WO2006059711A1 - ポンプ容量制御回路 - Google Patents

ポンプ容量制御回路 Download PDF

Info

Publication number
WO2006059711A1
WO2006059711A1 PCT/JP2005/022168 JP2005022168W WO2006059711A1 WO 2006059711 A1 WO2006059711 A1 WO 2006059711A1 JP 2005022168 W JP2005022168 W JP 2005022168W WO 2006059711 A1 WO2006059711 A1 WO 2006059711A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
valve
switching valve
hydraulic motor
passage
Prior art date
Application number
PCT/JP2005/022168
Other languages
English (en)
French (fr)
Inventor
Shigeru Shinohara
Mitsuru Arai
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Publication of WO2006059711A1 publication Critical patent/WO2006059711A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/46Automatic regulation in accordance with output requirements
    • F16H61/478Automatic regulation in accordance with output requirements for preventing overload, e.g. high pressure limitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4157Control of braking, e.g. preventing pump over-speeding when motor acts as a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/433Pump capacity control by fluid pressure control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • F16H2059/186Coasting

Definitions

  • the present invention relates to a pump displacement control circuit in which a variable displacement hydraulic pump and a hydraulic motor are connected. More specifically, in a tire-type vehicle that travels by rotation of a hydraulic motor, the vehicle can be started smoothly. This also relates to a pump displacement control circuit that can suppress the pressure rise in the circuit even if the mechanical brake is suddenly stopped during vehicle braking.
  • a hydraulic brake and a mechanical brake are used in combination as a braking brake for a tire-type vehicle including a pump displacement control circuit. If the hydraulic brake is activated during driving of the vehicle, the discharge flow rate of the variable displacement hydraulic pump will decrease, and the vehicle can be stopped.
  • the hydraulic drive device described in Patent Document 1 has a circuit configuration as shown in FIG. 7.
  • the variable displacement hydraulic pump 60 is rotationally driven by an engine drive shaft 77 (not shown). .
  • the variable displacement hydraulic pump 60 and the hydraulic motor 61 constitute a closed circuit.
  • the piston cylinder 64 that controls the displacement and the discharge direction of the variable displacement hydraulic pump 60 is connected to the switching valve 62 through two pilot pressure passages 90 and 91 in which throttles 84 and 85 are interposed, respectively.
  • the switching valve 62 can switch the switching position by operating the operation lever 63.
  • bypass passages 92 and 93 are connected to the two pilot pressure passages 90 and 91 so as to bypass the throttles 84 and 85, respectively.
  • the bypass passages 92 and 93 are provided with bypass passage switching means 65 that switches to a cut-off state or a communication state in response to a command signal from the braking means 67.
  • the braking means 67 is, for example, a push button type emergency stop button provided for a plurality of construction vehicles. A force such as a switch is also constructed. When the engine of the construction vehicle is started by an operator, a command signal is output from the braking means 67. When the switch is pressed from this state, the braking means 67 outputs a command signal.
  • the hydraulic oil for the piston cylinder 64 bypasses the throttles 84 and 85 and is discharged to the tank 75 through the bypass passages 92 and 93.
  • the spool 80 returns to the neutral position by the panel force of the panels 81 and 82, and the tilting member 76 of the variable displacement hydraulic pump 60 is set to the neutral position.
  • the discharge amount from the variable displacement hydraulic pump 60 is zero or close to zero, the rotation of the hydraulic motor 61 stops.
  • the command signal from the braking means 67 is also output to the mechanical brake control means 66.
  • the mechanical brake control means 66 excites the electromagnetic pilot 86 of the brake switching valve 70 to connect the passage 94 and the passage 96.
  • the pressure is supplied to the pressure chamber 87 of the pilot pressure cylinder 71 discharged from the pilot pressure source 74, and the cylinder 71 moves to the left in FIG. That is, the cylinder side disk 72 and the motor side disk 73 are in a separated state.
  • the brake for the rotation of the hydraulic motor 61 is released.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-246133
  • the switching valve 62 has a circuit that connects the passage 90 and the passage 91 in a neutral position.
  • the throttles 84 and 85 are not formed in the switching valve 62 but are disposed in the passages 90 and 91 between the switching valve 62 and the servo piston 96, respectively.
  • the stop operation in the hydraulic drive device is configured to return the piston cylinder 64 to the neutral position by setting the switching valve 62 to the neutral position and bringing the bypass passage switching means 65 into the communicating state. By returning the piston cylinder 64 to the neutral position, the pump discharge flow rate is reduced and the discharge flow rate is reduced to zero.
  • the pump discharge flow rate is reduced smoothly by the throttles 84 and 85.
  • the throttle 84, 85 is short-circuited, and the pump discharge flow rate is suddenly decelerated.
  • variable displacement hydraulic pump 60 and the hydraulic motor 61 are not connected to each other even though the hydraulic motor 61 is stopped by the rotary mechanical brake.
  • the discharge flow rate from the variable displacement hydraulic pump 60 is not sufficiently reduced. Since the hydraulic oil continues to be discharged from the variable displacement hydraulic pump 60 to the hydraulic motor 61 whose rotation has stopped, the pressure in the closed circuit increases. Hydraulic pressure force in the closed circuit When the relief set pressure of the safety valve 68 or the safety valve 69 is reached, the safety valve 68 or the safety valve 69 is activated and the high-pressure side force is relieved to the low-pressure side and rises in the closed circuit. The pressure is controlled.
  • the present invention solves such a conventional problem and prevents the relief valve in the pump displacement control circuit from relieving even when the brake for braking the rotation of the hydraulic motor 61 is suddenly operated. It is an object of the present invention to provide a pump displacement control circuit capable of rapidly decreasing the discharge flow rate of a variable displacement hydraulic pump.
  • the main feature comprises a switching valve for switching the plurality of panel chambers of the double-acting cylinder between a communication state and a non-communication state.
  • the configuration of the first invention is limited to a configuration in which a passage area communicating with the plurality of cylinder chambers in the switching valve is variably formed in accordance with a detection amount of the detection means. This is the main feature.
  • the configuration of outputting the detection means force control signal according to the deceleration when the rotational speed of the hydraulic motor is controlled is limited to the configuration of the first invention or the second invention.
  • the main characteristics are as specified.
  • the configuration of the first invention or the second invention is limited to a configuration in which the detection means force also outputs a control signal according to the operation amount when the inching valve is operated. Main features.
  • the circuit for communicating and short-circuiting the pair of panel chambers of the pump capacity changing device is configured using a switching valve. Also, the switching valve is switched between a communication state and a non-communication state by a control signal from a detection means that detects the deceleration of the vehicle traveling by the operation of the hydraulic motor.
  • the passage area in the communication passage of the switching valve can be changed, for example, by disposing a throttle in the communication passage.
  • the speed and time for the double-acting cylinder of the pump capacity changing device to return to the neutral position can be adjusted by changing the passage area.
  • the passage area can be appropriately adjusted in accordance with how the vehicle or the like in which the pump displacement control circuit is used.
  • FIG. 1 is a circuit diagram of a pump capacity control circuit. (Example 1)
  • FIG. 2 shows a modified example in which a throttle is provided in the switching valve. (Example 1)
  • FIG. 3 is a modified example in which a variable throttle is provided in the switching valve. (Example 1)
  • FIG. 4 is a circuit diagram of a pump capacity control circuit. (Example 2)
  • FIG. 5 is a modified example in which a throttle is provided on the switching valve. (Example 2)
  • FIG. 6 is a modified example in which a variable throttle is provided in the switching valve. (Example 2)
  • FIG. 7 is a hydraulic circuit diagram of a hydraulic drive device. (Conventional example)
  • the circuit configuration of the pump capacity control circuit of the present invention adopts the circuit configuration as long as it can solve the problems of the present invention. It is something that can be done.
  • the members constituting the circuit configuration of the present invention are not limited to the members of the embodiments described below.
  • a member that can exhibit the same function as a member disposed in the circuit configuration described below, and a circuit configuration that can perform the same function as the member disposed in the pump displacement control circuit are used. Can be modified in various ways.
