WO2022080003A1 - カラーフィルタ及び表示装置 - Google Patents

カラーフィルタ及び表示装置 Download PDF

Info

Publication number
WO2022080003A1
WO2022080003A1 PCT/JP2021/030320 JP2021030320W WO2022080003A1 WO 2022080003 A1 WO2022080003 A1 WO 2022080003A1 JP 2021030320 W JP2021030320 W JP 2021030320W WO 2022080003 A1 WO2022080003 A1 WO 2022080003A1
Authority
WO
WIPO (PCT)
Prior art keywords
pigment dispersion
dispersion liquid
yellow
coating film
light source
Prior art date
Application number
PCT/JP2021/030320
Other languages
English (en)
French (fr)
Inventor
圭亮 坂本
健太郎 大石
亮介 浅見
健悟 安井
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN202180069992.1A priority Critical patent/CN116420113A/zh
Priority to JP2021572625A priority patent/JP7028388B1/ja
Priority to KR1020237012433A priority patent/KR20230087482A/ko
Publication of WO2022080003A1 publication Critical patent/WO2022080003A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a color filter and a display device.
  • a display device such as a liquid crystal display device
  • the color of the light from the light source is converted by a color filter having each color pixel portion of red, green, and blue, and an image is displayed.
  • a color filter having each color pixel portion of red, green, and blue
  • an image is displayed.
  • the color filter used in the display device also needs to convert the light from the light source into the light having the chromaticity according to the standard.
  • Pigment Green 59 is a new high-color reproduction pigment, and when a color filter having the same film thickness is produced, the brightness is higher when Pigment Green 59 is used than when Pigment Green 7 is used.
  • the pigment green 58 is used in the high-brightness display, and the pigment green 59 is used in the high-color reproduction display.
  • the color filter as described above is described in, for example, Patent Document 1-3 below.
  • BT2020 has been attracting attention as a more vivid color standard than the conventional AdobeRGB and DCI-P3.
  • it has been found that it is difficult to achieve this with a combination of a color filter using pigment greens 58 and 59 and a general light source.
  • it is necessary for the green pixel portion of the color filter to transmit light in the vicinity of 532 nm and absorb other light.
  • an object of the present invention is to provide a color filter having a thin green pixel portion and excellent luminance in BT2020, which is a new color standard.
  • Item 1 A color filter having a light source and a green pixel portion and converting the color of light from the light source.
  • the light from the light source has a peak wavelength of 500 to 560 nm at 480 to 580 nm, an intensity of 480 nm (I480) with respect to an intensity of 532 nm (I532) of 1.1 or less, and an intensity of 480 nm with respect to an intensity of 550 nm (I550).
  • I480 is 0.9 or less
  • the cyan color material has a peak wavelength in the range of 460 nm to 510 nm, and a metallic phthalocyanine pigment or a non-metal phthalocyanine pigment having a transmittance of 7% or less at a wavelength of 550 nm when the transmittance of the peak wavelength is 60%.
  • the yellow color material is C.I. I. Pigment Yellow 129, C.I. I. Pigment Yellow 138, C.I. I.
  • the color filter according to Item 1 or 2 which is at least one selected from the group consisting of a sulfonated derivative of Pigment Yellow 12 and a compound represented by the following formula (1).
  • X 1 to X 16 are independently hydrogen atoms or halogen atoms
  • Y 1 and Y 2 are independently hydrogen atoms or halogen atoms
  • Z is an alkylene having 1 to 3 carbon atoms. It is the basis.
  • a light source and a color filter having a red pixel portion, a green pixel portion, and a blue pixel portion and converting the color of light from the light source are provided.
  • the peak wavelength of the light at 480 to 580 nm is 500 to 560 nm
  • the intensity at 480 nm (I480) with respect to the intensity at 532 nm (I532) of the light is 1.1 or less
  • the intensity with respect to the intensity at 550 nm (I550) of the light is 1.
  • the intensity at 480 nm (I480) is 0.9 or less
  • the green pixel portion displays 0.140 ⁇ chromaticity x ⁇ 0.200 and 0.600 ⁇ chromaticity y ⁇ 0.780 in the CIE XYZ color system when the color is measured using the light source. Yes,
  • the green pixel in the green pixel portion contains at least a cyan color material and a yellow color material.
  • a display device in which the peak wavelength of a green pixel is in the range of 500 nm to 520 nm.
  • the color filter of the present invention has a target color gamut (0.140 ⁇ chromaticity x ⁇ 0.200, 0.600 ⁇ chromaticity) close to BT2020 in a combination of a specific light source and a specific cyan color material and yellow color material. y ⁇ 0.780) can be displayed as a thin film (thinner than 3.4 ⁇ m).
  • the color filter of the present invention can have higher brightness than the combination of color materials of the prior art.
  • xy chromaticity diagram In the xy chromaticity diagram, it represents a color gamut close to BT2020 (0.140 ⁇ chromaticity x ⁇ 0.200, 0.600 ⁇ chromaticity y ⁇ 0.780). It is a graph which shows an example of the spectrum of the light from a light source. It is a transmission spectrum of an example of a green pixel in the present invention. It is a transmission spectrum of an example of a cyan color material in this invention. It is a schematic cross-sectional view which shows an example of the liquid crystal display device.
  • the color filter of the present invention has a light source and at least a green pixel portion. Further, the green pixel portion has a function of converting the color of the light from the light source. Normally, the color filter has a red pixel portion, a blue pixel portion, and a light-shielding portion (black matrix) in addition to the green pixel portion. In the color filter, the red pixel portion, the green pixel portion, and the blue pixel portion are repeatedly arranged in this order, and the color pixel portions are separated from each other by a light-shielding portion.
  • FIG. 2 shows an example of the spectrum of light from the light source.
  • FIG. 2 shows the spectrum in the wavelength region of 380 to 780 nm.
  • A. LED + QD and C. LED KSF are cases where the light source is a white LED light source that obtains white light by mixing colors of a blue LED, a red light emitting phosphor, and a green light emitting phosphor. Is an example of.
  • B. The green LED is an example when the light source is a single color of the green LED.
  • D. LED YAG1 and E. LED YAG2 are examples in which the light source is a white LED light source that obtains white light by mixing a blue LED and a YAG-based phosphor.
  • the spectrum of light from the light source is measured using an Olympus microscope MX-50 and a spectrophotometer MCPD-3000 microspectroscopy meter manufactured by Otsuka Electronics under the conditions of measurement area: 380 to 780 nm and measurement interval: 1 nm. can.
  • the light source emits light having a peak wavelength of 500 to 560 nm at 480 to 580 nm, preferably 500 to 540 nm.
  • a light source having a peak wavelength in this range is preferable in BT2020 because light having a peak wavelength of 510 to 532 nm is strong.
  • the intensity of 480 nm (I480) with respect to the intensity of 532 nm (I532) in the emitted light is 1.1 or less, preferably 1.0 or less.
  • the intensity at 480 nm (I480) with respect to the intensity at 550 nm (I550) is 0.9 or less, preferably 0.8 or less.
  • the light from the light source has a peak wavelength of 500 to 560 nm at 480 to 580 nm, an intensity of 480 nm (I480) of 1.1 or less with respect to an intensity of 532 nm (I532), and an intensity of 550 nm (I550).
  • the intensity at 480 nm (I480) is 0.9 or less.
  • light has a peak wavelength of 510 to 550 nm at 480 to 580 nm, an intensity of 480 nm (I480) with respect to an intensity of 532 nm (I532) of 0.4 or less, and an intensity of 480 nm with respect to an intensity of 550 nm (I550).
  • I480 is preferably 0.4 or less.
  • the intensity of 480 nm (I480) with respect to the intensity of 532 nm (I532) is 0.2 or less
  • the intensity of 480 nm (I480) with respect to the intensity of 550 nm (I550) is 0.2 or less.
  • the light source that emits the above light may be, for example, a white LED (light emitting diode) light source, a white organic EL light source, a white inorganic EL light source, a white quantum dot light source, or the like.
  • the white LED light source includes, for example, a white LED light source in which a red LED, a green LED, and a blue LED are combined to obtain white light by color mixing, and a blue LED, a red LED, and a green phosphor.
  • a white LED light source that obtains white light by mixing colors a white LED light source that obtains white light by combining a blue LED, a red light emitting phosphor, and a green light emitting phosphor, and white by mixing a blue LED and a YAG-based phosphor.
  • White LED light source that obtains light white LED light source that obtains white light by mixing colors by combining ultraviolet LED, red light emitting phosphor, green light emitting phosphor, and blue light emitting phosphor, white LED light source that combines red laser, quantum dot technology
  • a white LED light source or the like using the above can be mentioned.
  • FIG. 2 shows an example of a spectrum of light intensity for each wavelength.
  • Examples of such a light source include a green LED (for example, model number "NSPG336CS” manufactured by Nichia Corporation), LED KSF (for example, model number "NFSW157J-HG” manufactured by Nichia Corporation), and LEDYAG1 (for example, model number).
  • a green LED for example, model number "NSPG336CS” manufactured by Nichia Corporation
  • LED KSF for example, model number "NFSW157J-HG” manufactured by Nichia Corporation
  • LEDYAG1 for example, model number
  • the color filter of the present invention has chromaticity coordinates close to BT2020 in the XYZ color system of CIE (International Commission on Illumination) when the color material described later is used and the color is measured using the above light source. It is possible to display 0.140 ⁇ chromaticity x ⁇ 0.200 and 0.600 ⁇ chromaticity y ⁇ 0.780.
  • the XYZ color system is based on the principle of the mixing amount of the three primary colors of RGB (Red / Green / Blue), and is a concept usually used when considering the display color gamut in a display device.
  • the green pixel in the green pixel portion contains at least a cyan color material and a yellow color material, and the peak wavelength in the green pixel is in the range of 500 nm to 520 nm.
  • FIG. 3 is an example of the transmission spectrum of a green pixel in the color filter of the present invention.
  • ⁇ chromaticity y ⁇ 0.780 is set as the target color gamut in the present invention.
  • It is a transmission spectrum of a membrane.
  • the color filter of the present invention includes a cyan color material and a yellow color material for toning as the color material constituting the green pixel, and as shown in FIG. 3, the transmission spectrum in the green pixel composed of these color materials.
  • the peak wavelength (for example, in the wavelength range of 380 to 780 nm) is in the range of 500 nm to 520 nm.
  • FIG. 4 shows a transmission spectrum of a cyan color material satisfying the above-mentioned transmittance condition in a wavelength range of 400 to 600 nm.
  • the cyan color material is (a) ⁇ -type zinc phthalocyanine, and (b) C.I. I. It is a monochromatic transmission spectrum in the case of Pigment Green 7.
  • the cyan color material has a peak wavelength in the range of 460 nm to 510 nm in the transmission spectrum, and the transmittance at a wavelength of 550 nm is, for example, 7% or less (preferably 5% or less) when the transmittance of the peak wavelength is 60%. ).
  • the cyan color material preferably has a peak width at half maximum of 90 nm or less and a transmittance of 5% or less at a wavelength of 550 nm in the transmission spectrum.
  • the half width of the peak at the peak wavelength in the transmission spectrum is 80 nm or less
  • the transmittance at a wavelength of 550 nm is 3% or less
  • the transmittance at 510 nm is 10% or more.
  • the cyan color material has a peak wavelength in the range of 480 to 500 nm in the transmission spectrum, a transmittance of 5% or more at a wavelength of 532 nm, and a transmittance of 30% or more at 510 nm.
  • a transmittance 5% or more at a wavelength of 532 nm
  • a transmittance of 30% or more at 510 nm By satisfying the condition of such a transmittance, the light of 460 nm to 510 nm from the light source can be transmitted, and the light of 550 nm can be absorbed.
  • the transmission spectrum can be measured with a spectrophotometer U-3900 manufactured by Hitachi High-Tech Science.
  • Examples of the cyan color material having such a transmission spectrum include metal phthalocyanine pigments and non-metal phthalocyanine pigments.
  • the metallic phthalocyanine pigment preferably has copper, zinc, magnesium, or cobalt as the central metal and ⁇ , ⁇ , or ⁇ type as the crystal structure.
  • Examples of such metal phthalocyanine pigments include ⁇ -type copper phthalocyanine (pigment blue 15), ⁇ -type copper phthalocyanine (pigment blue 15: 3), ⁇ -type copper phthalocyanine (pigment blue 15: 6), ⁇ -type zinc phthalocyanine, and ⁇ -type.
  • Examples thereof include zinc phthalocyanine, ⁇ -type zinc phthalocyanine, magnesium phthalocyanine, ⁇ -type cobalt phthalocyanine, ⁇ -type cobalt phthalocyanine, and ⁇ -type cobalt phthalocyanine.
  • Examples of the metal-free phthalocyanine pigment include Pigment Blue 16.
  • the yellow color material may be at least one selected from the group consisting of yellow pigments and yellow dyes. Both of these yellow pigments and yellow dyes may be known.
  • the yellow color material includes a yellow dye or a yellow pigment
  • examples of the yellow pigment include C.I. I. Pigment Yellow 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 24, 31, 32, 34, 35, 35: 1, 36, 36: 1,37,37: 1,40,42,43,53,55,60,61,62,63,65,73,74,77,81,83,86,93,94,95,97, 98, 100, 101, 104, 106, 108, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120, 123, 125, 126, 127, 128, 129, 137, 138, 139, 147, 150, 151, 152, 153, 154, 155, 156, 161, 162, 164, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 182, 185,
  • the yellow dye may be, for example, a quinoline dye, an azo dye, a quinophthalone dye, a methine dye, a coumarin dye, an isoindoline dye, or the like, and specifically, C.I. I. Examples thereof include salt-forming compounds of acid dyes such as Acid Yellow 1, 3, 23 and 36.
  • the yellow color material may contain a compound (quinophthalone pigment) represented by the following formula (1).
  • X 1 to X 16 are independently hydrogen atoms or halogen atoms
  • Y 1 and Y 2 are independently hydrogen atoms or halogen atoms
  • Z is an alkylene having 1 to 3 carbon atoms. It is the basis.
  • the above quinophthalone compound exhibits selective absorption and permeation due to the dimerization of the quinophthalone skeleton.
  • the quinophthalone compound dimerizes the quinophthalone skeleton using the linking group Z as a spacer, whereby the conjugation is cleaved and excessive redness is suppressed.
  • the dispersibility is improved by introducing the imide structure.
  • the halogen atom in the formula (1) may be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a fluorine atom, a chlorine atom or a bromine atom, and more preferably a chlorine atom.
  • alkylene group having 1 to 3 carbon atoms in the formula (1) include a methylene group, an ethylene group (1,1-ethanediyl group or 1,2-ethanediyl group), and a propylene group (1,1-).
  • Propanediyl group, 2,2-propanediyl group, 1,2-propanediyl group or 1,3-propanediyl group) is preferable, methylene group, 1,1-ethanediyl group, 1,1-propanediyl group, 2 , 2-Propanediyl group is more preferable, and methylene group is further preferable.
  • X 1 to X 16 is a halogen atom, and more preferably two or more are halogen atoms.
  • At least one is preferably a halogen atom, two or more are more preferably halogen atoms, and all may be halogen atoms. It is preferable that at least one of X 2 and X 3 is a halogen atom, and it is more preferable that both X 2 and X 3 are halogen atoms.
  • At least one is preferably a halogen atom, two or more are more preferably halogen atoms, and all may be halogen atoms. It is preferable that at least one of X 6 and X 7 is a halogen atom, and it is more preferable that both X 6 and X 7 are halogen atoms.
  • At least one is preferably a halogen atom, two or more are more preferably halogen atoms, and all may be halogen atoms. It is preferable that at least one of X 10 and X 11 is a halogen atom, and it is more preferable that both X 10 and X 11 are halogen atoms.
  • At least one is preferably a halogen atom, two or more are more preferably halogen atoms, and all may be halogen atoms. It is preferable that at least one of X 14 and X 15 is a halogen atom, and it is more preferable that both X 14 and X 15 are halogen atoms.
  • Y 1 and Y 2 may be the same or different, but are preferably the same from each other from the viewpoint of facilitating the synthesis of the quinophthalone compound.
  • the structure of the formula (1) includes tautomers having the following formulas (1-i) and formula (1-ii), and the quinophthalone compound has any of these structures. You may.
  • X 1 to X 16 , Y 1 , Y 2 and Z are as described above.
  • the above quinophthalone compound may be used alone, or two or more kinds of compounds may be appropriately selected and used in combination.
  • the yellow color material is preferably a yellow pigment, and more preferably the compound represented by the above formula (1) (quinophthalone pigment), C.I. I. Pigment Yellow 138, C.I. I. Pigment Yellow 185, C.I. I. Pigment Yellow 129, C.I. I. Pigment Yellow 150, C.I. I. Pigment Yellow 151, C.I. I. Pigment Yellow 173, and C.I. I. Pigment Yellow 12 is at least one selected from the group consisting of sulfonated derivatives.
  • the yellow color material since it absorbs the light of a light source of 480 nm or less, it is preferable that the absorption of 480 nm or less is large. By absorbing the light of a light source of 480 nm or less, the chromaticity y in the XYZ color system can be increased, and as a result, the target chromaticity of BT2020 can be approached.
  • the green pixel may include a color material other than the above cyan color material and the yellow color material (for example, a green color material or a blue color material other than the cyan color material).
  • the above green color material is, for example, C.I. I. Pigment greens 7, 10, 36, 37, 58, 59, 62, 63 and the like.
  • the green dye may be a triarylmethane dye, a phthalocyanine dye, a cyanine dye or the like, and specifically, C.I. I. It may be a salt-forming compound of an acid dye such as acid green 3, 7, 9, 25, 27.
  • the green color material is preferably a green pigment, and more preferably C.I. I. Pigment Green 58 and C.I. I. It is at least one selected from the group consisting of Pigment Green 59.
  • the blue color material is, for example, C.I. I. Pigment Blue 1, 1: 2, 9, 14, 15, 15: 1, 15: 2, 15: 4, 16, 22, 60, 64, etc. may be used.
  • the blue dye may be a triarylmethane dye, a phthalocyanine dye, a cyanine dye or the like, and specifically, C.I. I. Salt-forming compounds of acid dyes such as Acid Blue 1, 7, 9, 80, 83, 90, 92, 93, 119, 140, 161 and 182, and C.I. I. It may be a salt-forming compound of Basic Blue 7, 8, 11, 26.
  • the ratio of the cyan color material is not particularly limited as long as the peak wavelength in the green pixel is in the range of 500 nm to 520 nm, but is, for example, with respect to the total amount of the color material constituting the green pixel. It is 10 to 90% by mass, preferably 20 to 80% by mass.
  • the proportion of the yellow color material is, for example, 10 to 90% by mass, preferably 20 to 80% by mass, based on the total amount of the color material constituting the green pixel.
  • the evaluation colored film (evaluation sample) of the green pixel portion is produced, for example, by the following procedure.
  • the cyan color material is dispersed with a paint shaker together with a dispersant and a solvent such as propylene glycol monomethyl ether acetate to obtain a dispersion liquid.
  • a solvent such as a binder resin or propylene glycol monomethyl ether acetate is added to this dispersion and mixed with a shaker to obtain a cyan colored composition.
  • the yellow coloring material is dispersed to obtain a yellow coloring composition.
  • a photosensitive resin composition is prepared by mixing a cyan color composition, a yellow coloring composition, and a curable resin composition, and the photosensitive resin composition is dropped onto a soda glass substrate, spin-coated, and then dried. As a result, a colored film for evaluation is formed on the glass substrate.
  • the thickness of the colored film can be adjusted by adjusting the spin rotation speed at the time of spin coating and the amount of the photosensitive resin composition to be dropped.
  • FIG. 5 is a schematic cross-sectional view showing an example of a liquid crystal display device which is a display device of the present invention.
  • the liquid crystal display device 1 includes a light source 2, a first polarizing layer 3, a first substrate 4, a first electrode 5, a liquid crystal layer 6, and a second electrode 7. , A second polarizing layer 8, a color filter 9, and a second substrate 10 are provided in this order.
  • the first polarizing layer 3 and the second polarizing layer 8 may be known polarizing layers (polarizing plates), for example, a dichroic organic dye polarizing plate, a coating type polarizing layer, a wire grid type polarizing plate, and a cholesteric. It may be a liquid crystal type polarizing plate or the like.
  • the first substrate 4 and the second substrate 10 may be made of, for example, glass, or may be made of a flexible material such as plastic.
  • first electrode 5 and the second electrode 7 is a pixel electrode, and the other is a common electrode.
  • first electrode 5 may be a pixel electrode and the second electrode 7 may be a common electrode.
  • the first electrode 5 and the second electrode 7 may be made of a transparent material such as ITO.
  • the liquid crystal layer 6 may be composed of a known liquid crystal composition.
  • An alignment film may be further provided between the first electrode 5 and the liquid crystal layer 6 and between the second electrode 7 and the liquid crystal layer 6.
  • a fluorescent substance used in this field can be appropriately selected.
  • a fluorescent substance that can be excited by a blue LED or an ultraviolet LED an yttrium-aluminum-garnet-based phosphor (YAG: Ce) activated by cerium and a lutetium-aluminum-garnet-based phosphor (LAG) activated by cerium are used.
  • Ce europium and / or chromium-activated nitrogen-containing calcium aluminosilicate-based fluorescent material (eg, CaO-Al 2 O 3 -SiO 2 : Eu), europium-activated silicate-based fluorescent material ((Sr, Ba)).
  • the sialone-based phosphor may be an ⁇ -type sialon phosphor.
  • the ⁇ -type sialon phosphor for example, silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), calcium carbonate (CaCO 3 ), and europium oxide (Eu 2 O 3 ) are mixed at a predetermined molar ratio to 1 atm.
  • It may be an ⁇ -type sialone phosphor in which Eu ions are solid-dissolved, which is produced by holding it in nitrogen at (0.1 MPa) at a temperature of 1700 ° C. for 1 hour and firing it by a hot press method.
  • This ⁇ -type sialone fluorescent substance is a fluorescent substance that is excited by blue light of 450 to 500 nm and emits yellow light of 550 to 600 nm.
  • the sialone-based phosphor may be, for example, a ⁇ -type sialon phosphor having a ⁇ -Si 3N 4 structure .
  • This ⁇ -type sialone fluorescent substance is a fluorescent substance that emits green to orange light having a diameter of 500 to 600 nm when excited by near-ultraviolet to blue light.
  • the phosphor may be an oxynitride phosphor composed of a JEM phase. This oxynitride phosphor is excited by near-ultraviolet to blue light and emits light having an emission wavelength peak at 460 to 510 nm.
  • the light L from the light source 2 is incident on the first polarizing plate 3 via, for example, a light guide plate (not shown) made of acrylic resin, glass, or the like.
