WO2006059692A1 - ポリイミド金属積層体およびこれを用いたハードディスク用サスペンション - Google Patents

ポリイミド金属積層体およびこれを用いたハードディスク用サスペンション Download PDF

Info

Publication number
WO2006059692A1
WO2006059692A1 PCT/JP2005/022110 JP2005022110W WO2006059692A1 WO 2006059692 A1 WO2006059692 A1 WO 2006059692A1 JP 2005022110 W JP2005022110 W JP 2005022110W WO 2006059692 A1 WO2006059692 A1 WO 2006059692A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
bis
dianhydride
aminophenoxy
metal laminate
Prior art date
Application number
PCT/JP2005/022110
Other languages
English (en)
French (fr)
Inventor
Koji Hirota
Naoki Nakazawa
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to JP2006548010A priority Critical patent/JP4384674B2/ja
Priority to US11/792,230 priority patent/US20080268266A1/en
Priority to CN2005800406230A priority patent/CN101065242B/zh
Publication of WO2006059692A1 publication Critical patent/WO2006059692A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/4833Structure of the arm assembly, e.g. load beams, flexures, parts of the arm adapted for controlling vertical force on the head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]

Definitions

  • the present invention relates to a polyimide metal laminate and a suspension for a node disk using the same, which are widely used for a flexible wiring board, a wireless suspension of a hard disk drive, and the like.
  • polyimide is suitable for high-density circuit board materials because it has good heat resistance and has little change in properties after heat treatment, so that it can assemble components at high temperatures and can be processed ultrafinely.
  • the present invention relates to a metal laminate and a suspension for a hard disk using the same.
  • Patent Document 1 discloses that after a predetermined pattern is applied to a copper alloy layer and a SUS304 layer, the polyimide layer is etched by plasma etching. A manufacturing method has been proposed in which the suspension is removed and the suspension is covered. Such a method using plasma etching has the advantage that the polyimide design having a fine shape is easy and the formation of flying leads is easy, so that the suspension design can be given freedom. .
  • no consideration has been given to the thermal characteristics of the polyimide layer and the heat resistance of the metal laminate, and the high cover coat material required for connection to the board 'components and protection of copper wiring at high temperatures. For curing at a temperature, there were problems such as deformation of the polyimide layer and peeling of the copper wiring.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-293222
  • Patent Document 2 Japanese Patent Publication No. 2001-531582
  • an object of the present invention is to improve the heat resistance of a polyimide in contact with a metal, and to reduce the change in characteristics with respect to heat treatment, so that the polyimide metal laminate is heated. It is intended to provide a polyimide metal laminate excellent in heat resistance, and a suspension for a node disk using the same, by reducing the change in physical properties of the laminate with respect to the temperature change exposed to.
  • the present inventors have controlled the thermal characteristics of polyimide in contact with metal, and use a specific physical property of polyimide in contact with stainless steel foil or copper foil when laminating polyimide onto metal. As a result, it was found that swelling and deformation after heating of the polyimide laminate were suppressed, and the present invention was completed.
  • the present invention provides:
  • the peel strength between the stainless steel foil and copper foil and the polyimide resin is l on the polyimide metal laminate with the copper foil and stainless steel foil on both sides of the polyimide resin and the stainless steel foil formed on both sides.
  • the peel strength between the stainless steel foil and copper foil and the polyimide resin after the polyimide metal laminate is heat-treated at 350 ° C for 60 minutes is 1.0 kN / m or more.
  • Polyimide resin in contact with stainless steel foil or copper foil has a glass transition temperature of 180 ° C or higher and a storage elastic modulus at 300 ° C of 1 X 10 7 Pa to l X 10 8 Pa, 350
  • the polyimide resin in contact with the stainless steel foil or copper foil is a polyimide obtained by reacting diamine with tetracarboxylic dianhydride, and the tetracarboxylic dianhydride used is , Pyromellitic dianhydride, 3, 3 ', 4, 4, -biphenyltetracarboxylic dianhydride at least one selected tetracarboxylic dianhydride, and 3, 3', 4, 4 '-Benzophenone tetracarboxylic dianhydride combined with 3, 3', 4, 4,-All of the tetracarboxylic dianhydrides used by benzophenone tetracarboxylic dianhydride 8 mole 0/0 or more and 20 mol% or less, as Jiamin further use, 1, 3- bis (3-amino Nofuenokishi) benzene, 4, 4, - bis (3-aminophenoxy) Bifue - le and, 1, 3-bis (3-
  • a high-density circuit board material that has good heat resistance of polyimide and little change in characteristics after heat treatment, enables component assembly at high temperatures, and enables ultrafine processing.
  • a suitable polyimide metal laminate and a hard disk suspension using the same were provided.
  • a stainless steel foil is formed on both sides or one side of a polyimide resin layer.
  • a specific structure is a polyimide metal laminate in which a copper foil and a stainless steel foil are formed on both sides of a polyimide resin, or a stainless steel foil is formed on both sides.
  • austenitic stainless steel such as SUS304, SUS301, or SUS305 can be used.
  • SUS304 and SUS305 can be used. More preferably, SUS304 is hardened and In addition, SUS304H-TA material with tension annealing can be used.
  • a copper foil can be used as the metal that can be used in the polyimide metal laminate of the present invention.
  • Copper foil includes copper alloys containing copper as the main component and containing 50 wt% or more of the total weight of the alloy.
  • any type of electrolytic copper foil and rolled copper foil can be used as the copper foil.
  • Any copper alloy foil can be used, including C7025 foil, which is an alloy with Ni, and HS1200 foil, which is an alloy with Sn. Since the laminate is suitably used as a suspension material, a copper alloy foil having panel characteristics can be preferably used.
  • C7025 foil and B52 foil manufactured by Nippon Olympus Co., Ltd., NK120 foil manufactured by Nikko Materials Co., Ltd., and EFTEC64-T foil manufactured by Furukawa Electric Co., Ltd. can be suitably used.
  • the copper foil used in the metal laminate is finely processed and may be used as wiring, it is preferable to thin the copper foil for fine wiring.
  • Those having a thickness can be preferably used, and more preferably 12 / ⁇ ⁇ to 1 / ⁇ ⁇ .
  • the thickness of the stainless steel foil used in the laminate there is no particular limitation on the thickness of the stainless steel foil used in the laminate, but as the recording density of hard disk drives (hereinafter abbreviated as HDDs) increases, the head needs to be as close as possible to the node disk. Yes. Therefore, the suspension material that supports the head is required to have softness, and the stainless steel foil also requires a thin film. Therefore, a thickness of 20 m to 10 m is preferably used, and 15 m to 10 m can be more preferably used.
