WO2006068245A1 - 積層型圧電セラミック部品、及び積層型圧電セラミック部品の製造方法 - Google Patents

積層型圧電セラミック部品、及び積層型圧電セラミック部品の製造方法 Download PDF

Info

Publication number
WO2006068245A1
WO2006068245A1 PCT/JP2005/023666 JP2005023666W WO2006068245A1 WO 2006068245 A1 WO2006068245 A1 WO 2006068245A1 JP 2005023666 W JP2005023666 W JP 2005023666W WO 2006068245 A1 WO2006068245 A1 WO 2006068245A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
internal electrode
electrode layer
multilayer piezoelectric
layer
Prior art date
Application number
PCT/JP2005/023666
Other languages
English (en)
French (fr)
Inventor
Katsuhiro Horikawa
Takafumi Yamada
Takahiro Matto
Toshikatsu Hisaki
Toyokazu Tabata
Suetaka Oomiya
Original Assignee
Murata Manufacturing Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd filed Critical Murata Manufacturing Co., Ltd
Priority to JP2006522157A priority Critical patent/JP4565349B2/ja
Publication of WO2006068245A1 publication Critical patent/WO2006068245A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/067Forming single-layered electrodes of multilayered piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials

Definitions

  • Multilayer piezoelectric ceramic component and method of manufacturing multilayer piezoelectric ceramic component are described.
  • the present invention relates to a laminated piezoelectric ceramic component such as a laminated piezoelectric actuator laminated piezoelectric sounding body and a method for manufacturing the laminated piezoelectric ceramic component.
  • this type of multilayer piezoelectric ceramic component has piezoelectric ceramic layers 101a ⁇ :! Olg and internal electrode layers 102a ⁇ 102f laminated alternately.
  • the external electrodes 104a and 104b are formed on the end face of the ceramic body 103.
  • the ceramic layer 101b when an electric field is applied, the ceramic layer 101b :: the force by which the Olf expands and contracts If the thickness of the internal electrode layers 102a-102f is thick, ⁇ :! Olf is restrained by the internal electrode layers 102a to 102f, so that the expansion and contraction of the ceramic layers 101b to 101f is inhibited. That is, as the internal electrode layers 102a to 102f are thinner, the ceramic layers 101b to! Olf are easily expanded and contracted, and the displacement amount is increased.
  • the ratio of the total area of the through holes formed in the internal electrode to the total area of the internal electrode is 40 to 0%, and the same or similar composition as the ceramic layer A multilayer electronic component in which an internal electrode is formed using a paste containing 10 to 30% by weight of a ceramic material has been proposed (Patent Document 1).
  • Patent Document 1 a film thickness is obtained by forming an internal electrode using a ceramic material having the same or similar composition as the ceramic layer, that is, using a paste containing 10 to 30% by weight of a ceramic co-material.
  • the coverage is increased to 60 to 100% to increase the electrode area, thereby avoiding a decrease in capacitance, We are trying to avoid as much as possible the occurrence of structural defects after firing by suppressing the shrinkage of the extreme layers.
  • the negative electrode of the internal electrode contains Ag element
  • the positive electrode does not contain Ag element
  • the internal electrode has a thickness of 1 to 3 / im
  • the coverage is 50 to 99.
  • Patent Document 2 A multilayered piezoelectric element controlled to% is also proposed (Patent Document 2).
  • Patent Document 2 the coverage is controlled to 50 to 99%, thereby suppressing the occurrence of migration and delamination and improving reliability.
  • the internal electrode layer is made of a metal material mainly composed of Pd, Z, or Pt, and has a plurality of holes penetrating in the stacking direction, and a piezoelectric ceramic is formed in the hole.
  • a multilayer piezoelectric actuator is proposed which is made of the same material as the plate and is provided with a common material for connecting the respective piezoelectric ceramic plates facing each other via internal electrodes (Patent Document).
  • Patent Document 3 a non-electrode part in which a through hole having a minimum inner diameter of 1Z2 or less is provided with respect to the thickness of the ceramic layer, the through hole is filled with a ceramic co-material, and a through hole is further formed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-164248
  • Patent Document 2 JP 2001-250994 A
  • Patent Document 3 Japanese Patent Laid-Open No. 63-142875
  • Patent Document 1 when the technique of Patent Document 1 is applied to the multilayer piezoelectric ceramic component, the size of the non-conductive portion in which the electrode in the internal electrode layer is not formed simply by controlling the coverage. There is a problem in that variations occur in the voltage and the potential drop due to the non-conductive portion becomes large, and therefore a desired large displacement cannot be obtained.
  • Patent Document 2 suppresses the occurrence of migration and delamination by controlling the coverage to 50 to 99%.
  • a multilayer piezoelectric ceramic component is used. When applied to, simply controlling the coverage ratio causes variations in the size of the non-conductive part or increases the potential drop due to the non-conductive part. There was a problem that the amount could not be obtained.
  • Patent Document 3 although a through hole having a minimum inner diameter dimension of 1/2 or less is provided with respect to the thickness of the ceramic layer, a potential drop occurs only by this, so that a desired large displacement amount can be obtained.
  • the ratio between the non-electrode part (non-conductive part) and the electrode part (conductive part) is 1: 1 or less, sufficient coverage cannot be obtained, and the internal electrode layer and the ceramic layer There was a problem that interfacial delamination might occur.
  • the present invention has been made in view of such circumstances, and even if the internal electrode layer is a thin layer, the multilayer piezoelectric ceramic component having a large amount of displacement and excellent bonding strength, and It is an object of the present invention to provide a method for manufacturing the multilayer piezoelectric ceramic component.
  • a potential drop is defined by the product of an electric field and a piezoelectric constant as a result of a non-conductive part such as a through hole being formed in the internal electrode layer, resulting in a potential drop due to the non-conductive part.
  • a non-conductive part such as a through hole being formed in the internal electrode layer
  • the non-conductive portion increases structurally, and the potential drop at the non-conductive portion becomes significant.
  • Residual stress is a phenomenon in which the stress remains due to the difference between the thermal expansion coefficient of the ceramic layer and the thermal expansion coefficient of the internal electrode layer, and the displacement of the ceramic layer is suppressed.
  • Displacement inhibiting force means that when a voltage is applied, the ceramic layer expands and contracts. However, since the ceramic layer is sandwiched between internal electrode layers, the displacement of the ceramic layer is reduced. This phenomenon is hindered by the internal electrode layer.
  • the present inventors have investigated the above three factors that hinder the improvement of the displacement, that is, the potential drop.
  • the ratio of the average diameter X to the thickness y of the ceramic layer when the cross-sectional area of the non-conductive part of the internal electrode layer was converted to a circle x / y is controlled between 0.08 and 0.33
  • the ratio z / y between the thickness z of the internal electrode layer and the thickness y of the ceramic layer is controlled between 0.04 and 0.40
  • the internal electrode By controlling the coverage of the ceramic layer to 60 to 95%, it is possible to reduce residual stress and displacement inhibition force while minimizing the decrease in displacement due to potential drop. It was found that even when the electrode layer is a thin layer, it is possible to obtain a laminated piezoelectric ceramic component capable of improving both the displacement and the reliability.
  • the multilayer piezoelectric ceramic component according to the present invention is a multilayer piezoelectric ceramic component in which ceramic layers and internal electrode layers are alternately stacked.
  • the internal electrode layer comprises a conductive part and a non-conductive part, and the ratio xZy between the average diameter X and the thickness y of the ceramic layer when the cross-sectional area of the non-conductive part is converted into a circle is 0.08 to And the ratio z / y of the thickness z of the internal electrode layer to the thickness y of the ceramic layer is 0.04-0.40, and the internal electrode layer to the ceramic layer It is characterized by a coverage of 60-95%.
  • the internal electrode layer is made of a conductive paste containing a metal powder and a ceramic powder as a solid content as described later. Since it is formed by use, the non-conductive portion has a void portion and a ceramic portion filled with ceramic powder.
  • the amount of displacement in the nonconductive part is further improved by reducing the porosity in the nonconductive part to 60% or more. I found that I can plan.
  • the non-conductive portion is composed of a void portion and a ceramic portion filled with ceramic powder, and the void portion is 60% of the non-conductive portion. It is characterized by occupying the above.
  • the multilayer piezoelectric ceramic component can obtain a desired large displacement even when relatively inexpensive Ag is used as the main component of the conductive part material of the internal electrode layer. And it was found that the reliability can be improved.
  • the conductive part is composed mainly of Ag. Do this as a special number.
  • this multilayer piezoelectric ceramic component can obtain a larger amount of displacement at a high electric field that is 1/10 or more of the coercive electric field of the ceramic layer.
  • the multilayer piezoelectric ceramic component of the present invention has a coercive field of 1Z of the ceramic layer.
  • It is characterized by being driven by 10 or more electric fields.
  • the inventors of the present invention have made ceramic powder having a specific surface area 5 to 20 times that of metal powder so that the content thereof is 20 to 50% by weight based on the total amount of metal powder and ceramic powder.
  • a conductive paste is applied to the surface of a ceramic liner sheet to form a predetermined conductive pattern to be an internal electrode layer, and the conductive After laminating ceramic green sheets with patterns, they are sandwiched between ceramic green sheets without conductive patterns and pressed to form a laminate, and then subjected to firing treatment to form the ceramic body.
  • the ceramic paste having a specific surface area that is 5 to 20 times that of the metal powder is formed by laminating the laminated piezoelectric ceramic component formed on the end face of the ceramic body and forming an external electrode. And the ceramic powder content is adjusted to 20 to 50% by weight based on the total amount of the metal powder and the ceramic powder.
  • the firing treatment, the oxygen concentration is characterized by performing in an oxygen atmosphere at 0.:! ⁇ 15 vol%.
  • the ceramic powder contained in the conductive paste diffuses also to the ceramic green sheet side during firing, from the viewpoint of preventing characteristic fluctuations, at least the main component has the same component composition as the ceramic green sheet. It is preferred to use the material that it has.
  • the method for producing a multilayer piezoelectric ceramic component of the present invention is characterized in that at least a main component of the ceramic powder has the same component composition as the ceramic green sheet.
  • the internal electrode layer includes a mixture of a conductive portion and a non-conductive portion.
  • the ratio x / y of the average diameter X and the thickness y of the ceramic layer when the cross-sectional area of the non-conductive portion is converted into a circle is 0.08 to 0.33, and
  • the ratio z / y between the thickness z of the electrode layer and the thickness y of the ceramic layer is 0.04 to 0.40, and the coverage of the internal electrode layer on the ceramic layer is 60 to 95%.
  • the non-conductive portion is composed of a void portion and a ceramic portion filled with ceramic powder, and the void portion occupies 60% or more of the non-conductive portion. Residual stress and displacement hindrance can be effectively reduced, and the displacement and bonding strength can be further improved.
  • the conductive portion is mainly composed of Ag
  • a multilayer piezoelectric ceramic component that achieves both the amount of displacement and the bonding strength even when relatively inexpensive Ag is the main component. Can be obtained.
  • the present multilayer piezoelectric ceramic component can obtain a larger displacement when driven by an electric field of 1/10 or more of the coercive electric field of the ceramic layer.
  • the conductive paste contains a metal powder and a ceramic powder having a specific surface area 5 to 20 times that of the metal powder.
  • the content of the ceramic powder is adjusted to 20 to 50% by weight with respect to the total amount of the metal powder and the ceramic powder, and the firing treatment is performed in an oxygen atmosphere having an oxygen concentration of 0.1 to 15% by volume. Therefore, the fine ceramic powder is effectively diffused into the ceramic green sheet during sintering, and the diffusion of metal components in the internal electrode layer into the ceramic green sheet can be suppressed. It is possible to form a minute non-conductive portion.
