WO2006068141A1 - 白色ledおよびそれを用いたバックライト並びに液晶表示装置 - Google Patents

白色ledおよびそれを用いたバックライト並びに液晶表示装置 Download PDF

Info

Publication number
WO2006068141A1
WO2006068141A1 PCT/JP2005/023369 JP2005023369W WO2006068141A1 WO 2006068141 A1 WO2006068141 A1 WO 2006068141A1 JP 2005023369 W JP2005023369 W JP 2005023369W WO 2006068141 A1 WO2006068141 A1 WO 2006068141A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
white led
green
blue
liquid crystal
Prior art date
Application number
PCT/JP2005/023369
Other languages
English (en)
French (fr)
Inventor
Tsutomu Ishii
Hajime Takeuchi
Yasuhiro Shirakawa
Yasumasa Ooya
Ryo Sakai
Masahiko Yamakawa
Original Assignee
Kabushiki Kaisha Toshiba
Toshiba Materials Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd. filed Critical Kabushiki Kaisha Toshiba
Priority to EP05820111.2A priority Critical patent/EP1830415B1/en
Priority to JP2006549003A priority patent/JP5134820B2/ja
Priority to US11/722,768 priority patent/US7649310B2/en
Publication of WO2006068141A1 publication Critical patent/WO2006068141A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7737Phosphates
    • C09K11/7738Phosphates with alkaline earth metals
    • C09K11/7739Phosphates with alkaline earth metals with halogens
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/72Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus also containing halogen, e.g. halophosphates
    • C09K11/73Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus also containing halogen, e.g. halophosphates also containing alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • C09K11/7789Oxysulfides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Definitions