  • the light source 2 may be arranged on the side surface of the light guide plate (edge backlight structure) or may be arranged on the main surface of the light guide plate (directly lower backlight structure).
  • the first substrate 4 After the light L from the light source 2 is incident on the first polarizing plate 3, the first substrate 4, the first electrode 5, the liquid crystal layer 6, the second electrode 7, the second polarizing layer 8, and the color filter After passing through 9 and the second substrate 10 in this order, the light is emitted to the outside of the liquid crystal display device 1. At this time, the color of the light L from the light source 2 is converted by the color filter 9.
  • the color filter 9 has a red pixel portion 9a, a green pixel portion 9b, a blue pixel portion 9c, and a light-shielding portion 9d.
  • the green pixel portion 9b is the color filter of the present invention, that is, a color filter having a light source and a green pixel portion and converting the color of light from the light source.
  • the peak wavelength at 480 to 580 nm is 500 to 560 nm
  • the intensity at 480 nm (I480) with respect to the intensity at 532 nm (I532) is 1.1 or less
  • a color filter capable of displaying 780 wherein the green pixel in the green pixel portion contains at least a cyan color material and a yellow color material, and the peak wavelength in the green pixel is in the range of 500 nm to 520 nm.
  • the red pixel portion 9a includes, for example, a red color material.
  • the red color material is dispersed in the cured product of the photosensitive resin composition, for example.
  • a red color material having an average transmittance of 60% or less at 600 to 660 nm is used.
  • the red color material the above-mentioned color material can be used.
  • the blue pixel portion 9c includes, for example, a blue color material.
  • the blue color material is dispersed in the cured product of the photosensitive resin composition, for example.
  • a blue color material having an average transmittance of 60% or less at 380 to 440 nm is used.
  • the blue color material the above-mentioned color material can be used.
  • part represents “part by mass”.
  • Pc (phthalocyanine) pigments were prepared by the methods of Reference Production Examples 1-1 and 1-2 below, and dispersions of Pc pigments were prepared by the methods described in Production Examples 1-1 to 1-4. Further, a dispersion liquid of a yellow pigment was prepared by the method described in Production Examples 2-1 and 2-2 below. Further, the alkali-soluble resin was synthesized by the method described in Reference Production Example 3 below, and a curable resin composition was prepared by the method described in Reference Production Example 4.
  • Reference manufacturing example 1-1 A ⁇ -type zinc phthalocyanine (hereinafter, also referred to as “Pc pigment (1)”) was prepared according to [Production Example 3-6] of JP-A-2020-38368.
  • Reference manufacturing example 1-2 A ⁇ -type copper phthalocyanine (hereinafter, also referred to as “Pc pigment (2)”) was prepared according to [Production Example 3-4] of JP-A-2020-38368.
  • Pc pigment (1) 15 g was placed in a polybin, 75.6 g of propylene glycol monomethyl ether acetate, 9.4 g of DISPERBYK LPN21116 (manufactured by Big Chemie Co., Ltd.), and 0.3-0.4 mm ⁇ zircon. Beads were added and dispersed with a paint conditioner (manufactured by Toyo Seiki Co., Ltd.) for 2 hours to obtain a Pc pigment dispersion liquid (1).
  • Production Example 1-2 A Pc pigment dispersion liquid (2) was obtained in the same manner except that the Pc pigment (1) of Production Example 1-1 was changed to the Pc pigment (2).
  • Production Example 1-3 The Pc pigment (1) of Production Example 1-1 was used in C.I. I. Pigment Green 7 (FASTOGEN Green S manufactured by DIC Corporation; hereinafter also referred to as “Pc pigment (3)”) was used in the same manner to obtain a Pc pigment dispersion liquid (3).
  • C.I. I. Pigment Green 7 FASTOGEN Green S manufactured by DIC Corporation; hereinafter also referred to as “Pc pigment (3)”
  • Production Example 1-4 The Pc pigment (1) of Production Example 1-1 was used in C.I. I. Pigment Green 59 (FASTOGEN Green C100 manufactured by DIC Corporation; hereinafter also referred to as “Pc pigment (4)”) was used in the same manner to obtain a Pc pigment dispersion liquid (4).
  • C.I. I. Pigment Green 59 FASTOGEN Green C100 manufactured by DIC Corporation; hereinafter also referred to as “Pc pigment (4)”
  • the yellow pigment dispersion liquid (1) is similarly used except that the Pc pigment (1) of Production Example 1-1 is changed to Pigment Yellow 139 (BASF's Paliotor Yellow D1819; hereinafter also referred to as “yellow pigment (1)”). ) was obtained.
  • Pigment Yellow 139 BASF's Paliotor Yellow D1819; hereinafter also referred to as “yellow pigment (1)”.
  • the yellow pigment dispersion liquid (2) is similarly used except that the Pc pigment (1) of Production Example 1-1 is changed to Pigment Yellow 185 (BASF's Paliotor Yellow D1155; hereinafter also referred to as “yellow pigment (2)”). ) was obtained.
  • Reference Production Example 4 (Preparation of Curable Resin Composition) The following materials were stirred and mixed at room temperature to prepare a curable resin composition.
  • Photo-curing resin Aronix M-402 manufactured by Toagosei Chemical Co., Ltd.
  • Irgacure 369 0.05g Leveling agent DIC Corporation F-554: 0.0014g Propylene glycol monomethyl ether acetate: 2.2486 g
  • a curable coloring composition was prepared by the following methods of Comparative Examples 1 to 4 and Examples 1 and 2. Then, the curable coloring composition was applied onto the evaluation glass substrate to form a film, and an evaluation glass substrate was obtained.
  • Comparative Example 1 The Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) were mixed so that the blending ratio (mass ratio) of the Pc pigment dispersion liquid (1) / yellow pigment dispersion liquid (1) was 69/31.
  • a curable colored composition was prepared by stirring and mixing 2 g of the mixture together with 1.1 g of the curable resin composition obtained in Reference Production Example 4 at room temperature. Then, the curable coloring composition was applied onto a glass substrate with a spin coater and dried at 70 ° C. for 20 minutes to form a coating film. This coating film is exposed to an ultra-high pressure mercury lamp, developed with a 5% aqueous sodium carbonate solution, and then heat-treated by leaving the substrate in an atmosphere of 230 ° C.
  • Comparative Example 2 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (2) and the yellow pigment dispersion (1) are mixed with the Pc pigment dispersion (2). ) / Yellow pigment dispersion (1) was mixed so that the blending ratio (mass ratio) was 70/30, and an evaluation glass substrate was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 3 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (3) and the yellow pigment dispersion liquid (1) are mixed with the Pc pigment dispersion liquid (3). ) / Yellow pigment dispersion (1) was mixed so that the blending ratio (mass ratio) was 94/6, and an evaluation glass substrate was obtained in the same manner as in Comparative Example 1.
  • Example 1 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (2) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 65/35, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 2 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (2) and the yellow pigment dispersion (2) are mixed with the Pc pigment dispersion (2). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 66/34, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • thinning is particularly required, so it is preferable to use a color filter having a peak transmission wavelength of less than 520 nm in the transmission spectrum.
  • the curable coloring composition was prepared by the following methods of Examples 3 to 8 and Comparative Examples 5 to 6, and the curable coloring composition was applied onto the evaluation glass substrate to form a film. A glass substrate for evaluation was obtained.
  • Example 3 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (2) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 65/35, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 4 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (2) and the yellow pigment dispersion (2) are mixed with the Pc pigment dispersion (2). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 65/35, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 5 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (2) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 50/50, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 6 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (2) and the yellow pigment dispersion (2) are mixed with the Pc pigment dispersion (2). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 52/48, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 7 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (2) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 35/65, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 8 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (2) and the yellow pigment dispersion (2) are mixed with the Pc pigment dispersion (2). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 36/64, and an evaluation glass substrate was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 5 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (2) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 22/78, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 6 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (2) and the yellow pigment dispersion (2) are mixed with the Pc pigment dispersion (2). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 24/76, and an evaluation glass substrate was obtained in the same manner as in Comparative Example 1.
  • the film thickness is 3.4 ⁇ m or more.
  • thinning is particularly required, so it is preferable to select an appropriate light source.
  • Pigment Yellow 129 (Irgazine Yellow L0800 manufactured by BASF; hereinafter also referred to as "yellow pigment (3)") was changed to Pigment Yellow 129 (Pc pigment (1) of Production Example 1-1) in the same manner as the yellow pigment dispersion liquid (3). ) was obtained.
  • Example 9 instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (3) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (3) was mixed so that the blending ratio (mass ratio) was 56/44, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 10 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (2) and the yellow pigment dispersion liquid (3) are mixed with the Pc pigment dispersion liquid (2). ) / Yellow pigment dispersion (3) was mixed so that the blending ratio (mass ratio) was 57/43, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 11 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (3) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (3) was mixed so that the blending ratio (mass ratio) was 59/41, and an evaluation glass substrate was obtained in the same manner as in Comparative Example 1.
  • Example 12 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (2) and the yellow pigment dispersion liquid (3) are mixed with the Pc pigment dispersion liquid (2). ) / Yellow pigment dispersion (3) was mixed so that the blending ratio (mass ratio) was 60/40, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 13 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (3) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (3) was mixed so that the blending ratio (mass ratio) was 43/57, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 14 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (2) and the yellow pigment dispersion liquid (3) are mixed with the Pc pigment dispersion liquid (2). ) / Yellow pigment dispersion (3) was mixed so that the blending ratio (mass ratio) was 45/55, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 15 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (3) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (3) was mixed so that the blending ratio (mass ratio) was 36/64, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 16 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (2) and the yellow pigment dispersion liquid (3) are mixed with the Pc pigment dispersion liquid (2). ) / Yellow pigment dispersion (3) was mixed so that the blending ratio (mass ratio) was 38/62, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 7 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (3) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (3) was mixed so that the blending ratio (mass ratio) was 29/71, and an evaluation glass substrate was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 8 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (2) and the yellow pigment dispersion liquid (3) are mixed with the Pc pigment dispersion liquid (2). ) / Yellow pigment dispersion (3) was mixed so that the blending ratio (mass ratio) was 31/69, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • the film thickness is 3.4 ⁇ m or more.
  • the film thickness is less than 3.4 ⁇ m.
  • the yellow pigment was added to C.I. I.
  • the mixture was changed to Pigment Yellow 138, and a dispersion was prepared in the same manner to obtain a glass substrate for evaluation.
  • the yellow pigment dispersion liquid (4) is similarly used except that the Pc pigment (1) of Production Example 1-1 is changed to Pigment Yellow 138 (BASF's Paliotor Yellow K0961HD; hereinafter also referred to as “yellow pigment (4)”). ) was obtained.
  • Example 17 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (4) are mixed with the Pc pigment dispersion liquid (1). ) / Yellow pigment dispersion (4) was mixed so that the blending ratio (mass ratio) was 24/76, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 18 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (2) and the yellow pigment dispersion liquid (4) are mixed with the Pc pigment dispersion liquid (2). ) / Yellow pigment dispersion (4) was mixed so that the blending ratio (mass ratio) was 24/76, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 9 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (4) are mixed with the Pc pigment dispersion liquid (1). ) / Yellow pigment dispersion (4) was mixed so that the blending ratio (mass ratio) was 4/96, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 10 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (2) and the yellow pigment dispersion liquid (4) are mixed with the Pc pigment dispersion liquid (2). ) / Yellow pigment dispersion (4) was mixed so that the blending ratio (mass ratio) was 4/96, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • the film thickness is 3. It will be 4 ⁇ m or more.
  • the yellow pigment (4) is used and the peak transmission wavelength of the transmission spectrum showing (0.170, 0.750) is less than 520 nm and the light source is a green LED, the film thickness is less than 3.4 ⁇ m. It becomes.
  • thinning is particularly required, so it is preferable to select an appropriate light source.
  • the yellow pigment was added to C.I. I.
  • the mixture was changed to Pigment Yellow 150, and a dispersion was prepared in the same manner to obtain a glass substrate for evaluation.
  • Production Example 2-5 The yellow pigment dispersion liquid (5) is obtained in the same manner except that the Pc pigment (1) of Production Example 1-1 is changed to Pigment Yellow 150 (E4GNGT manufactured by LANXESS; hereinafter also referred to as “yellow pigment (5)”). rice field.
  • Pigment Yellow 150 E4GNGT manufactured by LANXESS; hereinafter also referred to as “yellow pigment (5)”. rice field.
  • Example 19 instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (5) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (5) was mixed so that the blending ratio (mass ratio) was 32/68, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 20 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (2) and the yellow pigment dispersion (5) are mixed with the Pc pigment dispersion (2). ) / Yellow pigment dispersion (5) was mixed so that the blending ratio (mass ratio) was 32/68, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 11 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (5) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (5) was mixed so that the blending ratio (mass ratio) was 9/91, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 12 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (2) and the yellow pigment dispersion (5) are mixed with the Pc pigment dispersion (2). ) / Yellow pigment dispersion (5) was mixed so that the blending ratio (mass ratio) was 10/90, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • the film thickness is 3. It will be 4 ⁇ m or more.
  • the yellow pigment (5) is used and the peak transmission wavelength of the transmission spectrum showing (0.170, 0.750) is less than 520 nm and the light source is a green LED, the film thickness is less than 3.4 ⁇ m. It becomes.
  • thinning is particularly required, so it is preferable to select an appropriate light source.
  • the yellow pigment was changed to the quinophthalone compound (D) described in International Publication 2018/159372 (Japanese Patent Application No. 2018-560690) as follows, and a dispersion liquid was prepared in the same manner to obtain a glass substrate for evaluation.
  • Production Example 2-6 The same applies except that the Pc pigment (1) of Production Example 1-1 is changed to the quinophthalone compound (D) (hereinafter, also referred to as “yellow pigment (6)”) described in International Publication 2018/159372 (Japanese Patent Application No. 2018-560690). The yellow pigment dispersion liquid (6) was obtained.
  • D quinophthalone compound
  • Example 21 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (6) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (6) was mixed so that the blending ratio (mass ratio) was 57/43, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 22 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (2) and the yellow pigment dispersion (6) are mixed with the Pc pigment dispersion (2). ) / Yellow pigment dispersion (6) was mixed so that the blending ratio (mass ratio) was 58/42, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 13 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (6) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (6) was mixed so that the blending ratio (mass ratio) was 20/80, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 14 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (2) and the yellow pigment dispersion (6) are mixed with the Pc pigment dispersion (2). ) / Yellow pigment dispersion (6) was mixed so that the blending ratio (mass ratio) was 22/78, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • the film thickness is 3. It will be 4 ⁇ m or more.
  • the yellow pigment (6) is used and the peak transmission wavelength of the transmission spectrum showing (0.170, 0.750) is less than 520 nm and the light source is a green LED, the film thickness is less than 3.4 ⁇ m. It becomes.
  • thinning is particularly required, so it is preferable to select an appropriate light source.
  • the yellow pigment is changed to the disuazo compound C2 (sulfonated derivative of CI Pigment Yellow 12) described in JP-A-2014-228682 as follows, and a dispersion is prepared in the same manner for evaluation. A glass substrate was obtained.
  • the Pc pigment (1) of Production Example 1-1 is a disazo-based compound C2 (a sulfonated derivative of CI Pigment Yellow 12; hereinafter also referred to as “yellow pigment (7)”) described in JP-A-2014-228682.
  • the yellow pigment dispersion liquid (7) was obtained in the same manner except that the mixture was changed to.
  • Example 23 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (7) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (7) was mixed so that the blending ratio (mass ratio) was 48/52, and an evaluation glass substrate was obtained in the same manner as in Comparative Example 1.
  • Example 24 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (2) and the yellow pigment dispersion (7) are mixed with the Pc pigment dispersion (2). ) / Yellow pigment dispersion (7) was mixed so that the blending ratio (mass ratio) was 49/51, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 15 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (7) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (7) was mixed so that the blending ratio (mass ratio) was 25/75, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 16 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (2) and the yellow pigment dispersion (7) are mixed with the Pc pigment dispersion (2). ) / Yellow pigment dispersion (7) was mixed so that the blending ratio (mass ratio) was 27/73, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • the film thickness becomes 3.4 ⁇ m or more.
  • the peak transmission wavelength of the transmission spectrum showing (0.170, 0.750) is less than 520 nm and the light source is a green LED
  • the film thickness is less than 3.4 ⁇ m. It becomes.
  • the yellow pigment was added to C.I. I.
  • the mixture was changed to Pigment Yellow 151, and a dispersion was prepared in the same manner to obtain a glass substrate for evaluation.
  • Production Example 2-8 Pigment Yellow 151 (SYMULER FAST YELLOW 4GO manufactured by DIC; hereinafter also referred to as “yellow pigment (8)") in Production Example 1-1 is changed to Pigment Yellow 151 (hereinafter also referred to as “yellow pigment (8)") in the same manner as the yellow pigment dispersion liquid (8). ) was obtained.
  • Example 25 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (8) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (8) was mixed so that the blending ratio (mass ratio) was 46/54, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 26 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (2) and the yellow pigment dispersion liquid (8) are mixed with the Pc pigment dispersion liquid (2). ) / Yellow pigment dispersion (8) was mixed so that the blending ratio (mass ratio) was 47/53, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 17 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (8) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (8) was mixed so that the blending ratio (mass ratio) was 25/75, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 18 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (2) and the yellow pigment dispersion liquid (8) are mixed with the Pc pigment dispersion liquid (2). ) / Yellow pigment dispersion (8) was mixed so that the blending ratio (mass ratio) was 27/73, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • the film thickness becomes 3.4 ⁇ m or more.
  • the yellow pigment (8) is used and the peak transmission wavelength of the transmission spectrum showing (0.170, 0.750) is less than 520 nm and the light source is a green LED, the film thickness is less than 3.4 ⁇ m. It becomes.
  • thinning is particularly required, so it is preferable to select an appropriate light source.
  • the yellow pigment was added to C.I. I.
  • the mixture was changed to Pigment Yellow 173, and a dispersion was prepared in the same manner to obtain a glass substrate for evaluation.
  • Pigment Yellow 173 (Hostaperm Yellow 6GL manufactured by Clariant Co., Ltd .; hereinafter also referred to as “yellow pigment (9)”) was changed to Pigment Yellow 173 (Pc pigment (1) of Production Example 1-1) in the same manner as the yellow pigment dispersion liquid (9).
  • Example 27 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (9) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (9) was mixed so that the blending ratio (mass ratio) was 40/60, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 28 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (2) and the yellow pigment dispersion liquid (9) are mixed with the Pc pigment dispersion liquid (2). ) / Yellow pigment dispersion (9) was mixed so that the blending ratio (mass ratio) was 41/59, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 19 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (9) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (9) was mixed so that the blending ratio (mass ratio) was 20/80, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 20 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (2) and the yellow pigment dispersion liquid (9) are mixed with the Pc pigment dispersion liquid (2). ) / Yellow pigment dispersion (9) was mixed so that the blending ratio (mass ratio) was 22/78, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • the film thickness becomes 3.4 ⁇ m or more.