  • firing in a low oxygen concentration atmosphere suppresses the sintering of through-holes that can be formed in the internal electrode layer, so that minute voids are distributed substantially uniformly in the internal electrode layer. As a result, the coverage is lowered and the displacement can be improved.
  • the amount of conductive paste used can be reduced by reducing the coverage of the internal electrodes and making it thinner, the cost can be reduced.
  • the ceramic powder has at least the same component composition as that of the ceramic green sheet, even if the ceramic powder diffuses to the ceramic green sheet side during firing, fluctuations in characteristics can be prevented.
  • FIG. 1 is a cross-sectional view showing an embodiment of a multilayer piezoelectric ceramic component according to the present invention.
  • FIG. 2 is an enlarged cross-sectional view of part B in FIG.
  • FIG. 3 is a diagram showing an example of an SEM image of an embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of a conventional SEM image.
  • FIG. 5 is a cross-sectional view showing a conventional example of a multilayer piezoelectric ceramic component.
  • FIG. 1 is a cross-sectional view showing an embodiment of a multilayer piezoelectric actuator as a multilayer piezoelectric ceramic component according to the present invention.
  • the multilayer piezoelectric actuator includes a ceramic layer 1 (la to lg) and internal electrodes. Layers 2 (2a to 2f) are alternately stacked to form the piezoelectric ceramic body 3, and from the upper surface or the lower surface of the piezoelectric ceramic body 3 to the end surface, a conductive material such as Ag having an L-shaped cross section is formed.
  • the external electrode 4 (4a, 4b) is formed.
  • each of the internal electrodes 2a, 2c, 2e is electrically connected to one external electrode 4b
  • one end of each of the internal electrodes 2b, 2d, 2f is the other external electrode 4 It is electrically connected to a.
  • the polarization direction of the laminated piezoelectric actuator is perpendicular to the inner electrode 2 surface, and each layer is polarized in opposite directions. When a voltage is applied between the external electrode 4a and the external electrode 4b, it is displaced in the longitudinal direction indicated by the arrow A by the piezoelectric lateral effect.
  • FIG. 2 is an enlarged cross-sectional view of a portion B in FIG.
  • a part of the internal electrode layers 2b to 2d is enlarged, but the other parts have the same structure.
  • the internal electrode layer 2 (2b to 2d) includes a conductive part 5 formed by sintering metal powder and a non-conductive part 6 in which no metal powder exists, and the non-conductive part 6 further includes: It has a ceramic portion 6a in which ceramic powder having at least the same main component as the ceramic layer 1 (lb ⁇ : le) is present, and a void portion 6b in which no solid is present.
  • the gap 6b does not necessarily have to penetrate.
  • ceramic powder may be included in a part of the gap 6b.
  • the ceramic part 6a may be present in a part of the internal electrode layer 2 that does not necessarily need to straddle the internal electrode layer 2.
  • the ratio x / y between the average diameter X and the thickness y of the ceramic layer 1 when the cross-sectional area of the non-conductive portion 6 is converted into a circle is 0.08-0.33.
  • the covering ratio of the internal electrode layer 2 to the ceramic layer 1 is controlled to be 60 to 95%, thereby reducing the size of the non-conductive part 6 and reducing the non-conductive part. It is possible to suppress a decrease in the amount of displacement due to a potential drop at 6 and to reduce the coverage of the internal electrode layer 2 by providing a large number of minute non-conductive portions 6. As a result, it is possible to reduce the residual stress and the displacement inhibiting force due to the internal electrode layer 2, and to improve the displacement amount and the bonding strength of the laminated piezoelectric actuator.
  • the ratio x / y has a correlation with the potential drop, and when the ratio x / y is small, the average diameter X is relatively small with respect to the thickness of the ceramic layer 1, and therefore the potential drop is small and the displacement is small. Will improve. On the other hand, when the ratio xZy is increased, the average diameter X is relatively increased with respect to the thickness of the ceramic layer 1, so that the potential drop is increased and the displacement is decreased. When the coverage is less than 60%, the non-conductive portion 6 increases excessively, leading to a decrease in the amount of displacement due to a large potential drop, and the bonding between the ceramic layer 1 and the internal electrode layer 2. The strength also decreases and the field Surface peeling tends to occur.
  • the covering ratio exceeds 95%, the covering ratio becomes excessive, and the displacement inhibiting force that restrains the expansion and contraction motion of the ceramic layer 1 by the internal electrode layer 2 increases, leading to a decrease in the amount of displacement. Further, there is a risk that the bonding strength is reduced due to residual stress resulting from the difference between the thermal expansion coefficient of the ceramic layer 1 and the thermal expansion coefficient of the internal electrode layer 2 during co-sintering.
  • the ratio x / y is less than 0.08, the average diameter X of the non-conductive portion 6 becomes small, so that the coverage becomes difficult to control the coverage, so that the inside of the ceramic layer 1 is increased.
  • the displacement inhibition force to the electrode layer 2 is increased and the displacement amount is reduced.
  • the ratio x / y exceeds 0.33, the average diameter X of the non-conductive portion 6 increases, so that the potential drop due to the non-conductive portion 6 increases, and a desired large displacement amount is obtained. Can not be.
  • the ratio is controlled so that the ratio x / y force SO.08-0.33 of the average diameter X of the non-conductive portion 6 to the ceramic layer y is SO.08-0.33.
  • the ratio z / y between the thickness z of the internal electrode layer 2 and the thickness y of the ceramic layer 1 is preferably 0.04 to 0.40.
  • the ratio z / y is preferably set to 0.04 or more.
  • the ratio zZy is preferably 0.04 to 0.40.
  • the thickness z of the internal electrode layer 2 is reduced, the residual stress and the displacement-inhibiting force due to the internal electrode layer 2 are reduced. Therefore, it is desirable that the thickness z of the internal electrode layer 2 be as thin as possible.
  • the thickness z is preferably controlled to be in the range of 1 to 2.4 ⁇ m.
  • the gap 6b formed in the internal electrode layer 2 is 60 in the non-conductive part 6 (the ceramic part 6a and the gap 6b). It is preferable to occupy / o or more. That is, by forming the internal electrode layer 2 using a conductive paste containing finer ceramic powder than the metal powder, the ceramic powder is dispersed in the ceramic layer 1 during co-sintering, thereby The bonding strength between the ceramic layer 1 and the internal electrode layer 2 can be improved. However, if the ratio of the gap 6b in the non-conductive part 6 is less than 60%, a large number of ceramic parts 6a are formed in the internal electrode layer 2, which increases the bonding strength and reduces the displacement. There is a risk of inviting. Therefore, the gap 6b preferably occupies 60% or more of the non-conductive portion 6.
  • the conductive part 5 can contain Ag as a main component, for example, Ag_Pd containing 70 wt% or more of Ag.
  • the covering rate generally decreases and the bonding strength tends to decrease, but the structure of the internal electrode layer 2 is improved.
  • the multilayer piezoelectric actuator can be obtained with a larger displacement by being driven by a high electric field that is 1/10 or more of the coercive electric field of the ceramic layer 1. This is because the amount of displacement increases as the drive electric field increases, and the effect of reducing residual stress and displacement inhibition force by the internal electrode layer 2 loaded on the ceramic layer 1 appears more prominently.
  • an organic binder plasticizer is added to the ceramic raw material powder prepared in this manner, and wet mixing is performed to form a slurry, which is then formed using a doctor blade method or the like. To produce a ceramic green sheet.
  • a conductive paste is produced as follows. [0065] First, an organic vehicle in which an organic binder is dissolved in an organic solvent is produced. In the next stage, a metal powder having a predetermined specific surface area (for example:! To 3 m 2 / g) is prepared, the metal powder is mixed with the organic vehicle, kneaded with a three-roll mill or the like, and the metal is thereby mixed. Get a paste.
  • a ceramic raw material having at least the same component as the ceramic raw material powder is prepared, and the ceramic raw material is put into a forced stirring device such as a bead stirrer-type pulverizer and pulverized.
  • a ceramic powder (ceramic co-material) having a specific surface area S2 of 5 to 20 times the specific surface area S1 of the metal powder is produced.
  • the ceramic powder and the organic vehicle are mixed, and the ceramic powder is sufficiently dispersed in the organic vehicle using a forced stirring device such as the bead stirring mill, thereby obtaining a ceramic paste. .
  • the reason why the specific surface area S2 of the ceramic powder is set to 5 to 20 times the specific surface area S1 of the metal powder as described above is as follows.
  • the specific surface area S2 of the ceramic powder is set to 5 to 20 times the specific surface area S1 of the metal powder.
  • the metal paste and the ceramic paste are kneaded with a three-roll mill or the like so that the content of the ceramic powder in the solid content (metal powder and ceramic powder) is 20 to 50 wt%. Thereby, a conductive paste is produced.
  • the ceramic powder can be effectively diffused to the ceramic green sheet side.
  • the content of the ceramic powder was set to 20 to 50% by weight because when the content of the ceramic powder was less than 3 ⁇ 40% by weight, the diameter of the non-conductive part in the internal electrode layer was increased and the coverage was increased. It becomes difficult to secure a coverage of 60% or more. On the other hand, if the content exceeds 50% by weight, the ceramic powder that has not diffused into the ceramic layer 1 forms the ceramic portion 6a, resulting in an excessively high bonding strength, which may lead to a decrease in displacement. It is.
  • the ceramic powder contained in the conductive paste uses a ceramic raw material having at least a main component having the same composition as the ceramic material forming the ceramic green sheet.
  • Force S the main components do not necessarily have the same composition.
  • the ceramic powder contained in the conductive paste diffuses to the ceramic layer side during firing, at least the main component is the same composition as the ceramic material forming the ceramic green sheet from the viewpoint of preventing characteristic fluctuations. It is more preferable to use a ceramic raw material having components.
  • a piezoelectric ceramic body 3 in which ceramic layers 1 and internal electrode layers 2 are alternately laminated is formed by firing at a predetermined temperature (for example, 950 to 1100 ° C) in an oxygen concentration atmosphere of ⁇ 15% by volume. To do.
  • the reason why the firing atmosphere is the low oxygen atmosphere is as follows.
  • the oxygen concentration was set to 0.1 to 15% by volume.
  • the coverage ratio tends to decrease, and the control of the void 6b is difficult.
  • the oxygen concentration exceeds 15% by volume, the firing atmosphere becomes close to the atmosphere, and the void 6b is easily blocked by sintering, so that the desired internal electrode layer 2 described above is formed. This is because the displacement cannot be improved, and the joint strength cannot be improved.
  • the same conductive paste for external electrodes made of Ag or the like is applied to a predetermined region of the end face of the piezoelectric ceramic body 3, and a baking process is performed at a predetermined temperature (for example, 750 ° C to 850 ° C). Then, the external electrodes 4a and 4b are formed, and further subjected to a predetermined polarization process, whereby a laminated piezoelectric actuator is manufactured.
  • the external electrodes 4a and 4b may be formed by a thin film forming method such as a sputtering method or a vacuum evaporation method as long as the adhesion is good.
  • the ceramic powder having a specific surface area S 2 that is 5 to 20 times the specific surface area S1 of the metal powder is contained in an amount of 20 to 50% by weight based on the solid content (metal powder and ceramic powder).
  • the internal electrode layer 2 is formed in a state where the non-conductive portion 6 is scattered in the conductive portion 5 and the average diameter X of the non-conductive portion 6 and the thickness of the ceramic layer 2 because the firing process is performed in the atmosphere.
  • the ratio X / y to y is 0.08 to 0.33, the coverage of the internal electrode layer 2 is 60 to 95%, and the thickness z of the internal electrode layer 2 and the thickness y of the ceramic layer 1 are The ratio z / y is 0.04 to 0.40, and the internal electrode layer is formed so that the gap 6b occupies 60% or more in the non-conductive part 6.
  • a metal paste and a ceramic paste are kneaded to produce a conductive paste. After mixing a predetermined amount of the metal powder and the ceramic co-material, the mixture is kneaded with the organic vehicle. Make a conductive paste.