  • HDDs hard disk drives
  • the heat resistance of the polyimide resin layer of the polyimide metal laminate of the present invention is such that when heated in an oven at an ambient temperature of 350 ° C for 60 minutes, the polyimide resin layer and Z or polyimide resin It is necessary for the stainless steel foil or copper foil to swell and not peel off, that is, not to be deformed. It is preferable that swelling and peeling of 100 m or more do not occur.
  • the polyimide metal laminate of the present invention is processed into a flexible wiring board or suspension, and when the chip slider is assembled onto the polyimide metal laminate, it may be exposed to a heating atmosphere of about 350 ° C. . It is also a force that is desired to prevent swelling and peeling at that time.
  • polyimide has been used as a cover material for polyimide metal laminates.
  • Polyimide cover materials require high-temperature curing at 350 ° C, and polyimide metal laminates are also exposed to high temperatures due to curing. In this case, it is desirable that no swelling or the like occurs.
  • the atmosphere in the oven is not limited, but is preferably an inert gas atmosphere such as nitrogen, Argon is better. This is because safety is ensured in the work.
  • the ambient temperature is the temperature at which the polyimide metal laminate temperature is 350 ° C, and it is not necessary that the overall temperature in the oven be 350 ° C. It is preferable that swelling and peeling of 100 m or more do not occur during heating in the oven and after Z or after heating.
  • the place where swelling and peeling occurs here is polyimide resin, polyimide resin and metal. It can occur at either the foil interface, and it must be free of any peeling, regardless of where it swells or peels off. As long as the size of the peeling is within a range that is preferably less than 100 m, there is no problem in appearance, but it is preferably less than 50 ⁇ m, more preferably less than 0.1 ⁇ m.
  • the peel strength between the stainless steel foil and copper foil and the polyimide-based resin is l.OkN / m or more, and the viewpoint power for preventing wiring peeling after processing is also preferable. .
  • the miniaturization of processing has progressed, and fine wiring with a width of about 20 m is frequently processed.
  • the peel strength between the stainless steel foil, the copper foil, and the polyimide resin is higher, more preferably 1.2 kNZm or more.
  • the measurement of peel strength is based on IPC-TM650, TypeA Sec2.4.9, and was performed on a 3.2 mm wide wiring.
  • Examples of the polyimide resin layer in the polyimide metal laminate of the present invention include polyimide and polyamideimide. Polyimide is preferable. Polyimide resin layer
  • the polyimide-based resin in contact with the stainless steel foil or copper foil preferably has a glass transition temperature of 180 ° C or higher in order to ensure good adhesion to these metals. More preferably, it is 300 ° C. More preferably, it is 200 degreeC-270 degreeC.
  • the glass transition temperature can be measured by a publicly known method.
  • the viscoelastic behavior of polyimide resin in contact with stainless steel foil or copper foil in the high temperature range of 300 ° C to 350 ° C has a great influence on the heat resistance characteristics of the polyimide metal laminate and the property changes after heating. Therefore, it is important to control the viscoelastic behavior in the high temperature region.
  • a commercially available dynamic viscoelasticity measuring apparatus can be used for the measurement of viscoelastic behavior.
  • measurement can be performed using DMA Q800 manufactured by TI Instruments, RSA-2 manufactured by Rheometrics.
  • the storage elastic modulus behavior measured using a dynamic viscoelasticity measuring device in the high temperature region described above plays an especially important role in controlling the heat resistance characteristics of polyimide metal laminates and the property changes after heating.
  • the storage elastic modulus at 300 ° C is preferably lower as the storage elastic modulus, which preferably has high-temperature fluidity, in order to ensure adhesion to metal.
  • the storage modulus at 300 ° C is too low, problems such as excessive thermal deformation of the polyimide may occur when bonding metal and polyimide.
  • the polyimide metal laminate is heated while the polyimide absorbs water or immediately absorbs water, the swollen heat causes swelling in the polyimide. In order to suppress this, it is necessary to keep the storage elastic modulus of polyimide at a high temperature above a certain value. Specifically, it is necessary to have a storage elastic modulus larger than the saturated water vapor pressure at 300 ° C.
  • the storage elastic modulus at 300 ° C of the polyimide in contact with the metal is preferably 1 X 10 7 Pa to l X 10 8 Pa, more preferably 7 X 10 7 Pa to 9 X 1 0 7 Pa.
  • the use of the polyimide metal laminate of the present invention includes HDD suspensions.
  • a wiring circuit in which copper is etched is formed on the suspension.
  • a cover material for protecting this wiring circuit a cover material mainly composed of polyimide has been suitably used from the viewpoint of heat resistance and cleanliness.
  • This polyimide cover material is indispensable as a process in which high-temperature curing of 350 ° C or higher is indispensable after the polyimide metal laminate is covered.
  • components such as ICs and piezo elements are often mounted on the suspension. Even in this mounting, lead-free solder is used, and mounting at high temperatures is indispensable. For these reasons, it is necessary to control the heat resistance at 350 ° C of the polyimide layer in contact with the metal, that is, the storage elastic modulus that directly affects the heat resistance.
  • the storage elastic modulus at 350 ° C is higher than the saturated water vapor pressure at 350 ° C. It is preferable from the viewpoint of suppressing the thermal expansion, and the storage elastic modulus is low from the viewpoint of adhesion to metal. Is preferred. If the storage modulus of polyimide at 350 ° C is high, 350 ° C, 60 The adhesion between the polyimide and the metal after heating for a minute deteriorates, and the peel strength between the metal and the polyimide is less than 1. OkNZm, which is not preferable. Specifically, the storage elastic modulus of the polyimide at 350 ° C. is preferably 2 ⁇ 10 7 Pa to 2 ⁇ 10 8 Pa. More preferably, it is 3 ⁇ 10 7 Pa to 1 ⁇ 10 8 Pa. The polyimide resin that can satisfy these properties will be described below.
  • the peel strength between the stainless steel foil and copper foil and the polyimide resin after heat treatment of the polyimide metal laminate at 350 ° C for 60 minutes is 1.5 OkNZm or more 1.5 kNZm More preferably.
  • the polyimide resin in contact with the stainless steel foil or copper foil is preferably polyimide, and is preferably obtained by reacting diamine with tetracarboxylic dianhydride.