  • the yellow pigment (9) is used and the peak transmission wavelength of the transmission spectrum showing (0.170, 0.750) is less than 520 nm and the light source is a green LED, the film thickness is less than 3.4 ⁇ m. It becomes.
  • thinning is particularly required, so it is preferable to select an appropriate light source.
  • Pigments were prepared by the methods of Reference Production Examples 1-3 to 1-10 below, and pigment dispersions were prepared by the methods described in Production Examples 1-5 to 1-17 below. Then, the curable coloring composition is prepared by the methods described in Examples 29 to 41 and Comparative Examples 21 to 26 below, and the curable coloring composition is applied onto a glass substrate for evaluation to form a film for evaluation. A glass substrate for use was obtained.
  • Reference manufacturing example 1-5 An ⁇ -type cobalt phthalocyanine pigment (hereinafter, also referred to as “Pc pigment (10)”) was produced in the same manner as the ⁇ -type cobalt phthalocyanine pigment (6) for a color filter of JP-A-2004-252443.
  • Pc pigment (10) ⁇ -type cobalt phthalocyanine pigment
  • Reference manufacturing example 1-7 An ⁇ -type cobalt phthalocyanine pigment (hereinafter, also referred to as “Pc pigment (12)”) was produced in the same manner as in the ⁇ -type cobalt phthalocyanine pigment composition (2) for a color filter of JP-A-2004-252443.
  • Pc pigment (12) ⁇ -type cobalt phthalocyanine pigment
  • Reference manufacturing example 1-8 A halogenated zinc phthalocyanine pigment A (hereinafter, also referred to as “Pc pigment (15)”) was produced in the same manner as in [Production Example 3-8] of JP-A-2020-38368. X-ray fluorescence analysis of the halogenated zinc phthalocyanine pigment A using ZSX100E manufactured by Rigaku Co., Ltd. was carried out, and the average chlorine atom as a relative value per zinc atom was obtained from the mass ratio of the zinc atom, the chlorine atom and the bromine atom. The number and average number of bromine atoms were calculated.
  • a sample obtained by pressure-molding (25 mm ⁇ ) of 1 g of a halogenated zinc phthalocyanine pigment was used as a measurement sample, and the measurement was performed in a vacuum atmosphere with a measurement diameter of 20 mm ⁇ .
  • the number of halogen atoms in one molecule was 10.0 on average, of which the average number of bromine atoms was 6.9 and the average number of chlorine atoms was 3.1. ..
  • halogenated zinc phthalocyanine pigment B (hereinafter, also referred to as “Pc pigment (16)”) was produced in the same manner as the pigment 10 of Production Example 10 of JP-A-2018-36520.
  • Pc pigment (16) the average number of chlorine atoms and the average number of bromine atoms were calculated in the same manner as in Reference Production Example 1-8.
  • the number of halogen atoms in one molecule was 7.3 on average, of which the number of bromine atoms was 2.0 on average and the number of chlorine atoms was 5.3 on average.
  • Reference manufacturing example 1-10 Sulfuryl chloride (manufactured by Wako Pure Chemical Industries, Ltd.) 190 g, aluminum chloride (manufactured by Kanto Chemical Co., Inc.) 315 g, sodium chloride (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 43 g, zinc phthalocyanine (manufactured by DIC Co., Ltd.) 84 g in a 1 L flask. And 185 g of bromine (manufactured by Wako Pure Chemical Industries, Ltd.) was charged. The temperature was raised to 55 ° C., the obtained mixture was taken out into water, filtered, washed with water, and dried to obtain zinc halide phthalocyanine.
  • halogenated zinc phthalocyanine 400 g of ground sodium chloride and 63 g of 1,3-butanediol (melting point: ⁇ 54 ° C.) were charged in a double-armed kneader, and the cooling water circulation device was set to ⁇ 20 ° C. and kneaded for 20 hours. The mixture after kneading was taken out into 2 kg of water at 80 ° C. and stirred for 1 hour. Then, it was filtered, washed with hot water, dried, and pulverized to prepare a halogenated zinc phthalocyanine pigment C (hereinafter, also referred to as “Pc pigment (17)”) as a cyan pigment.
  • Pc pigment (17) a halogenated zinc phthalocyanine pigment
  • the average number of chlorine atoms and the average number of bromine atoms were calculated in the same manner as in Reference Production Example 1-8.
  • the number of halogen atoms in one molecule was 8.1 on average, of which the number of bromine atoms was 7.9 on average and the number of chlorine atoms was 0.2 on average.
  • Production Example 1-5 A Pc pigment dispersion liquid (5) was obtained in the same manner except that the Pc pigment (1) of Production Example 1-1 was changed to the Pc pigment (5).
  • Pigment Blue 16 (manufactured by Tokyo Kasei Kogyo Co., Ltd., product code: P0355; hereinafter also referred to as "Pc pigment (6)") was changed to Pigment Blue 16 in Production Example 1-1.
  • the dispersion liquid (6) was obtained.
  • Production Example 1-7 A Pc pigment dispersion liquid (7) was obtained in the same manner except that the Pc pigment (1) of Production Example 1-1 was changed to the Pc pigment (7).
  • Production Example 1-8 Pc pigment dispersion liquid in the same manner except that the Pc pigment (1) of Production Example 1-1 was changed to Pigment Blue 15: 6 (FASTOGEN Blue A540 manufactured by DIC Corporation; hereinafter also referred to as "Pc pigment (8)"). (8) was obtained.
  • Production Example 1-9 The same applies except that the Pc pigment (1) of Production Example 1-1 is changed to phthalocyanine magnesium (II) (manufactured by Tokyo Kasei Kogyo Co., Ltd., product code: P1018; hereinafter also referred to as “Pc pigment (9)”). A Pc pigment dispersion liquid (9) was obtained.
  • phthalocyanine magnesium (II) manufactured by Tokyo Kasei Kogyo Co., Ltd., product code: P1018; hereinafter also referred to as “Pc pigment (9).
  • a Pc pigment dispersion liquid (9) was obtained.
  • Production Example 1-10 A Pc pigment dispersion liquid (10) was obtained in the same manner except that the Pc pigment (1) of Production Example 1-1 was changed to the Pc pigment (10).
  • Production Example 1-11 A Pc pigment dispersion liquid (11) was obtained in the same manner except that the Pc pigment (1) of Production Example 1-1 was changed to the Pc pigment (11).
  • Production Example 1-12 A Pc pigment dispersion liquid (12) was obtained in the same manner except that the Pc pigment (1) of Production Example 1-1 was changed to the Pc pigment (12).
  • Production Example 1-13 Pc pigment in the same manner except that the Pc pigment (1) of Production Example 1-1 was changed to chloroaluminum phthalocyanine (manufactured by Tokyo Kasei Kogyo Co., Ltd., product code: C1167; hereinafter also referred to as "Pc pigment (13)"). A dispersion liquid (13) was obtained.
  • Production Example 1-14 The same applies except that the Pc pigment (1) of Production Example 1-1 is changed to phthalocyanine iron (II) (manufactured by Tokyo Kasei Kogyo Co., Ltd., product code: P0774; hereinafter also referred to as “Pc pigment (14)”). A Pc pigment dispersion liquid (14) was obtained.
  • phthalocyanine iron (II) manufactured by Tokyo Kasei Kogyo Co., Ltd., product code: P0774; hereinafter also referred to as “Pc pigment (14)
  • a Pc pigment dispersion liquid (14) was obtained.
  • Production Example 1-15 A Pc pigment dispersion liquid (15) was obtained in the same manner except that the Pc pigment (1) of Production Example 1-1 was changed to the Pc pigment (15).
  • Production Example 1-16 A Pc pigment dispersion liquid (16) was obtained in the same manner except that the Pc pigment (1) of Production Example 1-1 was changed to the Pc pigment (16).
  • Production Example 1-17 A Pc pigment dispersion liquid (17) was obtained in the same manner except that the Pc pigment (1) of Production Example 1-1 was changed to the Pc pigment (17).
  • Example 29 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (5) and the yellow pigment dispersion (2) are mixed with the Pc pigment dispersion (5). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 55/45, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 30 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (6) and the yellow pigment dispersion liquid (2) are mixed with the Pc pigment dispersion liquid (6). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 53/47, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 31 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (7) and the yellow pigment dispersion (2) are mixed with the Pc pigment dispersion (7). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 60/40, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 32 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (8) and the yellow pigment dispersion liquid (2) are mixed with the Pc pigment dispersion liquid (8). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 57/43, and an evaluation glass substrate was obtained in the same manner as in Comparative Example 1.
  • Example 33 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (9) and the yellow pigment dispersion (2) are mixed with the Pc pigment dispersion (9). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 65/35, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 34 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (10) and the yellow pigment dispersion (2) are mixed with the Pc pigment dispersion (10). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 56/44, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 35 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (11) and the yellow pigment dispersion liquid (2) are mixed with the Pc pigment dispersion liquid (11). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 62/38, and an evaluation glass substrate was obtained in the same manner as in Comparative Example 1.
  • Example 36 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (12) and the yellow pigment dispersion liquid (2) are mixed with the Pc pigment dispersion liquid (12). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 56/44, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 37 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (15) and the yellow pigment dispersion (2) are mixed with the Pc pigment dispersion (15). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 88/12, and an evaluation glass substrate was obtained in the same manner as in Comparative Example 1.
  • Example 38 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (16) and the yellow pigment dispersion liquid (2) are mixed with the Pc pigment dispersion liquid (16). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 72/28, and an evaluation glass substrate was obtained in the same manner as in Comparative Example 1.
  • Example 39 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (17) and the yellow pigment dispersion liquid (2) are mixed with the Pc pigment dispersion liquid (17). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 89/11, and an evaluation glass substrate was obtained in the same manner as in Comparative Example 1.
  • Example 40 instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (1) and the yellow pigment dispersion (3) are mixed with the Pc pigment dispersion (1). ) / Yellow pigment dispersion (3) was mixed so that the blending ratio (mass ratio) was 56/44, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Example 41 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (2) and the yellow pigment dispersion liquid (3) are mixed with the Pc pigment dispersion liquid (2). ) / Yellow pigment dispersion (3) was mixed so that the blending ratio (mass ratio) was 57/43, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 21 Instead of mixing the Pc pigment dispersion (1) and the yellow pigment dispersion (1) of Comparative Example 1, the Pc pigment dispersion (13) and the yellow pigment dispersion (2) are mixed with the Pc pigment dispersion (13). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 77/23, and an evaluation glass substrate was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 22 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (14) and the yellow pigment dispersion liquid (2) are mixed with the Pc pigment dispersion liquid (14). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 73/27, and an evaluation glass substrate was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 23 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (3) and the yellow pigment dispersion liquid (2) are mixed with the Pc pigment dispersion liquid (3). ) / Yellow pigment dispersion (2) was mixed so that the blending ratio (mass ratio) was 93/7, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 24 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (13) and the yellow pigment dispersion liquid (3) are mixed with the Pc pigment dispersion liquid (13). ) / Yellow pigment dispersion (3) was mixed so that the blending ratio (mass ratio) was 70/30, and an evaluation glass substrate was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 25 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (14) and the yellow pigment dispersion liquid (3) are mixed with the Pc pigment dispersion liquid (14). ) / Yellow pigment dispersion (3) was mixed so that the blending ratio (mass ratio) was 66/34, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 26 Instead of mixing the Pc pigment dispersion liquid (1) and the yellow pigment dispersion liquid (1) of Comparative Example 1, the Pc pigment dispersion liquid (3) and the yellow pigment dispersion liquid (3) are mixed with the Pc pigment dispersion liquid (3). ) / Yellow pigment dispersion (3) was mixed so that the blending ratio (mass ratio) was 90/10, and a glass substrate for evaluation was obtained in the same manner as in Comparative Example 1.
  • the film thickness and peak transmission wavelength were measured using the evaluation glass substrates produced in Examples 1 to 2, 29 to 41 and Comparative Examples 1 to 2, 21 to 26 (the measurement method is the same as above).
  • the brightness of the obtained coating film was measured with a spectrophotometer U-3900 manufactured by Hitachi High-Tech Science Corporation. The results are shown in Table 10.
  • the film thickness is less than 3.4 ⁇ m, and further, the yellow pigment.
  • the brightness is higher than that in the case of using (1).
  • an appropriate Pc pigment is selected and the peak transmission wavelength is less than 520 nm. It is preferable to design as such.
  • Curable coloring compositions for transmittance measurement were prepared by the following methods of Reference Examples 1 to 17, and applied onto a glass substrate to form a coating film to prepare a glass substrate for transmittance measurement. The transmittance of the coloring material was measured using this glass substrate for measuring the transmittance.
  • the curable coloring composition for measuring transmittance was applied onto a glass substrate with a spin coater and dried at 70 ° C. for 20 minutes to form a coating film.
  • This coating film is exposed to an ultra-high pressure mercury lamp, developed with a 5% sodium carbonate aqueous solution, and then heat-treated by leaving the substrate in an atmosphere of 230 ° C. for 30 minutes to measure the transmittance.
  • a glass substrate was formed.
  • the transmission spectrum of the glass substrate for transmittance measurement was measured using a spectrophotometer (U3900 manufactured by Hitachi High-Tech Science Co., Ltd.) (measurement area: 380 to 780 nm, measurement interval: 1 nm).
  • the spin rotation speed at the time of spin coating was adjusted so that the transmittance (peak transmittance) at the peak transmittance at 400 nm to 600 nm was 60%. From the obtained transmission spectrum, the peak transmission wavelength, the half width, the transmittance at 510 nm, the transmittance at 532 nm, and the transmittance at 550 nm were calculated. The results are shown in Table 11.
  • Reference example 16 In the same manner except that the Pc pigment dispersion liquid (1) of Reference Example 1 was changed to the Pc pigment dispersion liquid (16), the peak transmittance, the half width, the transmittance at 510 nm, the transmittance at 532 nm, and the transmittance at 550 nm. was calculated. The results are shown in Table 11.
  • These light sources are attached to the housing provided with the drive substrate, and the Olympus microscope MX-50 and the Otsuka Electronics spectrophotometer MCPD-3000 microspectroscopy.
  • the spectra of the light sources A, B, C, D, and E were measured using the apparatus (measurement region: 380 to 780 nm, measurement interval: 1 nm).
  • the light sources A, B, C, D, and E all had peak intensities between 480 and 580 nm.
  • Table 12 shows the wavelengths (peak wavelengths) that have peak intensities.
  • a color filter was produced by forming a light-shielding portion, a red pixel portion, a green pixel portion, and a blue pixel portion by the methods of Examples 42 to 48 and Comparative Example 27 below.
  • Example 42 ⁇ Making color filters> (Formation of light-shielding part) After uniformly stirring and mixing the mixture having the following composition, the mixture was dispersed in a sand mill for 5 hours using glass beads having a diameter of 1 mm, and then filtered through a filter of 5 ⁇ m to prepare a carbon black dispersion.
  • This layer was exposed to a light-shielding pattern using a photomask with an ultra-high pressure mercury lamp, developed with a 5% aqueous sodium carbonate solution, and then heat-treated by leaving the substrate in an atmosphere of 230 ° C. for 30 minutes.
  • a light-shielding portion black matrix was formed.
  • Red pixel portion 80 parts of Pigment Red 269 (Permanent Carmine 3810 manufactured by Sanyo Dye Co., Ltd.), 800 parts of sodium chloride, and 90 parts of diethylene glycol were charged in a dual-arm kneader and kneaded at 80 ° C. for 8 hours.
  • the obtained kneaded product was put into 5 liters of warm water, stirred at 50 ° C. for 1 hour to form a slurry, filtered and washed with water, and then dried at 80 ° C. for 14 hours to obtain a red pigment (1).
  • a red pigment dispersion liquid (1) was obtained in the same manner except that the Pc pigment (1) of Production Example 1-1 was changed to the red pigment (1).
  • the following materials were stirred and mixed at room temperature to prepare a curable coloring composition.
  • the red pigment dispersion (1) and the yellow pigment dispersion (1) were mixed so that the blending ratio (mass ratio) of the red pigment dispersion (1) / yellow pigment dispersion (1) was 53/47.
  • the curable coloring composition was applied on a glass substrate on which a light-shielding portion was formed with a spin coater, and dried at 70 ° C. for 20 minutes to form a coating film.
  • a photomask is placed at a distance of 100 ⁇ m from the coating film, exposed to an ultra-high pressure mercury lamp, developed with a 5% sodium carbonate aqueous solution, only the uncured portion of the coating film is removed, and then the substrate is heated at 230 ° C.
  • the RCF was formed by heat treatment by leaving it in an atmosphere for 20 minutes.
  • the blending ratio of the red pigment dispersion liquid (1) / yellow pigment dispersion liquid (1) and the film thickness of the coating film are the luminosity of the coating film (Olympus microscope MX-50 and Olympus microscope MX-50) when the light source LED + QD is used.
  • GCF green pixel part
  • the Pc pigment dispersion (1) and the yellow pigment dispersion (2) are mixed with the Pc pigment dispersion (1) / yellow pigment.
  • GCF was obtained in the same manner as RCF except that the dispersion liquid (2) was mixed so that the blending ratio (mass ratio) was 65/35.
  • the blending ratio of the Pc pigment dispersion liquid (1) / yellow pigment dispersion liquid (2) and the film thickness of the coating film are the luminosity of the coating film (Olympus microscope MX-50 and Olympus microscope MX-50) when the light source LED + QD is used.
  • a xanthene dye (hereinafter, also referred to as “dye (1)”) was synthesized according to [Synthesis Example 6: Synthesis of Dye A6] of JP-A-2010-254964.
  • a dye dispersion (1) was obtained in the same manner except that the Pc pigment (1) of Production Example 1-1 was changed to the dye (1). Instead of mixing the red pigment dispersion (1) and the yellow pigment dispersion (1), the Pc pigment dispersion (15) and the dye dispersion (1) are mixed with the Pc pigment dispersion (15) / dye dispersion.
  • BCF was obtained in the same manner as RCF except that the mixture was mixed so that the compounding ratio (mass ratio) of (1) was 76/24.
  • a color filter having red, green, and blue color pixel portions was obtained.
  • the area of each color pixel portion was finely adjusted.
  • Example 43 The evaluation display device is similarly changed except that the compounding ratio (mass ratio) of the Pc pigment dispersion liquid (1) / yellow pigment dispersion liquid (2) in the formation of GCF of Example 42 is changed to 83/17.
  • the film thickness of the coating film was adjusted by adjusting the spin rotation speed at the time of spin coating.
  • the white luminance Y at (x, y) (0.3127, 0.3290) was calculated by the additive color mixing of the luminance Y of each color pixel portion. The results are shown in Table 13.
  • Example 44 The evaluation display device is similarly changed except that the compounding ratio (mass ratio) of the Pc pigment dispersion liquid (1) / yellow pigment dispersion liquid (2) in the formation of GCF of Example 42 is changed to 76/24.
  • the film thickness of the coating film was adjusted by adjusting the spin rotation speed at the time of spin coating.
  • the white luminance Y at (x, y) (0.3127, 0.3290) was calculated by the additive color mixing of the luminance Y of each color pixel portion. The results are shown in Table 13.
  • Example 45 The evaluation display device is similarly changed except that the blending ratio (mass ratio) of the Pc pigment dispersion liquid (1) / yellow pigment dispersion liquid (2) in the formation of GCF of Example 42 is changed to 63/37.
  • the film thickness of the coating film was adjusted by adjusting the spin rotation speed at the time of spin coating.
  • the white luminance Y at (x, y) (0.3127, 0.3290) was calculated by the additive color mixing of the luminance Y of each color pixel portion. The results are shown in Table 13.
  • Example 46 The evaluation display device is similarly changed except that the compounding ratio (mass ratio) of the Pc pigment dispersion liquid (1) / yellow pigment dispersion liquid (2) in the formation of GCF of Example 42 is changed to 74/26.
  • the film thickness of the coating film was adjusted by adjusting the spin rotation speed at the time of spin coating.
  • the white luminance Y at (x, y) (0.3127, 0.3290) was calculated by the additive color mixing of the luminance Y of each color pixel portion. The results are shown in Table 13.
  • Example 47 The evaluation display device is similarly changed except that the compounding ratio (mass ratio) of the Pc pigment dispersion liquid (1) / yellow pigment dispersion liquid (2) in the formation of GCF of Example 42 is changed to 48/52.
  • the film thickness of the coating film was adjusted by adjusting the spin rotation speed at the time of spin coating.
  • the white luminance Y at (x, y) (0.3127, 0.3290) was calculated by the additive color mixing of the luminance Y of each color pixel portion. The results are shown in Table 13.
  • Example 48 The evaluation display device is similarly changed except that the blending ratio (mass ratio) of the Pc pigment dispersion liquid (1) / yellow pigment dispersion liquid (2) in the formation of GCF of Example 42 is changed to 55/45.
  • the film thickness of the coating film was adjusted by adjusting the spin rotation speed at the time of spin coating.
  • the white luminance Y at (x, y) (0.3127, 0.3290) was calculated by the additive color mixing of the luminance Y of each color pixel portion. The results are shown in Table 13.
  • Comparative Example 27 An evaluation display device was obtained in the same manner except that the yellow pigment dispersion liquid (2) in the formation of GCF of Example 42 was changed to the yellow pigment dispersion liquid (1).
  • the white luminance Y at (x, y) (0.3127, 0.3290) was calculated by the additive color mixing of the luminance Y of each color pixel portion. The results are shown in Table 13.
  • 1 Liquid crystal display (display device), 2 ... Light source, 3 ... First polarizing layer, 4 ... First substrate, 5 ... First electrode, 6 ... Liquid crystal layer, 7 ... Second electrode, 8 ... Second polarizing layer, 9 ... color filter, 9a ... red pixel part, 9b ... green pixel part, 9c ... blue pixel part, 9d ... shading part, 10 ... second substrate, L ... light from light source