  • the multilayer piezoelectric actuator is described as an example of the multilayer piezoelectric ceramic component.
  • the multilayer piezoelectric actuator is suitable for multilayer piezoelectric sounding bodies and multilayer piezoelectric sensors that require high piezoelectric constants.
  • the laminated structure, element shape, displacement and force direction, polarization direction, and voltage application direction are not limited to the above embodiment.
  • an oxide such as Pb 2 O is used as the ceramic raw material.
  • the weighed material is put into a ball mill containing a grinding medium such as Ginoleconia and mixed and ground for 24 hours. Thereafter, the obtained mixed powder was calcined at a temperature of 900 ° C. to obtain a calcined product. Then, after that, a solvent and a dispersant are added to the calcined product, and wet pulverized again with a ball mill for 24 hours, and a composition formula of 0.25Pb (Ni Nb) 0 -0. 35PbZrO _0.40PbTiO
  • an ethyl cellulose resin as an organic binder and a polycarboxylate solution as a dispersant are added, and a slurry is prepared using water as a solvent.
  • a slurry is prepared using water as a solvent.
  • the green sheet was molded so that the thickness y of the sintered ceramic layer was 20 ⁇ m or 40 ⁇ m.
  • the conductive paste for internal electrodes is screened on the ceramic green sheet while adjusting the thickness of the coating film so that the thickness z of the internal electrode layer after sintering becomes: 3 to 3 zm.
  • Printed a predetermined number of these screen-printed ceramic green sheets were laminated, sandwiched between ceramic green sheets that were not screen-printed, and pressed to produce a laminate.
  • these laminates are accommodated in an alumina sheath and subjected to a binder removal treatment, followed by a firing atmosphere having a firing temperature of 960 ° C to 1040 ° C and an oxygen concentration of 0.3 to 21% by volume.
  • the ceramic body was cut into 3 mm length and 13 mm width and subjected to sputtering treatment using Ni-Cu as a target, and a Ni-Cu film was formed on both sides of the ceramic body from the top and bottom sides. Further, sputtering was performed using Ag as a target to form an Ag film on the Ni—Cu film, thereby forming an external electrode having a two-layer structure of the Ni—Cu film and the Ag film.
  • the tensile strength X is obtained when the metal pieces are bonded to both main surfaces of the multilayer piezoelectric element, and the metal pieces are pulled with a tensile tester, and the joint surface between the ceramic layer and the internal electrode layer is peeled off. The value was determined. In this example, the bonding strength between the internal electrode layer and the ceramic layer was evaluated by the tensile strength.
  • the ratio x / y and the ratio zZy were calculated by calculating the average diameter X when the internal electrode coverage and the cross-sectional area of the non-conductive portion were converted into a circle by image analysis.
  • Table 1 shows the fabrication conditions of the multilayer piezoelectric elements of sample numbers 1 to 24, and Table 2 shows the measurement results.
  • Sample No. 10 has a large ratio xZy of 0.41 and a large non-conductive part average diameter x of 16.5 ⁇ m, which decreases the coverage force to S45%. Therefore, the piezoelectric constant I d I is as low as 315pC / N
  • sample numbers 2 to 5, 7 to 9, and 11 have a ratio x / y of 0.08 to 0.33 and a coverage force of 3 ⁇ 40 to 94%. Is as large as 338 ⁇ 362pC / N, sample number
  • Tensile strength X is also 8.5 to 9.8 MPa, sample number 11 is the same as sample number 1 and tensile strength X. Sample numbers 2 to 5 and 7 to 9 are 1 against sample number 1. 2-21. It increased by 2%, and it was found that the bonding strength was improved.
  • Sample Nos. 12 to 24 are cases where the thickness y of the ceramic layer is 20 / im.
  • Sample No. 12 is a conventional example in which the ceramic electrode material is not contained in the internal electrode layer and the firing treatment is performed in an air atmosphere having an oxygen concentration of 21 volume%.
  • the displacement amount and bonding strength of each sample number can be evaluated.
  • Sample No. 17 has a large ratio x / y of 0.65, and the average diameter x of the non-conductive portion is 13.
  • the piezoelectric constant I d I is as low as 313pCZN, and the tensile strength X is 8.4MPa.
  • the bonding strength is lowered by 4.5%. This is because the ratio of the specific surface area S2 of the ceramic co-material to the specific surface area S1 of the metal powder is small, and the average particle size of the ceramic co-material is large. As a result, the diameter of the non-conductive part of the internal electrode layer was enlarged as described above, and the coverage was lowered, leading to deterioration of various characteristics.
  • Sample No. 20 has a large ratio xZy of 0.73 and a large non-conductive part average diameter x of 14.7 ⁇ m. As a result, the coverage ratio decreased to 48%, which caused the piezoelectric constant I d I to be as low as 309 pC / N.
  • Sample No. 23 has a large ratio xZy of 0.85 and a large non-conductive part average diameter x of 17.0 ⁇ m, which reduces the coverage to 41%. I force 3 ⁇ 495pC / N and low
  • Sample number 12 increased by 2.9 ⁇ : 13.3%, indicating that the displacement was improved.
  • Tensile strength X is 8.8-10.8MPa.
  • Sample No. 24 has the same tensile strength X as Sample No. 12, but Sample Nos. 13-: 16, 18, 19, 21, and 22 The sample number 12 increased 1.:! ⁇ 22.7%, indicating that the bonding strength was improved.
  • the increase rate of the piezoelectric constant is within the range of coverage of 60 to 90%.
  • ⁇ I d I is greatly increased to 5.8-13.3%, and the coverage is reduced in the range of 75 to 95%.
  • Fig. 3 is an SEM image of Sample No. 19 (Example of the present invention), and the non-conductive portion appears black.
  • Figure 4 shows the SEM image of sample number 12 (conventional example).
  • the ceramic layer is completely covered with the internal electrode layer, whereas in the embodiment of the present invention shown in FIG. 3, the non-conductive portion is exposed and distributed uniformly. Therefore, the structure of the internal electrode (coverage and average diameter X of the non-conductive part) was obtained by using a conductive paste containing ceramic co-material and firing it in a low oxygen concentration atmosphere. It was found that can be controlled.
  • Ag / Pd weight ratio Ag / Pd is blended to 7/3 or 8/2, and ceramic co-material is blended so as to be 0% by weight or 30% by weight based on the total solid content. Except that, [Example 1] and A conductive paste for internal electrodes was produced by the same method 'procedure.
  • the conductive paste for internal electrodes was screen-printed on the ceramic green sheet so that the thickness z of the sintered internal electrode layer was 2.4 ⁇ ⁇ ⁇ ⁇ ⁇ , and then [Example 1 ]
  • a layered product was produced by the same method and procedure. Next, these laminates are accommodated in alumina pods and subjected to binder removal treatment, and then the firing temperature is 1000 ° C or 1040 ° C and the oxygen concentration is 0.5% by volume or 21% by volume.
  • a ceramic body having a ceramic layer thickness y of 6 to 100 xm and a total thickness of 0.:! To 0.6 mm is obtained.
  • the laminated piezoelectric elements of sample numbers 31 to 41 were produced.
  • Table 3 shows the fabrication conditions of the multilayer piezoelectric elements of sample numbers 31 to 41, and Table 4 shows the measurement results.
  • sample numbers 31, 33, 35, 37 and 39 marked with * are different when the thickness y of the ceramic layer is in the range of 6 to 100 ⁇ m.
  • This is a metal powder containing 7/3 of Ag / Pd that does not contain ceramic co-material, and is fired at a temperature of 1040 ° C in an air atmosphere (oxygen concentration: 21% by volume). Show.
  • Sample numbers 32, 34, 36, 38 and 40 are examples of the present invention corresponding to the above-described conventional example, and the internal electrode layer contains 30% by weight of ceramic co-material, and the metal powder is made of Ag. It shows the case where it is blended so that / Pd is 8/2 and calcined at a temperature of 1 000 ° C in a low oxygen concentration atmosphere with an oxygen concentration of 0.5 vol%.
  • the example of the present invention contains 30% by weight of the ceramic co-material in the internal electrode layer, and the oxygen concentration is 0. Since it is fired in an atmosphere with a low oxygen concentration of 5% by volume, the ratio xZy is 0.08 to 0.33 and the coverage is reduced to 80 to 94%.
  • Piezoelectric constant I d I is 0.9-8
  • Sample No. 41 contains 30% by weight of ceramic co-material in the internal electrode layer and is fired in a low oxygen concentration atmosphere with an oxygen concentration of 0.5% by volume. Is 0.38 and exceeds 0.33. Therefore, even if the coverage is as large as 97%, the average diameter X of the non-conductive portion is large, and the potential drop due to the non-conductive portion is large. Piezoelectric constant I d I is 2
  • Ag / Pd weight ratio Ag / Pd is blended to 7/3 or 9/1, and ceramic co-material is blended so as to be 0% by weight or 40% by weight based on the total solid content.
  • a conductive paste for internal electrodes was prepared in the same manner as in [Example 1] except for the above.
  • Example 1 the internal electrode conductive paste was screen-printed on the ceramic green sheet so that the thickness z of the internal electrode layer after sintering was 2 / im or 3 ⁇ , and then [actual A laminate was produced by the same method and procedure as in Example 1. Next, these laminates are accommodated in an alumina sheath and subjected to binder removal treatment, and then the firing temperature is 960 ° C or 1040 ° C and the oxygen concentration is 0.5% by volume or 21% by volume. A ceramic body having a thickness y of 20 xm and a total thickness of 0.:! To 0.6 mm was produced by firing treatment in a firing atmosphere for 8 hours. After that, [Example 1] and The same method ⁇ Procedures were used to produce laminated piezoelectric elements of sample numbers 5:! -60.
  • Table 5 shows the fabrication conditions of multilayer piezoelectric elements of sample numbers 5:! -60, and Table 6 shows the measurement results.
  • Sample numbers 51, 53, 55, 57 and 59 marked with * in Tables 5 and 6 have different driving electric fields in the range of:! To 1 000 V / mm. This is a metal powder containing 7/3 of Ag / Pd that does not contain bismuth and is fired at 1040 ° C in an air atmosphere (oxygen concentration: 21% by volume). Yes.
  • Sample numbers 52, 54, 56, 58 and 60 are examples of the present invention corresponding to the above-described conventional example, the internal electrode layer contains 40% by weight of ceramic co-material, and the metal powder is This shows a case where Ag / Pd is blended in 9/1 and calcined at a temperature of 960 ° C in a low oxygen concentration atmosphere with an oxygen concentration of 0.5% by volume.
  • the example of the present invention contains 40% by weight of the ceramic co-material in the internal electrode layer, and the oxygen concentration is 0. Since the firing is performed in an atmosphere with a low oxygen concentration of 5% by volume, the ratio xZy is 0.30 and the coverage is reduced to 82%.
  • the piezoelectric constant I d I is 2 for each conventional example. 9-10. 7% increase
  • the coercive electric field of the ceramic layer used in this example is 1000 V / mm.
  • increased significantly from 5.0 to 10.7%.
  • the weight ratio of Ag to Pd Ag / Pd is blended to 7/3 or 8/2, and the ceramic co-material is blended so as to be 0% by weight or 25% by weight based on the total solid content.
  • a conductive paste for internal electrodes was prepared in the same manner as in [Example 1] except for the above.
  • the conductive paste for internal electrodes was screen-printed on the ceramic green sheet so that the thickness z of the internal electrode layer after sintering was 2.4 ⁇ , and then [Example 1 ]
  • a layered product was produced by the same method and procedure.
  • these laminates are accommodated in an alumina cocoon and subjected to a binder removal treatment.
  • the firing temperature is 1040 ° C and the oxygen concentration is 0.1 to 21% by volume in a firing atmosphere for 8 hours.
  • a ceramic body having a thickness y of 20 xm and a total thickness of 0.:! To 0.6 mm was prepared by firing treatment, and then the same method and procedure as in [Example 1]
  • multilayer piezoelectric elements of sample numbers 61 to 67 were produced.
  • the tensile strength X and the increase rate ⁇ ⁇ are obtained from the increase rate ⁇
  • Table 7 shows the fabrication conditions of the laminated piezoelectric elements of sample numbers 61 to 67, and Table 8 shows the measurement results.
  • the sample number 61 marked with * is made of metal powder in which the internal electrode layer does not contain ceramic co-material and Ag / Pd is mixed in 7/3, and the atmosphere (oxygen) Concentration: 2 1% by volume), and is fired at a temperature of 1040 ° C., showing a conventional example.
  • Sample Nos. 62 to 67 contain 25% by weight of the ceramic co-material in the internal electrode layer and fired in a low oxygen concentration atmosphere with an oxygen concentration of 0.5 to 15% by volume. Therefore, the ratio X / y is 0.18-0.27, the coverage is reduced to 79-94%, and the porosity of the non-conductive part is also 62-95%, resulting in excessive formation of the ceramic part. As a result, the piezoelectric constant I d is 2.5 compared to the conventional example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

