を 1 2 5 0°C、 反応圧力を 4. 0 0 k P a、 T a C l 5ガスの供給量を 2 0 c c/ i n、 水素ガスの供給 量を 1 00 0 c c/m i n、 アルゴンガスの供給量を 40 00 c c /m i nとし た。 反応時間を 0. 5〜 34時間と変えることでタンタルの被覆厚み、 つまり、 被覆するタンタルの重量を下記の表 5に示すように変えた。 次いで、 1 0 1. 3 k P aのアルゴン雰囲気中、 2 2 00°Cで 20時間処理した。 これによつて、 黒 鉛基板 1の表層部の炭素と浸透したタンタルとが反応して炭化タンタルへと転化 し、 多孔質な炭化タンタル層 (中間層 2) が形成された。 得られた中間層 2の厚 さは表 5のとおりである。 その後、 中間層 2の上に C VD法で CZT aの組成比 が 1〜1. 2であって厚みが 4 2 μπιである炭化タンタルからなる緻密な炭化タ ンタルの被覆膜 3を形成した。 このときの CVDの条件としては、 反応温度を 8 5 0°C、 反応圧力を 1. 3 3 k P a、 反応時間を 24時間、 T a C 1 5ガスの供 給量を 2 0 c c /m i n、 C 3H8ガスの供給量を 2 5 0 c c /m i n、 水素ガ スの供給量を 1 00 0 c c / i n、 アルゴンガスの供給量を 40 00 c c /m i nとした。 その後、 水素雰囲気中で 20 00°Cにて 1 0時間の熱処理に供して、 炭素材料 1 00を得た。
得られた炭素材料 1 0 0を上記耐熱衝撃性試験に供した。 まず、 全サンプルを 1 00 0サイクルの試験に供し、 その後、 被覆膜 3にクラックや剥離が生じるま でサイクルを繰り返した。 3 00 0サイクルに至るまで被覆膜 3にクラックや剥 離が生じなければ > その時点で試験を終了した。 表 5にまとめた試験結果から明 らかなように、 中間層 2を設けた炭素材料 1 00の被覆膜は強固であった。 また、 実施例 1 9の被覆膜 3の結晶構造を X線回折により調べたところ、 (2 20) 面 の回折線の強度比が最強であり、 2番目に強い回折線の 3 1 0倍程度の強度であ り、 (2 2 0) 面の回折線の半価幅は約 0. 1 3° であった。 表 5
Figure imgf000035_0001
〔実施例 23〜 26〕
実施例 1 9で用いたのと同様の黒鉛基板 1を上述したハ口ゲン処理に供した後、 C V I法によって黒鉛基板 1の表層部の気孔中にタンタルを埋設した。 C V Iの 条件としては、 反応温度を 800°C、 反応圧力を 1 3 3. 3 P a、 丁 &〇 1 5ガ スの供給量を 20 c c /m i n、 水素ガスの供給量を 1000 c c /m i n、 ァ ルゴンガスの供給量を 4000 c c /m i nとした。 反応時間を 1 5〜 1 50時 間と変えて、 タンタルの埋め込み深さ、 つまり、 埋め込むタンタルの重量を下記 の表 6のように変えた。 次いで、 10 1. 3 k P aのアルゴン雰囲気中、 2 20 0°Cで 20時間処理した。 これによつて、 気孔内に埋め込まれたタンタルとその 周囲の炭素とが反応して炭化タンタルへと転化し、 炭素のマトリクス中に炭化タ ンタルが埋め込まれた構造の中間層 2が形成された。 得られた中間層 2の厚さは 表 6のとおりである。 その後、 中間層 2の上に実施例 1 9と同様の CVD処理、 熱処理を施して、 炭化タンタルからなる被覆膜 3を備える炭素材料 100を得た。 得られた炭素材料 100を実施例 1 9と同様の耐熱衝撃性試験に供した。 表 6 にまとめた試験結果から明らかなように、 中間層 2を設けた炭素材料 1 00の被 覆膜 3は強固であった。 表 6
Figure imgf000036_0001
〔実施例 27〜 30〕
実施例 1 9で用いたのと同様の黒鉛基板 1を上述したハ口ゲン処理に供した後、 C VD法によつて黒鉛 ¾板 1上に傾斜材料層 23を形成した。 傾斜材料層 23は、 表 7に記載のように、 黒鉛基板 1側から離れるにしたがって連続的に CZT a比 が小さくなるよな濃度勾配を設けた。 このときの CVDの条件としては、 反応温 度を 8 50°C、 反応圧力を 1. 3 3 k P a、 C 3H8ガスの供給量を 2 50 c c /m i n、 水素ガスの供給量を 1000 c c /m i n、 アルゴンガスの供給量を 4000 c c /m i nとした。 反応時間を 1〜 9時間として 1〜 9 μ mの中間層 を形成した。 この CVDにおいて、 S i H4ガスの供給量を変えることで傾斜材 料層 23を得た。 例えば、 CZT a比が 1000から 1へと変化する濃度勾配を 得るためには、 S i H4ガスの流量を 0. 02から 20 c cZm i nへと反応時 間に対して比例するように連続的に増加させた。
その後、 中間層.23の上に実施例 1 9と同様の CVD処理、 熱処理を施して、 炭化タンタルからなる被覆膜 3を備える炭素材料 100を得た。
得られた炭素材料 100を実施例 1 9と同様の耐熱衝撃性試験に供した。 表 7 にまとめた試験結果から明らかなように、 中間層 23を設けた炭素材料の被覆膜 3は強固であった。 表 7
Figure imgf000037_0001
*) 傾斜材料層における CZT a比の最大値と最小値 本願は、 日本で出願された特願 2005— 36838、 特願 2005— 1 79 866および特願 2005- 255744を基礎としており、 参照することによ りそれらの内容は本明細書に全て包含される。