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Filters (AREA)

Abstract

本発明は、光源と、少なくとも緑色画素部を有し、前記光源からの光の色を変換するカラーフィルタであって、 前記光源における光が、480~580nmにおけるピーク波長が500~560nmにあり、532nmの強度(I532)に対する480nmの強度(I480)が1.1以下であり、550nmの強度(I550)に対する480nmの強度(I480)が0.9以下であり、 前記光源を使用して測色した時のCIEのXYZ表色系において、0.140≦色度x≦0.200、0.600≦色度y≦0.780を表示でき、 前記緑色画素部における緑色画素が、少なくともシアン色色材および黄色色材を含有し、緑色画素におけるピーク波長が500nm~520nmの範囲内にある、カラーフィルタである。

Description

カラーフィルタ及び表示装置
 本発明は、カラーフィルタ及び表示装置に関する。
 液晶表示装置等の表示装置では、赤色、緑色及び青色の各色画素部を有するカラーフィルタによって光源からの光の色が変換され、画像が表示される。このような表示装置に対しては、色再現性に関する種々の規格が存在し、それぞれの規格に応じて所定の色度で色を表示できることが求められる。したがって、表示装置に用いられるカラーフィルタも、光源からの光を規格に応じた色度の光に変換する必要がある。
 カラーフィルタにおける緑色画素部の着色剤に対しては、(1)高輝度化および(2)高色再現化の要求がある。
(1)高輝度化を達成するには、バックライトに対する透過率の高い顔料を選択することが重要であり、ピグメントグリーン58が主顔料として使用される。現行のディスプレイは、sRGB規格(緑色画素は(x、y)=(0.300,0.600))で輝度が高くなるように設計されており、バックライトとしてLED-YAGが広く使用されている。(2)高色再現化を達成するには、鮮やかな色表示が可能な顔料が必要になる。ピグメントグリーン7、ピグメントイエロー185を含有する緑色感光性樹脂組成物を用いて緑色画素を形成し、高色再現を達成する提案がなされているが、ピグメントグリーン7は透過率が低いため、得られるディスプレイの輝度が低い。新規高色再現顔料としてピグメントグリーン59があり、同じ膜厚のカラーフィルタを作製した場合で比較すると、ピグメントグリーン7よりもピグメントグリーン59を用いた方が高輝度となる。高色再現ディスプレイの規格(AdobeRGBや、DCI-P3など)をカバーする為に、カラーフィルタの膜厚を厚くするという設計もあるが、露光工程でカラーフィルタを十分に硬化できないなどの課題が生じるため、鮮やかな色表示が可能な顔料を使用するのが好ましい。以上の理由から、高輝度ディスプレイではピグメントグリーン58が使用され、高色再現ディスプレイではピグメントグリーン59が使用されている。上記のようなカラーフィルタについては、例えば下記特許文献1-3に記載がある。
特開2012-123302号公報 特開2006-045399号公報 国際公開第2015/118720号パンフレット
 近年は、従来のAdobeRGBやDCI-P3よりも鮮やかな色規格としてBT2020が注目されている。BT2020では、532nmの色光に相当する(x、y)=(0.170,0.797)で緑色画素が設計される。しかし、本発明者らが検討の結果、これをピグメントグリーン58や59を用いたカラーフィルタと、一般的な光源の組合せで達成するのは難しいことが分かった。BT2020では、カラーフィルタの緑色画素部としては532nm付近の光を透過し、それ以外の光を吸収する必要がある。近年の光源の開発は、ピーク波長を532nm付近に調整するという方向性で進んでいるものの、532nmよりも短波長側および長波長側に不要な光を含んだものであるので、不要な光を吸収するために適切なカラーフィルタを組合せる必要がある。
 上記のように新たな色規格であるBT2020に対応した緑色カラーフィルタとするためには、いかにして、BT2020規格の緑色画素の色座標(x、y)=(0.170,0.797)に近い色度座標を、薄膜で達成するかが課題である。また、ディスプレイの消費電力を抑えるという観点では、いかにして、(x、y)=(0.170,0.797)に近い色度座標で輝度を高く設計するかということも課題である。
 従って、本発明の課題は、新たな色規格であるBT2020において、緑色画素部の膜厚が薄く、輝度に優れたカラーフィルタを提供することである。
 本発明者らは、検討の結果、BT2020規格の緑色画素の色座標である(x、y)=(0.170,0.797)に近い色度として、0.140≦色度x≦0.200、0.600≦色度y≦0.780を本発明におけるターゲット色域とすることとした。
 そして、本発明者らは、ターゲット色域を表示するためのカラーフィルタの緑色画素部における透過光の色度を動かす因子として、色材、着色膜の膜厚、光源があることに着目し、色材におけるシアン色色材および黄色色材の種類とその配合比、さらに光源との組合せを選択することによって、上記の課題を解決できることを見出した。
 すなわち、本発明は以下のとおりである。
項1. 光源と、緑色画素部を有し、前記光源からの光の色を変換するカラーフィルタであって、
 前記光源における光が、480~580nmにおけるピーク波長が500~560nmにあり、532nmの強度(I532)に対する480nmの強度(I480)が1.1以下であり、550nmの強度(I550)に対する480nmの強度(I480)が0.9以下であり、
 前記光源を使用して測色した時のCIEのXYZ表色系において、0.140≦色度x≦0.200、0.600≦色度y≦0.780を表示でき、
 前記緑色画素部における緑色画素が、少なくともシアン色色材および黄色色材を含有し、緑色画素におけるピーク波長が500nm~520nmの範囲内にある、カラーフィルタ。
項2. 前記シアン色色材が、ピーク波長が460nm~510nmの範囲内にあり、ピーク波長の透過率を60%とした際の、波長550nmの透過率が7%以下である金属フタロシアニン顔料または無金属フタロシアニン顔料である、項1に記載のカラーフィルタ。
項3. 前記黄色色材が、C.I.ピグメントイエロー129、C.I.ピグメントイエロー138、C.I.ピグメントイエロー150、C.I.ピグメントイエロー151、C.I.ピグメントイエロー185、C.I.ピグメントイエロー12のスルホン化誘導体及び下記式(1)で表される化合物からなる群より選ばれる少なくとも一種である、項1又は2に記載のカラーフィルタ。
Figure JPOXMLDOC01-appb-C000002
[式(1)中、X~X16は各々独立に水素原子又はハロゲン原子であり、Y及びYは各々独立に水素原子又はハロゲン原子であり、Zは炭素数1~3のアルキレン基である。]
項4. 光源と、赤色画素部、緑色画素部及び青色画素部を有し、前記光源からの光の色を変換するカラーフィルタと、を備え、
 前記光の480~580nmにおけるピーク波長が500~560nmにあり、前記光の532nmの強度(I532)に対する480nmの強度(I480)が1.1以下であり、前記光の550nmの強度(I550)に対する480nmの強度(I480)が0.9以下であり、
 前記緑色画素部が、前記光源を使用して測色した時のCIEのXYZ表色系において、0.140≦色度x≦0.200、0.600≦色度y≦0.780を表示でき、
 前記緑色画素部における緑色画素が、少なくともシアン色色材および黄色色材を含有し、
緑色画素におけるピーク波長が500nm~520nmの範囲内にある、表示装置。
 本発明のカラーフィルタは、特定の光源と、特定のシアン色色材および黄色色材の組み合わせにおいて、BT2020に近いターゲット色域(0.140≦色度x≦0.200、0.600≦色度y≦0.780)を薄膜(3.4μmよりも薄い)で表示できる。また、本発明のカラーフィルタは、従来技術の色材の組み合わせよりも輝度を高くすることができる。
xy色度図において、BT2020に近い色域(0.140≦色度x≦0.200、0.600≦色度y≦0.780)を表すものである。 光源からの光のスペクトルの一例を示すグラフである。 本発明における緑色画素の一例の透過スペクトルである。 本発明におけるシアン色色材の一例の透過スペクトルである。 液晶表示装置の一例を示す模式断面図である。
[カラーフィルタ]
 本発明のカラーフィルタは、光源と少なくとも緑色画素部を有する。また、緑色画素部は、光源からの光の色を変換する機能を有する。通常、カラーフィルタは、緑色画素部以外に、赤色画素部と、青色画素部と、遮光部(ブラックマトリックス)とを有している。カラーフィルタにおいて、赤色画素部と、緑色画素部と、青色画素部とは、この順に繰り返し配置されており、各色画素部間は遮光部によって互いに隔てられている。
(光源)
 光源からの光のスペクトルの一例を図2に示す。図2は380~780nmの波長領域でのスペクトルを示している。図2に示されるスペクトルのうちA. LED+QDやC. LED KSFは、光源が青色LEDと赤色発光蛍光体と緑色発光蛍光体とを組み合わせて混色により白色光を得る白色LED光源である場合の例である。B. 緑色LEDは、光源が緑色LED単色である場合の例である。また、D. LEDYAG1やE. LEDYAG2は、光源が青色LEDとYAG系蛍光体との混色により白色光を得る白色LED光源である場合の例である。なお、光源からの光のスペクトルは、オリンパス製顕微鏡MX-50と、大塚電子製分光光度計MCPD-3000顕微分光測光装置を用いて、測定領域:380~780nm、測定間隔:1nmの条件で測定できる。
 本発明において光源は、発する光において480~580nmにおけるピーク波長が500~560nmであり、好ましくは500~540nmである。ピーク波長がこの範囲にある光源は、510~532nmの光が強いためBT2020において好ましい。また、発する光において532nmの強度(I532)に対する480nmの強度(I480)が1.1以下、好ましくは1.0以下である。また、550nmの強度(I550)に対する480nmの強度(I480)が0.9以下、好ましくは0.8以下である。光がこの強度を満たすことで、BT2020における輝度を向上することができる。
 また、本発明において光源からの光は、480~580nmにおけるピーク波長が500~560nmにあり、532nmの強度(I532)に対する480nmの強度(I480)が1.1以下であり、550nmの強度(I550)に対する480nmの強度(I480)が0.9以下である。なかでも光は、480~580nmにおけるピーク波長が510~550nmにあり、532nmの強度(I532)に対する480nmの強度(I480)が0.4以下であり、550nmの強度(I550)に対する480nmの強度(I480)が0.4以下であることが好ましい。特に光は、532nmの強度(I532)に対する480nmの強度(I480)が0.2以下であり、550nmの強度(I550)に対する480nmの強度(I480)が0.2以下であることが好ましい。
 上記の光を発する光源としては、上記以外に例えば、白色LED(発光ダイオード)光源、白色有機EL光源、白色無機EL光源、白色量子ドット光源等であってよい。光源が白色LED光源である場合、当該白色LED光源は、例えば、赤色LEDと緑色LEDと青色LEDとを組み合わせて混色により白色光を得る白色LED光源、青色LEDと赤色LEDと緑色蛍光体とを組み合わせて混色により白色光を得る白色LED光源、青色LEDと赤色発光蛍光体と緑色発光蛍光体とを組み合わせて混色により白色光を得る白色LED光源、青色LEDとYAG系蛍光体との混色により白色光を得る白色LED光源、紫外線LEDと赤色発光蛍光体と緑色発光蛍光体と青色発光蛍光体とを組み合わせて混色により白色光を得る白色LED光源、赤色レーザーを組み合わせた白色LED光源、量子ドット技術を利用した白色LED光源等が挙げられる。
 光源としては、図2に波長ごとの光の強度のスペクトルの一例を示すとおりである。このような光源としては、緑色LED(例えば、型番「NSPG336CS」日亜化学工業株式会社製)、LED KSF(例えば、型番「NFSW157J-HG」日亜化学工業株式会社製)、LEDYAG1(例えば、型番「NSSW410A」日亜化学工業株式会社製)などの市販品を使用することができる。
 本発明のカラーフィルタは、後述する色材を使用したとき、上記光源を使用して測色した時のCIE(国際照明委員会)のXYZ表色系において、BT2020に近い色度座標である、0.140≦色度x≦0.200、0.600≦色度y≦0.780を表示することができる。なお、XYZ表色系は、RGB(Red/Green/Blue)という色光の三原色の混色量を原理とし、通常、表示装置で表示色域を考慮する際に用いられる概念である。
(色材)
 本発明のカラーフィルタは、緑色画素部における緑色画素が、少なくともシアン色色材および黄色色材を含有し、緑色画素におけるピーク波長が500nm~520nmの範囲内にある。図3は、本発明のカラーフィルタにおける緑色画素の透過スペクトルの一例である。上述のとおり、BT2020規格の緑色画素の色座標である(x、y)=(0.170,0.797)に近い色度として、0.140≦色度x≦0.200、0.600≦色度y≦0.780を本発明におけるターゲット色域とすることとした。本発明では、当該ターゲット色域のなかでも(x,y)=(0.170,0.750)をターゲット色度座標とすることとした。具体的に図3は、β型亜鉛フタロシアニンとC.I.ピグメントイエロー185とを混合した顔料であって、光源をA. QD+LEDとした場合に、上記ターゲット色度座標である(x,y)=(0.170,0.750)を表示するときの着色膜の透過スペクトルである。本発明のカラーフィルタは、緑色画素を構成する色材として、シアン色色材と調色用の黄色色材とを含み、図3に示すとおり、これらの色材から構成される緑色画素における透過スペクトル(例えば、波長380~780nmの範囲)のピーク波長は500nm~520nmの範囲内にある。
 図4は、上記透過率の条件を満たすシアン色色材の波長400~600nmの範囲の透過スペクトルを示す。具体的に図4は、シアン色色材が(a)β型亜鉛フタロシアニン、(b)C.I.ピグメントグリーン7である場合の単色透過スペクトルである。上記シアン色色材は、透過スペクトルにおけるピーク波長が460nm~510nmの範囲内にあり、ピーク波長の透過率を60%とした際の、波長550nmの透過率が例えば7%以下(好ましくは5%以下)である。なかでもシアン色色材は、透過スペクトルにおける上記ピーク波長におけるピークの半値幅が90nm以下であり、波長550nmの透過率が5%以下であることが好ましい。特にシアン色色材は、透過スペクトルにおける上記ピーク波長におけるピークの半値幅が80nm以下であり、波長550nmの透過率が3%以下、510nmの透過率が10%以上であることが好ましい。さらにシアン色色材は、透過スペクトルにおけるピーク波長が480~500nmの範囲にあり、波長532nmの透過率が5%以上、510nmの透過率が30%以上であることが好ましい。このような透過率の条件を満たすことで、光源からの460nm~510nmの光を透過することができ、また、550nmの光を吸収することができる。このようにすることでXYZ表色系における色度xを小さくすることができ、結果としてBT2020の目標色度に近づけることができる。なお、透過スペクトルは、日立ハイテクサイエンス社製分光光度計U-3900などで測定することができる。
 このような透過スペクトルを有するシアン色色材としては、例えば、金属フタロシアニン顔料または無金属フタロシアニン顔料が挙げられる。金属フタロシアニン顔料としては、中心金属として、銅、亜鉛、マグネシウム、又はコバルトを有し、結晶構造としてα、β、又はε型を有するものが好ましい。このような金属フタロシアニン顔料としては、α型銅フタロシアニン(ピグメントブルー15)、β型銅フタロシアニン(ピグメントブルー15:3)、ε型銅フタロシアニン(ピグメントブルー15:6)、α型亜鉛フタロシアニン、β型亜鉛フタロシアニン、ε型亜鉛フタロシアニン、マグネシウムフタロシアニン、α型コバルトフタロシアニン、β型コバルトフタロシアニン、ε型コバルトフタロシアニンなどが挙げられる。また、無金属フタロシアニン顔料としては、ピグメントブルー16などが挙げられる。
 黄色色材は、黄色顔料及び黄色染料からなる群より選ばれる少なくとも一種であってよい。これらの黄色顔料及び黄色染料は、いずれも公知のものであってよい。
 黄色色材としては、黄色染料又は黄色顔料があり、黄色顔料としては、例えば、C.I.ピグメントイエロー1、2、3、4、5、6、10、11、12、13、14、15、16、17、18、20、24、31、32、34、35、35:1、36、36:1、37、37:1、40、42、43、53、55、60、61、62、63、65、73、74、77、81、83、86、93、94、95、97、98、100、101、104、106、108、109、110、113、114、115、116、117、118、119、120、123、125、126、127、128、129、137、138、139、147、150、151、152、153、154、155、156、161、162、164、166、167、168、169、170、171、172、173、174、175、176、177、179、180、181、182、185、187、188、193、194、198、199、213、214、218、219、220、221、231、233、C.I.ピグメントイエロー12のスルホン化誘導体が挙げられる。
 黄色染料としては、例えば、キノリン系染料、アゾ系染料、キノフタロン系染料、メチン系染料、クマリン系染料、イソインドリン系染料等であってよく、具体的には、C.I.アシッドイエロー1、3、23、36などの酸性染料の造塩化合物が挙げられる。
 また、黄色色材は、下記式(1)で表される化合物(キノフタロン顔料)を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000003
[式(1)中、X~X16は各々独立に水素原子又はハロゲン原子であり、Y及びYは各々独立に水素原子又はハロゲン原子であり、Zは炭素数1~3のアルキレン基である。]
 上記キノフタロン化合物は、キノフタロン骨格の二量化により、選択的な吸収・透過を示す。また、上記キノフタロン化合物は、連結基Zをスペーサーとしてキノフタロン骨格を二量化しており、これにより共役が切断され、過剰な赤味化が抑制されている。更に、上記キノフタロン化合物では、イミド構造の導入により分散性が向上されている。これらのことから、上記キノフタロン化合物によれば、優れた輝度と着色力とを示す顔料が得られる。
 式(1)中のハロゲン原子は、フッ素原子、塩素原子、臭素原子又はヨウ素原子であってよく、フッ素原子、塩素原子又は臭素原子であることが好ましく、塩素原子であることがより好ましい。
 式(1)中の炭素数1~3のアルキレン基の具体例としては、例えば、メチレン基、エチレン基(1,1-エタンジイル基又は1,2-エタンジイル基)、プロピレン基(1,1-プロパンジイル基、2,2-プロパンジイル基、1,2-プロパンジイル基又は1,3-プロパンジイル基)が好ましく、メチレン基、1,1-エタンジイル基、1,1-プロパンジイル基、2,2-プロパンジイル基がより好ましく、メチレン基が更に好ましい。
 上記キノフタロン化合物では、X~X16のうち、少なくとも1つがハロゲン原子であることが好ましく、2つ以上がハロゲン原子であることがより好ましい。X~X16にハロゲン原子が導入されることで、上記キノフタロン化合物の分散性が一層向上し、上述の効果がより顕著に得られる傾向がある。
 X~Xのうち、少なくとも1つがハロゲン原子であることが好ましく、2つ以上がハロゲン原子であることがより好ましく、全てがハロゲン原子であってもよい。X及びXのうち少なくとも1つがハロゲン原子であることが好ましく、X及びXがいずれもハロゲン原子であることがより好ましい。
 X~Xのうち、少なくとも1つがハロゲン原子であることが好ましく、2つ以上がハロゲン原子であることがより好ましく、全てがハロゲン原子であってもよい。X及びXのうち少なくとも1つがハロゲン原子であることが好ましく、X及びXがいずれもハロゲン原子であることがより好ましい。
 X~X12のうち、少なくとも1つがハロゲン原子であることが好ましく、2つ以上がハロゲン原子であることがより好ましく、全てがハロゲン原子であってもよい。X10及びX11のうち少なくとも1つがハロゲン原子であることが好ましく、X10及びX11がいずれもハロゲン原子であることがより好ましい。
 X13~X16のうち、少なくとも1つがハロゲン原子であることが好ましく、2つ以上がハロゲン原子であることがより好ましく、全てがハロゲン原子であってもよい。X14及びX15のうち少なくとも1つがハロゲン原子であることが好ましく、X14及びX15がいずれもハロゲン原子であることがより好ましい。
 Y及びYは、同一であっても異なっていても構わないが、上記キノフタロン化合物の合成が容易となる観点からは、互いに同一であることが好ましい。
 なお、式(1)の構造には、下記式(1-i)及び式(1-ii)等の構造の互変異性体が存在するが、上記キノフタロン化合物は、これらのいずれの構造であってもよい。
Figure JPOXMLDOC01-appb-C000004

