KR100835157B1 - 탄화탄탈 피복 탄소재료 및 그 제조 방법 - Google Patents

탄화탄탈 피복 탄소재료 및 그 제조 방법 Download PDF

Info

Publication number
KR100835157B1
KR100835157B1 KR1020067019705A KR20067019705A KR100835157B1 KR 100835157 B1 KR100835157 B1 KR 100835157B1 KR 1020067019705 A KR1020067019705 A KR 1020067019705A KR 20067019705 A KR20067019705 A KR 20067019705A KR 100835157 B1 KR100835157 B1 KR 100835157B1
Authority
KR
South Korea
Prior art keywords
tantalum carbide
coating film
carbon
tantalum
intermediate layer
Prior art date
Application number
KR1020067019705A
Other languages
English (en)
Other versions
KR20070020225A (ko
Inventor
히로카즈 후지와라
노리마사 야마다
스미히사 아베
Original Assignee
토요 탄소 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005255744A external-priority patent/JP3779314B1/ja
Application filed by 토요 탄소 가부시키가이샤 filed Critical 토요 탄소 가부시키가이샤
Publication of KR20070020225A publication Critical patent/KR20070020225A/ko
Application granted granted Critical
Publication of KR100835157B1 publication Critical patent/KR100835157B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/029Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/0025Compositions or ingredients of the compositions characterised by the crystal structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00405Materials with a gradually increasing or decreasing concentration of ingredients or property from one layer to another
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • Y10T428/249956Void-containing component is inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249961With gradual property change within a component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249981Plural void-containing components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 고온에서 환원성 가스 대하여 뛰어난 내식성 및 내열충격성을 갖는 탄화탄탈 피복 탄소재료 및 그 제조 방법을 제공한다. 탄화탄탈 탄소재료는 탄소기재, 및 상기 탄소기재에 직접 제공되거나 중간층을 통해 제공되는 피복막을 포함한다. 피복막은 조밀하게 수집된 다수의 탄화탄탈 미세 결정으로 형성된다. 바람직하게는, 피복막은 탄화탄탈의 (220) 면 이 최대의 회절 강도를 나타내는 X선 회절패턴을 나타낸다. 더 바람직하게는, 이 회절 강도는 2 번째로 큰 회절선의 회절강도 보다 4 배 이상의 강도를 갖는다.