  • the tetracarboxylic dianhydride used is pyromellitic dianhydride, 3,3 ', 4,4,'-biphenyltetracarboxylic dianhydride, at least one selected tetracarboxylic dianhydride And 3,3 ', 4,4, _benzophenonetetracarboxylic dianhydride, and from the viewpoint of ensuring the heat resistance of the polyimide, intramolecular and intermolecular amino groups and imine bridges It is preferable to contain 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, which is an acid dianhydride causing the reaction, at a certain ratio.
  • the acid dianhydride when used, the heat resistance becomes too high, and the storage elastic modulus of polyimide at a high temperature becomes too high, so that 3,3 ′, 4,4′-benzophenone tetracarboxylic acid is present. It is preferable that the acid dianhydride is 8 mol% or more and 20 mol% or less of the tetra force rubonic acid dianhydride used. More preferably, it is 10 mol% or more and 15 mol% or less. Also, any other acid dianhydride can be added within the range without impairing the properties of the thermoplastic polyimide.
  • the diamine used for the thermoplastic polyimide is 1,3-bis (3-aminophenoxy) benzene, 4,4, -bis (3-aminophenoxy) biphenyl, 1,3-bis (3- ( It is preferable to use at least one diamine selected from 3-aminophenoxy) benzene and 2,2-bis [4- (4-aminophenoxy) phenol] propane, but does not impair the properties of the polyimide. It is also possible to add any other diamine within.
  • the reaction molar ratio of the diamine component and tetracarboxylic dianhydride is in the range of 0.75 to 1.25, and the reaction is easily controlled, and the heat to be synthesized. 0.90 to 1.10 are more preferable because the heat flowability of the plastic polyimide is good.
  • the polyimide resin manufactured by selecting the acid dianhydride and diamine as raw materials and also having a specific range force can satisfy the physical properties defined in the present invention.
  • the thickness of polyimide can be reduced by reducing the thickness and weight of electrical equipment using polyimide metal laminates by 0.5 to 50 m. More preferably, it is 1 to 10 ⁇ m.
  • thermoplastic polyimide resin in addition to the thermoplastic polyimide resin described above, a commercially available non-thermoplastic polyimide film can be used.
  • Avical (registered trademark) NPI manufactured by the company, Avical (registered trademark) HP, Kapton (registered trademark) EN manufactured by Toray DuPont Co., Ltd., etc. are preferably used.
  • any polyimide obtained by reacting diamine and tetracarboxylic dianhydride can be used within the range without impairing the properties of the polyimide metal laminate.
  • diamines examples include, for example, m-phenediamine, 0-phenediamine, p-phenediamine, m-aminobenzylamine, p-aminobenzylamine, bis. (3-aminophenyl) sulfide, (3-aminophenyl) (4-aminophenyl) sulfide, bis (4-aminophenol) sulfide, bis (3-aminophenol) sulfoxide, (3-aminophenol) -L) (4-aminophenol) sulfoxide, bis (3-aminophenyl) sulfone, (3-aminophenyl) (4-aminophenol) sulfone, bis (4-aminophenol) sulfone, 3, 3, -Diaminobenzophenone, 3, 4, -diaminobenzophenone, 4, 4, -diaminobenzophenone, 3, 3'-diaminodip
  • Examples of usable acid dianhydrides include pyromellitic dianhydride, 3-fluoropyromellitic dianhydride, 3,6-difluoropyromellitic dianhydride, 3, 6-bis ( Trifluoromethyl) pyromellitic dianhydride, 1, 2, 3, 4-benzenetetracarboxylic dianhydride, 2, 2 ', 3, 3, -benzophenone tetracarboxylic dianhydride, 3, 3, , 4, 4, -biphenyltetracarboxylic dianhydride, 3, 3 ", 4, 4 ,, -terphenyltetracarboxylic dianhydride, 3, 3 ,,,, 4, 4", -quaterhue -L-tetracarboxylic dianhydride, 3, 3 "", 4, 4 "', -kinkyl tetracarboxylic dianhydride, 2, 2', 3, 3, _biphenyltetracarboxylic dianhydride An
  • Synthesis of the polyimide-based resin generally includes N-methylpyrrolidone (NMP), methylformamide (DMF), dimethylacetamide (DMAc), dimethylsulfoxide (DMS O), dimethyl sulfate, In a solvent such as sulfolane, butyrolatatatone, cresol, phenol, halogenated phenol, cyclohexane, dixane, tetrahydrofuran, diglyme, triglyme, the tetracarboxylic dianhydride and the diamine are mixed at a predetermined ratio.
  • NMP N-methylpyrrolidone
  • DMF dimethylformamide
  • DMAc dimethylacetamide
  • DMS O dimethylsulfoxide
  • polyimide resin precursor solution is obtained, and this solution is further heat-treated in a high temperature atmosphere of 200 ° C to 500 ° C.
  • polyimide resin is obtained by imidization.
  • the polyimide metal laminate of the present invention can be produced by thermocompression bonding a polyimide resin and a metal foil.
  • a method for thermocompression bonding of polyimide resin and metal foil is described.
  • thermocompression bonding is performed while moisture is absorbed, a metal laminate is formed in a state where moisture is contained in the polyimide, so that there is a problem that heating blistering is likely to occur in the polyimide. If the moisture absorption rate is 0.1% RH or less, the blistering does not occur and the characteristics are stabilized.
  • the method of drying the polyimide before thermocompression bonding is not particularly limited, but there is a method in which the polyimide is left to dry in an oven heated to 80 ° C or higher for a long time, for example, 10 hours or longer. Can be mentioned. There is also a method of drying polyimide using an IR heater or a heating roll. The moisture absorption rate can be measured by the Karl Fischer method or the Yanagi method by the thermogravimetric method.
  • thermocompression bonding examples include a hot press method and a Z or heat laminating method as typical methods.
  • a heating press method for example, polyimide resin and metal foil are cut into a predetermined size of a press machine, overlapped, and heated by a heating press. It can be manufactured by pressure bonding.
  • the heating temperature is preferably 150 to 600 ° C.
  • the pressing force is not limited, but it can be preferably produced at 0.1 to 5 OOkgZcm2. There is no particular limitation on the caloric pressure time.
  • the heat laminating method is not particularly limited, but a method of sandwiching and laminating between rolls is preferable.
  • a metal roll, a rubber roll, or the like can be used. Although there is no restriction
  • the rubber roll it is preferable to use heat-resistant silicon rubber or fluorine rubber on the surface of the metal roll.