式(1-i)及び式(1-ii)中、X~X16、Y、Y及びZは上述のとおりである。
 上記キノフタロン化合物の具体例を以下に挙げるが、上記キノフタロン化合物はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 上記キノフタロン化合物は、単独で用いてもよいし、2種類以上の化合物を適宜選択して併用してもよい。
 上記キノフタロン化合物の製造方法は、国際公開2018/159372(特願2018-560690)に記載のとおりである。
 黄色色材は、好ましくは黄色顔料であり、より好ましくは、上記式(1)で表される化合物(キノフタロン顔料)、C.I.ピグメントイエロー138、C.I.ピグメントイエロー185、C.I.ピグメントイエロー129、C.I.ピグメントイエロー150、C.I.ピグメントイエロー151、C.I.ピグメントイエロー173、及びC.I.ピグメントイエロー12のスルホン化誘導体からなる群より選ばれる少なくとも一種である。黄色色材としては、480nm以下の光源の光を吸収するため、480nm以下の吸収が大きいことが好ましい。480nm以下の光源の光を吸収することで、XYZ表色系における色度yを大きくすることができ、結果としてBT2020の目標色度に近づけることができる。
 緑色画素としては、上記シアン色色材、黄色色材以外の色材(例えば、シアン色色材以外の緑色色材や青色色材)を含んでいてもよい。
 上記緑色色材は、例えば、C.I.ピグメントグリーン7、10、36、37、58、59、62、63等であってよい。緑色染料は、トリアリールメタン系染料、フタロシアニン系染料、シアニン系染料などであってよく、具体的には、C.I.アシッドグリーン3、7、9、25、27などの酸性染料の造塩化合物であってよい。緑色色材は、好ましくは緑色顔料であり、より好ましくは、C.I.ピグメントグリーン58及びC.I.ピグメントグリーン59からなる群より選ばれる少なくとも一種である。
 上記青色色材は、例えば、C.I.ピグメントブルー1、1:2、9、14、15、15:1、15:2、15:4、16、22、60、64等であってよい。青色染料は、トリアリールメタン系染料、フタロシアニン系染料、シアニン系染料などであってよく、具体的には、C.I.アシッドブルー1、7、9、80、83、90、92、93、119、140、161、182などの酸性染料の造塩化合物やC.I.ベーシックブルー7、8、11、26の造塩化合物であってよい。
 緑色画素において、上記シアン色色材の割合は、緑色画素におけるピーク波長が500nm~520nmの範囲内となるような割合であれば特に制限されないが、緑色画素を構成する色材全量に対して、例えば10~90質量%、好ましくは20~80質量%である。また、黄色色材の割合は、緑色画素を構成する色材全量に対して、例えば10~90質量%、好ましくは20~80質量%である。
 緑色画素部の評価用着色膜(評価用サンプル)は、例えば以下の手順で作製される。
 シアン色色材を、分散剤、プロピレングリコールモノメチルエーテルアセテートなどの溶剤と共に、ペイントシェーカーで分散させて、分散液を得る。この分散液に、バインダー樹脂、プロピレングリコールモノメチルエーテルアセテートなどの溶剤を加えて、シェーカーで混合することで、シアン色着色組成物を得る。同様にして黄色色材を分散させて、黄色着色組成物を得る。シアン色組成物と黄色着色組成物と硬化性樹脂組成物とを混合した感光性樹脂組成物を調製し、この感光性樹脂組成物をソーダガラス基板上に滴下し、スピンコートした後、乾燥することで、ガラス基板上に評価用着色膜が形成される。なお、スピンコートする際のスピン回転数や滴下する感光性樹脂組成物の量を調整することにより、着色膜の厚さを調整することができる。
[表示装置]
 図5は、本発明の表示装置である液晶表示装置の一例を示す模式断面図である。図5に示すように、液晶表示装置1は、光源2と、第一の偏光層3と、第一の基板4と、第一の電極5と、液晶層6と、第二の電極7と、第二の偏光層8と、カラーフィルタ9と、第二の基板10とをこの順に備えている。
 第一の偏光層3及び第二の偏光層8は、公知の偏光層(偏光板)であってよく、例えば、二色性有機色素偏光板、塗布型偏光層、ワイヤーグリッド型偏光板、コレステリック液晶型偏光板等であってよい。第一の基板4及び第二の基板10は、例えばガラスで形成されていてよく、プラスチック等の柔軟性を有する材料で形成されていてもよい。
 第一の電極5及び第二の電極7の一方は画素電極であり、他方は共通電極である。例えば、第一の電極5が画素電極であり、第二の電極7が共通電極であってよい。第一の電極5及び第二の電極7は、例えばITO等の透明な材料で形成されていてよい。液晶層6は、公知の液晶組成物から構成されていてよい。第一の電極5と液晶層6との間、及び、第二の電極7と液晶層6との間には、配向膜が更に設けられていてもよい。
 蛍光体としては、この分野で用いられる蛍光体を適宜選択することができる。例えば、青色LED又は紫外線LEDで励起可能な蛍光体としては、セリウムで賦活されたイットリウム・アルミニウム・ガーネット系蛍光体(YAG:Ce)、セリウムで賦活されたルテチウム・アルミニウム・ガーネット系蛍光体(LAG:Ce)、ユウロピウム及び/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム系蛍光体(例えばCaO-Al-SiO:Eu)、ユウロピウムで賦活されたシリケート系蛍光体((Sr,Ba)2SiO:Eu)、サイアロン系蛍光体、CASN系蛍光体(CaAlSiN:Eu)、SCASN系蛍光体((Sr,Ca)AlSiN:Eu)等の窒化物系蛍光体、KSF系蛍光体(KSiF:Mn)、硫化物系蛍光体、量子ドット蛍光体等が挙げられる。
 より具体的には、例えば、サイアロン系蛍光体は、α型サイアロン蛍光体であってよい。α型サイアロン蛍光体は、例えば、窒化ケイ素(Si)、窒化アルミニウム(AlN)、炭酸カルシウム(CaCO)、酸化ユーロピウム(Eu)を所定のモル比で混合し、1気圧(0.1MPa)の窒素中において1700℃の温度で1時間保持してホットプレス法により焼成して製造される、Euイオンを固溶したα型サイアロン蛍光体であってよい。このα型サイアロン蛍光体は、450~500nmの青色光で励起されて550~600nmの黄色の光を発する蛍光体である。サイアロン系蛍光体は、例えば、β-Si構造を有するβ型サイアロン蛍光体であってもよい。このβ型サイアロン蛍光体は、近紫外~青色光で励起されることにより、500~600nmの緑色~橙色の光を発する蛍光体である。
 また、例えば、蛍光体は、JEM相からなる酸窒化物蛍光体であってもよい。この酸窒化物蛍光体は、近紫外~青色光で励起されて、460~510nmに発光波長ピークを有する光を発する。
 光源2からの光Lは、例えば、アクリル樹脂、ガラス等で形成された導光板(図示せず)を介して第一の偏光板3に入射する。光源2は、導光板の側面に配置されていてもよく(エッジバックライト構造)、導光板の主面に配置されていてもよい(直下バックライト構造)。光源2からの光Lは、第一の偏光板3に入射した後、第一の基板4、第一の電極5、液晶層6、第二の電極7、第二の偏光層8、カラーフィルタ9、及び第二の基板10をこの順に通過した後、液晶表示装置1の外部に出射される。このとき、光源2からの光Lの色が、カラーフィルタ9により変換される。
 カラーフィルタ9は、赤色画素部9aと、緑色画素部9bと、青色画素部9cと、遮光部9dとを有している。本発明の表示装置では、緑色画素部9bは、上記本発明のカラーフィルタ、つまり、光源と、緑色画素部を有し、前記光源からの光の色を変換するカラーフィルタであって、前記光源における光が、480~580nmにおけるピーク波長が500~560nmにあり、532nmの強度(I532)に対する480nmの強度(I480)が1.1以下であり、550nmの強度(I550)に対する480nmの強度(I480)が0.9以下であり、前記光源を使用して測色した時のCIEのXYZ表色系において、0.140≦色度x≦0.200、0.600≦色度y≦0.780を表示でき、前記緑色画素部における緑色画素が、少なくともシアン色色材および黄色色材を含有し、緑色画素におけるピーク波長が500nm~520nmの範囲内にある、カラーフィルタである。
 赤色画素部9aは、例えば、赤色色材を含む。赤色色材は、例えば、感光性樹脂組成物の硬化物中に分散している。赤色色材としては、600~660nmにおける透過率の平均値が60%以下である赤色色材が用いられる。赤色色材としては、上述の色材を使用することができる。
 青色画素部9cは、例えば、青色色材を含む。青色色材は、例えば、感光性樹脂組成物の硬化物中に分散している。青色色材としては、380~440nmにおける透過率の平均値が60%以下である青色色材が用いられる。青色色材としては、上述の色材を使用することができる。
 以下、実施例に基づいて本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。本実施例において「部」は「質量部」を表す。
 以下の参考製造例1-1及び1-2の方法でPc(フタロシアニン)顔料を作製し、製造例1-1~1-4に記載の方法でPc顔料の分散液を作製した。また、以下の製造例2-1及び2-2に記載の方法で黄色顔料の分散液を作製した。さらに、以下の参考製造例3に記載の方法アルカリ可溶性樹脂の合成し、参考製造例4に記載の方法で硬化性樹脂組成物を作製した。
参考製造例1-1
 特開2020-38368号公報の[製造例3-6]に従って、β型亜鉛フタロシアニン(以下「Pc顔料(1)」ともいう)を作製した。
参考製造例1-2
 特開2020-38368号公報の[製造例3-4]に従って、β型銅フタロシアニン(以下「Pc顔料(2)」ともいう)を作製した。
製造例1-1
 参考製造例1-1のPc顔料(1) 15gをポリビンに入れ、プロピレングリコールモノメチルエーテルアセテート75.6gと、DISPERBYK LPN21116(ビックケミー株式会社製)9.4gと、0.3-0.4mmΦのジルコンビーズを加え、ペイントコンディショナー(東洋精機株式会社製)で2時間分散し、Pc顔料分散液(1)を得た。
製造例1-2
 製造例1-1のPc顔料(1)をPc顔料(2)に変更した以外は同様にして、Pc顔料分散液(2)を得た。
製造例1-3
 製造例1-1のPc顔料(1)をC.I.ピグメントグリーン7(DIC株式会社製FASTOGEN Green S;以下「Pc顔料(3)」ともいう)に変更した以外は同様にして、Pc顔料分散液(3)を得た。
製造例1-4
 製造例1-1のPc顔料(1)をC.I.ピグメントグリーン59(DIC株式会社製FASTOGEN Green C100;以下「Pc顔料(4)」ともいう)に変更した以外は同様にして、Pc顔料分散液(4)を得た。
製造例2-1
 製造例1-1のPc顔料(1)をピグメントイエロー139(BASF社製パリオトールイエローD1819;以下「黄色顔料(1)」ともいう)に変更した以外は同様にして、黄色顔料分散液(1)を得た。
製造例2-2
 製造例1-1のPc顔料(1)をピグメントイエロー185(BASF社製パリオトールイエローD1155;以下「黄色顔料(2)」ともいう)に変更した以外は同様にして、黄色顔料分散液(2)を得た。
参考製造例3(アルカリ可溶性樹脂の合成)
 攪拌機、温度計、冷却管および窒素導入管を装備した4つ口フラスコに、プロピレングリコールモノメチルエーテルアセテート100gを仕込み、窒素気流下、攪拌しながら内温を110℃に昇温した。次いで、ベンジルメタクリレート80gとメタクリル酸20gからなる混合液と、プロピレングリコールモノメチルエーテルアセテート46g、t-アミルパーオキシ-2-エチルヘキサノエート1.5g及びt-アミルパーベンゾエート0.15gからなる混合液をそれぞれ4時間かけて滴下した。滴下終了後、内温を110℃に保持したまま8時間重合反応させた。反応終了後、プロピレングリコールモノメチルエーテルアセテートにて希釈し、不揮発分40%のアルカリ可溶性樹脂の樹脂溶液を得た。この樹脂の重量平均分子量は17,000であった。
参考製造例4(硬化性樹脂組成物の作製)
 下記の材料を室温で攪拌、混合して硬化性樹脂組成物を調製した。
参考製造例3で得たアルカリ可溶性樹脂(40質量%樹脂溶液):1.5g
光硬化型樹脂アロニックスM-402(東亞合成化学株式会社製):0.6g
光重合開始剤BASFジャパン株式会社製イルガキュア369:0.05g
レベリング剤DIC株式会社製F-554:0.0014g
プロピレングリコールモノメチルエーテルアセテート:2.2486g
 次に、上記で得たPc顔料及び黄色分散液、アルカリ可溶性樹脂及び硬化性樹脂組成物を用いて、以下の比較例1~4及び実施例1~2の方法で硬化性着色組成物を調製し、評価用ガラス基板上に硬化性着色組成物を塗布して膜を形成させ、評価用ガラス基板を得た。
比較例1
 Pc顔料分散液(1)と黄色顔料分散液(1)とを、Pc顔料分散液(1)/黄色顔料分散液(1)の配合比率(質量比)が69/31となるように混合した混合物2gを、参考製造例4で得た硬化性樹脂組成物1.1gとともに室温で攪拌、混合して硬化性着色組成物を調製した。
 その後、ガラス基板上に上記硬化性着色組成物をスピンコーターで塗布し、70℃で20分間乾燥させ塗布膜を形成した。この塗布膜を、超高圧水銀ランプで露光した後、5%の炭酸ナトリウム水溶液で現像し、その後、基板を230℃の雰囲気下に30分間放置することにより加熱処理を施して評価用ガラス基板を得た。
なお、Pc顔料分散液(1)/黄色顔料分散液(1)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例2
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(1)とを、Pc顔料分散液(2)/黄色顔料分散液(1)の配合比率(質量比)が70/30となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(1)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例3
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(3)と黄色顔料分散液(1)とを、Pc顔料分散液(3)/黄色顔料分散液(1)の配合比率(質量比)が94/6となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(3)/黄色顔料分散液(1)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例4
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(4)と黄色顔料分散液(1)とを、混合した以外は、比較例1と同様にして評価用ガラス基板の作成を試みた。Pc顔料分散液(4)/黄色顔料分散液(1)の配合比率及び塗布膜の膜厚を調整したが、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)を示すことはできなかった。
実施例1
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(2)とを、Pc顔料分散液(1)/黄色顔料分散液(2)の配合比率(質量比)が65/35となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例2
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(2)とを、Pc顔料分散液(2)/黄色顔料分散液(2)の配合比率(質量比)が66/34となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
 上記実施例1~2,比較例1~4で作製した評価用ガラス基板を使用して、以下に示す方法で膜厚、ピーク透過波長を測定した。結果を表1に示す。
<塗布膜の膜厚の測定>
 得られた塗布膜の厚さを株式会社日立ハイテクサイエンス製の白色干渉顕微鏡VS1330で測定した。なお、配合比率及び塗布膜の膜厚を調整しても、塗布膜の色度が(x,y)=(0.170,0.750)を示すことはできない場合は、「調色不可」と記載している。
<塗布膜のピーク透過波長の測定>
 得られた塗布膜の透過スペクトルを株式会社日立ハイテクサイエンス製の分光光度計U-3900で測定し、ピーク透過波長を確認した。なお、配合比率及び塗布膜の膜厚を調整しても、塗布膜の色度が(x,y)=(0.170,0.750)を示すことはできない場合は、「調色不可」と記載している。
Figure JPOXMLDOC01-appb-T000010
 上記表1のとおり、黄色顔料(1)を使用すると、(x,y)=(0.170,0.750)を示す透過スペクトルのピーク透過波長が520nm以上となり、膜厚は3.4μm以上となる。これに対し、黄色顔料(2)を使用すると、(x,y)=(0.170,0.750)を示す透過スペクトルのピーク透過波長が520nm未満となり、膜厚は3.4μm未満となる。BT2020付近で表示装置の色設計を行う場合には、特に薄膜化が要求されるため、透過スペクトルのピーク透過波長が520nm未満となるカラーフィルタを用いるのが好ましい。
 上記と同様に、以下の実施例3~8及び比較例5~6の方法で硬化性着色組成物を調製し、評価用ガラス基板上に硬化性着色組成物を塗布して膜を形成させ、評価用ガラス基板を得た。
実施例3
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(2)とを、Pc顔料分散液(1)/黄色顔料分散液(2)の配合比率(質量比)が65/35となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源緑色LEDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例4
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(2)とを、Pc顔料分散液(2)/黄色顔料分散液(2)の配合比率(質量比)が65/35となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源緑色LEDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例5
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(2)とを、Pc顔料分散液(1)/黄色顔料分散液(2)の配合比率(質量比)が50/50となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED KSFを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例6
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(2)とを、Pc顔料分散液(2)/黄色顔料分散液(2)の配合比率(質量比)が52/48となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED KSFを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例7
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(2)とを、Pc顔料分散液(1)/黄色顔料分散液(2)の配合比率(質量比)が35/65となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LEDYAG1を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例8
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(2)とを、Pc顔料分散液(2)/黄色顔料分散液(2)の配合比率(質量比)が36/64となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LEDYAG1を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例5
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(2)とを、Pc顔料分散液(1)/黄色顔料分散液(2)の配合比率(質量比)が22/78となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LEDYAG2を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例6
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(2)とを、Pc顔料分散液(2)/黄色顔料分散液(2)の配合比率(質量比)が24/76となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LEDYAG2を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
 上記と同様に、実施例3~8及び比較例5~6で作製した評価用ガラス基板を使用して、以下に示す方法で膜厚、ピーク透過波長を測定した(測定方法は上記と同様)。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000011
上記表2のとおり、黄色顔料(2)を使用して、(x,y)=(0.170,0.750)を示す透過スペクトルのピーク透過波長を520nm未満としても、光源LEDYAG2を用いると、膜厚は3.4μm以上となる。これに対し、黄色顔料(2)を使用して、(x,y)=(0.170,0.750)を示す透過スペクトルのピーク透過波長が520nm未満とし、光源を緑色LED、LED KSF、LEDYAG1とすると、膜厚は3.4μm未満となる。BT2020付近で表示装置の色設計を行う場合には、特に薄膜化が要求されるため、適切な光源を選択するのが好ましい。
 以下のとおり黄色顔料をC.I.ピグメントイエロー129に変更して、上記と同様に分散液を作製し、評価用ガラス基板を得た。
製造例2-3
 製造例1-1のPc顔料(1)をピグメントイエロー129(BASF社製イルガジンイエローL0800;以下「黄色顔料(3)」ともいう)に変更した以外は同様にして、黄色顔料分散液(3)を得た。
実施例9
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(3)とを、Pc顔料分散液(1)/黄色顔料分散液(3)の配合比率(質量比)が56/44となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(3)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例10
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(3)とを、Pc顔料分散液(2)/黄色顔料分散液(3)の配合比率(質量比)が57/43となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(3)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例11
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(3)とを、Pc顔料分散液(1)/黄色顔料分散液(3)の配合比率(質量比)が59/41となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(3)の配合比率及び塗布膜の膜厚は、光源緑色LEDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例12
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(3)とを、Pc顔料分散液(2)/黄色顔料分散液(3)の配合比率(質量比)が60/40となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(3)の配合比率及び塗布膜の膜厚は、光源緑色LEDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例13
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(3)とを、Pc顔料分散液(1)/黄色顔料分散液(3)の配合比率(質量比)が43/57となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(3)の配合比率及び塗布膜の膜厚は、光源LED KSFを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例14
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(3)とを、Pc顔料分散液(2)/黄色顔料分散液(3)の配合比率(質量比)が45/55となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(3)の配合比率及び塗布膜の膜厚は、光源LED KSFを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例15
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(3)とを、Pc顔料分散液(1)/黄色顔料分散液(3)の配合比率(質量比)が36/64となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(3)の配合比率及び塗布膜の膜厚は、光源LEDYAG1を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例16
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(3)とを、Pc顔料分散液(2)/黄色顔料分散液(3)の配合比率(質量比)が38/62となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(3)の配合比率及び塗布膜の膜厚は、光源LEDYAG1を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例7
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(3)とを、Pc顔料分散液(1)/黄色顔料分散液(3)の配合比率(質量比)が29/71となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(3)の配合比率及び塗布膜の膜厚は、光源LEDYAG2を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例8
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(3)とを、Pc顔料分散液(2)/黄色顔料分散液(3)の配合比率(質量比)が31/69となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(3)の配合比率及び塗布膜の膜厚は、光源LEDYAG2を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
 上記実施例9~16,比較例7~8で作製した評価用ガラス基板を使用して、以下に示す方法で膜厚、ピーク透過波長を測定した(測定方法は上記と同様)。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000012
 上記表3のとおり、黄色顔料(3)を使用して、(x,y)=(0.170,0.750)を示す透過スペクトルのピーク透過波長を520nm未満としても、光源LEDYAG2を用いると、膜厚は3.4μm以上となる。これに対し、黄色顔料(3)を使用して、(x,y)=(0.170,0.750)を示す透過スペクトルのピーク透過波長が520nm未満とし、光源をLED+QD、緑色LED、LED KSF、LED YAG1とすると、膜厚は3.4μm未満となる。BT2020付近で表示装置の色設計を行う場合には、特に薄膜化が要求されるため、適切な光源を選択するのが好ましい。
 さらに、以下のとおり黄色顔料をC.I.ピグメントイエロー138に変更して、同様に分散液を作製し、評価用ガラス基板を得た。
製造例2-4
 製造例1-1のPc顔料(1)をピグメントイエロー138(BASF社製パリオトールイエローK0961HD;以下「黄色顔料(4)」ともいう)に変更した以外は同様にして、黄色顔料分散液(4)を得た。
実施例17
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(4)とを、Pc顔料分散液(1)/黄色顔料分散液(4)の配合比率(質量比)が24/76となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(4)の配合比率及び塗布膜の膜厚は、光源緑色LEDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例18
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(4)とを、Pc顔料分散液(2)/黄色顔料分散液(4)の配合比率(質量比)が24/76となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(4)の配合比率及び塗布膜の膜厚は、光源緑色LEDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例9
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(4)とを、Pc顔料分散液(1)/黄色顔料分散液(4)の配合比率(質量比)が4/96となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(4)の配合比率及び塗布膜の膜厚は、光源LEDYAG2を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例10
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(4)とを、Pc顔料分散液(2)/黄色顔料分散液(4)の配合比率(質量比)が4/96となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(4)の配合比率及び塗布膜の膜厚は、光源LEDYAG2を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
 上記の実施例17~18,比較例9~10で作製した評価用ガラス基板を使用して、以下に示す方法で膜厚、ピーク透過波長を測定した(測定方法は上記と同様)。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000013
上記表4のとおり、黄色顔料(4)を使用して、(0.170,0.750)を示す透過スペクトルのピーク透過波長を520nm未満としても、光源LEDYAG2を用いると、膜厚は3.4μm以上となる。これに対し、黄色顔料(4)を使用して、(0.170,0.750)を示す透過スペクトルのピーク透過波長が520nm未満とし、光源を緑色LEDとすると、膜厚は3.4μm未満となる。BT2020付近で表示装置の色設計を行う場合には、特に薄膜化が要求されるため、適切な光源を選択するのが好ましい。
 さらに、以下のとおり黄色顔料をC.I.ピグメントイエロー150に変更して、同様に分散液を作製し、評価用ガラス基板を得た。
製造例2-5
 製造例1-1のPc顔料(1)をピグメントイエロー150(ランクセス社製E4GNGT;以下「黄色顔料(5)」ともいう)に変更した以外は同様にして、黄色顔料分散液(5)を得た。
実施例19
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(5)とを、Pc顔料分散液(1)/黄色顔料分散液(5)の配合比率(質量比)が32/68となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(5)の配合比率及び塗布膜の膜厚は、光源緑色LEDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例20
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(5)とを、Pc顔料分散液(2)/黄色顔料分散液(5)の配合比率(質量比)が32/68となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(5)の配合比率及び塗布膜の膜厚は、光源緑色LEDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例11
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(5)とを、Pc顔料分散液(1)/黄色顔料分散液(5)の配合比率(質量比)が9/91となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(5)の配合比率及び塗布膜の膜厚は、光源LEDYAG2を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例12
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(5)とを、Pc顔料分散液(2)/黄色顔料分散液(5)の配合比率(質量比)が10/90となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(5)の配合比率及び塗布膜の膜厚は、光源LEDYAG2を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
 上記と同様に実施例19~20及び比較例11~12で作製した評価用ガラス基板を使用して、以下に示す方法で膜厚、ピーク透過波長を測定した(測定方法は上記と同様)。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000014
 上記表5のとおり、黄色顔料(5)を使用して、(0.170,0.750)を示す透過スペクトルのピーク透過波長を520nm未満としても、光源LEDYAG2を用いると、膜厚は3.4μm以上となる。これに対し、黄色顔料(5)を使用して、(0.170,0.750)を示す透過スペクトルのピーク透過波長が520nm未満とし、光源を緑色LEDとすると、膜厚は3.4μm未満となる。BT2020付近で表示装置の色設計を行う場合には、特に薄膜化が要求されるため、適切な光源を選択するのが好ましい。
 さらに、以下のとおり黄色顔料を国際公開2018/159372(特願2018-560690)に記載のキノフタロン化合物(D)に変更して、同様に分散液を作製し、評価用ガラス基板を得た。
製造例2-6
 製造例1-1のPc顔料(1)を国際公開2018/159372(特願2018-560690)に記載のキノフタロン化合物(D)(以下「黄色顔料(6)」ともいう)に変更した以外は同様にして、黄色顔料分散液(6)を得た。
実施例21
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(6)とを、Pc顔料分散液(1)/黄色顔料分散液(6)の配合比率(質量比)が57/43となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(6)の配合比率及び塗布膜の膜厚は、光源緑色LEDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例22
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(6)とを、Pc顔料分散液(2)/黄色顔料分散液(6)の配合比率(質量比)が58/42となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(6)の配合比率及び塗布膜の膜厚は、光源緑色LEDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例13
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(6)とを、Pc顔料分散液(1)/黄色顔料分散液(6)の配合比率(質量比)が20/80となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(6)の配合比率及び塗布膜の膜厚は、光源LEDYAG2を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例14
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(6)とを、Pc顔料分散液(2)/黄色顔料分散液(6)の配合比率(質量比)が22/78となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(6)の配合比率及び塗布膜の膜厚は、光源LEDYAG2を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
 上記と同様に実施例21~22及び比較例13~14で作製した評価用ガラス基板を使用して、以下に示す方法で膜厚、ピーク透過波長を測定した(測定方法は上記と同様)。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000015
 上記表6のとおり、黄色顔料(6)を使用して、(0.170,0.750)を示す透過スペクトルのピーク透過波長を520nm未満としても、光源LEDYAG2を用いると、膜厚は3.4μm以上となる。これに対し、黄色顔料(6)を使用して、(0.170,0.750)を示す透過スペクトルのピーク透過波長が520nm未満とし、光源を緑色LEDとすると、膜厚は3.4μm未満となる。BT2020付近で表示装置の色設計を行う場合には、特に薄膜化が要求されるため、適切な光源を選択するのが好ましい。
 さらに、以下のとおり黄色顔料を特開2014-228682号公報に記載のジスアゾ系化合物C2(C.I.ピグメントイエロー12のスルホン化誘導体)に変更して、同様に分散液を作製し、評価用ガラス基板を得た。
製造例2-7
 製造例1-1のPc顔料(1)を特開2014-228682号公報に記載のジスアゾ系化合物C2(C.I.ピグメントイエロー12のスルホン化誘導体;以下「黄色顔料(7)」ともいう)に変更した以外は同様にして、黄色顔料分散液(7)を得た。
実施例23
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(7)とを、Pc顔料分散液(1)/黄色顔料分散液(7)の配合比率(質量比)が48/52となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(7)の配合比率及び塗布膜の膜厚は、光源緑色LEDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例24
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(7)とを、Pc顔料分散液(2)/黄色顔料分散液(7)の配合比率(質量比)が49/51となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(7)の配合比率及び塗布膜の膜厚は、光源緑色LEDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例15
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(7)とを、Pc顔料分散液(1)/黄色顔料分散液(7)の配合比率(質量比)が25/75となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(7)の配合比率及び塗布膜の膜厚は、光源LEDYAG2を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例16
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(7)とを、Pc顔料分散液(2)/黄色顔料分散液(7)の配合比率(質量比)が27/73となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(7)の配合比率及び塗布膜の膜厚は、光源LEDYAG2を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
 上記と同様に実施例23~24及び比較例15~16で作製した評価用ガラス基板を使用して、以下に示す方法で膜厚、ピーク透過波長を測定した(測定方法は上記と同様)。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000016
 上記表7のとおり、黄色顔料(7)を使用して、光源LEDYAG2を用いると、膜厚は3.4μm以上となる。これに対し、黄色顔料(7)を使用して、(0.170,0.750)を示す透過スペクトルのピーク透過波長が520nm未満とし、光源を緑色LEDとすると、膜厚は3.4μm未満となる。BT2020付近で表示装置の色設計を行う場合には、特に薄膜化が要求されるため、適切な光源を選択するのが好ましい。
 さらに、以下のとおり黄色顔料をC.I.ピグメントイエロー151に変更して、同様に分散液を作製し、評価用ガラス基板を得た。
製造例2-8
 製造例1-1のPc顔料(1)をピグメントイエロー151(DIC社製SYMULER FAST YELLOW 4GO;以下「黄色顔料(8)」ともいう)に変更した以外は同様にして、黄色顔料分散液(8)を得た。
実施例25