Claims

請求の範囲
1. 炭素基材と、 前記炭素基材上に炭化タンタルの (220) 面が他のミラー面 に対して特異的に発達している炭化タンタルの結晶からなる被覆膜とを有し、 被 覆膜の X線回折パターンにおいて、 炭化タンタルの (220) 面の回折線が最大 の回折強度を示す、 炭化タンタル被覆炭素材料。
2. 被覆膜の X線回折パターンにおいて、 炭化タンタルの (220) 面の回折線 の半価幅が 0. 2° 以下である請求項 1の炭素材料。
3. 被覆膜の X線回折パターンにおいて、 炭化タンタルの (220) 面の回折線 が、 2番目に大きな回折線の回折強度の 4倍以上の強度を示す、 請求項 1または 2の炭素材料。
4. 被覆膜の窒素ガス透過率が 10_6 c m s e c以下である請求項 1〜 3の いずれかの炭素材料。
5. 被覆膜の厚さが 10〜100 μιηである請求項 1〜4のいずれかの炭素材料。
6. 炭素基材と、 前記炭素基材上に形成された炭化タンタルからなり X線回折パ ターンにおいて炭化タンタルの (220) 面の回折線が最大の回折強度を示す被 覆膜とを、 1600〜 2400°Cの熱処理に供して被覆膜の炭化タンタルの結晶 性を向上させる工程を有する、 炭化タンタル被覆炭素材料の製造方法。
7. 炭素基材と、 炭素およびタンタルを含む組成物からなり炭素基材上に設けら れた中間層と、 中間層上に設けられた炭化タンタルを含む組成物からなる被覆膜 と、 を有する炭化タンタル被覆炭素材料。
8. 中間層が被覆膜よりも化学組成分布が不均一である請求項 7の炭素材料。
9. 中間層が被覆膜よりも多孔質である請求項 7または 8の炭素材料。
10. 中間層が、 炭素基材の表層部分を炭化タンタルに転化して得られた多孔質 層である、 請求項 9の炭化タンタル被覆炭素材料。
1 1. 中間層が、 炭素基材の表層部分の気孔中に炭化タンタルを埋設して得られ る層である、 請求項 8の炭素材料。
12. 中間層が、 炭素基材側から被覆膜側へと炭素ノタンタルの原子比が連続的 または段階的に低くなる濃度勾配をもつ傾斜材料層である、 請求項 7〜1 1のい ずれかの炭素材料。
13. 傾斜材料層における炭素 タンタルの原子比の最大値が 10以上であり、 最小値が 0. 8〜 1. 2である、 請求項 1 2の炭素材料。
14. 中間層の厚みが 1 m以上である請求項 7〜 1 3のいずれかの炭素材料。
15. 被覆膜が炭化タンタルの化学蒸着膜である請求項 7〜14のいずれかの炭 素材料。
16. 被覆膜における炭素/タンタルの原子比が 0. 8〜1. 2である請求項 7 〜 15のいずれかの炭素材料。
17. 被覆膜の X線回折パターンにおいて、 炭化タンタルの (220) 面の回折 線が最大の回折強度を示す請求項 7〜 16のいずれかの炭素材料。
18. 被覆膜の X線回折パターンにおいて、 炭化タンタルの (220) 面の回折 線が、 2番目に大きな回折線の回折強度の 4倍以上の強度を示す、 請求項 1 7の 灰 材料。
19. 被覆膜の X線回折パターンにおいて、 炭化タンタルの (220) 面の回折 線の半価幅が 0. 2° 以下である請求項 1 7または 18の炭素材料。
20. 被覆膜が、 炭化タンタルの化学蒸着膜を 1600〜2000°Cの加熱処理 に供して得られるものである請求項 1 7〜19のいずれかの炭素材料。
21. 20°Cから 1000°Cへ加熱することによって測定される被覆膜の熱膨張 係数が 6. 9 X 10_6〜7. 8 X 1 0 6ノ Kである請求項 1 7〜20のいずれ かの炭素材料。
PCT/JP2006/302418 2005-02-14 2006-02-07 炭化タンタル被覆炭素材料およびその製造方法 WO2006085635A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA 2559042 CA2559042C (en) 2005-02-14 2006-02-07 Tantalum carbide-coated carbon material and production method thereof
US10/592,085 US8216667B2 (en) 2005-02-14 2006-02-07 Tantalum carbide-coated carbon material and production method thereof
JP2006523476A JP5275567B2 (ja) 2005-02-14 2006-02-07 炭化タンタル被覆炭素材料およびその製造方法
EP20060713560 EP1852407B9 (en) 2005-02-14 2006-02-07 Tantalum carbide coated carbon material and production method thereof
HK07110415A HK1105096A1 (en) 2005-02-14 2007-09-25 Tantalum carbide-covered carbon material and process for producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-036838 2005-02-14
JP2005036838 2005-02-14
JP2005179866 2005-06-20
JP2005-179866 2005-06-20
JP2005-255744 2005-09-02
JP2005255744A JP3779314B1 (ja) 2005-02-14 2005-09-02 炭化タンタル被覆炭素材料およびその製造方法