Description

탄화탄탈 피복 탄소재료 및 그 제조 방법{TANTALUM CARBIDE-COATED CARBON MATERIAL AND PRODUCTION METHOD THEREOF}
본 발명은 탄화탄탈 피복 탄소재료 및 그 제조 방법에 관한 것이다. 더 상세하게는, SiC, GaN 등과 같은 화합물 반도체 단결정을 형성하는 장치의 부재로서 사용될 수 있는 탄화탄탈 피복 탄소재료 및 그 제조 방법에 관한 것이다.
종래에서는, Si, GaN, SiC 등과 같은 반도체 단결정의 제조를 위해, MOCVD 및 MOVPE 등과 같은 CVD 장치, MBE 장치 등이 사용되어 왔다. SiC 의 제조를 위해, 1500℃ 이상, 특히 1800℃ 이상의 고온을 요하는 승화법, HTCVD 법 (고온 CVD 법) 등이 종종 사용된다. 이러한 반도체 단결정을 제조하기 위해, 캐리어 가스 및 원료 가스로서 수소, 암모니아, 탄화수소 등이 일반적으로 사용된다.
800℃ 이상의 온도에서 암모니아 가스 및 수소 가스로 인해, 탄소재료는 가스화 반응을 겪어, 메탄 가스로 변환되고, 따라서 부피 변화와 중량 감소가 나타난다. 부피 변화는 예컨대, 히터의 저항이 변하여, 처리온도가 변동된다. 결과적으로, 에피택셜 (epitaxial) 성장층의 품질의 악화가 우려된다. 더욱이, 부피의 변화로 인해, 결정 웨이퍼를 유지하는 서셉터의 웨이퍼와의 접촉면이 거칠게 되어, 웨이퍼의 온도 분포가 불균일하게 되므로, 결과적으로 에피택셜 성장층의 결합이 발생된다. 탄소재료와 가스 사이의 반응은 1000℃ 이상에서 특히 더 촉진된다. 이 경우, 히터 및 서셉터는 단시간에 극단적으로 열화된다. 탄소재료의 메탄화를 억제하기 위해, CVD 법에 의해 조밀 탄화규소로 탄소 개재를 피복하여 얻은 복합 재료가 서셉터, 히터 등과 같은 노 내부 재료로서 사용된다. 그러나, 1300℃ 에서 탄화규소의 가스화 반응이 시작되고, 탄화규소는 1500℃ 이상의 고온에서 수소에 의해 가스화되며, 5~30 ㎛/h 의 속도로 부식된다. 이러한 부식의 결과, 서셉터의 피막은 크랙 및 박리를 포함하며, 이는 내부의 탄소재료의 부식을 일으킨다. 이런 점에서, 탄소재료내에 남아있는 N2, O2, CO2 등과 같은 가스가 방출되면, 반도체 장치용 결정으로 유입될 우려가 있다. 이러한 가스는 최종적으로 얻어질 반도체 장치 불량 도핑의 원인이 될 수 있다.
결정 성장을 위해 단결정 웨이퍼를 승온하거나, 결정 성장 후에 그 웨이퍼를 실온에까지 냉각할 때, 웨이퍼표면에 결함이 발생하는 경우가 있다. 이러한 결함은 캐리어 가스 등에 의해서 웨이퍼표면이 에칭되거나, 웨이퍼표면의 원자가 승화 및 탈리되어 발생될 수 있다. 이러한 결함은 장치의 특성을 저하시키거나, 컨택트저항을 증대시키기 때문에 바람직하지 못하다. 최근, 결정성장에 있어서, 승온 속도 및 온도 저감 속도를 촉진하여, 즉 승온 및 온도 저감를 위한 시간을 단축함으로써, 표면의 결함의 발생이 감소되고 있다. 그러나 일부 경우, 제조 효율을 올리기 위해서, 급속한 승온 및 급속한 온도 저감에 의해 단시간에 웨이퍼가 제조될 수도 있다. 이러한 방식에서 급속한 승온 및 급속한 온도 저감는, 단결정을 형성하는 장치의 일부인 서셉터에서 박리나 크랙이 발생하는 새로운 문제가 생긴다. 이는 서셉터에서 상당한 열응력이 발생하기 때문이다.
예컨대, GaN 의 에피택셜 성장의 경우, 사파이어 기판은 1200℃까지 가열한 후, 실온까지 냉각한다. 이때, 서셉터의 온도는 급속히 승온 및 하강된다. 승온과 온도 저감를 되풀이하는 것에 의해 서셉터의 재료의 피막에 크랙이 발생할 우려가 있다. 캐리어 가스나 원료 가스로서의 수소 가스나 암모니아 가스가 크랙을 통해 서셉터 내부에 침투할 수 있다. 이러한 가스에 의해서, 서셉터의 기재인 흑연재료가 가스화되며, 상기된 바람직하지 못한 결과가 발생할 우려가 있다.
따라서, 히터, 서셉터 등의 내식성을 높이기 위해서, 탄소재료상에 탄화탄탈층을 피복하는 것이 시도되었다. JP-A-10-236892 및 JP-A-10-245285호에 따라서, AIP 법으로 탄화탄탈 미립자의 증착에 의해 막이 형성된 탄소재료는, 종래의 탄소재료 보다 히터 및 서셉터를 더 오래 사용할 수 있게 한다. 또한, CVD 법은 조밀하고 내식성이 우수한 탄화탄탈의 피복막을 형성할 수 있다. 그 결과, 장수명의 탄소재료의 제공이 기대할 수 있는데, CVD 법으로서는 높은 결정성의 TaC로 이루어지는 피복막을 용이하게 얻을 수 있기 때문이다. 그러나, CVD 법에 의해 얻어진 높은 결정성을 갖는 피복막은 주상구조를 가지며, 유연성이 저하되고 크랙이 발생하기 쉽다. 크랙을 통해서 암모니아가스나 수소가스가 탄소기재를 부식시키면, 탄소재료의 수명은 짧아 진다.
따라서, CVD 법으로 얻어지는 피복막의 탄화탄탈의 결정성을 감소시켜, 피복막을 비정질 상태에 가깝게 하여, 크랙이나 박리의 발생을 억제하는 것이 시도되 었다 (JP-A-2004-84057). 이 탄화탄탈의 피복막은 조밀성 및 유연성이 우수하다.
그러나, 본 발명에 의한 시험에 따르면, JP-A-2004-84057에 기재된 피복막을 가지는 재료는 이전처럼 크랙 및 박리의 문제가 있는 것을 발견했다. 구체적으로는, 수소와 암모니아와의 혼합가스 분위기 중, 1500℃ 의 온도에서, 이 재료를 수회 사용하면, 탄화탄탈의 결정구조나 결정성이 변화하여 크랙 및 박리가 발생한다. 이러한 크랙이 발생하면, 탄소재료 중에 잔류하고 있는 N2, O2, CO2 등의 가스가 방출되어, 반도체 장치용 결정에 들어가서, 장치에서 불량 도핑이 쉽게 발생하기 쉽다. 고온에서 탄소는 수소나 암모니아에 대하여 대단히 약하고, 탄탈은 수소를 흡수하여 취약하게 된다. 도 21 및 도 22 는 JP-A-2004-84057 의 방식에 의해 얻어지는 피복막의 현미경 관찰상이다. 도 21 은 표면의 형태를, 도 22은 단면의 형태를 각각 나타낸다. 1500℃에서 수회의 사용은 비결정화된 탄소나 탄탈이 수소나 암모니아에 의해서 부식하고, 피복막에 핀 홀이 발생하며, 그리고 결정구조나 결정성의 변화에 의해서 피복막에 크랙이 발생하는 결과를 나타내고, 따라서 탄화탄탈의 피복막의 부피밀도가 현저히 감소한다. JP-A-2004-84057에 기재되어 있는 바와 같이, 본 발명자는 일반적으로 결정성이 낮게되고, 비정질과 같은 탄화탄탈로 피복된 탄소재료는 사용 중에 피복막이 열화하는 것을 처음으로 발견하였다.
상기 상황을 고려하여, 본 발명은 고온에서 환원성 가스 (특히, 암모니아, 수소, 탄화수소 가스 등) 에 대하여 뛰어난 내열충격성 및 내식성을 갖는 탄화탄탈 피복 탄소재료 및 그 제조방법을 제공하는 것이 목적이다.
본 발명의 특징은 이하와 같다.
(1) 탄화탄탈 피복 탄소재료는 탄소기재, 및 상기 탄소기재상에 형성된 피복막을 포함하며, 상기 피복막은 탄화탄탈의 (220) 면에서 다른 밀러 (miller) 면과 비교하여 특별하게 발달되는 탄화탄탈의 결정으로 이루어지고, 피복막의 X선 회절패턴에 있어서, 탄화탄탈의 (220) 면의 회절선이 최대의 회절 강도를 나타낸다.
(2) (1) 의 탄소재료로서, 피복막의 X선 회절패턴에 있어서, 탄화탄탈의 (220) 면의 회절선의 반값폭이 0.2° 이하이다.
(3) (1) 또는 (2) 의 탄소재료로서, 피복막의 X선 회절패턴에서, 탄화탄탈의 (220) 면의 회절선이, 2번째로 큰 회절선의 회절강도 보다 4 배 이상의 강도를 나타낸다.
(4) (1)~(3) 의 어느 하나의 탄소재료로서, 피복막의 질소가스 투과율은 1O-6 ㎠/sec 이하이다.
(5) (1)~(4)의 어느 하나의 탄소재료로서, 피복막의 두께는 10 ~ 100㎛ 이다.
(6) 탄화탄탈 피복 탄소재료의 제조방법으로서, 탄소 기재 및 상기 탄소 기재상에 형성된 피복막을 포함하며, 상기 피복막은 탄화탄탈 결정으로 이루어지고, 상기 피복막의 X선 회절패턴에 있서, 탄화탄탈의 (220) 면의 회절선이 최대의 회절 강도를 나타내며, 1600 ~ 2400℃ 의 열처리로 피복막의 탄화탄탈의 결정성을 향상시킨다.
(7) 탄화탄탈 피복 탄소재료는 탄소기재, 탄소기재 상에 형성되며 탄소와 탄탈을 포함하는 조성물로 이루어지는 중간층, 및 중간층 상에 형성된 탄화탄탈을 포함하는 조성물로 이루어지는 피복막을 포함한다.
(8) (7) 의 탄소재료로서, 중간층은 피복막 보다 불균일한 화학 조성분포를 갖는다.
(9) (7) 또는 (8) 의 탄소재료로서, 중간층이 피복막 보다 다공질이다.
(10) (9)의 탄화탄탈 피복 탄소재료로서, 중간층이 탄소기재의 표층부분을 탄화탄탈로 전화하여 얻어진 다공질층이다,
(11) (8)의 탄소재료로서, 중간층은 탄소기재의 표층부분의 기공에 탄화탄탈을 매설하여 얻어지는 층이다,
(12) (7) ~ (11) 의 어느 하나의 탄소재료로서, 중간층은 농도구배를 갖는 경사재료층이며, 기재측에서 피복막측으로 탄소/탄탈의 원자비는 연속적 또는 단계적으로 낮아진다.
(13) (12) 의 탄소재료로서, 경사재료층의 탄소/탄탈의 원자비의 최대값이 10 이상이고, 최소값이 0.8 ~ 1.2이다.
(14) (7) ~ (13) 의 어느 하나의 탄소재료로서, 중간층의 두께가 1㎛ 이상이다.
(15) (7) ~ (14) 의 어느 하나의 탄소재료로서, 피복막이 탄화탄탈의 화학 증착막이다.
(16) (7) ~ (15) 의 어느 하나의 탄소재료로서, 피복막에 있어서의 탄소/탄탈의 원자비가 0.8 ~ 1.2이다.
(17) (7) ~ (16) 의 어느 하나의 탄소재료로서, 피복막의 X선 회절패턴에서, 탄화탄탈의 (220) 면의 회절선이 최대의 회절강도를 나타낸다.
(18) (17) 의 탄소재료로서, 피복막의 X선 회절패턴에서, 탄화탄탈의 (220) 면의 회절선이, 2 번째로 큰 회절선의 회절강도의 4배 이상의 강도를 나타낸다.
(19) (17)또는(18)의 탄소재료로서, 피복막의 X선 회절패턴에서, 탄화탄탈의 (220) 면의 회절선의 반값폭은 0.2° 이하이다.
(20) (17)~(19)의 어느 하나의 탄소재료로서, 피복막은 탄화탄탈의 화학증착막을 1600~2000℃의 가열처리에 의해 얻어진다.
(21) (17)~(20)의 어느 하나의 탄소재료로서, 20℃ 에서 1000℃ 로 가열함으로써 측정되는 피복막의 열팽창계수는 6.9 × 10-6 ~ 7.8 × 10-6/K 이다.
본 발명의 제 1 실시양태에 따르면, 피복막의 탄화탄탈을 실질적으로 하나의 결정면에 배향시키는 것으로, 피복막의 열팽창계수, 열전도율, 탄성계수 (Young's modulus) 과 같은 물성값이 평준화되고, 왜곡 및 열응력에 의해 내부 응력이 발생하고 어렵다. 그 결과, 급격한 승온이나 급격한 냉각시에도, 피복막에서 크랙 및 박리가 발생하고 어렵다. 본 발명자의 새로운 견지에 의하면, 탄화탄탈을 (220) 면에 실질적으로 배향시키거나, 탄화탄탈의 (220) 면을 다른 밀러면에 대하여 특별하게 발달시키는 것으로 상기 효과가 현저에 나타나, 내식성, 내열충격성이 우수한 피복막을 얻을 수 있다. 도 3 및 도 4 는 본 발명으로 얻어지는 피복막의 현미경 관찰상이다.
바람직한 양태에 의하면, 피복막의 탄화탄탈의 결정성을 현저히 향상시키는 것으로, 탄소기재의 부식 및 피복막에 있어서의 핀 홀의 발생을 보다 저감할 수 있다. 더욱이, 바람직한 양태에 의하면 피복막의 두께나 질소가스 투과율을 특정 범위 내로 설정하는 것에 의해, 탄소기재의 부식 및 탄소기재로부터의 가스 방출을 보다 효과적으로 억제할 수 있다. 본 발명의 바람직한 제조 방법에 의하면, 피복막에 잔류하는 탄탈과 탄소로부터 탄화탄탈을 얻는 수 있어, 결정성을 보다 향상시킨 피복막을 형성할 수 있다. 그 결과, 예컨대 장수명의 노 재료를 제공할 수 있으므로, 그 노 재료를 사용함으로써 반도체 장치 등을 안정한 제조 조건하에서, 높은 수율로 제조할 수 있다.
본 발명의 다른 실시양태에서, 특정한 구조의 중간층이 탄소기재와 피복막을 통해 존재하고 있다. 때문에, 급속한 승온 및 급속한 온도 저감시에 발생하는 탄소기재와 탄화탄탈의 피복막과의 사이의 내부응력이 저감된다. 내부 응력은 탄소기재와 피복막 사이에서 열에 의한 팽창이나 수축의 정도가 다른 것에 의한 것이다. 본 발명에 따르면, 상기 내부 응력 저감 때문에, 피복막의 크랙 및 박리가 줄어들 수 있다. 본 발명의 바람직한 양태에 따르면, 피복막의 탄화탄탈의 결정은 (220) 면 에 실질적으로 배향하여, 그리고 탄소기재와 피복막 사이에 중간층이 존재하고 있다. 이러한 구조에 의해, 특히 강고한 탄화탄탈 피복 탄소재료가 제공된다.
결과적으로, 본 발명에 따르면, 예컨대 1400℃ 이상의 고온 영역에서 장기간 사용할 수 있는 탄화탄탈 피복 탄소재료가 제공될 수 있어, 그 결과 예컨대 장수명의 노 재료를 제공할 수 있어, 이 노 재료를 사용함으로써 반도체 장치 등을 안정한 제조 조건 하에서 높은 수율로 제조할 수 있다.
도 1 및 도 2 는 본 발명의 탄화탄탈 피복 탄소재료를 모식적으로 나타낸다. 본 발명의 탄화탄탈 피복 탄소재료 (100) 는 탄소기재 (1) 와 피복막 (3) 을 갖는다. 도 1 에 나타나는 바와 같이, 피복막 (3) 은 탄소기재 (1) 상에 직접에 형성되거나, 도 2 에 나타나는 바와 같이, 피복막 (3) 은 탄소기재 (1) 상에 중간층 (2) 을 통해 형성될 수 있다.
피복막 (3) 은 탄화탄탈을 포함하는 조성물로 이루어지고, 바람직하게는 피복막 (3) 은 다른 밀러면과 비교하여 (220) 면 이 특별하게 발달한 탄화탄탈의 결정의 조밀 집합으로 형성된다.