 内部電極層2は、Agを主成分とする導電部5と非導電部6とからなり、非導電部6はセラミック材が充填されたセラミック柱6aと空隙部6bとからなる。非導電部6の平均直径xと前記セラミック層の厚みyとの比は0.08~0.33、内部電極層2の厚みzとセラミック層1の厚みyとの比は0.04~0.40であり、内部電極層2の被覆率は60~95%である。該積層型圧電セラミック部品は、金属粉末の比表面積よりも5~20倍の比表面積を有するセラミック粉末を全固形分に対し20~50重量%含有した導電性ペーストを使用し、0.5~21体積%の低酸素雰囲気で焼成することにより製造される。また、空隙部6bは非導電部中の60%以上が好ましい。これにより大きな変位量を有し、かつ接合強度の優れた積層型圧電セラミック部品を得ることができる。

Description

明 細 書
積層型圧電セラミック部品、及び積層型圧電セラミック部品の製造方法 技術分野
[0001] 本発明は積層圧電ァクチユエ一タゃ積層圧電発音体等の積層型圧電セラミック部 品、及び該積層型圧電セラミック部品の製造方法に関する。
背景技術
[0002] 従来より、この種の積層型圧電セラミック部品は、図 5に示すように、圧電セラミック 層 101a〜: !Olgと内部電極層 102a〜102fとが交互に積層されてセラミック素体 10 3を形成し、該セラミック素体 103の端面に外部電極 104a、 104bが形成されている。
[0003] 上記積層型圧電セラミック部品では、低コストで大きな変位量を有するものが要請さ れる力 そのためには内部電極層 102a〜102fの薄層化が効果的である。
[0004] すなわち、この種の積層型圧電セラミック部品では、電界が印加された場合、セラミ ック層 101b〜: !Olfが伸縮する力 内部電極層 102a〜102fの厚みが厚いとセラミツ ク層 101b〜: !Olf間が内部電極層 102a〜102fに拘束されるため、該セラミック層 1 01b〜101fの伸縮を阻害してしまう。つまり、内部電極層 102a〜102fの厚みが薄 いほどセラミック層 101b〜: !Olfが伸縮しやすくなり、変位量も大きくなる。
[0005] し力、しながら、上記積層型圧電セラミック部品では、内部電極層 102a〜: 102fを薄 層化すると内部電極の被覆率が低下し、このため電極面積が減少して電位降下が 生じ、変位量が低下するという欠点がある。
[0006] 一方、電位降下を解消する技術としては、内部電極の全面積に対し、内部電極に 生じた貫通孔の総面積の占める割合を 40〜0%とし、またセラミック層と同一もしくは 類似組成のセラミック材料を 10〜30重量%含んだペーストを使用して内部電極を形 成した積層型電子部品が提案されている(特許文献 1)。
[0007] この特許文献 1では、セラミック層と同一もしくは類似組成のセラミック材料、すなわ ちセラミック共材を 10〜30重量%含んだペーストを使用して内部電極を形成するこ とにより、膜厚が 2. 5 μ ΐη以下の内部電極層において、被覆率を 60〜: 100%に向上 させて電極面積を増加させ、これにより静電容量が低下するのを回避し、また内部電 極層の収縮を抑制して焼成後に構造欠陥が発生するのを極力回避しょうとしている。
[0008] また、被覆率を制御した技術としては、内部電極の負極に Ag元素を含み、正極に Ag元素を含まないようにし、内部電極の厚みが l〜3 /i mで被覆率 50〜99%に制 御した積層型圧電素子も提案されている (特許文献 2)。
[0009] この特許文献 2では、被覆率を 50〜99%に制御することにより、マイグレーションや デラミネーシヨンの発生を抑制して信頼性向上を図っている。
[0010] また、その他の従来技術としては、内部電極層が Pd及び Z又は Ptを主成分とする 金属材料からなり、かつ積層方向に貫通する複数の孔を有すると共に、該孔内部に 圧電セラミック板と同材質からなり、内部電極を介して対向する各々圧電セラミック板 を接続する共材を配設してなる積層圧電ァクチユエータが提案されている(特許文献
3)。
[0011] この特許文献 3では、セラミック層の厚みに対し、最小内径寸法が 1Z2以下の貫通 孔を設けて該貫通孔をセラミック共材で充填し、さらに貫通孔が形成された非電極部 と電極部との面積比を 1 : 1以下にすることにより、分極時の歪を抑制し、界面剥離が 生じるのを回避している。
[0012] 特許文献 1 :特開 2002— 164248号公報
特許文献 2:特開 2001— 250994号公報
特許文献 3 :特開昭 63— 142875号公報
発明の開示
発明が解決しょうとする課題
[0013] し力しながら、特許文献 1の技術を積層型圧電セラミック部品に適用した場合、単に 被覆率を制御しただけでは、内部電極層中の電極が形成されていない非導電部の 大きさにバラツキが生じたり、非導電部による電位降下が大きくなり、このため所望の 大きな変位量を得ることができないという問題点があった。
[0014] また、特許文献 2は、被覆率を 50〜99%に制御することにより、マイグレーションや デラミネーシヨンの発生を抑制しているものの、特許文献 1と同様、積層型圧電セラミ ック部品に適用した場合、単に被覆率を制御しただけでは非導電部の大きさにバラ ツキが生じたり、非導電部による電位降下が大きくなり、このため所望の大きな変位 量を得ることができないという問題点があった。
[0015] 特許文献 3は、セラミック層の厚みに対し、最小内径寸法が 1/2以下の貫通孔を 設けてレ、るものの、これだけでは電位降下が生じるため所望の大きな変位量を得るこ とができず、また非電極部(非導電部)と電極部(導電部)との比を 1: 1以下とするの みでは十分な被覆率が得られず、内部電極層とセラミック層との間で界面剥離の生 じるおそれがあるという問題点があった。
[0016] 本発明はこのような事情に鑑みなされたものであって、内部電極層が薄層であって も、大きな変位量を有し、かつ接合強度の優れた積層型圧電セラミック部品、及び該 積層型圧電セラミック部品の製造方法を提供することを目的とする。
課題を解決するための手段
[0017] 積層型圧電セラミック部品では、低コストでかつ大きな変位量が求められる力 変位 量の向上を阻害する主な要因としては、(1)電位降下、(2)残留応力、 (3)変位阻害 力の 3つが考えられる。ここで、
[0018] (1)電位降下とは、内部電極層中に貫通孔等の非導電部が形成される結果、該非 導電部に起因した電位降下が生じ、電界と圧電定数との積で規定される変位量が低 下する現象であり、特に、内部電極層を薄層化すると構造的に非導電部が増大する ことから、非導電部での電位降下が顕著となる。
[0019] (2)残留応力とは、セラミック層の熱膨張率と内部電極層の熱膨張率との差異に起因 して応力が残留し、セラミック層の変位が抑制される現象である。
[0020] (3)変位阻害力とは、電圧が印加されると、セラミック層が伸縮運動を行うが、該セラミ ック層は内部電極層で挟持されているため、前記セラミック層の変位が内部電極層に よって阻害される現象である。
[0021] そして、内部電極層を薄層化しかつ内部電極層のセラミック層への被覆率を低下さ せることにより、残留応力や変位阻害力を低減することができ、変位量を向上させるこ とができると考えられるが、内部電極を薄層化したり被覆率を低下させると、非導電部 が増大するため電位降下が大きくなり、変位量が却って低下してしまうおそれがある
[0022] そこで、本発明者らは、変位量の向上を阻害する上記 3つの要因、すなわち電位降 下、残留応力及び変位阻害力を低減すべく鋭意研究を行ったところ、内部電極層の うち、非導電部の断面積を円換算した場合の平均直径 Xとセラミック層の厚み yとの比 x/yを 0. 08〜0. 33に制御すると共に、前記内部電極層の厚み zと前記セラミック 層の厚み yとの比 z/yを 0. 04〜0. 40に制御し、かつ内部電極層のセラミック層へ の被覆率を 60〜95%に制御することにより、電位降下による変位量の低下を最小限 に抑制しつつ、残留応力や変位阻害力を低減することができ、これにより内部電極層 が薄層の場合であっても変位量と信頼性の双方を向上させることが可能な積層型圧 電セラミック部品を得ることができるという知見を得た。
[0023] 本発明はこのような知見に基づきなされたものであって、本発明に係る積層型圧電 セラミック部品は、セラミック層と内部電極層とが交互に積層された積層型圧電セラミ ック部品において、前記内部電極層は、導電部と非導電部とからなり、前記非導電部 の断面積を円換算した場合の平均直径 Xと前記セラミック層の厚み yとの比 xZyが 0 . 08〜0. 33であり、かつ前記内部電極層の厚み zと前記セラミック層の厚み yとの比 z/yが 0. 04-0. 40であり、さらに、前記内部電極層の前記セラミック層への被覆 率が 60〜95%であることを特徴としている。
[0024] また、内部電極層は、セラミック層と内部電極層との間の接合強度向上等の観点か ら、後述するように固形分として金属粉末とセラミック粉末とを含有した導電性ペース トを使用して形成されるため、非導電部は、空隙部とセラミック粉末が充填されたセラ ミック部とを有することとなる。そして、本発明者らが、非導電部の構造を解析した結 果、非導電部中の空隙率を 60%以上とすることにより、接合強度を損なうことなく変 位量のより一層の向上を図ることができることが分かった。
[0025] そこで、本発明の積層型圧電セラミック部品は、前記非導電部が、空隙部とセラミツ ク粉末が充填されたセラミック部とからなると共に、前記空隙部が前記非導電部中の 60%以上を占めることを特徴としている。
[0026] さらに、上記積層型圧電セラミック部品は、内部電極層の導電部材料の主成分とし て比較的安価な Agを使用した場合であっても、所望の大きな変位量を得ることがで き、かつ信頼性の向上を図ることができることが分かった。
[0027] したがって、本発明の積層型圧電セラミック部品は、前記導電部は、 Agを主成分と することを特 ί数としてレ、る。
[0028] また、本積層型圧電セラミック部品は、セラミック層の抗電界の 1/10以上の高電 界でより大きな変位量を得ることができる。
[0029] すなわち、本発明の積層型圧電セラミック部品は、前記セラミック層の抗電界の 1Z
10以上の電界で駆動されることを特徴としている。
[0030] また、本発明者らは、金属粉末の 5〜 20倍の比表面積を有するセラミック粉末を、 その含有量が金属粉末及びセラミック粉末の総計に対し 20〜50重量%となるように 、前記金属粉末と共に導電性ペースト中に分散させ、かつ焼成時の酸素濃度を 0. 1 〜15体積%の低酸素濃度とすることにより、上述した内部電極層を有する積層型圧 電セラミック部品を容易に製造することができるという知見を得た。
[0031] すなわち、本発明に係る積層型圧電セラミック部品の製造方法は、セラミックダリー ンシートの表面に導電性ペーストを塗布して内部電極層となるべき所定の導電パタ ーンを形成し、該導電パターンの形成されたセラミックグリーンシートを積層した後、 導電パターンの形成されていないセラミックグリーンシートで挟持し、圧着して積層体 を形成し、その後該積層体に焼成処理を施してセラミック素体を形成し、該セラミック 素体の端面に外部電極を形成する積層型圧電セラミック部品にぉレ、て、前記導電性 ペーストが、金属粉末と、該金属粉末の 5〜20倍の比表面積を有するセラミック粉末 とを含有すると共に、該セラミック粉末の含有量が、金属粉末及びセラミック粉末の総 計に対し、 20〜50重量%となるように調製し、前記焼成処理を、酸素濃度が 0.:!〜 15体積%の酸素雰囲気中で行なうことを特徴としている。
[0032] さらに、導電性ペーストに含有されるセラミック粉末は、焼成時にセラミックグリーン シート側にも拡散するため、特性変動を防ぐ観点からは、少なくとも主成分がセラミツ クグリーンシートと同一の成分組成を有する材料を使用するのが好ましい。
[0033] すなわち、本発明の積層型圧電セラミック部品の製造方法は、前記セラミック粉末 は、少なくとも主成分が前記セラミックグリーンシートと同一の成分組成であることを特 徴としている。
発明の効果
[0034] 上記積層型圧電セラミック部品によれば、内部電極層が、導電部と非導電部とが混 在した状態に形成されると共に、非導電部の断面積を円換算した場合の平均直径 X とセラミック層の厚み yとの比 x/yが 0. 08〜0. 33であり、かつ前記内部電極層の厚 み zと前記セラミック層の厚み yとの比 z/yが 0. 04〜0. 40であり、さらに、内部電極 層のセラミック層への被覆率が 60〜95%であるので、微小かつ多数の非導電部が 形成されることとなり、し力も内部電極層の厚みに対してセラミック層の厚みが適度に 薄いことから、セラミック層に加わる内部電極層による残留応力や変位阻害力が低減 される効果が大きくなる。そしてこれにより、電位降下による変位量低下を抑制しつつ 、残留応力、及び内部電極層によるセラミック層の変位阻害力を低減することができ 、したがって大きな変位量を有し、かつ良好な接合強度を有する信頼性の優れた積 層型圧電セラミック部品を得ることができる。
[0035] また、前記非導電部が、空隙部とセラミック粉末が充填されたセラミック部とからなる と共に、前記空隙部が前記非導電部中の 60%以上を占めるので、内部電極層によ る残留応力や変位阻害力を効果的に低減することができ、変位量や接合強度をより 一層向上させることができる。
[0036] また、前記導電部は、 Agを主成分とするので、比較的安価な Agを主成分とした場 合であっても、変位量と接合強度とを両立させた積層型圧電セラミック部品を得ること ができる。
[0037] また、本積層型圧電セラミック部品は、前記セラミック層の抗電界の 1/10以上の 電界で駆動される場合により大きな変位量を得ることができる。
[0038] さらに、本発明の積層型圧電セラミック部品の製造方法は、前記導電性ペーストが 、金属粉末と、該金属粉末の 5〜20倍の比表面積を有するセラミック粉末とを含有す ると共に、該セラミック粉末の含有量が、金属粉末及びセラミック粉末の総計に対し、 20〜50重量%となるように調製し、前記焼成処理を、酸素濃度が 0. 1〜: 15体積% の酸素雰囲気中で行なうので、微小なセラミック粉末は焼結時にセラミックグリーンシ ートに効果的に拡散すると共に、内部電極層中の金属成分のセラミックグリーンシー ト内への拡散を抑制でき、内部電極層に多数の微小な非導電部を形成することがで きる。特に、低酸素濃度雰囲気での焼成により、内部電極層内に形成され得る貫通 孔の焼結が抑制されるので、微小な空隙部が内部電極層内に略均一に分布され、こ れにより被覆率が低下して変位量を向上させることができる。しかも、内部電極の被 覆率低下や薄層化により導電性ペーストの使用量を削減することができるため、コス トの低廉化を図ることもできる。
