WO2006064131A1 - Production d’acides dicarboxyliques par des souches mutantes ameliorees de yarrowia lipolytica - Google Patents

Production d’acides dicarboxyliques par des souches mutantes ameliorees de yarrowia lipolytica Download PDF

Info

Publication number
WO2006064131A1
WO2006064131A1 PCT/FR2005/003140 FR2005003140W WO2006064131A1 WO 2006064131 A1 WO2006064131 A1 WO 2006064131A1 FR 2005003140 W FR2005003140 W FR 2005003140W WO 2006064131 A1 WO2006064131 A1 WO 2006064131A1
Authority
WO
WIPO (PCT)
Prior art keywords
mutant
strain
yarrowia lipolytica
bioconversion
cpr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/FR2005/003140
Other languages
English (en)
French (fr)
Other versions
WO2006064131A8 (fr
Inventor
Jean-Marc Nicaud
France Thevenieau
Marie-Thérèse LE DALL
Rémy Marchal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
IFP Energies Nouvelles IFPEN
Institut National de la Recherche Agronomique INRA
Original Assignee
Centre National de la Recherche Scientifique CNRS
IFP Energies Nouvelles IFPEN
Institut National de la Recherche Agronomique INRA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/721,726 priority Critical patent/US20100041115A1/en
Priority to EP05826569A priority patent/EP1828392B1/fr
Priority to DE602005021913T priority patent/DE602005021913D1/de
Priority to JP2007546115A priority patent/JP2008523794A/ja
Priority to DK05826569.5T priority patent/DK1828392T3/da
Priority to PL05826569T priority patent/PL1828392T3/pl
Priority to AT05826569T priority patent/ATE471384T1/de
Priority to CN2005800483222A priority patent/CN101228282B/zh
Application filed by Centre National de la Recherche Scientifique CNRS, IFP Energies Nouvelles IFPEN, Institut National de la Recherche Agronomique INRA filed Critical Centre National de la Recherche Scientifique CNRS
Priority to CA2590795A priority patent/CA2590795C/fr
Priority to BRPI0519928-0A priority patent/BRPI0519928A2/pt
Publication of WO2006064131A1 publication Critical patent/WO2006064131A1/fr
Anticipated expiration legal-status Critical
Publication of WO2006064131A8 publication Critical patent/WO2006064131A8/fr
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • C12N9/0038Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
    • C12N9/0042NADPH-cytochrome P450 reductase (1.6.2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0077Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with a reduced iron-sulfur protein as one donor (1.14.15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids

Definitions

  • the invention relates to a process for the production of dicarboxylic acids by fermentation using a mutant strain of Yarrowia lipolytica yeast from a bioconversion substrate.
  • the dicarboxylic acids also called “diacids”
  • dicarboxylic acids are used as raw materials for example in the synthesis of polyamides and polyesters, lubricating oils, plasticizers or perfumes.
  • DGA ⁇ acyl-CoA: diacylglycerol acyltransferase
  • TGL ⁇ triacylglycerol lipase
  • G3P glycerol-3-phosphate dehydrogenase
  • SCP2 putative sterol transporter
  • LR0 ⁇ ⁇ LR0 lecithin cholesterol acyltransferase
  • IFP 621 unknown function
  • IPF 905 unknown function
  • IPF 2569 NADH-ubiquinone reductase subunit
  • Yarrowia lipolytica is very different from that of Candida tropicalis. Unlike Candida tropicalis, which is a diploid yeast, Yarrowia lipolytica is indeed a haploid species. In this last microorganism, the gene deletion operations are therefore much more efficient and safer, because of the presence of a single set of chromosomes.
  • a promoter of the POX2 gene encoding Pacyl-CoA oxidase is used to overexpress genes such as, for example, those encoding cytochrome P450 monooxygenase and for NADPH-cytochrome reductase.
  • the pPOX2 promoter has the property of being a strong promoter inducible by the bioconversion substrates.
  • the overexpression of a gene of interest is achieved by the addition of a single gene copy under the control of the pPOX2 promoter, making it possible to obtain Yarrowia lipolytica mutants which are efficient, stable and non-reverting, unlike the Candida tropicalis mutants obtained by a multicopy amplification system.
  • Another advantage of Yarrowia lipolytica on Candida tropicalis for the production of diacids from esters of fatty acids or natural oils, for example vegetable oils, is the following: the transformation of natural oils into diacids by Candida tropicalis requires hydrolysis at least partial chemical substrate before the implementation of fermentation (see US Patent 5,962,285).
  • This hydrolysis is carried out by a saponification conducted in the presence of calcium hydroxide or magnesium. It produces the corresponding salts of fatty acids (soaps).
  • Yarrowia lipolytica has the ability to assimilate triglycerides as a carbon source.
  • the first step of this catabolism involves the hydrolysis of triglycerides to free fatty acids and glycerol by the lipolytic enzymes (lipases), identified by Peters and Nelson in 1951. An extracellular lipase activity and two membrane lipases of 39 and 44 kDa (Barth et al.
  • the strains used in the process of the invention are derived from the wild strain Yarrowia lipolytica W29 (ATCC 20460, listed under CLIB89 in the Biotechnology Yeast-CLIB Collection).
  • new mutant strains derived from the strain Yarrowia lipolytica ATCC 20460 can be used via the strain PoId [auxotrophic strain for leucine (leu-) and uracil (ura-)], described in the review by G. Barth et al. . It is listed under CLIB139 in the CLIB.
  • the mutant strain chosen is cultured in a medium consisting essentially of an energetic substrate which comprises at least one carbon source and one nitrogen source until the end of the growth.
  • the bioconversion substrate alkane or mixture of alkanes, fatty acid or mixture of fatty acids, fatty acid ester or mixture of fatty acid esters or natural oil or mixture of these different substrates
  • the culture medium may comprise a supply of secondary energy substrate generally consisting of at least one polyhydroxy compound, such as, for example, glycerol or a sugar.
  • POX genes of the wild-type strain whose sequences are different from those of Candida tropicalis are cloned.
  • Disruption cassettes of the genes coding for the isozymes of acyl-CoA oxidase are then constructed.
  • the genes of acyl-CoA oxidase are disrupted using the selectable marker URA3.
  • Promoter and terminator regions are amplified by a first PCR, using specific oligonucleotide pairs, eliminating the full frame of the open reading frame
  • a second PCR is then performed with the external primers and PCR products of the promoters and terminators, which fuse via a common 20 bp extension with a site for the restriction enzyme I-SceI.
  • the PCR product is cloned to give a series of plasmids (designated pPOX-PT) containing the promoter-terminator module
  • a URA3 gene is introduced into the I-SceI site of the POX-PT cassette.
  • a series of pPOX-PUT plasmids containing the promoter-URA3 ⁇ terminator module is constructed (disruption cassette 1). These constructs are called pPOX1-P ⁇ JT, pPOX2-POT, pPOX3-PUT, pPOX4-PDT and pPOX5-P ⁇ JT for the plasmids containing the disruption cassette 1, on the one hand, and pPOX1-PT, pPOX2-PT , pPOX3-P1, pPOX4-PT, and pPOX & PT for the plasmids containing the disruption cassette 2, on the other hand.
  • the transformation of Yarrowia lipolytica can be carried out by various methods.
  • the presence of disruption is verified by PCR according to the technique of Gussow et al. : Direct Clone Characterization of Plates and Colonies by Polymerase Chain Reaction. Nucleic Acids Res. 17, 1989, 4000, then confirmed by Southern blot hybridization.
  • Disruption of a gene and excision of the marker can still be done by a method involving recombination or recombinase.
  • markers can be used with either a repeat sequence (allowing the recombination that is selected) or a lox sequence that is recognized by the Cre recombinase. Excision occurs when one expresses Recombinase Cre, Fickers et al., 2003 New Disruption Cassettes for Rapid Disease Gene and Marker Rescue in the Yeast Yarrowia lipolytica. J. Microbiol. Methods 55/3: 727-737.
  • strain MTLY74 Leu + Ura- was constructed.
  • the first step is the construction of the auxotrophic MTLY40 strain for uracil (Leu +, Ura-) by conversion of the URA3 marker by the ura3-41 marker by transforming the PCR fragment containing this marker and selecting the Ura- in the presence of 5FOA.
  • Loss of the plasmid pRRQ2 is performed by cultivation on YPD rich medium and isolating a clone (Leu-, Ura-, Hy 9 -).
  • 2b From mutant MTLY66, a mutant strain Yarrowia lipolytica MTLY74 Leu + Ura- was constructed which overexpresses NADPH-cytochrome reductase, expressing it under the control of the strong pPOX2 promoter, induced by bioconversion substrates, of the fatty acid type, fatty acid ester or natural oil.
  • MTLY80 expressing NADPH-cytochrome reductase and cytochrome P450 monooxygenase ALK2 under the control of the pPOX2 promoter inducible by fatty acids, fatty acid esters or natural oils
  • mutant Yarrowia lipolytica strain MTLY80 was constructed which overexpresses the genes encoding NADPH-cytochrome reductase [CPR] and cytochrome P450 monooxygenase (ALK2) under bioconversion conditions, under the control of the strong pPOX2 promoter. induced by bioconversion substrates of the fatty acid, fatty acid ester or natural oil type.
  • CPR NADPH-cytochrome reductase
  • ALK2 cytochrome P450 monooxygenase
  • the ALK2 gene coding for cytochrome P450 monooxygenase was introduced into a vector containing the URA3 selection gene, for example JMP61, under the control of the pPOX2 promoter that is inducible by fatty acids, fatty acid esters or natural oils.
  • the marker-promoter-gene cassette (URA3-pPOX2-> AKL2) is introduced by transformation.
