WO2006062114A1 - 医療用カテーテルチューブならびにその製造方法 - Google Patents

医療用カテーテルチューブならびにその製造方法 Download PDF

Info

Publication number
WO2006062114A1
WO2006062114A1 PCT/JP2005/022428 JP2005022428W WO2006062114A1 WO 2006062114 A1 WO2006062114 A1 WO 2006062114A1 JP 2005022428 W JP2005022428 W JP 2005022428W WO 2006062114 A1 WO2006062114 A1 WO 2006062114A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
reinforcing material
layer
material layer
tip
Prior art date
Application number
PCT/JP2005/022428
Other languages
English (en)
French (fr)
Inventor
Takahiro Murata
Tsuyoshi Mihayashi
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to EP05814683A priority Critical patent/EP1825879A1/en
Priority to JP2006546725A priority patent/JP4501938B2/ja
Priority to US11/721,331 priority patent/US20090240235A1/en
Publication of WO2006062114A1 publication Critical patent/WO2006062114A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes
    • A61M25/001Forming the tip of a catheter, e.g. bevelling process, join or taper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes
    • A61M25/0012Making of catheters or other medical or surgical tubes with embedded structures, e.g. coils, braids, meshes, strands or radiopaque coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/005Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids
    • A61M25/0053Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids having a variable stiffness along the longitudinal axis, e.g. by varying the pitch of the coil or braid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the present invention has excellent flexibility, position adjustment, torque transmission, kink resistance, pressure resistance, high degree of freedom of adjustment of inclination control of rigidity and flexibility, and tone setting according to various access routes
  • the present invention relates to a medical catheter tube having the above and the manufacturing method thereof.
  • the present invention relates to a medical catheter tube capable of exhibiting excellent flexibility at the same time as X-ray visibility with a suitable tip, and a method for manufacturing the same.
  • a catheter tube is a hollow medical instrument that is inserted into a body cavity, tube, blood vessel, etc., for example, injection of a liquid such as a selective angiographic contrast agent, suction of a thrombus, securing a passage of a blood vessel in a closed state, Used for vasodilation and the like, and usually consists of a tube body.
  • a liquid such as a selective angiographic contrast agent, suction of a thrombus, securing a passage of a blood vessel in a closed state, Used for vasodilation and the like, and usually consists of a tube body.
  • Such a catheter is required to have excellent operability so that it can be quickly and surely inserted into a vascular system having a thin and complicated pattern.
  • Affinity for blood and tissue on the outer surface of the catheter is required. Even if the tip of the catheter tube reaches the target position and the guide wire is pulled out, the catheter tube does not bend at the curved or bent part of the blood vessel, and the blood vessel does not damage the blood vessel. The flexibility of the tip that maintains the shape according to the shape is required.
  • the base is relatively rigid in order to impart characteristics according to such requirements, It is known that it is better to have a structure and configuration that gradually becomes flexible over the tip.
  • a wire is wound around the inner layer tube as a reinforcing material layer in a coil shape or braided, and then the outer layer is covered to form a catheter tube.
  • the method is known.
  • Patent Document 1 a catheter main body having a portion in which a flexible inner tube and an outer tube are joined via a reinforcing material layer is used to wind a wire as a reinforcing material layer around an inner layer tube as a reinforcing material layer.
  • the reinforcing material layer is formed by forming a linear body in a lattice shape, and an inclination angle of the linear body with respect to an axis of the catheter body is continuous along an axial direction of the force tape body or A region where the bending stiffness is large and a region where the bending stiffness is small are formed by the force that changes stepwise, or the distance between the grid points of the striatum in the axial direction of the catheter body changes continuously or stepwise.
  • a catheter tube is disclosed.
  • this catheter tube can form a rigid base and a flexible distal end.
  • the degree of freedom in controlling the inclination of the rigidity and flexibility is further reduced. If you set the condition of the catheter tube according to the route, there is no idea. There is no specific description about the marker that gives X-ray visibility, and it is not a philosophy to ensure X-ray visibility at the same time as the high flexibility of the catheter tip.
  • Patent Document 2 a passage that defines a proximal end, a distal end, and a lumen extending between these ends, as a wire wound around an inner layer tube as a reinforcing material layer in a coil shape.
  • An elongate tubular member having an inner tubular liner made of a first liner material coaxial with an outer tubular cover having a first cover material;
  • a catheter tube is disclosed having at least one first ribbon stiffener having a circumference and spirally or coaxially wound around the outer tubular liner and covered by the outer tubular cover. ing.
  • the degree of freedom of inclination control of rigidity and flexibility is low even in this configuration.
  • the cutting end is made to have an inner tubular liner or an outer tubular cover by the elastic force of the ribbon reinforcing material.
  • Productivity is inferior due to problems such as breaking through.
  • you set the condition of the catheter tube according to various access routes there is no idea. Plus X-ray visibility
  • the radiopaque band is used for the marker, but there is no specific description on how it is constructed.
  • a catheter including a flexible tubular catheter body and a coil having a reinforcing effect embedded in the wall of the catheter body.
  • the catheter body includes a first region located on the most distal side of the catheter, and a second region located on the proximal side of the first region, and the coil includes the first region. Extending in the second region, in which the coil is wound at a relatively large winding pitch over its entire length, and in the first region, the coil is adjacent over its entire length.
  • the windings are wound at a relatively small winding pitch that separates the windings, and the winding pitch of the coil gradually decreases toward the tip side, and the first region is compared with the second region.
  • Catheter in one area Catheter tube, characterized by being configured to sexual force S decreases so is disclosed.
  • this catheter tube has high rigidity and high flexibility with the base! It is possible to form the distal end and maintain the balance of flexural rigidity. If you set the condition of the catheter tube according to the route, there is no idea.
  • this catheter tube has all the reinforcing coils that are X-ray-impermeable metal wire force, and the distal end portion is not sufficiently flexible. In addition, the X-ray visibility becomes excessive, so that the operation is performed during the operation. May interfere with the judgment of the person.
  • Patent Document 4 discloses a long shaft having a proximal region, a distal region, and a lumen extending therebetween.
  • the proximal region has an inner smooth polymer layer, a reinforcing layer and an outer layer, each layer has a distal end, and the reinforcing layer comprises a metal member and a blade having a plurality of polymer members.
  • vascular catheters each polymer member comprising a plurality of monofilaments.
  • the catheter tube can form a rigid base and a flexible tip, but it can be used in a variety of access paths with less freedom of tilt control of the rigidity and flexibility. If you set the condition of the catheter tube accordingly, there is no idea.
  • X-ray visibility markers can be used to wrap a thin metal plate over an inner tube or to cover a metal tube. With such a configuration, it is impossible to secure a high degree of flexibility of the tip end of the force taper over the marker and its periphery.
  • Patent Document 5 As a method of braiding a strand as a reinforcing material layer to an inner layer pipe, in Patent Document 5, a metal braid is continuously formed over the entire outer periphery of a tube body made of thermoplastic resin in which a metal core wire is inserted. After the coating is formed and the torque transmission part is formed continuously, a laser beam with a wavelength of 1.06 ⁇ m is irradiated from the outside to remove a part of the braid intermittently along its length. A plurality of insertion tip portions having a constant width are formed at predetermined intervals along the length direction of the tube body, and then the metal core wire is pulled out, and then the tube body at the end portion of each insertion tip portion. A method of manufacturing a catheter tube is disclosed in which the insertion tip is continuously formed at the tip of the torque transmission portion by dividing the above into a plurality of portions.
  • the process of irradiating a laser beam having a wavelength of 1.06 m and intermittently removing a part of the braid along its length direction becomes very cumbersome. Furthermore, after continuously forming the metal braid over the entire outer periphery of the tube body made of thermoplastic resin into which the metal core wire in the subsequent process is inserted, the tube body is heated and softened to form the above-mentioned on the outer surface.
  • the thickness of the braid is 1Z2 ⁇ : When the torque transmission part is continuously formed by intruding and fixing about LZ5, the metal braid is used when the braid is engraved by heat softening the tube body.
  • Patent Document 1 Japanese Patent No. 3310031
  • Patent Document 2 Japanese Patent No. 2672714
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-218851
  • Patent Document 4 Japanese Translation of Special Publication 2002-535049
  • Patent Document 5 JP 2000-225194 A Disclosure of the invention
  • the present invention provides a medical catheter tube having excellent position adjustment, torque transmission, flexibility, kink resistance, pressure resistance, pushability, X-ray visibility, and the like, and a method for manufacturing the same. It is to be disclosed.
  • the medical catheter tube of the present invention since the medical catheter tube of the present invention is used in various affected areas, there are various access paths to the target site. Therefore, the inclination control of rigidity and flexibility is high, and the degree of freedom of adjustment is high.
  • the present invention also provides a medical catheter tube which can be set in accordance with various access routes and discloses a manufacturing method thereof.
  • the present invention is particularly advantageous in that the marker made of a metal having radiopacity disposed at the tip adjacent to the tip of the reinforcing material layer has flexibility with respect to bending deformation. There is an advantage in that the high flexibility of the tip part can be exhibited at the same time as appropriate X-ray visibility, and the manufacturing method is disclosed.
  • the present invention (1) is a medical catheter tube, wherein the catheter tube has a base portion, a distal end portion, and a most distal end portion from the proximal end side, and an inner layer having a grease tube force.
  • Pipe reinforcement layer formed by braiding strands on the inner layer pipe, marker arranged by covering a metal member having radiopacity on the inner layer pipe at the tip, and a reinforcement layer
  • the outer tube, the inner tube, the reinforcing material layer, the marker and the outer tube are integrated, and the strand forming the reinforcing material layer is a synthetic resin strand.
  • the reinforcing material layer is disposed only at the base, the marker is flexible with respect to bending deformation, and the bending rigidity of the outer layer tube is Base force is also small stepwise or continuously across the tip It is configured in Kunar so,
  • the resin tube has lubricity and flexibility
  • the strands forming the reinforcing material layer are kink resistance, pressure resistance, torque transmission property, (1) description, further comprising: imparting pushability and the like to the catheter tube, and the outer layer tube having flexibility. This relates to a catheter tube.
  • the present invention (3) is a coil body of an X-ray impermeable metal strand wound on the inner layer tube, or is cut from both sides of a square wrapped around the inner layer tube.
  • the present invention relates to the medical catheter tube according to (1) or (2), which is an inserted X-ray opaque metal thin plate or a tube formed of a resin kneaded with an X-ray opaque metal powder.
  • the present invention (4) further comprises that the strands forming the reinforcing material layer also have a synthetic fiber force having a molten liquid crystal polymer as an inner core and a flexible polymer as a sheath (1) To (3) V, or the medical catheter tube according to any one of the above.
  • the present invention (5) further includes that the pick interval of the braid forming the reinforcing material layer changes continuously or stepwise from the base portion to the tip end portion (1) to (4)
  • the present invention relates to a medical catheter tube according to claim 1.
  • the outer-layer pipe has a plurality of segments, and the Shore D hardness of the resin constituting the segments decreases stepwise from the base to the tip.
  • the medical catheter tube according to any one of (1) to (5), further comprising an arrangement of the plurality of segments.
  • the present invention (7) is the medical device according to any one of (1) to (6) V, in which the outer diameter of the outer layer tube is changed and formed into a round shape or a tapered shape at the most distal portion.
  • the present invention relates to a catheter tube for medical use.
  • the present invention (8) relates to the medical catheter tube according to any one of (1) to (7), wherein the outer layer tube is hydrophilically coated.
  • the present invention is the method for producing a catheter tube of the present invention, wherein a reinforcing material layer is formed by braiding on the outer periphery of the inner tube, and further, against bending deformation adjacent to the tip of the reinforcing material layer.
  • a reinforcing material layer is formed by braiding on the outer periphery of the inner tube, and further, against bending deformation adjacent to the tip of the reinforcing material layer.
  • the outer tube is covered and the catheter tube is manufactured, and the X-ray opaque marker is placed on the inner tube adjacent to the end of the reinforcing material layer.
  • the present invention relates to a method for producing a medical catheter tube, which is formed by using a resin kneaded with powder, and has a flexible tip.
  • the present invention (10) is a method of manufacturing a catheter tube according to the present invention, wherein a reinforcing material layer is formed by braiding on the outer periphery of an inner layer tube, and further, it is for bending deformation adjacent to the tip of the reinforcing material layer.
  • the outer layer tube is coated and the catheter tube is manufactured.