[0039] また、前記セラミック粉末は、少なくとも主成分が前記セラミックグリーンシートと同一 の成分組成であるので、焼成時にセラミック粉末がセラミックグリーンシート側に拡散 しても特性変動を防止することができる。
図面の簡単な説明
[0040] [図 1]本発明に係る積層型圧電セラミック部品の一実施の形態を示す断面図である。
[図 2]図 1の B部拡大断面図である。
[図 3]本発明実施例の SEM画像の一例を示す図である。
[図 4]従来例の SEM画像の一例を示す図である。
[図 5]積層型圧電セラミック部品の従来例を示す断面図である。
符号の説明
[0041] 1 セラミック層
2 内部電極層
5 導電部
6 非導電部
6a セラミックき
6b 空隙部
発明を実施するための最良の形態
[0042] 次に、本発明の実施の形態を詳説する。
[0043] 図 1は本発明に係る積層型圧電セラミック部品としての積層圧電ァクチユエータの 一実施の形態を示す断面図であって、該積層圧電ァクチユエータは、セラミック層 1 ( la〜lg)と内部電極層 2 (2a〜2f)とが交互に積層されて圧電セラミック素体 3が形成 され、さらに圧電セラミック素体 3の上面又は下面から端面に架けて断面 L字状の Ag 等の導電性材料からなる外部電極 4 (4a、 4b)が形成されてレ、る。
[0044] すなわち、上記積層圧電ァクチユエータは、内部電極 2a、 2c、 2eの一端が一方の 外部電極 4bと電気的に接続され、内部電極 2b、 2d、 2fの一端は他方の外部電極 4 aと電気的に接続されている。そして、積層圧電ァクチユエータの分極方向は、内部 電極 2面に対し垂直方向とされ、一層毎に互いに逆方向に分極されている。そして、 外部電極 4aと外部電極 4bとの間に電圧が印加されると、圧電横効果により矢印 Aで 示す長手方向に変位する。
[0045] 図 2は図 1の B部拡大断面図である。尚、本実施の形態では、内部電極層 2b〜2d の一部を拡大しているが、他の部分も同様の構造を有している。
[0046] すなわち、内部電極層 2 (2b〜2d)は、金属粉末が焼結されてなる導電部 5と、金 属粉末が存在しない非導電部 6とからなり、さらに非導電部 6は、少なくとも主成分が セラミック層 1 (lb〜: le)と同一の組成成分のセラミック粉末が存在するセラミック部 6a と、固体の存在しない空隙部 6bとを有している。尚、図中、 C部に示すように、空隙部 6bは必ずしも貫通している必要はなレ、。また、例えば空隙部 6bの一部にセラミック粉 末が含まれていてもよい。また、図中、 D部に示すように、セラミック部 6aは、必ずしも 内部電極層 2をまたがる必要はなぐ内部電極層 2の一部に存在するようにしてもよ レ、。
[0047] そして、本実施の形態では、非導電部 6の断面積を円換算した場合の平均直径 Xと セラミック層 1の厚み yとの比 x/yが 0. 08-0. 33となるように制御し、また内部電極 層 2のセラミック層 1への被覆率が 60〜95%となるように制御しており、これにより、非 導電部 6の大きさが微小化されて非導電部 6における電位降下による変位量低下を 抑制することができ、また微小な非導電部 6を多数設けることにより内部電極層 2の被 覆率を低減することができる。そしてその結果、内部電極層 2による残留応力や変位 阻害力を低減することができ、積層圧電ァクチユエータの変位量及び接合強度の向 上を図ることができる。
[0048] 比 x/yは電位降下と相関関係があり、比 x/yが小さくなるとセラミック層 1の厚さに 対して平均直径 Xが相対的に小さくなることから電位降下は小さくなり変位量が向上 する。一方、比 xZyが大きくなるとセラミック層 1の厚みに対して平均直径 Xが相対的 に大きくなることから、電位降下が大きくなり変位量が低下する。そして、前記被覆率 が 60%未満になると非導電部 6が過剰に増加するため、電位降下が大きくなつて変 位量の低下を招き、またセラミック層 1と内部電極層 2との間の接合強度も低下して界 面剥離が生じ易くなる。一方、前記被覆率が 95%を超えると被覆率が過大となり、セ ラミック層 1の伸縮運動を内部電極層 2が拘束する変位阻害力が増大して変位量の 低下を招く。また、共焼結時におけるセラミック層 1の熱膨張率と内部電極層 2の熱膨 張率との差異に起因した残留応力により接合強度が低下するおそれがある。
[0049] したがって、内部電極層 2のセラミック層 1への被覆率を 60〜95%に制御する必要 力 Sある。
[0050] また、前記比 xZyを 0. 08〜0. 33としたのは以下の理由による。
[0051] 前記比 x/yが 0. 08未満になると非導電部 6の平均直径 Xが小さくなるため、被覆 率の制御が難しぐ被覆率が高くなつてしまい、このためセラミック層 1の内部電極層 2への変位阻害力が増大して変位量の低下を招く。一方、前記比 x/yが 0. 33を超 えると非導電部 6の平均直径 Xが大きくなるため、非導電部 6に起因した電位降下の 増加を招き、所望の大きな変位量を得ることができなくなる。
[0052] そこで、本実施の形態では前記非導電部 6の前記平均直径 Xとセラミック層 yとの比 x/y力 SO. 08-0. 33となるように制御してレヽる。
[0053] また、内部電極層 2の厚み zとセラミック層 1の厚み yとの比 z/yは 0. 04〜0. 40と するのが好ましい。
[0054] すなわち、セラミック層 1の厚み yを内部電極層 2の厚み zに対し薄くするほど、セラミ ック層 1に負荷される内部電極層 2による残留応力や変位阻害力が相対的に増加し 、十分な変位量の増加を得ることができなくなるおそれがあり、斯カる観点からは前 記比 z/yを 0. 04以上とするのが好ましい。一方、前記比 z/yが 0. 40を超えると内 部電極層 2の厚み zがセラミック層 1の厚みに対して相対的に厚くなり、その結果内部 電極層 2の変位阻害力が大きくなるため、変位量の低下を招くおそれがある。したが つて前記比 zZyは 0. 04〜0. 40とするのが好ましい。
[0055] 尚、内部電極層 2の厚み zは薄くなるほど、内部電極層 2による残留応力や変位阻 害力は低減されることから,内部電極層 2の厚み zは可能な限り薄いのが望ましぐ好 ましくは厚み zは 1〜2. 4 μ mの範囲となるように制御するのが望ましい。
[0056] また、内部電極層 2に形成された空隙部 6bは、非導電部 6 (セラミック部 6a及び空 隙部 6b)中の 60。/o以上を占めるのが好ましい。 [0057] すなわち、金属粉末よりも微粒のセラミック粉末を含有した導電性ペーストを使用し て内部電極層 2を形成することにより、共焼結時にセラミック粉末がセラミック層 1にも 分散し、これによりセラミック層 1と内部電極層 2との接合強度を向上させることができ る。し力 ながら、非導電部 6中の空隙部 6bの割合が 60%未満になると、内部電極 層 2中にセラミック部 6aが多数形成され、このため接合強度が大きくなり過ぎて変位 量の低下を招くおそれがある。したがって前記空隙部 6bは、非導電部 6中、 60%以 上を占めるのが好ましい。
[0058] また、導電部 5は、 Agを主成分とすることができ、例えば Agを 70重量%以上含有し た Ag_Pdで形成することができる。
[0059] すなわち、 Agを主成分として含有した内部電極層 2では、 Agが低融点材料のため 、一般に被覆率が低下し、接合強度の低下が生じ易いが、内部電極層 2の構造を上 述のようにすることにより、接合強度の低下を抑制することが可能となり、比較的安価 な Agを主成分とした金属粉末を使用することができ、製造コストの削減が可能となる
[0060] また、上記積層圧電ァクチユエータは、セラミック層 1の抗電界の 1/10以上の高電 界で駆動させることにより、より一層大きな変位量を得ることができる。これは駆動電 界が大きくなるほど変位量が増加するため、セラミック層 1に負荷される内部電極層 2 による残留応力や変位阻害力を低減する効果がより顕著に現れるためである。
[0061] 次に、上記積層圧電ァクチユエータの製造方法について詳述する。
[0062] まず、セラミック素原料として Pb〇、 ZrO、 Ti〇、必要に応じて Nb O 、 Ni〇を所
3 4 2 2 2 5 定量秤量した後、該秤量物をジノレコニァボール等の粉砕媒体が内有されたボールミ ルに投入し、十分に混合粉砕する。そしてその後、得られた混合粉末を所定温度 (例 えば、 700〜: 1000°C)で仮焼して仮焼物を得、該仮焼物に溶剤と分散剤とを添加し て再度ボールミル内で湿式粉砕し、 PZT系セラミック原料粉末を作製する。
[0063] 次に、このようにして作製されたセラミック原料粉末に有機バインダゃ可塑剤を添カロ し、湿式で混合処理を行なってスラリー状とし、その後、ドクターブレード法等を使用 して成形加工を施し、セラミックグリーンシートを作製する。
[0064] 一方、以下のようにして導電性ペーストを作製する。 [0065] まず、有機溶剤中に有機バインダを溶解させた有機ビヒクルを作製する。次レ、で、 所定の比表面積 (例えば:!〜 3m2/g)を有する金属粉末を用意し、前記有機ビヒク ルに前記金属粉末を混合させ、三本ロールミル等で混練し、これにより金属ペースト を得る。
[0066] 次に、前記セラミック原料粉末と少なくとも主成分が同一の組成成分を有するセラミ ック原料を用意し、該セラミック原料をビーズ攪拌型粉砕機等の強制撹拌装置に投 入して粉砕処理を施し、これにより金属粉末の比表面積 S1に対し 5〜20倍の比表面 積 S2を有するセラミック粉末 (セラミック共材)を作製する。
[0067] 次いで、このセラミック粉末と上記有機ビヒクルとを混合し、上記ビーズ攪拌型粉砕 機等の強制撹拌装置を使用してセラミック粉末を有機ビヒクル中に十分に分散させ、 これによりセラミックペーストを得る。
[0068] ここで、上述のようにセラミック粉末の比表面積 S2を金属粉末の比表面積 S1に対し 5〜20倍となるようにしたのは以下の理由による。
[0069] すなわち、セラミック粉末の比表面積 S 2を金属粉末の比表面積 S1に対し 5倍未満 とした場合は、セラミック粉末の平均粒径が大きくなつて導電性ペースト中のセラミック 粉末の分散性が低下し、内部電極層 2の非導電部 6の径が大きくなつたり被覆率が 低くなるため、十分な変位量や接合強度を得ることができなくなるおそれがある。一 方、セラミック粉末の比表面積 S 2が金属粉末の比表面積 S1に対し 20倍を超える場 合は、導電性ペースト中に含まれるセラミック粉末セラミック粉末の平均粒径が過度 に細かくなり、その結果これらセラミック粉末同士が凝集してしまレ、、このためセラミツ ク粉末がセラミック層中に十分に拡散せず、内部電極層 2の非導電部 6の径が大きく なり、変位量や接合強度の低下を招くおそれがある。
[0070] このような理由から本実施の形態では、セラミック粉末の比表面積 S 2を金属粉末の 比表面積 S1に対し 5〜20倍となるようにしている。
[0071] 次に、固形分 (金属粉末及びセラミック粉末)中のセラミック粉末の含有量が 20〜5 0重量%となるように上記金属ペーストと上記セラミックペーストとを三本ロールミル等 で混練し、これにより導電性ペーストが作製される。
[0072] このようにセラミック粉末の含有量を固形分に対し、 20〜50重量%とすることにより 、焼成時にセラミック粉末をセラミックグリーンシート側に効果的に拡散することができ る。
[0073] 尚、セラミック粉末の含有量を 20〜50重量%としたのは、セラミック粉末の含有量 力 ¾0重量%未満になると、内部電極層中の非導電部の径が大きくなつて被覆率が 低下し、 60%以上の被覆率を確保するのが困難となる。また前記含有量が 50重量 %を超えるとセラミック層 1に拡散しなかったセラミック粉末がセラミック部 6aを形成す るため接合強度が過度に大きくなり、このため変位量の低下を招くおそれがあるから である。
[0074] 次いで、上述した導電性ペーストを使用し、上記セラミックグリーンシート上にスクリ ーン印刷を施して導電パターンを形成する。
[0075] 尚、本実施の形態では、導電性ペーストに含まれるセラミック粉末は、少なくとも主 成分が、セラミックグリーンシートを形成するセラミック材料と同一の組成成分を有す るセラミック原料を使用している力 S、必ずしも主成分が同一の組成成分である必要は なレ、。し力しながら、導電性ペーストに含まれるセラミック粉末は、焼成時にセラミック 層側に拡散するため、特性変動を防止する観点から、少なくとも主成分が、セラミック グリーンシートを形成するセラミック材料と同一の組成成分を有するセラミック原料を 使用するのがより好ましい。
[0076] 次に、これら電極パターンがスクリーン印刷されたセラミックグリーンシートを積層し た後、電極パターンがスクリーン印刷されていないセラミックグリーンシートで挟持し、 圧着して積層体を作製する。次いで、この積層体を所定寸法に切断してアルミナ製 の匣(さや)に収容し、所定温度(例えば、 200〜500°C)で脱バインダ処理を行った 後、酸素濃度が 0.:!〜 15体積%の酸素濃度雰囲気下、所定温度 (例えば、 950〜1 100°C)で焼成処理を施し、セラミック層 1と内部電極層 2とが交互に積層された圧電 セラミック素体 3を形成する。
[0077] ここで、焼成雰囲気を上記低酸素雰囲気としたのは以下の理由による。
[0078] 金属粉末よりも大きな比表面積を有するセラミック粉末をセラミック層中に積極的に 拡散させることにより、微小な非導電部 6を内部電極層 2中に多数形成することができ るが、さらに、大気中よりも低い酸素濃度 0. 1〜: 15体積%の酸素濃度雰囲気で焼成 することにより、内部電極中の金属成分がセラミック層へ拡散することを防ぐと共に、 非導電部 6中の空隙部 6bが焼結によって閉塞状態となるのを防止することができ、そ の結果、微小な空隙部 6bを非導電部 6全体に対し 60%以上とすることができ、これ により上述した内部電極層 2を有する積層圧電ァクチユエータの製造が可能となる。
[0079] さらに、低酸素雰囲気で焼成した場合、内部電極層 2の昇降温時の酸化膨張や還 元収縮を抑制できるため、セラミック層 1と内部電極層 2との界面での接合強度を強 固に維持することが可能となる。
[0080] そして、このような接合強度の強化と微小な非導電部 6の形成との相乗効果により、 より一層の変位量及び信頼性の向上した積層圧電ァクチユエータを得ることが可能と なる。