  • MTLY81 expressing NADPH-cytochrome reductase without the cytochrome P450 monooxygenase genes (ALK1 or ALK2) under the control of the pPOX2 promoter inducible by fatty acids, fatty acid esters or natural oils
  • a mutant Yarrowia lipolytica strain MTLY81 was constructed which overexpressed the gene coding for NADPH-cytochrome reductase (CPR) under the control of the strong pPOX2 promoter induced by fatty acid type bioconversion substrates, ester of fatty acid or natural oil.
  • CPR NADPH-cytochrome reductase
  • Mutant MTLY74 prototroph was made by transformation with plasmid JMP61 carrying the marker URA3.
  • the MTLY37 strain or the MTLY66 strain 1) constructing a PCR ("Polymerase Chain Reaction") disruption cassette or by cloning, using a counter-selectable marker, for example the URA3 marker (with which one can select for the Ura + phenotype or for the Ura-phenotype). ), or by using a marker with either a repeat sequence (allowing the recombination that is selected) or a lox sequence that is recognized by the Cre recombinase
  • the strains are selected with the gene of interest deleted (transformation and selection of the transformants, advantageously Ura + if the marker is URA3) and the disruption of the gene is verified; 3) the strains are selected with the deleted marker (transformation and selection of the transformants); advantageously 5FOA R if the marker is URA3 or advantageously a plasmid expressing the recombinase if the marker has the lox sequence and the disruption of the gene is verified.
  • strain FT120 Leu-Ura-, ⁇ pox1-6 was constructed.
  • mutant strain MTLY95 ⁇ pox1-6 was constructed by insertion of deletion of the POX1 and POX6 genes and deletion of the marker according to the method described previously.
  • mutant strain Yarrowia lipolytica FT101 Leu + Ura- which overexpresses the gene coding for NADPH-cytochrome reductase (CPR) under bioconversion conditions was constructed, expressing it under the control of the strong pPOX2 promoter, induced by bioconversion substrates, fatty acid type, fatty acid ester or natural oil.
  • strain FT120 To obtain this strain, one can proceed as for the construction of strain FT120:
  • the strains are selected with the deleted marker (transformation and selection of the transformants); advantageously 5FOA R if the marker is URA3 or advantageously a plasmid expressing the Cre recombinase if the marker has the lox sequence and the disruption of the gene is verified.
  • strain FT130 Leu-Ura-, ⁇ pox1-6, ⁇ dgai was constructed.
  • the MTLY66, MTLY81, FT120 and FT 130 strains were deposited in the National Collection of Microorganism Cultures under the respective registration numbers CNCM 1-3319, CNCM I-3320, CNCM I-3527 and CNCM I-3528.
  • the mutant strains FT120 and FT130 were tested under identical conditions.
  • the deletion of the POX1 and POX 6 genes makes it possible to reduce the degradation of the diacids for FT120.
  • the deletion of an additional DGA1 gene coding for acyl-CoA diacylglycerol acyltransferase results in a decrease in the accumulation of the bioconversion substrate in the form of lipid bodies within the Yarrowia lipolytica cell.
  • most of the diacids obtained in these examples are composed of diacids containing 18 carbon atoms, like the bioconversion substrate used, which is predominantly composed of 18-carbon fatty acids.
  • Example 1 Process for producing dicarboxylic acids from oleic sunflower oil with the MTLY37 mutant
  • a preculture of mutant MTLY37, preserved on agar medium of composition: yeast extract 10 gl '1 ; peptone 10 gl '1 ; glucose 10 gl '1 ; Agar 20 gl '1 , is carried out by seeding which provides an initial absorbance of the preculture medium close to 0.30.
  • the preculture is carried out with orbital shaking (200 rpm) for 24 h at 30 ° C. in a 500 ml finned flask containing 25 ml of medium (10 ⁇ l -1 yeast extract, 10 ⁇ l -1 peptone, 20 ⁇ l -1 glucose).
  • the medium used for the culture is deionized water, yeast extract at 10 gl -1 , tryptone at 20 gl -1 , glucose at 40 gl -1 , and oleic sunflower oil at 30 gl. "1 .
  • Seeding of the fermenter is performed with the entire preculture vial.
  • the culture is conducted at 30 ° C. in a 4 L fermentor with 2 l medium at a ventilation rate of 0.5 vvm and a stirring speed of 800 rpm provided by a double-acting centripetal turbine.
  • the cell biomass is removed by centrifugation.
  • the supernatant is then acidified to pH 2.5 by the addition of 6M HCl and the insoluble dicarboxylic acids are recovered by centrifugation of the acidified wort and dried.
  • the dicarboxylic acid composition of the mixture is determined by gas chromatography on a DB1 column after conversion of the dicarboxylic acids to diesters according to the method described by Uchio et al: Microbial Production of Long-chain Dicarboxylic Acids from / 7-Alkanes. Part II. Production by Candida cloacae Mutant Unable to Assimilate Dicarboxylic Acid. Agr Biol. Chem. 36, No. 3, 1972, 426-433. The oven temperature of the chromatograph is programmed from 150 ° C. to 28 ° C. at a rate of 8 ° C. per min. The results show a maximum production of diacids in the supernatants of 5.9 gl -1 after 130 h.
  • Example 1 is repeated replacing the tryptone with peptone at the same concentration in the culture medium. After 130 hours of culture, 9.9 g -1 of dicarboxylic acids are obtained, giving a production increase of about 68% compared to Example 1.
  • EXAMPLE 3 Production of Dicarboxylic Acids by Mutant MTLY37 with Continuous Feeding of Oleic Sunflower Oil
  • Example 2 is repeated. removing oleic sunflower oil from the culture medium and replacing it with a continuous injection of the same oil at a sub-limiting flow of 1 ml into the reactor.
  • Example 4 Production of dicarboxylic acids from oleic sunflower oil with the mutant MTLY79 overexpressed for CPR and ALK1
  • Example 3 is repeated replacing the MTLY37 mutant with the MTLY79 mutant overexpressing the CPR and ALK1 genes. After 130 hours of culture, 16 gl -1 of dicarboxylic acids are obtained.
  • Example 5 Production of dicarboxylic acids from oleic sunflower oil with the MTLY80 mutant overexpressed for CPR and ALK2
  • Example 3 is repeated replacing the MTLY37 mutant with the MTLY80 mutant overexpressing the CPR and ALK2 genes. After 130 hours of culture, 16 gl -1 of dicarboxylic acids are obtained.
  • Example 3 is repeated replacing the MTLY37 mutant with the mutant MTLY81 overexpressing only the CPR gene. After 130 hours of culture, 16 g are obtained. I- 1 dicarboxylic acids.
  • EXAMPLE 7 Production of Dicarboxylic Acids from Oleic Sunflower Oil with the FT120 Mutant Deleted for the Six POX ( ⁇ poxi-6) Genes and Overexpressing the CPR Gene
  • Example 3 is repeated replacing the mutant MTLY37 with the mutant FT120 deleted the six POX genes and overexpressing the CPR gene. After 130 hours of culture, 18 gl -1 of dicarboxylic acids are obtained
  • Example 8 Production of dicarboxylic acids from oleic sunflower oil with the mutant FT130 deleted for the six POX genes ( ⁇ pox1-6) and deleted for the DGA ⁇ gene ( ⁇ dgai) and overexpressing the CPR gene Example 3 is repeated, replacing the mutant MTLY37 with the mutant FT130 deleted from the six POX genes and the DGA ⁇ gene and overexpressing the CPR gene. After 130 hours of culture, 23 gl -1 of dicarboxylic acids are obtained