  • the laminating temperature is preferably in the temperature range of 100 to 300 ° C.
  • a radiation heating method such as far infrared, an induction heating method, or the like can be used.
  • a normal heating furnace, autoclave, etc. can be used as the heating device. Air, inert gas (nitrogen, argon), etc. can be used as the heating atmosphere.
  • the heating method either the method of continuously heating the film or the method of leaving the film in the state of being left in the heating furnace is preferable.
  • a conductive heating method, a radiant heating method, a combination method thereof, and the like are preferable.
  • the heating temperature is preferably in the temperature range of 200 to 600 ° C.
  • the heating time is preferably in the range of 0.05 to 5000 minutes.
  • the polyimide metal laminate of the present invention can be produced by applying a polyimide varnish precursor varnish to a metal foil and then drying. It can be produced by directly applying and drying a thermoplastic polyimide solution or a polyamic acid solution (hereinafter collectively referred to as varnish) which is a precursor of the thermoplastic polyimide on a metal foil. I can do it.
  • varnish is a solution obtained by polymerizing the specific diamine and tetracarboxylic dianhydride in a solvent.
  • a method of directly coating on the metal foil known methods such as a die coater, a comma coater, a roll coater, a gravure coater, a curtain coater, and a spray coater can be employed. It can be suitably used depending on the thickness to be applied, the viscosity of the varnish and the like.
  • an ordinary heating and drying furnace can be used as a method of drying and curing the applied varnish.
  • Air, inert gas (nitrogen, argon), etc. can be used as the atmosphere of the drying furnace.
  • Dry As the temperature, a force range appropriately selected according to the boiling point of the solvent is preferably used.
  • the drying time is appropriately selected depending on the thickness, concentration, and type of solvent, but it is desirable that the drying time be about 0.05 to 500 minutes.
  • the polyimide metal laminate of the present invention is particularly suitably used as a hard disk suspension.
  • a polyimide resin layer was formed on the metal foil to prepare a polyimide metal laminate.
  • the atmosphere temperature became 350 ° C! /, And it was introduced into Ruert oven (manufactured by Espec Co., Ltd.) and left for 60 minutes.
  • the polyimide metal laminate is taken out with an inert oven, cooled to room temperature, the metal foil on one side is removed by etching, and the surface of the polyimide resin is swollen and peeled off with a 100-fold stereo microscope. It was confirmed whether it occurred or not (not deformed).
  • peeling was present, the magnitude of peeling was measured, and when there was a thing of 100 m or more, it was judged to be unacceptable.
  • peel strength was determined by preparing a peel strength test piece, leaving the test piece in an oven oven heated to 350 ° C for 60 minutes, and then cooling the test piece to room temperature. Measurements were taken.
  • Measurement was performed in a tension mode using RSA-2 manufactured by Rheometrics.
  • the heating rate was 3 ° C per minute, the measurement temperature was 100 ° C to 400 ° C, and the applied frequency was 1 Hz.
  • Viscoelasticity analysis was performed to calculate the storage elastic modulus at 300 ° C and 350 ° C.
  • Measurement was performed in a tensile mode using TMA-4000 manufactured by Bruker AXS. The heating rate was 10 ° C per minute and the measurement temperature was 100 ° C to 400 ° C. The polarization polarization of elongation at temperature was taken as the glass transition temperature.
  • APB 1,3-bis (3-aminophenoxy) benzene
  • APB5 1,3-bis (3- (3-aminophenoxy) phenoxy) benzene
  • TPE 1,3-bis (4-aminophenoxy) benzene
  • thermoplastic polyimide precursors Synthesis of thermoplastic polyimide precursors>
  • Tetracarboxylic dianhydride and diamine listed in Table 1 were weighed and dissolved in 630 g of DM Ac in a 1000 ml separable flask under a nitrogen stream. After dissolution, stirring was continued for 6 hours to carry out a polymerization reaction to obtain thermoplastic polyimide precursor varnishes A to D.
  • thermoplastic polyimide precursor ⁇ Synthesis of thermoplastic polyimide precursor>
  • thermoplastic polyimide precursor varnishes E to I The tetracarboxylic dianhydride and diamine described in Table 2 were weighed and dissolved in DMAc 630 g in a 1000 ml separable flask under a nitrogen stream. After dissolution, stirring was continued for 6 hours to carry out a polymerization reaction to obtain thermoplastic polyimide precursor varnishes E to I.
  • each of the polyamic acid varnishes A to D in Synthesis Example 1 was applied as a thermoplastic polyimide layer. And dried. The thickness of the polyimide layer after coating and drying was 13 m. The drying conditions were 100 ° C, 150 ° C, 200 ° C, 250 ° C, 300 ° C, and heat treatment was performed stepwise for 5 minutes each. The stainless steel foil was removed by etching to obtain polyimide single layer films A to D. The dynamic viscoelasticity was measured by the method described above, and the storage elastic modulus at 300 ° C and 350 ° C was calculated. The results are shown in Table 3.
  • thermoplastic polyimide layer On the commercially available copper alloy foil (made by Olin, trade name: C7025, thickness: 18 / zm), as a thermoplastic polyimide layer, each of the A to D polyamic acid varnishes of Synthesis Example 1 was applied and dried. Next, as the non-thermoplastic polyimide, the polyamic acid varnish of Synthesis Example 3 was applied and dried, and further, the A to D polyamic acid varnishes of Synthesis Example 1 were applied and dried, respectively, and single-sided polyimide metal laminate. In addition, a laminate of commercially available stainless steel foil (manufactured by Nippon Steel Co., Ltd., trade name: SUS304H-TA, thickness 20 / zm) is laminated and thermocompression bonded to produce polyimide metal laminates A '' to D '' did.
  • a rebar roll coater was used for the application of the polyamic acid varnish of Synthesis Example 1, and a die coater was used for the application of the polyamic acid varnish of Synthesis Example 3.
  • the thickness of the polyimide layer after coating and drying was 2 m and 11 m, respectively.
  • Heat treatment was performed stepwise for 5 minutes at C.
  • the thermocompression bonding conditions were 300 ° C, 50 kgf / cm 2 , and 1 hour and 30 minutes.
  • a polyamic acid varnish was applied and dried to prepare a double-sided adhesive sheet.
  • a reverse roll coater was used to apply the thermoplastic polyamic acid varnish of Synthesis Example 1, and the total thickness of the polyimide layer after coating and drying was 18 m.