  • the present invention relates to a white LED (light emitting diode) suitable for a knock light of a liquid crystal display device, a backlight using the same, and a liquid crystal display device, and particularly has high brightness and blue, green and red.
  • the present invention relates to a white LED (light-emitting diode) that is less mixed with other luminescent colors and excellent in color reproducibility, a backlight using the same, and a liquid crystal display device.
  • a light emitting diode is a semiconductor diode that emits light, and converts electrical energy into ultraviolet light or visible light.
  • LED light emitting diode
  • a light-emitting chip formed of a light-emitting material such as GaP, GaAsP, GaAlAs, GaN, or InGaAlP is sealed with a transparent resin.
  • display-type LEDs are often used in which a light-emitting material is fixed on the top surface of a printed circuit board or metal lead and encapsulated in a resin case with numbers and letters!
  • the color of the emitted light can be appropriately adjusted by including various phosphor powders in the front surface of the light emitting chip! /.
  • the emission color of the LED can reproduce light emission in the visible light region according to the intended use up to blue, red, and red.
  • a light-emitting diode is a semiconductor element, it has a long life and high reliability, and when used as a light source, its replacement frequency due to a failure is also reduced. It is widely used as a component of various display devices such as office automation equipment, household electrical equipment, audio equipment, various switches, and backlight light source display panels.
  • white light-emitting LEDs that have been widely used or tried are a type that combines a blue light-emitting diode, a yellow light-emitting phosphor (YAG), and, in some cases, a red phosphor (hereinafter referred to as “red light-emitting diode”).
  • “Type 1”) or a combination of ultraviolet or violet light emitting diodes and blue, yellow, and red phosphors (hereinafter referred to as “Type 2").
  • Type 1 has higher brightness than Type 2 and is the most popular force.
  • the user may see a yellowish color, or yellow or blue unevenness will appear when projected onto a white surface.
  • Type 1 white light-emitting LED Even when evaluated by the average color rendering index representing the quality of white light, Type 1 white light-emitting LEDs remain in the range of 70 to 75 (70 to 75).
  • the latter (type 2) white light-emitting LED is inferior to the former in terms of brightness, but it is expected to be developed as a favorite light source for lighting or backlighting in the future because it emits light and has less unevenness in projected light. It is being advanced.
  • Examples of improvements in this development direction include ultraviolet light emitting LEDs and europium activated halophosphate phosphors or europium activated aluminate phosphors, and copper and aluminum as green light emitting phosphors.
  • a white LED that combines an activated zinc oxide phosphor or europium / manganese activated aluminate phosphor and a europium activated yttrium oxysulfide phosphor as a red-emitting phosphor has been reported (for example, non-patented) See reference 1.) o
  • ultraviolet LEDs and europium activated halophosphate phosphors or europium activated aluminate phosphors, and europium and manganese activated aluminate phosphors as green light emitting phosphors As other improvements, ultraviolet LEDs and europium activated halophosphate phosphors or europium activated aluminate phosphors, and europium and manganese activated aluminate phosphors as green light emitting phosphors.
  • a white LED that combines a europium-activated lanthanum oxysulfide phosphor as a red-emitting phosphor has also been reported (see, for example, Patent Document 1).
  • a liquid crystal display device using a white LED (white light emitting diode) as a backlight as described above is a mobile communication device such as a mobile phone or a mopile, an OA device such as a personal computer, a household electric device, Widely used as components of various display devices such as audio equipment, various switches, and light source display boards for backlights.
  • a mobile communication device such as a mobile phone or a mopile
  • an OA device such as a personal computer
  • a household electric device Widely used as components of various display devices such as audio equipment, various switches, and light source display boards for backlights.
  • B-LEDs blue LEDs
  • LEDs that can emit ultraviolet light have been developed and commercialized, and LED lighting has been actively developed.
  • B—LED blue light emitting diode
  • phosphor emitting yellow light type 1
  • R—LED red light emitting diode
  • G—LED green light emitting diode
  • UV phosphor UV light emitting diode
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-73052
  • Non-Patent Document 1 Mitsubishi Electric Industrial Times (No. 99, July 2002) [Disclosure of the Invention]
  • the development process of various types of conventional type 2 white LEDs has been attempted. It has been found that there is a difference in the development direction between lighting and backlighting. It was.
  • the average color rendering index (Ra) that defines the luminance and the quality of white light
  • the luminance is high. It is required to be high and have a wide color reproduction range.
  • high brightness in lighting and backlight applications is a common characteristic required by both, but the high average color rendering index and wide color gamut differ depending on the specifications required for each device, and are not necessarily It is not compatible.
  • the present inventors have developed a liquid crystal (type 2) that combines ultraviolet or violet light emitting diodes and three or more types of visible light emitting phosphors.
  • the present inventors have completed the present invention by finding a desirable emission spectrum as a white LED lamp for backlight and a combination of phosphors that realize it.
  • the present inventors have found that the compatibility of the emission wavelength of the RGB color filter and the white LED is important, and have completed the present invention.
  • the present invention is for solving the above-mentioned problems, and comprises an ultraviolet light emitting or violet light emitting diode and a phosphor emitting three or more kinds of visible light including blue, green, and red.
  • the white LED has an emission spectrum with a peak value in the blue part of the wavelength range of 440 nm to 460 nm, the green part of the range of 510 nm to 530 nm, and the red part of the range of 620 nm to 640 nm. It is a characteristic white LED.
  • a blue light emitting phosphor has a general formula l: (Sr Ba Ca Eu) (PO) -CI
  • x, y and z satisfy the relationship of x, 0.2, y ⁇ 0.1, 0.005 ⁇ z ⁇ 0.1, respectively).
  • a green light emitting phosphor is represented by the general formula 2: (Ba Sr Ca Eu) (Mg Mn) Al 2 O 3
  • a red light emitting phosphor is represented by the general formula 3: (La Eu M) O S
  • M is at least one element of Sb and Sn, and X and y are 0.
  • it is a europium-activated oxysulfuric lanthanum phosphor represented by 01 ⁇ x ⁇ 0.1, y ⁇ 0.03).
  • the emission intensity of the ultraviolet light emission or violet light emitting diode has a peak value in a wavelength range of 360 to 410 nm.
  • the white LED according to the present invention is suitable for a backlight and a liquid crystal display device using the backlight. That is, the backlight according to the present invention is characterized by using the white LED.
  • the white LED has a light emission spectrum power of 40 nm or more and 450 nm or less of a blue part peak and 510 nm or more and 530 nm or less of a green part peak, and the half width of each peak is 50 nm or less. It is preferable.
  • the liquid crystal display device is a liquid crystal display device comprising the white LED, a backlight using the white LED, and each color filter of blue, green, and red.
  • the spectrum area occupied by the light component in the wavelength range of 400 nm to 500 nm is less than 15% of the spectrum area occupied by the light component in the wavelength range of 400 nm to 600 nm, and is 400 nm to 550 nm.
  • a light emitting wavelength of a light emitting diode used for the white LED is 360 nm or more and 410 nm or less.
  • a spectrum spectrum of light transmitted through the blue color filter a first peak top in a wavelength range of 440 nm to 450 nm, and a first peak top in a wavelength range of 510 nm to 530 nm.
  • the height of the second peak top is 1Z2 or less of the height of the first peak top.
  • the transmittance of the blue power filter is 90% or less of the maximum transmittance
  • the transmittance of the green color filter is the maximum transmittance.
  • the transmittance of the green color filter when light having a wavelength of 600 nm is transmitted is preferably 40% or less of the maximum transmittance.
  • the white LED according to the present invention has high luminance and excellent color reproducibility. Further, the liquid crystal display device of the present invention is excellent in color reproducibility because the spectrum of the backlight using the white LED and the transmission spectrum of the color filter are controlled. Therefore, both the backlight using the white LED and the liquid crystal display device of the present invention have high brightness and excellent color reproducibility. In addition, there is no need to use harmful mercury like conventional cold cathode fluorescent lamps (CCFL), so there is no problem of polluting the environment.
  • CCFL conventional cold cathode fluorescent lamps
  • FIG. 1 is a cross-sectional view showing the structure of an embodiment of a white LED according to the present invention.
  • FIG. 2 is a graph showing an example of an emission spectrum of a white LED according to the present invention.
  • FIG. 3 is a graph showing a comparison of color gamuts when the white LED according to the present invention and the current CCFL are used as a backlight of a liquid crystal display.
  • FIG. 4 is a graph showing an example of the emission spectrum when the half-value width of the emission spectrum peak is changed in the white LED according to the present invention.
  • FIG. 5 is a graph showing a comparison of color gamut when each white LED having the emission spectrum shown in FIG. 4 is used as a backlight of a liquid crystal display.
  • FIG. 6 is a graph showing an example of a transmission spectrum of a color filter used in the liquid crystal display device according to the present invention.
  • FIG. 7 is a graph showing an example of a spectrum of light transmitted through a color filter in the liquid crystal display device according to the present invention.
  • FIG. 8 is a graph showing the emission spectrum of a white LED used in the liquid crystal display device according to Comparative Example 5.
  • FIG. 9 is a graph showing a spectrum of light transmitted through a color filter of a liquid crystal display device according to Comparative Example 5
  • FIG. 1 is a cross-sectional view showing an embodiment of a white LED according to the present invention.
  • the white LED shown in FIG. 1 supports the light emitting diode a, the phosphor layer b embedded in the resin, the reflection layer c that guides the light emission of the light emitting diode a and the phosphor layer b to the outside, and the light emitting portion. It is composed of a grease frame d.
  • the electrical energy applied to the LED lamp is converted into ultraviolet light or violet light by the light emitting diode a, and the light is converted into light having a longer wavelength by the phosphor layer b on the light emitting diode a. As a result, white light is emitted outside the LED lamp.
  • the ultraviolet light emitting diode or violet light emitting diode various light emitting diodes such as InGaN-based, GaN-based, and AlGaN-based diodes can be applied.
  • a white LED with high brightness and better color reproducibility is formed by combining with the phosphor described later. can do.
  • the phosphor used for the phosphor layer b it is important to use a visible light emitting phosphor that emits three or more kinds of light including blue, green, and red.
  • a phosphor having peak values in the emission spectrum S440 nm to 460 nm blue portion, 510 nm to 530 nm green portion, and 620 nm to 640 nm red portion is used.
  • Visible light emitting phosphor by using Power is a seed. If two or more phosphors emitting the same color are used, the total number of visible light emitting phosphors is three or more.
  • the electrical energy applied to the light emitting diode a is converted into ultraviolet light (or purple light) by the light emitting diode a, and these lights are converted to the upper part of the light emitting diode.
  • the phosphor layer b converts the light into longer wavelength light, and as a total white light is emitted outside the LED.
  • an ultraviolet light emitting diode or a purple light emitting diode used as the light emitting diode a is referred to as a light emitting diode
  • a completed white light emitting diode is referred to as a white LED.
  • FIG. 1 An example of the emission spectrum of the white LED according to the present invention configured as shown in FIG. 1 is shown in FIG. Specifically, the light emitting diode emits light at a current value of 20 mA to emit ultraviolet light having a peak value of OOnm, and this ultraviolet light is converted into white light with chromaticity (0.253, 0.238) by a phosphor.
  • the emission spectrum is shown. In this emission spectrum, the blue portion (B) of wavelength 447 ⁇ m, the green portion (G) of 518 nm, and the red portion (R) of 623 nm each have a peak value, and the half-value width of each peak is 50 nm or less. It is characterized by that.
  • FIG. 3 shows the emission color of the white LED power according to the present invention as shown in CIE color when the light emitted through the common blue, green and red color filters used in liquid crystal displays (liquid crystal display devices). It is the graph plotted on the degree diagram.
  • CIE chromaticity diagram the liquid crystal display displays light with chromaticity that exists in the inner area of the triangle obtained by connecting the blue (B), green (G), and red (R) emission points. It means you can do it.
  • the international standard (NTSC) indicating an ideal color gamut at the same time is also indicated by a dotted line.
  • the width of the color gamut is shown as a relative value when the area of the NTSC triangle is 100, and the color gamut of the liquid crystal display of the present invention is 98, whereas the conventional cold cathode tube liquid crystal display.
  • the color gamut of the spray was 65.
  • the full width at half maximum of the peak value of the blue portion, green portion, and red portion in the emission spectrum of the white LED is preferably 50 nm or less.
  • the color gamut of the liquid crystal display using the white LED diagrams for products 1 and 2 is shown in Fig. 5.
  • the color gamut of each liquid crystal display was 98 for product 1 and 87 for product 2 based on NTSC shown in FIG.
  • the color gamut of product 2 is superior to that of cold cathode tubes, but it is inferior to the color gamut of product 1.
  • the blue peak has an excessively wide half-value width of 60 nm. This is because of the poor purity.
  • the full width at half maximum of each peak is 50 nm or less, but it is practical if the maximum value of the full width at half maximum is 80 nm or less. In particular, if only one of blue, green, and red has a full width at half maximum of 80 nm and the remaining two types have a width of 50 nm or less, the color gamut can be 80 or more in NTSC. Therefore, the full width at half maximum of each peak value is preferably 80 nm or less, more preferably 50 nm or less.
  • each has peak values of a blue portion having a wavelength power of 40 nm to 460 nm, a green portion having a wavelength of 510 nm to 530 nm, and a red portion having a wavelength portion of 620 nm to 640 nm.
  • a phosphor having a characteristic of 50 nm or less a white LED having high luminance and excellent color reproducibility can be formed.
  • the composition of the phosphor is not particularly limited as long as it has the above characteristics, but preferred examples include the following.
  • Examples include europium activated halophosphate phosphors.
  • the X and y values include 0 (zero). To sharpen the peak shape, as will be described later, the X and y forces are closer to SO, and the one (including zero) is preferred! /.
  • x, y, z, and u satisfy the relationships x, 0.5, y ⁇ 0.1, 0.15 ⁇ z ⁇ 0.4, and 0.3 ⁇ u ⁇ 0.6.
  • Examples thereof include acid salt phosphors.
  • the X and y values include 0 (zero).
  • M represents at least one of the elements Sb and Sn, and X and y satisfy the relationship of 0.01 ⁇ x ⁇ 0.1, y ⁇ 0.03).
  • examples thereof include oxysulfurized lanthanum phosphors.
  • the y value includes 0 (zero).
  • the average particle size of the phosphor is not particularly limited, but an average particle size of 3 ⁇ m or more is preferred.
  • the upper limit of the average particle size is not particularly limited, and is appropriately determined according to the structure of the white LED, but if it is too large, it is difficult to mix uniformly, so the upper limit of the average particle size is 60 m. The following is preferred.
  • the mixing ratio of each phosphor is arbitrary as long as the desired chromaticity is achieved.
  • To obtain a white LED 15-25% by mass of the blue phosphor and 15% of the green phosphor. It is preferably composed of ⁇ 25 mass% and the remaining red phosphor, and the total of the blue phosphor, the green phosphor and the red phosphor is 100 mass%.
  • the method for producing the phosphor layer of the white LED is not particularly limited.
  • each phosphor powder of each color is mixed with a resin, and then a mixture with a resin of each color is mixed to produce a mixed phosphor.
  • Examples thereof include a method and a method in which phosphor powders of respective colors are mixed in advance and then mixed with rosin to prepare a mixed phosphor.
  • a white LED can be formed by applying the mixed phosphor prepared as described above onto a light emitting diode and solidifying the resin.
  • the configuration of the substrate and metal frame used for the white LED is arbitrary.
  • Mobile communication devices such as mobile phones, mopile, personal computer peripheral devices, OA equipment, household electrical equipment, audio equipment, various switches, light sources for backlights Effective for backlights of liquid crystal display devices used in various display devices such as display panels, etc.
  • characteristics excellent in color reproducibility can be obtained.
  • it may be configured by combining multiple white LEDs, for example, arranging four white LEDs in a square.
  • the liquid crystal display device includes various driving methods such as a simple matrix method, an active matrix method, a statics method, liquid crystal of a type such as TN, STN, TSTN, ASM mode, OCB mode, homogeneous -Applicable to various display methods such as to-twisted planer mode, RFFMH mode, Patterned vertical alignment mode, IPS mode.
  • the present invention can be applied to various types of liquid crystal display devices that require knock light, such as a transmissive liquid crystal display device and a transflective liquid crystal display device.
  • the liquid crystal display device includes a backlight unit for supplying light to the liquid crystal shirt unit, a liquid crystal shirt unit for adjusting transmitted light intensity with an applied voltage, and a color filter unit for displaying colors. Accordingly, a member for performing light uniformity, light distribution, retardation correction, and the like, such as a diffusion sheet, a lens sheet, a polarizing sheet, a retardation sheet, and a reflector (reflection sheet) can be provided. Further, the knock light section may be either a back light source or a side light system.
  • the color reproducibility of the liquid crystal display device depends on various characteristics of the above-described constituent elements, particularly the color filter portion and the backlight portion.