  • FIG. 1 is a pump capacity control circuit diagram according to the embodiment of the present invention.
  • the hydraulic pump 5 and the hydraulic motor 6 are connected by a passage 30 and a passage 31 to form a closed circuit.
  • the discharge hydraulic oil from the variable displacement hydraulic pump 5 that is driven to rotate by the engine 2 passes through the passage 3 0 or the passage 31 is supplied to the hydraulic motor 6.
  • the return pressure oil from the hydraulic motor 6 is returned to the variable displacement hydraulic pump 5 through the passage 31 or the passage 30. Thereby, the rotation speed and rotation direction of the hydraulic motor 6 can be controlled in accordance with the discharge flow rate and the discharge direction from the variable displacement hydraulic pump 5.
  • the force hydraulic motor 6 exemplified as the variable motor may be a fixed motor.
  • the volume and discharge direction of the variable displacement hydraulic pump 5 are controlled by controlling the angle of the swash plate 5a.
  • Control of the capacity changing device 9 for controlling the angle of the swash plate 5a is performed by the control valve 7.
  • the capacity changing device 9 is composed of a double-action cylinder 9a, a first panel chamber 19a and a second panel chamber 19b housed in the double-action cylinder 9a.
  • the state shown in FIG. 1 shows a state where the double acting cylinder 9a is in a neutral state.
  • the double-acting cylinder 9a is configured to be held in a neutral position by a pair of panel 9b installed in each panel chamber 19a, 19b.
  • control valve 7 connected to the first panel chamber 19a and the second panel chamber 19b via the passages 38 and 39 has five ports A to E, respectively, and is switched to the three positions (I) to (III). Can do.
  • Panels 7a and electromagnetic pilots 7b act on the left and right ends of the control valve 7, respectively.
  • control valve 7 When one electromagnetic pilot 7b is actuated by a control command (not shown), the control valve 7 is switched from the neutral position ( ⁇ ) to the position (I) or (III).
  • Port A and port C of the control valve 7 are connected to a passage 40 and a passage 41, respectively, and the passages 40 and 41 communicate with the tank 20.
  • throttles 7 c to 7 f are formed so that the pressure oil slowly flows out from the capacity changing device 9 to the tank 20. This makes it possible to smoothly start and stop the vehicle.
  • Port B is connected to passage 43.
  • the passage 43 has one end communicating with the tank 20 via the force inching valve 10, and the other end communicating with the tank 20 b via the switching valve 15.
  • a shuttle valve 16 is interposed between the passage 30 and the passage 31 of the closed circuit described above. When the high pressure side pressure in either passage 30 or passage 31 is selected by shuttle valve 16, the selected high pressure The pressure side pressure acts on the switching valve 15.
  • Port D is connected to first panel chamber 19a of capacity changing device 9 through passage 38.
  • Port E is connected to the second panel chamber 19b of the capacity changing device 9 through the passage 39.
  • a switching valve 8 is provided between the pair of passages 38 and 39 to switch the first panel chamber 19a and the second panel chamber 19b between a communication state and a non-communication state.
  • the position (I) of the control valve 7 is such that the passage 43 and the first panel chamber 19a of the capacity changing device 9 are connected, and the second panel chamber 19b is connected to the tank 20 via the throttle 7c. It has become.
  • the ( ⁇ ) position of the switching valve 7 is a neutral position, and is a position where the first panel chamber 19a and the second panel chamber 19b communicate with the tank 20 via the throttles 7e and 7d, respectively.
  • the (III) position of the switching valve 7 communicates with the passage 43 and the second panel chamber 19b of the capacity changing device 9 contrary to the (I) position, and the first panel chamber 19a is throttled 7f. It is in a position to communicate with the tank 20 via
  • a discharge pressure from a charge pump 11 that is driven to rotate by the drive shaft 3 of the engine 2 is introduced into the passage 43.
  • the discharge pressure from the charge pump 11 is supplied to the passage 43 through the passage 46, the pressure control valve 12, the throttle 23 and the passage 45, and can be supplied to the port B of the control valve 7.
  • the double-acting cylinder 9a moves to the left in FIG. 1 and compresses the panel 9b in the second panel chamber 19b while compressing the panel 9b.
  • the swash plate 5a is rotated counterclockwise, the displacement and the discharge direction of the variable displacement hydraulic pump 5 are controlled according to the rotation direction and rotation angle of the rotated swash plate. From the variable displacement hydraulic pump 5, the hydraulic oil with the discharge flow rate according to the controlled swash plate angle It discharges in the discharge direction according to.
  • the hydraulic motor 6 rotates in a desired rotation direction at a desired number of revolutions by supplying the pressure oil from the passage 30.
  • the hydraulic motor 6 rotates forward at a desired rotational speed
  • the hydraulic motor 6 rotates backward at the desired rotational speed.
  • the rotation of the hydraulic motor 6 is taken out by the output shaft 6a, and a traveling tire or the like (not shown) is rotationally driven to cause the vehicle to move forward and backward.
  • the switching valve 8 that switches the first panel chamber 19a and the second panel chamber 19b between the communication state and the non-communication state is subjected to switching control by a control signal from the detection means 25.
  • the detecting means 25 detects the amount of operation of a brake or the like that brakes the rotational speed of the hydraulic motor 6 as the vehicle deceleration.
  • the control signal for performing switching control of the switching valve 8 is output from the detection means 25 based on the operation amount detected by the detection means 25.
  • the control signal from the detection means 25 is input to the hydraulic pilot 8b, the switching valve 8 is switched, and the first panel chamber 19a and the second panel chamber 19b are disconnected.
  • the switching control force of the switching valve 8 is shown as an example of control controlled by the pilot pressure input to the hydraulic pilot 8b.
  • the hydraulic pie-port 8b is used. Instead of using it, it can be performed using a solenoid valve or a mechanical operating configuration.
  • the discharge pressure from the charge pump 11 can be supplied to the pressure control valve 12 through the passage 46 and discharged to the tank 20 via the relief valve 13 that operates at a predetermined pressure.
  • the passages 30 and 31 of the closed circuit are provided with relief valves 14a and 14b that operate at a predetermined pressure, and the pressure oil pressure in one of the passages 30 and 31 is the relief valve.
  • 14a or the relief valve 14b When 14a or the relief valve 14b is operated, it is a circuit that releases high-pressure oil to the other passage.
  • the opening of the inching valve 10 can be increased in accordance with, for example, the operating amount of the foot brake.
  • the operation of the inching valve 10 will be described by taking the following case as an example. That is, when the control valve 7 is in the position (I), the first panel chamber 19a of the capacity changing device 9 and the passage 43 are connected. A case where the pilot pressure is supplied to the first panel chamber 19a through communication and the second panel chamber 19b communicates with the tank 20 via the throttle 7c will be described as an example.
  • variable displacement hydraulic pump 5 discharges pressure oil into the passage 30 to cause the hydraulic motor 6 to rotate forward at a desired rotational speed.
  • the tire driven by the output shaft 6a by the forward rotation of the hydraulic motor 6 rotates in the forward direction, and can advance the vehicle.
  • a foot brake or the like is operated to stop the vehicle from moving forward.
  • the opening of the inching valve 10 can be expanded in conjunction with the foot brake push-in operation.
  • the passage 43 communicates with the tank 20.
  • the pilot pressure supplied to the first panel chamber 19 a is discharged to the tank 20 through the passage 43 and the passage 44.
  • the hydraulic motor 6 decreases the rotational speed as the discharge amount from the variable displacement hydraulic pump 5 decreases. At this time, the inertial force of the hydraulic motor 6 is attenuated while receiving the resistance of the pressure oil in the hydraulic motor 6, and the rotation of the hydraulic motor 6 stops. In this way, the hydraulic brake is actuated, and the vehicle can be gently stopped.
  • the operation amount force when the rotation of the hydraulic motor 6 is braked in the sudden stop state of the vehicle is also detected.
  • a foot brake is used to brake the rotation of the hydraulic motor 6, by detecting the stepping amount of the foot brake by the detection means 25, the sudden stop state of the vehicle, that is, the deceleration of the vehicle is detected. Yes.
  • the operation amount indicating the deceleration of the vehicle detected by the detecting means 25 includes not only detecting the foot brake depression amount but also the foot brake depression speed, the hydraulic motor rotation speed and the same hydraulic motor. It can be obtained by detecting the driving pressure to drive, the control pressure for controlling the rotation of the hydraulic motor force, or the operating amount of the inching valve when the inching valve is operated.
  • a control signal is output to the detection means 25 force switching valve 8.