  • the drying conditions were 100 ° C, 150 ° C, 200 ° C, 250 ° C, 300 ° C, and heat treatment was performed stepwise for 5 minutes each.
  • copper alloy foil made by Orin, trade name: C7025 (custom brand), thickness: 18 m
  • stainless steel foil made by Nippon Steel Co., Ltd., trade name: SUS304H-TA, thickness: 20 / X m
  • Example 2 When a polyimide metal laminate of ⁇ 3 is used as a hard disk suspension, a high-productivity and high-quality suspension is produced that does not show wiring separation even after curing of a cover material with good heat resistance of polyimide. It was possible.
  • each of the polyamic acid varnishes of E to I in Synthesis Example 2 was applied as a thermoplastic polyimide layer and dried. Went.
  • the thickness of the polyimide layer after coating and drying was 13 m.
  • the drying conditions were 100 ° C, 150 ° C, 200 ° C, 250 ° C, 300 ° C, and heat treatment was performed stepwise for 5 minutes each.
  • the stainless steel foil was removed by etching to obtain a polyimide single layer film ⁇ , ⁇ ⁇ .
  • the dynamic viscoelasticity was measured by the method described above, and the storage elastic modulus at 300 ° C and 350 ° C was calculated. The results are shown in Table 6.
  • thermoplastic polyimide precursors of E to I in Synthesis Example 2 were used as the thermoplastic polyimide. The results are shown in Table 7.
  • thermoplastic polyimide precursors of E to I in Synthesis Example 2 Except using the thermoplastic polyimide precursors of E to I in Synthesis Example 2 as the thermoplastic polyimide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Supporting Of Heads In Record-Carrier Devices (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

 ポリイミド系樹脂の両側に銅箔及びステンレス箔、もしくは両側にステンレス箔が形成されたポリイミド金属積層体において、ステンレス箔及び銅箔とポリイミド系樹脂との剥離強度が1.0kN/m以上であり、且つポリイミド金属積層体を350°C、60分間の加熱処理を施した後のステンレス箔及び銅箔とポリイミド系樹脂との剥離強度が1.0kN/m以上であり、なお且つ、350°C、60分間の加熱処理後のポリイミド金属積層体膨れ・変形がないことを特徴とするポリイミド金属積層体。                                                                         

Description

明 細 書
ポリイミド金属積層体およびこれを用いたハードディスク用サスペンション 技術分野
[0001] 本発明は、フレキシブル配線基板やハードディスクドライブのワイアレスサスペンショ ン等に広く使用されている、ポリイミド金属積層体およびこれを用いたノヽードディスク 用サスペンションに関するものである。
[0002] 詳しくは、ポリイミドの耐熱性が良好であり、加熱処理後の特性変化が少ないため、 高温での部品アッセンブリーが可能で、且つ超微細加工が可能な、高密度回路基板 材料に適するポリイミド金属積層体及びおよびこれを用いたハードディスク用サスぺ ンシヨンに関するものである。
背景技術
[0003] 現在、ハードディスクドライブの高密度化'高速ィ匕に伴い、ハードディスクドライブ用 サスペンションには、主として銅配線がサスペンション上に直接形成された、いわゆる ワイアレスサスペンションが用いられて 、る。このワイアレスサスペンションの材料とし て、銅合金 Zポリイミド ZSUS304からなるポリイミド金属積層体が広く使用されてい る。
[0004] このようなポリイミド金属積層体を用いて、ワイアレスサスペンションを製造する方法 として、例えば特許文献 1には、銅合金層及び SUS304層に所定のパターンを施し た後、ポリイミド層をプラズマエッチングにより除去しサスペンションをカ卩ェする製造方 法が提案されている。このようなプラズマエッチングを用いる方法で有れば、微細な 形状を有するポリイミドエッチングが容易であり、且つフライングリードの形成が容易 であるため、サスペンションの設計に自由度を持たせられるという利点を持つ。しかし ながら、ポリイミド層の熱的特性や金属積層体の耐熱性には、考慮が払われておらず 、高温での基板'部品との接続や銅配線の保護として必要となるカバーコート材の高 温でのキュアに対し、ポリイミド層の変形や、銅配線の剥離等の問題点があった。