Publications (1)

Publication Number Publication Date
WO2006085635A1 true WO2006085635A1 (ja) 2006-08-17

Family

ID=36793202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302418 WO2006085635A1 (ja) 2005-02-14 2006-02-07 炭化タンタル被覆炭素材料およびその製造方法

Country Status (8)

Country Link
US (1) US8216667B2 (ja)
EP (1) EP1852407B9 (ja)
JP (1) JP5275567B2 (ja)
KR (1) KR100835157B1 (ja)
CA (2) CA2723324A1 (ja)
HK (1) HK1105096A1 (ja)
TW (1) TWI324192B (ja)
WO (1) WO2006085635A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006620A (ja) * 2008-06-24 2010-01-14 Japan Fine Ceramics Center アルミナ薄膜形成用材料、耐熱部材、バリア性能評価方法及びバリア性能評価装置
WO2011065116A1 (ja) * 2009-11-25 2011-06-03 東洋炭素株式会社 炭素材料及びその製造方法
WO2011081210A1 (ja) * 2009-12-28 2011-07-07 東洋炭素株式会社 炭化タンタル被覆炭素材料及びその製造方法
US8535600B2 (en) 2009-03-23 2013-09-17 Kabushiki Kaisha Toyota Chuo Kenkyusho High temperature-resistant article, method for producing the same, and high temperature-resistant adhesive
WO2014123036A1 (ja) * 2013-02-06 2014-08-14 東洋炭素株式会社 炭化ケイ素-炭化タンタル複合材及びサセプタ
JP2017075075A (ja) * 2015-10-16 2017-04-20 株式会社豊田中央研究所 耐熱黒鉛部材およびその製造方法
JP2018145022A (ja) * 2017-03-01 2018-09-20 株式会社豊田中央研究所 高耐熱部材およびその製造方法
JP2020011866A (ja) * 2018-07-18 2020-01-23 株式会社豊田中央研究所 TaC被覆黒鉛部材
JP2020517571A (ja) * 2017-04-28 2020-06-18 トカイ カーボン コリア カンパニー,リミティド TaCを含んでいるコーティング層を有する炭素材料及びその製造方法
JP2020109049A (ja) * 2018-12-17 2020-07-16 トカイ カーボン コリア カンパニー,リミティド 炭化タンタルコーティング材料
JP2021088493A (ja) * 2019-12-06 2021-06-10 國家中山科學研究院 グラファイト基材上に炭化タンタルを形成する方法
US11130152B2 (en) 2019-11-28 2021-09-28 National Chung-Shan Institute Of Science And Technology Method for the formation of tantalum carbides on graphite substrate
JP2022087844A (ja) * 2020-12-01 2022-06-13 トカイ カーボン コリア カンパニー,リミティド 炭化タンタル複合材
WO2022264884A1 (ja) * 2021-06-15 2022-12-22 三井金属鉱業株式会社 耐火部材およびその製造方法
CN115677386A (zh) * 2022-12-08 2023-02-03 深圳市志橙半导体材料有限公司 一种用于制备半导体材料的石墨部件及其复合涂层和制备方法
CN116444296A (zh) * 2023-05-04 2023-07-18 中南大学 一种利用熔盐法在石墨基体上制备碳化钽涂层的方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011079967A1 (de) * 2011-07-28 2013-01-31 Sgl Carbon Se Beschichtete Hochofensteine
JP5880297B2 (ja) * 2012-06-07 2016-03-08 三菱電機株式会社 基板支持体、半導体製造装置
JP2014220322A (ja) * 2013-05-07 2014-11-20 株式会社東芝 半導体装置の製造方法及び製造装置
CA2934797C (en) 2013-12-23 2020-03-24 Flowserve Management Company Electrical corrosion resistant mechanical seal
CN105702561B (zh) * 2014-12-12 2018-09-18 韩国东海炭素株式会社 半导体处理组件再生方法
KR102508852B1 (ko) * 2016-02-18 2023-03-09 재단법인 포항산업과학연구원 염화탄탈륨 제조 방법
RU2622061C1 (ru) * 2016-04-25 2017-06-09 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский и проектный институт тугоплавких металлов и твердых сплавов" (ФГУП "ВНИИТС") Способ пропитки изделий из пористого углерод-углеродного композиционного материала