본 발명에 따르면, 탄화탄탈 피복 탄소재료 (100) 는, 탄소기재 (1) 와, 탄소기재 (1) 상에 형성되어 있는 피복막 (3) 을 갖는다. 탄화탄탈 피복 탄소재료 (l00) 는 간단하게 "본 발명의 탄소재료", 또는 더 간단하게 "탄소재료" 로 표기된다. 탄소재료 (100) 는, 탄소기재 (1) 와 피복막 (3) 사이에 중간층 (2) 을 갖고 있어도 된다. 탄소기재 (1) 는 주로 탄소로 이루어지는 기재이고, 피복막이나 중간층을 포함하지 않는다. 피복막 (3) 은 탄화탄탈을 포함하는 조성물로 이루어지고, 주로 탄화탄탈의 다수의 결정의 조밀 집합으로 형성된다. 중간층 (2) 은 탄소기재 (1) 와 피복막 (3) 사이에 존재하고, 탄소기재 (1) 및 피복막 (3) 과는 화학적인 조성이 명확히 다른 층이다. 이러한 기재 및 층의 바람직한 양태는 이하에 상술한다.
〈탄소기재〉
본 발명에서, 탄소기재 (1) 는 주로 탄소로 이루어지는 기재이지만 특히 한정되지는 않는다. 탄소의 형태는 특히 한정되지 않고, 일반흑연, 등방성흑연, 탄소섬유 강화 탄소복합재료, 유리상탄소 등이 예시된다.
본 발명의 탄소재료 (100) 를 반도체 제조용 장치의 노 내부재 등으로 하여 사용하는 것을 고려하면, 탄소기재 (1) 는 가능한 불순물을 포함하지 않은 것이 바람직하다. 구체적으로는, 탄소기재 (1) 의 1OOO℃ 기준의 가스 방출압력은 가능한 적으며, 바람직하게는 1O-4 Pa/g 이하이다. 1OOO℃ 기준의 가스 방출압력은 탄소기재 (1) 의 표면 및 세공에 흡착하고 있는 가스분자가 1000℃에서 탈리하는 정도를 압력의 단위로 나타낸 것이다. 구체적으로는, JP-B-2684106 에 개시되는 열 탈리 스펙트럼 (TDS) 등에 의해 측정될 수 있다.
탄소기재 (1) 의 열팽창계수는, 바람직하게는 6.5 × 1O-6 ~ 9.O × 1O-6/K 이고, 보다 바람직하게는 7.0 × 10-6 ~ 8.8 × 10-6/K 이다. 이 범위는, 탄화탄탈의 열팽창계수 (6.9 × 10-6 ~ 7.8 × 10-6/K) 에 가까운 것을 설정된다. 탄소기재 (1) 의 열팽창계수가 지나치게 크거나 지나치게 작으면, 탄화탄탈의 열팽창계수와의 차가 커진다. 그 결과, 탄소기재 (1) 상에 선택적으로 중간층 (2) 을 통해 고온에서 피복막 (3) 이 형성되어, 그 후에 온도가 저감되어, 피복막 (3) 에 큰 인장응력 또는 압축응력이 생긴다. 그 결과, 피복막 (3) 에 균열이 생기거나, 피복막 (3) 이 탄소기재 (1) 로부터 박리될 수 있다. 탄소기재 (1) 의 열팽창계수는 시판되는 장치로 측정될 수 있다. 장치의 일례로서, 주식회사 리가쿠사의 제열 분석 장치 (ThermoP1us 2 TMA8310) 를 들 수 있다. 탄소기재 (1) 의 열팽창계수는 SiO2 를 사용하여, N2 분위기속에서 293 ~ 1273K 의 온도범위로 측정될 수 있다.
탄소기재 (1) 의 부피 비중은 특별하게 한정되지는 않는다. 탄소기재 (1) 자체의 기계적강도의 향상과, 탄소기재 (1) 로부터의 중간층 (2) 이나 피복막 (3) 의 박리하기 어려움을 고려하면, 탄소기재 (1) 의 용적비중은 바람직하게는 1.65 ~ 1.90 g/㎤ 이고, 보다 바람직하게는 1.73 ~ 1.83 g/㎤ 정도이다.
탄소기재 (1) 는 바람직하게는 다공질이고, 탄소기재 (1) 의 평균 기공 반경은 바람직하게는 0.01 ~ 5㎛, 보다 바람직하게는 1 ~ 2㎛ 이다. 여기서 "평균기공반경"은 수은 압입법 (mercury porosimetry) (FISONS 에서 제조된 포로시메터 2000) 에 의해 결정될 수 있다. 구체적으로는, 최대압력이 98MPa, 시료와 수은 사이의 접촉각이 141.3°, 압력이 72 MPa 인 경우, 누적 기공 용적의 1/2의 용적을 나타내는 구의 반경으로서 평균 기공 반경이 규정된다. 평균 기공 반경이 O.O1 ㎛ 이상이면, 앵커효과가 충분히 제공되고, 피복막 (3) 이 박리되기 어렵다. 평균 기공 반경이 5㎛ 이하이면, 고온에 있어서의 탄소기재 (1) 로부터의 방출가스의 량이 적어진다.
탄소기재 (1) 의 총 세공 용적은, 바람직하게는 5 ~ 35 ㎤/g이고, 보다 바람직하게는 1O ~ 2O ㎤/g 이다. 여기서, 총 세공용량은 모두 개방 기공의 용적의 합계를 의미하여, 상기 수은압입법에 있어서 동시에 구할 수 있다. 총 세공용량이 5 ㎤/g 이상이면, 탄소기재 (1) 가 충분한 깊이의 기공에까지 탄화탄탈이 함침할 수 있기 때문에, 중간층 (2) 을 통해 피복막 (3) 과 탄소기재 (1) 는 더욱 강고하게 밀착한다. 총 세공용량이 35 ㎤/g 이하이면, 탄소기재 (1) 자체의 기계적인 강도는 충분하고, 고온에 있어서 탄소기재 (1) 로부터 방출되는 가스의 량은 이 증가되는 문제가 없어진다.
탄소기재 (1) 에 존재하는 불순물의 양은 적은 것이 바람직하며, 바람직하게는 불순물로서 포함되는 각 원소는 각각 바람직하게는 Al은 0.3ppm 이하, Fe는 1.0ppm이하, Mg는 0.1ppm 이하, Si는 0.1ppm 이하이고, 탄소기재 (1) 의 총 재분 (ash content) (본 명세서에서는 단지 재분이라고 한다) 는 바람직하게는 1Oppm 이하, 보다 바람직하게는 2ppm 이하이다. 상기 범위 내이면, 고온으로 탄화탄탈과 화학반응하는 불순물의 량이 적고, 중간층 (2) 을 통해 피복막 (3) 이 탄소기재 (1) 로부터 박리되기 어려워 바람직하다. 재분은, JIS-R-7223으로 규정되는 재분의 분석방법에 준하여 측정할 수 있다.
상기한 바와 같이 불순물농도가 낮은 탄소기재 (1) 를 얻는 수단의 비한정적인 일례로서, 할로겐 가스 분위기, 대기압에서, 1800 ~ 2200℃, 5 ~ 30 시간의 처리를 들 수 있다 (JP-A-9-100162). 여기서, 할로겐 가스 분위기는 할로겐 또는 그 화합물의 가스의 것이고, 예컨대 염소, 염소화합물, 불소, 불소화합물, 염소와 불소를 동일 분자내에 포함하는 화합물 (모노클로로트리플루오로메탄(CClF3), 트리클로로모노플루오로메탄(CCl3F), 디클로로플루오로에탄(CH3CCl2F), 트리클로로모노플루오로에탄(CCl3CH2F) 등) 등을 들 수 있다. 할로겐 가스와, 금속 불순물 등과 같이 탄소기재에 포함되는 불순물과 반응하여 할로겐화물이 생성되며, 이 할로겐화물이 증발 또는 휘산하여, 탄소기재 (1) 로부터 제거된다. 계속해서, 같은 처리로에서, 할로겐계가스가 소정 시간 후 흐르고, 수소 가스가 반응 용기 내에 공급되어, 황 성분 등의 불순물을 수소 화물로서 석출시키는 것에 의해, 불순물은 탄소기재 (1) 로부터 제거한다. 이것에 의해, 탄소기재 (1) 의 불순물은 매우 적어져, 상기된 범위 내에 포함된다.
바람직하게는, 중간층 (2) 이나 탄화탄탈의 피복막 (3) 을 형성하기 전에, 탄소기재 (1) 의 표면을 세정하고, 부착한 잉여의 입자 등을 제거한다. 세정으로는, 스크럽 세정, 또는 초음파 세정기 속에서 유기용제, 산이나 알칼리 용액을 사용하는 방법을 들 수 있다. 유기용제로서는, 아세톤, 트리클로로에틸렌, 메탄올, 이소프로필 알코올 등을 들 수 있으며, 산 및 알칼리로서는, 염산, 질산, 플루오르산, KOH 등을 들 수 있다. 세정 후, 순수한 물로 용제나 용액을 씻어 버린 후, 예컨대 140℃의 진공건조기속에서 24 시간 건조시키는 것이 바람직하다.
<피복막>
본 발명의 탄소재료 (100) 는 탄소기재 (1) 의 표면에, 선택적으로 중간층 (2) 을 통해 피복막 (3) 을 갖는다. 피복막 (3) 은 탄화탄탈을 포함하는 조성물로 이루어진다. 그 조성물은 바람직하게는 99.99 중량% 이상을 탄화탄탈이 차지하며, 보다 바람직하게는 불가피한 불순물 이외는 모두 탄화탄탈로부터 구성된다. 본 발명에 있어서의 탄화탄탈은 TaxC 의 화학식으로 표현할 수 있는 화합물이고, 여기서 x 는 바람직하게는 0.8 ~ 1.2 이다. 피복막 (3) 의 열팽창계수는 바람직하게는 6.9 × 10-6 ~ 7.8 × 10-6/K 이다. 피복막 (3) 의 열팽창계수는 상기된 탄소기재 (1) 의 열팽창계수와 같이, 주식회사 리가쿠에서 제조하는 열분석장치 (ThermoPlus 2 TMA8310) 를 사용하면서, 참조로 SiO2 를 사용하여, N2 분위기 속에서, 293K 로부터 1273 K로 가열하면서 측정된다.
바람직하게는, 피복막 (3) 은 (220) 면 이 다른 밀러면에 대하여 특별하게 발달하고 있는 탄화탄탈의 결정으로부터 실질적으로 구성된다. JP-A-2004-84057에 기재된 바와 같이, 종래에는 수많은 결정면에 배향한 탄화탄탈이나, 결정성을 저하시킨 탄화탄탈로 이루어지는 피복막을 사용하는 것이 지향되었다. 본 발명의 바람직한 양태에서는, 종래 기술과는 완전히 다르고, 탄화탄탈은 특정한 결정면, 즉 (220) 면 에 배향된다. 그 결과, 내식성 및 내열충격성이 우수한 탄소재료 (100) 를 얻을 수 있다. 이 실시양태에서는, 피복막 (3) 은 탄소기재 (1) 의 적어도 일부 상에 형성되며, 바람직하게는 탄소기재 (1) 의 전표면을 덮도록 형성된다. 피복막 (3) 은 탄소기재 (1) 상에 직접에 형성될 수 있으며, 또는 후술하는 중간층을 통해 형성되어 있어도 된다.
이 실시양태에서, 탄화탄탈의 피복막 (3) 은, 탄화탄탈의 (220) 면 을 다른 밀러면에 비교하여 특별하게 발달시키는 것으로 형성되어, 본 발명의 작용 및 효과를 저해하지 않는 한에서, 그 피복막 (3) 은 다른 결정면에 배향한 탄화탄탈을 포함할 수도 있다. 피복막 (3) 을 구성하는 탄화탄탈의 배향의 정도는 X선 회절에 의해서 정량화될 수 있다.
바람직하게는, 피복막 (3) 의 X선 회절패턴에 있어서, 탄화탄탈의 (220) 면의 회절선은 최대의 회절강도를 나타낸다. 또한, 바람직하게는, 피복막 (3) 의 X 선 회절패턴에 있어서, 탄화탄탈의 (220) 면 의 회절선은, 2번째로 큰 회절선의 회절강도의 4배 이상, 더욱 바람직하게는 8배 이상의 강도를 나타낸다. 피복막 (3) 의 X선 회절패턴에 있어서, 탄화탄탈의 (220) 면 의 회절선의 반값폭은, 바람직하게는 0.2°이하이고, 보다 바람직하게는 0.10°~ 0.16°이다. 피복막 (3) 의 X선 회절패턴은, 피복막 (3) 에 X 선을 조사하였을 때의 회절선의 강도를 측정하여, 가로축에 회절각 (2θ), 세로축에 회절강도를 플롯하여 얻어지는 곡선이다. 탄화탄탈의 (220) 면의 회절선은 상기 X선 회절패턴의 약 58°의 회절각에 나타난다. 회절강도의 높이는 피크의 최대 높이를 의미한다. 회절선의 반값폭은, 최대높이의 1/2의 강도에 있어서의 피크의 폭을 의미하며, 해당 피크에 연유되는 결정면의 결정성의 지표가 된다.
피복막 (3) 의 X선 회절패턴은 공지된 방법에 의해서 결정될 수 있다. 구체적으로는, 탄소기재 (1) 상에 형성된 탄화탄탈의 피복막 (3) 의 표면 (측정 대상) 에 Cu 관으로부터의 X선을 조사하여 실시한다. X선 분석장치로서, 리가쿠사에서 제조한 "X-ray Diffractometer RINT2000"가 예시된다. 피복막 (3) 의 결정 프로파일을 측정하여, 장치나 결정구조 등에 기인하는 적절한 보정처리를 하여, X선 회절패턴이 얻어, 그 패턴으로부터 회절선의 강도 및 반값폭을 구한다.
피복막 (3) 의 질소가스 투과율은, 바람직하게는 1O-6㎠/sec 이하이고, 보다 바람직하게는 1O-8 ~ 1O-11㎠/sec 이다. 피복막 (3) 이 조밀하고 강고하기 때문에, 질소가스 투과율이 작은 것이 바람직하다. 일반적으로, 기재 (1) 로서의 흑연의 질소가스 투과율은 1O-2 ~ 1O-3㎠/sec 이다. 피복막 (3) 의 질소가스 투과율이 1O-6㎠/sec 이하인 것은, 흑연의 질소가스 투과율의 1/1000 이하인 것을 의미한다. 따라서, 상기 범위 내이면, 피복막 (3) 은 충분히 조밀하다고 할 수 있다.
피복막의 질소가스 투과율의 측정방법을 도 5 를 참조하여 개설한다. 측정 시료는 지름 30㎜ 이상의 디스크상이고, 측정전에 충분히 건조된다. 측정시료를 셀 내에 설치하여, 셀 1 차측 및 2 차측의 탱크를 로터리 진공 펌프 및 터보분자 펌프로 일정한 진공값이 될 때까지 감압한다. 이어서, 진공펌프를 정지하여 밸브를 닫는다. 1 차측의 탱크에 N2 가스를 일정한 시험압으로 가한다. N2 가스는 1 차측에서, 측정시료를 투과하여, 2 차측의 탱크로 이동한다. 그 결과, 2 차측의 탱크의 압력이 상승하기 시작한다. 그 압력 상승율을 측정한다. 가스투과율 (K) 은, 다음 식(1), 식 (2) 에 따라서 산출한다.
K=(QL) / (△PA)...(1)
Q={(p2-p1) Vo}/t...(2)
여기서, K 는 질소가스 투과율, Q 는 통기량, △P는 1 차측 탱크와 2 차측 탱크의 압력차, A 는 투과면적, L 은 측정시료의 두께, p1 은 2 차측 탱크의 초기압력, p2 은 2 차측 탱크의 최종압력, Vo 는 2 차측 탱크의 용적, t 는 측정시간이다.
피복막 (3) 의 질소가스 투과율 (K2) 을 구하기 위해서는, 우선 탄소기재 (1) 와 그 위에 형성된 피복막 (3) 을 갖는 탄소재료 (100) 의 질소가스 투과율 (Ko) 을 측정하여, 이어서 연마에 의해 피복막 (3) 을 제거하여, 탄소기재 (1) 만의 질소가스 투과율 (Kl) 를 측정한다. 그리고, 다음 관계식 (3) 으부터 K2 를 산출한다.
(L1 + L2)/Ko = L1/K1 + L2/K2 ... (3)
여기서, L1 은 탄소기재의 두께, L2 는 탄화탄탈의 피복막의 두께이다.
본 발명에서, 피복막 (3) 의 두께는 바람직하게는 10 ~ 100㎛ 이고, 보다 바람직하게는 30 ~ 80㎛ 이다. 도 6 에 나타나는 바와 같이 피복막 (3) 의 두께가 10㎛ 이상이면, 피복막의 질소가스 투과율이 현저하게 작게 된다. 또한, 피복막 (3) 의 두께가 10㎛ 이상이면, 피복막 (3) 의 탄화탄탈의 결정성이 현저히 향상되고, 피복막 (3) 의 내식성 및 내열충격성이 향상된다. 한편, 피복막 (3) 의 두께가 증가되면, 피복막 (3) 의 내부 응력이 증가된다. 따라서, 피복막 (3) 의 박리되기 쉽고, 내열충격성이 저하될 우려가 있다. 때문에, 막 두께는 1OO㎛ 이하가 바람직하다.