  • the reinforcing material layer is formed on the outer periphery of the inner layer tube.
  • the pick interval of the braid changes continuously or stepwise by braiding the supplied strands and changing the relative movement speed of the inner layer pipe and the strand supply section continuously or stepwise.
  • the present invention relates to a method for manufacturing a medical catheter tube.
  • the present invention (11) is a method of manufacturing a catheter tube according to the present invention, wherein a reinforcing material layer is formed by braiding on the outer periphery of the inner tube, and further, bending deformation adjacent to the tip of the reinforcing material layer is performed. After forming a radiopaque marker that is flexible to the outer tube, the outer tube is coated with the Shore D hardness of the resin tube that forms the force tube. When the shore D hardness of the resin pipe is multistage, the shore D hardness is arranged so that it gradually decreases from the base to the tip.
  • the present invention relates to a method of manufacturing a medical catheter tube, characterized in that various tones can be set by changing the pick interval of a braid forming a reinforcing material layer continuously or stepwise.
  • the present invention (12) is a method of manufacturing a catheter tube according to the present invention, wherein a reinforcing material layer is formed by braiding on the outer periphery of an inner layer tube, and further, it is for bending deformation adjacent to the tip of the reinforcing material layer.
  • the outer tube is coated with the outer tube, and the outer tube has a Shore D hardness of one or more stages. When the Shore D hardness of the resin tube is multi-staged, place the Shore D hardness so that it gradually decreases toward the tip of the base force, and cover the whole with a shrink tube.
  • the inner tube, the reinforcing material layer, the radiopaque marker, and the outer tube were assembled together, and the shrink tube was cooled after the cutting edge was formed into a round shape or taper shape. To peel it off later The method of manufacturing a medical catheter tube according to claim.
  • the present invention (13) is a method of manufacturing a catheter tube of the present invention, wherein a reinforcing material layer is formed by braiding on the outer periphery of the inner layer tube, and further, it is for bending deformation adjacent to the tip of the reinforcing material layer.
  • the outer tube is coated to produce a catheter tube.
  • the outer tube is formed by coating and extruding so that the Shore D hardness becomes one step or more. When the Shore D hardness is multi-staged, the outer tube is formed so that the Shore D hardness gradually decreases toward the base force tip.
  • the present invention relates to a method for manufacturing a medical catheter.
  • the present invention provides excellent position adjustment with guide wire tracking, torque transmission when an operator applies a rotational force, and base A medical catheter tube with a gradual or continuous change in flexibility across the tip is provided.
  • this configuration offers high rigidity and flexibility of adjustment flexibility, tone setting according to various access routes, and kink resistance, pressure resistance, guide wire that does not bend even when complicated bending occurs. It has an effect of providing a medical force teeter tube having followability and productivity.
  • an appropriate X-ray visibility can be obtained by placing a marker by wrapping a metal member having radiopacity on the inner layer tube at the tip, and the marker is bent and deformed. Therefore, it is possible to obtain a high degree of flexibility at the distal end portion and the most advanced portion particularly important as a catheter. Therefore, it is possible to provide a medical catheter tube capable of exhibiting a high degree of flexibility at the tip.
  • the resin tube further exhibits lubricity and flexibility, and the strand has kink resistance, pressure resistance, torque transmission, pushability, and the like. Since the outer tube is applied to the catheter tube and has flexibility, the guide wire can be smoothly moved back and forth when the guide wire is inserted into the resin tube as the catheter tube. In addition, by having the outer tube, the catheter tube can be delivered to the target treatment site.
  • the marker is a force that is a coil body of a radiopaque metal strand wound on the inner layer tube.
  • the square wound around the inner layer tube Cut from both sides
  • the tube is made of a thin X-ray opaque metal plate or a tube made of kneaded kneaded X-ray opaque metal powder. Can be obtained.
  • the strand is further made of a synthetic fiber sheath having a molten liquid crystal polymer as an inner core and a flexible polymer as a sheath, whereby the pressure resistance of the catheter tube,
  • a synthetic fiber sheath having a molten liquid crystal polymer as an inner core and a flexible polymer as a sheath, whereby the pressure resistance of the catheter tube.
  • the pick interval of the braid forming the reinforcing material layer is changed continuously or stepwise from the base portion to the tip portion, so that gradually from the base portion to the tip portion. The effect that rigidity becomes small is acquired.
  • the outer-layer tube further has a plurality of segments, and the Shore D hardness of the resin constituting the segments decreases stepwise from the base to the tip.
  • the arrangement of the plurality of segments provides the effect that the rigidity gradually decreases toward the tip of the base force, and at the same time, the effect that the torque applied to the base is easily transmitted to the tip. .
  • the outer diameter of the outer layer tube is changed at the most distal portion and is formed into a round shape or a tapered shape, so that the inner wall of the blood vessel is not damaged during use. ! /, The effect is obtained.
  • a medical catheter tube that can be easily inserted into a body lumen at the time of use is obtained by further coating the outer layer tube with a hydrophilic coating.
  • FIG. 1 is a flowchart showing a manufacturing method.
  • FIG. 2 is a simplified explanatory diagram showing a metal core wire wound around a reel.
  • FIG. 3 is a simplified explanatory view showing a state in which an inner layer pipe is continuously covered with an extruder.
  • FIG. 4 is a simplified explanatory view showing a state in which strands are braided into an inner layer pipe to form a reinforcing material layer.
  • FIG. 5 is an enlarged side view showing picks and pick intervals.
  • FIG. 6 is an enlarged side view showing an example in which strands as reinforcing members are arranged in the axial direction.
  • FIG. 7 shows a cross-sectional structure of a strand preferably used as a synthetic resin strand, (A) is an enlarged perspective view of the end of the strand, and (B) is a scanning micrograph of the end of the strand. is there.
  • FIG. 8 is a simplified explanatory diagram showing a state in which the inner tube and the reinforcing layer are removed at positions corresponding to the distal end and the base of the catheter.
  • FIG. 9 is a simplified side view showing a state where catheters are cut one by one.
  • FIG. 10 is a partially omitted side view showing a state in which a radiopaque marker is arranged on the distal end of the catheter.
  • FIG. 11 is a side view of the radiopaque sheet metal marker with a cut from both sides of the square.
  • FIG. 12 is a partially omitted side view showing a state in which a radiopaque thin metal plate marker having a cut line on both sides of a square is placed at the tip of a force taper.
  • Figure 13 shows the inner tube and the reinforcing layer removed at the position corresponding to the catheter tip and base.
  • FIG. 3 is an enlarged side view of a state in which a radiopaque metal wire marker is arranged.
  • Figure 14 shows that the inner tube and the reinforcing layer are removed at positions corresponding to the distal end and the base of the catheter.
  • FIG. 15 is a simplified side view showing a state in which the four types of outer tube having the Shore D hardness, which are the outer layers, are arranged in close contact with each other by cutting the resin tube.
  • Fig. 16 is a simplified side view showing the state in which the outer layer pipe whose Shore D hardness changes stepwise is shown by cutting the outer layer pipe.
  • FIG. 17 is a simplified cross-sectional view showing a state where a shrink tube is arranged.
  • FIG. 18 is a simplified cross-sectional view showing a state in which the shrink tube is contracted and the inner layer tube, the reinforcing material layer, and the outer layer tube are integrated, and the distal end portion of the resin tube that becomes the outer layer tube is shaped in a round shape.
  • FIG. 19 is a simplified cross-sectional view showing the tip of the tube structure and the heating die for shaping the tip.
  • FIG. 20 is a simplified cross-sectional view showing a state in which the distal end of the tube constituent body is brought into contact with a distal end shaping die and heated.
  • FIG. 21 is a simplified cross-sectional view showing a state where the shrink tube has been peeled off.
  • FIG. 22 is a simplified explanatory diagram showing a state in which a metal core wire is welded to form a continuous catheter and wound on a reel.
  • FIG. 23 is a simplified explanatory diagram showing a state in which an outer layer is formed by coating extrusion.
  • FIG. 24 is a simplified cross-sectional view showing a state in which a shrink tube is disposed at the tip after cutting one by one.
  • FIG. 25 is a simplified cross-sectional view showing a state in which the metal core wire is drawn and the base end cross section is finished.
  • FIG. 26 is a conceptual diagram showing the tone.
  • FIG. 1 shows a flowchart of the manufacturing method, which is the best mode of the present invention. In the present invention, appropriate modifications can be made without departing from the scope of the present invention described in the claims.
  • a metal core wire 1 is prepared as shown in FIG.
  • the metal core wire 1 is wound around a reel 2, and the outer diameter thereof is substantially the same as the inner diameter of the catheter to be manufactured.
  • the material is preferably a metal lead wire or a stainless steel wire.
  • the left side is the base and the right side is the tip for convenience.
  • the inner layer tube 3 is formed by extrusion coating on the metal core wire 1 by the extruder 4.
  • the constituent material of the inner layer tube 3 is not particularly limited as long as it is a resin.
  • a resin for example, polytetrafluoroethylene, tetrafluoroethylene perfluoroalkyl vinyl ether is used.
  • Polymers, fluorinated resins such as tetrafluoroethylene monohexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer, polyolefins such as polypropylene, polyethylene, ethylene-butyl acetate copolymer, Polyamide, polyethylene terephthalate, polybutylene terephthalate and other polyesters, polyurethane, polychlorinated butyl, polystyrene-based resin, polyimide and other resins, and mixtures thereof.
  • the inner layer tube 3 covered with the metal core wire 1 preferably has a sufficient adherence to the metal core wire 1.
  • the mechanical method such as rubbing the surface of the inner tube with sandpaper
  • an electrical method such as plasma to form irregularities or modify the surface.
  • the reinforcing material layer 5 is formed by braiding the wire 51 on the inner layer pipe 3 as shown in FIG.
  • the strand 51 can impart kink resistance, pressure resistance, torque transmission, pushability, and the like to the catheter tube.
  • the braiding is performed by a braiding machine.
  • One of the stitches is called a pick, and the interval between the picks changes in a continuous or stepwise manner in which the distance between the picks is fine at the distal end of the catheter and rough at the base as shown in FIG. It is possible to adjust or adjust the tone.
  • Fig. 5 shows an enlarged schematic view of the braid.
  • the stitch (p) in this figure is called a pick, and the stitch interval (a) is called the pick interval.
  • the pick interval has flexibility as the force increases, and becomes rigid as it becomes coarse.
  • the number of braids and the number of striking can be selected as appropriate.
  • the number is a strand contained in one pick 5 It is a number of 1 and the number of hits represents the number of picks per round.
  • the strands 52 as the reinforcing material layer 5 are arranged in an appropriate number in the axial direction so as to suppress elongation when the catheter is pulled or to easily follow complicated blood vessel bending. Also good.
  • the arrangement of the strands 52 in the axial direction can be expected to have an effect of further smoothing the inclination of rigidity and flexibility and improving the bursting resistance.
  • a metal strand can be used together with a synthetic resin strand.
  • Particularly suitable as the synthetic resin strands are the fused liquid crystal polymer core 6 as shown in the sectional conceptual diagram of FIG. 7 and the scanning micrograph, the molten liquid crystal polymer island (sheath) 7 and the flexible polymer sea. (Sheath) 8 is covered.
  • the molten liquid crystal polymer is made of polyarylate, and the flexible polymer is made of polyethylene naphthalate.
  • the diameter of the synthetic resin wire that is suitably used is preferably 5 to 50 m. Examples of such strands 51 and 52 are disclosed in Japanese Patent Laid-Open No. 2002-20932.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate and polymethylene terephthalate, polyolefins such as polyethylene and polypropylene, rigid polychlorinated butyl, Polyamide, Polyimide, Polystyrene, Thermoplastic polyurethane, Polycarbonate, ABS resin, Acrylic resin, Polymethyl methacrylate, Polyacetal, Polyarylate, Polyoxymethylene, High-tensile polybulal alcohol, Fluorine resin, Polyvinyl fluoride Redene, polytetrafluoroethylene, ethylene acetate saponification, polysulfone, polyethersulfone, polyether ketone, polyphenylene oxide, polyphenylene sulfide, Kevlar (Dubon USA) And aromatic polyaramide typified registered trademark), Porimaaroi containing any of these, carbon fibers, glass fibers and the like.
  • polyesters such as polyethylene terephthalate, polybutylene tere
  • Superelastic alloys such as super-alloys and amorphous alloys are used. Of these materials, X-ray opaque markers to be placed later are used. In order to ensure sufficient visibility, it is preferable to use stainless steel because it is less visible than X-ray impermeable markers and because it is not workable, economical, or toxic.
  • Metal wire is The diameter is preferably about 5 to 50 ⁇ m.
  • the above-mentioned synthetic resin wires and metal wires may be used alone or may be misaligned in an assembly of strands (for example, twisted or bundled strands).
  • strands for example, twisted or bundled strands.
  • only a synthetic resin wire or a metal wire may be used, but a synthetic resin wire and a metal wire may be used in combination.
  • a bonding layer may be provided to fix the reinforcing material layer 5 to the inner layer pipe 3, although not shown here.
  • the purpose of providing this bonding layer is to block the minute holes generated in the inner pipe 3 and to increase the burst resistance, and the upper force of the braided reinforcing material layer 5 and the inner pipe 3
  • Flexible polyurethane, polyurethane dispersion, or flexible adhesive can be applied to a thickness of 5 to 50 m or coated by spraying.