  • a liquid crystal display device is a liquid crystal display device comprising a backlight using a white LED and a color filter for blue, green 'red, and 400nm to 500nm of light transmitted through the green color filter.
  • the area force is 90% or more of the spectrum area occupied by the light component in the wavelength range of 00 nm or more and 600 nm or less.
  • the present invention pays particular attention to the light transmitted through the green color filter.
  • the peak wavelength of each color is shown in the order of blue, green, and red from the short wavelength V region. Since green is formed between the blue peak wavelength and the red peak wavelength, it is susceptible to blue and red. Therefore, by improving the spectral shape of the light transmitted through the green color filter, it is made less susceptible to the effects of blue and red, and as a result, a liquid crystal display device with good color reproducibility can be obtained, and the following requirements are met.
  • the present invention has been achieved by achieving.
  • the first requirement is that the area power of the spectrum occupied by components in the wavelength range of 400 nm to 500 nm of the light transmitted through the green color filter is 15% of the spectrum area in the wavelength range of 400 nm to 600 nm. % Or less.
  • the “light transmitted through the green color filter” refers to the light after the backlight power passes through the green color filter when the liquid crystal display device is turned on.
  • the method for obtaining the area of each spectrum is defined as ⁇ Ig ( ⁇ ) d ⁇ , where the light intensity is Ig ( ⁇ ).
  • a spectrum area (area 1) in the range of 400 nm to 500 nm and a spectrum area (area 2) in the range of 400 nm to 600 nm are obtained, and (area 1Z Area 2)
  • the area ratio A determined by X 100 (%) is 15% or less.
  • An area ratio A of 15% or less indicates that the green peak wavelength is generally within the range of 5 OOnm to 600nm. In such a form, color reproducibility can be improved because it is hardly affected by the blue wavelength.
  • the area ratio A is 10% or less.
  • the second requirement is that, in the spectrum of light transmitted through the green color filter, the spectrum area force occupied by components in the wavelength range of 400 nm to 550 nm is the area of the component spectrum in the wavelength range of 400 nm to 600 nm. It is characterized by over 90%.
  • the spectrum area (area 3) in the wavelength range of 400 nm to 550 nm and the spectrum area (area 4) in the wavelength range of 400 nm to 600 nm are obtained, and (area 3Z area 4) X 100 (%)
  • the area ratio B obtained by the formula is 90% or more.
  • the area ratio B of 90% or more indicates that the green peak wavelength is in the wavelength range of 400 nm to 550 nm. With such a spectral form, color reproducibility can be improved because it is not easily affected by the red (or yellow) wavelength. You can.
  • the area ratio B is 91% or more.
  • color reproducibility can be improved if either the first requirement or the second requirement is satisfied.
  • satisfying both the first requirement and the second requirement makes it less susceptible to both the blue wavelength and the red (or yellow) wavelength.
  • the NTSC ratio indicating the color gamut is improved by about 3 times, whereas when the area ratio B is increased by 1%, the NTSC ratio is improved by about 6 times.
  • NTSC when the current cold-cathode tube is used as the light source is around 70, and it was found that controlling the above area ratio appropriately is very effective for widening the color gamut.
  • the light power transmitted through the blue color filter is composed of a first peak (bl) in the wavelength range of 440 nm to 450 nm and a second peak (b2) in the wavelength range of 510 nm to 530 nm,
  • the height of the second peak is preferably 1Z2 or less of the height of the first peak.
  • “light transmitted through the blue color filter” refers to light after the light from the backlight passes through the blue color filter when the liquid crystal display device is turned on.
  • the light transmitted through the blue color filter has a second peak height Z that is the height of the first peak.
  • the fact that it is 1Z2 or less improves the color reproducibility because it is less susceptible to the influence of the green wavelength when blue is displayed (becomes blue with less green component).
  • (the second peak height Z the height of the first peak) is 1Z3 or less.
  • the transmittance of the blue color filter is 90% or less of the maximum transmittance
  • the transmittance of the green color filter is 95% or less of the maximum transmittance
  • the wavelength is 600 nm. It is preferable that the transmittance of the green color filter when transmitting light of 40% or less is 40% or less of the maximum transmittance! /.
  • the maximum transmittance is defined as the maximum transmittance when light having a wavelength between 400 nm and 700 nm is transmitted.
  • the transmittance of the blue color filter being 90% or less of the maximum transmittance indicates that the blue peak shape is sharp.
  • the green color filter transmittance is 95% or less of the maximum transmittance
  • the transmittance of the green color filter is 40% of the maximum transmittance. % Or less means that the green peak shape is sharp. Show.
  • the sharp peak shape indicates that the wavelength range in which blue and green are mixed is narrow, and is less susceptible to other colors, leading to further improvement in color reproducibility.
  • a liquid crystal display device with excellent color reproducibility can be obtained.
  • the compatibility between the RGB color filter and the white LED can be well adjusted. Specifically, for the adjustment of the color filter, it is effective to optimize the transmission window position and width by selecting the pigment, increase the pigment concentration, and adjust the color filter film thickness.
  • the method for producing the color filter is not particularly limited, but an example in which a pigment dispersion method is used for a metal chromium black matrix is shown below as an example.
  • a resist layer is provided on a Cr layer provided by a sputtering method or the like on a glass substrate, a pattern is formed using an optical exposure technique, an etching process, the resist is removed, and a black matrix having a predetermined structure is provided. .
  • a photosensitive color resist containing a polyfunctional monomer that is a photopolymerization component and a polymerization initiation catalyst is applied, exposed, and developed with an alkaline solution.
  • a colored layer with uniform RGB is formed.
  • an overcoat layer is provided, and if necessary, a color filter can be produced by providing an ITO layer or a photospacer.
  • the color resist is a dispersing agent for uniformly dispersing a polyfunctional monomer that is a photopolymerization component, a polymerization initiation catalyst, and a pigment in the case of a photosensitive resist.
  • a dispersing agent for uniformly dispersing a polyfunctional monomer that is a photopolymerization component, a polymerization initiation catalyst, and a pigment in the case of a photosensitive resist.
  • a colorant such as an organic pigment, an inorganic pigment, or a dye
  • a colorant excellent in heat resistance and light resistance is desirable.
  • azo chelate, condensed azo, phthalocyanine, benzimidazolone, quinacridone, isoindolin, pyranthrone, anthrapyrimidine, dibromoanthanthrone, indanthrone, franthrone Perylene, perinone, quinophthalone, thioindigo, dioxazine, anthraquinone, and pyrrolopyrrole pigments can be used. More specifically, pigments indicated by the following color index (CI) numbers are suitable.
  • CI color index
  • C. I. Yellow pigment 20, 24, 83, 86, 93, 109, 110, 117, 125, 137, 138, 139, 1
  • the light transmittance can be adjusted according to the target color.
  • a colored photopolymerizable resin composed of a binder resin, an ethylenically unsaturated compound, a photopolymerization initiator, and a pigment is preferable.
  • the binder resin a polymer which is colorless and transparent and excellent in heat resistance and light resistance is preferred.
  • epoxy resin, melamine resin, acrylic resin, polyimide resin examples thereof include polyamic acid resins, polyester resins, unsaturated polyester resins, polycarbonate resins, and photosensitive monomers and oligomers having a (meth) atalyloyl group.
  • Examples of the ethylenically unsaturated compound include styrene, methyl (meth) acrylate,
  • Conventional photopolymerizable resin such as polyvalent monomer, polyester (meth) acrylate, polyurethane (meth) acrylate, and epoxy (meth) acrylate.
  • Examples of the photopolymerization initiator include ⁇ -aminoacetophenone, anthraquinone, benzoyl ether, benzyl, benzophenone, 4,4'-bisdimethylaminobenzazophenone, 4, 4'-bistrichloromethylbenzophenone, dibutylphenylphosphine, a, a'-diethoxyacetophenone, 2-ethylanthraquinone, benzoylbisphenol- And benzoin, benzoin methyl ether, benzoin isobutyl ether, anthraquinone thixanthone, methyl orthobenzoyl benzoic acid, paradimethylaminoacetophenone and the like can be suitably used.
  • a backlight is manufactured using the white LED of the present invention having the structure shown in FIG.
  • the knock sheet is provided with a reflective sheet (reflective layer) that reflects light emitted from the white LED toward the back or side of the housing toward the backlight surface.
  • the reflection sheet the front surface may be a mirror surface by metal deposition such as A1 or Ag, or a resin integrally molded with a resin having high light reflection characteristics.
  • a light guide plate and a diffusion sheet having a known structure can be used.
  • the diffusion plate a means for light diffusion is applied to a sheet made of transparent resin.
  • a means for light diffusion it is possible to mix a light diffusing substance inside the sheet, or a mixture of microscopic objects having different refractive indexes, or roughen the surface of the sheet, or light diffusibility. It can be a film of any material! /
  • a prism sheet having a function of condensing light in a specific direction may be used instead of the light diffusion sheet, or a prism sheet may be used together with the light diffusion sheet!
  • the light emitting diode used in the white LED preferably has an emission wavelength of 360 ⁇ m or more and 410 nm or less. If the wavelength range is 360 nm or more and 410 nm or less, the white emission spectrum can be easily adjusted by the combination with the phosphor described above. A preferable emission wavelength is 370 nm or more and 410 nm or less. As the wavelength becomes shorter, the light absorption and emission efficiency of the red phosphor improve, but the emission efficiency of the light-emitting diode chip itself decreases and does not necessarily contribute to the improvement of luminance.
  • the phosphor layer of the white LED is made of powder of blue phosphor, green phosphor, and red phosphor. It is hardened with fat.
  • a blue phosphor having a peak wavelength of 440 nm to 460 nm it is desirable to use a blue phosphor having a peak wavelength of 440 nm to 460 nm, a green phosphor having a peak wavelength of 515 nm to 530 nm, and a red phosphor having a peak wavelength of 620 nm to 640 nm.
  • Blue light emitting phosphor having the general formula 1: (Sr Ba Ca Eu) (PO) ⁇ CI,
  • a red light emitting phosphor having a composition of the general formula 3: (La Eu M) O S is preferred.
  • the X value and the y value include 0 (zero).
  • a part of La is replaced with Eu, and a part of La is further replaced with M elements such as Sb, Sn, and Sm.
  • substitution elements M do not change the peak wavelength of the emission spectrum and the half-value width of the peak, the particle size tends to increase and the slurry tends to settle, but the brightness tends to improve.
  • the particle size is 80 ⁇ m or less, preferably 60 ⁇ m or less.
  • the white LED has a light emission spectrum having a blue part peak of 40 nm to 450 nm and a green part peak of 510 nm to 530 nm, each peak having a half width of 50 nm or less. I prefer to be there. If the half-value width of the peak waveform in the blue and green parts is 50 nm, it is possible to provide light from the white LED with less light mixed in the blue and green parts. More preferably, the half width of the peak waveform in the red portion of 620 nm or more and 640 nm or less is 50 nm or less. Such a white LED can be achieved by using the aforementioned phosphor.
  • the liquid crystal display device according to the present invention is excellent in color reproducibility because the emission spectrum of the white LED and the compatibility of the color filter are adjusted.
  • Such liquid crystal display devices include mobile communication devices such as mobile phones and mopile, OA equipment such as personal computers, household electrical equipment, audio equipment, various switches, and light source display plates for backlights. It can be widely applied as a component part of various display devices.
  • the white LED was evaluated as follows. As each light emitting diode, a 300 m square light emitting chip was arranged to emit light at a current value of 60 mA, and further passed through blue, green and red color filters commonly used in liquid crystal displays. The light was guided to an integrating sphere, and the emission colors of blue, green, and red were measured, and the color gamut (color reproducibility) of the display was evaluated. The color reproducibility was calculated by the area ratio with the NTSC color gamut as described above. The brightness of the white LED was evaluated without passing through a filter.
  • a portion of the resulting slurry was extracted, dropped onto an LED arranged as shown in Fig. 1, and further heat treated at a temperature of 100 to 150 ° C to cure the silicone resin and produce a white LED lamp. .
  • a light emitting diode having a light emission wavelength peak value of 399 nm was used as the light emitting diode.
  • the white LED according to Example 1 was prepared by curing.
  • Example 7 A white LED according to Example 7 was prepared.
  • Example 8 A white LED according to Example 8 was prepared.
  • Example 10 A white LED according to Example 10 was prepared.
  • a white LED according to each example and comparative example prepared as described above and a liquid crystal display (liquid crystal display device) using the white LED as a backlight were turned on by flowing a current of 40 mA, The brightness was measured and the results shown in Table 1 were obtained.
  • a conventional example Comparative Example 3
  • the color gamut and brightness when a cold cathode tube was used for the backlight were also shown.
  • the white LED according to this example and the white LED It was found that the liquid crystal display device used as the knocklight had excellent light emission characteristics with a color reproducibility of 90 or more and a luminance of 390 mcd or more.
  • FIG. 2 shows the emission spectrum distribution when a current of 20 mA is passed through the white LED prepared in Example 1 and excited with an emission diode having a wavelength of 400 nm.
  • the white LED used in Example 16 consists of a blue peak in the wavelength range of 440 nm to 450 nm and a green peak in the wavelength range of 510 nm to 530 nm.
  • the full width at half maximum is 40nm, 30nm and 50nm or less.
  • each color filter having a transmittance spectrum as shown in Fig. 6 was prepared as an RGB color filter.
  • a liquid crystal display device according to Example 16 was fabricated by combining the white LED and the RGB color filter.
  • the spectral distribution of the light transmitted through the color filter having the transmittance spectrum shown in FIG. 6 was measured. The results are shown in Fig. 7.
  • the solid line (B—CF) is the transmission spectrum of the blue color filter
  • the dotted line (G—CF) is the transmission spectrum of the green color filter
  • the thick dotted line (R—CF) is the transmission spectrum of the red color filter. is there.
  • the ratio of the area 1 of the spectrum from 400 nm to 500 nm and the area 2 of the spectrum from 400 nm to 600 nm (area ratio A ) Is less than 15%.
  • the ratio (area ratio B) of the area 3 of the spectrum from 400 nm to 550 ⁇ m and the area 4 of the spectrum from 400 nm to 600 nm is 90% or more.
  • the second peak height is 1Z2 or less of the first peak height.
  • the first peak roughly matches the transmittance peak of the blue color filter, and it can be seen that the knock light is used effectively.
  • This first peak is an emission peak caused by the blue phosphor of this example.
  • the second peak is the light component from the green phosphor.
  • Color reproducibility is the ratio when the emission area of a liquid crystal display (liquid crystal display device) is plotted on a CIE chromaticity diagram and the area of the triangle of the international standard (NTSC) showing the ideal color gamut is 100. Indicated. In other words, (the emission area of the liquid crystal display device of the example is represented by the formula: triangle area ZNTSC triangle area indicated by CIE chromaticity diagram) X 100 (%).
  • Example 16 the blue color filter transparent
  • the ratio of the height of the second peak from 510 nm to 530 nm in excess light to the height of the first peak from 440 nm to 450 nm is 0.34
  • the area ratio A is 9.6%
  • the area ratio B was 92%.
  • the chromaticity coordinates of the light transmitted through the blue, green and red color filters are (0.14, 0.06), 0.17, 0.69), (0 69, 0.31), and the NTCS ratio was 98%, indicating a good color gamut.
  • a liquid crystal display device having the same configuration as in Example 16 except that B was changed as shown in Table 3 was prepared, and the half width of each peak was measured in the same manner.
  • a liquid crystal display device according to Comparative Example 4 was prepared by replacing the white LED of Example 22 with the white LED of Comparative Example 4.
  • the ratio of the second peak height of 510 to 530 nm or less of the transmitted light of the blue color filter to the first peak height of 440 to 450 nm is from 0.55 and 1Z2. It was great.
  • the area ratio B was 90.2%, but the area ratio A was 16.2%, and the color gamut was 78% of the NTSC ratio.
  • the second peak of the blue color filter transmitted light was unobservable.
  • the area ratio A is 19.5%
  • the area ratio B was 66%
  • the color gamut was 65% as a percentage of NTSC.
  • Example 16 0. 73 0. 88 0. 16 98. 0 0. 34 9. 6 91.7
  • Example 17 0. 78 0. 88 0. 16 97. 6 0. 38 9. 6 92.5
  • Example 18 0. 83 0. 88 0. 16 95. 2 0. 45 9. 6 92.1
  • Example 19 0. 73 0. 91 0. 23 93. 5 0. 34 1 1. 6 91.2
  • Example 20 0. 78 0. 91 0. 23 91. 7 0. 38 1 1. 2 90.6
  • Example 21 0. 83 0. 91 0. 23 89. 3 0. 43 1 1. 6 91. 0
  • Example 22 0. 73 0. 93 0. 33 84. 2 0. 33 14. 5 90. 4
  • Example 23 0. 78 0. 93 0. 33 82. 4 0. 39 1. 7 90. 4
  • Example 24 0. 83 0. 93 0. 33 82. 5 0. 43 14. 8 90.4
  • Example 25 0. 88 0. 88 0. 16 92. 2 0. 50 1. 9 91.7
  • Example 26 0. 88 0 91 0. 23 86. 4 0. 48 1 1. 6 91. 0 (
  • a liquid crystal display device of Comparative Example 67 was produced by combining the liquid crystal display device of Example 16 with a color filter having an adjusted thickness.
  • the white LED according to the present invention has high luminance and excellent color reproducibility. Further, the liquid crystal display device of the present invention is excellent in color reproducibility because the spectrum of the backlight using the white LED and the transmission spectrum of the color filter are controlled. Therefore, both the backlight using the white LED and the liquid crystal display device of the present invention have high brightness and excellent color reproducibility. In addition, there is no need to use harmful mercury like conventional cold cathode fluorescent lamps (CCFL), so there is no problem of polluting the environment.
  • CCFL cold cathode fluorescent lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Liquid Crystal (AREA)
  • Luminescent Compositions (AREA)