[0081] また、酸素濃度を 0. 1〜: 15体積%としたのは、酸素濃度が 0. 1体積%未満となる と、被覆率が低下する傾向があり、空隙部 6bの制御が難しくなるからであり、一方酸 素濃度が 15体積%を超えると焼成雰囲気が大気に近くなるため、空隙部 6bが焼結 により塞がれ易くなるため、上述した所望の内部電極層 2を形成することができなくな り、変位量の向上を図ることができず、また接合強度の向上を図ることができなくなる からである。
[0082] 尚、上述した低酸素雰囲気では、金属粉末として Pdを含有した Ag— Pd粉末を使 用した場合、 Pdの酸化還元反応自体を抑制することができるため、昇降温時の Pdの 体積変化による接合強度の劣化を抑制することができ、これにより変位量の低下を招 くことなぐ接合強度のより一層の向上を図ることができる。
[0083] そしてこの後、圧電セラミック素体 3の端面所定領域に Ag等からなる外部電極用同 導電性ペーストを塗布し、所定温度(例えば、 750°C〜850°C)で焼付け処理を行つ て外部電極 4a、 4bを形成し、さらに所定の分極処理を行ない、これにより積層圧電 ァクチユエータが製造される。尚、外部電極 4a、 4bは、密着性が良好であればよぐ 例えばスパッタリング法や真空蒸着法等の薄膜形成方法で形成してもよい。
[0084] このように本実施の形態では、金属粉末の比表面積 S1の 5〜 20倍の比表面積 S 2 を有するセラミック粉末を固形分 (金属粉末及びセラミック粉末)に対し 20〜50重量 %含有した導電性ペーストを使用し、酸素濃度が 0. 1〜: 15体積%の低酸素濃度雰 囲気で焼成処理を施しているので、内部電極層 2は、導電部 5に非導電部 6が点在し た状態に形成されると共に、非導電部 6の平均直径 Xとセラミック層 2の厚み yとの比 X /yが 0. 08〜0. 33であり、内部電極層 2の被覆率が 60〜95%であり、さらに内部 電極層 2の厚み zとセラミック層 1の厚み yとの比 z/yが 0. 04〜0. 40であり、しかも 非導電部 6中、空隙部 6bが 60%以上を占めるように内部電極層が形成されているの で、変位量が大きくし力、もセラミック層 1と内部電極層 2との間の接合強度が強く信頼 性の優れた積層圧電ァクチユエータを製造することができる。
[0085] 尚、本発明は上記実施の形態に限定されるものではない。上記実施の形態では、 金属ペーストとセラミックペーストとを混練させて導電性ペーストを作製している力 金 属粉末とセラミック共材とを所定量の配合比で混合させた後、有機ビヒクルと混練させ て導電性ペーストを作製するようにしてもょレ、。
[0086] また、上記実施の形態では積層型圧電セラミック部品として積層圧電ァクチユエ一 タを例に説明したが、高い圧電定数が要求される積層圧電発音体や積層圧電セン サに好適であり、また、積層構造、素子形状、変位や力の方向、分極方向、電圧印 加方向も上記実施の形態に限定されるものでもない。
[0087] さらに、上記実施の形態では、セラミック素原料として Pb O等の酸化物を使用した
3 4
1S 炭酸塩や水酸化物等を使用することもできるのはいうまでもない。
[0088] 次に、本発明の実施例を具体的に説明する。
実施例 1
[0089] まず、セラミック素原料として Pb O、 ZrO、 TiO、 Ni〇、 Nb Oを所定量秤量した
3 4 2 2 2 5
後、該秤量物をジノレコニァ等の粉砕媒体が内有されたボールミルに投入し、 24時間 混合粉砕する。そしてその後、得られた混合粉末を温度 900°Cで仮焼して仮焼物を 得た。次いでこの後、該仮焼物に溶剤と分散剤とを添加して再度ボールミルで 24時 間湿式粉砕し、組成式 0. 25Pb (Ni Nb ) 0 -0. 35PbZrO _0. 40PbTi〇で
1/3 2/3 3 3 3 表される PZT系セラミック原料粉末を作製した。
[0090] 次に、上記セラミック粉末原料に対し、有機バインダとしてのェチルセルロース樹脂 や分散剤としてのポリカルボン酸塩溶液を添加し、溶媒として水を用いてスラリーを作 製し、ドクターブレード法を使用し、セラミックグリーンシートを作製した。尚、セラミック グリーンシートの厚みは、焼結後のセラミック層の厚み yが 20 β m又は 40 μ mとなる ように成形加工した。
[0091] 次に、 Agと Pdとの重量比 Ag/Pdが 7/3〜9/1に配合された比表面積が:!〜 3m 2/gの金属粉末と、前記 PZT系セラミック原料粉末と同一組成成分を有する比表面 積が 15〜40m2Zgのセラミック粉末 (セラミック共材)を、セラミック共材の含有量が固 形分 (金属粉末及びセラミック共材)の総計に対し 0〜50重量%となるように配合し、 該配合物をェチルセルロース樹脂(有機バインダ)と共にテルペン系溶剤(有機溶媒 )中に分散させ、これにより、導電性ペーストを作製した。
[0092] 次に、焼結後の内部電極層の厚み zが:!〜 3 z mとなるように塗布膜の厚みを調整 しながら、上記セラミックグリーンシート上に上記内部電極用導電性ペーストをスクリ ーン印刷した。そして、これらスクリーン印刷が施されたセラミックグリーンシートを所 定枚数積層した後、スクリーン印刷されていないセラミックグリーンシートで挟み、圧 着して積層体を作製した。次いで、これらの積層体をアルミナ製の匣(さや)に収容し 、脱バインダ処理を行った後、焼成温度が 960°C〜1040°C、酸素濃度が 0. 3〜21 体積%の焼成雰囲気で 8時間焼成処理を施し、これにより各セラミック層の厚み yが 2 0 /i m又は 40 /i mで、総厚み力 SO.:!〜 0. 6mmのセラミック素体を作製した。尚、焼 成時の酸素濃度は Nガスと Oガスにより調整した。
2 2
[0093] 続いてセラミック素体を縦 3mm、横 13mmに切断し、 Ni— Cuをターゲットとしてス パッタリング処理を施し、セラミック素体の上下両面から側面部に架けて Ni—Cu膜を 形成し、さらに Agをターゲットとしてスパッタリング処理を施し、 Ni— Cu膜上に Ag膜 を成膜し、これにより Ni— Cu膜及び Ag膜の 2層構造からなる外部電極を形成した。
[0094] そしてその後、 60°Cの絶縁オイル中で、 3kVZmmの電界を負荷して 20分間分極 処理を施し、これにより試料番号:!〜 24の積層圧電素子を作製した。
[0095] 次に、試料番号 1〜24の圧電定数 I d
31 I及び引張強度 Xを測定し、それぞれ積 層圧電素子の変位量及び接合強度、すなわち信頼性を評価した。
[0096] ここで、圧電定数 | d I は、今回使用したセラミック材料の抗電界である 1000V/
31
mmの 1/2、すなわち 500VZmmの電界を印加したときの変位量を接触式変位計 で測定し、算出した。 [0097] また、引張強度 Xは、積層圧電素子の両主面に金属片をそれぞれ接着し、該金属 片を引っ張り試験機で引っ張り、セラミック層と内部電極層との接合面が剥離したとき の値を求めた。尚、本実施例では、引張強度で内部電極層とセラミック層との接合強 度を評価した。
[0098] また、試料番号 1又は試料番号 12を基準とし、圧電定数の増加率 Δ I d
31 I及び
§ I張強度の増加率 Δ Xを算出した。
[0099] 次に、セラミック層と内部電極層との接合面を走查型電子顕微鏡(SEM)で観察し
、内部電極の被覆率、非導電部の断面積を円換算した場合の平均直径 Xを画像解 析により求めて、比 x/y、及び比 zZyを算出した。
[0100] 表 1は試料番号 1〜24の積層圧電素子の作製条件を示し、表 2はその測定結果を 示している。
[0101] [表 1]
セラミック層 内部電極層 非導電部
試料 AgZPd 共材含有量 S2/S1 酸素濃度 焼成温度 の厚み y の厚み z 平均直径
No.
m) (重量%) (一) (体積%) (°C)
( m) ( m)
1** 40 3 1.1 0.03 0.08 7/3 0 - 21 1040
2 40 2 3.4 0.09 0.05 フ /3 40 5 0.3 1040
3 40 2 4.3 0.11 0.05 7/3 30 5 0.3 1040
4 40 2 6.4 0.16 0.05 7/3 25 5 0.3 1040
5 40 2 9.2 0.23 0.05 7/3 20 5 0.3 1040
6* 40 2 14.7 0.37 0.05 フ 3 0 - 0.3 1040
7 40 1.5 4.5 0.11 0.04 7/3 40 10 0.3 1020
8 40 1.5 6.6 0.17 0.04 7/3 30 10 0.3 1020
9 40 1.5 10.0 0.25 0.04 フ/ 3 20 10 0.3 1020
10* 40 1.5 16.5 0.41 0.04 7X3 10 10 0.3 1020
11 40 1.5 13.1 0.33 0.04 8/2 30 10 0.3 1000
12** 20 3 0.7 0.03 0. 15 フ /3 0 - 21 1040
13 20 2 3.2 0.16 0. 10 7/3 40 5 0.9 1040
14 20 2 3.9 0.20 0. 10 7/3 30 5 0.9 1040
15 20 2 5.7 0.28 0. 10 7/3 25 5 0.9 1040
16 20 2 6.5 0.33 0. 10 7/3 20 5 0.9 1040
17* 20 2 13.1 0.65 0. 10 7/3 20 2 0.9 1040
18 20 1.5 4.3 0.21 0.08 7/3 50 10 0.9 1020
19 20 1.5 5.9 0.30 0.08 フ 3 30 10 0.9 1020
20* 20 1.5 14.7 0.73 0.08 7/3 10 10 0.9 1020
21 20 1 4.8 0.24 0.05 7/3 50 15 0.9 1000
22 20 1 6.6 0.33 0.05 7/3 30 15 0.9 1000
23* 20 1 17.0 0.85 0.05 7/3 10 15 0.9 1000
24 20 1 6.7 0.33 0.05 9/Ί 30 20 0.9 960
*は本発明範囲外 (従来例を除く。 )
* *は従来例
Figure imgf000020_0001
/i mと大きいため、被覆率が 49%に低下し、このため圧電定数 I d I力 ¾24pC/
31
Nと低ぐ試料番号 1に対し 1. 5%も低下している。また、被覆率が 49%と低いことか ら、引張強度 Xも 7. 9MPaと低ぐ試料番号 1に対し引張強度 Xは 7. 1%も低下して いる。
[0105] 試料番号 10は、比 xZyが 0. 41と大きく、非導電部の平均直径 xが 16. 5 μ mと大 きいため、被覆率力 S45%に低下し、このため圧電定数 I d Iが 315pC/Nと低ぐ
31
試料番号 1に対し 4. 3%も低下している。また、被覆率が 45%と低いことから、引張 強度 Xも 7. 4MPaと低ぐ試料番号 1に対し 12. 9%も低下している。
[0106] これに対して試料番号 2〜5、 7〜9、及び 11は、比 x/yが 0. 08〜0. 33、被覆率 力 ¾0〜94%であるので、圧電定数 I d I は 338〜362pC/Nと大きく、試料番号
31
1に対し 2. 7〜: 10. 0%も増加しており、変位量が向上することが分かった。また、引 張強度 Xも 8. 5〜9. 8MPaであり、試料番号 11は試料番号 1と引張強度 Xは同等で ある力 試料番号 2〜5及び 7〜9は、試料番号 1に対し 1. 2-21. 2%も増加してお り、接合強度が向上することが分かった。
[0107] 試料番号 12〜24はセラミック層の厚み yが 20 /i mの場合である。このうち試料番号 12は、内部電極層中にセラミック共材が含有されておらず、しかも酸素濃度が 21体 積%の大気雰囲気で焼成処理を行なった従来例であり、この試料番号 12と試料番 号 13〜24とを対比することにより、各試料番号の変位量及び接合強度を評価するこ とができる。
[0108] すなわち、試料番号 17は、比 x/yが 0. 65と大きく、非導電部の平均直径 xが 13.
1 / mと大きいため、被覆率が 48%となって試料番号 12に対し 0. 6%も低ぐ圧電定 数 I d Iも 313pCZNと低く、しかも、引張強度 Xも 8. 4MPaとなって試料番号 12
31
に対し 4. 5%も低ぐ接合強度が低下している。これは金属粉末の比表面積 S1に対 するセラミック共材の比表面積 S2の比 S2/S1が「2」と小さぐしたがってセラミック共 材の平均粒径が大きいことから、該セラミック共材の分散性が低下し、その結果、上 述のように内部電極層の非導電部の径が拡大して被覆率が低下し、諸特性の悪化 を招いたものと思われる。
[0109] 試料番号 20は、比 xZyが 0. 73と大きぐ非導電部の平均直径 xが 14. 7 μ mと大 きいため、被覆率が 48%に低下し、このため圧電定数 I d Iが 309pC/Nと低ぐ
31
試料番号 12に対し 1. 9%も低下している。また、被覆率が 48%と低いことから、引張 強度 Xも 8. OMPaと低ぐ試料番号 12に対し引張強度 Xは 9. 1 %も低下している。
[0110] 試料番号 23は、比 xZyが 0. 85と大きく、非導電部の平均直径 xが 17. 0 μ mと大 きいため、被覆率が 41 %に低下し、このため圧電定数 I d I力 ¾95pC/Nと低ぐ
31
試料番号 12に対し 6. 3%も低下している。また、被覆率が 41 %と低いことから、引張 強度 Xも 7. IMPaと低ぐ試料番号 12に対し 19. 3%も低下している。
[0111] これに対して試料番号 13〜: 16、 18、 19、 21、 22、及び 24fま、 i x/y力 S〇. 16〜0 . 33、被覆率力 61〜95%であるので、圧電定数 I d I は 324〜357pC/Nと大き
31
ぐ試料番号 12に対し 2. 9〜: 13. 3%も増加しており、変位量が向上することが分か つた。また、引張強度 Xも 8. 8-10. 8MPaであり、試料番号 24は試料番号 12と引 張強度 Xは同等であるが、試料番号 13〜: 16、 18、 19、 21、及び 22は、試料番号 12 に対し 1. :!〜 22. 7%も増加しており、接合強度が向上することが分かった。
[0112] また、表 1から明らかなように、被覆率が 60〜90%の範囲では、圧電定数の増加率
Δ I d I は 5. 8-13. 3%と大幅に増加し、また、被覆率が 75〜95%の範囲で引
31
張強度の増加率 Δ Χは 4. 5〜22. 7%と大幅に増加することが分かった。
[0113] 図 3は試料番号 19 (本発明実施例)の SEM画像であり、黒く見えるのが非導電部 である。また図 4は試料番号 12 (従来例)の SEM画像である。