  • the inner tube 3 and the reinforcing material layer 5 at positions corresponding to the distal end portion and the base portion of the catheter are removed so that the metal core wire 1 is exposed.
  • polyurethane, polyurethane dispersion or a flexible adhesive may be applied to the braid tip and base ends.
  • the A process or the B process can be used.
  • the marker is not particularly limited as long as it is disposed by covering a metal member having radiopacity on the inner layer tube 3 at the front end and has flexibility with respect to bending deformation. Whether or not it has flexibility against bending deformation is compared with the bending stiffness of a metal member that has radiopacity and the bending stiffness of a simple tube made of radiopaque metal. Can be determined.
  • the catheter is cut one by one by cutting the exposed metal core wire 1 as shown in FIG.
  • the cut catheter tube has at least a base portion, a distal end portion, and a distal end portion from the proximal end side.
  • FIG. 10 shows an enlarged view of the catheter tip, and 9 shows the metal core wire after cutting.
  • a single X-ray opaque metal wire marker 10 is disposed adjacent to the front of the reinforcing material layer 5, and the X-ray opaque metal element wire is placed on the inner layer at the distal end of the catheter tube. Winded on tube 3 and placed as a coil body To do.
  • the winding of the X-ray-impermeable metal element wire on the inner layer tube 3 may be either tight winding in which the metal element wires are in contact with each other or pitch winding having an interval between the metal element wires.
  • the X-ray opaque metal thin plate marker 11 with a square both-side force break 111 having a shape as shown in FIG. 11 is placed on the inner pipe 3 adjacent to the tip of the reinforcing material layer 5 as shown in FIG. Wrap it around and place it.
  • FIG. 12 is an enlarged view of the distal end portion of the catheter.
  • reference numeral 12 denotes an X-ray impermeable metal formed by wrapping the X-ray impermeable metal thin plate marker 11 on the inner tube 3. It is a thin plate marker.
  • radiopaque markers have a diameter of 5 to 30 ⁇ m when using thin metal plates, which preferably have a diameter of 5 to 50 ⁇ m when using metal wires. I like things.
  • these X-ray impermeable markers ensure suitable flexibility both when a metal wire is used and when a metal thin plate is used.
  • the radiopacity markers 1 and 12 may be appropriately fixed to the inner layer tube 3 using an adhesive or the like.
  • X-ray opaque markers 10 and 12 are made of platinum (Pt), Pt—Ir alloy, Pt—W alloy, Pt—Ni alloy, gold, silver, etc. A metal having good properties is preferably used.
  • the resin tube in which X-ray-impermeable metal powder such as barium sulfate, bismuth oxide, bismuth carbonate, bismuth tasterate and bismuth oxychloride is kneaded is reinforced. You may arrange
  • FIG. The resin used here is preferably the same as that used as an outer tube described later.
  • a resin tube kneaded with radiopaque metal powder may be arranged with a cut in the axial direction, or may be arranged while maintaining the tube form. Further, as will be described later, the distal end portion of the outer tube may be formed of a resin kneaded with a radiopaque metal powder. This is the A process.
  • Process B involves attaching a radiopaque marker without cutting the catheter.
  • FIG. 13 shows an enlarged view of the catheter base and tip of FIG.
  • Reference numeral 13 denotes a metal core wire.
  • a radiopaque metal wire marker 14 is wound on the inner tube 3 so as to be adjacent to the tip of the reinforcing material layer 5. This winding is also a tight winding where metal wires are in contact with each other Alternatively, either pitch winding with a space between metal wires may be used.
  • a radiopaque sheet metal marker 15 with a notch from both sides of the square shaped as shown in Fig. 11 is placed on the inner pipe 3 adjacent to the tip of the reinforcing material layer 5 as shown in Fig. 14. Wrap it around and place it. The shape, material, etc.
  • radiopaque markers are the same as those already shown above.
  • a resin tube kneaded with radiopaque metal powder may be arranged on the inner tube adjacent to the tip of the reinforcing material layer. It is the same as that.
  • the C process is a process of attaching the outer tube 16 to the catheter created by the A process. It is necessary that the bending rigidity of the outer layer pipe 16 is reduced stepwise or continuously with the base force toward the tip.
  • the magnitude of the bending rigidity referred to in this specification corresponds to the magnitude of the value measured by the Shore D hardness of the material resin used as the outer layer pipe 16.
  • the catheter tube is advanced into the blood vessel and reached to the treatment target site, the torque of the base is transmitted to the tip, and a metal member having radiopacity is also provided to the inner tube of the tip
  • the outer tube 16 preferably has flexibility.
  • the outer tube 16 is arranged such that the resin tube 16a to 16d, which becomes the outer tube 16, has a base force applied to the tip, and the resin tube forming the outer tube 16 has one or more stages of Shore D hardness. Place.
  • a grease tube is placed on the tip side beyond the radiopaque marker 17.
  • the outer tube 16 made of a resin has a plurality of segments, and the plurality of segments are arranged so that the Shore D hardness force of the resin constituting the segment decreases stepwise from the base to the tip! , Prefer to be.
  • Fig. 15 shows a state in which four types of Shore D hardness are placed in close contact, they are placed so that the Shore D hardness gradually decreases from the base to the tip.
  • Shore D hardness as used herein refers to a value measured according to ISO 7619 for durometer type D.
  • the Shore D hardness of the resin pipe used as the outer pipe 16 is 16a>16b>16c> 16d in FIG. Those having a Shore D hardness of about 20 to 80 are preferably used.
  • the outer layer pipe 16 having the one type of Shore D hardness may be divided into a plurality of pieces and closely arranged. It is preferable that there is a very small gap between the structure in which the reinforcement layer 5 is braided on the inner layer pipe 3 and the resin pipe that becomes the outer layer pipe 16, so that the reinforcement layer 5 is obtained. There are few who are only in the striatum. Further, if the resin pipes to be the outer pipes 16 having different Shore D hardnesses are arranged so as to be shifted from the positions where the pick interval of the braid is changed, the slopes of rigidity and flexibility can be gradually changed.
  • the X-ray opaque metal wire marker or the X-ray opaque metal thin plate marker is not used, and the marker is made of a resin kneaded with X-ray opaque metal powder.
  • a short resin tube may be disposed at the most distal portion of the resin tube serving as the outer layer tube.
  • a method for producing the resin pipe to be the outer layer pipe 16 as an alternative, a plurality of extruders are connected to a single extrusion mold, and a resin having a different Shore D hardness is used. When the machine is operated and stopped sequentially, a resin pipe with a gradual change in Shore D hardness is created and placed in a structure in which the reinforcing material layer 5 is braided on the inner pipe 3 as shown in FIG. May be.
  • multiple extruders are connected to a mold with a valve mechanism, and while continuously extruding, resins with different Shore D hardnesses are introduced into the extrusion flow path, and the Shore D hardness is reduced while switching the discharge.
  • a gradually changing resin pipe may be created and arranged in a structure in which the reinforcing material layer 5 is braided on the inner layer pipe 3 as shown in FIG.
  • the outer layer pipe 16 needs to be arranged so that it has a higher Shore D hardness as it approaches the proximal end portion and a lower Shore D hardness as it approaches the distal end side.
  • the most advanced portion of the resin tube can be a resin kneaded with a radiopaque metal powder.
  • various elastomers such as polyamide elastomer, polyester elastomer, polyurethane elastomer, polystyrene elastomer, fluorine-based elastomer, silicone rubber, latex rubber, or the like are used. A combination of two or more of these can be used.
  • the polyamide elastomer is, for example, nylon 6, nylon 64, nylon 66, nylon 610, nylon 612, nylon 46, nylon 9, nylon 11, nylon 12, N—
  • Various aliphatic or aromatic polyamides such as lucoxymethyl-modified nylon, hexamethylenediamine isophthalic acid condensation polymer, and metaxyloyldiamin adipic acid condensation polymer are used as hard segments, and polymers such as polyester and polyether are used as soft segments.
  • a block copolymer is typical, and in addition, a polymer alloy (polymer blend, graft polymerization, random polymerization, etc.) of the polyamide and a flexible resin, or the polyamide softened with a plasticizer, Sarako is a concept that includes these mixtures.
  • a polymer alloy polymer blend, graft polymerization, random polymerization, etc.
  • Sarako is a concept that includes these mixtures.
  • the polyester elastomer is typically a block copolymer of a saturated polyester such as polyethylene terephthalate or polybutylene terephthalate and a polyether or polyester.
  • these polymer alloys and the saturated polyesters may be used.
  • Softened with a plasticizer or the like, Sarako is a concept that includes these mixtures.
  • the material suitably used is preferably a polyamide elastomer from the viewpoint of processability and flexibility, for example, PEBAX manufactured by elf atochem, and the like.
  • the shrink tube 18 having the property of reducing its diameter by heating is disposed on the entire outer periphery of the outer layer tube 16.
  • the shrink tube 18 is preferably made of polytetrafluoroethylene or perfluoroethylene propene copolymer.
  • the shrink tube 18 is heated with a heater to a temperature at which the tube contracts, or is heated by applying high-frequency electromagnetic waves, and the inner tube 3, the reinforcing material layer 5, and the outer tube 16 are integrated together.
  • the shrink tube 18 contracts, the distal end portion of the resin tube that becomes the outer layer tube 16 is shaped into a round shape 19 as shown in FIG.
  • the shrink tube 18 is contracted, and then a heating mold 20 having the desired tapered shape 201 on the inner surface as shown in FIG. As shown in Fig. 20, the tip end of the resin tube is contacted and heated to form a tapered shape 21.
  • the shrink tube 18 is peeled, and the inner layer tube 3, the reinforcing material layer 5, and the outer layer tube 16 at the distal end portion and the proximal end portion of the catheter are cut and adjusted as necessary.
  • the D process is a process in which the catheter cut by the B process is connected again as a continuous body, and the metal core wires 9 and 9 are welded.
  • For welding use a spot welder 22 as shown in Fig. 22.
  • the E process is a process of continuously covering the outer tube 16 by switching extrusion to a long connected catheter.
  • the outer tube 16 is coated and extruded so that the Shore D hardness becomes one step or more. Is formed by coating and extruding the outer tube 16 so that the Shore D hardness gradually decreases toward the tip of the base force, and the inner tube 3, the reinforcing material layer 5, and the outer tube 16 are integrated. Let me.
  • the four extruders 24, ... are connected to one extrusion mold 23 as shown in Fig. 23, and the target While controlling the outer diameter, the four extruders can be sequentially stopped and covered to form the outer layer pipe 16.
  • four extruders are connected to a die having a valve mechanism, and the resins having different Shore D hardnesses are sequentially introduced into the extrusion flow channel while being continuously extruded. It is also possible to form the outer tube 16 by covering with switching.
  • the most advanced part of the outer tube 16 is not transparent. Markers can be formed with resin mixed with conductive metal powder.
  • the catheter is cut one by one, the end of the inner layer tube 3 or outer layer tube 16 at the tip is adjusted, and the diameter is reduced by heating as shown in Fig. 24. Place 25 at the tip only.
  • the shrink tube 25 is preferably made of polytetrafluoroethylene or perfluoroethylene propene copolymer.
  • the subsequent process is the same as that shown in the C process.
  • the heating force is applied to the shrink tube 25 with a heater to a temperature at which the tube contracts.
  • the high-frequency electromagnetic wave is applied to heat the inner tube 3, the reinforcing material layer 5, the outer tube.
  • Integrate 16 The term “integration” as used herein means that the inner layer pipe 3, the reinforcing material layer 5, and the outer layer pipe 16 are fixed so as not to move relative to each other.
  • the shrinkage of the shrink tube 25 causes the distal end portion of the resin tube that becomes the outer layer tube 16 to be formed into a round shape 19 as shown in FIG.
  • shrink the shrink tube 25 and then heat the mold 2 as shown in FIG. Using 0, contact and heat as shown in FIG.
  • the shrink tube 25 is removed.
  • hydrophilic coating is performed.
  • the hydrophilic polymer substance include the following natural or synthetic polymer substances or derivatives thereof.
  • cellulosic polymer materials eg, hydroxypropyl cellulose
  • polyethylene oxide polymer materials polyethylene glycol
  • maleic anhydride polymer materials eg, methyl vinyl ether maleic anhydride copolymer
  • a maleic anhydride copolymer an acrylamide polymer (for example, polyacrylamide), and water-soluble nylon are preferable because a low coefficient of friction can be stably obtained.
  • the metal core is pulled out, and the inner end tube 3, the reinforcing material layer 5, and the outer layer tube 16 are cut by means such as a disk-shaped diamond cutter whose base end rotates at a high speed for shaping.
  • the catheter end tube can be obtained by finishing the base end section into a single plane.
  • This catheter tube is a combination of the braided pick interval, the length of the equi-pick interval, the arrangement of the different tube diameters of the Shore D and the setting of the length, and high adjustment of the inclination control of rigidity and flexibility
  • the degree of freedom and the ability to set the tone according to various access routes are demonstrated.
  • the tone here means that the position of the high and flexible region of the tip is different as shown in FIG. Or it can be expressed that the position where the bending strength changes is different.
  • FIG. 26 shows that the straight part has higher rigidity than the tip part, but the flexibility is secured at the same time.
  • the inner hole can be moderately hydrophilized by an electric means such as plasma discharge treatment. it can.
  • a hub having an appropriate shape is attached to the base end to obtain the desired best form of medical catheter tube.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 本発明は、優れた柔軟性と先端部が好適なX線視認性を有し、多様なアクセス経路に応じた調子設定性等を有する医療用カテーテルチューブならびにその製造方法に関する。さらに本発明は優れた柔軟性が発揮できる医療用カテーテルチューブならびにその製造方法に関する。  本発明は、医療用カテーテルチューブであって、該カテーテルチューブが、基端側から基部、先端部および最先端部を有すること、樹脂管からなる内層管、素線を内層管上に編組してなる補強材層、X線不透過性を有した金属部材を、先端部の内層管上に巻き覆うことによって配置されるマーカー、補強材層と、マーカーを覆い樹脂管からなる外層管、内層管、補強材層、マーカーおよび外層管が一体となっていること、などを備える医療用カテーテルチューブに関する。                                                                                 