KR20170133191A (ko) * 2016-05-25 2017-12-05 주식회사 티씨케이 고경도 TaC 코팅 탄소 재료 및 그 제조방법
KR101824883B1 (ko) 2016-05-25 2018-02-02 주식회사 티씨케이 탄화탄탈 코팅 탄소 재료
KR20170133193A (ko) * 2016-05-25 2017-12-05 주식회사 티씨케이 탄화탄탈 다중코팅 재료 및 그 제조방법
CN106626718A (zh) * 2016-09-21 2017-05-10 西安康本材料有限公司 一种提高碳纤维针刺预制体密度的方法
KR102094183B1 (ko) 2017-04-28 2020-03-30 주식회사 티씨케이 TaC를 포함하는 코팅층을 갖는 탄소 재료 및 그 제조방법
EP3461928B1 (en) * 2017-09-29 2020-11-11 Walter Ag Tacno coatings and production process
KR20190065941A (ko) 2017-12-04 2019-06-12 신에쓰 가가꾸 고교 가부시끼가이샤 탄화탄탈 피복 탄소 재료 및 그 제조 방법, 반도체 단결정 제조 장치용 부재
KR20190073788A (ko) * 2017-12-19 2019-06-27 주식회사 티씨케이 CVD를 이용한 TaC 코팅층의 제조방법 및 그를 이용하여 제조한 TaC의 물성
CN110357666B (zh) * 2018-10-08 2021-12-28 湖南德智新材料有限公司 一种陶瓷复合涂层及其制备方法
JP2021183553A (ja) * 2020-05-22 2021-12-02 イビデン株式会社 炭素複合部材
KR102600114B1 (ko) 2020-12-01 2023-11-10 주식회사 티씨케이 탄화탄탈 코팅 탄소 재료 및 이의 제조방법
DE102021123986A1 (de) * 2021-09-16 2023-03-16 Advanced Furnace Technology Ltd. Verfahren zum Beschichten eines Bauteils in einem CVD-Reaktor und nach dem Verfahren hergestelltes Bauteil
CN115404452A (zh) * 2022-07-29 2022-11-29 南京航空航天大学 提高碳基电极表面性能的复合涂层、石墨电极及制备方法
CN115637419A (zh) * 2022-10-12 2023-01-24 厦门中材航特科技有限公司 一种钽-碳化钽复合涂层的制备方法及其制品
CN115584486A (zh) * 2022-10-12 2023-01-10 厦门中材航特科技有限公司 一种碳化钽涂层制品及制备方法
CN115595659A (zh) * 2022-11-02 2023-01-13 深圳市志橙半导体材料有限公司(Cn) 一种石墨基体的表面涂层及制备方法和运用
CN116813383A (zh) * 2023-07-14 2023-09-29 中电化合物半导体有限公司 一种碳化钽涂层及其制备方法
CN117164363B (zh) * 2023-11-02 2024-01-26 湖南泰坦未来科技有限公司 一种高温复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238856A (ja) * 1992-02-26 1993-09-17 Nippon Steel Corp 金属炭化物被膜の形成方法
JP2004084057A (ja) 2002-06-28 2004-03-18 Ibiden Co Ltd 炭素複合材料
JP2004299932A (ja) * 2003-03-28 2004-10-28 Ibiden Co Ltd 炭素複合材料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2668479B1 (fr) * 1990-10-24 1993-10-01 Aerospatiale Ste Nationale Indle Piece en materiau composite carbone, protegee contre l'oxydation et son procede de fabrication.
CN1047807C (zh) * 1993-06-01 1999-12-29 高级陶瓷有限公司 形成金属碳化物层的流化床反应器装置
JP3403460B2 (ja) 1993-07-22 2003-05-06 トーカロ株式会社 非酸化物系セラミック溶射皮膜を有する炭素材料の製造方法
JP4498476B2 (ja) 1997-02-25 2010-07-07 東洋炭素株式会社 還元性雰囲気炉用炭素複合材料及びその製造方法
JP4498477B2 (ja) 1997-03-04 2010-07-07 東洋炭素株式会社 還元性雰囲気炉用炭素複合材料及びその製造方法
JP2003343623A (ja) * 2003-01-29 2003-12-03 Mitsubishi Kagaku Sanshi Corp 摺動材の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238856A (ja) * 1992-02-26 1993-09-17 Nippon Steel Corp 金属炭化物被膜の形成方法
JP2004084057A (ja) 2002-06-28 2004-03-18 Ibiden Co Ltd 炭素複合材料
JP2004299932A (ja) * 2003-03-28 2004-10-28 Ibiden Co Ltd 炭素複合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1852407A4