Abstract

 紫外線発光または紫色発光ダイオードと、3種類以上の可視光発光蛍光体を具備する白色LEDにおいて、その発光スペクトルが440nm以上460nm以下の青色部、515nm以上530nm以下の緑色部、620nm以上640nm以下の赤色部にピーク値を有することを特徴とする白色LEDである。また、各色のピークの半値幅が50nm以下であることが好ましい。高輝度を維持し、かつ色再現性の優れた白色LEDおよびそれを用いたバックライト並びに液晶表示装置が提供される。

Description

明 細 書
白色 LEDおよびそれを用いたバックライト並びに液晶表示装置 技術分野
[0001] 本発明は、液晶表示装置のノ ックライトに好適な白色 LED (発光ダイオード)およ びそれを用いたバックライト並びに液晶表示装置に係り、特に輝度が高ぐかつ青色 ,緑色,赤色に対して他の発光色の混入が少なく色再現性に優れた白色 LED (発光 ダイオード)およびそれを用いたバックライト並びに液晶表示装置に関する。
背景技術
[0002] 発光ダイオード(LED : Light Emitting Diode)は光を放射する半導体ダイォー ドであり、電気エネルギーを紫外光または可視光に変換するものである。特に可視光 を利用するために GaP、 GaAsP、 GaAlAs、 GaN、 InGaAlPなどの発光材料で形 成した発光チップを透明樹脂で封止した LEDとして広く使用されている。また、発光 材料をプリント基板や金属リードの上面に固定し、数字や文字を形どった榭脂ケース で封止したディスプレイ型の LEDも多用されて!、る。
[0003] また、発光チップの前表面ある!/、は前部榭脂中に各種の蛍光体粉末を含有させる ことにより、放射光の色を適正に調整することも可能である。すなわち LEDの発光色 は、青色力 赤色まで使用用途に応じた可視光領域の発光を再現することが出来る 。また、発光ダイオードは半導体素子であるため、長寿命および高信頼性を有し、光 源として用いた場合には、故障によるその交換頻度も低減されることから、携帯通信 機器、パーソナルコンピュータ周辺機器、 OA機器、家庭用電気機器、オーディオ機 器、各種スィッチ、バックライト用光源表示板等の各種表示装置の構成部品として広 く使用されている。
[0004] し力しながら、最近では上記各種表示装置の利用者の色彩感覚が向上し、各種表 示装置においても、微妙な色合いをより高精細に再現できる機能や、 LEDの均一な 外観が要求要求されるようになってきた。特に白色発光の LEDは携帯電話のバック ライトや車載用ランプとして、その利用の拡大が著しぐ将来的には、蛍光灯の代替 品として大きく伸長していくことが期待されるところから、その白色光の高演色性や均 一な外観を実現するための種々の改善が試みられて 、る。
[0005] 現在、一般に普及し、あるいは試行されている白色発光 LEDには、青色発光ダイ オードと黄色発光蛍光体 (YAG)と、場合によっては更に赤色蛍光体とを組み合わ せたタイプ (以下、「タイプ 1」と称する。)や、紫外線あるいは紫光発光ダイオードと青 色、黄色、赤色蛍光体とを組み合わせたタイプ (以下、「タイプ 2」と称する。)がある。 現時点では、タイプ 1はタイプ 2より高輝度であるために最も普及している力 利用者 が発光を見る方向によっては黄色っぽく視認されたり、白色面に投影したとき黄色や 青色のムラが出現したりする問題がある。そのためタイプ 1の白色発光 LED力もの発 光は擬似白色光と呼ばれることもある。白色光の質を表す平均演色指数で評価して も、タイプ 1の白色発光 LEDでは 70〜75 (70以上 75以下)の範囲に留まっている。 一方、後者 (タイプ 2)の白色発光 LEDは輝度において前者に劣るものの、発光なら びに投影光のムラが少なぐ将来的には照明あるいはバックライト用途の本命光源と して展開が期待され開発が進められている。
[0006] この開発方向での改善例として、紫外発光 LEDとユーロピウム付活ハロ燐酸塩蛍 光体またはユーロピウム付活アルミン酸塩蛍光体と、緑色発光蛍光体としての銅、ァ ルミ-ゥム付活硫ィ匕亜鉛蛍光体またはユーロピウム、マンガン付活アルミン酸塩蛍光 体と、赤色発光蛍光体としてのユーロピウム付活酸硫化イットリウム蛍光体とを組合せ た白色 LEDが報告されている (例えば、非特許文献 1参照。 ) o
[0007] また他の改善例として、紫外 LEDとユーロピウム付活ハロ燐酸塩蛍光体またはユー 口ピウム付活アルミン酸塩蛍光体と、緑色発光蛍光体としてのユーロピウム、マンガン 付活アルミン酸塩蛍光体と、赤色発光蛍光体としてのユーロピウム付活酸硫化ランタ ン蛍光体とを組合せた白色 LEDも報告されている (例えば、特許文献 1参照。 ) o
[0008] これらの白色 LEDは、いずれもタイプ 2型の特徴である高い演色性や発光の均一 性を備えている反面、輝度の点では未だ不十分であり更なる改善が必要である。本 発明者らの知見によれば、上記タイプ 2型の白色発光 LEDで高演色性および高輝 度を共に達成するためには白色光のスペクトルにおいて、人間の色感度のピークが ある波長 450nm近辺, 560nm近辺, 620nm近辺の発光がバランス良く含まれてい ること、および青色 (B)、緑色 (G)、赤色 (R)発光成分の各蛍光体の発光効率が、い ずれも良好にバランスがとれていることが必要である。
[0009] 一方、上記のような白色 LED (白色発光ダイオード)をバックライトに用いた液晶表 示装置は、携帯電話ゃモパイル等の携帯通信機器、パーソナルコンピュータ等の O A機器、家庭用電気機器、オーディオ機器、各種スィッチ、バックライト用光源表示板 等の各種表示装置の構成部品として広く使用されている。
[0010] これら従来の液晶表示装置は、冷陰極管 (CCFL)を用いたバックライトとカラーフィ ルタとの組み合わせにより、 NTSC (国際標準)比で 70%前後の色再現域を示すま でに至っている力 更なる色再現域の向上が求められている。また、光源として用い る冷陰極管中には有害な水銀が用いられて 、ることから環境への悪影響が指摘され ている。
[0011] また、近年、青色 LED (B— LED)や紫外発光が可能な LEDが開発 ·商品化され、 LED照明が盛んに開発されるようになった。 LED照明には、 B— LED (青色発光ダ ィオード)と黄色発光する蛍光体とを組み合わせた方式 (タイプ 1)と、 R— LED (赤色 発光ダイオード)、 G— LED (緑色発光ダイオード)および B— LED (青色発光ダイォ ード)の各発光を混合する方式 (タイプ 3)と、紫外発光する UV— LED (紫外線発光 ダイオード)と RGB蛍光体とを組み合わせた方式 (タイプ 2)との 3方式がある。タイプ 1およびタイプ 3においては、それぞれ、色再現性に難点があり、また色制御が困難 であるという欠点があることから、タイプ 2の UV— LED+RGB蛍光体に期待が高ま つている。
[0012] しかしながら、 UV— LED+RGB蛍光体から成る白色 LEDをバックライト光源に応 用しても、色再現域は充分とはいえな力つた。例えば、前記特許文献 1の白色 LED を液晶表示装置に用いると、青色のカラーフィルタを透過した光のスペクトルに、青 色光の他に緑色光が混入し、緑色のカラーフィルタを透過した光のスペクトルに青色 光が混ざり込んでいるため、色再現性が低下するという問題点があった。
特許文献 1:特開 2000— 73052号公報
非特許文献 1:三菱電線工業時報 (2002年 7月第 99号) [発明の開示] 発明者らの 知見によれば、従来のタイプ 2型の白色 LEDの実用化が種々試みられる開発経緯 から、照明用途とバックライト用途とではその開発方向に相違があることが判明してき た。すなわち、照明用途の白色 LEDにおいては、輝度と白色光の質を規定する平均 演色指数 (Ra)とが高いことが重要であるのに対し、ノ ックライト用途の白色 LEDにお いては、輝度が高ぐかつ色再現域が広いことが求められる。つまり、照明およびバッ クライト用途で輝度が高いことは両者で要求される共通の特性であるが、高平均演色 指数、広色再現域はそれぞれのデバイスで要求される仕様によって異なるものであり 、必ずしも両立するものではない。
[0013] 特に近年、著しく急成長を続ける液晶テレビ用の白色 LEDにおいては、従来の冷 陰極管で問題となっていた水銀使用による環境汚染の問題がなぐかつ色再現域を 拡大できる可能性があるところから、その技術開発への期待は極めて大きいものがあ る。
[0014] このような状況下において本発明者らは、紫外線あるいは紫色発光ダイオードと、 可視光発光蛍光体を 3種類以上とを組み合わせたタイプ (タイプ 2)の開発を進めて いくなかで、液晶バックライト用白色 LEDランプとして望ましい発光スペクトルおよび それを実現する蛍光体の組合せを見出して本発明を完成するに至った。
[0015] また、従来の白色 LEDを液晶表示装置のバックライトに用いた場合、カラーフィル タとの相性が悪 、ことから、 R-G- Bの各色に他の色が混入して色再現性が悪ィ匕した 。これは、従来の白色 LEDは、道路標識など液晶表示装置のバックライト以外にも用 いられることから単に白色発光させることのみに着目していたためである。
[0016] 本発明者らは鋭意研究の結果、 RGBカラーフィルタと白色 LEDとの発光波長の相 性が重要であることを見出して本発明を完成するに至った。
[0017] 本発明は上記のような課題を解決するためのものであり、紫外線発光または紫色発 光のダイオードと、青色,緑色,赤色を含む 3種類以上の可視光を発光する蛍光体と を具備する白色 LEDにおいて、その白色 LEDの発光スペクトルが波長 440nm以上 460nm以下の範囲の青色部、 510nm以上 530nm以下の範囲の緑色部、 620nm 以上 640nm以下の範囲の赤色部にピーク値を有することを特徴とする白色 LEDで ある。
[0018] また、上記白色 LEDにおいて、青色部、緑色部および赤色部のピークの半値幅が 50nm以下であることが好まし!/、。 [0019] さらに上記白色 LEDにおいて、前記可視光発光蛍光体のうち青色発光蛍光体が、 一般式 l : (Sr Ba Ca Eu ) (PO ) -CI
1-x-y x y z 10 4 6 2
(但し、式中 x、 y、 zは、それぞれ xく 0. 2、 y< 0. 1、 0. 005< z< 0. 1の関係を満た す。 )で表されるユーロピウム付活ハロ燐酸塩蛍光体であることが好ま 、。
[0020] また上記白色 LEDにおいて、前記可視光発光蛍光体のうち緑色発光蛍光体が、 一般式 2 : (Ba Sr Ca Eu ) (Mg Mn )Al O
1 -x-y-z x y z l_u u 10 17
(但し、式中 x、 y、 z、 uは、それぞれ xく 0. 5、 y< 0. 1、 0. 15< z< 0. 4、 0. 3<u< 0. 6の関係を満たす。)で表されるユーロピウム、マンガン付活アルミン酸塩蛍光体 であることが好ましい。
[0021] さらに上記白色 LEDにおいて、前記可視光発光蛍光体のうち赤色発光蛍光体が、 一般式 3 : (La Eu M ) O S
1 -x-y x y 2 2
(但し、式中 Mは Sbおよび Snの少なくとも 1種の元素であり、 Xおよび yはそれぞれ 0.
01 < x< 0. 15, y< 0. 03の関係を満たす)で表わされるユーロピウム付活酸硫ィ匕ラ ンタン蛍光体であることが好まし 、。
[0022] また上記白色 LEDにお 、て、前記紫外線発光または紫色発光ダイオードの発光 強度が、 360〜410nmの波長範囲でピーク値を有することが好ましい。
[0023] また、本発明に係る白色 LEDはバックライトおよびそれを用いた液晶表示装置に好 適である。すなわち、本発明に係るバックライトは、上記白色 LEDを用いたことを特徴 とする。
[0024] さらに、白色 LEDの発光スペクトル力 40nm以上 450nm以下の青色部のピーク および 510nm以上 530nm以下の緑色部のピークを具備し、それぞれのピークの半 値幅が 50nm以下であることを特徴であることが好ましい。
[0025] さらに本発明に係る液晶表示装置は、前記白色 LEDと、この白色 LEDを用いたバ ックライトと、青色,緑色,赤色の各カラーフィルタとを具備する液晶表示装置におい て、上記緑色のカラーフィルタを透過した光の 400nm以上 500nm以下の波長範囲 における光成分が占めるスペクトルの面積が 400nm以上 600nm以下の波長範囲 における光成分が占めるスペクトルの面積の 15%以下であり、 400nm以上 550nm 以下の波長範囲における光成分が占めるスペクトルの面積力 s400nm以上 600nm 以下の波長範囲における光成分が占めるスペクトルの面積の 90%以上であることを 特徴とする。
[0026] また上記液晶表示装置において、前記白色 LEDに用いられる発光ダイオードの発 光波長が 360nm以上 410nm以下であることが好ましい。
[0027] さらに上記液晶表示装置において、前記青色のカラーフィルタを透過した光のスぺ クトルカ、 440nm以上 450nm以下の波長範囲にある第 1ピークトップと、 510nm以 上 530nm以下の波長範囲にある第 2ピークトップとを有し、この第 2ピークトップの高 さが第 1ピークトップの高さの 1Z2以下であることが好ましい。
[0028] また上記液晶表示装置において、波長 500nmの光を透過させたとき、前記青色力 ラーフィルタにおける透過率が最大透過率の 90%以下であり、前記緑色カラーフィ ルタにおける透過率が最大透過率の 95%以下であり、波長 600nmの光を透過させ たときの前記緑色カラーフィルタにおける透過率が最大透過率の 40%以下であるこ とが好ましい。
[0029] 本発明に係る白色 LEDは輝度が高ぐかつ色再現性も優れている。また、本発明 の液晶表示装置は、白色 LEDを用いたバックライトのスペクトルおよびカラーフィルタ の透過スペクトルが制御されて 、るために色再現性に優れて 、る。そのため本発明 の白色 LEDを用いたバックライト並びに液晶表示装置は、いずれも高輝度を具備し 、かつ色再現性も優れている。また、従来の冷陰極管 (CCFL)のように有害な水銀を 使用する必要もな 、ので、環境を汚染する問題が生じな 、。
図面の簡単な説明
[0030] [図 1]本発明に係る白色 LEDの一実施例の構造を示す断面図である。
[図 2]本発明に係る白色 LEDの発光スペクトルの一例を示すグラフである。
[図 3]本発明に係る白色 LEDと現行の CCFLを液晶ディスプレイのバックライトとして 用いたときの色再現域を比較して示すグラフである。
[図 4]本発明に係る白色 LEDにおいて、発光スペクトルピークの半値幅を変えた場合 の発光スペクトル例を示すグラフである。
[図 5]図 4に示す発光スペクトルを有する各白色 LEDを液晶ディスプレイのバックライ トとして用いた場合における色再現域を対比して示すグラフである。 [図 6]本発明に係る液晶表示装置に用いるカラーフィルタの透過スペクトルの一例を 示すグラフである。
[図 7]本発明に係る液晶表示装置におけるカラーフィルタ透過光のスペクトルの一例 を示すグラフである。
[図 8]比較例 5に係る液晶表示装置に用いた白色 LEDの発光スペクトルを示すダラ フ。
[図 9]比較例 5に係る液晶表示装置のカラーフィルタ透過光のスペクトルを示すグラフ
発明を実施するための最良の形態
[0031] 図 1は本発明に係る白色 LEDの一実施形態を示す断面図である。図 1に示す白色 LEDは、発光ダイオード aと、榭脂に埋め込まれた蛍光体層 bと、上記発光ダイォー ド a及び蛍光体層 bの発光を外部へ導く反射層 cと、発光部を支える榭脂枠 dとから構 成される。 LEDランプに印加された電気エネルギーは発光ダイオード aにより紫外光 あるいは紫色光に変換され、それらの光が発光ダイオード a上部の蛍光体層 bによつ て、より長波長の光に変換され、総計として白色光が LEDランプ外へ放出される仕組 みになっている。
[0032] 上記紫外線発光ダイオードまたは紫色発光ダイオードとしては、 InGaN系、 GaN 系、 AlGaN系のダイオードなど様々の発光ダイオードが適用可能である。特に発光 波長のピーク値が 360〜420nmの波長範囲にある発光ダイオードを使用した場合 には、後述する蛍光体との組合せにより、高輝度であり、かつ色再現性がより優れた 白色 LEDを構成することができる。
[0033] 上記蛍光体層 bに用いる蛍光体としては、青色,緑色,赤色を含む 3種以上の光を 放出する可視光発光蛍光体を用いることが重要である。具体的には、その発光スぺ クトルカ S440nm以上 460nm以下の青色部、 510nm以上 530nm以下の緑色部、 6 20nm以上 640nm以下の赤色部にそれぞれピーク値を有する蛍光体を用いる。つ まり、ピーク波長が 440nm以上 460nm以下の範囲にある青色蛍光体、ピーク波長 力 lOnm以上 530nm以下の範囲にある緑色蛍光体、ピーク波長が 620nm以上 6 40nm以下の範囲にある赤色蛍光体をそれぞれ用いることにより可視光発光蛍光体 力^種となる。また、同じ色を発光する蛍光体を 2種以上用いれば、可視光発光蛍光 体が合計で 3種以上となる。
[0034] 例えば図 1に示すような白色 LEDの場合、発光ダイオード aに印加された電気エネ ルギ一は発光ダイオード aにより紫外光 (あるいは紫色光)に変換され、それらの光が 発光ダイオード上部の蛍光体層 bによって、より長波長の光に変換され、総計として 白色光が LED外へ放出される。
[0035] なお、本発明では発光ダイオード aとして用いられる紫外線発光ダイオードまたは紫 色発光ダイオードは、発光ダイオードと表記し、完成した白色発光ダイオードに関し ては白色 LEDと表記する。
[0036] 図 1のように構成した本発明に係る白色 LEDの発光スペクトルの一例を図 2に示す 。具体的には、電流値 20mAで発光ダイオードを発光させてピーク値力 OOnmにあ る紫外線を放出せしめ、さらにこの紫外線を蛍光体により色度 (0. 253, 0. 238)の 白色光に変換した時の発光スペクトルを示す。この発光スペクトルでは、波長 447η mの青色部(B)、 518nmの緑色部 (G)、 623nmの赤色部(R)にそれぞれピーク値 を有し、さらに各ピークの半値幅がそれぞれ 50nm以下であることを特徴としている。
[0037] 図 3は上記本発明に係る白色 LED力 の発光を、液晶ディスプレイ (液晶表示装置 )で使われる一般的な青色、緑色、赤色のカラーフィルターを通したときの、発光色を CIE色度図にプロットしたグラフである。この CIE色度図において、青色(B)、緑色( G)、赤色 (R)の各発光点を結んで得られる三角形の内側領域に存在する色度を有 する光を、その液晶ディスプレイが表示できることを意味して 、る。
[0038] すなわち、上記 CIE色度図における三角形の面積がより広い場合に、より多くの色 度の光を表現でき、その液晶ディスプレイ (LCD)は色再現域が広ぐ色再現性が良 好であると言える。図 3には従来の冷陰極管(CCFL)を用いた液晶ディスプレイの色 再現域も太 ヽ破線で示されて ヽるが、実線で示す本発明における LCDの色再現域 の方が明らかに広く色再現性が優れていることが確認できる。
[0039] 図 3には、同時に理想的な色再現域を示す国際標準 (NTSC)も点線で示している 。色再現域の広さはこの NTSCの三角形の面積を 100としたときの相対値で示され、 本発明の液晶ディスプレイの色再現域は 98であるのに対し従来の冷陰極管液晶デ イスプレイの色再現域は 65であった。
[0040] 前記のように白色 LEDの発光スペクトルにおける青色部、緑色部、赤色部のピーク 値の半値幅は 50nm以下であることが好ましい。例えば、本発明で規定する B, G, R の蛍光体を組合せて得られる白色 LEDにおいて、青色 '緑色'赤色のピーク値の半 値幅が 50nm以下の白色 LED (製品 1)と一部の半値幅が 50nmを超えた白色 LED (製品 2)を用意し、その発光スペクトルを比較したグラフを図 4に示す。また、製品 1 および製品 2に係る白色 LED図を用いた液晶ディスプレイの色再現域を図 5に示す
[0041] 図 4および図 5に示す結果から明らかなように、各液晶ディスプレイの色再現域は、 図 3に示す NTSCを基準として製品 1が 98であり、製品 2が 87であった。また、製品 2 の色再現域は冷陰極管のそれよりは優れている反面、製品 1の色再現域よりは劣つ ている。その理由は製品 2のスペクトルが本発明と同様 447nmの青色部、 518nmの 緑色部、 623nmの赤色部にピーク値を有しているものの、青色ピークの半値幅が 60 nmと過度に広く青色成分の純度が悪いためである。なお、各ピークの半値幅はすべ てが 50nm以下であることが最も好ましいが、半値幅の最大値は 80nm以下であれ ば実用に値する。特に青色 ·緑色 ·赤色のうち 1種のみが半値幅 80nmで、残り 2種が 50nm以下であれば色再現域は対 NTSCで 80以上とすることができる。従って、各 ピーク値の半値幅は、好ましくは 80nm以下、さらに好ましくは 50nm以下となる。
[0042] 上記のように、波長力 40nm以上 460nm以下の青色部、 510nm以上 530nm以 下の緑色部、 620nm以上 640nm以下の赤色部の各ピーク値を具備し、その半値 幅が 70nm以下、さらには 50nm以下の特性を具備する蛍光体を用いることにより、 高輝度を具備し、かつ色再現性の優れた白色 LEDを形成することができる。
[0043] 次に、蛍光体について説明する。蛍光体の組成については、上記特性を具備する ものであれば特に限定されるものではないが、好ましい一例として次のものが挙げら れる。
[0044] 青色発光蛍光体としては、