피복막 (3) 의 탄화탄탈의 탄탈원은 탄탈을 포함하는 것이면 한정되지 않는다. 바람직하게는, 다만 한정하는 것이 아니지만, 피복막 (3) 은 화학증착 (CVD) 에 의해서 형성된다. CVD의 실시시, TaCl5, TaF5 등과 같은 탄탈의 할로겐화합물과, 탄화수소, 바람직하게는 탄소수 1~4 의 알칸, 보다 바람직하게는 CH4, C3H8 등과 같은 원료가스에, 수소가스나 아르곤가스를 첨가한 혼합 가스를 얻고, 얻어진 혼합 가스가 열분해에 적용되도록 하며, 그 반응에 의해서 얻어지는 탄화탄탈을 탄소기재 (1) 에 퇴적시켜 피복막 (3) 을 얻는다.
도 7 은, 고주파 유도 가열식 진공화로의 모식도이다. 진공화로는 상기의 제조방법을 실시하기 위한 CVD 장치로서 사용할 수 있다. 반응실에는 이중 석영관, 단열재, 튜브 내로 유도 부하되는 흑연 노벽, 및 반응실을 가열하기 위한 고주파 코일 등으로 이루어지는 가열장치가 배치되어 있다. 원료가스를 도입하기 위한 가스 도입관을 반응실에 배치하여, 반응실 내를 배기하기 위한 배기구가 설치된다. 배기구에는 가변 밸브가 설치되어 있어, 이 밸브의 조작에 의해 반응실 내의 압력이 조정될 수 있다.
CVD 에 의해 피복막 (3) 을 제조하는 때, 반응관 상류의 가스 도입관으로부터 Ta 원료가스, 탄화수소가스, 수소가스 및 아르곤가스의 혼합가스가 공급된다. Ta 원료가스는 상술한 탄탈의 할로겐화물 등을 원료탱크 내에서 가열, 기화시켜 공급한다. 또, 수소가스나 아르곤가스로서는 순도 99.99% 이상, 산소 함유량 5 ppm 이하의 고순도의 것을 사용하는 것이 바람직하다. 통상, 제조는 진공처리, 가열, CVD 처리, 열처리, 및 냉각의 순서로 실시된다. 우선, 탄소기재 (1) 를 반응실 내에 1 개 또는 복수개 넣은 후, 반응실 내의 압력을 1.33 Pa ~ 13.3 Pa 정도까지 내린다. 이어서 반응실 내에 H2 가스를 7000 cc/min 로 도입하여 1100℃ 정도까지 가열하여 반응실 내의 탈가스 처리를 한다. 그 후, 반응실 내를 750 ~ 950℃ 정도, 바람직하게는 800 ~ 950℃ 정도까지 냉각하여, 이 온도로 탄소기재 (1) 상에 CVD 처리를 하여 탄화탄탈을 피복한다. CVD 처리시, 반응실 내의 탄소기재 (1) 의 온도를 750 ~ 950℃, 바람직하게는 800 ~ 950℃, 보다 바람직하게는 800 ~ 900℃, 반응실 내의 압력을 133Pa ~ 53.3kPa 로 설정한다. 750℃ 이상으로 CVD 처리를 행하면, C 원자에 대한 Ta 원자의 원자비가 1.5인 피복막 (3) 이 형성되어 쉽고, 요구되는 탄화탄탈의 피복막 (3) 이 얻어지기 쉽다. 또한, 950℃ 이하 또한 53.3 kPa 이하로 CVD 처리를 행하면, 탄화탄탈은 미분이 아니라 막의 형태로 얻어지고 쉽기 때문에 바람직하다.
반응실 내의 탄소기재 (1) 가 소정의 온도 및 압력이 된 후, 원료가스를 그 반응실 내에 도입해도 된다. 이때의 각각의 가스 유량은, 예컨대 TaC15 가스로서는 2 ~ 200cc/min, 바람직하게는 5 ~ 30cc/min, C3H8 가스로서는 25 ~ 2500 cc/min, 바람직하게는 60 ~ 450cc/min, 수소가스로서는 100 ~ 10000cc/min, 바람직하게는 250 ~ 1300cc/min, 아르곤가스로서는 400 ~ 40000cc/min, 바람직하게는1000 ~ 6000cc/min 이다. 온도, 압력, 각 가스 유량 및 처리시간 등의 CVD 조건을 적절히 조합함으로써 성장속도를 1 ~ 50㎛/hr에 제어할 수 있어, 탄소기재 (1) 상에 원하는 두께의 탄화탄탈의 피복막 (3) 을 형성할 수 있다.
바람직하게는, 탄화탄탈의 피복막 (3) 을 형성한 후 열처리를 한다. 이 열처리에 의해서 피복막 (3) 에 남아 있는 잉여 탄탈과 탄소가 활성화되어 탄화탄탈로 전화하여, 결정성이 향상한다. 구체적으로는, 우선 CVD 처리의 후, 탄소재료 (100) 를 반응실 내에 설치한 상태로, 반응실 내의 압력을 1.33Pa ~ 13.3Pa 정도에까지 내린다. 이어서, H2 가스, Ar 가스, He 가스, 또는 이것들의 가스에 미량인 탄화수소가스를 혼합한 가스를 100 ~ 5000cc/min 로 도입하고, 반응실 내의 압력을 l2 ~ 10lkPa, 바람직하게는 53.3 kPa 로 조정하면서 반응실 내를 재가열한다. 가열하는 온도는 1600 ~ 2400℃, 바람직하게는 1600 ~ 2000℃ 이고, 이 온도로 5 ~ 10 시간 처리한다. 처리의 종료 후, 반응실 내를 소정온도까지 냉각한 후, 제품으로서의 탄소재료 (100) 를 반응실에서 집어낸다. 이때의 승온 및 온도 저감 속도는 50℃/min 이하로 설정하여, 피복막 (3) 에 발생하는 열응력을 저감시키는 것이 바람직하다.
<중간층>
본 발명의 바람직한 실시양태에서, 탄소기재 (1), 중간층 (2) 및 피복막 (3) 이 순차로 적층되어 있다.
중간층 (2) 은, 탄소기재 (1) 와 탄화탄탈의 피복막 (3) 이라는 두 가지의 이질 층 사이에 존재하고 있어, 열팽창이나 격자부정합 등 물성의 차이를 완화하는 층이며, 바람직하게는 탄소와 탄탈을 포함하는 조성물로 이루어진다. 중간층 (2) 의 조성물로서는, 예컨대 탄소원소와 탄탈원소를 모두 포함하는 화합물 (예, 피복막 (3) 과는 다른 조성의 탄화탄탈) 도 될 수 있으며, 또는 탄소원소를 포함하는 재료와 탄탈원소를 포함하는 재료와의 혼합물일 수 있다. 중간층 (2) 을 구성하는 조성물의 바람직한 양태는 이하 설명된다.
본 발명의 바람직한 양태에 따라서, 중간층 (2) 은, 피복막 (3) 보다도 다공질이거나, 또는 피복막 (3) 보다도 화학조성분포가 불균일하다. 중간층 (2) 은 탄소기재 (1) 및 탄화탄탈의 피복막 (3) 에 충분한 밀착을 고려하면, 바람직하게는 1㎛ 이상의 두께를 갖는다. 더 바람직한 두께는 중간층 (2) 의 형태에 따라 변하며, 후에 기술한다.
중간층 (2) 이 피복막 (3) 보다도 다공질이면, 피복막 (3) 과 다공질인 중간층 (2) 과의 사이에서 앵커효과가 생겨, 피복막 (3) 이 강고히 형성되는 것이 기대된다. 그 결과, 중간층 (2) 의 구멍이 탄소기재 (1) 의 열수축에 의한 미스매치를 흡수, 완화하여 피복막 (3) 으로의 열응력이 경감되는 것이 기대된다. 중간층 (2) 과 탄화탄탈의 피복막 (3) 이 더 다공질인지는 광학현미경이나 주사형 전자현미경에 의한 관찰이나 상술한 수은압입법 등에 의해서 확인할 수 있다. 다만, 후술하는 다공질의 탄소기재 (1) 의 표층부분을 탄화탄탈으로 전화하여 얻어지는 중간층 (2) 은 예컨대, 화학증착에 의해서 얻어지는 피복막 (3) 보다도 다공질인 것은 측정할 필요도 없이 명확하다.
한편, 중간층 (2) 이 피복막 (3) 보다도 화학조성분포가 불균일하면, 중간층 (2) 은, 피복막 (3) 및 탄소기재 (1) 모두와 높은 결합력을 가지게 된다. 결과적으로 피복막 (3) 과 탄소기재 (1) 가 중간층 (2) 을 통해 강고히 결합되어, 크랙이나 박리가 저감되는 것이 기대된다. 또한, 중간층 (2) 이 탄소기재 (1) 측에서 피복막 (3) 측으로 연속적 또는 단계적으로 변화하는 화학조성분포를 갖는 경우에는, 중간층 (2) 의 열팽창계수나 열전도율 등의 물성도 또한 탄소기재 (1) 측에서 피복막 (3) 측으로 급격한 것이 아니라 단계적으로 변화한다. 따라서, 피복막 (3) 의 열응력이 저감되는 것이 기대된다. 중간층 (2) 의 화학조성 분포의 불균일성은, 중간층 (2) 이나 피복막 (3) 의 크기보다 충분히 작은 영역을 수많이 측정하였을 때의 화학조성의 대소로 평가할 수 있고, 전자현미경의 반사전자상을 이용한 화학조성분석이나, 오제 (Auger) 전자분광법을 이용한 화학조성 분석 등 공지의 수단에 의해 평가 및 확인될 수 있다. 구체적인 예로서, 탄소기재 (1) 의 표층부분의 기공 중에 탄화탄탈이 매설됨으로써 불균일한 화학조성 분포를 실현하거나, 탄소기재 (1) 측에서 피복막 (3) 측으로 탄소/탄탈의 원자비가 낮아지는 농도구배를 중간층 (2) 에 부여함으로써 불균일한 화학조성 분포를 실현하는 예를 후술한다. 도 8 은, 이 실시양태에 의한 탄소재료 (100) 의 화학 조성물을 모식적으로 표시하고 있어, 탄소기재 (1) 로부터 피복막 (3) 으로 중간층 (2) 을 통해 연속적으로 화학조성분포가 변한다.
다음으로, 3 개의 바람직한 중간층의 양태가 보다 상세하게 설명되지만, 본 발명의 탄소재료 (100) 가 갖는 중간층은 이들에 한정되는 것은 아니다.
<중간층 - 바람직한 양태 1>
도 9 는 이 바람직한 양태 (이하, 제 1 양태라고도 한다) 에 의한 탄소재료를 모식적으로 나타내고 있으며, 제 1 바람직한 중간층 (21) 이 강조하고 묘사되어 있다. 제 1 양태로서는 탄소기재 (1) 의 표층부분을 탄화탄탈에 전화하여 얻어진 층 (21) 이 중간층이다. 일반적으로, 탄소기재 (1) 는 다공질이기 때문에, 이 양태에 있어서의 중간층 (21) 도 또한 다공질이다. 따라서, 이 양태에서는 중간층 (21) 의 평균기공반경이, 바람직하게는 0.01 ~ 5㎛, 더 바람직하게는 1 ~ 2㎛ 이고, 총 세공용적은, 바람직하게는 5 ~ 35 ㎤/g 이고, 더 바람직하게는 1O ~ 2O ㎤/g 이다. 도 9 에서, 기공 (4) 을 강조하여 묘사함으로써, 탄소기재 (l) 과 중간층 (21) 이 다공질인 것을 나타내고 있다. 기공 (4) 은, 중간층 (21) 을 두께 방향에 관철하는 개기공일 수 있으며, 또는 중간층 (21) 을 두께 방향에는 관철하지 않은 폐기공일 수도 있다. 중간층 (21) 은 개기공과 폐기공 모두를 포함할 수도 있다. 이 양태에서는, 중간층 (21) 의 두께 (t) 는 바람직하게는 1㎛ 이상이고, 더욱 바람직하게는 30 ~ 200㎛ 이다. 두께 (t) 가 1㎛ 이상이면 중간층 (21) 은 탄소기재 (1) 및 피복막 (3) 으로 충분히 밀착한다. 중간층 (21) 은 두꺼울 수 있지만, 200㎛ 을 넘으면 본 발명의 효과가 포화된다.
탄소기재 (1) 의 전화에 의해서 중간층 (21) 을 형성하는 방법을 이하에 예시한다.
여기서 예시하는 방법 (도시하지 않음) 은 탄소기재 (1) 에 CVD 법으로 탄탈을 피복하는 것을 포함한다. 탄탈을 피복하기 위한 방법은, 열 CVD, 플라즈마 CVD 등과 같은 CVD 법에 한하지 않고, 진공증착법, 스퍼터링법, 이온플레이팅법 등과 같은 PVD 법이 사용될 수 있다. 이러한 증착법 외에, 산화탄탈 미분 중에 탄소기재 (1) 를 매설하여, 불활성 분위기로 1000℃ 이상으로 가열함으로써, 탄소기재 (1) 의 표층부분을 탄화탄탈로 전화할 수도 있다. 그러나, 중간층 (21) 의 두께 (t) 를 보다 용이하게 제어할 수 있는 점에서 CVD 법이 바람직하다.
CVD 법은 피복막의 형성법에 있어서 설명한 도 7 에 예시되는 고주파 유도 가열식 진공로를 사용하여 실시될 수 있다.
이제 탄탈의 피복의 구체적인 예가 설명된다. 반응관 상류에서 가스 도입관으로부터 Ta 원료가스, 수소가스, 및 아르곤가스의 혼합가스가 공급된다. Ta 원료가스로서는, 탄탈을 포함하는 것이면 한정은 되지 않으며, 예컨대 TaCl5, TaF5 등과 같은 할로겐화합물이 바람직하다. 상술의 탄탈의 할로겐화물 등이 원료탱크 내에서 가열되고, 기화된다. 또, 수소가스 및 아르곤가스로서는 순도99.99% 이상, 산소함유량 5ppm 이하의 고순도의 것을 사용하는 것이 바람직하다. 통상, 진공화, 가열, CVD 에 의한 탄탈의 피복 및 탄화탄탈에의 전화에 의해서 중간층 (21) 이 얻어진다. 우선 탄소기재 (1) 는 반응실 내에 1 개 또는 복수 개 위치된 후, 반응실 내의 압력을 1.33Pa ~ 13.3Pa 정도까지 낮춰진다.. 이어서, 반응실 내에 H2 가스를 7000cc/min 의 유속으로 도입하고 1800℃ 정도까지 가열하여 반응실 내의 탈가스처리를 한다.
그 후, 반응실 내를 1200 ~ 1600℃ 정도에까지 냉각하고, 이 온도로 CVD 처리를 하여 탄소기재 (1) 에 탄탈을 피복한다. CVD 처리는 반응실 내의 탄소기재 (1) 의 온도를 1200~1600℃ 로, 반응실 내의 압력을 1.33kPa ~ 53.3kPa 로 하여 실시한다. 온도가 1200℃ 이상이면, 탄탈원료인 할로겐 화합물 등이 충분히 분해되어 바람직하게 탄탈이 피복될 수 있다. 1600℃ 이하의 온도, 53.3kPa 이하의 압력으로서는 탄탈원료의 가스가 적절한 속도로 분해되어, 탄소기재 (1) 의 표면에서의 성장이 생기기 쉽기 때문에, 결과적으로 양호한 탄탈의 피복이 달성된다. 반응실 내에 공급하는 원료가스는 반응실 내의 탄소기재 (1) 가 소정의 온도 및 압력이 된 후, 그 반응실 내에 도입된다. 이때 각각의 가스 유속은 예컨대, TaC15 가스로서는 20cc/min, 수소가스로서는 1000cc/min, 아르곤가스로서는 4000cc/min 이다. 온도, 압력, 각 가스 유량 및 처리 시간 등의 CVD 조건의 적절한 조합은 성장 속도를 1 ~ 50㎛/hr 로 제어할 수 있어, 탄소기재 (l) 에 원하는 두께의 탄탈의 피복을 형성할 수 있다. 전화에 의한 중간층 (21) 의 두께 (t) 를 제어하기 위해서는, 이 단계에서 탄탈의 피복의 두께를 조절하면 되고, 중간층 (21) 의 두께 (t) 를 1㎛ 늘리기 위해서는, 탄탈의 피복을 약 0.8 ~ l.2㎛ 두껍게만 하면 된다.
탄탈을 피복한 후, 반응실 내에 잔류하는 탄탈 원료가스를 수소가스 및 아르곤가스로 충분히 치환하여, 탄소기재 (1) 의 표층부분을 탄화탄탈로 전화하는 반응에 기여하게 한다. "전화"는 탄소기재 (l) 의 표층부분의 탄소를 탄탈과 고온에서 반응시켜, 탄화탄탈을 얻는 것을 의미한다. 전화를 위한 가스 분위기는, 바람직하게는 수소가스나 아르곤가스 분위기이고, 보다 바람직하게는 수소가스 및 아르곤가스에 C3H8, CH4 등의 탄화수소가스를 혼합한 가스 분위기이다. 전화를 위한 압력은, 바람직하게는 13.3kPa 이상, 보다 바람직하게는 53.3kPa ~ 101.3kPa 이다. 전화를 위한 온도는, 바람직하게는 1800℃ 이상, 보다 바람직하게는2200 ~ 3000℃ 이다. 전화에 요구되는 시간은 통상 5 ~ 20시간, 바람직하게는10 ~ 20시간이다. 전화의 종료 후, 상술한 피복막 (3) 을 형성하기 위한 온도에까지 반응실 내의 온도가 저감된다.