Description

明 細 書
医療用カテーテルチューブならびにその製造方法
技術分野
[0001] 本発明は、優れた柔軟性、位置調整性、トルク伝達性、耐キンク性、耐圧性、剛性 と柔軟性の傾斜制御の高い調節自由度、多様なアクセス経路に応じた調子設定性 等を有する医療用カテーテルチューブならびにその製造方法に関する。本発明は先 端部が好適な X線視認性と同時に優れた柔軟性が発揮できる医療用カテーテルチ ユーブならびにその製造方法に関する。
背景技術
[0002] カテーテルチューブは体内の腔、管、血管等に挿入する中空状の医療器具であり 、例えば選択的血管造影剤等の液体の注入、血栓の吸引、閉塞状態にある血管の 通路確保、血管拡張術等に用いられるもので、通常チューブ体からなっている。この ようなカテーテルでは、細く複雑なパターンの血管系などに迅速かつ確実な選択性 をもって挿入しうるような優れた操作性が要求される。
[0003] このようなカテーテルチューブの操作性について詳しく述べると、血管内等を挿入、 引き出しなど、術者の操作が基部から先端部に確実に伝達されるための位置調整性 や、内部に薬液等を流通させる際の耐圧性が必要とされる。また、カテーテルチュー ブの基部でカ卩えられた回転力が確実に伝達されるためのトルク伝達性、血管内を前 進させるために施術者の押し込み力が基端側力 先端側に確実に伝達されうる押し 込み性も必要となる。さらに複雑な形状に曲がった血管等を先行するガイドワイヤー に沿って円滑かっ血管内壁等を損傷することなく挿入、引き出しが行えるよう、カテ 一テルチューブの内面が滑性を呈するガイドワイヤー追随性とカテーテル外面の血 液や組織に対する親和性が必要となる。カロえて、目的とする位置までカテーテルチュ ーブ先端が到達し、ガイドワイヤーを引き抜いた状態でも、血管の湾曲部、屈曲部で カテーテルチューブに折れ曲がりが生じない耐キンク性と、血管を傷つけず血管形 状に応じた形状を保つ先端部の柔軟性が必要となる。
[0004] このような要求に応じた特性を付与するために一般的には、基部が比較的剛直で、 先端部にかけて次第に柔軟性を有する構造、構成とするのがよいことが知られている
[0005] 上述のような特性のカテーテルチューブを得るために、内層管に補強材層として素 線をコイル状に巻き付けたり、編組を施した上で、外層を被覆してカテーテルチュー ブを構成する方法が知られて 、る。
[0006] 内層管に補強材層として素線をコイル状に巻き付けるものとして、特許文献 1では 可撓性を有する内管と外管が補強材層を介して接合された部分を有するカテーテル 本体を有し、前記補強材層は、線条体を格子状に形成したものであり、前記力テーテ ル本体の軸方向に沿って、前記線条体のカテーテル本体の軸に対する傾斜角度が 連続的または段階的に変化する力、あるいは前記線条体の格子点のカテーテル本 体軸方向の間隔が連続的または段階的に変化することによって曲げ剛性が大なる領 域と曲げ剛性が小なる領域を形成するカテーテルチューブが開示されて 、る。
[0007] し力しながら、このカテーテルチューブでは剛性のある基部と柔軟性がある先端部 を形成することはできるが、その剛性と柔軟性の傾斜制御の自由度が低ぐさらに多 様なアクセス経路に応じてカテーテルチューブの調子を設定すると 、う思想はな 、。 カロえて、 X線視認性を与えるマーカーについては具体的な記載が無ぐカテーテル 先端部の高度な柔軟性と同時に X線視認性を確保すると ヽぅ思想はな!ヽ。
[0008] また、内層管に補強材層として素線をコイル状に巻き付けるものとして、特許文献 2 のように、近位端、遠位端、そしてこれら端部間を伸びる内腔を規定する通路を有す る細長い管状部材を備えたカテーテルチューブであって、該細長い管状部材は、第 1のカバー材料を有する外部管状カバーと同軸関係にある第 1のライナー材料よりな る内部管状ライナーと、 1つの回りを有し、該内部管状ライナーの外側にらせん状ま たは同軸状に巻かれ、該外部管状カバーによって覆われる少なくとも 1つの第 1のリ ボン補強材とを備えるカテーテルチューブが開示されている。
[0009] し力しながら、この構成でもその剛性と柔軟性の傾斜制御の自由度が低ぐさらにそ の製造上、リボン補強材の弾性力により切断端が内部管状ライナーや外部管状カバ 一を突き破るなどの不具合が生じて生産性に劣る。さらに多様なアクセス経路に応じ てカテーテルチューブの調子を設定すると 、う思想はな 、。加えて X線視認性を与え るマーカーについては X線不透過性のバンドを用いるとしているがどのような態様で それを構成するかにっ 、ては具体的記載がな 、。
[0010] カ卩えて、特許文献 3のように、可撓性を有する管状のカテーテル本体と、該カテ一 テル本体の壁内に埋設された、補強効果を有するコイルとを備えたカテーテルであ つて、前記カテーテル本体は、前記カテーテルの最も先端側に位置する第 1領域と、 該第 1領域よりも基端側に位置する第 2領域とを備えており、前記コイルは、前記第 1 領域から前記第 2領域にわたって延在しており、前記第 2領域では、前記コイルが全 長にわたって相対的に大きい巻きピッチで巻かれており、前記第 1領域では、前記コ ィルが全長にわたって隣接する卷回同士が隔たりをなす相対的に小さい巻きピッチ で卷かれており、かつ、該コイルの巻きピッチは先端側に向力つて徐々に小さくなつ ており、前記第 2領域に比べて前記第 1領域でのカテーテルの剛性力 S小さくなるよう に構成したことを特徴とするカテーテルチューブが開示されている。
[0011] し力しながら、このカテーテルチューブは剛性の高 、基部と柔軟性が高!、先端部を 形成することは可能であり、曲げ剛性のバランスを保つことはできるが、多様なァクセ ス経路に応じてカテーテルチューブの調子を設定すると 、う思想はな 、。さらにこの カテーテルチューブは補強効果を有するコイルが全て X線不透過性の金属線力 な り、先端部の柔軟性が不充分なものとなり、加えて X線視認性が過剰となり、施術時 に術者の判断に支障をきたす場合がある。
[0012] さら〖こ、内層管に補強材層を編組するものとして、特許文献 4では近位領域、遠位 領域、及びこれらの間を延伸する内腔を有する長尺状のシャフトと、この近位領域は 内部平滑ポリマー層、補強層及び外部層を有することと、それぞれの層は遠位端を 有することと、前記補強層は金属部材、及び複数のポリマー部材を有するブレードか らなることと、各ポリマー部材は複数のモノフィラメントからなることとを有する脈管カテ 一テルが開示されている。
[0013] し力しながらこのカテーテルチューブでは剛性のある基部と柔軟性がある先端部を 形成することはできるが、その剛性と柔軟性の傾斜制御の自由度が低ぐさらに多様 なアクセス経路に応じてカテーテルチューブの調子を設定すると 、う思想はな 、。加 えて、 X線視認性を与えるマーカーは金属薄板を内層管上に巻き覆うか金属管をか しめたものであり、このような構成をとるとマーカーとその周囲にわたって、力テーテノレ 先端部の高度な柔軟性が確保できなくなる。
[0014] また、内層管に補強材層として素線を編組するものとして、特許文献 5では、金属 芯線が挿入された熱可塑性榭脂からなるチューブ体の外周全体に亘つて金属編組 を連続的に被覆形成してトルク伝達部を連続的に形成した後、その外側から波長 1. 06 μ mのレーザー光を照射して上記編組の一部をその長さ方向に亘つて間欠的に 除去してそのチューブ体の長さ方向に亘つて一定幅の挿入先端部を所定の間隔を 隔てて複数形成し、その後、上記金属芯線を抜き取った後、上記各挿入先端部の端 部で上記チューブ体を複数に分割して上記トルク伝達部の先端部に上記挿入先端 部を連続的に形成するようにしたことを特徴とするカテーテルチューブの製造方法が 開示されている。
[0015] し力しながら、波長 1. 06 mのレーザー光を照射して上記編組の一部をその長さ 方向に亘つて間欠的に除去する工程が非常に煩瑣なものとなる。さらにその後工程 の金属芯線が挿入された熱可塑性榭脂からなるチューブ体の外周全体に亘つて金 属編組を連続的に被覆形成した後、このチューブ体を加熱軟ィ匕してその外面に上記 編組をその厚さの 1Z2〜: LZ5程度食い込ませて固定ィ匕させてトルク伝達部を連続 的に形成する際にも、チューブ体を加熱軟化して編組を食 ヽ込ませる際に金属編組 の弾性力により、切断端が反ることによりチューブ表面に金属編組が飛び出すなどの 不具合を生じ生産性に劣る。さらに剛性と柔軟性の傾斜制御も充分なものが得られ ない。さらに多様なアクセス経路に応じてカテーテルチューブの調子を設定すると ヽ う思想はない。カロえて、 X線視認性を与えるマーカーについては具体的な記載が無く 、カテーテル先端部の高度な柔軟性と同時に X線視認性を確保するという思想はな い。
特許文献 1 :特許第 3310031号公報
特許文献 2:特許第 2672714号公報
特許文献 3:特開 2001— 218851号公報
特許文献 4:特表 2002— 535049号公報
特許文献 5:特開 2000 -225194号公報 発明の開示
発明が解決しょうとする課題
[0016] 本発明は、優れた位置調整性、トルク伝達性、柔軟性、耐キンク性、耐圧性、押し 込み性、 X線視認性等を有する医療用カテーテルチューブを提供し、その製造方法 を開示することにある。
[0017] 特に本発明の医療用カテーテルチューブは、種々の患部に使用されるゆえ、その 対象部位へのアクセス経路も多様であるがために、剛性と柔軟性の傾斜制御の高 、 調節自由度を有すると同時に、多様なアクセス経路に応じた調子の設定が可能な医 療用カテーテルチューブを提供し、その製造方法を開示することにある。
[0018] さらに本発明は、特に補強材層の先方に隣接する先端部に配置された X線不透過 性を有した金属からなるマーカーが曲げ変形に対して柔軟性を有するものであり、好 適な X線視認性と同時に先端部の高度な柔軟性が発揮できるところに利点があり、そ の製造方法を開示することにある。
課題を解決するための手段
[0019] 力べして、本発明(1)は、医療用カテーテルチューブであって、該カテーテルチュー ブが、基端側から基部、先端部および最先端部を有すること、榭脂管力 なる内層管 、素線を内層管上に編組してなる補強材層、 X線不透過性を有した金属部材を、前 記先端部の内層管上に巻き覆うことによって配置されるマーカー、補強材層とマーカ 一を覆い榭脂管力 なる外層管、前記内層管、前記補強材層、前記マーカーおよび 前記外層管が一体となっていること、前記補強材層を形成する素線が合成樹脂素線 および Zまたは金属素線力 なること、前記補強材層は基部のみに配置されること、 前記マーカーが曲げ変形に対して柔軟性を有するものであること、および、前記外層 管の曲げ剛性が、基部力も先端部にかけて段階的または連続的に小さくなるように 構成されること、
を備える医療用カテーテルチューブに関する。
[0020] また、本発明(2)は、前記榭脂管が、滑性を呈しかつ柔軟性を有し、前記補強材層 を形成する素線が耐キンク性、耐圧性、トルク伝達性、押し込み性等を、該カテーテ ルチューブに付与し、前記外層管が、柔軟性を有する、ことをさらに備える、(1)記載 のカテーテルチューブに関する。
[0021] また、本発明(3)は、前記内層管上に卷回された X線不透過性金属素線のコイル 体であるか、前記内層管上に巻き覆った方形の両辺から切れ目を入れた X線不透過 性金属薄板であるか、 X線不透過性金属粉体を混練した榭脂で形成されたチューブ である、(1)または(2)記載の医療用カテーテルチューブに関する。
[0022] また、本発明(4)は、前記補強材層を形成する素線が、溶融液晶ポリマーを内芯と し、屈曲性ポリマーを鞘とした合成繊維力もなることをさらに備える(1)〜(3) V、ずれ かに記載の医療用カテーテルチューブに関する。
[0023] また、本発明(5)は、前記補強材層を形成する編組のピック間隔が、基部から先端 部にかけて連続的または段階的に変化することをさらに備える(1)〜 (4)いずれかに 記載の医療用カテーテルチューブに関する。
[0024] また、本発明(6)は、前記外層管が複数のセグメントを有し、該セグメントを構成す る榭脂のショァ D硬度が、基部から先端部にかけて、段階的に小さくなるように、該複 数のセグメントが配列されていることをさらに備える、(1)〜(5)いずれかに記載の医 療用カテーテルチューブに関する。
[0025] また、本発明(7)は、最先端部において、前記外層管の外径が変化しアール形状 またはテーパー状に成形された(1)〜(6) V、ずれかに記載の医療用カテーテルチュ ーブに関する。
[0026] また、本発明(8)は、前記外層管が親水性コーティングされてなる(1)〜(7)いずれ かに記載の医療用カテーテルチューブに関する。
[0027] さらに本発明(9)は、本発明のカテーテルチューブの製造方法であって、内層管の 外周に編組により補強材層を形成し、さらに補強材層の先方に隣接する曲げ変形に 対して柔軟性を有する X線不透過性マーカーを形成した後、外層管を被覆してカテ 一テルチューブを製造するに際し、 X線不透過性マーカーは補強材層の先方に隣 接する内層管上に X線不透過性金属素線をコイル状に卷回する力 あるいは方形の 両辺から切れ目を入れた X線不透過性金属薄板を巻き覆ったものカゝ、さら〖こは X線 不透過性金属粉体を混練した榭脂を使用することにより形成された、先端部の柔軟 性が確保されたことを特徴とする医療用カテーテルチューブの製造方法に関する。 [0028] 本発明(10)は、本発明のカテーテルチューブの製造方法であって、内層管の外 周に編組により補強材層を形成し、さらに補強材層の先方に隣接する曲げ変形に対 して柔軟性を有する X線不透過性マーカーを形成した後、外層管を被覆してカテー テルチューブを製造するに際し、補強材層の形成は、内層管の外周に素線供給部 カゝら供給される素線を編組し、前記内層管と前記素線供給部との相対移動速度を連 続的または段階的に変化させることにより、編組のピック間隔が連続的または段階的 に変化することを特徴とする医療用カテーテルチューブの製造方法に関する。
[0029] また、本発明(11)は、本発明のカテーテルチューブの製造方法であって、内層管 の外周に編組により補強材層を形成し、さらに補強材層の先方に隣接する曲げ変形 に対して柔軟性を有する X線不透過性マーカーを形成した後、外層管を被覆して力 テーテルチューブを製造するに際し、外層管はそれを形成する榭脂管のショァ D硬 度の配列が一段階以上となるように配置し、該榭脂管のショァ D硬度を多段階とする 際には該ショァ D硬度の配列が基部から先端部にかけて段階的に小さくなるように配 置し、加えて補強材層を形成する編組のピック間隔が連続的または段階的に変化す ることにより、多様な調子が設定できることを特徴とする医療用カテーテルチューブの 製造方法に関する。
[0030] 本発明(12)は、本発明のカテーテルチューブの製造方法であって、内層管の外 周に編組により補強材層を形成し、さらに補強材層の先方に隣接する曲げ変形に対 して柔軟性を有する X線不透過性マーカーを形成した後、外層管を被覆してカテー テルチューブを製造するに際し、外層管はそれを形成する榭脂管のショァ D硬度が 一段階以上となるように配置し、該榭脂管のショァ D硬度を多段階とする際には該シ ョァ D硬度が基部力 先端部にかけて次第に小さくなるように配置し、その全体をシュ リンクチューブで被覆、加熱し、内層管、補強材層、 X線不透過性マーカー、外層管 を一体ィ匕せしめ、さらに最先端部をアール形状またはテーパー形状に成形された上 で、該シュリンクチューブが冷却された後にこれを剥がしてなることを特徴とする医療 用カテーテルチューブの製造方法に関する。