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(8)とを、Pc顔料分散液(1)/黄色顔料分散液(8)の配合比率(質量比)が46/54となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(8)の配合比率及び塗布膜の膜厚は、光源緑色LEDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例26
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(8)とを、Pc顔料分散液(2)/黄色顔料分散液(8)の配合比率(質量比)が47/53となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(8)の配合比率及び塗布膜の膜厚は、光源緑色LEDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例17
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(8)とを、Pc顔料分散液(1)/黄色顔料分散液(8)の配合比率(質量比)が25/75となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(8)の配合比率及び塗布膜の膜厚は、光源LEDYAG2を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例18
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(8)とを、Pc顔料分散液(2)/黄色顔料分散液(8)の配合比率(質量比)が27/73となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(8)の配合比率及び塗布膜の膜厚は、光源LEDYAG2を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
 上記と同様に実施例25~26及び比較例17~18で作製した評価用ガラス基板を使用して、以下に示す方法で膜厚、ピーク透過波長を測定した(測定方法は上記と同様)。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000017
 上記表8のとおり、黄色顔料(8)を使用して、光源LEDYAG2を用いると、膜厚は3.4μm以上となる。これに対し、黄色顔料(8)を使用して、(0.170,0.750)を示す透過スペクトルのピーク透過波長が520nm未満とし、光源を緑色LEDとすると、膜厚は3.4μm未満となる。BT2020付近で表示装置の色設計を行う場合には、特に薄膜化が要求されるため、適切な光源を選択するのが好ましい。
 さらに、以下のとおり黄色顔料をC.I.ピグメントイエロー173に変更して、同様に分散液を作製し、評価用ガラス基板を得た。
製造例2-9
 製造例1-1のPc顔料(1)をピグメントイエロー173(クラリアント社製Hostaperm Yellow 6GL;以下「黄色顔料(9)」ともいう)に変更した以外は同様にして、黄色顔料分散液(9)を得た。
実施例27
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(9)とを、Pc顔料分散液(1)/黄色顔料分散液(9)の配合比率(質量比)が40/60となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(9)の配合比率及び塗布膜の膜厚は、光源緑色LEDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例28
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(9)とを、Pc顔料分散液(2)/黄色顔料分散液(9)の配合比率(質量比)が41/59となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(9)の配合比率及び塗布膜の膜厚は、光源緑色LEDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例19
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(9)とを、Pc顔料分散液(1)/黄色顔料分散液(9)の配合比率(質量比)が20/80となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(9)の配合比率及び塗布膜の膜厚は、光源LEDYAG2を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例20
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(9)とを、Pc顔料分散液(2)/黄色顔料分散液(9)の配合比率(質量比)が22/78となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(9)の配合比率及び塗布膜の膜厚は、光源LEDYAG2を用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
 上記と同様に実施例27~28及び比較例19~20で作製した評価用ガラス基板を使用して、以下に示す方法で膜厚、ピーク透過波長を測定した(測定方法は上記と同様)。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000018
 上記表9のとおり、黄色顔料(9)を使用して、光源LEDYAG2を用いると、膜厚は3.4μm以上となる。これに対し、黄色顔料(9)を使用して、(0.170,0.750)を示す透過スペクトルのピーク透過波長が520nm未満とし、光源を緑色LEDとすると、膜厚は3.4μm未満となる。BT2020付近で表示装置の色設計を行う場合には、特に薄膜化が要求されるため、適切な光源を選択するのが好ましい。
 以下の参考製造例1-3~1-10の方法で顔料を作製し、以下の製造例1-5~1-17記載の方法で顔料分散液を作製した。そして、以下の実施例29~41及び比較例21~26に記載の方法で硬化性着色組成物を調製し、評価用ガラス基板上に硬化性着色組成物を塗布して膜を形成させ、評価用ガラス基板を得た。
参考製造例1-3
 特開2020-38368号公報の[製造例3-1]に従って、α型銅フタロシアニン(以下「Pc顔料(5)」ともいう)を作製した。
参考製造例1-4
 特開2020-38368号公報の[製造例3-5]に従って、α型亜鉛フタロシアニン(以下「Pc顔料(7)」ともいう)を作製した。
参考製造例1-5
 特開2004-252443号公報のカラーフィルタ用α型コバルトフタロシアニン顔料(6)と同様にして、α型コバルトフタロシアニン顔料(以下「Pc顔料(10)」ともいう)を作製した。
参考製造例1-6
 特開2004-252443号公報のカラーフィルタ用β型コバルトフタロシアニン顔料(5)と同様にして、α型コバルトフタロシアニン顔料(以下「Pc顔料(11)」ともいう)を作製した。
参考製造例1-7
 特開2004-252443号公報のカラーフィルタ用ε型コバルトフタロシアニン顔料組成物(2)と同様にして、ε型コバルトフタロシアニン顔料(以下「Pc顔料(12)」ともいう)を作製した。
参考製造例1-8
 特開2020-38368号公報の[製造例3-8]と同様にして、ハロゲン化亜鉛フタロシアニン顔料A(以下「Pc顔料(15)」ともいう)を作製した。ハロゲン化亜鉛フタロシアニン顔料Aについて、株式会社リガク製のZSX100Eを使用した蛍光X線分析を行い、亜鉛原子、塩素原子及び臭素原子の質量比から、亜鉛原子1個あたりの相対値として、平均塩素原子数及び平均臭素原子数を算出した。なお、ハロゲン化亜鉛フタロシアニン顔料1gを加圧成型(25mmφ)したものを測定試料とし、測定径20mmφ、真空雰囲気下にて測定した。その結果、ハロゲン化亜鉛フタロシアニン顔料Aでは、1分子中のハロゲン原子数が平均10.0個であり、そのうち臭素原子数が平均6.9個、塩素原子数が平均3.1個であった。
参考製造例1-9
 特開2018-36520号公報の製造例10の顔料10と同様にして、ハロゲン化亜鉛フタロシアニン顔料B(以下「Pc顔料(16)」ともいう)を作製した。ハロゲン化亜鉛フタロシアニン顔料Bについて、参考製造例1-8と同様にして、平均塩素原子数及び平均臭素原子数を算出した。ハロゲン化亜鉛フタロシアニン顔料Bでは、1分子中のハロゲン原子数が平均7.3個であり、そのうち臭素原子数が平均2.0個、塩素原子数が平均5.3個であった。
参考製造例1-10
 1Lフラスコに、塩化スルフリル(富士フイルム和光純薬株式会社製)190g、塩化アルミニウム(関東化学株式会社製)315g、塩化ナトリウム(東京化成工業株式会社製)43g、亜鉛フタロシアニン(DIC株式会社製)84g及び臭素(富士フイルム和光純薬株式会社製)185gを仕込んだ。55℃まで昇温し、得られた混合物を水に取り出した後、ろ過し、水洗し、乾燥することによりハロゲン化亜鉛フタロシアニンを得た。ハロゲン化亜鉛フタロシアニン 40g、粉砕した塩化ナトリウム400g及び1,3-ブタンジオール(融点:-54℃) 63gを双腕型ニーダーに仕込み、冷却水循環装置を-20℃に設定して20時間混練した。混練後の混合物を80℃の水2kgに取り出し、1時間攪拌した。その後、ろ過し、湯洗し、乾燥し、粉砕することにより、シアン色顔料として、ハロゲン化亜鉛フタロシアニン顔料C(以下「Pc顔料(17)」ともいう)を作製した。ハロゲン化亜鉛フタロシアニン顔料Cについて、参考製造例1-8と同様にして、平均塩素原子数及び平均臭素原子数を算出した。ハロゲン化亜鉛フタロシアニン顔料Cでは、1分子中のハロゲン原子数が平均8.1個であり、そのうち臭素原子数が平均7.9個、塩素原子数が平均0.2個であった。
製造例1-5
 製造例1-1のPc顔料(1)をPc顔料(5)に変更した以外は同様にして、Pc顔料分散液(5)を得た。
製造例1-6
 製造例1-1のPc顔料(1)をピグメントブルー16(東京化成工業株式会社製、製品コード: P0355;以下「Pc顔料(6)」ともいう)に変更した以外は同様にして、Pc顔料分散液(6)を得た。
製造例1-7
 製造例1-1のPc顔料(1)をPc顔料(7)に変更した以外は同様にして、Pc顔料分散液(7)を得た。
製造例1-8
 製造例1-1のPc顔料(1)をピグメントブルー15:6(DIC株式会社製FASTOGEN Blue A540;以下「Pc顔料(8)」ともいう)に変更した以外は同様にして、Pc顔料分散液(8)を得た。
製造例1-9
 製造例1-1のPc顔料(1)をフタロシアニンマグネシウム(II)(東京化成工業株式会社製、製品コード: P1018;以下「Pc顔料(9)」ともいう)に変更した以外は同様にして、Pc顔料分散液(9)を得た。
製造例1-10
 製造例1-1のPc顔料(1)をPc顔料(10)に変更した以外は同様にして、Pc顔料分散液(10)を得た。
製造例1-11
 製造例1-1のPc顔料(1)をPc顔料(11)に変更した以外は同様にして、Pc顔料分散液(11)を得た。
製造例1-12
 製造例1-1のPc顔料(1)をPc顔料(12)に変更した以外は同様にして、Pc顔料分散液(12)を得た。
製造例1-13
 製造例1-1のPc顔料(1)をクロロアルミニウムフタロシアニン(東京化成工業株式会社製、製品コード: C1167;以下「Pc顔料(13)」ともいう)に変更した以外は同様にして、Pc顔料分散液(13)を得た。
製造例1-14
 製造例1-1のPc顔料(1)をフタロシアニン鉄(II)(東京化成工業株式会社製、製品コード: P0774;以下「Pc顔料(14)」ともいう)に変更した以外は同様にして、Pc顔料分散液(14)を得た。
製造例1-15
 製造例1-1のPc顔料(1)をPc顔料(15)に変更した以外は同様にして、Pc顔料分散液(15)を得た。
製造例1-16
 製造例1-1のPc顔料(1)をPc顔料(16)に変更した以外は同様にして、Pc顔料分散液(16)を得た。
製造例1-17
 製造例1-1のPc顔料(1)をPc顔料(17)に変更した以外は同様にして、Pc顔料分散液(17)を得た。
実施例29
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(5)と黄色顔料分散液(2)とを、Pc顔料分散液(5)/黄色顔料分散液(2)の配合比率(質量比)が55/45となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(5)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例30
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(6)と黄色顔料分散液(2)とを、Pc顔料分散液(6)/黄色顔料分散液(2)の配合比率(質量比)が53/47となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(6)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例31
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(7)と黄色顔料分散液(2)とを、Pc顔料分散液(7)/黄色顔料分散液(2)の配合比率(質量比)が60/40となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(7)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例32
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(8)と黄色顔料分散液(2)とを、Pc顔料分散液(8)/黄色顔料分散液(2)の配合比率(質量比)が57/43となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(8)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例33
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(9)と黄色顔料分散液(2)とを、Pc顔料分散液(9)/黄色顔料分散液(2)の配合比率(質量比)が65/35となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(9)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例34
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(10)と黄色顔料分散液(2)とを、Pc顔料分散液(10)/黄色顔料分散液(2)の配合比率(質量比)が56/44となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(10)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例35
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(11)と黄色顔料分散液(2)とを、Pc顔料分散液(11)/黄色顔料分散液(2)の配合比率(質量比)が62/38となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(11)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例36
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(12)と黄色顔料分散液(2)とを、Pc顔料分散液(12)/黄色顔料分散液(2)の配合比率(質量比)が56/44となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(12)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例37
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(15)と黄色顔料分散液(2)とを、Pc顔料分散液(15)/黄色顔料分散液(2)の配合比率(質量比)が88/12となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(15)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例38
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(16)と黄色顔料分散液(2)とを、Pc顔料分散液(16)/黄色顔料分散液(2)の配合比率(質量比)が72/28となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(16)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例39
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(17)と黄色顔料分散液(2)とを、Pc顔料分散液(17)/黄色顔料分散液(2)の配合比率(質量比)が89/11となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(17)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例40
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(3)とを、Pc顔料分散液(1)/黄色顔料分散液(3)の配合比率(質量比)が56/44となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(3)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
実施例41
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(2)と黄色顔料分散液(3)とを、Pc顔料分散液(2)/黄色顔料分散液(3)の配合比率(質量比)が57/43となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(2)/黄色顔料分散液(3)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例21
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(13)と黄色顔料分散液(2)とを、Pc顔料分散液(13)/黄色顔料分散液(2)の配合比率(質量比)が77/23となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(13)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例22
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(14)と黄色顔料分散液(2)とを、Pc顔料分散液(14)/黄色顔料分散液(2)の配合比率(質量比)が73/27となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(14)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例23
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(3)と黄色顔料分散液(2)とを、Pc顔料分散液(3)/黄色顔料分散液(2)の配合比率(質量比)が93/7となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(3)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例24
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(13)と黄色顔料分散液(3)とを、Pc顔料分散液(13)/黄色顔料分散液(3)の配合比率(質量比)が70/30となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(13)/黄色顔料分散液(3)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例25
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(14)と黄色顔料分散液(3)とを、Pc顔料分散液(14)/黄色顔料分散液(3)の配合比率(質量比)が66/34となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(14)/黄色顔料分散液(3)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
比較例26
 比較例1のPc顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(3)と黄色顔料分散液(3)とを、Pc顔料分散液(3)/黄色顔料分散液(3)の配合比率(質量比)が90/10となるように混合した以外は、比較例1と同様にして評価用ガラス基板を得た。なお、Pc顔料分散液(3)/黄色顔料分散液(3)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(日立ハイテクサイエンス社製分光光度計U-3900を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
 上記実施例1~2,29~41,比較例1~2,21~26で作製した評価用ガラス基板を使用して、膜厚、ピーク透過波長を測定した(測定方法は上記と同様)。また、得られた塗布膜の輝度は、株式会社日立ハイテクサイエンス製の分光光度計U-3900で測定した。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000019
 上記表10のとおり、光源QD+LEDを用いて、黄色顔料(2)または黄色顔料(3)を使用して、(0.170,0.750)を示す透過スペクトルのピーク透過波長を520nm未満としても、Pc顔料(13)、Pc顔料(14)、Pc顔料(3)を用いると、膜厚は3.4μm以上となる。これに対し、光源QD+LEDを用いて、黄色顔料(2)または黄色顔料(3)を使用して、(0.170,0.750)を示す透過スペクトルのピーク透過波長が520nm未満とし、Pc顔料(1)、Pc顔料(2)、Pc顔料(5)~Pc顔料(12)、Pc顔料(15)~Pc顔料(17)を用いると、膜厚は3.4μm未満となり、さらに、黄色顔料(1)を用いた場合よりも、輝度が高くなる。BT2020付近で表示装置の色設計を行う場合には、特に薄膜化が要求されることに加えて、輝度が要求されることから、適切なPc顔料を選択してピーク透過波長が520nm未満となるように設計するのが好ましい。
<色材の透過率の測定>
 以下の参考例1~17の方法で透過率測定用硬化性着色組成物を調製し、ガラス基板上に塗布して塗膜を形成させ、透過率測定用ガラス基板を作製した。この透過率測定用ガラス基板を用いて色材の透過率を測定した。
参考例1
 下記の材料を室温で攪拌、混合して透過率測定用硬化性着色組成物を調製した。
Pc顔料分散液(1):2g
硬化性樹脂組成物:1.1g
 ガラス基板上に上記透過率測定用硬化性着色組成物をスピンコーターで塗布し、70℃で20分間乾燥させ塗布膜を形成した。この塗布膜を、超高圧水銀ランプで露光した後、5%の炭酸ナトリウム水溶液で現像し、その後、基板を230℃の雰囲気下に30分間放置することにより加熱処理を施して、透過率測定用ガラス基板を形成した。続いて、分光光度計(株式会社日立ハイテクサイエンス製U3900)を使用して、透過率測定用ガラス基板の透過スペクトルを測定した(測定領域:380~780nm、測定間隔:1nm)。なお、400nm~600nmにおけるピーク透過波長での透過率(ピーク透過率)が60%になるように、スピンコート時のスピン回転数を調整した。得られた透過スペクトルから、ピーク透過波長、半値幅、510nmにおける透過率、532nmにおける透過率、550nmにおける透過率、を算出した。結果を表11に示す。
参考例2
 参考例1のPc顔料分散液(1)をPc顔料分散液(2)に変更した以外は同様にして、ピーク透過波長、半値幅、510nmにおける透過率、532nmにおける透過率、550nmにおける透過率、を算出した。結果を表11に示す。
参考例3
 参考例1のPc顔料分散液(1)をPc顔料分散液(3)に変更した以外は同様にして、ピーク透過波長、半値幅、510nmにおける透過率、532nmにおける透過率、550nmにおける透過率、を算出した。結果を表11に示す。
参考例4
 参考例1のPc顔料分散液(1)をPc顔料分散液(4)に変更した以外は同様にして、ピーク透過波長、半値幅、510nmにおける透過率、532nmにおける透過率、550nmにおける透過率、を算出した。結果を表11に示す。
参考例5
 参考例1のPc顔料分散液(1)をPc顔料分散液(5)に変更した以外は同様にして、ピーク透過波長、半値幅、510nmにおける透過率、532nmにおける透過率、550nmにおける透過率、を算出した。結果を表11に示す。
参考例6
 参考例1のPc顔料分散液(1)をPc顔料分散液(6)に変更した以外は同様にして、ピーク透過波長、半値幅、510nmにおける透過率、532nmにおける透過率、550nmにおける透過率、を算出した。結果を表11に示す。
参考例7
 参考例1のPc顔料分散液(1)をPc顔料分散液(7)に変更した以外は同様にして、ピーク透過波長、半値幅、510nmにおける透過率、532nmにおける透過率、550nmにおける透過率、を算出した。結果を表11に示す。
参考例8
 参考例1のPc顔料分散液(1)をPc顔料分散液(8)に変更した以外は同様にして、ピーク透過波長、半値幅、510nmにおける透過率、532nmにおける透過率、550nmにおける透過率、を算出した。結果を表11に示す。
参考例9
 参考例1のPc顔料分散液(1)をPc顔料分散液(9)に変更した以外は同様にして、ピーク透過波長、半値幅、510nmにおける透過率、532nmにおける透過率、550nmにおける透過率、を算出した。結果を表11に示す。
参考例10
 参考例1のPc顔料分散液(1)をPc顔料分散液(10)に変更した以外は同様にして、ピーク透過波長、半値幅、510nmにおける透過率、532nmにおける透過率、550nmにおける透過率、を算出した。結果を表11に示す。
参考例11
 参考例1のPc顔料分散液(1)をPc顔料分散液(11)に変更した以外は同様にして、ピーク透過波長、半値幅、510nmにおける透過率、532nmにおける透過率、550nmにおける透過率、を算出した。結果を表11に示す。
参考例12
 参考例1のPc顔料分散液(1)をPc顔料分散液(12)に変更した以外は同様にして、ピーク透過波長、半値幅、510nmにおける透過率、532nmにおける透過率、550nmにおける透過率、を算出した。結果を表11に示す。
参考例13
 参考例1のPc顔料分散液(1)をPc顔料分散液(13)に変更した以外は同様にして、ピーク透過波長、半値幅、510nmにおける透過率、532nmにおける透過率、550nmにおける透過率、を算出した。結果を表11に示す。
参考例14
 参考例1のPc顔料分散液(1)をPc顔料分散液(14)に変更した以外は同様にして、ピーク透過波長、半値幅、510nmにおける透過率、532nmにおける透過率、550nmにおける透過率、を算出した。結果を表11に示す。
参考例15
 参考例1のPc顔料分散液(1)をPc顔料分散液(15)に変更した以外は同様にして、ピーク透過波長、半値幅、510nmにおける透過率、532nmにおける透過率、550nmにおける透過率、を算出した。結果を表11に示す。
参考例16
 参考例1のPc顔料分散液(1)をPc顔料分散液(16)に変更した以外は同様にして、ピーク透過波長、半値幅、510nmにおける透過率、532nmにおける透過率、550nmにおける透過率、を算出した。結果を表11に示す。
参考例17
 参考例1のPc顔料分散液(1)をPc顔料分散液(17)に変更した以外は同様にして、ピーク透過波長、半値幅、510nmにおける透過率、532nmにおける透過率、550nmにおける透過率、を算出した。結果を表11に示す。
Figure JPOXMLDOC01-appb-T000020
<光源のスペクトルの測定>
 実施例及び比較例では、以下の光源A,B,C,D,Eを用いた。なお、各光源の波長は、表12に示すとおりである。
A.LED+QD ‥論文「Langmuir 2017, 33, 13040-13050」のFigure5(a)に記載の光源
B.緑色LED‥ 型番「NSPG336CS」日亜化学工業株式会社製
C.LED KSF ‥型番「NFSW157J-HG」日亜化学工業株式会社製
D.LEDYAG1 ‥型番「NSSW410A」日亜化学工業株式会社製
E.LEDYAG2 ‥型番「NSSW046A」日亜化学工業株式会社製
 なお、駆動基板が設けられた筐体にこれらの光源を取り付け、オリンパス製顕微鏡MX-50と、大塚電子製分光光度計MCPD-3000顕微分光測光装置を用いて、光源A,B,C,D,Eのスペクトルをそれぞれ測定した(測定領域:380~780nm、測定間隔:1nm)。光源A,B,C,D,Eは、いずれも480~580nmの間にピーク強度を有していた。ピーク強度となる波長(ピーク波長)を表12に示す。また、480nmにおける強度(以下「I480」ともいう)と532nmにおける強度(以下「I532」ともいう)の比(以下「I480/I532」ともいう)、I480と550nmにおける強度(以下「I550」ともいう)の比(以下「I480/I550」ともいう)、I532とピーク波長における強度(以下「Iピーク」ともいう)の比(以下「I532/Iピーク」ともいう)を表12に示す。
Figure JPOXMLDOC01-appb-T000021
 以下の実施例42~48及び比較例27の方法で遮光部、赤色画素部、緑色画素部、青色画素部を形成させ、カラーフィルタを作製した。
実施例42
<カラーフィルタの作製>
(遮光部の形成)
 下記の組成の混合物を均一に撹拌混合した後、直径1mmのガラスビーズを用いて、サンドミルで5時間分散した後、5μmのフィルタで濾過しカーボンブラック分散体を作製した。
カーボンブラック 12.4部(オリオンエンジニアドカーボンズ社製「Printex 55」)
リン酸エステル系分散剤 2.5部(ビックケミー社製「BYK-111」)
参考製造例3で得たアルカリ可溶性樹脂(40質量%樹脂溶液) 16.0部
シクロヘキサノン 69.1部
 ついで、下記組成の混合物を均一になるように攪拌混合した後、1μmのフィルタで濾過して、黒色レジスト材である遮光部用組成物を得た。
カーボンブラック分散体 60.0部
参考製造例3で得たアルカリ可溶性樹脂(40質量%樹脂溶液) 7.5部
トリメチロールプロパントリアクリレート 4.3部(新中村化学社製「NKエステルATMPT」)
光重合開始剤(BASF社製「イルガキュア907」) 2.0部
増感剤(保土ヶ谷化学社製「EAB-F」) 0.4部
シクロヘキサノン 25.6部
 ガラス基板上に上記遮光部用組成物をスピンコーターで塗布し、70℃で20分間乾燥させ層を形成した。この層を、超高圧水銀ランプでフォトマスク用いて遮光パターンに露光した後、5%の炭酸ナトリウム水溶液で現像し、その後、基板を230℃の雰囲気下に30分間放置することにより加熱処理を施して、遮光部(ブラックマトリックス)を形成した。
(赤色画素部(RCF)の形成)
 ピグメントレッド269(山陽色素社製Permanent Carmine 3810)を80部、塩化ナトリウム800部、およびジエチレングリコール90部を双腕型ニーダーに仕込み、80℃で8時間混練した。得られた混練物を5リットルの温水に投入し、50℃で1時間撹拌してスラリー状とし、濾過、水洗後、80℃で14時間乾燥し、赤色顔料(1)を得た。製造例1-1のPc顔料(1)を赤色顔料(1)に変更した以外は同様にして、赤色顔料分散液(1)を得た。
 下記の材料を室温で攪拌、混合して硬化性着色組成物を調製した。
赤色顔料分散液(1)と黄色顔料分散液(1)とを、赤色顔料分散液(1)/黄色顔料分散液(1)の配合比率(質量比)が53/47となるように混合した混合物:2g
硬化性樹脂組成物:1.1g
 その後、遮光部を形成したガラス基板上に上記硬化性着色組成物をスピンコーターで塗布し、70℃で20分間乾燥させ塗布膜を形成した。塗布膜から100μmの距離にフォトマスクを配置して、超高圧水銀ランプで露光した後、5%の炭酸ナトリウム水溶液で現像し、塗布膜の未硬化部分のみを除去した後、基板を230℃の雰囲気下に20分間放置することにより加熱処理を施して、RCFを形成した。
 なお、赤色顔料分散液(1)/黄色顔料分散液(1)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(オリンパス製顕微鏡MX-50と、大塚電子製分光光度計MCPD-3000顕微分光測光装置を用いて測定)が(x,y)=(0.672,0.326)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
(緑色画素部(GCF)の形成)
 赤色顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(1)と黄色顔料分散液(2)とを、Pc顔料分散液(1)/黄色顔料分散液(2)の配合比率(質量比)が65/35となるように混合した以外は、RCFと同様にしてGCFを得た。なお、Pc顔料分散液(1)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(オリンパス製顕微鏡MX-50と、大塚電子製分光光度計MCPD-3000顕微分光測光装置を用いて測定)が(x,y)=(0.170,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。得られたGCFの透過スペクトルをオリンパス製顕微鏡MX-50と、大塚電子製分光光度計MCPD-3000顕微分光測光装置で測定し、ピーク透過波長を確認した。結果を表13に示す。
(青色画素部(BCF)の形成)
 特開2010-254964号公報の[合成例6:染料A6の合成]に従って、キサンテン染料(以下「染料(1)」ともいう)を合成した。製造例1-1のPc顔料(1)を染料(1)に変更した以外は同様にして、染料分散液(1)を得た。
 赤色顔料分散液(1)と黄色顔料分散液(1)とを混合する代わりに、Pc顔料分散液(15)と染料分散液(1)とを、Pc顔料分散液(15)/染料分散液(1)の配合比率(質量比)が76/24となるように混合した以外は、RCFと同様にしてBCFを得た。なお、Pc顔料分散液(15)/染料分散液(1)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(オリンパス製顕微鏡MX-50と、大塚電子製分光光度計MCPD-3000顕微分光測光装置を用いて測定)が(x,y)=(0.154,0.046)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。
 以上のようにして、赤色、緑色及び青色の各色画素部を備えるカラーフィルタを得た。なお、光源LED+QDを用いたときに、各色画素部の加法混色により算出される色度がBT2020規格の白座標である(x,y)=(0.3127、0.3290)となるように、各色画素部の面積を微調整した。
<画素部の膜厚の測定>
 得られた各色画素部の厚さを株式会社日立ハイテクサイエンス製の白色干渉顕微鏡VS1330で測定した。結果を表13に示す。
<表示装置の組立て及び白色の輝度Yの算出>
 一対の基板のそれぞれに配向膜を形成し、当該一対の基板間に液晶組成物を滴下して貼り合わせ、基板間に液晶層を形成した。一方の基板側に上記で得られたカラーフィルタを更に貼り合わせて表示部を得た。また、駆動基板が設けられた筐体に複数の光源LED+QDを取り付けてバックライト部を得た。上記表示部のカラーフィルタと反対側とバックライトの発光側とを対向させて配置することにより、評価用表示装置を得た。この評価用表示装置において、各色画素部の輝度Yの加法混色により(x,y)=(0.3127、0.3290)における白色輝度Yを算出した。結果を表13に示す。
実施例43
 実施例42のGCFの形成におけるPc顔料分散液(1)/黄色顔料分散液(2)の配合比率(質量比)を83/17となるように変更した以外は同様にして、評価用表示装置を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(オリンパス製顕微鏡MX-50と、大塚電子製分光光度計MCPD-3000顕微分光測光装置を用いて測定)が(x,y)=(0.140,0.600)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。この評価用表示装置において、各色画素部の輝度Yの加法混色により(x,y)=(0.3127、0.3290)における白色輝度Yを算出した。結果を表13に示す。
実施例44
 実施例42のGCFの形成におけるPc顔料分散液(1)/黄色顔料分散液(2)の配合比率(質量比)を76/24となるように変更した以外は同様にして、評価用表示装置を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(オリンパス製顕微鏡MX-50と、大塚電子製分光光度計MCPD-3000顕微分光測光装置を用いて測定)が(x,y)=(0.170,0.600)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。この評価用表示装置において、各色画素部の輝度Yの加法混色により(x,y)=(0.3127、0.3290)における白色輝度Yを算出した。結果を表13に示す。
実施例45
 実施例42のGCFの形成におけるPc顔料分散液(1)/黄色顔料分散液(2)の配合比率(質量比)を63/37となるように変更した以外は同様にして、評価用表示装置を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(オリンパス製顕微鏡MX-50と、大塚電子製分光光度計MCPD-3000顕微分光測光装置を用いて測定)が(x,y)=(0.200,0.600)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。この評価用表示装置において、各色画素部の輝度Yの加法混色により(x,y)=(0.3127、0.3290)における白色輝度Yを算出した。結果を表13に示す。
実施例46
 実施例42のGCFの形成におけるPc顔料分散液(1)/黄色顔料分散液(2)の配合比率(質量比)を74/26となるように変更した以外は同様にして、評価用表示装置を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(オリンパス製顕微鏡MX-50と、大塚電子製分光光度計MCPD-3000顕微分光測光装置を用いて測定)が(x,y)=(0.140,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。この評価用表示装置において、各色画素部の輝度Yの加法混色により(x,y)=(0.3127、0.3290)における白色輝度Yを算出した。結果を表13に示す。
実施例47
 実施例42のGCFの形成におけるPc顔料分散液(1)/黄色顔料分散液(2)の配合比率(質量比)を48/52となるように変更した以外は同様にして、評価用表示装置を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(オリンパス製顕微鏡MX-50と、大塚電子製分光光度計MCPD-3000顕微分光測光装置を用いて測定)が(x,y)=(0.200,0.750)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。この評価用表示装置において、各色画素部の輝度Yの加法混色により(x,y)=(0.3127、0.3290)における白色輝度Yを算出した。結果を表13に示す。
実施例48
 実施例42のGCFの形成におけるPc顔料分散液(1)/黄色顔料分散液(2)の配合比率(質量比)を55/45となるように変更した以外は同様にして、評価用表示装置を得た。なお、Pc顔料分散液(1)/黄色顔料分散液(2)の配合比率及び塗布膜の膜厚は、光源LED+QDを用いたときに、塗布膜の色度(オリンパス製顕微鏡MX-50と、大塚電子製分光光度計MCPD-3000顕微分光測光装置を用いて測定)が(x,y)=(0.170,0.770)となるように決定した。塗布膜の膜厚は、スピンコート時のスピン回転数を調整することにより調整した。この評価用表示装置において、各色画素部の輝度Yの加法混色により(x,y)=(0.3127、0.3290)における白色輝度Yを算出した。結果を表13に示す。
比較例27
 実施例42のGCFの形成における黄色顔料分散液(2)を黄色顔料分散液(1)に変更した以外は同様にして、評価用表示装置を得た。この評価用表示装置において、各色画素部の輝度Yの加法混色により(x,y)=(0.3127、0.3290)における白色輝度Yを算出した。結果を表13に示す。
Figure JPOXMLDOC01-appb-T000022
 上記表13に示すとおり、緑色画素部のピーク透過波長が500~520nmとなる場合には、緑色画素部のピーク透過波長が520nmよりも長波長になる場合よりも、白色輝度が高く、かつ、緑色画素部の膜厚が薄い表示装置を設計することができた。実施例42~48のとおり、緑色画素部の色度を0.140≦色度x≦0.200、0.600≦色度y≦0.780の範囲で変化させた場合であっても、比較例27よりも白色輝度が高く、かつ、緑色画素部の膜厚が薄い表示装置を設計することができた。
 1…液晶表示装置(表示装置)、2…光源、3…第一の偏光層、4…第一の基板、5…第一の電極、6…液晶層、7…第二の電極、8…第二の偏光層、9…カラーフィルタ、9a…赤色画素部、9b…緑色画素部、9c…青色画素部、9d…遮光部、10…第二の基板、L…光源からの光