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
PCT/FR2005/003140 2004-12-15 2005-12-13 Production d’acides dicarboxyliques par des souches mutantes ameliorees de yarrowia lipolytica Ceased WO2006064131A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AT05826569T ATE471384T1 (de) 2004-12-15 2005-12-13 Herstellung von dicarbonsäure durch verbesserte yarrowia lipolytica-mutantenstämme
DE602005021913T DE602005021913D1 (de) 2004-12-15 2005-12-13 Herstellung von dicarbonsäure durch verbesserte yarrowia lipolytica-mutantenstämme
JP2007546115A JP2008523794A (ja) 2004-12-15 2005-12-13 改善されたヤロウイア・リポリティカ変異株によるジカルボン酸の製造
DK05826569.5T DK1828392T3 (da) 2004-12-15 2005-12-13 Fremstilling af dicarboxylsyrer ved hjælp af forbedret mutantstamme af Yarrowia lipolytica
PL05826569T PL1828392T3 (pl) 2004-12-15 2005-12-13 Wytwarzanie kwasów dikarboksylowych przez ulepszone zmutowane szczepy Yarrowia lipolytica
US11/721,726 US20100041115A1 (en) 2004-12-15 2005-12-13 Production of dicarboxylic acids by improved mutant strains of yarrowia lipolytica
BRPI0519928-0A BRPI0519928A2 (pt) 2004-12-15 2005-12-13 produção de ácidos dicarboxìlicos por cepas mutantes melhoradas de yarrowia lipolytica
CN2005800483222A CN101228282B (zh) 2004-12-15 2005-12-13 利用解脂耶氏酵母改进突变株生产二羧酸
CA2590795A CA2590795C (fr) 2004-12-15 2005-12-13 Production d'acides dicarboxyliques par des souches mutantes ameliorees de yarrowia lipolytica
EP05826569A EP1828392B1 (fr) 2004-12-15 2005-12-13 Production d' acides dicarboxyliques par des souches mutantes ameliorées de yarrowia lipolytica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0413468A FR2879215B1 (fr) 2004-12-15 2004-12-15 Production d'acides dicarboxyliques par des souches mutantes ameliorees de yarrowia lipolytica
FR0413468 2004-12-15