[0114] 図 4で示すように従来例は、セラミック層が内部電極層で完全に被覆されているの に対し、図 3に示す本発明実施例は、非導電部が露出して均一に分布していること が観察され、したがって、セラミック共材を含有した導電性ペーストを使用し、低酸素 濃度雰囲気で焼成することにより、内部電極の構造 (被覆率及び非導電部の平均直 径 X)を制御できることが分かった。
実施例 2
[0115] まず、〔実施例 1〕と同様の方法 ·手順で作製したセラミックグリーンシートを用意した
[0116] また、 Agと Pdとの重量比 Ag/Pdを 7/3又は 8/2に配合し、セラミック共材を固 形分の総計に対し 0重量%又は 30重量%となるように配合した以外は、〔実施例 1〕と 同様の方法'手順で内部電極用導電性ペーストを作製した。
[0117] 次に、焼結後の内部電極層の厚み zが 2. 4 μ ΐηとなるように上記セラミックグリーン シート上に上記内部電極用導電性ペーストをスクリーン印刷し、その後、〔実施例 1〕 と同様の方法 ·手順で積層体を作製した。次いで、これら積層体をアルミナ製の匣(さ や)に収容し、脱バインダ処理を行った後、焼成温度が 1000°C又は 1040°Cで、酸 素濃度が 0. 5体積%又は 21体積%の焼成雰囲気で 8時間焼成処理を施し、これに より各セラミック層の厚み yが 6〜100 x mで、総厚みが 0.:!〜 0. 6mmのセラミック素 体を作製し、その後は〔実施例 1〕と同様の方法 ·手順で試料番号 31〜41の積層圧 電素子を作製した。
[0118] 次に、〔実施例 1〕と同様の方法'手順で試料番号 31〜41の圧電定数 I d
31 I 、そ の増加率 Δ I d に引張強度 X、その増加率 ΔΧを求め、各積層圧電素子の変位
31
量及び接合強度、すなわち信頼性を評価した。また、〔実施例 1〕と同様の方法 '手順 で内部電極の被覆率、比 x/y、及び比 z/yを算出した。
[0119] 表 3は試料番号 31〜41の積層圧電素子の作製条件を示し、表 4はその測定結果 を示している。
[0120] [表 3]
Figure imgf000024_0001
セラミック層 内部電極層 非導電部
試料 量 S2/S1 酸素濃度 焼成温度 の厚み y の厚み z 直径 X X/ y Ag/Pd 共材含有
No. 平均
( m) ( i m) m) (重量%) (一〉 (体積%) (°C)
31 ** 100 2. 4 1 . 6 0. 02 0. 02 7/3 0 - 21 1040
32 100 2. 4 7. 8 0. 08 0. 02 8/2 30 5 0. 5 1000
33** 60 2. 4 1 . 3 0. 02 0. 04 7/3 0 - 21 1040
34 60 2. 4 6. 3 0. 1 1 0. 04 8/2 30 5 0. 5 1000
35** 30 2. 4 0. 8 0. 03 0. 08 7/3 0 - 21 1040
36 30 2. 4 5. 1 0. 17 0. 08 8/2 30 5 0. 5 1000
37** 1 5 2. 4 0. 5 0. 04 0. 1 6 7/3 0 - 21 1040
38 15 2. 4 4. 1 0. 28 0. 1 6 8/2 30 5 0. 5 1000
39** 6 2. 4 0. 3 0. 05 0. 40 7/3 0 - 21 1040 o
40 6 2. 4 2. 0 0. 40 8/2 30 5 0. 5 1000
ω
41 * 4. 8 2. 4 1 . 8 0. 38 0. 50 8/2 30 5 0. 5 1000
*は本発明範囲外 (従来例を除く。 )
* *は従来例
圧電定数 圧電増加率 引張強度 強度増加率 試料 被覆率 1 d31 | Δ I d31 | X 厶 X
No. ( )
(pC/N) (%) (MPa) (%)
31 ** 99 348 一 8. 0 一
32 80 351 0. 9 8. 4 5. 0
33** 99 330 一 8. 4 一
34 84 347 5. 2 8. 9 6, 0
35** 100 320 ― 8. 6 一
36 88 343 7. 2 9. 1 5. 8
37** 100 309 一 9. 0 一
38 90 335 8. 4 9. 7 7. 8
39** 100 275 一 9. 4 一
40 94 296 7. 6 10. 1 7· 4
41 * 97 270 ― 9. 9 ―
*は本発明範囲外 (従来例を除く。)
* *は従来例
[0122] 表 3、 4中、 * *印を付した試料番号 31、 33、 35、 37及び 39は、セラミック層の厚 み yが 6〜100 μ mの範囲で異なるが、内部電極層がセラミック共材を含有せず Ag /Pdが 7/3に配合された金属粉末からなり、また大気雰囲気 (酸素濃度:21体積% )下、温度 1040°Cで焼成した場合であり、従来例を示している。
[0123] また、試料番号 32、 34、 36、 38及び 40は、上記従来例に対応する本発明実施例 であり、内部電極層に 30重量%のセラミック共材を含有し、金属粉末を Ag/Pdが 8 /2となるように配合し、また酸素濃度が 0. 5体積%の低酸素濃度雰囲気下、温度 1 000°Cで焼成した場合を示してレ、る。
[0124] 従来例( * *印)と本発明実施例との対比から明らかなように、本発明実施例は内 部電極層中に 30重量%のセラミック共材を含有し、酸素濃度が 0. 5体積%の低酸 素濃度雰囲気で焼成しているので、比 xZyが 0. 08〜0. 33であって被覆率が 80〜 94%に低減されているため、それぞれの従来例に対し圧電定数 I d I は 0. 9〜8
31
. 4%増加しており変位量が向上することが分かった。また、引張強度 Xも 5. 0〜7. 8 %増加しており、接合強度が向上することが分かった。
[0125] また、試料番号 41は、内部電極層中に 30重量%のセラミック共材を含有し、酸素 濃度が 0. 5体積%の低酸素濃度雰囲気で焼成しているものの、比 x/yが 0. 38であ り、 0. 33を超えており、したがって被覆率が 97%と大きくても非導電部の平均直径 X が大きくなるため、非導電部に起因した電位降下が大きくなり、圧電定数 I d Iが 2
31
70pC/Nとなって従来例よりも低下し、所望の大きな変位量を到底得ることができな レ、ことが分った。
実施例 3
[0126] まず、〔実施例 1〕と同様の方法 ·手順で作製したセラミックグリーンシートを用意した
[0127] また、 Agと Pdとの重量比 Ag/Pdを 7/3又は 9/1に配合し、セラミック共材を固 形分の総計に対し 0重量%又は 40重量%となるように配合した以外は、〔実施例 1〕と 同様の方法'手順で内部電極用導電性ペーストを作製した。
[0128] 次に、焼結後の内部電極層の厚み zが 2 /i m又は 3 μ ΐηとなるように上記セラミック グリーンシート上に上記内部電極用導電性ペーストをスクリーン印刷し、その後、〔実 施例 1〕と同様の方法 ·手順で積層体を作製した。次いで、これら積層体をアルミナ製 の匣(さや)に収容し、脱バインダ処理を行った後、焼成温度が 960°C又は 1040°C で、酸素濃度が 0. 5体積%又は 21体積%の焼成雰囲気で 8時間焼成処理を施し、 これにより各セラミック層の厚み yが 20 x mで、総厚みが 0. :!〜 0. 6mmのセラミック 素体を作製し、その後は〔実施例 1〕と同様の方法 ·手順で試料番号 5:!〜 60の積層 圧電素子を作製した。
[0129] 次に、〔実施例 1〕と同様の方法'手順で試料番号 5:!〜 60の圧電定数 | d |を駆
31 動電界を変更して測定し、またその増加率 Δ I d I、引張強度 X、その増加率 Δ Χ
31
を求め、各積層圧電素子の変位量及び接合強度、すなわち信頼性を評価した。また 、〔実施例 1〕と同様の方法'手順で内部電極の被覆率、比 x/y、及び比 zZyを算出 した。
[0130] 表 5は試料番号 5:!〜 60の積層圧電素子の作製条件を示し、表 6はその測定結果 を示している。
[0131] [表 5]
〔〕
Figure imgf000028_0001
* *は従来例
圧電定数 圧電増加率 引張強度 強度増加率 試料 被覆率 駆動電界 Δ I d31 | X ΔΧ
No. (%) (V/mm) I d31 |
(pC/N) (%) (MPa) (%)
51 ** 100 1 245 一 8. 8 一
52 82 1 252 2. 9 9. 1 3. 4
53** 100 1 00 278 ― 8. 8 一
54 82 1 00 292 5. 0 9. 1 3. 4
55** 100 300 304 一 8. 8 一
56 82 300 326 7. 2 9. 1 3. 4
57** 100 500 323 ― 8. 8 ―
58 82 500 351 8. 7 9. 1 3. 4
59** 100 1000 347 一 8. 8 一
60 82 1000 384 10. 7 9. 1 3. 4
* *は従来例
[0133] 表 5、 6中、 * *印を付した試料番号 51、 53、 55、 57及び 59は、駆動電界が:!〜 1 000V/mmの範囲で異なる力 内部電極層がセラミック共材を含有せず Ag/Pdが 7/3に配合された金属粉末からなり、また大気雰囲気 (酸素濃度: 21体積%)下、温 度 1040°Cで焼成した場合であり、従来例を示している。
[0134] また、試料番号 52、 54、 56、 58及び 60は、上記従来例に対応する本発明実施例 であり、内部電極層に 40重量%のセラミック共材を含有し、金属粉末は、 Ag/Pdが 9/1に配合され、また酸素濃度が 0. 5体積%の低酸素濃度雰囲気下、温度 960°C で焼成した場合を示してレ、る。
[0135] 従来例(* *印)と本発明実施例との対比から明らかなように、本発明実施例は内 部電極層中に 40重量%のセラミック共材を含有し、酸素濃度が 0. 5体積%の低酸 素濃度雰囲気で焼成しているので、比 xZyが 0. 30であって被覆率が 82%に低減 されており、それぞれの従来例に対し圧電定数 I d I は 2. 9〜10. 7%増加してお
31
り変位量が向上することが分かった。また、引張強度 Xも 3. 4%増加しており、接合強 度が向上し、信頼性の向上することが分かった。
[0136] また、本実施例で使用しているセラミック層の抗電界は 1000V/mmである力 こ の抗電界の 1/10以上の電界、すなわち 100〜: lOOOV/mmで駆動させた場合( 試料番号 54、 56、 58及び 60)は、圧電定数 | d |が 5. 0〜: 10. 7%と大幅に増加
31
しており、また引張強度の増加率 Δ Χは同等であるので、セラミック層の抗電界の 1/ 10以上の高電界で駆動させることにより、接合強度 (信頼性)を損なうことなくより一 層大きな変位量を得ることができることが分かった。
実施例 4
[0137] まず、〔実施例 1〕と同様の方法 ·手順で作製したセラミックグリーンシートを用意した
[0138] また、 Agと Pdとの重量比 Ag/Pdを 7/3又は 8/2に配合し、セラミック共材を固 形分の総計に対し 0重量%又は 25重量%となるように配合した以外は、〔実施例 1〕と 同様の方法'手順で内部電極用導電性ペーストを作製した。
[0139] 次に、焼結後の内部電極層の厚み zが 2. 4 μ ΐηとなるように上記セラミックグリーン シート上に上記内部電極用導電性ペーストをスクリーン印刷し、その後、〔実施例 1〕 と同様の方法 ·手順で積層体を作製した。次いで、これら積層体をアルミナ製の匣(さ や)に収容し、脱バインダ処理を行った後、焼成温度が 1040°Cで、酸素濃度が 0. 1 〜21体積%の焼成雰囲気で 8時間焼成処理を施し、これにより各セラミック層の厚み yが 20 x mで、総厚みが 0.:!〜 0. 6mmのセラミック素体を作製し、その後は〔実施 例 1〕と同様の方法 ·手順で試料番号 61〜67の積層圧電素子を作製した。
[0140] 次に、〔実施例 1〕と同様の方法'手順で試料番号 61〜67の圧電定数 | d I 、そ
31 の増加率 Δ | d に引張強度 X、その増加率 Δ Χを求め、各積層圧電素子の変位
31
量及び接合強度、すなわち信頼性を評価した。また、〔実施例 1〕と同様の方法 '手順 で内部電極の被覆率、比 xZy、及び比 zZyを算出した。また、内部電極層を SEM で観察し画像解析して非導電部中の空隙率を求めた。
[0141] 表 7は試料番号 61〜67の積層圧電素子の作製条件を示し、表 8はその測定結果 を示している。
[0142] [表 7]
セラミック層 内部電極層 非導電部
試料 焼成温度 の厚み y の厚み z Ag/Pd 共材含有量 S2/S1 酸素濃度
No. 平均直径 X X/ y z/y
(jt/m) (/ m) (重量%) (一) (体積%) (。c)
61** 20 2.4 0.7 0.03 0.12 7/3 0 - 21 1040
62 20 2.4 5.5 0.27 0.12 8/2 25 5 0.1 1040
63 20 2.4 5.1 0.25 0.12 8/2 25 5 0.5 1040
64 20 2.4 4.8 0.24 0.12 8/2 25 5 1 1040
65 20 2.4 4.3 0.21 0.12 8/2 25 5 5 1040
66 20 2.4 3.7 0.19 0.12 8/2 25 5 10 1040
67 20 2.4 3.7 0.18 0.12 8/2 25 5 15 1040
* *は従来例
[表 8]
Figure imgf000033_0001
表 7、表 8中、 * *印を付した試料番号 61は、内部電極層がセラミック共材を含有 せず Ag/Pdが 7/3に配合された金属粉末からなり、また大気雰囲気(酸素濃度: 2 1体積%)下、温度 1040°Cで焼成した場合であり、従来例を示している。
[0145] これに対し試料番号 62〜67は、内部電極層中に 25重量%のセラミック共材を含 有し、酸素濃度が 0. 5〜: 15体積%の低酸素濃度雰囲気で焼成しているので、比 X /yが 0. 18-0. 27であって被覆率が 79〜94%に低減されており、また非導電部 の空隙率も 62〜95%となりセラミック部の過剰な形成が抑制されており、その結果、 従来例に対し圧電定数 I d は 2. 5
31 I 〜9. 2%と増加し、引張強度 Xも 1.:!〜 9. 2
%と増加し、変位量及び接合強度 (信頼性)が向上することが分力 た。
[0146] また、酸素濃度が低くなるに伴い圧電定数の増加率 Δ I d
31 Iが増大し、変位量が より一層向上することも分かった。