[0005] 前記の耐熱性及び変形を改良するため、ポリイミド層の線湿度膨張係数を 15 X 10" 6Z%RH以下にすることにより試みた例力 特許文献 2に開示されている。線湿度膨 張係数を低く抑えることにより、湿度に対する反り、寸法安定性に一定の効果を得て いるものの、金属と接する高熱膨張性ポリイミド榭脂の熱的安定性に対して検討を加 えておらず、ポリイミド金属積層体としての耐熱性には効果が十分に現れて 、るとは いえないものであった。
特許文献 1:特開平 9 - 293222号公報
特許文献 2 :特表 2001-531582号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明の目的は、上記の問題に鑑み、金属に接するポリイミドの耐熱性を向上し、 また、加熱処理に対し、特性変化を少なくすることにより、ポリイミド金属積層体の加 ェの際に曝される温度変化に対する積層体の物性変化を減少させ、耐熱性に優れ るポリイミド金属積層体およびこれを用いたノヽードディスク用サスペンションを提供す ることにめる。
課題を解決するための手段
[0007] 本発明者らは、鋭意検討の結果、金属に接するポリイミドの熱特性を制御し、且つ 金属にポリイミドを積層する際、ステンレス箔もしくは銅箔に接するポリイミドの物性が 特定のものを用いることによりポリイミド積層体の加熱後の膨れ'変形が抑えられること を見出し、本発明を完成した。
[0008] すなわち、本発明は、
(1)ポリイミド系榭脂の両側に銅箔及びステンレス箔、もしくは両側にステンレス箔が 形成されたポリイミド金属積層体にぉ 、て、ステンレス箔及び銅箔とポリイミド系榭脂 との剥離強度が l.OkN/m以上であり、且つ該ポリイミド金属積層体を 350°C、 60分間 の加熱処理を施した後のステンレス箔及び銅箔とポリイミド系榭脂との剥離強度が 1.0 kN/m以上であり、更に 350°C、 60分間の加熱処理後のポリイミド金属積層体の変形 力 いことを特徴とするポリイミド金属積層体であり、好ましくは、
(2)ステンレス箔もしくは銅箔に接しているポリイミド系榭脂が、ガラス転移温度 180°C 以上であり、かつ 300°Cにおける貯蔵弾性率が 1 X 107Pa〜l X 108Pa、 350°Cにおけ る貯蔵弾性率が 2 X 107Pa〜2 X 108Paであることを特徴とする(1)記載のポリイミド金 属積層体であり、更に好ましくは、
[0009] (3)ステンレス箔もしくは銅箔に接しているポリイミド系榭脂が、ジァミンとテトラカルボ ン酸ニ無水物とを反応させて得られるポリイミドであって、使用するテトラカルボン酸 二無水物が、ピロメリット酸二無水物、 3, 3 ' , 4, 4,-ビフエ-ルテトラカルボン酸二無 水物力 選ばれた少なくとも一種のテトラカルボン酸二無水物と、 3, 3' , 4, 4' -ベン ゾフエノンテトラカルボン酸二無水物を組み合わせたものであり、且つ 3, 3' , 4, 4,- ベンゾフエノンテトラカルボン酸二無水物が使用する全テトラカルボン酸二無水物の 8モル0 /0以上、 20モル%以下であり、更に使用するジァミンとして、 1, 3-ビス (3-アミ ノフエノキシ)ベンゼン、 4, 4,-ビス (3-アミノフエノキシ)ビフエ-ル及び、 1, 3-ビス (3- (3-アミノフエノキシ)フエノキシ)ベンゼン、 2, 2-ビス [4- (4-アミノフエノキシ)フエ-ノレ] プロパン力も選ばれた少なくとも一種のジァミンを含むものである(1)記載のポリイミド 金属積層体、更に
[0010] (4) (1)〜(3)記載のポリイミド金属積層体力 製造されるハードディスク用サスペン シヨンに関するものである。
発明の効果
[0011] 本発明により、ポリイミドの耐熱性が良好であり、加熱処理後の特性変化が少ないた め、高温での部品アッセンブリーが可能で、且つ超微細加工が可能な、高密度回路 基板材料に適するポリイミド金属積層体およびこれを用いたハードディスク用サスぺ ンシヨンが提供できた。
発明を実施するための最良の形態
[0012] 以下に本発明のポリイミド金属積層体およびその製造方法を詳細に説明する。
本発明のポリイミド金属積層体は、ポリイミド榭脂層の両面または片面にステンレス 箔が形成されたものである。具体的な構造としては、ポリイミド系榭脂の両側に銅箔 及びステンレス箔、もしくは両側にステンレス箔が形成されたポリイミド金属積層体で ある。ステンレス箔としては、 SUS304、 SUS301、 SUS305等のオーステナイト系ステンレ スを用いることができる。本発明のポリイミド金属積層体は好適にはサスペンション材 料として用いられるので、パネ特性を有するものを使用することが好ましい。好ましく は、 SUS304、 SUS305が使用できる。さらに好ましくは、 SUS304に硬化処理を施し、さ らにテンションァニール処理を施した SUS304H- TA材を使用できる。
[0013] 本発明のポリイミド金属積層体に用いることができる金属としては、銅箔を用いること ができる。銅箔には、銅を主成分として合金の全重量の 50wt%以上含む銅合金も含 むものとする。銅箔としては、電解銅箔、圧延銅箔の種類を問わず使用することがで きる。銅合金箔としては、 Niとの合金である C7025箔、 Snとの合金である HS1200箔等、 種類を問わず使用することができる。当該積層体はサスペンション材料として好適に 用いられるので、パネ特性を有する銅合金箔を好ましく使用することができる。例え ば、 日本オーリンブラス (株)製の C7025箔、 B52箔、日鉱マテリアルズ (株)製の NK12 0箔、古河電工 (株)製の EFTEC64- T箔を好適に使用できる。
[0014] 当該金属積層体に使用される銅箔は、微細加工を施され、配線として用いられるこ とがあるため、微細配線には銅箔を薄くすることが好ましぐ 18 m〜l mの厚みの ものが好ましくは使用でき、さらに好ましくは、 12 /ζ πι〜1 /ζ πιである。
[0015] 当該積層体に用いるステンレス箔の厚みに特に規定はないが、ハードディスクドラ イブ(以下 HDDと略す)の高記録密度化に伴い、ヘッドをノヽードディスクに可能な限り 近づける必要が出てきている。よって、ヘッドを支えるサスペンション材料には、柔ら 力さが求められており、ステンレス箔にも薄膜ィ匕の要求がある。よって、 20 m〜10 mの厚みが好適に使用され、また、 15 m〜10 mがさらに好適に使用できる。