Publications (2)

Publication Number Publication Date
WO2006064131A1 true WO2006064131A1 (fr) 2006-06-22
WO2006064131A8 WO2006064131A8 (fr) 2007-08-02

Family

ID=34954795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/003140 Ceased WO2006064131A1 (fr) 2004-12-15 2005-12-13 Production d’acides dicarboxyliques par des souches mutantes ameliorees de yarrowia lipolytica

Country Status (13)

Country Link
US (1) US20100041115A1 (enExample)
EP (1) EP1828392B1 (enExample)
JP (3) JP2008523794A (enExample)
CN (1) CN101228282B (enExample)
AT (1) ATE471384T1 (enExample)
BR (1) BRPI0519928A2 (enExample)
CA (1) CA2590795C (enExample)
DE (1) DE602005021913D1 (enExample)
DK (1) DK1828392T3 (enExample)
ES (1) ES2346773T3 (enExample)
FR (1) FR2879215B1 (enExample)
PL (1) PL1828392T3 (enExample)
WO (1) WO2006064131A1 (enExample)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004141A2 (fr) 2008-07-11 2010-01-14 Institut National De La Recherche Agronomique (Inra) Nouvelles souches de levure mutantes capables d'accumuler une grande quantité de lipides
WO2011107721A1 (fr) 2010-03-05 2011-09-09 Organisation Nationale Interprofessionnelle Des Graines Et Fruits Oleagineux (O.N.I.D.O.L.) Procede de preparation d'acides carboxyliques par coupure oxydante d'un diol vicinal
WO2012001144A1 (fr) 2010-07-01 2012-01-05 Institut National De La Recherche Agronomique Optimisation de la synthese et de l'accumulation de lipides
US8748129B2 (en) 2008-02-05 2014-06-10 Institut National De La Recherche Agronomique Method for the targeted integration of multiple copies of a gene of interest in a yarrowia strain
WO2014136028A1 (fr) 2013-03-04 2014-09-12 Institut National De La Recherche Agronomique Levures mutantes ayant une production accrue de lipides et d'acide citrique
WO2014178014A1 (fr) 2013-05-02 2014-11-06 Institut National De La Recherche Agronomique Levures mutantes capables de produire un acide gras inhabituel
WO2015086684A1 (de) * 2013-12-12 2015-06-18 Technische Universität Dresden HEFESTÄMME UND VERFAHREN ZUR PRODUKTION VON ω-HYDROXYFETTSÄUREN UND DICARBONSÄUREN
WO2015189352A1 (en) 2014-06-11 2015-12-17 Institut National De La Recherche Agronomique Improved lipid accumulation in yarrowia lipolytica strains by overexpression of hexokinase and new strains thereof
WO2016156260A1 (fr) 2015-03-27 2016-10-06 Fonds De Développement Des Filières Des Oléagineux Et Des Proteagineux Fidop Microorganismes et leur utilisation pour la production de diacides
EP3085788A1 (en) 2015-04-23 2016-10-26 Institut National De La Recherche Agronomique Mutant yeast strain capable of degrading cellobiose
EP3106520A1 (en) 2015-06-17 2016-12-21 Institut National De La Recherche Agronomique Mutant yarrowia strain capable of degrading galactose
WO2017015368A1 (en) * 2015-07-22 2017-01-26 E I Du Pont De Nemours And Company High level production of long-chain dicarboxylic acids with microbes
WO2017194424A1 (en) 2016-05-10 2017-11-16 Institut National De La Recherche Agronomique Mutant yeast strains with enhanced production of erythritol or erythrulose
US9932665B2 (en) 2015-01-22 2018-04-03 United Technologies Corporation Corrosion resistant coating application method
EP3348647A1 (en) 2017-01-13 2018-07-18 Institut National De La Recherche Agronomique Mutant yeast strain capable of producing medium chain fatty acids
EP3360956A1 (en) 2017-02-10 2018-08-15 Institut National De La Recherche Agronomique Mutant yeast strain capable of degrading cellulose
EP4151740A1 (en) 2021-09-18 2023-03-22 Indian Oil Corporation Limited A bioassisted process for selective conversion of alkane rich refinery stream