Claims

請求の範囲
[1] セラミック層と内部電極層とが交互に積層された積層型圧電セラミック部品におい て、
前記内部電極層は、導電部と非導電部とからなり、前記非導電部の断面積を円換 算した場合の平均直径 Xと前記セラミック層の厚み yとの比 xZyが 0. 08〜0. 33であ り、かつ前記内部電極層の厚み zと前記セラミック層の厚み yとの比 z/yが 0. 04〜0 . 40であり、
さらに、前記内部電極層の前記セラミック層への被覆率が 60〜95%であることを特 徴とする積層型圧電セラミック部品。
[2] 前記非導電部が、空隙部とセラミック粉末が充填されたセラミック部とからなると共に
、前記空隙部が前記非導電部中の 60%以上を占めることを特徴とする請求項 1記載 の積層型圧電セラミック部品。
[3] 前記導電部は、 Agを主成分とすることを特徴とする請求項 1又は請求項 2記載の 積層型圧電セラミック部品。
[4] 前記セラミック層の抗電界の 1/10以上の電界で駆動されることを特徴とする請求 項 1乃至請求項 3のいずれかに記載の積層型圧電セラミック部品。
[5] セラミックグリーンシートの表面に導電性ペーストを塗布して内部電極層となるべき 所定の導電パターンを形成し、該導電パターンの形成されたセラミックグリーンシート を積層した後、導電パターンの形成されていないセラミックグリーンシートで挟持し、 圧着して積層体を形成し、その後前記積層体に焼成処理を施してセラミック素体を 形成し、該セラミック素体の端面に外部電極を形成する積層型圧電セラミック部品に おいて、
前記導電性ペーストが、金属粉末と、該金属粉末の 5〜20倍の比表面積を有する セラミック粉末とを含有すると共に、該セラミック粉末の含有量が、金属粉末及びセラ ミック粉末の総計に対し、 20〜50重量%となるように調製し、
前記焼成処理を、酸素濃度が 0.:!〜 15体積%の酸素雰囲気中で行なうことを特 徴とする積層型圧電セラミック部品の製造方法。
[6] 前記セラミック粉末は、少なくとも主成分が、前記セラミックグリーンシートと同一の 成分組成であることを特徴とする請求項 5記載の積層型圧電セラミック部品の製造方
PCT/JP2005/023666 2004-12-24 2005-12-22 積層型圧電セラミック部品、及び積層型圧電セラミック部品の製造方法 WO2006068245A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006522157A JP4565349B2 (ja) 2004-12-24 2005-12-22 積層型圧電セラミック部品の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-372671 2004-12-24
JP2004372671 2004-12-24

Publications (1)

Publication Number Publication Date
WO2006068245A1 true WO2006068245A1 (ja) 2006-06-29

Family

ID=36601842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023666 WO2006068245A1 (ja) 2004-12-24 2005-12-22 積層型圧電セラミック部品、及び積層型圧電セラミック部品の製造方法

Country Status (2)

Country Link
JP (1) JP4565349B2 (ja)
WO (1) WO2006068245A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103301A (ja) * 2008-10-23 2010-05-06 Ngk Insulators Ltd 圧電素子の製造方法及び圧電素子
JP2011091151A (ja) * 2009-10-21 2011-05-06 Taiheiyo Cement Corp 電子部品の製造方法および電子部品
JP2011134943A (ja) * 2009-12-25 2011-07-07 Taiheiyo Cement Corp 電子部品の内部電極の製造方法
JP2015082636A (ja) * 2013-10-24 2015-04-27 京セラ株式会社 積層型電子部品
JP2017183541A (ja) * 2016-03-30 2017-10-05 日本碍子株式会社 圧電素子
WO2019167805A1 (ja) * 2018-03-02 2019-09-06 Tdk株式会社 振動デバイス及び圧電素子
JP2021022723A (ja) * 2019-07-29 2021-02-18 サムソン エレクトロ−メカニックス カンパニーリミテッド. 積層型電子部品
WO2021125097A1 (ja) * 2019-12-16 2021-06-24 Tdk株式会社 積層圧電素子
US20220406528A1 (en) * 2021-06-16 2022-12-22 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
WO2023063007A1 (ja) * 2021-10-12 2023-04-20 太陽誘電株式会社 積層型圧電素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035747A (ja) * 1999-07-21 2001-02-09 Taiyo Yuden Co Ltd 積層セラミックコンデンサ
JP2001250994A (ja) * 2000-03-03 2001-09-14 Tdk Corp 積層型圧電素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115416A (ja) * 2001-10-05 2003-04-18 Murata Mfg Co Ltd 導電性ペースト、積層セラミック電子部品の製造方法および積層セラミック電子部品
JP2004111939A (ja) * 2002-08-29 2004-04-08 Ngk Insulators Ltd 積層型圧電素子及びその製造方法
JP4989019B2 (ja) * 2003-04-28 2012-08-01 京セラ株式会社 セラミックス基板、圧電アクチュエータ基板、圧電アクチュエータおよびこれらの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035747A (ja) * 1999-07-21 2001-02-09 Taiyo Yuden Co Ltd 積層セラミックコンデンサ
JP2001250994A (ja) * 2000-03-03 2001-09-14 Tdk Corp 積層型圧電素子

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103301A (ja) * 2008-10-23 2010-05-06 Ngk Insulators Ltd 圧電素子の製造方法及び圧電素子
JP2011091151A (ja) * 2009-10-21 2011-05-06 Taiheiyo Cement Corp 電子部品の製造方法および電子部品
JP2011134943A (ja) * 2009-12-25 2011-07-07 Taiheiyo Cement Corp 電子部品の内部電極の製造方法
JP2015082636A (ja) * 2013-10-24 2015-04-27 京セラ株式会社 積層型電子部品
JP2017183541A (ja) * 2016-03-30 2017-10-05 日本碍子株式会社 圧電素子
JP7003741B2 (ja) 2018-03-02 2022-01-21 Tdk株式会社 振動デバイス及び圧電素子
WO2019167805A1 (ja) * 2018-03-02 2019-09-06 Tdk株式会社 振動デバイス及び圧電素子
JP2019150762A (ja) * 2018-03-02 2019-09-12 Tdk株式会社 振動デバイス及び圧電素子
CN111770797A (zh) * 2018-03-02 2020-10-13 Tdk株式会社 振动器件及压电元件
US11944999B2 (en) 2018-03-02 2024-04-02 Tdk Corporation Vibration device and piezoelectric element
CN111770797B (zh) * 2018-03-02 2022-06-14 Tdk株式会社 振动器件及压电元件
US11450481B2 (en) 2019-07-29 2022-09-20 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component
JP2021168413A (ja) * 2019-07-29 2021-10-21 サムソン エレクトロ−メカニックス カンパニーリミテッド. 積層型電子部品
US11037727B2 (en) 2019-07-29 2021-06-15 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component
US11682521B2 (en) 2019-07-29 2023-06-20 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component
JP2021022723A (ja) * 2019-07-29 2021-02-18 サムソン エレクトロ−メカニックス カンパニーリミテッド. 積層型電子部品
US12009150B2 (en) 2019-07-29 2024-06-11 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component
JP2021097105A (ja) * 2019-12-16 2021-06-24 Tdk株式会社 積層圧電素子
WO2021125097A1 (ja) * 2019-12-16 2021-06-24 Tdk株式会社 積層圧電素子
US20220406528A1 (en) * 2021-06-16 2022-12-22 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
US12119182B2 (en) * 2021-06-16 2024-10-15 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component including internal conductive layer including a plurality of holes
WO2023063007A1 (ja) * 2021-10-12 2023-04-20 太陽誘電株式会社 積層型圧電素子

Also Published As

Publication number Publication date
JP4565349B2 (ja) 2010-10-20
JPWO2006068245A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
WO2006068245A1 (ja) 積層型圧電セラミック部品、及び積層型圧電セラミック部品の製造方法
JP4945801B2 (ja) 圧電素子、及び圧電素子の製造方法
KR100553226B1 (ko) 적층형 압전 부품의 제조방법 및 적층형 압전 부품
JP4129931B2 (ja) 圧電磁器組成物および積層型圧電素子
JP2006188414A (ja) 圧電磁器組成物、及び圧電セラミック電子部品
JPH03181186A (ja) 積層圧電アクチュエータ及びその製法
JP4238271B2 (ja) 圧電磁器組成物および積層型圧電素子
US20070080317A1 (en) Piezoelectric ceramic composition and laminated piezoelectric element
JP4930410B2 (ja) 積層型圧電素子
US20020149297A1 (en) Piezoelectric element
TW201923797A (zh) 積層陶瓷電容器及其製造方法
US9598319B2 (en) Piezoceramic multi-layer element
EP1717873B1 (en) Multilayered piezoelectric element
JP2007103676A (ja) 圧電磁器組成物、積層型圧電素子及びその製造方法
JP2002260950A (ja) 積層型誘電素子の製造方法,並びに電極用ペースト材料
JPH10335168A (ja) 積層セラミックコンデンサ
JP2007258301A (ja) 積層型圧電素子及びその製造方法
JP4485140B2 (ja) 圧電アクチュエータおよびその製造方法
US8758536B2 (en) Method for manufacturing ceramic plates
KR100492813B1 (ko) 적층형 압전 세라믹 소자의 제조방법
JP2007230839A (ja) 圧電磁器組成物、積層型圧電素子及びその製造方法
JP3971779B1 (ja) 圧電磁器組成物
JP5303823B2 (ja) 圧電素子
JP5196124B2 (ja) 圧電磁器組成物および積層型圧電素子
JP4736585B2 (ja) 圧電磁器組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006522157

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05819722

Country of ref document: EP

Kind code of ref document: A1