一般式 l : (Sr Ba Ca Eu ) (PO ) -CI
1-x-y x y z 10 4 6 2
(但し、式中 x、 y、 zは xく 0.2、 y< 0.1、 0.005< z< 0.1の関係を満足する。)で表される ユーロピウム付活ハロ燐酸塩蛍光体が挙げられる。一般式 1にお ヽて X値および y値 は 0 (ゼロ)を含むものとする。後述するようにピーク形状をシャープにするには Xおよ び y力 SOに近 、方(ゼロを含む)が好まし!/、。
[0045] また、緑色発光蛍光体としては、
一般式 2 : (Ba Sr Ca Eu ) (Mg Mn )Al O
1 -x-y-z x y z l_u u 10 17
(但し、式中 x、 y、 z、 uは xく 0.5、 y< 0.1、 0.15< z< 0.4、 0.3<u< 0.6の関係を満足す る。)で表されるユーロピウム、マンガン付活アルミン酸塩蛍光体が挙げられる。なお、 一般式 2にお 、て X値および y値は 0 (ゼロ)を含むものとする。
[0046] また、赤色発光蛍光体としては、
一般式 3 : (La Eu M ) O S
1 -x-y x y 2 2
(但し、式中 Mは元素 Sb, Snの少なくとも 1種を示し、 X及び yは 0. 01 <x< 0. 15, y< 0. 03の関係を満足する。)で表わされるユーロピウム付活酸硫ィ匕ランタン蛍光体 が挙げられる。なお、一般式 3において y値は 0 (ゼロ)を含むものとする。
[0047] 蛍光体の平均粒径は特に限定されるものではな 、が平均粒径 3 μ m以上が好まし い。平均粒径が 以上、つまりは粒径が大きい方が高輝度を得易い。平均粒径 の上限については特に限定は無ぐ白色 LEDの構造に合わせて適宜決定されるも のとするが、過度に大きすぎると均一に混合し難いことから、平均粒径の上限は 60 m以下が好ましい。また、各蛍光体の混合比率については目的とする色度になるよう な比率であれば任意である力 白色 LEDを得るためには青色蛍光体を 15〜25質量 %と、緑色蛍光体を 15〜25質量%と、残部の赤色蛍光体とで構成し、青色蛍光体、 緑色蛍光体、赤色蛍光体の合計を 100質量%とすることが好ましい。
[0048] 白色 LEDの蛍光体層の製造方法は特に限定されないが、例えば、各色の蛍光体 粉末をそれぞれ榭脂と混合した後、各色の樹脂との混合体を混ぜ合わせ混合蛍光 体を作製する方法や、予め各色の蛍光体粉末同士を混合した後、榭脂と混ぜ合わ せて混合蛍光体を調製する方法が挙げられる。
[0049] 上記のように調製した混合蛍光体を、発光ダイオード上に塗布し、榭脂を固めること により、白色 LEDを形成することができる。なお、白色 LEDに用いる基板や金属枠等 の構成は任意である。 [0050] 以上のような本発明に係る白色 LEDは、高輝度を維持しつつ色再現性も優れて!/ヽ ることから、携帯電話ゃモパイル等の携帯通信機器、パーソナルコンピュータ周辺機 器、 OA機器、家庭用電気機器、オーディオ機器、各種スィッチ、バックライト用光源 表示板等の各種表示装置に用いられる液晶表示装置のバックライトに有効であり、そ れを用いた液晶表示装置は高輝度かつ色再現性に優れた特性が得られる。また、 ノ ックライトに用いる際に、例えば 4つの白色 LEDを四角く並べる等のように複数個 の白色 LEDを組み合わせて構成しても良 、。
[0051] また、本発明に係る液晶表示装置は、単純マトリックス方式、アクティブマトリックス 方式、スタティックス方式などの様々な駆動方法、 TN、 STN、 TSTNなどの種類の 液晶、 ASMモード、 OCBモード、 homogeneous- to- twisted planerモード、 RFFMH モード、 Patterned vertical alignmentモード、 IPSモードなどの様々な表示方式に適 用することができる。また、ノックライトが必要な液晶表示装置、例えば、透過型液晶 表示装置や半透過型液晶表示装置など様々なタイプに適用可能である。
[0052] 液晶表示装置は、液晶シャツタ部に光を供給するためのバックライト部、印加する電 圧で透過光強度を調節する液晶シャツタ部、色を表示するカラーフィルタ部を具備し 、必要に応じ、拡散シート、レンズシート、偏光シート、位相差シート、リフレクタ (反射 シート)等の光均一性、配光性、位相差の補正などを行う部材を具備することができ る。また、ノ ックライト部は背面光源、サイドライト方式のどちらであってもよい。
[0053] 本発明者らの知見によれば、液晶表示装置の色再現性は、上記の構成要素の内、 特にカラーフィルタ部およびバックライト部の諸特性に依存することが判明した。
[0054] 本発明に係る液晶表示装置は、白色 LEDを用いたバックライトおよび青色,緑色' 赤色用のカラーフィルタを具備する液晶表示装置において、上記緑色のカラーフィ ルタを透過した光の 400nm以上 500nm以下の波長範囲における光成分が占める スペクトルの面積力 S400nm以上 600nm以下の波長範囲における光成分が占めるス ベクトルの面積の 15%以下であり、 400nm以上 550nm以下の波長範囲における光 成分が占めるスペクトルの面積力 00nm以上 600nm以下の波長範囲における光 成分が占めるスペクトルの面積の 90%以上であることを特徴とするものである。
[0055] すなわち、本発明では特に緑色のカラーフィルタを透過した光に注目している。こ れは、青色 '緑色'赤色の 3色の蛍光体を用いた場合、各色のピーク波長が波長の短 V、領域から青色→緑色→赤色の順に示される。緑色は青色のピーク波長と赤色のピ ーク波長の間に形成されるため、青と赤の影響を受け易い。従って、緑色のカラーフ ィルタを透過した光のスペクトル形状を改良することによって青色および赤色の影響 を受け難くし、その結果、色再現性の良い液晶表示装置が得られることを見出し、下 記要件を達成することによって本発明に到達した。
[0056] 第 1の要件は、緑色のカラーフィルタを透過した光の 400nm以上 500nm以下の波 長範囲にある成分が占めるスペクトルの面積力 400nm以上 600nm以下の波長範 囲にあるスペクトルの面積の 15%以下であることを特徴とするものである。ここで、「緑 色のカラーフィルタを透過した光」とは、液晶表示装置を点灯させた際にバックライト 力 の光が緑色のカラーフィルタを透過した後の光を示す。また、各スペクトルの面積 の求め方は光強度を Ig ( λ )とすると、 ί Ig ( λ ) d λとして定義される。
[0057] まず、緑色のカラーフィルタを透過した光に関して、 400nm以上 500nm以下の範 囲のスペクトル面積(面積 1)と 400nm以上 600nm以下の範囲のスペクトル面積(面 積 2)を求め、(面積 1Z面積 2) X 100 (%)により求めた面積比 Aが 15%以下である ことを特徴とする。面積比 Aが 15%以下であることは緑色のピーク波長が全体的に 5 OOnm以上 600nm以下の範囲に収まっていることを示している。このような形態であ れば、青色の波長の影響を受け難いことから色再現性を向上させることができる。好 ましくは、上記面積比 Aは 10%以下である。
[0058] 第 2の要件は、緑色のカラーフィルタを透過した光のスペクトルにおいて、 400nm 以上 550nm以下の波長範囲にある成分が占めるスペクトルの面積力 400nm以上 600nm以下の波長範囲にある成分スペクトルの面積の 90%以上であることを特徴と する。前記と同様に、 400nm以上 550nm以下の波長範囲におけるスペクトル面積( 面積 3)と、 400nm以上 600nm以下の波長範囲におけるスペクトル面積(面積 4)を 求め、(面積 3Z面積 4) X 100 (%)の算式により求めた面積比 Bが 90%以上となる。 この面積比 Bが 90%以上であることは、緑色のピーク波長が全体的に 400nm以上 5 50nm以下の波長範囲に入っていることを示している。このようなスペクトル形態であ れば、赤色 (または黄色)の波長の影響を受け難いことから色再現性を向上させるこ とができる。好ましくは、上記面積比 Bは 91%以上である。
[0059] 本発明においては、上記第 1の要件または第 2の要件のどちらかを満たしていれば 色再現性を向上させることができる。しかしながら、上記第 1の要件と第 2の要件の両 方を満たすことにより、青色の波長と赤色 (または黄色)の波長との双方の影響を受け 難くできるので、より好ましい形態となる。
[0060] 前記面積比 Aが 1%小さくなると、色再現域を示す NTSC比は約 3倍向上する一方 、上記面積比 Bが 1%大きくなると NTSC比は約 6倍向上する。現行の冷陰極管を光 源としたときの NTSCが 70前後であるので、上記面積比を適正に制御することは、色 再現域を広げるために極めて有効であることが判明した。
[0061] また、青色のカラーフィルタを透過した光力 波長 440nm以上 450nm以下の範囲 にある第 1ピーク (bl)と、波長 510nm以上 530nm以下の範囲にある第 2ピーク(b2 )とから成り、上記第 2ピークの高さが第 1ピークの高さの 1Z2以下であることが好まし い。ここで、「青色のカラーフィルタを透過した光」とは、液晶表示装置を点灯させた 際にバックライトからの光が青色のカラーフィルタを透過した後の光を示す。
[0062] 青色のカラーフィルタを透過した光にぉ 、て (第 2ピーク高さ Z第 1ピークの高さ)が
1Z2以下であると言うことは、青色表示した際に緑色の波長の影響を受け難くなる( 緑色成分の少ない青色になる)ことから色再現性が向上する。好ましくは (第 2のピー ク高さ Z第 1のピークの高さ)が 1Z3以下である。
[0063] また、波長 500nmの光を透過させたとき、青色カラーフィルタの透過率が最大透過 率の 90%以下、緑色カラーフィルタの透過率が最大透過率の 95%以下であって、 波長 600nmの光を透過させたときの緑色カラーフィルタの透過率が最大透過率の 4 0%以下であることが好まし!/、。最大透過率とは波長 400nm以上 700nm以下の光 を透過させたときに最も大きな透過率を示した値を最大透過率とする。
[0064] 波長 500nmの光を透過させたとき、青色カラーフィルタの透過率が最大透過率の 90%以下であるということは、青色のピーク形状がシャープであることを示す。同様に 、波長 500nmの光を透過させたとき、緑色カラーフィルタ透過率が最大透過率の 95 %以下および、波長 600nmの光を透過させたときの緑色カラーフィルタ透過率が最 大透過率の 40%以下であるということは、緑色のピーク形状がシャープであることを 示す。ピーク形状がシャープであるということは、青色と緑色が混ざり合う波長域が狭 いことを示しており、他の色の影響を受け難いことから色再現性の更なる向上につな がる。
[0065] 以上のような構成であれば色再現性の優れた液晶表示装置が得られる。上記のよ うな特性を得るためには RGBカラーフィルタと白色 LEDの相性を良好に調整するこ とが挙げられる。具体的にカラーフィルタの調整については、顔料の選択で透過ウイ ンドウ位置や幅の適正化、顔料濃度を上げる、カラーフィルタ膜厚を調整する方策な どが有効である。
[0066] カラーフィルタの製造方法は特に限定されるものではないが、一例として金属クロム ブラックマトリックスに、顔料分散法を用いた例を下記に示す。
[0067] すなわち、ガラス基板にスパッタリング法等で設けた Cr層にレジスト層を設け、光露 光技術を用いてパターンを形成し、エッチング加工、レジストを剥離して所定の構造 のブラックマトリックスを設ける。
[0068] 次に光重合成分である多官能性モノマーや重合開始触媒を含んだ感光性カラー レジストを塗布し、露光しアルカリ液で現像する。この操作を各色の層に対して繰り返 すことにより、 RGBが揃った着色層を形成する。この後、オーバーコート層を設け、さ らに必要なら ITO層やフォトスぺーサーを設けることにより、カラーフィルタを製造する ことができる。
[0069] カラーレジストは、着色剤、バインダー榭脂の他、感光性レジストの場合には光重合 成分である多官能性モノマーや重合開始触媒や顔料を均一に分散するための分散 剤、膜厚を均一にするためのレべリング剤、有機溶媒とから構成できる。
[0070] 上記着色剤としては、有機顔料、無機顔料、染料などの着色剤を使用することがで きるが、耐熱性および耐光性に優れたものが望ましい。例えば、ァゾキレート系、縮 合ァゾ系、フタロシア-ン系、ベンゾイミダゾロン系、キナクリドン系、イソインドリ-ン系 、ピランスロン系、アンスラピリミジン系、ジブロムアンザンスロン系、インダンスロン系、 フランスロン系、ペリレン系、ペリノン系、キノフタロン系、チォインジゴ系、ジォキサジ ン系、アントラキノン系、およびピロロピロール系顔料等を使用することができる。より 具体的には、下記のカラーインデックス (C. I. )ナンバーで示される顔料が好適であ る。
[0071] C. I.黄色顔料 20、 24、 83、 86、 93、 109、 110、 117、 125、 137、 138、 139、 1
47、 148、 150、 153、 154、 166、 168。
[0072] C. I.赤色顔料 9、 97、 122、 123、 149、 168、 177、 180、 192、 208、 215、 216
、 217、 220、 223、 224、 226、 227、 228、 240、 254。
[0073] C. I.紫色顔料 19、 23、 29、 30、 37、 40、 50。
[0074] C. I.青色顔料 15、 15 : 1〜6、 22、 60、 64。
[0075] C. I.緑色顔料 7、 36。
[0076] 上記の顔料の種類、量、および混合比を調整することによって、 目的とする色に応 じて光透過率を調整することができる。
[0077] なお、顔料分散法により製造する場合には、バインダー榭脂、エチレン性不飽和化 合物、光重合開始剤、顔料から構成される着色光重合性樹脂が好適である。
[0078] 上記バインダー榭脂としては、無色透明で、耐熱、耐光性に優れた高分子が好まし ぐ具体的には、例えば、エポキシ榭脂、メラミン榭脂、アクリル榭脂、ポリイミド榭脂、 ポリアミック酸榭脂、ポリエステル榭脂、不飽和ポリエステル榭脂、ポリカーボネート榭 脂、(メタ)アタリロイル基をもつ感光性モノマーおよびオリゴマー等が挙げられる。
[0079] 上記エチレン性不飽和化合物としては、例えば、スチレン、(メタ)アクリル酸メチル、
(メタ)アクリル酸ェチル、(メタ)アクリル酸 n—プロピル、(メタ)アクリル酸イソプロピル 、(メタ)アクリル酸 n—ブチル、(メタ)アクリル酸 SEC—ブチル、(メタ)アクリル酸 tert —ブチル、(メタ)アクリル酸イソ—ブチル、(メタ)アクリル酸 n—ペンチル、メチルスチ レン、ヒドロキシェチル(メタ)アタリレート、エチレングリコールジメタアタリレート、ペン タエリスリトールトリ(メタ)アタリレート等 1価または多価モノマー、ポリエステル (メタ)ァ タリレート、ポリウレタン (メタ)アタリレート、エポキシ (メタ)アタリレート等通常の光重合 性榭脂が挙げられる。
[0080] また、光重合開始剤としては、例えば、 α—アミノアセトフエノン、アンスラキノン、ベ ンゾィルェチルエーテル、ベンジル、ベンゾフエノン、 4, 4'—ビスジメチルァミノベン ゾフエノン、 4, 4'—ビストリクロロメチルベンゾフエノン、ジブチルフエニルホスフィン、 a , a '—ジエトキシァセトフエノン、 2—ェチルアンスラキノン、ベンゾィルビスフエ- ル、クロ口べンゾフエノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソブチ ルエーテル、アンスラキノンチォキサントン、メチルオルソベンゾィル安息香酸、パラ ジメチルアミノアセトフエノン等が好適に使用できる。
[0081] 前記図 1に示すような構造を有する本発明の白色 LEDを使用してバックライトが製 造される。上記白色 LEDをバックライトに組み込む際、所定の面輝度、光束量が得ら れる数量を平面上に配列したり、もしくはバックライト筐体の 4つの辺に白色 LEDを配 列したりすることにより、本発明に係るバックライトを得ることができる。前述のように、 ノ ックライトには白色 LEDから筐体背面方向や側面方向に放射された光をバックライ ト表面方向に反射する反射シート (反射層)が、バックライト筐体底面や側面に配置さ れて 、ることが望ま U、。上記反射シートとしては前面を A1もしくは Ag等の金属蒸着 によりミラー面にしたものや、光高反射特性を有する榭脂を一体成型したものであつ てよい。また液晶表示画面に明るさの分布が生じない様に光を均一に調整する必要 がある。そのために、公知の構造の導光板、拡散シートを用いることができる。拡散板 としては光拡散化のための手段を透明な榭脂を材料とするシートに施したものである 。ここで光拡散化のための手段としては、シート内部に光拡散性の物質を混入したり 、屈折率の異なる微小体を混入したものでもよぐまたシート表面を粗面化したり、光 拡散性の物質の皮膜を形成したものでもよ!/、。また特定の方向に集光する機能を有 するプリズムシート等を光拡散シートの代わりに適宜用いる力、または、プリズムシー ト等を光拡散シートと共に使用するようにしてもよ!、。
[0082] 本発明において、前記白色 LEDに用いられる発光ダイオードは発光波長が 360η m以上 410nm以下であることが好ましい。 360nm以上 410nm以下の波長範囲であ れば、前述した蛍光体との組合せにより白色発光スペクトルを調整し易い。好ましい 発光波長は 370nm以上 410nm以下である。波長が短くなるに従い、赤色蛍光体の 光吸収 ·発光効率が向上するものの、発光ダイオードチップ自身の発光効率が低下 し、必ずしも輝度向上に寄与するわけではない。発光ダイオード近傍に配した蛍光 体層 b (榭脂や光学部材)の劣化が著しくなるなどの弊害が現れる。また波長が長くな ると赤色蛍光体のみならず、蛍光体全般の発光効率が低下し、輝度が低下する。
[0083] また、白色 LEDの蛍光体層は青色蛍光体、緑色蛍光体、赤色蛍光体の粉末を榭 脂で固めたものである。各蛍光体は、その発光スペクトル力 40nm以上 460nm以 下の青色部、 515nm以上 530nm以下の緑色部、 620nm以上 640nm以下の赤色 部にそれぞれピーク値を有する蛍光体を用いることが好ましい。つまり、ピーク波長 4 40nm以上 460nm以下の青色蛍光体、ピーク波長 515nm以上 530nm以下の緑色 蛍光体、ピーク波長 620nm以上 640nm以下の赤色蛍光体をそれぞれ用いることが 望ましい。
[0084] このような発光特性を有する蛍光体としては、前記のような
一般式 1: (Sr Ba Ca Eu ) (PO ) · CIなる組成を有する青色発光蛍光体、
1-x-y X y z 10 4 6 2
一般式 2 : (Ba Sr Ca Eu ) (Mg Mn )A1 O なる組成を有する緑色発光蛍光
Ι-χ-y-z X y z 1 u u 10 17
体、
一般式 3 : (La Eu M ) O Sなる組成を有する赤色発光蛍光体が好適である。
1-x-y X y 2 2
[0085] なお、上記一般式 1〜2において X値、 y値は 0 (ゼロ)を含むものとする。また、一般 式 3は Laの一部を Euに置換すると共に、さらに Laの一部を Sb、 Sn、 Smなどの M元 素で置換している。これら置換元素 Mによって発光スペクトルのピーク波長、ピークの 半値幅を変えるものではないが、粒径が大きくなる傾向がありスラリーが沈降しやすく なるものの、輝度が向上する傾向がある。粒径としては 80 μ m以下、好ましくは 60 μ m以下が良い。
[0086] また、白色 LEDの発光スペクトル力 40nm以上 450nm以下の青色部のピークお よび 510nm以上 530nm以下の緑色部のピークを具備し、それぞれのピークの半値 幅が 50nm以下であることを特徴であることが好まし 、。青色部と緑色部のピーク波 形の半値幅が 50nmであると白色 LEDからの光において青色部と緑色部が混ざり込 んだ光が少ないものを提供できる。また、 620nm以上 640nm以下の赤色部にあるピ ーク波形の半値幅が 50nm以下であれば更に好ましい。このような白色 LEDは前述 の蛍光体を用いれば達成できる。
[0087] 以上のように本発明に係る液晶表示装置は、白色 LEDの発光スペクトルとカラーフ ィルタの相性とを調整していることから、色再現性が優れている。このような液晶表示 装置は、携帯電話ゃモパイル等の携帯通信機器、パーソナルコンピュータ等の OA 機器、家庭用電気機器、オーディオ機器、各種スィッチ、バックライト用光源表示板 等の各種表示装置の構成部品として広く適用可能である。
[0088] [実施例]
次に、白色 LEDの具体的な実施例について説明する。
[0089] 本実施例の白色 LEDにおいては、横断面が図 1に示す構造を採用した。そして、 白色 LEDの評価を下記要領で行った。各発光ダイオードとして、サイズが 300 m 四方の発光チップを配し、 60mAの電流値にて発光させ、さらに液晶ディスプレイで 一般に使用される青色、緑色、赤色のカラーフィルターを通した。その光を積分球に 導き、青色、緑色、赤色の各発光色を測定し、ディスプレイにしたときの色再現域 (色 再現性)を評価した。色再現性については前述の通り NTSCの色再現域との面積比 で算出した。また白色 LEDの輝度はフィルターを通さずに評価した。
[0090] 上記色再現性評価は Instrument Systems社製 CAS 140 COMPACT AR RAY SPECTROMETERを使用して評価する一方、白色 LEDの輝度は大塚電 子社製 MCPD装置を使用して評価した。
[0091] < LEDランプの作製方法 >