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY184871A (en) 2011-07-06 2021-04-28 Radici Chimica S P A Biological methods for preparing a fatty dicarboxylic acid
US9850493B2 (en) 2012-12-19 2017-12-26 Verdezyne, Inc. Biological methods for preparing a fatty dicarboxylic acid
JP2016501040A (ja) 2012-12-19 2016-01-18 ヴェルデザイン,インコーポレーテッド 脂肪族ジカルボン酸を調製するための生物学的方法
US9695404B2 (en) 2014-07-18 2017-07-04 Industrial Technology Research Institute Genetically modified microorganism for producing long-chain dicarboxylic acid and method of using thereof
US10174350B2 (en) 2014-07-18 2019-01-08 Industrial Technology Research Institute Genetically modified microorganism for producing medium-chain lauric acid and/or dodecanedioic acid and method of using thereof
US20180327724A1 (en) * 2015-10-27 2018-11-15 Korea Research Institute Of Bioscience And Biotechnology Method for producing heavy chain aminocarboxylic acid
CN107083338A (zh) * 2017-05-15 2017-08-22 天津大学 重组菌株及其构建方法与在产菜油甾醇中的应用
EP3652300A4 (en) 2017-07-13 2021-06-23 Radici Chimica S.p.A. BIOLOGICAL PROCEDURES FOR MODIFYING CELLULAR CARBON FLOW
US11136596B2 (en) * 2018-07-06 2021-10-05 Cibt America Inc. Long-chain dibasic acid with low content of hydroxyl acid impurity and production method thereof
CN110684676B (zh) * 2018-07-06 2023-08-08 上海凯赛生物技术股份有限公司 一种低含量羟基酸杂质的长链二元酸及其生产方法
CN111117982B (zh) * 2019-12-25 2023-05-12 武汉新华扬生物股份有限公司 一种拟除虫菊酯降解酶、其编码基因、重组菌株和应用
CN114958900B (zh) * 2022-05-16 2024-04-19 华中科技大学 一种解脂耶氏酵母高效无标记基因整合载体及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0229252B1 (de) 1985-11-18 1992-07-01 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Herstellung von Dicarbonsäuren
US5254466A (en) 1989-11-06 1993-10-19 Henkel Research Corporation Site-specific modification of the candida tropicals genome
US5648247A (en) 1990-03-19 1997-07-15 Henkel Corporation Method for increasing the omega-hydroxylase activity in candida tropicals
WO2003100013A2 (en) * 2002-05-23 2003-12-04 Cognis Corporation NON-REVERTIBLE β-OXIDATION BLOCKED CANDIDA TROPICALIS

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6673613B2 (en) * 2000-07-26 2004-01-06 Cognis Corporation Use of CYP52A2A promoter to increase gene expression in yeast

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0229252B1 (de) 1985-11-18 1992-07-01 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Herstellung von Dicarbonsäuren
US5254466A (en) 1989-11-06 1993-10-19 Henkel Research Corporation Site-specific modification of the candida tropicals genome
US5648247A (en) 1990-03-19 1997-07-15 Henkel Corporation Method for increasing the omega-hydroxylase activity in candida tropicals
WO2003100013A2 (en) * 2002-05-23 2003-12-04 Cognis Corporation NON-REVERTIBLE β-OXIDATION BLOCKED CANDIDA TROPICALIS
US20040014198A1 (en) 2002-05-23 2004-01-22 Craft David L. Non-revertible beta-oxidation blocked candida tropicalis