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006620A (ja) * 2008-06-24 2010-01-14 Japan Fine Ceramics Center アルミナ薄膜形成用材料、耐熱部材、バリア性能評価方法及びバリア性能評価装置
US8535600B2 (en) 2009-03-23 2013-09-17 Kabushiki Kaisha Toyota Chuo Kenkyusho High temperature-resistant article, method for producing the same, and high temperature-resistant adhesive
WO2011065116A1 (ja) * 2009-11-25 2011-06-03 東洋炭素株式会社 炭素材料及びその製造方法
JP2011111338A (ja) * 2009-11-25 2011-06-09 Toyo Tanso Kk 炭素材料及びその製造方法
KR101766500B1 (ko) * 2009-12-28 2017-08-08 도요탄소 가부시키가이샤 탄화탄탈 피복 탄소재료 및 그 제조방법
WO2011081210A1 (ja) * 2009-12-28 2011-07-07 東洋炭素株式会社 炭化タンタル被覆炭素材料及びその製造方法
JP2011153377A (ja) * 2009-12-28 2011-08-11 Toyo Tanso Kk 炭化タンタル被覆炭素材料の製造方法
JP2011153378A (ja) * 2009-12-28 2011-08-11 Toyo Tanso Kk 炭化タンタル被覆炭素材料の製造方法
JP2011153376A (ja) * 2009-12-28 2011-08-11 Toyo Tanso Kk 炭化タンタル被覆炭素材料
JP2011153070A (ja) * 2009-12-28 2011-08-11 Toyo Tanso Kk 炭化タンタル被覆炭素材料の製造方法
JP2011153375A (ja) * 2009-12-28 2011-08-11 Toyo Tanso Kk 炭化タンタル被覆炭素材料の製造方法
US9322113B2 (en) 2009-12-28 2016-04-26 Toyo Tanso Co., Ltd. Tantalum carbide-coated carbon material and manufacturing method for same
US9764992B2 (en) 2013-02-06 2017-09-19 Toyo Tanso Co., Ltd. Silicon carbide-tantalum carbide composite and susceptor
WO2014123036A1 (ja) * 2013-02-06 2014-08-14 東洋炭素株式会社 炭化ケイ素-炭化タンタル複合材及びサセプタ
JP2017075075A (ja) * 2015-10-16 2017-04-20 株式会社豊田中央研究所 耐熱黒鉛部材およびその製造方法
JP2018145022A (ja) * 2017-03-01 2018-09-20 株式会社豊田中央研究所 高耐熱部材およびその製造方法
JP2020517571A (ja) * 2017-04-28 2020-06-18 トカイ カーボン コリア カンパニー,リミティド TaCを含んでいるコーティング層を有する炭素材料及びその製造方法
JP7087762B2 (ja) 2018-07-18 2022-06-21 株式会社豊田中央研究所 TaC被覆黒鉛部材
JP2020011866A (ja) * 2018-07-18 2020-01-23 株式会社豊田中央研究所 TaC被覆黒鉛部材
JP2020109049A (ja) * 2018-12-17 2020-07-16 トカイ カーボン コリア カンパニー,リミティド 炭化タンタルコーティング材料
US11130152B2 (en) 2019-11-28 2021-09-28 National Chung-Shan Institute Of Science And Technology Method for the formation of tantalum carbides on graphite substrate
JP2021088493A (ja) * 2019-12-06 2021-06-10 國家中山科學研究院 グラファイト基材上に炭化タンタルを形成する方法
JP2022087844A (ja) * 2020-12-01 2022-06-13 トカイ カーボン コリア カンパニー,リミティド 炭化タンタル複合材
JP7382377B2 (ja) 2020-12-01 2023-11-16 トカイ カーボン コリア カンパニー,リミティド 炭化タンタル複合材
WO2022264884A1 (ja) * 2021-06-15 2022-12-22 三井金属鉱業株式会社 耐火部材およびその製造方法
JP7213399B1 (ja) * 2021-06-15 2023-01-26 三井金属鉱業株式会社 耐火部材およびその製造方法
CN115677386A (zh) * 2022-12-08 2023-02-03 深圳市志橙半导体材料有限公司 一种用于制备半导体材料的石墨部件及其复合涂层和制备方法
CN116444296A (zh) * 2023-05-04 2023-07-18 中南大学 一种利用熔盐法在石墨基体上制备碳化钽涂层的方法
CN116444296B (zh) * 2023-05-04 2024-02-02 中南大学 一种利用熔盐法在石墨基体上制备碳化钽涂层的方法