3種類以上の蛍光体を、別々にシリコーン榭脂と 30質量%の比率で混合し、各蛍 光体スラリーを作製した。次に各蛍光体スラリーを、 LEDランプの色度が x=0. 250 0. 255, y=0. 235-0. 240の範囲【こ人るよう【こ調合した。得られたスラリーの一 部を抜取り、図 1に示すように配置された LEDに滴下し、さらに 100〜150°Cの温度 で熱処理することにより、シリコーン榭脂を硬化せしめ白色 LEDランプを製造した。
[0092] なお、実施例、比較例にぉ 、ては発光ダイオードとしては、発光波長のピーク値が 399nmにある発光ダイオードを使用した。
[0093] (実施例 1)
青色蛍光体としてのユーロピウム付活アルカリ土類クロ口リン酸塩 (Sr Eu )
0. 99 0. 01 10
(po ) ·αと、緑色蛍光体としてのユーロピウム、マンガン付活アルミン酸塩蛍光体
4 6 2
(Ba Eu ) (Mg Mn )A1 O と、赤色蛍光体としてのユーロピウム付活
0. 726 0. 274 0. 55 0. 45 10 17
酸硫化ランタン (La Sb Eu ) O Sとをそれぞれシリコーン榭脂と 30質量
0. 833 0. 002 0. 115 2 2
%の濃度で混合した。次にこれらのスラリーを 20. 1%、 19. 5%、 60. 4%の割合( 質量%)で混合した後、発光ダイオード上に塗布し、温度 140°Cの熱処理で榭脂を 硬化せしめ、実施例 1に係る白色 LEDを調製した。
[0094] (実施例 2)
青色蛍光体としてのユーロピウム付活アルカリ土類クロ口リン酸塩(Sr Ca Eu (P
0.97 0.02 10
O ) 'CIと、緑色蛍光体としてのユーロピウム、マンガン付活アルミン酸塩蛍光体 (B
4 6 2
a0.726Eu0.274) (Mg Mn )A1 O と、赤色蛍光体としてのユーロピウム付活
0. 50 0. 50 10 17
酸硫化ランタン (La Sb Eu ) O Sとをそれぞれシリコーン榭脂と 30質量
0. 884 0. 001 0. 115 2 2
%の濃度で混合した。次にこれらのスラリーを 19. 0%、 19. 0%、 62. 0%の割合で 混合した後、発光ダイオード上に塗布し、温度 140°Cの熱処理で榭脂を硬化せしめ 、実施例 2に係る白色 LEDを調製した。
[0095] (実施例 3)
青色蛍光体としてのユーロピウム付活アルカリ土類クロ口リン酸塩 (Sr Eu ) (
0. 99 0. 01 10
PO ) -CIと、緑色蛍光体としてのユーロピウム、マンガン付活アルミン酸塩蛍光体(
4 6 2
Ba Sr Eu ) (Mg Mn )A1 O 、赤色蛍光体としてのユーロピウム
0. 25 0. 475 0. 275 0. 55 0. 45 10 17
付活酸硫化ランタン (La Sn Eu ) O Sとをそれぞれシリコーン榭脂と 30
0. 883 0. 002 0. 115 2 2
質量0 /0の濃度で混合した。次にこれらのスラリーを 20. 2%、 19. 0%、 60. 8%の割 合で混ぜた後、発光ダイオード上に塗布し、温度 140°Cの熱処理で榭脂を硬化せし め、実施例 3に係るの白色 LEDを調製した。
[0096] (実施例 4)
青色蛍光体としてのユーロピウム付活アルカリ土類クロ口リン酸塩(Sr Ba Ca
0. 75 0. 23 0. 0
Eu ) (PO ) .Cし緑色蛍光体としてのユーロピウム、マンガン付活アルミン酸
1 0. 01 10 4 6 2
塩蛍光体(Ba Eu ) (Mg Mn )A1 O 、赤色蛍光体としてのユーロピ
0. 756 0. 274 0. 55 0. 45 10 17
ゥム付活酸硫ィ匕ランタン (La Sn Eu ) O Sをそれぞれシリコーン榭脂と 3
0. 883 0. 002 0. 115 2 2
0質量0 /0の濃度で混合した。次にこれらのスラリーを 20. 1%、 19. 5%、 60. 4%の 割合で混合した後、発光ダイオード上に塗布し、温度 140°Cの熱処理で榭脂を硬化 せしめ、実施例 4に係る白色 LEDを調製した。
[0097] (実施例 5)
青色蛍光体としてのユーロピウム付活アルカリ土類クロ口リン酸塩 (Sr Eu ) (
0. 98 0. 02 10 po ) ·α、緑色蛍光体としてのユーロピウム、マンガン付活アルミン酸塩蛍光体 (Β
4 6 2 a Eu ) (Mg Mn )A1 O 、赤色蛍光体としてのユーロピウム付活酸硫
0. 756 0. 274 0. 60 0. 40 10 17
化ランタン (La Sb Eu ) O Sをそれぞれシリコーン榭脂と 30質量0 /0の濃
0. 883 0. 002 0. 115 2 2
度で混合した。次にこれらのスラリーを 20. 3%、 19. 8%、 59. 9%の割合で混合し た後、発光ダイオード上に塗布し、温度 140°Cの熱処理で榭脂を硬化せしめ、実施 例 5に係るの白色 LEDを調製した。
[0098] (実施例 6)
青色蛍光体としてのユーロピウム付活アルカリ土類クロ口リン酸塩(Sr Ca Eu
0. 97 0. 02 0.
) (po ) · α、緑色蛍光体としてのユーロピウム、マンガン付活アルミン酸塩蛍光
01 10 4 6 2
体(Ba Sr Eu ) (Mg Mn )A1 O 、赤色蛍光体としてのユーロピウ
0. 35 0. 375 0. 275 0. 55 0. 45 10 17
ム付活酸硫ィ匕ランタン (La Sb Eu ) O Sをそれぞれシリコーン榭脂と 30
0. 884 0. 001 0. 115 2 2
質量0 /0の濃度で混合した。次にこれらのスラリーを 20. 0%、 20. 0%、 60. 0%の割 合で混合した後、発光ダイオード上に塗布し、温度 140°Cの熱処理で榭脂を硬化せ しめ、本実施例 6に係るの白色 LEDを調製した。
[0099] (実施例 7)
青色蛍光体としてのユーロピウム付活アルカリ土類クロ口リン酸塩 (Sr Eu ) (
0. 99 0. 01 10 po ) · α、緑色蛍光体としてのユーロピウム、マンガン付活アルミン酸塩蛍光体 (Β
4 6 2
a Eu ) (Mg Mn )A1 O 、赤色蛍光体としてのユーロピウム付活酸硫
0. 75 0. 25 0. 55 0. 45 10 17
化ランタン (La Sb Eu ) O Sをそれぞれシリコーン榭脂と 30質量0 /0の濃
0. 883 0. 002 0. 115 2 2
度で混合した。次にこれらのスラリーを 20. 2%、 19. 9%、 59. 9%の割合で混合し た後、発光ダイオード上に塗布し、温度 140°Cの熱処理で榭脂を硬化せしめ、本実 施例 7に係るの白色 LEDを調製した。
[0100] (実施例 8)
青色蛍光体としてのユーロピウム付活アルカリ土類クロ口リン酸塩 (Sr Eu ) (
0. 99 0. 01 10
PO ) · α、緑色蛍光体としてのユーロピウム、マンガン付活アルミン酸塩蛍光体 (Β
4 6 2
a Eu ) (Mg Mn )A1 O 、赤色蛍光体としてのユーロピウム付活酸硫
0. 726 0. 274 0. 55 0. 45 10 17
化ランタン (La Sb Eu ) O Sをそれぞれシリコーン榭脂と 30質量0 /0の濃
0. 883 0. 002 0. 115 2 2
度で混合した。次にこれらのスラリーを 20. 5%、 20. 1%、 59. 4%の割合で混合し た後、発光ダイオード上に塗布し、温度 140°Cの熱処理で榭脂を硬化せしめ、本実 施例 8に係るの白色 LEDを調製した。
[0101] (実施例 9)
青色蛍光体としてのユーロピウム付活アルカリ土類クロ口リン酸塩 (Sr Eu ) (
0. 97 0. 03 10 po ) ·α、緑色蛍光体としてのユーロピウム、マンガン付活アルミン酸塩蛍光体 (Β
4 6 2
a Eu ) (Mg Mn )A1 O 、赤色蛍光体としてのユーロピウム付活酸硫
0. 75 0. 25 0. 55 0. 45 10 17
化ランタン (La Sn Eu ) O Sをそれぞれシリコーン榭脂と 30質量0 /0の濃
0. 883 0. 002 0. 115 2 2
度で混合した。次にこれらのスラリーを 19. 5%、 20. 0%、 60. 5%の割合で混合し た後、発光ダイオード上に塗布し、温度 140°Cの熱処理で榭脂を硬化せしめ、実施 例 9に係る白色 LEDを調製した。
[0102] (実施例 10)
青色蛍光体としてのユーロピウム付活アルカリ土類クロ口リン酸塩 (Sr Eu ) (
0. 99 0. 01 10
PO ) ·α、緑色蛍光体としてのユーロピウム、マンガン付活アルミン酸塩蛍光体 (Β
4 6 2
a Eu ) (Mg Mn )A1 O 、赤色蛍光体としてのユーロピウム付活酸硫
0. 726 0. 274 0. 55 0. 45 10 17
化ランタン (La Sb Eu ) O Sをそれぞれシリコーン榭脂と 30質量0 /0の濃
0. 882 0. 003 0. 115 2 2
度で混合した。次にこれらのスラリーを 19. 6%、 19. 8%、 60. 6%の割合で混合し た後、発光ダイオード上に塗布し、温度 140°Cの熱処理で榭脂を硬化せしめ、本実 施例 10に係るの白色 LEDを調製した。
[0103] (比較例 1)
青色蛍光体としてのユーロピウム付活アルカリ土類クロ口リン酸塩(Sr Ba Ca
0. 59 0. 39 0. 0
Eu ) (PO ) ての銅、アルミニウム付活硫ィ匕亜鉛蛍光
1 0. 01 10 4 6 ·α、緑色蛍光体とし 体
2 ζ nS : Cu, A1、赤色蛍光体としてのユーロピウム付活酸硫化イットリウム (Y Eu )
0. 94 0. 06 2
O Sをそれぞれシリコーン榭脂と 30質量%の濃度で混合した。次にこれらのスラリー
2
を 15. 0%、 14. 0%、 71. 0%の割合で混合した後、発光ダイオード上に塗布し、温 度 140°Cの熱処理で榭脂を硬化せしめ、比較例 1に係る白色 LEDを調製した。
[0104] (比較例 2)
青色蛍光体としてのユーロピウム付活アルカリ土類クロ口リン酸塩(Sr Ba Ca
0. 59 0. 39 0. 0
Eu ) (PO ) · CI、緑色発光蛍光体としてのユーロピウム、マンガン付活アルミ
1 0. 01 10 4 6 2
ン酸塩蛍光体(Ba Eu ) (Mg Mn )A1 O 、赤色蛍光体としてのユー
0. 864 0. 136 0. 74 0. 26 10 17 口ピウム付活酸硫化イットリウム (Y Eu ) O Sをそれぞれシリコーン榭脂と 30質
0. 94 0. 06 2 2
0 /0の濃度で混合した。次にこれらのスラリーを 16. 0%、 18. 0%、 66. 0%の割合 で混合した後、発光ダイオード上に塗布し、温度 140°Cの熱処理で榭脂を硬化せし め、比較例 2に係る白色 LEDを調製した。
[0105] 上記のように調製した各実施例および比較例に係る白色 LEDおよびそれをバック ライトとして用いた液晶ディスプレイ (液晶表示装置)に 40mAの電流を流し点灯させ 、その発光の色再現域および輝度を測定して表 1に示す結果を得た。さらに従来例( 比較例 3)として冷陰極管をバックライトに用いた場合の色再現域および輝度を同時 に示した。
[0106] なお、各白色 LEDの発光スペクトルを測定したところ、本実施例に係る白色 LEDは いずれも 440nm以上 460nm以下の青色部、 510nm以上 530nm以下の緑色部、 6 20nm以上 640nm以下の赤色部にピーク値を具備し、各色のピーク波長の半値幅 は 50nm以下であった。
[0107] それに対し、比較例 1のものは緑色部および赤色部の波長ピークが本発明での規 定範囲外であり、比較例 2は赤色部の波長ピークのみが本発明での規定範囲外であ つた o
[表 1]
Figure imgf000023_0001
[0108] 上記表 1に示す結果から明らかなように、本実施例に係る白色 LEDおよびそれを ノ ックライトとして用いた液晶表示装置は、色再現性がいずれも 90以上であると共に 、輝度が 390mcd以上の優れた発光特性を示すことが判明した。
[0109] (実施例 11〜15)
次に、発光ダイオードの発光波長を表 2のように変えた点以外は実施例 1と同様に 処理して実施例 11〜15に係る白色 LEDを作製し、同様に色再現域および輝度の 測定を行った。但し、青色、緑色、赤色発光の各蛍光体の配合比率は色度が x=0. 250-0. 255, y=0. 235-0. 240の範囲内となるように調整した。
[表 2]
Figure imgf000024_0001
[0110] 上記表 2に示す結果から明らかなように、発光ダイオードの発光波長は 370nm以 上 410nm以下である実施例 11〜14の場合において、色再現域および輝度が共に 高ぐ特性上より好ましいことが判明した。
[0111] 次に上記のように調製した白色 LEDをバックライトとして用いた液晶表示装置の実 施例について、より具体的に説明する。
[0112] (実施例 16)
前記実施例 1で調製した白色 LEDに 20mAの電流を流し、波長 400nmの発光ダ ィオードで励起したときの発光スペクトル分布を図 2に示す。図 2に示すように実施例 16に用いた白色 LEDは 440nm以上 450nm以下の波長領域である青色部のピー クおよび 510nm以上 530nm以下の波長領域である緑色部のピークから成り、それ ぞれの半値幅は 40nm、 30nmと 50nm以下である。
[0113] 一方、 RGBカラーフィルタとして図 6に示すような透過率スペクトルを有する各カラ 一フィルタを用意した。上記白色 LEDと RGBカラーフィルタとを組み合わせて実施例 16に係る液晶表示装置を作製した。 [0114] 図 2に示す発光特性を具備する白色 LEDを用い、図 6に示す透過率スペクトルを 有するカラーフィルタを透過した光のスペクトル分布を測定した。その結果を図 7に示 す。図中、実線 (B— CF)は青色カラーフィルタの透過スペクトルであり、点線 (G— C F)は緑色カラーフィルタの透過スペクトルであり、太点線 (R— CF)は赤色カラーフィ ルタの透過スペクトルである。
[0115] 図 7に示す結果から明らかなように、緑色カラーフィルタの透過スペクトルにおいて 、 400nm以上 500nm以下のスペクトルの面積 1と 400nm以上 600nm以下のスぺク トルの面積 2の比(面積比 A)は 15%以下になっている。同様に、 400nm以上 550η m以下のスペクトルの面積 3と 400nm以上 600nm以下スペクトルの面積 4との比(面 積比 B)は 90%以上となっている。
[0116] また、青色カラーフィルタの透過スペクトルにお!/、て、ピークトップ力 S440nm以上 45 Onm以下の範囲にある第 1のピーク、ピークトップが 510nm以上 530nm以下の範 囲にある第 2のピークとからなり、第 2のピーク高さが第 1のピーク高さの 1Z2以下と なっている。第 1のピークは青色カラーフィルタの透過率のピークとおおむね一致し、 ノ ックライト光が有効に使われて 、ることが分かる。この第 1のピークは本実施例の青 色蛍光体起因の発光ピークである。第 2のピークは緑色蛍光体からの光成分である。 第 2のピーク高さが第 1ピークのピーク高さの 1Z2以下とすることにより、緑色成分の 混入が少な 、青色を得ることができる。
[0117] また、液晶ディスプレイの色再現性についても調査した。色再現性は液晶ディスプレ ィ (液晶表示装置)の発光色を CIE色度図にプロットし、理想的な色再現域を示す国 際標準 (NTSC)の三角形の面積を 100としたときの比で示した。すなわち、(実施例 の液晶表示装置の発光色を CIE色度図で示した三角形の面積 ZNTSCの三角形 の面積) X 100 (%)の算式で示した。
[0118] 上記色度図において、青色、緑色、赤色の発光点を結んで得られる三角形の内部 の色度の光をその液晶ディスプレイが表現できることを意味している。したがって、三 角形の面積が広いほうが、より多くの色度の光を表現でき、その液晶ディスプレイは 色再現域が広 、(色再現性が良 、)ことになる。
[0119] 具体的な測定の結果は次の通りである。実施例 16においては、青カラーフィルタ透 過光の 510nm以上 530nm以下にある第 2ピーク高さの、 440nm以上 450nm以下 にある第 1ピーク高さの比は 0. 34であり、面積比 Aは 9. 6%であり、面積比 Bは 92% であった。
[0120] また、色再現性については青緑赤の各カラーフィルタ透過した光の色度座標はそ れぞれ (0. 14、 0. 06)ズ 0. 17、 0. 69), (0. 69、 0. 31)であり、 NTCS比は 98%と良 好な色再現域を示した。
[0121] (実施例 17〜26)
白色 LEDとカラーフィルタの材料や厚さを変えることにより、面積比 Aおよび面積比
Bを表 3に示すように変化させた点以外は実施例 16と同様の構成を具備する液晶表 示装置を調製し、各ピークの半値幅等を同様に測定した。
[0122] (比較例 4)
青色蛍光体としてユーロピウム付活アルカリ土類クロ口リン酸塩(Sr Ba Ca
0. 59 0. 39 0. 0
Eu ) (PO ) · CI、緑色発光蛍光体としてユーロピウム、マンガン付活アルミン
1 0. 01 10 4 6 2
酸塩蛍光体緑色蛍光体(Ba Eu ) (Mg Mn )A1 O 、赤色蛍光体とし
0. 864 0. 136 0. 74 0. 26 10 17
てユーロピウム付活酸硫化イットリウム (γ Eu ) O Sをそれぞれシリコーン榭脂
0. 94 0. 06 2 2
と 30質量0 /0の濃度で混合した。次にこれらのスラリーを 16. 0%、 18. 0%、 66. 0% の割合で混合した後、発光ダイオード上に塗布し、温度 140°Cの熱処理で榭脂を硬 ィ匕させることにより、比較例 4に係る白色 LEDを得た。
[0123] 青色部および緑色部のピークの半値幅はそれぞれ 60nm、 30nmであった。実施 例 22の白色 LEDを比較例 4の白色 LEDに置き換えることにより比較例 4に係る液晶 表示装置を調製した。
[0124] 同様の測定を行った結果、青カラーフィルタ透過光の 510nm以上 530nm以下に ある第 2ピーク高さの、 440nm以上 450nm以下にある第 1ピーク高さに対する比は 0 . 55と 1Z2より大き力つた。また、面積比 Bは 90. 2%であるものの、面積比 Aは 16. 2%であり、色再現域は対 NTSC比で 78%と悪ィ匕した。
[0125] (比較例 5)
緑色蛍光体を (Sr, Ba) SiO: Eu2+とした以外は比較例 4と同様のものを用意した
2 4
。青カラーフィルタ透過光の第 2ピークは観察できな力つた。面積比 Aは 19. 5%であ り、面積比 Bは 66%であり、色再現域は対 NTSC比で 65%であった。白色 LEDの発 光スペクトル中の青色部と緑色部のピークを、ガウシアンを仮定して分離することを試 みたが、満足できる結果を得ることができず、定量化は断念した。し力し緑色部の半 値幅は 50nmよりも十分に大きいことは明らかである。
[0126] 比較例 5に係る液晶表示装置の白色 LEDの発光スペクトルを図 8に示す一方、各 カラーフィルタ透過光のスペクトルを図 9に示す。
[表 3]
Figure imgf000027_0001
[0127] [表 4]
B-CF G-CF B- CF透過光 G - CF透過光
色再現域
試料 No. 500nm透過率/ 500nm透過率/ 600nm透過率/ (¾) b2/b1 g500/g600 g550/e600 最大透過率 最大透過率 最大透過率
実施例 16 0. 73 0. 88 0. 16 98. 0 0. 34 9. 6 91. 7 実施例 17 0. 78 0. 88 0. 16 97. 6 0. 38 9. 6 92. 5 実施例 18 0. 83 0. 88 0. 16 95. 2 0. 45 9. 6 92. 1 実施例 19 0. 73 0. 91 0. 23 93. 5 0. 34 1 1. 6 91. 2 実施例 20 0. 78 0. 91 0. 23 91. 7 0. 38 1 1. 2 90. 6 実施例 21 0. 83 0. 91 0. 23 89. 3 0. 43 1 1. 6 91. 0 実施例 22 0. 73 0. 93 0. 33 84. 2 0. 33 14. 5 90. 4 実施例 23 0. 78 0. 93 0. 33 82. 4 0. 39 1 . 7 90. 4 実施例 24 0. 83 0. 93 0. 33 82. 5 0. 43 14. 8 90. 4 実施例 25 0. 88 0. 88 0. 16 92. 2 0. 50 1 . 9 91. 7 実施例 26 0. 88 0. 91 0. 23 86. 4 0. 48 1 1. 6 91. 0 (比較例 6 7)
実施例 16の液晶表示装置にぉ 、て、厚みを調節したカラーフィルタとを組み合わ せることにより、比較例 6 7の液晶表示装置を作製した。
[表 5]
Figure imgf000028_0001
[0129] 上記表 5に示す結果から明らかなように、同一の材質を用いたとしてもカラーフィル タの厚さが変化することによって色再現性は大きく異なってくる。つまり、本発明のよう に白色 LEDの発光スペクトルと RGBカラーフィルタとの相性を考慮しておかな!/、と色 再現性が優れた液晶表示装置は得られないのである。
産業上の利用可能性
[0130] 本発明に係る白色 LEDは輝度が高ぐかつ色再現性も優れている。また、本発明 の液晶表示装置は、白色 LEDを用いたバックライトのスペクトルおよびカラーフィルタ の透過スペクトルが制御されて 、るために色再現性に優れて 、る。そのため本発明 の白色 LEDを用いたバックライト並びに液晶表示装置は、いずれも高輝度を具備し 、かつ色再現性も優れている。また、従来の冷陰極管 (CCFL)のように有害な水銀を 使用する必要もな 、ので、環境を汚染する問題が生じな 、。