  • the position of the switching valve 8 is switched from the (V) position to the (IV) position by the control signal.
  • the passage 38 and the passage 39 are short-circuited, and the first panel chamber 19a and the second panel chamber 19b can be short-circuited.
  • the inching valve 10 first enters an area where the inching valve 10 is activated, and then the inching valve 10 and the mecha-cal brake are activated simultaneously as the depression amount increases.
  • a description will be given using a movable configuration as an example.
  • the detecting means 25 outputs a control signal to the switching valve 8.
  • the amount of depression of the foot brake when operating the switching valve 8 is set in advance so as not to impair the handling characteristics of the vehicle and the ride comfort when the braking brake is activated. You can also. Further, the amount of depression by which the control signal is output from the detecting means 25 to the switching valve 8 is within the region where only the inching valve 10 is operated or It can be set in one of the areas where the Ching valve 10 and the mechanical brake are operated simultaneously.
  • the switching valve 8 switches from the (V) position to the (IV) position, and short-circuits the first panel chamber 19a and the second panel chamber 19b. become.
  • the double-action cylinder 9a quickly returns to the neutral position.
  • the swash plate 5a can also be quickly returned to the neutral position, and the discharge from the variable displacement hydraulic pump 5 can be stopped.
  • a throttle 8c as shown in Fig. 2 in the communication passage that connects the passage 38 and the passage 39 in the switching valve 8, the speed and time for the double-acting cylinder 9a to return to the neutral position can be reduced. It is necessary to be able to adjust it. That is, in the case where the throttle 8c is provided in the switching valve 8, there are a region in which only the inching valve 10 is operated according to the foot brake depression amount and a region in which the inching valve 10 and the mechanical brake are simultaneously operated. The configuration of the provided foot brake will be described as an example.
  • the detection means 25 When the foot brake is depressed to a preset position in the region where the inching valve 10 and the mechanical brake are simultaneously operated, the detection means 25 outputs a control signal to the switching valve 8. Become. When the control signal is output to the switching valve 8, the switching valve 8 is switched to the (IV) position, and the first panel chamber 19a and the second panel chamber 19b are short-circuited.
  • the double-acting cylinder 9a slowly moves to the neutral position according to the throttle state of the throttle 8c. It will be awkward to return. As a result, even when the vehicle is suddenly stopped, the ride comfort until the vehicle stops can be kept good. If the foot brake is fully depressed, the vehicle can be stopped suddenly at the expense of ride comfort until the vehicle stops.
  • the throttle 8c provided in the switching valve 8 can be configured by a variable throttle 8c '. wear.
  • the variable aperture 8c ′ it is possible to appropriately adjust the ride comfort until the vehicle stops based on the driver's sense of operation. That is, if the aperture of the variable aperture 8c ′ is increased to make the aperture more effective, the vehicle can be stopped comfortably, and if the aperture is reduced, the vehicle can be stopped suddenly.
  • the first panel chamber 19a and the second panel chamber 19b are short-circuited even if the viscosity of the pressurized oil is increased and the pipe resistance is increased during low temperature operation in a cold district or the like.
  • the length of the pipeline to be made can be shortened.
  • the pressure oil can flow between the first panel chamber 19a and the second panel chamber 19b in a short time. Thereby, the response time until the double acting cylinder 9a of the capacity changing device 9 returns to the neutral position can be shortened.
  • the double-acting cylinder 9a can be quickly returned to the neutral position, the discharge flow rate of the variable displacement hydraulic pump 5 can be rapidly reduced. For this reason, the pressure increase in the pump displacement control circuit 1 is less likely to increase to the relief set pressure of the relief valve 13, and the relief valve 13 hardly relieves. The force of the oil can also prevent the oil temperature from increasing as the pressure increases.
  • variable capacity can be changed before the mechanical brake is activated, at the same time as the mechanical brake or during the operation of the mechanical brake.
  • the discharge of pressure oil from the mold hydraulic pump 5 can be stopped. Therefore, even if the mechanical brake is activated, the pressure rise in the pump displacement control circuit 1 can be suppressed. Even if the pressure rise occurs in the pump displacement control circuit 1, the relief valve The pressure will not increase to 13 relief set pressures.
  • the external operation means for braking the rotation of the hydraulic motor 6 includes an operation means for directly braking the output shaft of the hydraulic motor, for example, a tire driven to rotate by the hydraulic motor 6.
  • An operating means for performing braking can be used.
  • the switching valve 8 is controlled based on the foot brake stepping speed, for example, when the foot brake is stepped on suddenly and the vehicle stops suddenly, or when the foot brake needs to be stopped gently, It is also possible to control the switching valve 8 in distinction from the case where the brake is depressed slowly.
  • the hydraulic pressure is reduced with respect to the hydraulic motor 6 whose rotational speed is decreasing.
  • the switching valve 8 is in communication. Can be switched to.
  • the detected control pressure is generated, for example, by depressing the foot brake.
  • the control pressure generated by stepping on the foot brake can be used for the control pressure to be applied or the hydraulic pressure in the cylinder part of the disc brake disposed on the tire shaft rotating by the rotation from the hydraulic motor. It can be obtained by detecting the operating pressure for operating the brake cylinder.
  • the opening degree of the inching valve 10 when the inching valve 10 is opened is used as an indication of the deceleration of the vehicle, the opening degree of the inching valve 10 is detected, so that the control valve It is possible to detect how much the pressure oil supplied is reduced.
  • the operation state for returning the double-acting cylinder 9a to the neutral position can be regarded as a braking state for braking the rotation of the hydraulic motor 6, that is, representing the deceleration of the vehicle.
  • FIG. 4 shows a circuit diagram of a pump capacity control circuit in which the switching valve 18 is disposed between the passages 38a, 38b and 39a, 39b connecting the control valve 7 and the capacity changing device 9.
  • the second embodiment shows a modification of the switching valve 8 shown in the first embodiment.
  • the switching valve 18 in the second embodiment is different from the switching valve 8 in the first embodiment in that the switching valve 18 can be switched to the 4-port 2-position (VI), (VII).
  • Other configurations are the same as those in the first embodiment.
  • the configuration of the switching valve 18 will be mainly described with reference to FIGS. 5 and 6, and the configuration and operation of the other components excluding the switching valve 18 are the same as those used in the first embodiment. The description will be omitted by using the member code.
  • 5 shows a main part configuration in which the switching valve 18 is provided with a throttle 18c
  • FIG. 6 shows a main part configuration in which the switching valve 18 is provided with a variable throttle 18c ′.
  • the switching valve 18 is provided with a panel 18a on one end side, and the switching valve 18 can be held at the position (VI) by the panel force of the panel 18a.
  • a hydraulic pilot 18b is formed at the other end of the switching valve 18, and the switching valve 18 can be switched to the (VII) position by a control signal from the detecting means 25.
  • the switching control of the switching valve 18 is a switching mechanism using a solenoid valve or a mechanical actuating member instead of the force / hydraulic pilot 18b which shows an example by the hydraulic pilot 18b.
  • the switching valve 18 can be switched to the 4-port 2-position.
  • Each port is composed of a port connected to the passage 38a and the passage 39a, and a port connected to the passage 38b and the passage 39b, respectively.
  • the switching valve 18 When the switching valve 18 is switched to the (VII) position, the first panel chamber 19a and the second panel chamber 19b can be short-circuited.
  • a throttle 18c as shown in Fig. 5 in the communication path that short-circuits the first panel chamber 19a and the second panel chamber 19b, the speed and time required for the double-acting cylinder 9a to return to the neutral position Can be adjusted.
  • FIG. 6 it is possible to arbitrarily adjust the speed and time for the double-acting cylinder 9a to return to the neutral position by providing a variable throttle 18c ′ as a throttle to be arranged on the switching valve 18. it can.
  • the present invention rapidly stops the discharge of the variable displacement hydraulic pump that drives the hydraulic motor when braking the rotation of the hydraulic motor in various hydraulic circuits to which the technical idea of the present invention can be applied.
  • the technical idea of the present invention can be applied to an apparatus that requires this.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Fluid Gearings (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