<중간층 - 바람직한 양태 2>
도 10 은, 이 양태 (이하, 제 2 양태라고도 함) 에 의한 탄소재료를 모식적으로 나타내고 있으며, 제 2 바람직한 중간층 (22) 이 강조되어 묘사되어 있다. 제 2 양태로서는, 탄소기재 (1) 의 표층부분의 기공에 탄화탄탈이 매설되어 있고, 그와 같이 탄화탄탈이 매설된 부분을 포함하는 층 (22) 을 중간층이라고 인지한다. 이 양태에서는, 중간층 (22) 은, 탄소기재 (1) 에 연유되는 탄소로 이루어지는 부분 (223) 과, 처리 전은 기공이 있는 부분으로 매설된 탄화탄탈로 이루어지는 부분 (221) 을 갖는다. 결과적으로, 중간층 (22) 의 화학조성분포는 불균일하다. 다만, 중간층 (22) 에 존재하는 기공 모두에 탄화탄탈이 매설될 필요는 없으며, 기공은 일부에서 그대로 존재하고 있을 수 있다. 제 2 양태에서는, 중간층의 두께 (t) 는 바람직하게는 1㎛ 이상이고, 보다 바람직하게는 50 ~ 300㎛ 이다. 두께 (t) 가 1㎛ 이상이면, 중간층 (22) 은 탄소기재 (1) 및 피복막 (3) 에 충분히 밀착된다. 중간층 (22) 은 두껍울 수도 있지만, 300㎛ 을 넘으면 본 발명의 효과가 포화된다.
탄소기재 (1) 의 기공에 탄화탄탈을 매설하여, 중간층 (22) 을 형성하는 방법을 이하에 예시한다.
여기서 예시하는 방법 (도시하지 않음) 은 탄소기재 (1) 에 화학기상함침 (CVI) 법으로 탄탈을 함침시키는 것을 포함한다. 다만, CVI 법을 적용하지 않고서, 상술의 제 1 양태와 같이 CVD 법이나 PVD 법에 의해서 탄탈을 탄소기재 (1) 에 피복한 후에 3000℃ 이상으로 가열하여, 그 탄탈을 용융하고 탄소기재 (1) 의 기공 중에 함침시킬 수도 있다. 그러나, 중간층 (22) 의 두께 (t) 를 보다 용이하게 제어할 수 있다는 점에서 CVI 법이 바람직하다.
CVI 법은 제 1 바람직한 양태로 설명한 도 7 에 예시되는 고주파 유도가열식 진공로를 사용하여 실시할 수 있다. 탄탈의 함침에 있어서는, 제 1 양태의 경우와 같이, Ta 원료가스, 수소가스 및 아르곤가스의 혼합가스가 공급될 수 있다. Ta 원료가스, 수소가스 및 아르곤가스로는 제 1 양태의 경우와 같은 것을 사용할 수 있다. 가스 반응속도가 느리면, 가스 침투 깊이가 더 깊어지기 때문에, CVI 법이 바람직하다. 따라서, 반응속도가 비교적으로 느린 TaC15 의 사용이 바람직하다. 통상, 진공화, 가열, CVI 에 의한 탄탈의 함침 및 탄화탄탈으로의 전화에 의해서 중간층 (22) 이 제조된다. 진공화 및 탈가스처리는 제 1 양태와 동일한 조건 하에서 실시하는 것이 바람직하다.
그 후 반응실 내를 750 ~ 1200℃ 정도로 냉각하고, 이 온도에서 CVI 처리를 하여 탄소기재 (1) 의 기공 내에 탄탈을 매립한다. CVI 처리는 반응실 내의 탄소기재의 온도를 750 ~ 1200℃ 로, 반응실 내의 압력을 1.33 Pa ~ 1.33 kPa 로 실시한다. 온도가 750℃ 이상이면, 탄탈원료인 할로겐 화합물 등이 충분히 분해되어 바람직하게 탄탈이 함침될킬 수 있다. 1200℃ 이하의 온도이고 또한 1.33 kPa 이하의 압력으로서는, 탄탈원료의 가스가 적절한 속도로 분해되고, 탄소기재 (1) 로 탄탈의 확산거리가 적절해지기 때문에, 결과적으로 목표의 깊이에까지 탄탈을 함침시키기 쉽다. 반응실 내로 공급하는 원료가스는 반응실 내의 탄소기재 (1) 가 소정의 온도 및 압력이 된 후에, 그 반응실 내에 도입된다. 이때의 각각의 가스유량은, 예컨대 TaC15 가스로서는 2Occ/min, 수소가스로서는 1OO0cc/min, 아르곤가스로서는 4000cc/min 이다. 온도, 압력, 각 가스 유량 및 처리시간 등의 CVI 조건을 적절히 조합함으로써, 탄탈의 함침 깊이를 1 ~ 1OO㎛ 로 제어할 수 있다. 예컨대, 탄탈의 함침 깊이를 크게하기 위한 것으로, 반응실 내의 온도를 저하시키는 것, 반응실 내의 압력을 저하시키는 것, 및 반응실 내의 압력을 펄스식으로 변화시키는 것을 들 수 있다.
탄탈을 함침한 후, 반응실 내에 잔류하는 탄탈 원료가스를 수소가스 및 아르곤가스로 충분히 치환하여, 함침한 탄탈을 그 주위에 존재하는 탄소기재 (1) 의 탄소와 반응시켜 탄화탄탈로 전화시킨다. 전화를 위한 압력은 바람직하게는 13.3kPa 이상, 보다 바람직하게는 53.3kPa ~ 101.3kPa 이다. 전화를 위한 온도는, 바람직하게는 1800℃이상, 보다 바람직하게는 2200 ~ 3000℃ 이다. 전화에 요하는 시간은, 통상 5 ~ 20 시간, 바람직하게는 10 ~ 20 시간이다. 전화의 종료 후, 상술의 피복막 (3) 을 형성하기 위한 온도까지 반응실의 온도를 저감시킨다.
전술한 바와 같이 기공 중의 탄탈을 탄화탄탈로 전화시키는 경우에는, 동시에 그 기공의 주위의 탄소재료가 탄화탄탈로 전화될 수도 있다. 도 11 은 이러한 양태를 나타내고 있고, 중간층 (22) 은 탄소기재의 기공에 매설된 탄화탄탈 (221), 이 탄화탄탈 (221) 의 주위의 탄소재료가 탄화탄탈에 전화된 영역 (222), 및 기재에 연유되는 탄소가 그대로 잔존하고 있는 영역 (223) 을 포함할 수 있다. 도 13 은 이러한 양태의 탄소재료의 단면의 SEM 관찰상이다. 더욱이, 도 12 는 중간층을 형성하지 않은 탄소재료의 단면의 SEM 관찰상이다.
상기된 바와 같이, 탄탈의 피복/함침에 관련되는 CVD 법 및 CVI 법은 유사한 조작에 의해서 실시되고, 온도나 압력을 근거로 CVD 법과 CVI 법을 기본적으로 구별할 수 있다. 그러나, 온도나 압력에 의해서는 탄탈의 피복과 함침 모두가 동시에 실시될 수 있으며, 결과적으로 도 9 에 나타내는 바와 같은 탄소기재의 표층부분이 탄화탄탈에 전화된 층 (제 1 바람직한 중간층 (21)) 과, 이 층 (21) 의 기공 내에 탄화탄탈이 매설되는 층 (제 2 바람직한 중간층 (22)) 이 공존할 수 도 있다. 이러한 양태도 본 발명에 포함된다.
<중간층 - 바람직한 양태 3>
도 14 는 이 양태 (이하, 제 3 양태라고도 함) 에 의한 탄소재료를 모식적으로 나타내고 있으며, 제 3 의 바람직한 중간층 (23) 이 강조하고 묘사되어 있다. 제 3 양태에서는, 탄소기재 (1) 의 표면에 중간층으로서의 경사재료층 (23) 이 형성되어 있다. 이 경사재료층 (23) 은 탄소기재 (1) 측에서 피복막 (3) 측으로 탄소/탄탈의 원자비 (이하, C/Ta 비라고도 함) 가 연속적 또는 단계적으로 낮아지는 농도구배를 갖는다. 즉, 탄소기재 (1) 측에서는 C/Ta 비가 높고, 피복막 (3) 측을 향해 낮아진다. 중간층 (23) 의 C/T a 비가 이러한 방식으로 이 층 내에서 변하기 때문에, 불균일인 화학조성분포가 된다. 이 양태에서는, 중간층 (23) 의 두께 (t) 는 바람직하게는 1㎛ 이상이고, 보다 바람직하게는 1 ~ 1O㎛, 더욱 더 바람직하게는 3 ~ 5㎛ 이다. 두께 (t) 가 1㎛ 이상이면, 중간층 (23) 은 탄소기재 (1) 및 피복막 (3) 으로 충분히 밀착한다. 경사재료층 (23) 에서, 탄소기재 (1) 의 부근의 조성은 바람직하게는 탄소기재 (1) 에 아주 가깝고, 피복막 (3) 의 부근의 조성은 피복막 (3) 에 아주 가까운 조성이 바람직하다. 구체적으로는, 경사재료층 (23) 에 있어서의 C/Ta 비의 최대치는 바람직하게는 1O 이상, 보다 바람직하게는 1OOO 이상이고, 최소치는 바람직하게는 0.8 ~ 1.2이다. 경사재료층 (23) 에는 C/Ta 비가 1.2를 초과하여 10 미만인 재료의 영역이 1㎛ 이상의 두께로 존재하는 것이 바람직하다. 이러한 양태에서, 경사재료층 (23) 은 후술하는 탄화탄탈의 피복막 (3) 과 같은 정도로 조밀한 것이 바람직하다.
경사재료층 (23) 을 형성하는 방법을 이하에 예시한다.
여기서 예시하는 방법 (도시하지 않음) 은 탄소기재 (1) 에 CVD 법에 의한 탄소와 탄탈의 원자비를 컨트롤하면서 탄화탄탈을 피복하는 것을 포함한다. CVD 법은 제 1 양태로 설명한 도 7 에 예시되는 고주파 유도가열식 진공로를 사용하여 실시될 수 있다. Ta 원료가스, 수소가스 및 아르곤가스는 제 1 양태의 경우와 같은 것을 사용할 수 있다. 탄소의 원료로서는, 탄화수소가스가 바람직하게 사용되고, 보다 바람직하게는 탄소수 1 ~ 4의 알칸 가스, 더욱 바람직하게는 CH4이나 C3H8 등이 사용된다.
통상, 진공화, 가열, CVD에 의해서 중간층 (23), 즉 경사재료층이 얻어진다. 진공화 및 탈가스처리는 제 1 양태와 같은 조건으로 실시하는 것이 바람직하다. 그 후, 반응실 내를 750 ~ 950℃ 정도까지 냉각하여, CVD 처리를 시작한다. CVD 처리는 반응실 내의 탄소기재 (1) 의 온도를, 바람직하게는 750 ~ 950℃, 반응실 내의 압력을 바람직하게는 133Pa ~ 53.3kPa 로 실시한다. 온도가 750℃ 이상이면, C/Ta 비의 컨트롤이 용이할 수 있고, 950℃ 이하이고 압력이 53.3 kPa 이하이면 탄화탄탈이 미분이 되지는 않는다. 따라서, 우수한 경사재료층 (23) 을 얻을 수 있다. 경사재료층 (23) 을 얻기 위해서, 예컨대 CVD 처리에 있어서, C3H8 가스를 200 ~ 400cc/min, 수소가스를 100 ~ 2000cc/min, 아르곤가스를 2000 ~ 5000cc/min 의 유량으로 공급하면서, Tacl5 가스를 시간당의 공급량이 0.01 ~ 20cc/min의 범위 내에서 점차로 많아지도록 변화시킴으로써, C/Ta 비를 제어할 수 있다. 온도, 압력, 각 가스 유량 및 처리시간 등과 같은 CVD 법의 조건을 적절히 조합함으로써 성장속도를 1 ~ 50㎛/hr로 제어할 수 있어, 원하는 두께의 중간층 (23) 을 형성할 수 있다. 중간층 (23) 의 형성후, 계속해서, 탄화탄탈의 피복막 (3) 을 형성할 수 있다.
도 1 및 도 2 는 본 발명의 탄화탄탈 피복 탄소재료의 각 형태의 모식도이다.
도 3 및 도 4 는 본 발명에 의한 피복막의 현미경 관찰상이다.
도 5 는, 질소 가스 투과율 측정의 개요를 나타낸다.
도 6 은 피복막의 두께와 질소가스 투과율과의 관계의 일례를 나타낸다.
도 7 는 고주파 유도가열식 진공로의 개요를 나타낸다.
도 8 은 본 발명의 일 양태의 탄화탄탈 피복 탄소재료에 있어서의 화학조성분포를 나타낸다.
도 9 ~ 도 11 은 본 발명의 탄화탄탈 피복 탄소재료의 각 양태를 모식적으로 나타낸다.
도 12 는 중간층을 형성하지 않은 탄화탄탈 피복 탄소재료의 단면의 SEM 관찰상이다.
도 13 은 중간층을 갖는 탄화탄탈 피복 탄소재료의 단면의 SEM 관찰상이다.
도 14 는 본 발명의 일 양태의 탄화탄탈 피복 탄소재료를 모식적으로 나타낸다.
도 15 ~ 도 17 은 본 발명으로 얻어지는 피복막의 X선 회절패턴을 나타낸다.
도 18 ~ 도 20 은 비교예의 피복막의 X선 회절패턴을 나타낸다.
도 21 및 도 22 는, 종래 기술로 얻어지는 피복막의 현미경 관찰상이다.
*도면의 주요 부분에 대한 부호의 설명*
부호 "1" 은 탄소기재,
부호 "2", 부호 "21" 및 부호 "22" 은 중간층,
부호 "23" 은 경사재료층의 형태의 중간층,
부호 "3" 은 피복막,
부호 "4" 는 기공,
부호 "100" 은 탄화탄탈 피복 탄소재료.
이하, 비한정식 실시예를 이용하여 본 발명을 더욱 상세히 설명한다.
우선, 환원성 가스분위기 하에서 내열충격성 시험법을 설명한다. 열충격 시험법은 두 가지가 있으며, 통상의 에피택셜 성장을 모의한 시험, <열충격 시험 1>, 및 엄격한 조건에 따른 시험, <열충격 시험 2> 이 있다. <열충격 시험 2> 은, 통상의 사용보다도 훨씬 엄격한 조건에 따른 시험이며, 이 시험으로 크랙 등이 발생하지 않는 탄소재료는 대단히 뛰어난 특성을 갖는다고 할 수 있다. 이와 같은 <열충격 시험 2> 에서는 크랙 등이 발생하였다고 해도, <열충격 시험 1>에 있어서 크랙 등이 발생하지 않는 탄소재료는 충분히 본 발명의 효과를 나타내고 있다고 할 수 있다.
진공로는 반응실로서 석영관을 갖는 고주파유도 가열로이고, 반응실 내부에 시험대상의 탄소재료 (100) 를 설치한다. 반응실 내의 압력을 0.0lTorr 이하까 지 내린 후, 반응실 내에 수소 (3000cc/min) 와 암모니아 (500cc/min) 의 혼합가스를 공급하여, 압력을 760Torr로 제어한다.
<열충격 시험 1> 에서, 탄소재료는 유도가열에 의해서 150℃/min의 승온속도로 1500℃까지 가열된다. 그리고, 탄소재료는 1500℃에서 3시간 유지된다. 그 후, 300℃/min의 온도 저감 속도로 실온까지 냉각한다. 이들을 한 사이클로 하여, 100 사이클 (총 약 300시간) 실시한다.
<열충격 시험 2> 에서, 탄소재료 (100) 는 유도가열에 의해서 1000℃/min의 승온속도로 1500℃까지 가열된다. 그리고, 탄소재료 (100) 를 1500℃에서 3시간 유지한다. 그 후, 300℃/min의 온도 저감 속도로 실온까지 냉각한다. 이들을 한 사이클로 하여, 1000 사이클 (총 약 3000시간) 실시한다.
[실시예 1 ~ 3]