Also Published As

Publication number Publication date
KR20070020225A (ko) 2007-02-20
US8216667B2 (en) 2012-07-10
CA2723324A1 (en) 2006-08-17
JPWO2006085635A1 (ja) 2008-06-26
EP1852407B9 (en) 2014-11-05
US20120040172A1 (en) 2012-02-16
EP1852407A1 (en) 2007-11-07
TW200636100A (en) 2006-10-16
EP1852407B1 (en) 2014-01-01
CA2559042C (en) 2011-03-08
EP1852407A4 (en) 2009-05-13
CA2559042A1 (en) 2006-08-17
HK1105096A1 (en) 2008-02-01
KR100835157B1 (ko) 2008-06-09
TWI324192B (en) 2010-05-01
JP5275567B2 (ja) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5275567B2 (ja) 炭化タンタル被覆炭素材料およびその製造方法
RU2576406C2 (ru) Покрытый карбидом тантала углеродный материал и способ его изготовления
CN100450978C (zh) 碳化钽被覆碳材料及其制造方法
JP3779314B1 (ja) 炭化タンタル被覆炭素材料およびその製造方法
US20110091647A1 (en) Graphene synthesis by chemical vapor deposition
EP3663439A1 (en) Laminate substrate, freestanding substrate, method for manufacturing laminate substrate, and method for manufacturing freestanding substate
JP2000302577A (ja) 炭化珪素被覆黒鉛部材
JP2002003285A (ja) SiC被覆黒鉛部材およびその製造方法
EP1500718A1 (en) Method for producing diamond film
WO2021117498A1 (ja) 炭化タンタル被覆グラファイト部材及びその製造方法
JPH0825838B2 (ja) エピタキシヤル成長用黒鉛材料
RU2352019C1 (ru) Способ изготовления изделия, содержащего кремниевую подложку с пленкой из карбида кремния на ее поверхности
JP2007012933A (ja) 半導体製造装置用部材及び半導体製造装置
TWI725840B (zh) 晶種的黏著層、使用其製造疊層物之方法以及製造晶圓之方法
KR20090106111A (ko) 질화알루미늄 버퍼층위에 마이크로 또는 나노전자기계시스템용 다결정 탄화규소막 성장방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006523476

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006131563

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2006713560

Country of ref document: EP

Ref document number: 2559042

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020067019705

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680000138.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10592085

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067019705

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006713560

Country of ref document: EP