 検出手段からの制御信号によって切換弁の切換制御を行い、可変容量型油圧ポンプの容量を切換える容量変更装置における第1バネ室及び第2バネ室を短絡させる。検出手段は、油圧モータにより走行する車両の減速度を検出し、減速度が予め設定した基準値となったとき、検出手段は制御信号を出力する。切換弁は、非連通位置から連通位置に切換わり、第1バネ室と第2バネ室とを短絡させ、可変容量型ポンプからの吐出を停止させる。これにより、メカニカルブレーキによる油圧モータの急停止を行っても、可変容量型油圧ポンプから吐出される圧油の圧力上昇を抑えることができる。                                                                                 

Description

明 細 書
ポンプ容量制御回路
技術分野
[0001] 本発明は、可変容量型油圧ポンプと油圧モータとを繋いだポンプ容量制御回路に 関し、さらに詳しくは、油圧モータの回転により走行するタイヤ式車両において、車両 の円滑なる発進が行え、し力も、車両制動時にメカ-カルブレーキによる急停止を行 つても回路内の圧力上昇を抑えることのできるポンプ容量制御回路に関する。
背景技術
[0002] 従来から、ポンプ容量制御回路で構成されるタイヤ式車両の制動ブレーキとしては 、油圧ブレーキとメカニカルブレーキとが併用されている。車両の走行駆動時に油圧 ブレーキが働くと、可変容量型油圧ポンプの吐出流量が減少し、車両を停止させるこ とがでさる。
[0003] このような油圧ブレーキによる車両の制動装置としては、可変容量型油圧ポンプか らの吐出量を速やかに減少させることのできる油圧駆動装置 (例えば、特許文献 1参 照。)などが提案されている。
[0004] 特許文献 1に記載された油圧駆動装置は、図 7に示すような回路構成を備えており 、可変容量型油圧ポンプ 60は図示せぬエンジンの駆動軸 77によって回転駆動され て 、る。可変容量型油圧ポンプ 60と油圧モータ 61とにより閉回路が構成されて 、る 。可変容量型油圧ポンプ 60の容量及び吐出方向を制御するピストンシリンダ 64は、 絞り 84、 85がそれぞれ介在された 2つのパイロット圧通路 90、 91を介して切換弁 62 と接続している。切換弁 62は、操作レバー 63の作動により切換位置を切換えること ができる。
[0005] 前記 2つのパイロット圧通路 90、 91には、前記各絞り 84、 85を迂回するようにバイ パス通路 92、 93が接続されている。バイパス通路 92、 93には、制動手段 67からの 指令信号に応じて遮断状態あるいは連通状態に切り換わるバイパス通路切換手段 6 5が配設されている。
[0006] 制動手段 67は、例えば、建設用車両に複数設けられる緊急停止用の押釦式のス イッチなど力も構成されている。建設用車両のエンジンが作業者によって起動される と、制動手段 67から指令信号を出力する構成となっている。この状態から前記スイツ チが押圧されると、制動手段 67は指令信号を出力する。
[0007] 油圧モータ 61の回転に対して緊急停止が行われ、車両の走行にブレーキが掛けら れたとき、即ち、操作レバー 63の作動により切換弁 62が中立位置に切換えられると 共に、前記スィッチが押圧されて制動手段 67から指令信号が出力されると、前記バ ィパス通路切換手段 65は連通状態に切換えられる。
[0008] これによつて、ピストンシリンダ 64に対する作動油は、絞り 84、 85を迂回してバイパ ス通路 92、 93を通ってタンク 75に 出される。ピストンシリンダ 64のノ ネ室 83a、 83 bの圧力が等しくなると、スプール 80はパネ 81、 82のパネ力によって中立位置に戻り 、可変容量型油圧ポンプ 60の傾転部材 76を中立位置にする。可変容量型油圧ボン プ 60からの吐出量がゼロ又はゼロに近づくと、油圧モータ 61の回転が停止する。
[0009] また、制動手段 67からの指令信号は、メカ-カルブレーキの制御手段 66に対して も出力されている。メカ-カルブレーキの制御手段 66は、制動手段 67からの制御信 号が出力されているときには、制動切換弁 70の電磁パイロット 86を励磁して、通路 9 4と通路 96とを接続する。
[0010] これにより、パイロット圧源 74から吐出したパイロット圧力 シリンダ 71の圧力室 87 に供給され、シリンダ 71はパネ 88のパネ力に杭して図 7の左方向に移動する。即ち 、シリンダ側ディスク 72とモータ側ディスク 73とは離間した状態となる。油圧モータ 61 の回転に対する制動が解除された状態となる。
[0011] 制動手段 67からの制御信号が出力されていないとき、即ち、制動切換弁 70の電磁 パイロット 86が非励磁状態のときには、制動切換弁 70によって通路 94と通路 95とは 連通する。このとき、シリンダ 71の圧力室 87の圧力は減圧されて、パネ 88のパネ力 によってシリンダ側ディスク 72とモータ側ディスク 73とは押圧当接する。油圧モータ 6 1の回転に対して機械的な制動を与えることができる。これによつて、制御手段 66の シリンダ 71はメカ-カルブレーキとして作動する。
[0012] このように特許文献 1に記載された油圧駆動装置では、前記スィッチを押圧して制 動手段 67から指令信号の出力を停止するとともに、操作レバー 63を中立位置に戻 すことによって、油圧モータ 61をメカ-カルブレーキで制動させ、ピストンシリンダ 64 のスプール 80を中立位置に戻して可変容量型油圧ポンプ 60からの吐出を停止させ ることがでさる。
特許文献 1 :特開平 10— 246133号公報
発明の開示
発明が解決しょうとする課題
[0013] 特許文献 1に示したような油圧駆動装置では、切換弁 62は中立位置で通路 90と通 路 91とを連通する回路を持っている。絞り 84、 85は切換弁 62内に形成されておら ず、切換弁 62とサーボピストン 96との間の通路 90、 91にそれぞれ配設されている。
[0014] この油圧駆動装置における停止操作は、切換弁 62を中立位置にし、バイパス通路 切換手段 65を連通状態にすることで、ピストンシリンダ 64を中立位置に戻す構成とな つている。ピストンシリンダ 64を中立位置に戻すことにより、ポンプ吐出流量を減少さ せ、吐出流量をゼロにしている。
[0015] この場合におけるポンプ吐出流量の減少は、絞り 84、 85により滑らかに減少するよ うに構成されている。急停止操作では、この絞り 84、 85を短絡する回路となりポンプ 吐出流量を急減速させて 、る。
[0016] しかし、急停止操作時においては、油圧モータ 61の回転カ^カ-カルブレーキによ つて停止させられているにも係わらず、可変容量型油圧ポンプ 60と油圧モータ 61と の間での閉回路内では、可変容量型油圧ポンプ 60からの吐出流量の減少が充分に 行われな 、。回転が停止した油圧モータ 61に対して可変容量型油圧ポンプ 60から 引き続いて圧油が吐出し続けるので、前記閉回路内での圧力が上昇してしまう。前 記閉回路内での油圧の圧力力 安全弁 68又は安全弁 69のリリーフセット圧まで達す ると、安全弁 68又は安全弁 69が作動して高圧側力も低圧側にリリーフされ、前記閉 回路内で上昇した圧力の制御を行っている。
[0017] 安全弁 68、 69が作動すると、前記閉回路内での油温が上昇する。更に、 カユカ ルブレーキの作動によって油圧モータ 61の回転が停止して!/、るため、油圧モータ 61 に対して大きな駆動圧油が発生する。この状態でも、可変容量型油圧ポンプ 60を更 に回転させることになるため、可変容量型油圧ポンプ 60を駆動するエンジン負荷が 増大する。特に、アクセルが OFF状態だとエンストを引き起こしてしまう事態が発生す る。
[0018] また、油圧モータ 61の回転を制動するブレーキが急操作され、メカ-カルブレーキ を作動させることが頻繁に繰り返されると、ブレーキディスクの磨耗が増大し、メカ-力 ルブレーキの利きが悪化する。更に、可変容量型油圧モータ 60の摺動部での磨耗 が発生し、摺動部における耐久性に悪影響を与えてしまうことになる。これによつて、 安全弁等のライフサイクルを短くしてしまうなどの問題が発生する。
[0019] 本願発明では、このような従来の問題点を解決するとともに、油圧モータ 61の回転 を制動するブレーキが急操作されても、ポンプ容量制御回路における安全弁がリリー フしないようにするとともに、可変容量型油圧ポンプの吐出流量を急激に減少させる ことのできるポンプ容量制御回路を提供することにある。
課題を解決するための手段
[0020] 本願発明の課題は請求の範囲第 1項〜第 4項に記載された各発明により達成する ことができる。
即ち、本願第 1発明では、可変容量型油圧ポンプと油圧モータとを繋いだ回路のポ ンプ容量制御回路において、前記可変容量型油圧ポンプからの吐出量と吐出方向 とを制御する制御弁と、前記制御弁からの圧油を受けて、前記可変容量型油圧ボン プの容積を制御するポンプ容量変更装置と、前記ポンプ容量変更装置に配設した 複動シリンダと、前記複動シリンダを中立位置に保持するパネと、前記油圧モータの 作動により走行する車両の減速度を検出する検出手段と、前記制御弁と前記ポンプ 容量変更装置との間に配設され、前記検出手段からの制御信号に応じて、前記複動 シリンダの複数パネ室を連通状態と非連通状態とに切換える切換弁と、を備えてなる ことを最も主要な特徴となして 、る。