Claims (4)

  1.  光源と、緑色画素部を有し、前記光源からの光の色を変換するカラーフィルタであって、
     前記光源における光が、480~580nmにおけるピーク波長が500~560nmにあり、532nmの強度(I532)に対する480nmの強度(I480)が1.1以下であり、550nmの強度(I550)に対する480nmの強度(I480)が0.9以下であり、
     前記光源を使用して測色した時のCIEのXYZ表色系において、0.140≦色度x≦0.200、0.600≦色度y≦0.780を表示でき、
     前記緑色画素部における緑色画素が、少なくともシアン色色材および黄色色材を含有し、緑色画素におけるピーク波長が500nm~520nmの範囲内にある、カラーフィルタ。
  2.  前記シアン色色材が、ピーク波長が460nm~510nmの範囲内にあり、ピーク波長の透過率を60%とした際の、波長550nmの透過率が7%以下である金属フタロシアニン顔料または無金属フタロシアニン顔料である、請求項1に記載のカラーフィルタ。
  3.  前記黄色色材が、C.I.ピグメントイエロー129、C.I.ピグメントイエロー138、C.I.ピグメントイエロー150、C.I.ピグメントイエロー151、C.I.ピグメントイエロー185、C.I.ピグメントイエロー173、C.I.ピグメントイエロー12のスルホン化誘導体及び下記式(1)で表される化合物からなる群より選ばれる少なくとも一種である、請求項1又は2に記載のカラーフィルタ。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、X~X16は各々独立に水素原子又はハロゲン原子であり、Y及びYは各々独立に水素原子又はハロゲン原子であり、Zは炭素数1~3のアルキレン基である。]
  4.  光源と、赤色画素部、緑色画素部及び青色画素部を有し、前記光源からの光の色を変換するカラーフィルタと、を備え、
     前記光の480~580nmにおけるピーク波長が500~560nmにあり、前記光の532nmの強度(I532)に対する480nmの強度(I480)が1.1以下であり、前記光の550nmの強度(I550)に対する480nmの強度(I480)が0.9以下であり、
     前記緑色画素部が、前記光源を使用して測色した時のCIEのXYZ表色系において、0.140≦色度x≦0.200、0.600≦色度y≦0.780を表示でき、
     前記緑色画素部における緑色画素が、少なくともシアン色色材および黄色色材を含有し、
    緑色画素におけるピーク波長が500nm~520nmの範囲内にある、表示装置。
PCT/JP2021/030320 2020-10-15 2021-08-19 カラーフィルタ及び表示装置 WO2022080003A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180069992.1A CN116420113A (zh) 2020-10-15 2021-08-19 滤色器和显示装置
JP2021572625A JP7028388B1 (ja) 2020-10-15 2021-08-19 カラーフィルタ及び表示装置
KR1020237012433A KR20230087482A (ko) 2020-10-15 2021-08-19 컬러 필터 및 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-173810 2020-10-15
JP2020173810 2020-10-15