1000℃ 기준의 가스방출압력이 10-6Pa/g, 재분이 2ppm 인 지름 60㎜, 두께 10㎜ 의 흑연기판을 상술한 할로겐처리의 대항으로 하여, 그 후 하기 표 1 의 CVD 조건에 의해서 탄소기판상에 탄화탄탈의 피복막을 형성하였다. 이 때, 피복막의 C/Ta 의 조성비는 C3H8 유량에 의해서, 1.0 ~ 1.2 로 조정하였다. 표 1 에 나타내는 CVD 조건을 사용하여, 반응시간을 11, 18, 25 시간으로 변화시켜, 막 두께를 21, 34, 44㎛ 로 변화시켰다. 그 후, 수소가스 분위기 속에서 2000℃ 에서 10시간, 열처리를 행하여 피복막 (3) 의 결정성을 더욱 향상시켰다. 실시예1 ~ 3의 X선 회절 결과를 도 15 ~ 도 17 에 나타낸다. X선 회절로서는, 주로 (220) 면 의 회절선이 인정되며, (111), (200), (311) 의 각 면의 회절선도 조금 인정되었다. 구체적으로는, (220) 면 의 회절선이 가장 강한 회절강도를 나타내고, (220) 면 의 반값폭은 0.13 ~ 0.15 였다. (220) 와 2 번째로 강한 (311) 의 강도비는, 회절선의 강도비로 10 이상이다 (실시예 1). 표 2 에 나타내는 바와 같이, 수소와 암모니아가스를 혼합한 환원성 가스분위기에 있어서의 <열충격 시험 1> 후의 가스투과율은 5 × 1O-10 ~ 2 × 1O-7㎠/sec 였다. <열충격 시험 2> 후의 가스투과율은 4 × 1O-10 ~ 2 × 10-7㎠/sec 였다. 따라서, (220) 면 이 가장 강한 회절강도를 나타내는 피복막 (3) 은 조밀하고, 가스의 불투과성이 우수했다.
〔비교예 1 ~ 3〕
실시예 1 ~ 3 와 동일한 방식으로, CVD 의 조건을 표 1 에 도시된 것으로 변화시키고, 피복막을 형성한 후의 열처리를 생략하여, 탄소재료를 제조하였다. 비교예 1 ~ 3 의 X선 회절결과를 도 18 ~ 도 20 에 나타낸다. 실시예 1 ~ 3 과는 달리, (200) 면이나 (111) 면의 회절선이 강한 프로파일이 얻어졌다. 이 경우, 표 2 에 나타내는 바와 같이, 피복 후에 탄화탄탈의 피복막에 크랙이 발생하여, 수소와 암모니아가스를 혼합한 <열충격 시험 l> 후의 가스투과율은 2 × 1O-5 -9 × 1O-5 ㎠/sec, <열충격 시험 2> 후의 가스투과율은 2 × 1O-4 ~ 7 × 1O-4㎠/sec 이고, 조밀한 특성이 부족하고, 흑연기재의 가스화 반응에 의해 중량 감소가 확인 됐다. 탄화탄탈이 (220) 면으로 주로 배향되지 않는 모든 경우는 상기된 바와 같이 불량한 조밀 특성을 갖는다.
[표 1]
Figure 112006068876892-pct00001
[표 2]
Figure 112006068876892-pct00002
〔실시예 4 ~ 8〕
실시예 1 ~ 3 에 사용한 것과 유사한 탄소기재 (1) 상에 CVD 법에 의해서 탄화탄탈의 피복막 (3) 을 형성하였다. CVD 조건에서, 온도를 850℃, 압력을 1330Pa로 일정하게 유하였고, C3H8 와 TaCl5 의 유량을 바꿔 탄화탄탈의 성장속도를 15 ~ 30㎛/hr의 범위로 변화시켰다. 실시예 4 ~ 6 에서는, 피복막 (3) 의 형성 후, 수소가스 분위기속에서 2000℃ 에서 10시간 열처리하였다. 얻어진 피복막 (3) 의 결정구조를 X선 회절에 의해 조사하였다. 그 결과, (220) 의 회절선의 강도비가 가장 높았으며, 2 번째로 강한 회절선의 4 배 이상의 강도였다. 표 3 에 나타내는 바와 같이 피복막 (3) 의 (220) 면의 회절선의 반값폭은 0.11 ~ 0.14°의 범위였다. 이러한 피복막은 어느 것이나, 환원성 가스분위기에 있어서의 내충격시험전에, 크랙이나 박리가 생기지 않고 우수하였다. 특히, 0.2° 이하의 작은 반값폭을 나타내는 피복막은 <열충격 시험 1>, 및 아주 엄격한 조건 하의 <열충격 시험 2> 후라도, 크랙이나 박리가 생기지 않고 매우 우수하였다.
실시예 7 ~ 8 에서, 실시예 1 ~ 3 로 사용한 것과 유사한 탄소기재 상에 CVD 법에 의하여 탄화탄탈의 피복막 (3) 을 형성하였다. CVD 조건은, 온도를 850℃, 압력을 1330Pa 로 일정하게 하여, C3H8 와 TaCl5 의 유량을 바꿔 탄화탄탈의 성장속도를 31 ~ 50㎛/hr 의 범위로 변화시켰다. 실시예 7 ~ 8 에서, 수소가스 분위기 중에서의 열처리를 생략하였다. 얻어진 피복막 (3) 의 결정구조를 X선 회절에 의해 조사하였다. 그 결과, (220) 면의 회절선의 강도비가 가장 높았다. 하지만, 성장 속도를 변화시킨 표 3 에 나타내는 바와 같이 결정 발달 정도 (결정성) 가 변화하고 있고, 반값폭이 0.31 ~ 0.75°였다. 실시예 7 ~ 8 의 피복막은 반값폭이 크고, 아주 엄격한 조건하의 <열충격 시험 2> 후에 가스투과율의 증가가 보였지만 (실시예8), <열충격 시험 1> 후에서는 크랙 및 박리가 생기지 않은, 뛰어난 피복막이고, 실용으로서는 문제가 없는 품질이었다.
[표 3]
Figure 112006068876892-pct00003
〔실시예 9 ~ 18〕
표 4 에 기재된 특성을 갖는 여러 가지의 흑연기재 (1) 를 사용하여 탄소재료 (100) 를 제조하였다. 표 4 에 기재된 여러 가지의 열팽창계수 (CTE) 를 갖는 흑연기판 (지름 60㎜, 두께 10㎜) 에 상기 할로겐처리를 행하여, 흑연기재의 재분을 1Oppm 이하로 하였다. 다만, 실시예 18 에서, 할로겐처리가 생략되고, 흑연기재 (1) 의 재분이 16ppm 였다. 실시예 1 ~ 3 와 유사한 조건으로 기판상에 탄화탄탈의 피복막 (3) (두께 43㎛) 을 형성하였다. 피복막 (3) 의 C/Ta 의 조성비는 C3H8 유량에 의해 1.0 ~ 1.2 로 조정되었다. 피복막 (3) 을 형성한 후, 수소가스 분위기 중, 2000℃ 에서 10시간 열처리를 행하였다. 실시예 9 ~ 18 에 있어서의 피복막으로서는 전부 (220) 면이 가장 강한 회절강도를 나타내고, 또 한 2 번째로 강한 회절선의 4 배이상의 강도였으며, (220) 면의 반값폭이 0.2° 이하였다. 표 4 에 나타내는 바와 같이, 어느 쪽의 탄소재료 (100) 도 <열충격 시험 1> 후 크랙이나 박리가 생기지 않는, 우수한 재료인 것이 확인되었다.
[표 4]
Figure 112006068876892-pct00004
*)측정온도범위는 293 ~ 1273K 였다.
이하, 다른 실시예가 설명된다. 이하의 실시예에서 이용된 평가방법을 설명한다.
(현미경 관찰)
제조한 탄소재료 (100) 의 표면을 주사전자현미경(SEM)으로 관찰하여, 크랙 및 박리의 유무를 평가하였다. 또한, SEM 을 사용한 단면 관찰에 의해서 중간층 (2) 의 두께를 측정하였다. SEM 장치는 주식회사 히타치의 S-3200 N 을 사용하였다. 벽개 및 연마후, 단면의 2 차 전자상 (SEI) 및 반사 전자상 (BEI) 을 구하였다. 특히, 반사 전자상에 따라서, 원소 의존성을 이용할 수 있으며, 그 결과 관찰면의 화학조성을 이차원적으로 파악할 수 있다. 결과적으로, 중간층 (2) 중의 화학 조성분포가 명백해 진다. 이를 이용하여, 탄소와 탄화탄탈에 특히 착목하여, 탄화탄탈의 전화나 함침 깊이를 평가하였다.
(X선 분석)
더욱이, X선 마이크로 애널라이저 (XMA) 를 사용한 단면관찰에 의해서, 탄화탄탈의 전화나 함침 깊이, 경사재료층의 두께를 측정하였다. XMA 장치로서는 주식회사 호리바의 EMAX-7000 를 사용하였다. 벽개 및 연마후, 단면 내의 특정선상 분석에 있어서의 탄소와 탄탈의 몰비를 측정하여, 중간층의 깊이나 막 두께를 평가하였다.
(오제 전자분광)
오제 전자분광법 (AES) 을 이용하여, 노블 가스의 스퍼터링을 병용하여, 표면에서 탄소기재 (1) 내부까지의 깊이 방향 분석을 실시하여, 깊이 방향에서의 탄소와 탄탈의 몰비를 측정하여, 중간층 (2) 의 막 두께를 평가하였다. 이하의 실시예에서, 오제 전자분광장치 (ULVAC-PHI에서 제조된 PHI700) 를 사용하였다. 오제 전자분광법으로서는, 고진공 속에서 시료표면에 전자선을 조사하여 시료표면의 원자의 코어 전자가 배출된다. 따라서, 형성된 빈 궤도에 외각전자가 보충 될 때, 전자가 발생한다. 이 발생한 전자를 오제 전자라고 부르고, 오제 전자의 운동에너지는 원소 고유이다. 운동에너지를 조사하여, 표면에서 수 ㎚ 의 영역의 원소분석을 할 수 있다.
(내열충격성 시험)
이하의 실시예에 있어서의 환원성 가스분위기에 있어서의 내열충격성 시험은, 상술한 <내열충격성 시험 2> 의 순서로 실시하였다.
승온 및 고온의 사이클을 1000 ~ 3000 사이클 (총 1000 ~ 3000시간) 실시하였다. 이 사이클 후, 상술한 SEM 에 의한 표면관찰을 실시하여, 탄화탄탈의 피복막 (3) 의 크랙이나 박리의 유무를 평가하였다.
〔실시예 19 ~ 22〕
열팽창계수가 7.8 × 10-6/K, 1000℃ 기준의 가스방출압력이 10-6Pa/g, 재분이 2ppm 인, 지름60㎜, 두께10㎜의 흑연기판 (1) 이 상술한 할로겐처리의 대상이 되며, 그후 CVD 법에 의해서 흑연기판 (1) 상에 탄탈이 피복되었다. 이때의 CVD 의 조건으로서는, 반응온도를 1250℃, 반응압력을 4.0OkPa, TaCl5 가스의 공급량을 20cc/min, 수소가스의 공급량을 1000cc/min, 아르곤가스의 공급량을 4000cc/min 으로 하였다. 반응시간을 0.5 ~ 34시간으로 바꿔, 탄탈의 피복두께, 즉 피복하는 탄탈의 중량을 하기의 표 5 에 나타내는 바와 같이 바꾸었다. 이어서, 기판 (1) 을 101.3 kPa 의 아르곤 분위기 중, 2200℃ 에서 20 시간 처리하였다. 그 결과, 흑연기판 (1) 의 표층부의 탄소와 침투한 탄탈이 반응하여 탄 화탄탈로 전화하여, 다공질인 탄화탄탈층 (중간층 (2)) 이 형성된다. 얻어진 중간층 (2) 의 두께는 표 5 와 같다. 그 후, 중간층 (2) 의 위에 CVD 법으로 C/Ta 의 조성비가 1 ~ 1.2 이고, 두께가 42㎛ 인 탄화탄탈로부터 조밀한 탄화탄탈의 피복막 (3) 을 형성하였다. 이 때의 CVD 의 조건으로서는, 반응온도를 850℃, 반응압력을 l.33kPa, 반응시간을 24시간, TaCl5 가스의 공급량을 20cc/min, C3H8 가스의 공급량을 250cc/min, 수소 가스의 공급량을 1000cc/min, 아르곤가스의 공급량을 4000cc/min 로 하였다. 그 후, 수소 분위기 속에서 2000℃에서 10시간의 열처리하여, 탄소재료 (100) 를 얻었다.
얻어진 탄소재료 (100) 에 상기 내열충격성 시험을 적용하였다. 전 샘플에 1000 사이클의 시험을 가하고, 그 후 피복막 (3) 에 크랙 및 박리가 생길 때까지 사이클을 되풀이하였다. 3000 사이클에 달할 때까지 피복막 (3) 에 크랙 및 박리가 생기지 않으면, 그 시점에서 시험을 종료하였다. 표 (5) 에 정리한 시험 결과로부터 명백한 바와 같이, 중간층 (2) 을 형성한 탄소재료 (100) 의 피복막은 강고하였다. 실시예 (19) 의 피복막 (3) 의 결정구조를 X선 회절에 의해 조사하였다. 그 결과, (220) 면의 회절선의 강도비가 가장 높고, 2 번째로 강한 회절선의 310 배 정도의 강도였으며, (220) 면의 회절선의 반값폭은 약 0.13°이었다.
[표 5]
Figure 112006068876892-pct00005
〔실시예 23 ∼ 26〕
실시예 19 에서 사용한 것과 유사한 흑연기판 (1) 을 상술한 할로겐처리에 대상이 되게 한 후, CVI 법에 의해서 흑연기판 (1) 의 표층부의 기공 중에 탄탈을 매설하였다. CVI 의 조건으로서는, 반응온도를 800℃, 반응압력을 133.3Pa, TaC15가스의 공급량을 20cc/min, 수소가스의 공급량을 1000cc/min, 아르곤가스의 공급량을 4000cc/min으로 하였다. 반응시간을 15 ∼ 150 시간으로 바꿔, 탄탈의 매설 깊이, 또는 매설 탄탈의 중량을 하기의 표 6 와 같이 바꾸었다. 이어서, 101.3kPa의 아르곤 분위기 중, 2200℃ 에서 20시간 처리하였다. 이것에 의해서, 기공 내에 매설된 탄탈과 그 주위의 탄소가 반응하여 탄화탄탈로 전화되고, 탄소의 매트릭스 중에 탄화탄탈이 매설된 구조의 중간층 (2) 이 형성된다. 얻어진 중간층 (2) 의 두께는 표 6 과 같다. 그 후, 실시예 19 와 같은 중간층 (2) 의 CVD 처리 및 열처리를 행하여, 탄화탄탈로 이루어지는 피복막 (3) 을 구비하는 탄소재료 (100) 를 얻었다.
얻어진 탄소재료 (100) 에 실시예 19와 같은 내열충격성시험을 실시하였다. 표 6 에 정리한 시험결과로부터 명백한 바와 같이, 중간층 (2) 을 형성한 탄소재료 (100) 의 피복막 (3) 은 강고하였다.
[표 6]
Figure 112006068876892-pct00006
〔실시예 27 ∼ 30〕
실시예 19 에서 사용한 것과 유사한 흑연기판 (1) 에 상술한 할로겐처리를 실시한 후, CVD 법에 의해서 흑연기판 (1) 상에 경사재료층 (23) 을 형성하였다. 경사재료층 (23) 은 표 7 에 기재와 같이, 흑연기판 (1) 측에서 벗어남에 따라서 연속적으로 C/Ta 비가 저감되는 농도구배를 형성하였다. 이때의 CVD 의 조건으로서는, 반응온도를 850℃, 반응압력을 1.33kPa, C3H8가스의 공급량을 250cc/min, 수소가스의 공급량을 1OOOcc/min, 아르곤가스의 공급량을 4000cc/min으로 하였다. 반응시간을 1 ∼ 9시간으로 설정하여, 1 ∼ 9 ㎛ 의 중간층을 형성하였다. CVD 에서, TaCl5 가스의 공급량을 바꾸는 것으로 경사재료층 (23) 을 얻었다. 예를 들어, C/Ta 비가 1000 ~ 1까지 변화하는 농도구배를 얻기 위해서는, TaCl5 가스의 유량을 0.02 ~ 20cc/min으로 반응시간에 대하여 비례하도록, 연속적으로 증가시켰다. 그 후, 실시예 19 과 동일한 방식으로 중간층 (23) 의 CVD 처리 및 열처리를 행하여, 탄화탄탈로 이루어지는 피복막 (3) 을 구비하는 탄소재료 (100) 를 얻었다.
얻어진 탄소재료 (100) 에 실시예 19 와 같은 내열충격성 시험을 가하였다. 표 7 에 정리한 시험결과로부터 명백한 바와 같이, 중간층 (23) 을 형성한 탄소재료의 피복막 (3) 은 강고하였다.
[표 7]
Figure 112006068876892-pct00007
*) 경사재료층에 있어서의 C/Ta 비의 최대값 및 최소값
본 출원은 일본 특허 출원 제 2005-36838, 2005-179866 및 2005-255744을 기초로 한 것으로, 그 내용은 참조로서 본 명세서에 모두 포함된다.