[0021] また、本願第 2発明では第 1発明の構成に、前記切換弁における前記複数シリンダ 室を連通する通路面積が、前記検出手段の検出量に応じて可変に形成されてなる 構成を限定したことを主要な特徴となして 、る。
更に、本願第 3発明では第 1発明又は第 2発明の構成に、前記油圧モータの回転 速度を制御したときの減速度に応じて、検出手段力 制御信号を出力する構成を限 定したことを主要な特徴として 、る。
[0022] 更にまた、本願第 4発明では第 1発明又は第 2発明の構成に、インチング弁を作動 させたときの作動量に応じて、検出手段力も制御信号を出力する構成を限定したこと を主要な特徴としている。
発明の効果
[0023] 本願発明では、ポンプ容量変更装置の一対のパネ室を連通して短絡させる回路を 、切換弁を用いて構成している。し力も、油圧モータの作動により走行する車両の減 速度を検出している検出手段からの制御信号により、切換弁を連通状態と非連通状 態とに切換えている。
[0024] これにより、一対のパネ室を短絡させる回路の管路長を短くすることができ、同回路 における圧損を少なくすることができる。このため、ポンプ容量変更装置の複動シリン ダを中立位置に戻すことが迅速に行える。
[0025] また第 2発明のように構成することで切換弁の連通路における通路面積を、例えば 、絞りを前記連通路に配設することで、変更させることができる。これにより、前記ボン プ容量変更装置の複動シリンダが中立位置に戻る速度や時間を、前記通路面積を 変更させることにより調整できる。ポンプ容量制御回路が用いられている車両等の使 われ方に合わせて、前記通路面積を適宜調整することが可能となる。
図面の簡単な説明
[0026] [図 1]図 1は、ポンプ容量制御回路の回路図である。(実施例 1)
[図 2]図 2は、切換弁に絞りを配設した変形例である。(実施例 1)
[図 3]図 3は、切換弁に可変絞りを配設した変形例である。(実施例 1)
[図 4]図 4は、ポンプ容量制御回路の回路図である。(実施例 2)
[図 5]図 5は、切換弁に絞りを配設した変形例である。(実施例 2)
[図 6]図 6は、切換弁に可変絞りを配設した変形例である。(実施例 2)
[図 7]図 7は、油圧駆動装置の油圧回路図である。(従来例)
符号の説明
[0027] 1 ポンプ容量制御回路
5 可変容量型油圧ポンプ 6 油圧モータ
7 制御弁
8 切換弁
9 容量変更装置
9a 複動シリンダ
10 インチング弁
25 検出手段
60 可変容量型油圧ポンプ
61 油圧モータ
62 切換弁
65 バイパス通路切換手段
66 制御手段
発明を実施するための最良の形態
[0028] 本発明の好適な実施の形態について、添付図面に基づいて以下において具体的 に説明する。以下の説明では、本願発明のポンプ容量制御回路をタイヤ式車両に設 けた場合について説明を行う。しかし、本願発明のポンプ容量制御回路は、タイヤ式 車両以外の油圧装置に対しても適用することができるものである。
[0029] また、本願発明のポンプ容量制御回路の回路構成としては、以下で説明する回路 構成以外にも本願発明の課題を解決することができる回路構成であれば、それらの 回路構成を採用することができるものである。しカゝも、本願発明の回路構成を構成す る部材は、以下に説明する実施例の部材に限定されるものではない。
[0030] 以下で説明する回路構成に配設した部材と同様の機能を奏することのできる部材、 及びポンプ容量制御回路に配設した部材の機能と同じ機能を奏することのできる回 路構成を用いることができるものであり、多様な変更が可能である。
実施例 1
[0031] 図 1は、本発明の実施形態に係わるポンプ容量制御回路図である。油圧ポンプ 5と 油圧モータ 6とは、通路 30及び通路 31により接続されて閉回路が構成されている。 エンジン 2により回転駆動された可変容量型油圧ポンプ 5からの吐出圧油は、通路 3 0又は通路 31を通って油圧モータ 6に供給される。油圧モータ 6からの戻り圧油は、 通路 31又は通路 30を通って可変容量型油圧ポンプ 5に戻される。これにより、可変 容量型油圧ポンプ 5からの吐出流量及び吐出方向に対応して、油圧モータ 6の回転 数及び回転方向を制御することができる。
[0032] 尚、図示例では、油圧モータ 6が可変モータとして例示している力 油圧モータ 6と しては固定モータであってもよい。
可変容量型油圧ポンプ 5の容積及び吐出方向は、斜板 5aの角度が制御されること によって制御される。斜板 5aの角度制御を行う容量変更装置 9の制御は、制御弁 7 によって行われる。
[0033] 容量変更装置 9は、複動シリンダ 9a、同複動シリンダ 9aに収納する第 1パネ室 19a 、第 2パネ室 19bとから構成されている。図 1で示す状態は、複動シリンダ 9aが中立 状態にある状態を示して 、る。複動シリンダ 9aは第 1パネ室 19a及び第 2パネ室 19b の圧力が等しいとき、それぞれのパネ室 19a、 19bに内装した一対のパネ 9bによって 、中立位置に保持される構成となっている。
[0034] 第 1パネ室 19a及び第 2パネ室 19bにそれぞれ通路 38、 39を介して接続する制御 弁 7は、 5ポート A〜Eを備え (I)〜(III)の 3位置に切換えることができる。
[0035] 制御弁 7の左右両端には、それぞれパネ 7a及び電磁パイロット 7bが作用している。
図示せぬ制御指令によって一方の電磁パイロット 7bが作動すると、制御弁 7は中立 位置 (Π)から (I)又は (III)の位置に切換えられる。
[0036] 制御弁 7のポート A及びポート Cは、それぞれ通路 40、通路 41に接続し、同通路 4 0、 41はタンク 20に連通している。制御弁 7におけるポート A及びポート Cに接続した 通路には、絞り 7c〜7fが形成され、容量変更装置 9からタンク 20にゆっくりと圧油が 流れ出るように構成されている。これにより、車両の発進及び停止時の作動を円滑に 行うことができる。
[0037] ポート Bは通路 43に接続している。同通路 43は、一端力インチング弁 10を介してタ ンク 20に連通し、他端が切換弁 15を介してタンク 20bに連通している。上述した閉回 路の通路 30と通路 31との間には、シャトル弁 16が介在されている。通路 30及び通 路 31のどちらか一方の高圧側圧力がシャトル弁 16により選択されると、選択された高 圧側圧力は、切換弁 15に作用する。
[0038] 切換弁 15に作用する前記圧力が、所定の圧力以上になったとき、即ち、切換弁 15 に作用しているパネにより規定された圧力以上になったとき、切換弁 15は通路 44を タンク 20に連通させる。切換弁 15とシャトル弁 16とにより、カットオフ弁 17が構成され る。
[0039] ポート Dは、通路 38を通って容量変更装置 9の第 1パネ室 19aと接続している。ポ ート Eは、通路 39を通って容量変更装置 9の第 2パネ室 19bと接続している。一対の 通路 38、 39の間には、第 1パネ室 19a及び第 2パネ室 19b同士を連通状態と非連通 状態とに切換える切換弁 8が配設されている。
[0040] 制御弁 7の (I)位置は、通路 43と容量変更装置 9の第 1パネ室 19aとを接続すると 共に、第 2パネ室 19bを絞り 7cを介してタンク 20に接続する位置となっている。切換 弁 7の(Π)位置は、中立位置で、第 1パネ室 19a及び第 2パネ室 19bをそれぞれ絞り 7e、 7dを介してタンク 20に連通させる位置となって!/、る。
[0041] 切換弁 7の (III)位置は、(I)位置とは逆に通路 43と容量変更装置 9の第 2パネ室 1 9bとを連通すると共に、第 1パネ室 19aを絞り 7fを介してタンク 20に連通する位置と なっている。
[0042] 尚、図示例では、制御弁 7として電磁パイロット 7bを用いた例を示して!/、るが、制御 弁 7を操作レバーの操作により切換える構成や油圧パイロットにより切換える構成とす ることちでさる。
[0043] 通路 43には、エンジン 2の駆動軸 3によって回転駆動されるチャージポンプ 11から の吐出圧が導入されている。チャージポンプ 11からの吐出圧は、通路 46、圧力制御 弁 12、絞り 23及び通路 45を介して通路 43に供給され、制御弁 7のポート Bに供給す ることがでさる。
[0044] 例えば、第 1パネ室 19aに圧油が供給されると、複動シリンダ 9aが図 1の左方向に 移動して、第 2パネ室 19b内のパネ 9bを圧縮しながら斜板 5aを反時計方向に回動す る。斜板 5aが反時計方向へ回動されると、回動した斜板の回動方向及び回動角に 応じて、可変容量型油圧ポンプ 5の容量及び吐出方向が制御される。可変容量型油 圧ポンプ 5からは、制御された斜板角に応じた吐出流量の圧油を、斜版の回動方向 に応じた吐出方向に吐出する。