[0016] 本発明のポリイミド金属積層体のポリイミド系榭脂層の耐熱性は、雰囲気温度 350°C のオーブン中にて 60分加熱したとき、ポリイミド系榭脂中及び Zまたはポリイミド系榭 脂とステンレス箔もしくは銅箔の界面に膨れ、剥がれが発生しない、即ち変形しない ことが必要である。 100 m以上の膨れや剥がれが発生しないことが好ましい。本発 明のポリイミド金属積層体は、フレキシブル配線板やサスペンションに加工され、チッ プゃスライダをポリイミド金属積層体上にアッセンブルする際に、 350°C程度の加熱 雰囲気に曝される可能性がある。その際に膨れ、剥がれが発生しないことが望まれる 力もである。また、近年ポリイミド金属積層体のカバー材としてポリイミドが用いられて いる。ポリイミドのカバー材は、 350°Cでの高温キュアが必要で、ポリイミド金属積層 体もキュアによる高温に曝される。その際にも膨れ等が発生しないことが望まれる。ォ ーブン中の雰囲気には制限はないが、好ましくは不活性ガス雰囲気、例えば窒素、 アルゴン中がよい。作業に安全性が確保されるからである。雰囲気温度とは、ポリイミ ド金属積層体の温度が 350°Cになる温度のことであり、オーブン中の全体の温度が 3 50°Cになっていることは必要としない。オーブン中にて加熱中及び Zまたは加熱後 において、 100 m以上の膨れ、剥がれが発生しないことが好ましいが、ここで膨れ 、剥がれが発生する場所は、ポリイミド系榭脂、ポリイミド系榭脂と金属箔の界面、どち らでも起こる可能性があり、膨れ、剥がれの場所は問わず、剥がれがないことが必要 である。剥がれの大きさは、 100 m未満の大きさであることが好ましぐその範囲で あれば外観上問題ないが、好ましくは、 50 μ m未満、より好ましくは 0. 1 μ m未満で ある。
[0017] 本発明のポリイミド金属積層体において、ステンレス箔及び銅箔とポリイミド系榭脂と の剥離強度が l.OkN/m以上であることが、加工後の配線剥離を防ぐ観点力も好まし い。近年、加工の微細化が進み、 20 m幅程度の微細配線が加工されることが頻繁 にある。この微細配線における信頼性を高めるためには、ステンレス箔と銅箔とポリイ ミド系榭脂との剥離強度がより高い方が好ましぐ 1. 2kNZm以上がより好ましい。な お、剥離強度の測定は、 IPC- TM650、 TypeA Sec2.4.9に準拠し、 3.2mm幅の配線に て実施した値である。
[0018] 本発明のポリイミド金属積層体におけるポリイミド系榭脂層としては、ポリイミド、ポリ アミドイミド等を挙げることができる。好ましくは、ポリイミドである。ポリイミド系榭脂層は
、単層、多層を問わないが、製造が簡便であり、また、特性の制御がしゃすい点から 、 2〜 3層が好ましい。
[0019] ステンレス箔もしくは銅箔と接するポリイミド系榭脂としては、これらの金属と良好な 接着性を確保するために、ガラス転移温度が 180°C以上であることが好ましぐ 180 °C〜300°Cであることがより好ましい。さらに好ましくは、 200°C〜270°Cである。ガラ ス転移温度の測定方法は、通常おこなわれている公知の方法により実施できる。
[0020] ステンレス箔もしくは銅箔と接するポリイミド系榭脂の 300°C〜350°Cの高温領域に おける粘弾性挙動は、当該ポリイミド金属積層体の耐熱特性および加熱後の特性変 化に大きな影響を及ぼすため、高温領域の粘弾性挙動を制御することが重要である 。粘弾性挙動の測定には、市販の動的粘弾性測定装置を使用することができる。例 えば、ティーエイインスツルメンッ社製 DMA Q800、レオメトリックス社製 RSA- 2を用い て測定することができる。
[0021] 上述の高温領域における、動的粘弾性測定装置を用いて測定した貯蔵弾性率の 挙動が、ポリイミド金属積層体の耐熱特性及び加熱後の特性変化の制御に、とりわけ 重要な役割を果たす。 300°Cにおける貯蔵弾性率は、金属との接着性を確保するた めには高温流動性があることが好ましぐ貯蔵弾性率としては小さいほうがより好まし い。しかし、 300°Cにおける貯蔵弾性率が低くなりすぎると、金属とポリイミドを接着す る際にポリイミドの熱変形が大きくなりすぎる等の問題点が生じる可能性がある。また 、ポリイミドは吸水しやすぐ吸水した状態でポリイミド金属積層体を加熱すると吸水に より加熱膨れがポリイミドの中に生じてしまう。これを抑えるためには、ポリイミドの高温 における貯蔵弾性率を一定の値以上に保つようにする必要がある。具体的には 300 °Cにおける飽和水蒸気圧よりも大きな貯蔵弾性率を持つ必要がある。
[0022] 上記の効果を得るために、金属と接するポリイミドの 300°Cにおける貯蔵弾性率とし て、 1 X 107Pa〜l X 108Paであることが好ましぐさらに好ましくは、 7 X 107Pa〜9 X 1 07Paである。
[0023] 本発明のポリイミド金属積層体の用途としては、 HDD用サスペンションが挙げられ る。サスペンション上には銅がエッチングカ卩ェされた配線回路が形成される。この配 線回路を保護するためのカバー材として、近年、ポリイミドを主成分としたカバー材が 、耐熱性、クリーン度の観点から好適に使用されるようになってきた。このポリイミドカ バー材は、ポリイミド金属積層体にカバーコートした後に、 350°C以上の高温キュア が必須の工程として不可欠である。また、サスペンション上に ICやピエゾ素子等の部 品実装を行うことも多くなつている。この実装においても、鉛フリー半田が使用される ようになり、高温での実装が不可欠となっている。これらの理由により金属と接するポ リイミド層の 350°Cにおける耐熱性、すなわち耐熱性に直接影響を及ぼす貯蔵弾性 率に関しても、制御する必要性がある。
[0024] 350°Cにおける貯蔵弾性率は、 350°Cにおける飽和水蒸気圧よりも高いほうが、加 熱膨れを抑える観点力 好ましぐまた、金属との接着性の観点からは貯蔵弾性率が 低い方が好ましい。 350°Cにおけるポリイミドの貯蔵弾性率が高い場合、 350°C、 60 分間の加熱後におけるポリイミドと金属の接着性が劣化し、金属とポリイミドの剥離強 度が 1. OkNZm未満となってしまい好ましくない。具体的には、 350°Cにおけるポリ イミドの貯蔵弾性率は、 2 X 107Pa〜2 X 108Paであることが好ましい。より好ましくは 3 X 107Pa〜l X 108Paである。これらの物性を満たすことのできるポリイミド系榭脂につ いて以下に説明する。
なお、ポリイミド金属積層体を 350°C、 60分間の加熱処理を施した後のステンレス箔 及び銅箔とポリイミド系榭脂との剥離強度は 1. OkNZm以上であることが好ましぐ 1 . 5kNZm以上であることがより好ましい。