[0031] 本発明(13)は、本発明のカテーテルチューブの製造方法であって、内層管の外 周に編組により補強材層を形成し、さらに補強材層の先方に隣接する曲げ変形に対 して柔軟性を有する X線不透過性マーカーを形成した後、外層管を被覆してカテー テルチューブを製造するに際し、被覆押出成形により内層管の外周に補強材層を形 成した構造体にショァ D硬度が一段階以上となるように外層管を被覆押出して形成し 、ショァ D硬度を多段階とする際には該ショァ D硬度が基部力 先端部にかけて次第 に小さくなるように外層管を被覆押出して形成し、内層管、補強材層、 X線不透過性 マーカー、外層管を一体ィ匕せしめ、さらに最先端部をアール形状またはテーパー形 状に成形してなることを特徴とする医療用カテーテルの製造方法に関する。
発明の効果
[0032] 上述した本発明(1)の課題を解決するための手段によって、本発明は優れたガイド ワイヤー追随性を伴う位置調整性、術者が回転力を与えた際のトルク伝達性、基部 力 先端部にかけて段階的または連続的な柔軟性の変化がある医療用カテーテル チューブが提供される。また本構成によって、剛性と柔軟性の高い調節自由度、多 様なアクセス経路に応じた調子設定性、また複雑な屈曲が生じた際にも折れ曲がり が生じない耐キンク性、耐圧性、ガイドワイヤー追随性、生産性等を有する医療用力 テーテルチューブを提供できる効果がある。本発明は X線不透過性を有した金属部 材を、該先端部の内層管上に巻き覆うことによってマーカーを配置することで、適度 な X線視認性が得られ、該マーカーが曲げ変形に対して柔軟性を有するものである ことで、カテーテルとして特に重要な先端部と最先端部の高度な柔軟性を得ることが できる。したがって、先端部の高度な柔軟性が発揮できる医療用カテーテルチューブ を提供できる効果がある。
[0033] 本発明(2)によれば、さらに、該榭脂管が、滑性を呈しかつ柔軟性を有し、該素線 が耐キンク性、耐圧性、トルク伝達性、押し込み性等を、該カテーテルチューブに付 与し、該外層管が、柔軟性を有することで、カテーテルチューブとして榭脂管内にガ イドワイヤーを挿入する際、スムーズに前後動させることが可能になり、該素線ならび に該外層管を有することにより目的治療部位へのカテーテルチューブの送達が可能 なものとなる。
[0034] 本発明(3)によれば、さらに、該マーカーが、該内層管上に卷回された X線不透過 性金属素線のコイル体である力 該内層管上に巻き覆った方形の両辺から切れ目を 入れた X線不透過性金属薄板であるか、 X線不透過性金属粉体を混練した榭脂で 形成されたチューブであることで、先端部に硬さが生じることが無い柔軟な力テーテ ルチューブが得られる。
[0035] 本発明(4)によれば、さらに、該素線が、溶融液晶ポリマーを内芯とし、屈曲性ポリ マーを鞘とした合成繊維カゝらなることで、カテーテルチューブの耐圧性、耐キンク性 等の補強効果が得られるとともに、使用時の X線照射透視下において X線不透過性 を有した金属部材カもなる先端部に位置するマーカーの確認が容易なものとなる。
[0036] 本発明(5)によれば、さらに、補強材層を形成する編組のピック間隔が、基部から 先端部にかけて連続的または段階的に変化することで、基部から先端部にかけての 徐々に剛性が小さくなるという効果が得られる。
[0037] 本発明(6)によれば、さらに、該外層管が複数のセグメントを有し、該セグメントを構 成する榭脂のショァ D硬度が、基部から先端部にかけて、段階的に小さくなるように、 該複数のセグメントが配列されていることで、基部力 先端にかけて徐々に剛性が小 さくなるという効果が得られると同時に基部にかけたトルクが先端部に伝達されやす いという効果が得られる。
[0038] 本発明(7)によれば、さらに最先端部において、外層管の外径が変化しアール形 状またはテーパー状に成形されて 、ることで、使用時に血管内壁を傷つけな 、と!/、う 効果が得られる。
[0039] 本発明(8)によれば、さらに、外層管が親水性コーティングされてなることで、使用 時に体内管腔に容易に挿入可能な医療用カテーテルチューブが得られる。
[0040] 本発明(9)〜(13)によれば、上記本発明の製造方法が得られる。
図面の簡単な説明
[0041] [図 1]図 1は製造方法を示すフローチャートである。
[図 2]図 2はリールに巻かれた金属芯線を示す簡略説明図である。
[図 3]図 3は内層管を押出機により連続被覆形成する様子を示した簡略説明図である
[図 4]図 4は内層管に素線を編組し、補強材層を形成する様子を簡略説明図である。
[図 5]図 5はピックとピック間隔を示す拡大側面図である。 圆 6]図 6は補強材としての素線を軸方向配置した際の例を示す拡大側面図である。
[図 7]図 7は合成樹脂素線として好適に用いられる素線の断面構造を示し、 (A)は素 線端部の拡大斜視図、(B)は素線端部の走査顕微鏡写真である。
圆 8]図 8はカテーテル先端部と基部に相当する位置で内層管と補強層を取り除いた 状態を示す簡略説明図である。
[図 9]図 9はカテーテルを一本ずつ切断した状態を示す簡略側面図である。
[図 10]図 10はカテーテル先端に X線不透過性のマーカーを配した状態を示す部分 省略側面図である。
[図 11]図 11は方形の両辺から切れ目を入れた X線不透過性金属薄板マーカーの側 面図である。
[図 12]図 12は方形の両辺カゝら切れ目を入れた X線不透過性金属薄板マーカーを力 テーテル先端に配置した状態の部分省略側面図である。
圆 13]図 13はカテーテル先端部と基部に相当する位置で内層管と補強層を取り除き
、 X線不透過性金属線マーカーを配置した状態の拡大側面図である。
圆 14]図 14はカテーテル先端部と基部に相当する位置で内層管と補強層を取り除き
、X線不透過性金属薄板マーカーを配置した状態の拡大側面図である。
圆 15]図 15は外層となる四種類のショァ D硬度を有する榭脂管を密接させて配置し た状態を、榭脂管を切断して示した簡略側面図である。
圆 16]図 16はショァ D硬度が段階的に変化する外層管を配置した状態を、外層管を 切断して示した簡略側面図である。
[図 17]図 17はシュリンクチューブを配置した状態の簡略断面図である。
圆 18]図 18はシュリンクチューブが収縮し内層管、補強材層、外層管が一体化し、外 層管となる榭脂管先端部がアール状に賦形された状態を示す簡略断面図である。 圆 19]図 19はチューブ構成体先端と先端部賦形用加熱金型を示す簡略断面図であ る。
[図 20]図 20はチューブ構成体先端を先端部賦形金型に接触、加熱賦形させた状態 を示す簡略断面図である。
圆 21]図 21はシュリンクチューブを剥がした状態を示す簡略断面図である。 [図 22]図 22は金属芯線を溶接してカテーテルを連続体とし、リールに巻いた状態を 示す簡略説明図である。
[図 23]図 23は被覆押出により外層を形成している状態を示す簡略説明図である。
[図 24]図 24は一本ずつに切断後、先端にシュリンクチューブが配置された状態を示 す簡略断面図である。
[図 25]図 25は金属芯線を引き抜き、基部端断面を仕上げた状態を示す簡略断面図 である。
[図 26]図 26は調子を表す概念図である。
符号の説明
1 金属芯線
2 リール
3 内層管
4 押出機
5 補強材層
6 溶融液晶ポリマーの芯
7 溶融液晶ポリマーの島 (鞘)
8 屈曲性ポリマーの海 (鞘)
9 金属芯線
10 X線不透過性金属線マーカー
11 方形の両辺から切れ目を入れた X線不透過性金属薄板マーカー
12 巻き覆された方形の両辺から切れ目を入れた X線不透過性金属薄板マーカ
13 金属芯線
14 X線不透過性金属線マーカー
15 巻き覆された方形の両辺から切れ目を入れた X線不透過性金属薄板マーカ 16 外層管
16a 最高ショァ D硬度外層管 16b 高ショァ D硬度外層管
16c 低ショァ D硬度外層管
16d 最低ショァ D硬度外層管
17 X線不透過性マーカー
18 シュリンクチューブ
19 アール状賦形部
20 加熱金型
21 加熱賦形されたテーパー状先端部
22 スポット溶接機
23 押出金型
24 押出機
25 シュリンクチューブ
P ピック
a ピック間隔
発明を実施するための最良の形態
[0043] 以下に本発明の医療用カテーテルチューブの最良の形態を図面を使って説明す る。これらの図は本発明の構成の特徴を模式的に示したものであり、各部分の長さや 径に関しては、医療用カテーテルチューブとして好適に用いることができるものであ れば、任意のものとなっている。図 1に製造方法のフローチャートを示し、この図にし たがって本発明の最良の形態をしめす。本発明においては、請求の範囲に記載され た本発明の範囲を逸脱することなぐ適宜変更を加えることができる。
[0044] まず、図 2のように金属芯線 1を準備する。この金属芯線 1はリール 2に巻かれており 、その外径は製造するカテーテルの内径とほぼ一致するものであり、材質としては金 属メツキ導線、あるいはステンレス線が好ましい。また図 2以降では便宜上、左側を基 部とし、右側を先端部としている。
[0045] 続いて図 3のように金属芯線 1上に内層管 3を押出機 4により押出被覆形成する。
この内層管 3の構成材料として、榭脂であれば特に限定されず、例えば、ポリテトラフ ルォロエチレン、テトラフルォロエチレン パーフルォロアルキルビニルエーテル共 重合体、テトラフルォロエチレン一へキサフルォロプロピレン共重合体、エチレンーテ トラフルォロエチレン共重合体等のフッ素系榭脂、ポリプロピレン、ポリエチレン、ェチ レン 酢酸ビュル共重合体等のポリオレフイン、ポリアミド、ポリエチレンテレフタレー ト、ポリブチレンテレフタレート等のポリエステル、ポリウレタン、ポリ塩化ビュル、ポリス チレン系榭脂、ポリイミド等の樹脂、およびこれらの混合物が挙げられるが、完成後の 製品が内層管を通るガイドワイヤー等に対して優れた滑性を呈し、ガイドワイヤー追 随性を伴う位置調整性を得る、すなわち柔軟性を有する観点カゝらは、ポリテトラフル ォロエチレンまたはテトラフルォロエチレン パーフルォロアルキルビニルエーテル 共重合体などのフッ素系榭脂で構成することが好ましい。
[0046] 金属芯線 1に被覆された内層管 3は金属芯線 1に対して、充分な被着力を有してい ることが好ましい。さらに後の外層管を被覆する工程で、内層管 3と外層管との被着 力を高める目的で、内層管表面に機械的な方法 (サンドペーパーなどで内層管表面 を擦るなどの手段)、化学的な方法 (ナトリウムナフタリン +ジメチルエーテル等の脱フ ッ素薬剤の使用)、プラズマなどの電気的な方法で凹凸を形成したり、表面改質した りしてちょい。
[0047] 編組の形態については 1オーバー 1アンダーや 2オーバー 2アンダーなど様々な形 態があるが、カテーテルの補強材層 5として適切なものであれば 、ずれの形態をとつ てもよい。
つぎに補強材層 5の形成は図 4のように素線 51を内層管 3上に編組することによつ てなされる。該素線 51は、耐キンク性、耐圧性、トルク伝達性、押し込み性等を、該カ テーテルチューブに付与することができる。編組は編組機によりなされる。編み目の 一つはピックと呼ばれ、このピックの間隔が図 4のようにカテーテルの先端部で細かく 、基部で粗ぐ連続的または段階的に変化することにより、後に述べる剛性と柔軟性 の傾斜の調節あるいは調子を付与することが可能となる。図 5に編組を拡大した模式 図を示すがこの図の編み目(p)をピックと呼び、この編み目の間隔 (a)をピック間隔と 呼ぶ。
[0048] ピック間隔は細力べなるほど柔軟性を有し、粗くなるほど剛直性を有するものとなる。
編組の持ち数、打ち数は適宜選択しうる。持ち数とはひとつのピックに含まれる素線 5 1の数のことであり、打ち数とは 1周のピックの数を表す。
また、図 6のように補強材層 5としての素線 52を、カテーテルを引っ張るときの伸びを 抑制したり、複雑な血管の湾曲に追随し易いように、軸方向に適宜本数、配置しても よい。この素線 52の軸方向への配置には、さらに剛性と柔軟性の傾斜を滑らかなも のにしたり、耐破裂性を高めたりといった効果が期待できる。
[0049] 素線 51, 52には合成樹脂素線とともに金属素線を用いうる。合成樹脂素線として 特に好適に用いうるのは図 7の断面概念図ならびに走査顕微鏡写真に示すような溶 融液晶ポリマーの芯 6に、溶融液晶ポリマーの島(鞘) 7と屈曲性ポリマーの海 (鞘) 8 が被覆されたものである。この溶融液晶ポリマーとしてはポリアリレート、屈曲性ポリマ 一としてはポリエチレンナフタレートで形成されているものである。好適に用いられる 合成樹脂素線の直径として好ましくは 5〜50 mのものを用いるのが好ましい。この ような素線 51, 52の例は、特開 2002— 20932号公報に開示されている。
[0050] 他に合成樹脂素線として用いられるものとしては、例えば、ポリエチレンテレフタレ ート、ポリブチレンテレフタレート、ポリメチレンテレフタレートのようなポリエステル、ポ リエチレン、ポリプロピレンのようなポリオレフイン、硬質ポリ塩化ビュル、ポリアミド、ポ リイミド、ポリスチレン、熱可塑性ポリウレタン、ポリカーボネート、 ABS榭脂、アクリル 榭脂、ポリメチルメタタリレート、ポリアセタール、ポリアリレート、ポリオキシメチレン、高 張力ポリビュルアルコール、フッ素榭脂、ポリフッ化ビ-リデン、ポリテトラフルォロェ チレン、エチレン 酢酸ビュルケン化物、ポリスルホン、ポリエーテルスルホン、ポリエ ーテルケトン、ポリフエ-レンオキサイド、ポリフエ-レンスルフイド、ケブラー(米国デュ ボン社の登録商標)に代表される芳香族ポリアラミドなど、これらのうちのいずれかを 含むポリマーァロイ、カーボンファイバー、グラスファイバーが挙げられる。
[0051] 金属素線としては、ステンレス、銅、タングステン、ニッケル、チタン、ピアノ線、 Ni— Ti合金、 Ni— Ti— Co合金、 Ni— Al合金、 Cu—Zn合金、 Cu— Zn— X合金(例えば 、 X=Be、 Si、 Sn、 Al、 Ga)のような超弾性合金、アモルファス合金等の各種金属素 線が用いられ、これらの材料のうち、後に配置する X線不透過性マーカーの視認性 を十分に確保するために X線不透過性マーカーよりは視認性が低ぐかつ加工性、 経済性、毒性がないこと等の理由から、ステンレスの使用が好ましい。金属素線は、 直径 5〜50 μ m程度とするのが好ましい。
[0052] 上記合成樹脂素線ならびに金属素線は、素線単独で用いてもよいし、または素線 の集合体 (例えば素線を撚つたものや束ねたもの)の 、ずれでもよ 、。本発明にお ヽ ては、合成樹脂素線のみを用いてもよいし、金属素線のみを用いてもいいが、合成 榭脂素線と金属素線を併せて用いてもょ ヽ。
[0053] 補強材層 5が形成された後、これを内層管 3に固定させるために、ここでは図示しな いが、結合層を設けてもよい。この結合層を設けることは内層管 3に発生する微少な 孔を塞いだり、耐破裂強度を増加させたりすることも目的としているのであり、内層管 3と編組された補強材層 5の上力 柔軟なポリウレタンやポリウレタンディスパージヨン あるいは柔軟な接着剤などを 5〜50 mの厚みで塗布したり、スプレーでコーティン グすることができる。
[0054] 続いて図 8のようにカテーテルの先端部と基部に相当する位置の内層管 3と補強材 層 5を取り除き金属芯線 1が露出するようにしておく。ここでは編組を内層管 3に固定 するために、編組先端と基端に対してポリウレタンやポリウレタンディスパージヨンある いは柔軟な接着剤を塗布してもよ ヽ。
[0055] つぎに図 1のフローチャートに示したように Aプロセスと Bプロセスのいずれの製造 方法もとることができる。マーカーとしては、 X線不透過性を有した金属部材を、該先 端部の内層管 3上に巻き覆うことによって配置され、曲げ変形に対して柔軟性を有す るものであればよい。ここにいう「曲げ変形に対して柔軟性を有する」か否かは、 X線 不透過性を有した金属部材の曲げ剛性を、 X線不透過性金属の単純な管体の曲げ 剛性と比較することで決定できる。