Publications (1)

Publication Number Publication Date
WO2022080003A1 true WO2022080003A1 (ja) 2022-04-21

Family

ID=81207931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030320 WO2022080003A1 (ja) 2020-10-15 2021-08-19 カラーフィルタ及び表示装置

Country Status (2)

Country Link
TW (1) TW202223449A (ja)
WO (1) WO2022080003A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012123302A (ja) * 2010-12-10 2012-06-28 Dainippon Printing Co Ltd 緑色着色組成物および有機エレクトロルミネッセンス表示装置用カラーフィルタ
JP2014066749A (ja) * 2012-09-24 2014-04-17 Dainippon Printing Co Ltd カラーフィルタおよび表示装置
JP2016080966A (ja) * 2014-10-21 2016-05-16 凸版印刷株式会社 カラーフィルタおよび液晶表示装置
JP2016170192A (ja) * 2015-03-11 2016-09-23 凸版印刷株式会社 カラーフィルタ、及びそれを用いた液晶表示装置
WO2018190211A1 (ja) * 2017-04-12 2018-10-18 富士フイルム株式会社 フィルター、バックライトユニット及び液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012123302A (ja) * 2010-12-10 2012-06-28 Dainippon Printing Co Ltd 緑色着色組成物および有機エレクトロルミネッセンス表示装置用カラーフィルタ
JP2014066749A (ja) * 2012-09-24 2014-04-17 Dainippon Printing Co Ltd カラーフィルタおよび表示装置
JP2016080966A (ja) * 2014-10-21 2016-05-16 凸版印刷株式会社 カラーフィルタおよび液晶表示装置
JP2016170192A (ja) * 2015-03-11 2016-09-23 凸版印刷株式会社 カラーフィルタ、及びそれを用いた液晶表示装置
WO2018190211A1 (ja) * 2017-04-12 2018-10-18 富士フイルム株式会社 フィルター、バックライトユニット及び液晶表示装置

Also Published As

Publication number Publication date
TW202223449A (zh) 2022-06-16

Similar Documents

Publication Publication Date Title
JP5134820B2 (ja) 液晶表示装置
US9507200B2 (en) Method of manufacturing image display device and method of selecting color filter
JP5332673B2 (ja) 半導体発光装置、バックライトおよびカラー画像表示装置
JP6155993B2 (ja) カラーフィルター及び発光装置の組合せの選択方法並びに画像表示装置の製造方法
TWI273285B (en) Color filter having capability of changing light-color
JP4945436B2 (ja) 白色発光ランプとそれを用いたバックライト、表示装置および照明装置
CN107735699A (zh) 荧光体片、具备该荧光体片的白色光源装置、以及具备该白色光源装置的显示装置
TW200807104A (en) Color image display device
JP7047679B2 (ja) 顔料組成物、着色組成物及びカラーフィルタ
CN109642970B (zh) 滤色器用颜料组合物和滤色器
CN108753277A (zh) 白光led用窄带蓝光荧光粉及制备方法和白光led发光装置
JP5235266B2 (ja) 白色ledの製造方法およびそれを用いたバックライトの製造方法並びに液晶表示装置の製造方法
JP2011180365A (ja) カラーフィルタ用青色顔料組成物、その製造方法、カラーフィルタ、及び液晶表示装置
JP7354669B2 (ja) 表示装置
JP6512013B2 (ja) 画像表示装置
JP7028388B1 (ja) カラーフィルタ及び表示装置
WO2022080003A1 (ja) カラーフィルタ及び表示装置
JP6753556B2 (ja) カラーフィルタ
KR102286873B1 (ko) 컬러 필터용 할로겐화아연프탈로시아닌 안료 및 컬러 필터용 할로겐화아연프탈로시아닌 안료의 제조 방법
US11976199B2 (en) Halogenated zinc phthalocyanine pigment for color filter and method for producing halogenated zinc phthalocyanine pigment for color filter
JP7236567B2 (ja) カラーフィルタ用顔料、着色組成物、及びカラーフィルタ
CN102382650A (zh) 一种常压下合成的白光和背光源led用氮化物红色荧光粉

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021572625

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879745

Country of ref document: EP

Kind code of ref document: A1