Claims

請求の範囲
[1] 紫外線発光または紫色発光のダイオードと、青色,緑色,赤色を含む 3種類以上の 可視光を発光する蛍光体とを具備する白色 LEDにおいて、その白色 LEDの発光ス ベクトルが波長 440nm以上 460nm以下の範囲の青色部、 510nm以上 530nm以 下の範囲の緑色部、 620nm以上 640nm以下の範囲の赤色部にピーク値を有する ことを特徴とする白色 LED。
[2] 請求項 1記載の白色 LEDにおいて、青色部、緑色部および赤色部のピークの半値 幅が 50nm以下であることを特徴とする白色 LED。
[3] 請求項 1項記載の白色 LEDランプにおいて、前記可視光発光蛍光体のうち青色発 光蛍光体が、一般式 1: (Sr Ba Ca Eu ) (PO ) -CI (但し、式中 x、 y、 zは、そ
1-x-y x y z 10 4 6 2
れぞれ x< 0. 2、y< 0. 1、0. 005< z< 0. 1の関係を満たす。)で表されるユーロピ ゥム付活ハロ燐酸塩蛍光体であることを特徴とする白色 LED。
[4] 請求項 1項記載の白色 LEDランプにぉ ヽて、前記可視光発光蛍光体のうち緑色発 光蛍光体が、一般式 2 : (Ba Sr Ca Eu ) (Mg Mn )Al O (但し、式中 x、
1 -x-y-z x y z l_u u 10 17
y、 z、 uは、それぞれ xく 0. 5、 y< 0. 1、 0. 15< z< 0. 4、 0. 3<u< 0. 6の関係を 満たす。)で表されるユーロピウム、マンガン付活アルミン酸塩蛍光体であることを特 徴とする白色 LED。
[5] 請求項 1項記載の白色 LEDランプにおいて、前記可視光発光蛍光体のうち赤色発 光蛍光体が、一般式 3: (La Eu M ) O S (但し、式中 Mは Sbおよび Snの少な
1 -x-y X y 2 2
くとも 1種の元素であり、 χおよび yはそれぞれ 0. 01 <x< 0. 15, y< 0. 03の関係を 満たす)で表わされるユーロピウム付活酸硫ィ匕ランタン蛍光体であることを特徴とする 白色 LED。
[6] 請求項 1記載の白色 LEDにお 、て、前記紫外線発光または紫色発光ダイオードの 発光強度が、 360〜410nmの波長範囲でピーク値を有することを特徴とする白色 L ED。
[7] 請求項 1乃至 6のいずれかに記載の白色 LEDを用いたことを特徴とするノ ックライト。
[8] 請求項 1記載の白色 LEDと、この白色 LEDを用いたバックライトと、青色,緑色,赤 色の各カラーフィルタとを具備する液晶表示装置にぉ 、て、上記緑色のカラーフィル タを透過した光の 400nm以上 500nm以下の波長範囲における光成分が占めるス ベクトルの面積力 S400nm以上 600nm以下の波長範囲における光成分が占めるス ベクトルの面積の 15%以下であり、 400nm以上 550nm以下の波長範囲における光 成分が占めるスペクトルの面積力 OOnm以上 600nm以下の波長範囲における光 成分が占めるスペクトルの面積の 90%以上であることを特徴とする液晶表示装置。
[9] 前記白色 LEDに用いられる発光ダイオードの発光波長が 360nm以上 410nm以下 であることを特徴とする請求項 8記載の液晶表示装置。
[10] 前記青色のカラーフィルタを透過した光のスペクトル力 440nm以上 450nm以下の 波長範囲にある第 1ピークトップと、 510nm以上 530nm以下の波長範囲にある第 2 ピークトップとを有し、この第 2ピークトップの高さが第 1ピークトップの高さの 1Z2以 下であることを特徴とする請求項 8記載の液晶表示装置。
[11] 波長 500nmの光を透過させたとき、前記青色カラーフィルタにおける透過率が最大 透過率の 90%以下であり、前記緑色カラーフィルタにおける透過率が最大透過率の 95%以下であり、波長 600nmの光を透過させたときの前記緑色カラーフィルタにお ける透過率が最大透過率の 40%以下であることを特徴とする請求項 8乃至 10のい ずれか 1項に記載の液晶表示装置。
[12] 白色 LEDを用いたバックライトと、青色,緑色,赤色の各カラーフィルタとを具備する 液晶表示装置にぉ 、て、上記緑色のカラーフィルタを透過した光の 400nm以上 50 Onm以下の波長範囲における光成分が占めるスペクトルの面積力 OOnm以上 600 nm以下の波長範囲における光成分が占めるスペクトルの面積の 15%以下であり、 4 OOnm以上 550nm以下の波長範囲における光成分が占めるスペクトルの面積力 0 Onm以上 600nm以下の波長範囲における光成分が占めるスペクトルの面積の 90 %以上であることを特徴とする液晶表示装置。
PCT/JP2005/023369 2004-12-24 2005-12-20 白色ledおよびそれを用いたバックライト並びに液晶表示装置 WO2006068141A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05820111.2A EP1830415B1 (en) 2004-12-24 2005-12-20 White led, backlight using same and liquid crystal display
JP2006549003A JP5134820B2 (ja) 2004-12-24 2005-12-20 液晶表示装置
US11/722,768 US7649310B2 (en) 2004-12-24 2005-12-20 White LED, backlight using same and liquid crystal display

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-372863 2004-12-24
JP2004372863 2004-12-24
JP2004-372864 2004-12-24
JP2004372864 2004-12-24

Publications (1)

Publication Number Publication Date
WO2006068141A1 true WO2006068141A1 (ja) 2006-06-29

Family

ID=36601741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023369 WO2006068141A1 (ja) 2004-12-24 2005-12-20 白色ledおよびそれを用いたバックライト並びに液晶表示装置

Country Status (6)

Country Link
US (1) US7649310B2 (ja)
EP (1) EP1830415B1 (ja)
JP (1) JP5134820B2 (ja)
KR (1) KR100893348B1 (ja)
TW (1) TWI287306B (ja)
WO (1) WO2006068141A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039517A (ja) * 2005-08-02 2007-02-15 Sharp Corp 青色系発光蛍光体およびそれを用いた発光装置
EP1909134A2 (en) * 2006-10-04 2008-04-09 Sharp Kabushiki Kaisha A display
JP2008527151A (ja) * 2005-01-14 2008-07-24 インテマティックス・コーポレーション アルミン酸塩を基にした新規な緑色蛍光体
WO2008093768A1 (ja) * 2007-02-01 2008-08-07 Panasonic Corporation 蛍光ランプ、並びに蛍光ランプを用いた発光装置及び表示装置
WO2008096545A1 (ja) * 2007-02-09 2008-08-14 Kabushiki Kaisha Toshiba 白色発光ランプとそれを用いた照明装置
JP2008303331A (ja) * 2007-06-08 2008-12-18 Sharp Corp 蛍光体、発光装置および画像表示装置
JP2009010315A (ja) * 2007-05-30 2009-01-15 Sharp Corp 蛍光体の製造方法、発光装置および画像表示装置
EP2031437A1 (en) * 2007-08-27 2009-03-04 Samsung Electro-Mechanics Co., Ltd. Surface light source using white light emitting diodes and liquid crystal display backlight unit having the same
NL1034573C (nl) * 2006-10-24 2010-03-09 Sumitomo Chemical Co Licht diffunderende harssamenstelling.
US7804561B2 (en) 2006-01-13 2010-09-28 Toppan Printing Co., Ltd. Colored composition for color filters, color filter and liquid crystal display device
WO2011125512A1 (ja) * 2010-04-09 2011-10-13 シャープ株式会社 Led光源
WO2012169421A1 (ja) * 2011-06-07 2012-12-13 シャープ株式会社 表示装置
US8378226B2 (en) * 2007-11-06 2013-02-19 Nitto Denko Corporation Wired circuit board
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
JP2013536583A (ja) * 2010-08-19 2013-09-19 ソラア インコーポレーテッド 複数の蛍光体を備えるポンプledシステムおよび方法
US8663498B2 (en) 2006-11-24 2014-03-04 Sharp Kabushiki Kaisha Phosphor, method of producing the same, and light emitting apparatus
US8729788B2 (en) 2005-05-30 2014-05-20 Sharp Kabushiki Kaisha Light emitting device provided with a wavelength conversion unit incorporating plural kinds of phosphors
KR20140081833A (ko) * 2011-09-23 2014-07-01 오스람 게엠베하 루미네선트 물질 및 연관된 일루미네이션 유닛을 포함하는 광원
US9046227B2 (en) 2009-09-18 2015-06-02 Soraa, Inc. LED lamps with improved quality of light
CN104676493A (zh) * 2015-03-04 2015-06-03 晶科电子(广州)有限公司 广色域光学膜片、其制备方法及led背光模组
JP2015159325A (ja) * 2006-09-27 2015-09-03 株式会社東芝 半導体発光装置、この半導体発光装置からなるバックライトおよび表示装置
US9279079B2 (en) 2007-05-30 2016-03-08 Sharp Kabushiki Kaisha Method of manufacturing phosphor, light-emitting device, and image display apparatus
US10196278B2 (en) 2016-08-05 2019-02-05 Nichia Corporation Aluminate fluorescent material and light emitting device
JP2019044159A (ja) * 2017-08-31 2019-03-22 日亜化学工業株式会社 アルミン酸塩蛍光体及び発光装置
US10619094B2 (en) 2017-08-31 2020-04-14 Nichia Corporation Aluminate fluorescent material and light emitting device
US10982824B2 (en) 2017-09-06 2021-04-20 Glbtech Co., Ltd. High color rendering D50/D65 standard LED illuminant module and lighting apparatus