[0056] まず Aプロセスについて説明する。
Aプロセスではカテーテルを図 9のように露出した金属芯線 1を切断することにより、 1本毎に切断する。切断されたカテーテルチューブは、基端側カゝら少なくとも基部、 先端部および最先端部を有する。さらに図 10はカテーテル先端部を拡大して示した ものであり、 9は切断後の金属芯線を示している。そして、 X線不透過性の金属線マ 一力一 10が補強材層 5の先方に隣接されて配置されるが、それには X線不透過性金 属素線をカテーテルチューブの先端部の内層管 3上に卷回してコイル体として配置 する。この内層管 3上への X線不透過性金属素線の卷回は金属素線同士が接触す る密着巻きでも、あるいは金属素線同士に間隔を有するピッチ巻きのどちらでもよい 。また、図 11のような形状をした方形の両辺力 切れ目 111を入れた X線不透過性 金属薄板マーカー 11を、図 12に示すように補強材層 5の先方に隣接されて内層管 3 上に巻き覆して配置する。ここで、図 12はカテーテル先端部を拡大したものであり、 図中符号 12は前記 X線不透過性金属薄板マーカー 11が内層管 3上に巻き覆されて 形成された X線不透過性金属薄板マーカーである。
[0057] これらの X線不透過性マーカーは金属線を使用する場合にはその直径が 5〜50 μ mのものが好ましぐ金属薄板を使用するときはその厚みが 5〜30 μ mのものが好ま しい。また、これらの X線不透過性マーカーは金属線を使用した場合も、金属薄板を 使用したときも、好適な柔軟性が確保されるものである。さらに X線不透過性をマーカ 一 10, 12は接着剤等を使用して適宜内層管 3に固定してもよい。 X線不透過性マー カー 10, 12の材質ついては、白金(Pt)、 Pt—Ir合金、 Pt—W合金、 Pt—Ni合金、 金、銀などの X線不透過性が高ぐ X線視認性が良好である金属が好適に用いられ る。
[0058] カロえて、ここでは図示しないが、硫酸バリウム、酸化ビスマス、次炭酸ビスマス、タン ダステン酸ビスマス、ビスマス ォキシクロライド等の X線不透過性金属粉体を混練し た榭脂チューブを補強材層 5の先方に隣接されて内層管 3上に配置してもよい。ここ で用いる榭脂としては後述する外層管として使用するものと同様のものが好ましい。 この配置の際には X線不透過性金属粉体を混練した榭脂チューブを軸方向に切れ 目を入れて配置してもよいし、チューブ形態を保ったまま配置してもよい。また、後段 で述べるように外層管の先端部を、 X線不透過性金属粉体を混練した榭脂で形成し てもよい。以上が Aプロセスである。
[0059] Bプロセスはカテーテルを切断しな 、状態で X線不透過性のマーカーを取り付ける ものである。
図 13に図 8のカテーテル基部と先端部を拡大して示す。 13は金属芯線であり、図 1 0と同様に X線不透過性の金属線マーカー 14を補強材層 5の先方に隣接されて内 層管 3上に卷回して配置する。この卷回は金属線同士が接触する密着巻きでも、ある いは金属線同士に間隔を有するピッチ巻きのどちらでもよい。また、前の図 11のよう な形状をした方形の両辺から切れ目を入れた X線不透過性金属薄板マーカー 15を 、図 14のように補強材層 5の先方に隣接されて内層管 3上に巻き覆して配置する。こ れらの X線不透過性マーカーの形状、材質等については既に上で示したものと同様 である。加えて、ここでは図示しないが、 X線不透過性金属粉体を混練した榭脂チュ ーブを補強材層の先方に隣接されて内層管上に配置してもよいことも既に上で示し たものと同様である。
以上が Bプロセスである。
[0060] Cプロセスは Aプロセスで作成したカテーテルに外層管 16を取り付ける工程である 。外層管 16の曲げ剛性が、基部力も先端部にかけて段階的または連続的に小さくな ることが必要である。本明細書にいう曲げ剛性の大小は、外層管 16となる材料榭脂 のショァ D硬度によって測定した値の大小に対応させているのである。
[0061] 血管内にカテーテルチューブを進行させ、かつ治療目的部位に到達させ、基部の トルクを先端部に伝達させ、さらに X線不透過性を有した金属部材を、該先端部の内 層管 3上に巻き覆うことによって配置されるマーカーが柔軟性を発揮させるという観点 から、外層管 16は柔軟性を有することが好ましい。外層管 16の配置方法としては、 図 15のように外層管 16となる榭脂管 16a〜16dを基部力も先端部にかけてそれを形 成する榭脂管が一段階以上のショァ D硬度の有するものを配置する。先端部におい ては X線不透過性マーカー 17を超えて先端側に榭脂管を配置する。榭脂からなる 外層管 16が複数のセグメントを有し、該セグメントを構成する榭脂のショァ D硬度力 基部から先端部にかけて、段階的に小さくなるように、該複数のセグメントが配列され て!、ることが好まし 、。図 15では四種類のショァ D硬度を有するものを密接させて配 置した状態を示したが、基部から先端部にかけて徐々にショァ D硬度が低くなるよう に配置する。
[0062] 本明細書にいうショァ D硬度は、デュロメータタイプ Dで ISO 7619により測定され た値を意味する。
すなわち外層管 16となる榭脂管のショァ D硬度は図 15において 16a> 16b> 16c > 16dとなる。ショァ D硬度は 20〜80程度であるものが好適に用いられる。一種類の ショァ D硬度を有する外層管 16のみを配置する際には、前記一種類のショァ D硬度 を有する外層管 16を複数本に分割して密接させて配置してもよい。内層管 3に補強 材層 5が編組された構造体と外層管 16となる榭脂管との間にはごくわずかな間隔が あることが好ましぐそのようにすれば補強材層 5となる線条体のみだれが少ない。ま た、ショァ D硬度の異なる外層管 16となる榭脂管は、それぞれ編組のピック間隔が変 化する位置とずらせて配置すれば、剛性と柔軟性の傾斜が緩やかに変化させること ができる。
[0063] なお、ここでは図示しないが、 X線不透過性の金属線マーカーあるいは X線不透過 性金属薄板マーカーを使用せず、 X線不透過性金属粉体を混練した榭脂でマーカ 一を形成する際、短い榭脂チューブを外層管となる榭脂管の最先端部に配置しても よい。
[0064] 外層管 16となる榭脂管の作成方法としては、別法として、複数台の押出機を一つ の押出金型につなぎ、ショァ D硬度の異なる榭脂を、この複数台の押出機を順次、運 転'停止させることによってショァ D硬度が段階的に変化する榭脂管を作成し、これを 図 16のように内層管 3に補強材層 5が編組された構造体に配置してもよい。また、弁 機構を有する金型に複数台の押出機をつなぎ、連続的に押出をしながら、順次ショ ァ D硬度の異なる榭脂を押出流路内に導入'排出を切り替えながらショァ D硬度が段 階的に変化する榭脂管を作成し、これを図 16のように内層管 3に補強材層 5が編組 された構造体に配置してもよい。この際、外層管 16は基端部に近づくほど高ショァ D 硬度、先端側に近づくほど低ショァ D硬度のものとなるように配置する必要がある。ま た、ここでは図示しないが、これらの方法では榭脂管の最先端部を、 X線不透過性金 属粉体を混練した榭脂とすることもできる。
[0065] 外層管 16を形成する榭脂管の材質としてはポリアミドエラストマ一、ポリエステルェ ラストマー、ポリウレタンエラストマ一、ポリスチレンエラストマ一、フッ素系エラストマ一 、シリコーンゴム、ラテックスゴム等の各種エラストマ一、またはこれらのうちの 2以上を 組み合わせたものが使用可能である。
[0066] ここで、ポリアミドエラストマ一とは、例えば、ナイロン 6、ナイロン 64、ナイロン 66、ナ ィロン 610、ナイロン 612、ナイロン 46、ナイロン 9、ナイロン 11、ナイロン 12、 N—ァ ルコキシメチル変性ナイロン、へキサメチレンジァミン イソフタル酸縮重合体、メタキ シロイルジァミン アジピン酸縮重合体のような各種脂肪族または芳香族ポリアミドを ハードセグメントとし、ポリエステル、ポリエーテル等のポリマーをソフトセグメントとする ブロック共重合体が代表的であり、その他、前記ポリアミドと柔軟性に富む樹脂とのポ リマーァロイ (ポリマーブレンド、グラフト重合、ランダム重合等)や、前記ポリアミドを可 塑剤等で軟質化したもの、さら〖こは、これらの混合物をも含む概念である。
[0067] また、ポリエステルエラストマ一とは、ポリエチレンテレフタレート、ポリブチレンテレフ タレート等の飽和ポリエステルと、ポリエーテルまたはポリエステルとのブロック共重合 体が代表的であり、その他、これらのポリマーァロイや前記飽和ポリエステルを可塑 剤等で軟質化したもの、さら〖こは、これらの混合物をも含む概念である。
[0068] 好適に用いられる材料としては、その加工性、柔軟性の観点力もポリアミドエラスト マーが好ましく、例えば elf atochem社製の PEBAXなどがその代表として挙げられる。
[0069] この後、図 17のように加熱することによりその径が縮小する性質を有するシュリンク チューブ 18を外層管 16の外周の全体に配置する。シュリンクチューブ 18はポリテトラ フルォロエチレンやパーフルォロエチレン プロペンコポリマーなどを材質としている ことが好ましい。
[0070] この後、シュリンクチューブ 18を、該チューブが収縮する温度までヒーターで加熱さ せるか、高周波電磁波を加えて加熱し、内層管 3、補強材層 5、外層管 16を一体ィ匕 する。このとき、シュリンクチューブ 18の収縮により図 18のように外層管 16となる榭脂 管先端部がアール状 19に賦形される。外層管 16となる榭脂管先端部をテーパー状 に賦形する際には、シュリンクチューブ 18を収縮させてから、さらに図 19のような内 面に目的のテーパー形状 201を有する加熱金型 20を用いて図 20のように榭脂管先 端部を接触、加熱してテーパー状 21に賦形させる。
[0071] ついで、図 21のようにシュリンクチューブ 18を剥いて、必要に応じてカテーテル先 端部と基端部の内層管 3、補強材層 5、外層管 16を切断 '調整する。
以上が Cプロセスである。
[0072] Dプロセスは Bプロセスで切断したカテーテルを再び連続体としてつなげる工程で あり、金属芯線 9, 9の溶接が行われる。溶接は図 22のようにスポット溶接機 22などを 用いて、金属芯線同士の突き合わせ溶接を行い、再びリール 2に巻き取る。
以上が Dプロセスである。
[0073] Eプロセスは長くつながったカテーテルに切替押出により、外層管 16を連続的に被 覆する工程であり、ショァ D硬度が一段階以上となるように外層管 16を被覆押出し、 ショァ D硬度を多段階とする際には該ショァ D硬度が基部力 先端部にかけて次第 に小さくなるように外層管 16を被覆押出して形成し、内層管 3、補強材層 5、外層管 1 6を一体化せしめる。
[0074] この際、多段階、たとえば 4段階のショァ D硬度の榭脂を被覆する際には、図 23の ように一つの押出金型 23に 4台の押出機 24,…をつなぎ、目標外径になるように制 御しながら、順次この 4台の押出機を運転'停止させて被覆し、外層管 16を形成する ことができる。また、ここでは図示しないが、弁機構を有する金型に 4台の押出機をつ なぎ、連続的に押出をしながら、順次ショァ D硬度の異なる榭脂を押出流路内に導 入'排出を切り替えながら被覆して外層管 16を形成することもできる。なお、ここでは 図示しな!ヽが、 X線不透過性の金属線マーカーあるいは X線不透過性金属薄板マ 一力一を使用しない場合、外層管 16の最先端部を、 X線不透過性金属粉体を混練 した樹脂でマーカー形成を行ってもょ 、。
[0075] この後、カテーテルを一本ずつ切断し、先端部の内層管 3あるいは外層管 16の末 端を調整し、図 24のように加熱することによりその径が縮小する性質を有するシュリン クチューブ 25を先端のみに配置する。シュリンクチューブ 25はポリテトラフルォロェ チレンやパーフルォロエチレン プロペンコポリマーなどを材質としていることが好ま しい。
この後の工程は、 Cプロセスで示したのと同様にシュリンクチューブ 25を、該チューブ が収縮する温度までヒーターで加熱させる力 高周波電磁波を加えて加熱し内層管 3、補強材層 5、外層管 16を一体化する。ここにいう一体化とは、内層管 3、補強材層 5、および外層管 16が相互に移動しないように固定ィ匕されていることを意味する。こ のとき、シュリンクチューブ 25の収縮により図 18のように外層管 16となる榭脂管先端 部がアール状 19に賦形される。外層管 16となる榭脂管先端部をテーパー状に賦形 する際には、シュリンクチューブ 25を収縮させてから、さらに図 19のような加熱金型 2 0を用いて図 20のように接触、加熱してテーパー状 21に賦形させる。この賦形が終 了して力もシュリンクチューブ 25は除去される。
以上が Eプロセスである。
[0076] つ!、で、 Fプロセスとして、ここでは図示しな!、がカテーテルチューブ表面は親水性
(または水溶性)高分子物質で覆われて 、ることが好ま 、ので、親水性コーティング を行う。これにより、カテーテルチューブの外表面が血液または生理食塩水等に接触 したときに、摩擦係数が減少して潤滑性が付与され、カテーテルチューブの摺動性 がー段と向上し、その結果、押し込み性、追随性、耐キンク性、安全性が一段と高ま る。親水性高分子物質としては、たとえば以下のような天然または合成の高分子物質 、あるいはその誘導体が挙げられる。特に、セルロース系高分子物質 (例えば、ヒドロ キシプロピルセルロース)、ポリエチレンオキサイド系高分子物質(ポリエチレングリコ ール)、無水マレイン酸系高分子物質(例えば、メチルビニルエーテル無水マレイン 酸共重合体のような無水マレイン酸共重合体)、アクリルアミド系高分子物質 (例えば 、ポリアクリルアミド)、水溶性ナイロンは、低い摩擦係数が安定的に得られるので好ま しい。
[0077] さらに、図 25のように金属芯金を引き抜き、基部端は整形のために高速回転する円 盤状のダイヤモンドカッターなどの手段で内層管 3、補強材層 5、外層管 16を切断し 、基部端断面を単一平面に仕上げて、カテーテルチューブが得られる。
[0078] このカテーテルチューブは編組のピック間隔、等ピック間隔部分の長さ、ショァ Dの 異なる榭脂管の配置とその長さの設定とが相まって、剛性と柔軟性の傾斜制御の高 い調節自由度、多様なアクセス経路に応じた調子設定性が発揮される。ここでいう調 子とは図 26のように先端部の高 、柔軟性を有する領域の位置が異なって 、ることで ある。あるいは曲げ強度が変化する位置が異なっているとも表現できる。この図 26に ぉ 、て直線部分は先端部に比較して剛性は高 、が柔軟性も同時に確保されて 、る ことを示している。多様な調子を設定できることによって、図 26において、 1号調に近 いほど先端部の状況をダイレクトに感度よく伝えると同時にトルクの伝達能が高ぐ 5 号調に近 、ほど複雑な経路への侵入、深奥部への到達が行 、やすくなるなどの使 用上の事項に加え、多様な患部に対して施術者の手術方法の意図が反映され、か つ選択できると 、つた利点がある。
さらに、内層管 3をポリテトラフルォロエチレン等のフッ素系榭脂で構成した際には、 この内孔をプラズマ放電処理等の電気的な手段をもって、適度に親水化をは力ること ができる。
加えてここでは図示しないが、基部端に適切な形状のハブを取り付けて目的とする 最良の形態の医療用カテーテルチューブが得られる。
なお、その使用に際しては上述のまま使用してもよいし、必要があるならば、予め医 療用カテーテルチューブの一部をヒーターや蒸気などで加熱し、湾曲部を形成して おくことちでさる。