Claims (21)

  1. 탄소기재, 및 상기 탄소기재 상에 탄화탄탈의 피복막을 가지며, 피복막의 X선 회절패턴에 있어서, 탄화탄탈의 (220) 면의 회절선이 다른 밀러면에 대하여 최대의 회절 강도를 나타내는 것을 특징으로 하는 탄화탄탈 피복 탄소재료.
  2. 제 1 항에 있어서, 상기 피복막의 X선 회절패턴에 있어서, 상기 탄화탄탈의 (220) 면의 회절선의 반값폭은 0.2° 이하인 것을 특징으로 하는 탄화탄탈 피복 탄소재료.
  3. 제 1 항 또는 제 2 항에 있어서, 상기 피복막의 X선 회절패턴에서, 상기 탄화탄탈의 (220) 면의 회절선은, 2번째로 큰 회절선의 회절강도 보다 4 배 이상의 강도를 나타내는 것을 특징으로 하는 탄화탄탈 피복 탄소재료.
  4. 제 1 항 또는 제 2 항에 있어서, 상기 피복막의 질소가스 투과율은 1O-6 ㎠/sec 이하인 것을 특징으로 하는 탄화탄탈 피복 탄소재료.
  5. 제 1 항 또는 제 2 항에 있어서, 상기 피복막의 두께는 10 ~ 100㎛ 인 것을 특징으로 하는 탄화탄탈 피복 탄소재료.
  6. 탄소 기재, 및 상기 탄소 기재 상에 형성된 탄화탄탈 결정으로 이루어지고, X선 회절패턴에 있어서 탄화탄탈의 (220) 면의 회절선이 최대의 회절 강도를 나타내는 피복막을, 1600 ~ 2400℃ 로 열처리하여 피복막의 탄화탄탈의 결정성을 향상시키는 탄화탄탈 피복 탄소재료의 제조방법.
  7. 탄소기재, 탄소기재 상에 형성되며 탄소와 탄탈을 포함하는 조성물로 이루어지는 중간층, 및 중간층 상에 형성된 탄화탄탈을 포함하는 조성물로 이루어지는 피복막을 포함하고, 피복막의 X선 회절패턴에 있어서, 탄화탄탈의 (220) 면의 회절선이 최대 회절강도를 나타내는 탄화탄탈 피복 탄소재료.
  8. 제 7 항에 있어서, 상기 중간층은 피복막 보다 불균일한 화학 조성분포를 갖는 것을 특징으로 하는 탄화탄탈 피복 탄소재료.
  9. 제 7 항에 있어서, 상기 중간층은 피복막 보다 다공질인 것을 특징으로 하는 탄화탄탈 피복 탄소재료.
  10. 제 9 항에 있어서, 상기 중간층은 탄소기재의 표층부분을 탄화탄탈로 전화하 여 얻어진 다공질층인 것을 특징으로 하는 탄화탄탈 피복 탄소재료.
  11. 제 8 항에 있어서, 상기 중간층은 탄소기재의 표면의 기공에 탄화탄탈을 매설하여 얻어지는 층인 것을 특징으로 하는 탄화탄탈 피복 탄소재료.
  12. 제 7 항에 있어서, 상기 중간층은 농도구배를 갖는 경사재료층이며, 탄소기재 측에서 피복막측으로 탄소/탄탈의 원자비는 연속적 또는 단계적으로 낮아지는 것을 특징으로 하는 탄화탄탈 피복 탄소재료.
  13. 제 12 항에 있어서, 상기 경사재료층의 탄소/탄탈의 원자비의 최대값은 10 이상이고, 최소값은 0.8 ~ 1.2인 것을 특징으로 하는 탄화탄탈 피복 탄소재료.
  14. 제 7 항에 있어서, 상기 중간층의 두께는 1㎛ 이상인 것을 특징으로 하는 탄화탄탈 피복 탄소재료.
  15. 제 7 항에 있어서, 상기 피복막은 탄화탄탈의 화학 증착막인 것을 특징으로 하는 탄화탄탈 피복 탄소재료.
  16. 제 7 항에 있어서, 상기 피복막에 있어서의 탄소/탄탈의 원자비는 0.8 ~ 1.2인 것을 특징으로 하는 탄화탄탈 피복 탄소재료.
  17. 삭제
  18. 제 7 항에 있어서, 상기 피복막의 X선 회절패턴에서, 상기 탄화탄탈의 (220) 면의 회절선은, 2 번째로 큰 회절선의 회절강도의 4배 이상의 강도를 나타내는 것을 특징으로 하는 탄화탄탈 피복 탄소재료.
  19. 제 7 항에 있어서, 상기 피복막의 X선 회절패턴에서, 상기 탄화탄탈의 (220) 면의 회절선의 반값폭은 0.2° 이하인 것을 특징으로 하는 탄화탄탈 피복 탄소재료.
  20. 제 7 항에 있어서, 상기 피복막은 탄화탄탈의 화학증착막을 1600~2000℃의 가열처리에 의해 얻어지는 것을 특징으로 하는 탄화탄탈 피복 탄소재료.
  21. 제 7 항에 있어서, 20℃ 에서 1000℃ 로 가열함으로써 측정되는 피복막의 열팽창계수는 6.9 × 10-6 ~ 7.8 × 10-6/K 인 것을 특징으로 하는 탄화탄탈 피복 탄소재료.
KR1020067019705A 2005-02-14 2006-02-07 탄화탄탈 피복 탄소재료 및 그 제조 방법 KR100835157B1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005036838 2005-02-14
JPJP-P-2005-00036838 2005-02-14
JPJP-P-2005-00179866 2005-06-20
JP2005179866 2005-06-20
JPJP-P-2005-00255744 2005-09-02
JP2005255744A JP3779314B1 (ja) 2005-02-14 2005-09-02 炭化タンタル被覆炭素材料およびその製造方法