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Sequential Gene Disruption", MOL. CELL. BIOL., vol. 11, 1991, pages 4333 - 4339
FICKERS P ET AL: "New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica.", JOURNAL OF MICROBIOLOGICAL METHODS, vol. 55, no. 3, December 2003 (2003-12-01), pages 727 - 737, XP002336154, ISSN: 0167-7012 *
PICATAGGIO ET AL.: "Metabolic Engineering of Candida tropicalis for the Production of Long-chain Dicarboxylic Acids", BIOTECHNOL., vol. 10, 1992, pages 894 - 898
SHIIO; JIAO ET AL.: "Isolation and Enzyme Determination of Candida tropicalis Mutants for DCA Production", J. GEN. APPL. MICROBIOL., vol. 46, 2000, pages 245 - 249
WACHE ET AL., APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 67, no. 12, December 2001 (2001-12-01), pages 5700 - 5704
WACHE YVES ET AL: "Role of beta-oxidation enzymes in gamma-decalactone production by the yeast Yarrowia lipolytica", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 67, no. 12, December 2001 (2001-12-01), pages 5700 - 5704, XP002336153, ISSN: 0099-2240 *
WANG HUIJIE ET AL: "Cloning and characterization of the peroxisomal acyl CoA oxidase ACO3 gene from the alkane-utilizing yeast Yarrowia lipolytica", YEAST, vol. 14, no. 15, November 1998 (1998-11-01), pages 1373 - 1386, XP008049873, ISSN: 0749-503X *
WANG HUIJIE J ET AL: "Evaluation of acyl coenzyme A oxidase (Aox) isozyme function in the n-alkane-assimilating yeast Yarrowia lipolytica", JOURNAL OF BACTERIOLOGY, vol. 181, no. 17, September 1999 (1999-09-01), pages 5140 - 5148, XP002336152, ISSN: 0021-9193 *
WHANG ET AL., J. OF BACTERIOLOGY, vol. 181, no. 17, September 1999 (1999-09-01), pages 5140 - 5148

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8748129B2 (en) 2008-02-05 2014-06-10 Institut National De La Recherche Agronomique Method for the targeted integration of multiple copies of a gene of interest in a yarrowia strain
WO2010004141A2 (fr) 2008-07-11 2010-01-14 Institut National De La Recherche Agronomique (Inra) Nouvelles souches de levure mutantes capables d'accumuler une grande quantité de lipides
US8597931B2 (en) 2008-07-11 2013-12-03 Institut National De La Recherche Agronomique (Inra) Mutant yeast strains capable of accumulating a large quantity of lipids
WO2011107721A1 (fr) 2010-03-05 2011-09-09 Organisation Nationale Interprofessionnelle Des Graines Et Fruits Oleagineux (O.N.I.D.O.L.) Procede de preparation d'acides carboxyliques par coupure oxydante d'un diol vicinal
WO2012001144A1 (fr) 2010-07-01 2012-01-05 Institut National De La Recherche Agronomique Optimisation de la synthese et de l'accumulation de lipides
WO2014136028A1 (fr) 2013-03-04 2014-09-12 Institut National De La Recherche Agronomique Levures mutantes ayant une production accrue de lipides et d'acide citrique
WO2014178014A1 (fr) 2013-05-02 2014-11-06 Institut National De La Recherche Agronomique Levures mutantes capables de produire un acide gras inhabituel
US10415064B2 (en) 2013-05-02 2019-09-17 Institut National De La Recherche Agronomique Mutant yeasts capable of producing an unusual fatty acid
US10093950B2 (en) 2013-12-12 2018-10-09 Provivi, Inc. Yeast strains with reduced fatty alcohol oxidase activity and method for the production of Ω-hydroxy fatty acids and dicarboxylic acids
EP3875584A1 (de) 2013-12-12 2021-09-08 Provivi, Inc. Hefestämme und verfahren zur produktion von omega-hydroxyfettsäuren und dicarbonsäuren
US10640796B2 (en) 2013-12-12 2020-05-05 Provivi, Inc. Yeast strains with reduced fatty alcohol oxidase activity and method for the production of omega-hydroxy fatty acids and dicarboxylic acids
WO2015086684A1 (de) * 2013-12-12 2015-06-18 Technische Universität Dresden HEFESTÄMME UND VERFAHREN ZUR PRODUKTION VON ω-HYDROXYFETTSÄUREN UND DICARBONSÄUREN
WO2015189352A1 (en) 2014-06-11 2015-12-17 Institut National De La Recherche Agronomique Improved lipid accumulation in yarrowia lipolytica strains by overexpression of hexokinase and new strains thereof
US9932665B2 (en) 2015-01-22 2018-04-03 United Technologies Corporation Corrosion resistant coating application method
WO2016156260A1 (fr) 2015-03-27 2016-10-06 Fonds De Développement Des Filières Des Oléagineux Et Des Proteagineux Fidop Microorganismes et leur utilisation pour la production de diacides
EP3085788A1 (en) 2015-04-23 2016-10-26 Institut National De La Recherche Agronomique Mutant yeast strain capable of degrading cellobiose
EP3106520A1 (en) 2015-06-17 2016-12-21 Institut National De La Recherche Agronomique Mutant yarrowia strain capable of degrading galactose
WO2017015368A1 (en) * 2015-07-22 2017-01-26 E I Du Pont De Nemours And Company High level production of long-chain dicarboxylic acids with microbes
US10626424B2 (en) 2015-07-22 2020-04-21 Dupont Industrial Biosciences Usa, Llc High level production of long-chain dicarboxylic acids with microbes
WO2017194424A1 (en) 2016-05-10 2017-11-16 Institut National De La Recherche Agronomique Mutant yeast strains with enhanced production of erythritol or erythrulose
WO2018130484A1 (en) 2017-01-13 2018-07-19 Institut National De La Recherche Agronomique Mutant yeast strain capable of producing medium chain fatty acids
EP3348647A1 (en) 2017-01-13 2018-07-18 Institut National De La Recherche Agronomique Mutant yeast strain capable of producing medium chain fatty acids
EP3360956A1 (en) 2017-02-10 2018-08-15 Institut National De La Recherche Agronomique Mutant yeast strain capable of degrading cellulose
EP4151740A1 (en) 2021-09-18 2023-03-22 Indian Oil Corporation Limited A bioassisted process for selective conversion of alkane rich refinery stream