Claims

請求の範囲
[1] 医療用カテーテルチューブであって、該カテーテルチューブが、
基端側から基部、先端部および最先端部を有すること、
樹脂管力もなる内層管、
素線を内層管上に編組してなる補強材層、
X線不透過性を有した金属部材を、前記先端部の内層管上に巻き覆うことによって 配置されるマーカー、
補強材層とマーカーを覆い榭脂管からなる外層管、
前記内層管、前記補強材層、前記マーカーおよび前記外層管が一体となっているこ と、
前記補強材層を形成する素線が合成樹脂素線および Zまたは金属素線力 なること 前記補強材層は基部のみに配置されること、
前記マーカーが曲げ変形に対して柔軟性を有するものであること、および
前記外層管の曲げ剛性が、基部力も先端部にかけて段階的または連続的に小さくな るように構成されること、
を備える医療用カテーテルチューブ。
[2] 前記榭脂管が、滑性を呈しかつ柔軟性を有し、
前記補強材層を形成する素線が耐キンク性、耐圧性、トルク伝達性、押し込み性等 を、該カテーテルチューブに付与し、
前記外層管が、柔軟性を有する、
ことをさらに備える、請求項 1記載のカテーテルチューブ。
[3] 前記内層管上に卷回された X線不透過性金属素線のコイル体であるか、
前記内層管上に巻き覆った方形の両辺力 切れ目を入れた X線不透過性金属薄板 であるか、
X線不透過性金属粉体を混練した榭脂で形成されたチューブである、請求項 1また は 2記載の医療用カテーテルチューブ。
[4] 前記補強材層を形成する素線が、溶融液晶ポリマーを内芯とし、屈曲性ポリマーを 鞘とした合成繊維力 なることをさらに備える請求項 1〜3いずれかに記載の医療用 力テーテノレチューブ。
[5] 前記補強材層を形成する編組のピック間隔が、基部から先端部にかけて連続的ま たは段階的に変化することをさらに備える請求項 1〜4いずれかに記載の医療用カテ ーテノレチューブ。
[6] 前記外層管が複数のセグメントを有し、該セグメントを構成する榭脂のショァ D硬度 力 基部力も先端部にかけて、段階的に小さくなるように、該複数のセグメントが配列 されていることをさらに備える、請求項 1〜5いずれかに記載の医療用カテーテルチュ ーブ。
[7] 最先端部において、前記外層管の外径が変化しアール形状またはテーパー状に 成形された請求項 1〜6いずれかに記載の医療用カテーテルチューブ。
[8] 前記外層管が親水性コーティングされてなる請求項 1〜7いずれかに記載の医療 用カテーテルチューブ。
[9] 請求項 1〜8いずれかに記載のカテーテルチューブの製造方法であって、内層管 の外周に編組により補強材層を形成し、さらに補強材層の先方に隣接する曲げ変形 に対して柔軟性を有する X線不透過性マーカーを形成した後、外層管を被覆して力 テーテルチューブを製造するに際し、 X線不透過性マーカーは補強材層の先方に隣 接する内層管上に X線不透過性金属素線をコイル状に卷回する力 あるいは方形の 両辺から切れ目を入れた X線不透過性金属薄板を巻き覆ったものカゝ、さら〖こは X線 不透過性金属粉体を混練した榭脂を使用することにより形成された、先端部の柔軟 性が確保されたことを特徴とする医療用カテーテルチューブの製造方法。
[10] 請求項 1〜8いずれかに記載のカテーテルチューブの製造方法であって、内層管 の外周に編組により補強材層を形成し、さらに補強材層の先方に隣接する曲げ変形 に対して柔軟性を有する X線不透過性マーカーを形成した後、外層管を被覆して力 テーテルチューブを製造するに際し、補強材層の形成は、内層管の外周に素線供 給部から供給される素線を編組し、前記内層管と前記素線供給部との相対移動速度 を連続的または段階的に変化させることにより、編組のピック間隔が連続的または段 階的に変化することを特徴とする医療用カテーテルチューブの製造方法。
[11] 請求項 1〜8いずれかに記載のカテーテルチューブの製造方法であって、内層管 の外周に編組により補強材層を形成し、さらに補強材層の先方に隣接する曲げ変形 に対して柔軟性を有する X線不透過性マーカーを形成した後、外層管を被覆して力 テーテルチューブを製造するに際し、外層管はそれを形成する榭脂管のショァ D硬 度の配列が一段階以上となるように配置し、該榭脂管のショァ D硬度を多段階とする 際には該ショァ D硬度の配列が基部から先端部にかけて段階的に小さくなるように配 置し、加えて補強材層を形成する編組のピック間隔が連続的または段階的に変化す ることにより、多様な調子が設定できることを特徴とする医療用カテーテルチューブの 製造方法。
[12] 請求項 1〜8いずれかに記載のカテーテルチューブの製造方法であって、内層管 の外周に編組により補強材層を形成し、さらに補強材層の先方に隣接する曲げ変形 に対して柔軟性を有する X線不透過性マーカーを形成した後、外層管を被覆して力 テーテルチューブを製造するに際し、外層管はそれを形成する榭脂管のショァ D硬 度が一段階以上となるように配置し、該榭脂管のショァ D硬度を多段階とする際には 該ショァ D硬度が基部力 先端部にかけて次第に小さくなるように配置し、その全体 をシュリンクチューブで被覆、加熱し、内層管、補強材層、 X線不透過性マーカー、 外層管を一体ィ匕せしめ、さらに最先端部をアール形状またはテーパー形状に成形さ れた上で、該シュリンクチューブが冷却された後にこれを剥がしてなることを特徴とす る医療用カテーテルチューブの製造方法。
[13] 請求項 1〜8いずれかに記載のカテーテルチューブの製造方法であって、内層管 の外周に編組により補強材層を形成し、さらに補強材層の先方に隣接する曲げ変形 に対して柔軟性を有する X線不透過性マーカーを形成した後、外層管を被覆して力 テーテルチューブを製造するに際し、被覆押出成形により内層管の外周に補強材層 を形成した構造体にショァ D硬度が一段階以上となるように外層管を被覆押出して形 成し、ショァ D硬度を多段階とする際には該ショァ D硬度が基部力 先端部にかけて 次第に小さくなるように外層管を被覆押出して形成し、内層管、補強材層、 X線不透 過性マーカー、外層管を一体ィ匕せしめ、さらに最先端部をアール形状またはテーパ 一形状に成形してなることを特徴とする医療用カテーテルの製造方法。
PCT/JP2005/022428 2004-12-09 2005-12-07 医療用カテーテルチューブならびにその製造方法 WO2006062114A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05814683A EP1825879A1 (en) 2004-12-09 2005-12-07 Medical catheter tube and process for producing the same
JP2006546725A JP4501938B2 (ja) 2004-12-09 2005-12-07 医療用カテーテルチューブならびにその製造方法
US11/721,331 US20090240235A1 (en) 2004-12-09 2005-12-07 Medical catheter tube and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-357249 2004-12-09
JP2004357249 2004-12-09