[0045] 可変容量型油圧ポンプ 5から通路 30に圧油が吐出されたものとすると、通路 30か らの圧油の供給により油圧モータ 6は、所望の回転数で所望の回転方向に回転する 。例えば、通路 30から圧油が供給されたときには、油圧モータ 6は所望の回転数に て正回転し、通路 31から圧油が供給されたときには、油圧モータ 6は所望の回転数 にて逆回転する。油圧モータ 6の回転は、出力軸 6aによって取り出され、図示せぬ走 行タイヤ等を回転駆動して、車両の前後進を行わせる。
[0046] 第 1パネ室 19aと第 2パネ室 19bとを連通状態及び非連通状態に切換える切換弁 8 は、検出手段 25からの制御信号によって切換制御が行われる。検出手段 25では車 両の減速度として、油圧モータ 6の回転数を制動するブレーキ等の操作量を検出し ている。
[0047] 切換弁 8の切換制御を行う前記制御信号は、検出手段 25にて検出した操作量に 基づいて検出手段 25から出力される。検出手段 25からの制御信号が油圧パイロット 8bに入力されると、切換弁 8が切換わり、第 1パネ室 19aと第 2パネ室 19bとを非連通 状態とする (V)位置力 連通状態とする (IV)位置に切換わる。
[0048] 図示例では切換弁 8の切換制御力 油圧パイロット 8bに入力されたパイロット圧に より制御される例を示している力 切換弁 8を切換える切換制御としては、油圧パイ口 ット 8bを用いる代わりに電磁弁を用いて行うことやメカ-カルな作動構成を用いて行 うことなどができる。
[0049] チャージポンプ 11からの吐出圧は、通路 46を通って圧力制御弁 12に供給されると ともに、所定圧力により作動するリリーフ弁 13を介してタンク 20に排出することができ る。また、前記閉回路の通路 30と通路 31とには、所定圧力により作動するリリーフ弁 14a、 14bが配されており、通路 30及び通路 31のうち一方の通路における圧油の圧 力がリリーフ弁 14a又はリリーフ弁 14bを作動させた場合に、他方の通路に高圧油を 逃がす回路となっている。
[0050] インチング弁 10は、例えば、フットブレーキの作動量に応じてその開度を広げてい くことができる。インチング弁 10の作動について、次の場合を例にとって説明する。即 ち、制御弁 7が(I)の位置にあって、容量変更装置 9の第 1パネ室 19aと通路 43とが 連通して第 1パネ室 19aにパイロット圧が供給され、第 2パネ室 19bが絞り 7cを介して タンク 20に連通している場合を例にとって説明する。
[0051] このとき、複動シリンダ 9aは図 1の左方向に移動し、可変容量型油圧ポンプ 5の斜 板 5aを図 1の状態力 反時計方向に回動させている。斜板 5aの角度及び回動方向 に応じて可変容量型油圧ポンプ 5は、例えば、通路 30に圧油を吐出して油圧モータ 6を所望の回転数で正転させている。油圧モータ 6の正回転により出力軸 6aにより駆 動されるタイヤは前進方向に回転し、車両を前進させることができる。
[0052] このとき、車両の前進を停止させるためフットブレーキ等を作動させる。フットブレー キの押し込み操作に連動してインチング弁 10の開度を広げることができる。インチン グ弁 10の開度が広がると、通路 43がタンク 20に連通する。これにより、第 1パネ室 19 aに供給されているパイロット圧は、通路 43、通路 44を通ってタンク 20に排出される ことになる。
[0053] 第 1パネ室 19a内の圧力が低下し、第 2パネ室 19bに配設したパネ 19bのパネ力に よって、複動シリンダ 9aは中立位置に戻っていくことになる。複動シリンダ 9aの中立 位置への復帰にともなって、斜板 5aも図 1で示す中立位置に戻り、可変容量型油圧 ポンプ 5からの吐出量が減少して、斜板 5aが中立位置に戻った時点で吐出を停止す る。
[0054] 油圧モータ 6は、可変容量型油圧ポンプ 5からの吐出量の減少に伴って、回転数を 減少させる。このとき、油圧モータ 6の慣性力は油圧モータ 6内の圧油の抵抗を受け ながら減衰し、油圧モータ 6の回転は停止する。このようにして油圧ブレーキが作動し て、車両の走行を緩やかに停止させることができる。
[0055] 制御弁 7が (ΠΙ)位置にあるときには、複動シリンダ 9aは、上述した (I)位置にあると きとは逆方向に移動し、油圧モータ 6は制御弁 7が(I)位置に切換わったときとは逆向 きに回転することになる。
[0056] 車両の停止を油圧ブレーキとインチング弁 10との作動により車両を停止させること ができる力 車両を急激に停止させようとしたときには、インチング弁 10の作動に引き 続いて図示せぬメカ-カルブレーキが作動することになる。即ち、フットブレーキを例 にとつて説明すると、フットブレーキの踏み込み量が所定の踏み込み量以下であると きには、インチング弁 10だけが作動し、所定の踏み込み量以上に踏み込まれたとき には、メカ-カルブレーキも作動することになる。
[0057] メカ-カルブレーキが作動したときには、油圧モータ 6の作動により走行している車 両は、図示せぬメカ-カルブレーキによって急停止することになる。メカ-カルブレー キの構成としては、公知のメカ-カルブレーキ機構を適宜採用することができる。
[0058] 本願発明では、車両の急停止状態を油圧モータ 6の回転を制動させたときの操作 量力も検出している。例えば、油圧モータ 6の回転を制動させるのにフットブレーキを 用いたときには、同フットブレーキの踏み込み量を検出手段 25により検出することで 車両の急停止状態、即ち、車両の減速度を検出している。
[0059] 検出手段 25で検出する車両の減速度を示す操作量としては、フットブレーキの踏 み込み量を検出する以外にも、フットブレーキの踏み込み速度、油圧モータの回転 速度と同油圧モータを駆動する駆動圧、油圧モータ力 の回転を制御するための制 御圧、又はインチング弁を作動させたときの同インチング弁の作動量等をそれぞれ検 出することで、求めることができる。
[0060] 検出手段 25で検出した値が、予め設定した基準値を超えたときには、検出手段 25 力 切換弁 8に対して制御信号が出力される。制御信号によって切換弁 8の位置は( V)位置から (IV)位置に切換えられる。これにより、通路 38と通路 39とが短絡し、第 1 パネ室 19aと第 2パネ室 19bとを短絡させることができる。
[0061] 例えば、フットブレーキの踏み込み量に応じて、最初はインチング弁 10が作動する 領域に入り、その後踏み込み量の増大に伴って、インチング弁 10とメカ-カルブレー キとを同時に作動させる領域に移動できる構成を例にして説明する。インチング弁 10 とメカ-カルブレーキとを同時に作動させる領域内において予め設定した位置までフ ットブレーキが踏み込まれると、検出手段 25は切換弁 8に対して制御信号を出力す ることになる。
[0062] 切換弁 8を作動させるときのフットブレーキの踏み込み量としては、車両の操縦性や 制動ブレーキの作動時における乗り心地を悪ィ匕させないように、踏み込み量の値を 予め設定しておくこともできる。また、検出手段 25から切換弁 8に対して制御信号が 出力される踏み込み量としては、インチング弁 10だけを作動させる領域内またはイン チング弁 10とメカ-カルブレーキとを同時に作動させる領域内のいずれかの領域内 に設定しておくことができる。
[0063] 制御信号が切換弁 8に対して出力されると、切換弁 8は (V)位置から (IV)位置に切 換わり、第 1パネ室 19aと第 2パネ室 19bとを短絡させることになる。第 1パネ室 19aと 第 2パネ室 19bとが短絡することによって、複動シリンダ 9aは迅速に中立位置に復帰 する。複動シリンダ 9aの中立位置への復帰によって、斜板 5aも迅速に中立位置に復 帰することができ、可変容量型油圧ポンプ 5からの吐出を停止させることができる。
[0064] このように、メカ-カルブレーキを作動させて油圧モータ 6の回転を制動し、油圧モ ータ 6の回転を停止させるとき、可変容量型油圧ポンプ 5からの吐出を急速に減少さ せることができる。このため、閉回路における通路 30又は通路 31における圧力上昇 を低く抑えることができる。これによつて、リリーフ弁 14a、 14bの作動、及びカットオフ 弁 17の作動を少なくすることができる。
[0065] 切換弁 8における通路 38と通路 39とを連通させる連通路に、図 2に示すような絞り 8cを配設しておくことにより、複動シリンダ 9aが中立位置に戻る速度や時間を調整す ることができるよう〖こなる。即ち、絞り 8cを切換弁 8に設けた場合について、フットブレ ーキの踏み込み量に応じてインチング弁 10だけを作動させる領域と、インチング弁 1 0とメカ-カルブレーキとを同時に作動させる領域とが設けられたフットブレーキの構 成を例にして説明する。