Publications (2)

Publication Number Publication Date
KR20070020225A KR20070020225A (ko) 2007-02-20
KR100835157B1 true KR100835157B1 (ko) 2008-06-09

Family

ID=36793202

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067019705A KR100835157B1 (ko) 2005-02-14 2006-02-07 탄화탄탈 피복 탄소재료 및 그 제조 방법

Country Status (8)

Country Link
US (1) US8216667B2 (ko)
EP (1) EP1852407B9 (ko)
JP (1) JP5275567B2 (ko)
KR (1) KR100835157B1 (ko)
CA (2) CA2723324A1 (ko)
HK (1) HK1105096A1 (ko)
TW (1) TWI324192B (ko)
WO (1) WO2006085635A1 (ko)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5411460B2 (ja) * 2008-06-24 2014-02-12 一般財団法人ファインセラミックスセンター バリア性能評価方法及びバリア性能評価装置
US8535600B2 (en) 2009-03-23 2013-09-17 Kabushiki Kaisha Toyota Chuo Kenkyusho High temperature-resistant article, method for producing the same, and high temperature-resistant adhesive
JP5605894B2 (ja) * 2009-11-25 2014-10-15 東洋炭素株式会社 炭素材料及びその製造方法
RU2576406C2 (ru) * 2009-12-28 2016-03-10 Тойо Тансо Ко., Лтд. Покрытый карбидом тантала углеродный материал и способ его изготовления
DE102011079967A1 (de) * 2011-07-28 2013-01-31 Sgl Carbon Se Beschichtete Hochofensteine
JP5880297B2 (ja) * 2012-06-07 2016-03-08 三菱電機株式会社 基板支持体、半導体製造装置
WO2014123036A1 (ja) * 2013-02-06 2014-08-14 東洋炭素株式会社 炭化ケイ素-炭化タンタル複合材及びサセプタ
JP2014220322A (ja) * 2013-05-07 2014-11-20 株式会社東芝 半導体装置の製造方法及び製造装置
WO2015099969A1 (en) * 2013-12-23 2015-07-02 Flowserve Management Company Electrical corrosion resistant mechanical seal
CN105702561B (zh) * 2014-12-12 2018-09-18 韩国东海炭素株式会社 半导体处理组件再生方法
JP6332225B2 (ja) * 2015-10-16 2018-05-30 株式会社豊田中央研究所 耐熱黒鉛部材およびその製造方法
KR102508852B1 (ko) * 2016-02-18 2023-03-09 재단법인 포항산업과학연구원 염화탄탈륨 제조 방법
RU2622061C1 (ru) * 2016-04-25 2017-06-09 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский и проектный институт тугоплавких металлов и твердых сплавов" (ФГУП "ВНИИТС") Способ пропитки изделий из пористого углерод-углеродного композиционного материала
KR20170133191A (ko) * 2016-05-25 2017-12-05 주식회사 티씨케이 고경도 TaC 코팅 탄소 재료 및 그 제조방법
KR20170133193A (ko) * 2016-05-25 2017-12-05 주식회사 티씨케이 탄화탄탈 다중코팅 재료 및 그 제조방법
KR101824883B1 (ko) 2016-05-25 2018-02-02 주식회사 티씨케이 탄화탄탈 코팅 탄소 재료
CN106626718A (zh) * 2016-09-21 2017-05-10 西安康本材料有限公司 一种提高碳纤维针刺预制体密度的方法
JP6888330B2 (ja) * 2017-03-01 2021-06-16 株式会社豊田中央研究所 高耐熱部材およびその製造方法
KR101907900B1 (ko) * 2017-04-28 2018-10-16 주식회사 티씨케이 TaC를 포함하는 코팅층을 갖는 탄소 재료 및 그 제조방법
KR102094183B1 (ko) 2017-04-28 2020-03-30 주식회사 티씨케이 TaC를 포함하는 코팅층을 갖는 탄소 재료 및 그 제조방법
EP3461928B1 (en) * 2017-09-29 2020-11-11 Walter Ag Tacno coatings and production process
KR20190065941A (ko) 2017-12-04 2019-06-12 신에쓰 가가꾸 고교 가부시끼가이샤 탄화탄탈 피복 탄소 재료 및 그 제조 방법, 반도체 단결정 제조 장치용 부재
KR20190073788A (ko) * 2017-12-19 2019-06-27 주식회사 티씨케이 CVD를 이용한 TaC 코팅층의 제조방법 및 그를 이용하여 제조한 TaC의 물성
JP7087762B2 (ja) * 2018-07-18 2022-06-21 株式会社豊田中央研究所 TaC被覆黒鉛部材
CN110357666B (zh) * 2018-10-08 2021-12-28 湖南德智新材料有限公司 一种陶瓷复合涂层及其制备方法
KR102136197B1 (ko) * 2018-12-17 2020-07-22 주식회사 티씨케이 탄화탄탈 코팅 재료
US11130152B2 (en) 2019-11-28 2021-09-28 National Chung-Shan Institute Of Science And Technology Method for the formation of tantalum carbides on graphite substrate
JP6849779B1 (ja) * 2019-12-06 2021-03-31 國家中山科學研究院 グラファイト基材上に炭化タンタルを形成する方法
JP2021183553A (ja) * 2020-05-22 2021-12-02 イビデン株式会社 炭素複合部材
KR102600114B1 (ko) * 2020-12-01 2023-11-10 주식회사 티씨케이 탄화탄탈 코팅 탄소 재료 및 이의 제조방법
KR20220077314A (ko) 2020-12-01 2022-06-09 주식회사 티씨케이 탄화탄탈 복합재
WO2022264884A1 (ja) * 2021-06-15 2022-12-22 三井金属鉱業株式会社 耐火部材およびその製造方法
DE102021123986A1 (de) * 2021-09-16 2023-03-16 Advanced Furnace Technology Ltd. Verfahren zum Beschichten eines Bauteils in einem CVD-Reaktor und nach dem Verfahren hergestelltes Bauteil
CN115404452A (zh) * 2022-07-29 2022-11-29 南京航空航天大学 提高碳基电极表面性能的复合涂层、石墨电极及制备方法
CN115584486A (zh) * 2022-10-12 2023-01-10 厦门中材航特科技有限公司 一种碳化钽涂层制品及制备方法
CN115637419A (zh) * 2022-10-12 2023-01-24 厦门中材航特科技有限公司 一种钽-碳化钽复合涂层的制备方法及其制品
CN115595659A (zh) * 2022-11-02 2023-01-13 深圳市志橙半导体材料有限公司(Cn) 一种石墨基体的表面涂层及制备方法和运用
CN115677386B (zh) * 2022-12-08 2023-05-12 深圳市志橙半导体材料股份有限公司 一种用于制备半导体材料的石墨部件及其复合涂层和制备方法
CN116444296B (zh) * 2023-05-04 2024-02-02 中南大学 一种利用熔盐法在石墨基体上制备碳化钽涂层的方法
CN116813383A (zh) * 2023-07-14 2023-09-29 中电化合物半导体有限公司 一种碳化钽涂层及其制备方法
CN117164363B (zh) * 2023-11-02 2024-01-26 湖南泰坦未来科技有限公司 一种高温复合材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238856A (ja) * 1992-02-26 1993-09-17 Nippon Steel Corp 金属炭化物被膜の形成方法
JP2004299932A (ja) * 2003-03-28 2004-10-28 Ibiden Co Ltd 炭素複合材料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2668479B1 (fr) * 1990-10-24 1993-10-01 Aerospatiale Ste Nationale Indle Piece en materiau composite carbone, protegee contre l'oxydation et son procede de fabrication.
EP0658219B1 (en) * 1993-06-01 1999-03-24 Advanced Ceramics Corporation Fluidized bed reactor arrangement for forming a metal carbide coating on a substrate containing graphite or carbon
JP3403460B2 (ja) 1993-07-22 2003-05-06 トーカロ株式会社 非酸化物系セラミック溶射皮膜を有する炭素材料の製造方法
JP4498476B2 (ja) 1997-02-25 2010-07-07 東洋炭素株式会社 還元性雰囲気炉用炭素複合材料及びその製造方法
JP4498477B2 (ja) 1997-03-04 2010-07-07 東洋炭素株式会社 還元性雰囲気炉用炭素複合材料及びその製造方法
JP3938361B2 (ja) * 2002-06-28 2007-06-27 イビデン株式会社 炭素複合材料
JP2003343623A (ja) * 2003-01-29 2003-12-03 Mitsubishi Kagaku Sanshi Corp 摺動材の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238856A (ja) * 1992-02-26 1993-09-17 Nippon Steel Corp 金属炭化物被膜の形成方法
JP2004299932A (ja) * 2003-03-28 2004-10-28 Ibiden Co Ltd 炭素複合材料

Also Published As

Publication number Publication date
EP1852407A1 (en) 2007-11-07
HK1105096A1 (en) 2008-02-01
JPWO2006085635A1 (ja) 2008-06-26
WO2006085635A1 (ja) 2006-08-17
JP5275567B2 (ja) 2013-08-28
TWI324192B (en) 2010-05-01
US20120040172A1 (en) 2012-02-16
KR20070020225A (ko) 2007-02-20
CA2723324A1 (en) 2006-08-17
EP1852407A4 (en) 2009-05-13
TW200636100A (en) 2006-10-16
EP1852407B1 (en) 2014-01-01
US8216667B2 (en) 2012-07-10
EP1852407B9 (en) 2014-11-05
CA2559042A1 (en) 2006-08-17
CA2559042C (en) 2011-03-08

Similar Documents

Publication Publication Date Title
KR100835157B1 (ko) 탄화탄탈 피복 탄소재료 및 그 제조 방법
RU2576406C2 (ru) Покрытый карбидом тантала углеродный материал и способ его изготовления
CN100450978C (zh) 碳化钽被覆碳材料及其制造方法
JP3779314B1 (ja) 炭化タンタル被覆炭素材料およびその製造方法
KR102567519B1 (ko) 탄화규소 코팅된 몸체를 제조하기 위한 프로세스
KR102480454B1 (ko) 탄화규소 코팅된 몸체를 제조하기 위한 프로세스
KR102571078B1 (ko) 탄화규소 코팅된 몸체를 제조하기 위한 프로세스
EP3514127A1 (en) Process for manufacturing a silicon carbide coated body
WO2021117498A1 (ja) 炭化タンタル被覆グラファイト部材及びその製造方法
KR102476826B1 (ko) 탄화규소 코팅된 몸체를 제조하기 위한 프로세스
KR20090106111A (ko) 질화알루미늄 버퍼층위에 마이크로 또는 나노전자기계시스템용 다결정 탄화규소막 성장방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130503

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140502

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150430

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160427

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170504

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180427

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190429

Year of fee payment: 12