Publications (1)

Publication Number Publication Date
WO2006062114A1 true WO2006062114A1 (ja) 2006-06-15

Family

ID=36577941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022428 WO2006062114A1 (ja) 2004-12-09 2005-12-07 医療用カテーテルチューブならびにその製造方法

Country Status (5)

Country Link
US (1) US20090240235A1 (ja)
EP (1) EP1825879A1 (ja)
JP (1) JP4501938B2 (ja)
TW (1) TW200640515A (ja)
WO (1) WO2006062114A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264305A (ja) * 2007-04-23 2008-11-06 Kaneka Corp 医療用カテーテルチューブ
KR101106165B1 (ko) * 2011-02-17 2012-01-20 이규진 추간공 특수 바늘
JP2012518477A (ja) * 2009-02-20 2012-08-16 ボストン サイエンティフィック サイムド,インコーポレイテッド 中間部の剛性を備えた移行領域を有する操作可能なカテーテル
JP2012531224A (ja) * 2009-06-30 2012-12-10 マイクロポート・メディカル(シャンハイ)カンパニー,リミテッド マイクロカテーテル
JP2017502731A (ja) * 2013-12-19 2017-01-26 スミス メディカル エーエスディー インコーポレーテッド ソフトチップカテーテル
JP2021053173A (ja) * 2019-09-30 2021-04-08 日立金属株式会社 編組チューブ

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7844344B2 (en) 2004-03-30 2010-11-30 Medtronic, Inc. MRI-safe implantable lead
US7905877B1 (en) * 2006-05-12 2011-03-15 Micrus Design Technology, Inc. Double helix reinforced catheter
EP2080535A4 (en) * 2006-11-07 2012-10-17 Kaneka Corp CATHETER TUBES FOR MEDICAL USE
US9044593B2 (en) 2007-02-14 2015-06-02 Medtronic, Inc. Discontinuous conductive filler polymer-matrix composites for electromagnetic shielding
US8483842B2 (en) 2007-04-25 2013-07-09 Medtronic, Inc. Lead or lead extension having a conductive body and conductive body contact
DK2203208T3 (da) 2007-09-28 2019-07-29 Hollister Inc Flerlagslugtbarriereslange og kombination af lugtbarriereslange og lugtbarriereopsamlingspose
US8936583B2 (en) 2007-09-28 2015-01-20 Hollister Incorporated Multi-layer catheter tubes with odor barrier
US9037263B2 (en) 2008-03-12 2015-05-19 Medtronic, Inc. System and method for implantable medical device lead shielding
EP2429633B1 (en) 2009-04-30 2014-12-17 Medtronic, Inc. Grounding of a shield of an implantable medical lead
JP5757518B2 (ja) * 2011-01-13 2015-07-29 国立研究開発法人物質・材料研究機構 薄膜アクチュエータの製造方法
WO2013070470A1 (en) * 2011-11-09 2013-05-16 Stryker Corporation Medical device with bi-component fiber sleeve
US9072624B2 (en) 2012-02-23 2015-07-07 Covidien Lp Luminal stenting
WO2013158189A1 (en) 2012-04-19 2013-10-24 Medtronic, Inc. Paired medical lead bodies with braided conductive shields having different physical parameter values
JP2014100339A (ja) * 2012-11-20 2014-06-05 Terumo Corp カテーテル用チューブの製造方法およびカテーテル用チューブの連続体
EP2774586B1 (en) 2013-03-06 2016-11-23 Cook Medical Technologies LLC Introducer sheath having a non-uniform inner surface
FR3007293B1 (fr) * 2013-06-24 2015-12-04 Balt Extrusion Procede de fabrication d'un catheter et catheter realise selon le procede
US9913684B2 (en) * 2013-08-23 2018-03-13 Oscor Inc. Steerable ablation catheter for renal denervation
US9907570B2 (en) 2013-08-23 2018-03-06 Oscor Inc. Steerable medical devices
US9782186B2 (en) 2013-08-27 2017-10-10 Covidien Lp Vascular intervention system
US10265207B2 (en) 2013-08-27 2019-04-23 Covidien Lp Delivery of medical devices
US9993638B2 (en) 2013-12-14 2018-06-12 Medtronic, Inc. Devices, systems and methods to reduce coupling of a shield and a conductor within an implantable medical lead
WO2016014427A1 (en) 2014-07-23 2016-01-28 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
EP3191175B1 (en) 2014-07-24 2022-03-02 Medtronic, Inc. Apparatus for shielding implantable medical leads and lead extensions
US10357631B2 (en) * 2015-05-29 2019-07-23 Covidien Lp Catheter with tapering outer diameter
US10118334B2 (en) 2016-07-14 2018-11-06 Custom Wire Technologies, Inc. Wire-reinforced tubing and method of making the same
US10376396B2 (en) 2017-01-19 2019-08-13 Covidien Lp Coupling units for medical device delivery systems
CN108030534A (zh) * 2018-01-18 2018-05-15 朱良付 一种取栓导鞘及其内芯结构和鞘管结构
US10786377B2 (en) 2018-04-12 2020-09-29 Covidien Lp Medical device delivery
US11123209B2 (en) 2018-04-12 2021-09-21 Covidien Lp Medical device delivery
US11071637B2 (en) 2018-04-12 2021-07-27 Covidien Lp Medical device delivery
US11413176B2 (en) 2018-04-12 2022-08-16 Covidien Lp Medical device delivery
US11547835B2 (en) 2018-09-17 2023-01-10 Seigla Medical, Inc. Systems, methods and apparatus for guiding and supporting catheters and methods of manufacture
US11433216B2 (en) 2018-09-17 2022-09-06 Seigla Medical, Inc. Methods for fabricating medical devices and portions of medical devices
US11660420B2 (en) 2018-09-17 2023-05-30 Seigla Medical, Inc. Catheters and related devices and methods of manufacture
JP7119132B2 (ja) * 2019-02-06 2022-08-16 朝日インテック株式会社 カテーテル、および、カテーテルの製造方法
US11413174B2 (en) 2019-06-26 2022-08-16 Covidien Lp Core assembly for medical device delivery systems
CN110652645A (zh) * 2019-08-13 2020-01-07 上海沃比医疗科技有限公司 多层导管主体及其导管组件
CN114075385B (zh) * 2020-08-21 2024-02-02 浙江脉通智造科技(集团)有限公司 医用管材及其制备方法
CN112156324B (zh) * 2020-10-22 2022-05-13 艾柯医疗器械(北京)有限公司 医用导管及其制备方法
CN112516434B (zh) * 2020-11-30 2022-04-22 临沂市兴华医用器材有限公司 一种麻醉导管
US12042413B2 (en) 2021-04-07 2024-07-23 Covidien Lp Delivery of medical devices
US12109137B2 (en) 2021-07-30 2024-10-08 Covidien Lp Medical device delivery
US11944558B2 (en) 2021-08-05 2024-04-02 Covidien Lp Medical device delivery devices, systems, and methods
CN216456448U (zh) * 2021-09-26 2022-05-10 惠州海卓科赛医疗有限公司 一种医用管
CN116421853B (zh) * 2023-06-14 2023-11-10 北京普益盛济科技有限公司 微导管的制作方法、制作系统及静电粉末喷枪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001087389A (ja) * 1999-07-16 2001-04-03 Terumo Corp カテーテルの製造方法およびカテーテル
JP2001218851A (ja) * 2000-02-09 2001-08-14 Terumo Corp カテーテル
JP3297268B2 (ja) * 1995-09-28 2002-07-02 テルモ株式会社 カテーテル
JP3310031B2 (ja) * 1992-10-23 2002-07-29 テルモ株式会社 カテーテルチューブ
WO2006016481A1 (ja) * 2004-08-10 2006-02-16 Kaneka Corporation 医療用カテーテルチューブならびにその製造方法
JP2006051081A (ja) * 2004-08-10 2006-02-23 Kaneka Corp 医療用カテーテルチューブならびにその製造方法
JP2006051080A (ja) * 2004-08-10 2006-02-23 Kaneka Corp 医療用カテーテルチューブならびにその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511462B1 (en) * 1999-07-16 2003-01-28 Terumo Kabushiki Kaisha Catheter and method of manufacturing the same
JP4459396B2 (ja) * 2000-07-04 2010-04-28 株式会社クラレ 複合繊維およびその織物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3310031B2 (ja) * 1992-10-23 2002-07-29 テルモ株式会社 カテーテルチューブ
JP3297268B2 (ja) * 1995-09-28 2002-07-02 テルモ株式会社 カテーテル
JP2001087389A (ja) * 1999-07-16 2001-04-03 Terumo Corp カテーテルの製造方法およびカテーテル
JP2001218851A (ja) * 2000-02-09 2001-08-14 Terumo Corp カテーテル
WO2006016481A1 (ja) * 2004-08-10 2006-02-16 Kaneka Corporation 医療用カテーテルチューブならびにその製造方法
JP2006051081A (ja) * 2004-08-10 2006-02-23 Kaneka Corp 医療用カテーテルチューブならびにその製造方法
JP2006051080A (ja) * 2004-08-10 2006-02-23 Kaneka Corp 医療用カテーテルチューブならびにその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264305A (ja) * 2007-04-23 2008-11-06 Kaneka Corp 医療用カテーテルチューブ
JP2012518477A (ja) * 2009-02-20 2012-08-16 ボストン サイエンティフィック サイムド,インコーポレイテッド 中間部の剛性を備えた移行領域を有する操作可能なカテーテル
JP2012531224A (ja) * 2009-06-30 2012-12-10 マイクロポート・メディカル(シャンハイ)カンパニー,リミテッド マイクロカテーテル
KR101106165B1 (ko) * 2011-02-17 2012-01-20 이규진 추간공 특수 바늘
JP2017502731A (ja) * 2013-12-19 2017-01-26 スミス メディカル エーエスディー インコーポレーテッド ソフトチップカテーテル
JP2021053173A (ja) * 2019-09-30 2021-04-08 日立金属株式会社 編組チューブ

Also Published As

Publication number Publication date
JPWO2006062114A1 (ja) 2008-06-12
JP4501938B2 (ja) 2010-07-14
EP1825879A1 (en) 2007-08-29
TW200640515A (en) 2006-12-01
US20090240235A1 (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP4501938B2 (ja) 医療用カテーテルチューブならびにその製造方法
JP4924418B2 (ja) 医療用カテーテルチューブならびにその製造方法
WO2006016481A1 (ja) 医療用カテーテルチューブならびにその製造方法
JP4553010B2 (ja) 医療用カテーテルチューブならびにその製造方法
WO2018097258A1 (ja) カテーテル及びカテーテルの製造方法
JP4854458B2 (ja) 医療用マルチルーメンチューブ
JP4647299B2 (ja) 医療用カテーテルチューブならびにその製造方法
JP2007319594A (ja) 医療用カテーテルチューブ
WO2008056625A1 (fr) Tube cathéter destiné à un usage médical
JP2006288943A (ja) 医療用カテーテルチューブならびにその製造方法
JP2007082802A (ja) 医療用カテーテルチューブ
JP2006218085A (ja) 医療用カテーテルチューブならびにその製造方法
JP2007029120A (ja) 医療用カテーテルチューブならびにその製造方法
JP2006288944A (ja) 医療用カテーテルチューブならびにその製造方法
JP2006034347A (ja) 医療用カテーテルチューブならびにその製造方法
JP2006051080A (ja) 医療用カテーテルチューブならびにその製造方法
JP2007296030A (ja) 医療用カテーテルチューブならびにその製造方法
JP2006051081A (ja) 医療用カテーテルチューブならびにその製造方法
JP2006333966A (ja) 塞栓コイルデリバリー用カテーテルチューブ
JP2005312633A (ja) 医療用カテーテルチューブならびにその製造方法
JP4777132B2 (ja) 医療用カテーテルチューブならびにその製造方法
JP2006158878A (ja) 医療用カテーテルチューブならびにその製造方法
JP2005334396A (ja) 医療用カテーテルチューブならびにその製造方法
JP2006034578A (ja) 医療用カテーテルチューブならびにその製造方法
JP2007089847A (ja) マイクロカテーテル及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006546725

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11721331

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005814683

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005814683

Country of ref document: EP