[0066] インチング弁 10とメカ-カルブレーキとを同時に作動させる領域内において予め設 定した位置までフットブレーキが踏み込まれると、検出手段 25は切換弁 8に対して制 御信号を出力することになる。制御信号が切換弁 8に対して出力されると、切換弁 8 は (IV)位置に切換わり、第 1パネ室 19aと第 2パネ室 19bとを短絡させることになる。
[0067] しかし、絞り 8cが第 1パネ室 19aと第 2パネ室 19bとを短絡させる回路上に設けられ ているので、複動シリンダ 9aは絞り 8cの絞り状態に応じてゆっくりと中立位置に復帰 すること〖こなる。これにより、車両を急停止させる場合であっても車両が停止するまで の乗り心地を良好に保ことができる。尚、フットブレーキを最後まで踏み込めば、車両 が停止するまでの乗り心地を犠牲にしても車両を急停止させることができる。
[0068] 切換弁 8に設けた絞り 8cとしては、図 3に示すように可変絞り 8c'で構成することもで きる。可変絞り 8c 'を用いた場合には、運転者の操縦感覚に基づいて、車両が停止 するまでの乗り心地を適宜調整することが可能となる。即ち、可変絞り 8c 'の絞り量を 大きくして絞りを利力せれば、乗り心地よく車両を停止させることができ、絞り量を少な くすれば急停止させることができる。
[0069] 本発明では、寒冷地等の低温作動時にお!、て、圧油の粘性が高くなり管路抵抗が 高くなつたとしても、第 1パネ室 19aと第 2パネ室 19bとを短絡させる管路長を短くする ことができる。し力も、第 1パネ室 19aと第 2パネ室 19bとの間で短時間に圧油を流す ことができる。これにより、容量変更装置 9の複動シリンダ 9aが中立位置に戻るまでの 応答時間を短縮することができる。
[0070] また、複動シリンダ 9aを迅速に中立位置へ戻すことができるので、可変容量型油圧 ポンプ 5の吐出流量を急激に減少させることができる。このため、ポンプ容量制御回 路 1内における圧力上昇は、リリーフ弁 13のリリーフセット圧まで上昇することが少な くなり、リリーフ弁 13がほとんどリリーフしなくなる。し力も、圧力上昇に伴う油温の上昇 を防止することができる。
[0071] 更に、インチング弁 10の作動に引き続いてメカ-カルブレーキが作動した場合でも 、メカ-カルブレーキの作動前、メカ-カルブレーキの作動と同時あるいはメカ-カル ブレーキの作動途中で可変容量型油圧ポンプ 5から圧油の吐出を停止させることが できる。このため、メカ-カルブレーキが作動しても、ポンプ容量制御回路 1内での圧 力上昇を抑えることができ、仮に、ポンプ容量制御回路 1内で圧力上昇が発生したと してもリリーフ弁 13のリリーフセット圧まで圧力が上昇することは少なくなる。
[0072] 油圧モータ 6を駆動する駆動圧に余分な圧力上昇が発生するのを低減できるので 、可変容量型油圧ポンプ 5を駆動するエンジン 2に過度の負荷が加わるのを防止す ることができ、エンジン回転数の低下を防止できる。このため、エンジン回転数の変動 が少なくなり、例えば、走行車両や作業機等の操縦性、操作性等を向上させることが できる。し力も、走行車両のアクセルが OFFの状態においても、エンストの発生を防 止することができる。
[0073] リリーフ弁 13の作動による油圧のリリーフが行われる頻度が減少するので、例えば 、可変容量型油圧ポンプ 5、油圧モータ 6等の油圧機器の寿命を延ばすことができる [0074] また、油圧モータ 6の駆動により走行している車両が停止するまで、この間における 乗り心地を良好に保っておくことができる。油圧モータ 6の回転を制動するフットブレ 一キ等を操作することで、容量変更装置 9の複動シリンダ 9aを中立位置に戻すことが できる。
[0075] 油圧モータ 6の回転に対して制動を行う外部操作手段としては、油圧モータの出力 軸に対して直接制動を加える操作手段や、例えば、油圧モータ 6により回転駆動され るタイヤに対して制動を行う操作手段などを用いることができる。
[0076] また、フットブレーキの踏み込み速度に基づいて切換弁 8を制御する場合には、例 えば、フットブレーキを急激に踏み込んで急停車を行う場合と、緩やかに停止させた いときのようにフットブレーキが緩やかに踏み込まれた場合とを区別して、切換弁 8に 対する制御を行うこともできる。
[0077] フットブレーキが急激に踏み込まれたときには、切換弁 8を連通状態である位置に 切換えることを行い、フットブレーキが緩やかに踏み込まれたときには、切換弁 8を緩 やかに連通状態に切換えることや、あるいは切換弁 8の連通状態への切換を行わな いようにすることちでさる。
[0078] 車両の減速度を表すものとして、油圧モータ 6の回転速度と同油圧モータ 6を駆動 する駆動圧を用いる場合には、例えば、回転数が減少中の油圧モータ 6に対して、 油圧モータ 6に発生している駆動圧が増加していることを検出したときには、油圧モ ータ 6の回転に対してフットブレーキによる制動が行われているものと判断して切換弁 8を連通状態に切換えることができる。
[0079] また、車両の減速度を表すものとして、油圧モータ 6からの回転を制動するための 制御圧を用いる場合には、検出する制御圧としては、例えば、フットブレーキを踏み 込むことにより発生する制御圧や油圧モータからの回転で回転しているタイヤのタイ ャ軸に配設したディスクブレーキのシリンダ部における油圧などを用いることができる フットブレーキを踏み込むことにより発生する制御圧は、前記ディスクブレーキのシリ ンダを作動させるための作動圧などを検出することにより求めることができる。 [0080] 車両の減速度を表すものとして、インチング弁 10を開口させたときのインチング弁 1 0の開度を用いる場合には、インチング弁 10の開度を検出することによって、制御弁 に対して供給する圧油がどれだけ減圧されているのかを検出することができる。即ち 、複動シリンダ 9aを中立位置に戻すための操作状態を検出することができる。複動シ リンダ 9aを中立位置に戻すための操作状態は、油圧モータ 6の回転を制動する制動 状態として、即ち、車両の減速度を表すものとして捉えることができる。
実施例 2
[0081] 図 4は、切換弁 18を制御弁 7と容量変更装置 9とを繋ぐ通路 38a、 38b及び 39a、 3 9bとの間に配設したポンプ容量制御回路の回路図を示している。実施例 2は、実施 例 1で示した切換弁 8の変形例を示すものである。
[0082] 実施例 2の切換弁 18は、 4ポート 2位置 (VI)、 (VII)に切換えることができる切換弁 となっている点で、実施例 1における切換弁 8とは異なっている。他の構成は実施例 1 と同様の構成となっている。以下では、図 5、図 6を用いて切換弁 18の構成について の説明を中心に行い、切換弁 18を除く他の構成部材の構成及び作動については、 実施例 1において用いた部材符号と同じ部材符号を用いることでその説明を省略す るものとする。尚、図 5は切換弁 18に絞り 18cを設けた要部構成を示し、図 6は切換 弁 18に可変絞り 18c'を設けた要部構成を示している。
[0083] 切換弁 18は、一端側にパネ 18aが配設され、パネ 18aのパネ力によって切換弁 18 を (VI)の位置に保持しておくことができる。切換弁 18の他端には油圧パイロット 18b が形成され、検出手段 25からの制御信号により切換弁 18を (VII)位置に切換えるこ とができる。切換弁 18の切換制御を油圧パイロット 18bによる例を示している力 油 圧パイロット 18bの代わりに電磁弁やメカ-カルな作動部材による切換え機構とする ことちでさる。
[0084] 切換弁 18は、 4ポート 2位置に切換えることができる。各ポートは、通路 38a、通路 3 9aにそれぞれ接続したポートと、通路 38b、通路 39bにそれぞれ接続したポートとか ら構成されている。
[0085] 切換弁 18が (VI)位置にあるときは、通路 38aと通路 38bとが連通して制御弁 7のポ ート Dを第 1パネ室 19aに接続しておくことができる。また、通路 39aと通路 39bとが連 通して制御弁 7のポート Eを第 2パネ室 19bに接続しておくことができる。
[0086] 切換弁 18が (VII)位置に切換わったときには、第 1パネ室 19aと第 2パネ室 19bと を短絡させることができる。また、第 1パネ室 19aと第 2パネ室 19bとを短絡させる連通 路に、図 5に示すような絞り 18cを配設しておくことにより、複動シリンダ 9aが中立位置 に戻る速度や時間を調整することができる。また、図 6に示すように、切換弁 18に配 設する絞りとして、可変絞り 18c'を配設しておくことにより複動シリンダ 9aが中立位置 に戻る速度や時間を任意に調整することができる。
[0087] 絞り 18cまたは可変絞り 18c 'を設けることによる作用及び効果は、実施例 1で説明 したと同様の作用及び効果を奏することができる。
産業上の利用可能性
[0088] 本願発明は、本願発明の技術思想を適用することができる各種油圧回路において 、油圧モータの回転を制動させるときに油圧モータを駆動する可変容量型油圧ボン プの吐出を急速に停止することを必要とする装置等に対しては、本願発明の技術思 想を適用することができる。