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070052342A1 (en) * 2005-09-01 2007-03-08 Sharp Kabushiki Kaisha Light-emitting device
WO2007037339A1 (ja) * 2005-09-29 2007-04-05 Kabushiki Kaisha Toshiba 白色発光装置とその製造方法、およびそれを用いたバックライト並びに液晶表示装置
KR101143671B1 (ko) * 2006-01-19 2012-05-09 도시바 마테리알 가부시키가이샤 발광 모듈과 그것을 이용한 백 라이트 및 액정 표시 장치
KR20070081840A (ko) * 2006-02-14 2007-08-20 삼성전자주식회사 광 발생 모듈, 이를 갖는 백라이트 어셈블리 및 표시장치
US8183585B2 (en) * 2008-09-16 2012-05-22 Osram Sylvania Inc. Lighting module
US8022626B2 (en) * 2008-09-16 2011-09-20 Osram Sylvania Inc. Lighting module
US8188486B2 (en) * 2008-09-16 2012-05-29 Osram Sylvania Inc. Optical disk for lighting module
US20100067240A1 (en) * 2008-09-16 2010-03-18 John Selverian Optical Cup For Lighting Module
JP2010093132A (ja) * 2008-10-09 2010-04-22 Sharp Corp 半導体発光装置およびそれを用いた画像表示装置、液晶表示装置
WO2010055831A1 (ja) * 2008-11-13 2010-05-20 国立大学法人名古屋大学 半導体発光装置
JP5267298B2 (ja) 2009-04-13 2013-08-21 株式会社Jvcケンウッド バックライト装置
TWI426629B (zh) 2009-10-05 2014-02-11 Everlight Electronics Co Ltd 白光發光裝置、其製造方法及應用
EP2521169B1 (en) * 2009-12-31 2015-05-13 Ocean's King Lighting Science&Technology Co., Ltd. White light luminescent device based on purple light leds
US9280938B2 (en) 2010-12-23 2016-03-08 Microsoft Technology Licensing, Llc Timed sequence mixed color display
US9535448B2 (en) * 2011-11-16 2017-01-03 Jean-Pierre Key Chromatic mainframe
WO2013125521A1 (ja) * 2012-02-20 2013-08-29 シャープ株式会社 照明装置
TWI483045B (zh) * 2013-06-20 2015-05-01 Au Optronics Corp 顯示器
US9523802B2 (en) 2014-09-26 2016-12-20 Japan Display Inc. Display device
JP2016071334A (ja) * 2014-09-26 2016-05-09 株式会社ジャパンディスプレイ 表示装置
DE102015102785A1 (de) * 2015-02-26 2016-09-01 Osram Opto Semiconductors Gmbh Optoelektronische Leuchtvorrichtung
JP6590579B2 (ja) * 2015-08-03 2019-10-16 シチズン電子株式会社 Led発光素子
DE102017107939A1 (de) * 2017-04-12 2018-10-18 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Bauelements und optoelektronisches Bauelement
WO2019050260A1 (ko) * 2017-09-06 2019-03-14 지엘비텍 주식회사 D50, d65 고연색성 표준 led 발광 모듈 및 조명 장치
DE102017130574A1 (de) * 2017-12-19 2019-06-19 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Konversionselements und Konversionselement
US11409161B2 (en) * 2020-09-25 2022-08-09 Dell Products L.P. Systems and methods for implementing a dual green-blue light-emitting diode with different wavelengths

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171000A (ja) * 2000-09-21 2002-06-14 Sharp Corp 半導体発光装置およびそれを用いた発光表示装置
JP2003021821A (ja) * 2001-07-09 2003-01-24 Toshiba Corp 液晶ユニットおよびその駆動方法
JP2003075821A (ja) * 2001-06-22 2003-03-12 Toray Ind Inc 液晶表示装置用カラーフィルターおよび液晶表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3475566B2 (ja) * 1995-04-17 2003-12-08 化成オプトニクス株式会社 3波長域発光形蛍光ランプ
JPH1091083A (ja) * 1996-09-10 1998-04-10 Mitsubishi Heavy Ind Ltd 色表示方法及び装置
US6045721A (en) * 1997-12-23 2000-04-04 Patent-Treuhand-Gesellschaft Fur Elekrische Gluhlampen Mbh Barium magnesium aluminate phosphor
KR100706750B1 (ko) * 2000-08-10 2007-04-11 삼성전자주식회사 형광램프 및 이를 채용한 액정표시장치
US6791636B2 (en) * 2001-05-10 2004-09-14 Lumilecs Lighting U.S., Llc Backlight for a color LCD
JP2003124526A (ja) * 2001-10-11 2003-04-25 Taiwan Lite On Electronics Inc 白色光光源製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171000A (ja) * 2000-09-21 2002-06-14 Sharp Corp 半導体発光装置およびそれを用いた発光表示装置
JP2003075821A (ja) * 2001-06-22 2003-03-12 Toray Ind Inc 液晶表示装置用カラーフィルターおよび液晶表示装置
JP2003021821A (ja) * 2001-07-09 2003-01-24 Toshiba Corp 液晶ユニットおよびその駆動方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MORIYA N ET AL: "New Color Filter for Light-Emmiting Diode Back Light.", JPN J APPL PHYS., vol. 42, no. 4A, April 2003 (2003-04-01), pages 1637 - 1641, XP001191410 *
See also references of EP1830415A4 *

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4889656B2 (ja) * 2005-01-14 2012-03-07 インテマティックス・コーポレーション アルミン酸塩を基にした新規な緑色蛍光体
JP2008527151A (ja) * 2005-01-14 2008-07-24 インテマティックス・コーポレーション アルミン酸塩を基にした新規な緑色蛍光体
US10008644B2 (en) 2005-05-30 2018-06-26 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
US9281456B2 (en) 2005-05-30 2016-03-08 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
US9722149B2 (en) 2005-05-30 2017-08-01 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
US8729788B2 (en) 2005-05-30 2014-05-20 Sharp Kabushiki Kaisha Light emitting device provided with a wavelength conversion unit incorporating plural kinds of phosphors
JP2007039517A (ja) * 2005-08-02 2007-02-15 Sharp Corp 青色系発光蛍光体およびそれを用いた発光装置
US7804561B2 (en) 2006-01-13 2010-09-28 Toppan Printing Co., Ltd. Colored composition for color filters, color filter and liquid crystal display device
EP2068377B1 (en) * 2006-09-27 2021-11-10 Toshiba Materials Co., Ltd. Semiconductor light emitting device, backlight comprising the semiconductor light emitting device, and display device
JP2015159325A (ja) * 2006-09-27 2015-09-03 株式会社東芝 半導体発光装置、この半導体発光装置からなるバックライトおよび表示装置
EP1909134A3 (en) * 2006-10-04 2008-12-17 Sharp Kabushiki Kaisha A display
JP2008112154A (ja) * 2006-10-04 2008-05-15 Sharp Corp ディスプレイ
EP1909134A2 (en) * 2006-10-04 2008-04-09 Sharp Kabushiki Kaisha A display
NL1034573C (nl) * 2006-10-24 2010-03-09 Sumitomo Chemical Co Licht diffunderende harssamenstelling.
US9884990B2 (en) 2006-11-24 2018-02-06 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US10259997B2 (en) 2006-11-24 2019-04-16 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US8663498B2 (en) 2006-11-24 2014-03-04 Sharp Kabushiki Kaisha Phosphor, method of producing the same, and light emitting apparatus
US9624427B2 (en) 2006-11-24 2017-04-18 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
WO2008093768A1 (ja) * 2007-02-01 2008-08-07 Panasonic Corporation 蛍光ランプ、並びに蛍光ランプを用いた発光装置及び表示装置
WO2008096545A1 (ja) * 2007-02-09 2008-08-14 Kabushiki Kaisha Toshiba 白色発光ランプとそれを用いた照明装置
JP5121736B2 (ja) * 2007-02-09 2013-01-16 株式会社東芝 白色発光ランプとそれを用いた照明装置
KR101079460B1 (ko) 2007-02-09 2011-11-03 도시바 마테리알 가부시키가이샤 백색 발광 램프와 그것을 사용한 조명 장치
US7961762B2 (en) 2007-02-09 2011-06-14 Kabushiki Kaisha Toshiba White light-emitting lamp and illuminating device using the same
US9279079B2 (en) 2007-05-30 2016-03-08 Sharp Kabushiki Kaisha Method of manufacturing phosphor, light-emitting device, and image display apparatus
JP2009010315A (ja) * 2007-05-30 2009-01-15 Sharp Corp 蛍光体の製造方法、発光装置および画像表示装置
JP2008303331A (ja) * 2007-06-08 2008-12-18 Sharp Corp 蛍光体、発光装置および画像表示装置
US7946724B2 (en) 2007-08-27 2011-05-24 Samsung Led Co., Ltd Surface light source using white light emitting diodes and liquid crystal display backlight unit having the same
US8182106B2 (en) 2007-08-27 2012-05-22 Samsung Led Co., Ltd Surface light source using white light emitting diodes and liquid crystal display backlight unit having the same
TWI454797B (zh) * 2007-08-27 2014-10-01 Samsung Electronics Co Ltd 使用白色發光二極體之表面光源及具有該表面光源之液晶顯示器背光單元
EP2031437A1 (en) * 2007-08-27 2009-03-04 Samsung Electro-Mechanics Co., Ltd. Surface light source using white light emitting diodes and liquid crystal display backlight unit having the same
US8378226B2 (en) * 2007-11-06 2013-02-19 Nitto Denko Corporation Wired circuit board
US10557595B2 (en) 2009-09-18 2020-02-11 Soraa, Inc. LED lamps with improved quality of light
US11105473B2 (en) 2009-09-18 2021-08-31 EcoSense Lighting, Inc. LED lamps with improved quality of light
US9046227B2 (en) 2009-09-18 2015-06-02 Soraa, Inc. LED lamps with improved quality of light
US11662067B2 (en) 2009-09-18 2023-05-30 Korrus, Inc. LED lamps with improved quality of light
WO2011125512A1 (ja) * 2010-04-09 2011-10-13 シャープ株式会社 Led光源
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
US11611023B2 (en) 2010-08-19 2023-03-21 Korrus, Inc. System and method for selected pump LEDs with multiple phosphors
JP2017208555A (ja) * 2010-08-19 2017-11-24 ソラア インコーポレーテッドSoraa Inc. 複数の蛍光体を備えるポンプledシステムおよび方法
US9293667B2 (en) 2010-08-19 2016-03-22 Soraa, Inc. System and method for selected pump LEDs with multiple phosphors
KR20180051666A (ko) * 2010-08-19 2018-05-16 소라, 인코포레이티드 다중 인광체를 지닌 선택된 펌프 led에 대한 시스템 및 방법
KR101973142B1 (ko) 2010-08-19 2019-04-26 소라, 인코포레이티드 다중 인광체를 지닌 선택된 펌프 led에 대한 시스템 및 방법
US10700244B2 (en) 2010-08-19 2020-06-30 EcoSense Lighting, Inc. System and method for selected pump LEDs with multiple phosphors
JP2015213174A (ja) * 2010-08-19 2015-11-26 ソラア インコーポレーテッドSoraa Inc. 複数の蛍光体を備えるポンプledシステムおよび方法
JP2013536583A (ja) * 2010-08-19 2013-09-19 ソラア インコーポレーテッド 複数の蛍光体を備えるポンプledシステムおよび方法
WO2012169421A1 (ja) * 2011-06-07 2012-12-13 シャープ株式会社 表示装置
JP2014531761A (ja) * 2011-09-23 2014-11-27 オスラム ゲーエムベーハーOSRAM GmbH 蛍光体を有する光源及び前記光源を有する照明ユニット
KR101947348B1 (ko) 2011-09-23 2019-02-12 오스람 게엠베하 발광 물질 및 연관된 조명 유닛을 포함하는 광원
US9761767B2 (en) 2011-09-23 2017-09-12 Osram Opto Semiconductors Gmbh Light source comprising a luminescent substance and associated illumination unit
KR20140081833A (ko) * 2011-09-23 2014-07-01 오스람 게엠베하 루미네선트 물질 및 연관된 일루미네이션 유닛을 포함하는 광원
CN104676493A (zh) * 2015-03-04 2015-06-03 晶科电子(广州)有限公司 广色域光学膜片、其制备方法及led背光模组
US10196278B2 (en) 2016-08-05 2019-02-05 Nichia Corporation Aluminate fluorescent material and light emitting device
JP2019044159A (ja) * 2017-08-31 2019-03-22 日亜化学工業株式会社 アルミン酸塩蛍光体及び発光装置
US10619094B2 (en) 2017-08-31 2020-04-14 Nichia Corporation Aluminate fluorescent material and light emitting device
US10829688B2 (en) 2017-08-31 2020-11-10 Nichia Corporation Aluminate fluorescent material and light emitting device
US10982824B2 (en) 2017-09-06 2021-04-20 Glbtech Co., Ltd. High color rendering D50/D65 standard LED illuminant module and lighting apparatus

Also Published As

Publication number Publication date
EP1830415A1 (en) 2007-09-05
KR100893348B1 (ko) 2009-04-15
JP5134820B2 (ja) 2013-01-30
TW200627678A (en) 2006-08-01
US20080106186A1 (en) 2008-05-08
EP1830415A4 (en) 2009-11-11
KR20070101856A (ko) 2007-10-17
EP1830415B1 (en) 2017-01-25
TWI287306B (en) 2007-09-21
JPWO2006068141A1 (ja) 2008-06-12
US7649310B2 (en) 2010-01-19

Similar Documents

Publication Publication Date Title
JP5134820B2 (ja) 液晶表示装置
JP5127455B2 (ja) 白色発光装置とその製造方法、およびそれを用いたバックライト並びに液晶表示装置
US9507200B2 (en) Method of manufacturing image display device and method of selecting color filter
JP5086641B2 (ja) 発光装置とそれを用いたバックライトおよび液晶表示装置
JP5332673B2 (ja) 半導体発光装置、バックライトおよびカラー画像表示装置
CN100547815C (zh) 白色led、背光和液晶显示器
JP4945436B2 (ja) 白色発光ランプとそれを用いたバックライト、表示装置および照明装置
TWI451161B (zh) 液晶顯示裝置及使用於它之彩色濾光片
JP5122268B2 (ja) 液晶表示装置およびそれに用いるカラーフィルタ
EP4016650A1 (en) Semiconductor light emitting device and display device comprising the semiconductor light emitting device
WO2006118104A1 (ja) 白色ledおよびそれを用いたバックライト並びに液晶表示装置
WO2007123183A1 (ja) カラー画像表示装置
TWI642757B (zh) 液晶顯示裝置及其製造方法
JP5079487B2 (ja) 液晶表示装置およびそれに用いるカラーフィルタ
JP2009065145A (ja) 半導体発光装置、バックライトおよびカラー画像表示装置
JP5235266B2 (ja) 白色ledの製造方法およびそれを用いたバックライトの製造方法並びに液晶表示装置の製造方法
TW201211632A (en) Liquid crystal display device
JP7210994B2 (ja) 着色樹脂組成物、カラーフィルタ基板および表示装置
WO2022080003A1 (ja) カラーフィルタ及び表示装置
JP2013029548A (ja) バックライトおよび液晶表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006549003

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2005820111

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005820111

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11722768

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077015410

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580048349.1

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005820111

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11722768

Country of ref document: US