Also Published As

Publication number Publication date
JP5462303B2 (ja) 2014-04-02
EP1828392A1 (fr) 2007-09-05
EP1828392B1 (fr) 2010-06-16
CN101228282B (zh) 2013-09-18
CA2590795A1 (fr) 2006-06-22
BRPI0519928A2 (pt) 2009-04-07
CN101228282A (zh) 2008-07-23
CA2590795C (fr) 2014-09-02
DE602005021913D1 (de) 2010-07-29
FR2879215B1 (fr) 2010-08-20
JP2008523794A (ja) 2008-07-10
PL1828392T3 (pl) 2011-04-29
ES2346773T3 (es) 2010-10-20
ATE471384T1 (de) 2010-07-15
FR2879215A1 (fr) 2006-06-16
JP2012105680A (ja) 2012-06-07
JP2012130352A (ja) 2012-07-12
JP5615859B2 (ja) 2014-10-29
WO2006064131A8 (fr) 2007-08-02
DK1828392T3 (da) 2010-09-27
US20100041115A1 (en) 2010-02-18

Similar Documents

Publication Publication Date Title
EP1828392B1 (fr) Production d' acides dicarboxyliques par des souches mutantes ameliorées de yarrowia lipolytica
Fickers et al. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications
CA2729626C (fr) Nouvelles souches de levure mutantes capables d'accumuler une grande quantite de lipides
KR102496301B1 (ko) 재조합 균주에 의한 글루코오스로부터의 자일리톨의 생성
FR2862068A1 (fr) Souches de microorganismes optimisees pour des voies de biosyntheses consommatrices de nadph
Thevenieau et al. Applications of the non-conventional yeast Yarrowia lipolytica
FR3002774A1 (fr) Levures mutantes ayant une production accrue de lipides et d'acide citrique
EP3274464A1 (fr) Microorganismes et leur utilisation pour la production de diacides
Waché et al. Yeast as an efficient biocatalyst for the production of lipid-derived flavours and fragrances
Fickers et al. Improvement of Yarrowia lipolytica lipase production by fed‐batch fermentation
NO326619B1 (no) Fremgangsmate ved fremstilling av acetyleniske forbindelser ved anvendelse av delta-12-acetylenase, DNA-sekvenser som koder for delta-12-acetylenasen samt organismer transformert med slike DNA-sekvenser.
CN110023501B (zh) ω-羟基脂肪酸生产方法
EP2992085A1 (fr) Levures mutantes capables de produire un acide gras inhabituel
EP0665291A1 (fr) Système hôte-vecteur permettant d'exprimer la glucose oxidase
EP0266240A1 (fr) Clonage des gènes bioA, bioD, bioF, bioC, bioH de Bacillus sphaericus, vecteurs et cellules transformées et procédé de préparation de la biotine
JP2001510048A (ja) 形質転換された酵母菌株と、モノターミナルおよびジターミナル脂肪族カルボキシレート生成のためのその使用
WO2005073381A2 (fr) Procede de surproduction d'une proteine recombinante determinee par des souches monocaryotiques de pycronoporus cinnabarinus
FR2736652A1 (fr) Levures et bacteries transformees pour operer la fermentation malolactique dans les vins
FR2715167A1 (fr) Procédé de production de la L-carnitine par voie microbiologique.
BRPI0519928B1 (pt) Process of production of dicarboxylic acids from yarrowia lipolytica mutatants
JP2006513693A (ja) 非復帰変異可能なβ−酸化遮断カンジダ・トロピカリス
BE1008267A3 (fr) Systeme d'expression, vecteur d'integration et cellule transformee par ce vecteur d'integration.
BE1009488A4 (fr) Systeme d'expression, vecteur d'integration et cellule transformee par ce vecteur d'integration.
JPH1075782A (ja) 新規△9不飽和化酵素をコードする遺伝子及びその遺 伝子を含有する酵母

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005826569

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2590795

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007546115

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200580048322.2

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005826569

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0519928

Country of ref document: BR

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 11721726

Country of ref document: US