Claims

請求の範囲
[1] 可変容量型油圧ポンプ 5と油圧モータ 6とを繋いだ回路のポンプ容量制御回路 1に おいて、
前記可変容量型油圧ポンプ 5の容積及び吐出方向を制御するポンプ容量変更装 置 9と、
前記ポンプ容量変更装置 9を制御する制御弁 7と、
前記ポンプ容量変更装置 9に配設した複動シリンダ 9aと、前記複動シリンダ 9aを中 立位置に保持する一対のパネ 9bと、
前記油圧モータ 6の作動により走行する車両の減速度を検出する検出手段 25と、 前記制御弁 7と前記ポンプ容量変更装置 9との間に配設され、前記検出手段 25か らの制御信号に応じて、前記各パネ 9bを収納する一対のパネ室 19a、 19bを連通状 態と非連通状態とに切換える切換弁 8と、
を備えてなることを特徴とするポンプ容量制御回路。
[2] 前記切換弁 8における前記一対のパネ室 19a、 19bを連通する通路面積が、前記 検出手段 25の検出量に応じて可変とされてなることを特徴とする請求の範囲第 1項 記載のポンプ容量制御回路。
[3] 前記油圧モータ 6の回転を制動させたときの減速度に応じて、前記検出手段 25が 前記制御信号を出力してなることを特徴とする請求の範囲第 1項又は第 2項記載の ポンプ容量制御回路。
[4] 前記ポンプ容量制御回路 1に、前記制御弁 7に供給する圧油を排出するインチン グ弁 10を配設し、
前記インチング弁 10を作動させるフットブレーキの踏み込み量、又はフットブレーキ の踏み込み状態又はフットブレーキの踏み込みに伴う車両の減速状態に応じて、前 記検出手段 25が前記制御信号を出力してなることを特徴とする請求の範囲第 1項又 は第 2項記載のポンプ容量制御回路。
PCT/JP2005/022168 2004-12-03 2005-12-02 ポンプ容量制御回路 WO2006059711A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004350742 2004-12-03
JP2004-350742 2004-12-03

Publications (1)

Publication Number Publication Date
WO2006059711A1 true WO2006059711A1 (ja) 2006-06-08

Family

ID=36565143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022168 WO2006059711A1 (ja) 2004-12-03 2005-12-02 ポンプ容量制御回路

Country Status (1)

Country Link
WO (1) WO2006059711A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526775A (ja) * 2010-05-10 2013-06-24 コリア インスティチュ−ト オブ マシナリ− アンド マテリアルズ 広帯域電磁気波吸収体及びその製造方法
CN103527538A (zh) * 2013-10-30 2014-01-22 中航力源液压股份有限公司 双向柱塞变量泵液压控制装置
EP3623664A4 (en) * 2018-02-14 2021-01-06 Komatsu Ltd. COMMERCIAL VEHICLE AND COMMERCIAL VEHICLE CONTROL PROCEDURES

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259178A (ja) * 1987-04-16 1988-10-26 Daikin Ind Ltd 流体制御装置
JPH04357366A (ja) * 1991-06-03 1992-12-10 Toyota Autom Loom Works Ltd 可変速用可変容量油圧ポンプを備えたエンジン車両
JP2598037Y2 (ja) * 1992-12-18 1999-07-26 小松メック株式会社 静油圧駆動車における車速コントロール装置
JP2001027319A (ja) * 1999-07-14 2001-01-30 Hitachi Constr Mach Co Ltd 油圧閉回路駆動型ホイール式車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259178A (ja) * 1987-04-16 1988-10-26 Daikin Ind Ltd 流体制御装置
JPH04357366A (ja) * 1991-06-03 1992-12-10 Toyota Autom Loom Works Ltd 可変速用可変容量油圧ポンプを備えたエンジン車両
JP2598037Y2 (ja) * 1992-12-18 1999-07-26 小松メック株式会社 静油圧駆動車における車速コントロール装置
JP2001027319A (ja) * 1999-07-14 2001-01-30 Hitachi Constr Mach Co Ltd 油圧閉回路駆動型ホイール式車両

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526775A (ja) * 2010-05-10 2013-06-24 コリア インスティチュ−ト オブ マシナリ− アンド マテリアルズ 広帯域電磁気波吸収体及びその製造方法
US9929475B2 (en) 2010-05-10 2018-03-27 Korea Institute Of Machinery & Materials Waveband electromagnetic wave absorber and method for manufacturing same
CN103527538A (zh) * 2013-10-30 2014-01-22 中航力源液压股份有限公司 双向柱塞变量泵液压控制装置
CN103527538B (zh) * 2013-10-30 2015-08-26 中航力源液压股份有限公司 双向柱塞变量泵液压控制装置
EP3623664A4 (en) * 2018-02-14 2021-01-06 Komatsu Ltd. COMMERCIAL VEHICLE AND COMMERCIAL VEHICLE CONTROL PROCEDURES

Similar Documents

Publication Publication Date Title
KR101358522B1 (ko) 가변 유압 모터 구동 장치
US8991168B2 (en) Liquid pressure motor
JP6647942B2 (ja) 作業車両
WO2008004589A1 (fr) Dispositif de commande de moteur pour une machine de construction
US20010049318A1 (en) Displacement control device for hydraulic pump and brake control device for hydraulic motor
WO2006059711A1 (ja) ポンプ容量制御回路
JP2000213644A (ja) Hst車両のエンスト防止装置
JPH0481070B2 (ja)
JPH11181842A (ja) ホイールローダの油圧ポンプ回路
JP3978292B2 (ja) 走行駆動装置
JP2002257101A (ja) 旋回駆動用油圧装置
JP2006258237A (ja) 液圧モータユニット
JP3864595B2 (ja) リリーフ弁のリリーフ圧制御装置
JP3638122B2 (ja) 走行制御装置
JP2880365B2 (ja) 油圧モーターの駆動回路
KR0150243B1 (ko) 중장비의 가변용량형 주행모우터 감속토오크 증대장치
JPH06147201A (ja) 油圧モータの駆動回路
KR100218748B1 (ko) 중장비의 가변용량형 주행모우터의 감속토오크 상승장치
JP2719388B2 (ja) 油圧駆動車両の走行油圧制御装置
JPH08145008A (ja) クローラ車両用ブレーキ装置
JPH064974B2 (ja) 油圧駆動車両の走行油圧制御装置
JPH10311420A (ja) 作業機搭載走行車両の油圧駆動装置
JPH0444121B2 (ja)
JP3739518B2 (ja) 油圧走行装置のブレーキ装置
JPH0738701U (ja) 油圧モータの油圧制御回路装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 05811644

Country of ref document: EP

Kind code of ref document: A1