[0025] ステンレス箔もしくは銅箔と接するポリイミド系榭脂は、ポリイミドであることが好ましく 、ジァミンとテトラカルボン酸二無水物とを反応させて得られるものであることが好まし い。使用するテトラカルボン酸二無水物としては、ピロメリット酸二無水物、 3,3 ' ,4,4,'- ビフエ-ルテトラカルボン酸二無水物力 選ばれた少なくとも一種のテトラカルボン酸 二無水物と、 3,3' , 4,4,_ベンゾフエノンテトラカルボン酸二無水物を組み合わせたも のであり、該ポリイミドの耐熱性を確保する観点から、分子内および分子間のアミノ基 とィミン架橋反応を起こす酸二無水物である 3,3' , 4,4'-ベンゾフエノンテトラカルボン 酸二無水物を一定の割合で含むことが好ましい。しかし、該酸ニ無水物を用いると耐 熱性が高くなりすぎ、ポリイミドの高温での貯蔵弾性率が大きくなりすぎるという問題 があるため、 3,3' , 4,4'-ベンゾフエノンテトラカルボン酸二無水物は使用するテトラ力 ルボン酸二無水物の 8モル%以上、 20モル%以下のであることが好ましい。さらに好 ましくは、 10モル%以上、 15モル%以下である。また、熱可塑性ポリイミドの特性を損 なわな 、範囲内にお 、てその他の任意の酸二無水物を添加することもできる。
[0026] 前記熱可塑性ポリイミドに使用するジァミンとしては、 1, 3-ビス (3-アミノフエノキシ) ベンゼン、 4, 4,-ビス (3-アミノフエノキシ)ビフエ-ル、 1, 3-ビス (3-(3-ァミノフエノキ シ)フエノキシ)ベンゼン、 2, 2-ビス [4- (4-アミノフエノキシ)フエ-ル]プロパンから選 ばれた少なくとも一種のジァミンを用いることが好ま 、が、ポリイミドの特性を損なわ ない範囲内でその他の任意のジァミンを添加することもできる。
[0027] 前述のポリイミドを製造する場合、ジァミン成分とテトラカルボン酸二無水物の反応 モル比は、 0.75〜1.25の範囲が反応の制御が容易であること、および合成される熱 可塑性ポリイミドの加熱流動性が良好であることから好ましぐ更に好ましくは、 0.90〜 1.10である。このように、原料となる酸二無水物及びジァミンを特定範囲力も選択して 製造されたポリイミド榭脂が本発明で規定する物性を満たすことができる。
[0028] ポリイミドの厚みは、ステンレス箔もしくは銅箔と同様に、薄くすることにより、ポリイミ ド金属積層体が使用される電気機器の小型'軽量化が図れることから、 0. 5〜50 mが好ましぐさらに好ましくは 1〜 10 μ mである。
[0029] ステンレス箔もしくは銅箔に直接、接することのないポリイミド系榭脂層としては、前 述の熱可塑性ポリイミド榭脂の他、市販の非熱可塑性ポリイミドフィルムが利用でき、 ( 株)カネ力社製アビカル (登録商標) NPI、アビカル (登録商標) HP、東レ 'デュポン( 株)社製 Kapton (登録商標) EN等が好ましく用いられる。また、ポリイミド金属積層体 の特性を損なわな 、範囲内で、ジァミンとテトラカルボン酸二無水物を反応させて得 られる任意のポリイミドも利用することができる。
[0030] 使用することのできるジァミンとしては、例えば、 m-フエ-レンジァミン、 0-フエ-レ ンジァミン、 p-フエ-レンジァミン、 m-ァミノベンジルァミン、 p-ァミノベンジルァミン、 ビス(3-アミノフヱ-ル)スルフイド、 (3-アミノフヱ-ル)(4-アミノフヱ-ル)スルフイド、 ビス(4-ァミノフエ-ル)スルフイド、ビス(3-ァミノフエ-ル)スルホキシド、 (3-アミノフ 工 -ル)(4-ァミノフエ-ル)スルホキシド、ビス(3-ァミノフエ-ル)スルホン、 (3-ァミノ フエニル)(4-ァミノフエ-ル)スルホン、ビス(4ァミノフエ-ル)スルホン、 3, 3,-ジアミ ノベンゾフエノン、 3, 4,-ジァミノべンゾフエノン、 4, 4,-ジァミノべンゾフエノン、 3, 3' -ジアミノジフエ二ノレメタン、 3, 4,-ジアミノジフエ二ノレメタン、 4, 4,-ジアミノジフエ二ノレ メタン、 4, 4,-ジアミノジフエ二ルエーテル、 3, 3,-ジアミノジフエ二ルエーテル、 3, 4 ,-ジアミノジフエ-ルエーテル、ビス [4- (3-アミノフエノキシ)フエ-ル]メタン、ビス [4 - (4-ァミノフエ-キシ)フエ-ル]メタン、 1, 1-ビス [4- (3-アミノフエノキシ)フエ-ル] ェタン、 1, 1—ビス [4— (4—アミノフエノキシ)フエ-ル]ェタン、 1, 2—ビス [4— (3—ァミノ フエノキシ)フエ-ル]ェタン、 1, 2-ビス [4- (4-アミノフエノキシ)フエ-ル]ェタン、 2,
2-ビス [4- (3-アミノフエノキシ)フエ-ル]プロパン、 2, 2-ビス [4- (4-アミノフエノキシ )フエ-ル]プロパン、 2, 2-ビス [4- (3-アミノフエノキシ)フエ-ル]ブタン、 2, 2-ビス [
3— (3—アミノフエノキシ)フエ二ノレ]— 1, 1, 1, 3, 3, 3—へキサフノレオロフ。ロノ ン、 2, 2— ビス [4- (4-アミノフエノキシ)フエ-ル]- 1, 1, 1, 3, 3, 3-へキサフルォロプロパン、 1, 3-ビス(3-アミノフエノキシ)ベンゼン、 1, 4-ビス(3-アミノフエノキシ)ベンゼン、 1 , 4,-ビス(4-アミノフエノキシ)ベンゼン、 4, 4,-ビス(3-アミノフエノキシ)ビフエ-ル、 4, 4,-ビス(4-アミノフエノキシ)ビフエ-ル、ビス [4- (3-アミノフエノキシ)フエ-ル]ケ トン、ビス [4- (4-アミノフエノキシ)フエ-ル]ケトン、ビス [4- (3-アミノフエノキシ)フエ -ル]スルフイド、ビス [4- (4-アミノフエノキシ)フエ-ル]スルフイド、ビス [4- (3-ァミノ フエノキシ)フエ-ル]スルホキシド、ビス [4- (アミノフエノキシ)フエ-ル]スルホキシド 、ビス [4- (3-アミノフエノキシ)フエ-ル]スルホン、ビス [4- (4-アミノフエノキシ)フエ- ル]スルホン、ビス [4- (3-アミノフエノキシ)フエ-ル]エーテル、
ビス [4- (4-アミノフエノキシ)フエ-ル]エーテル、 1, 4-ビス [4- (3-アミノフエノキシ) ベンゾィル]ベンゼン、 1, 3-ビス [4- (3-アミノフエノキシ)ベンゾィル]ベンゼン、 4, 4 ,-ビス [3- (4-アミノフエノキシ)ベンゾィル]ジフエ-ルエーテル、 4, 4,-ビス [3- (3- アミノフエノキシ)ベンゾィル]ジフエ-ルエーテル、 4, 4, -ビス [4- (4-ァミノ- α , α - ジメチルベンジル)フエノキシ]ベンゾフエノン、 4, 4' -ビス [4- (4-ァミノ- at , a -ジメ チルベンジル)フエノキシ]ジフエ-ルスルホン、ビス [4- {4- (4-アミノフエノキシ)フエ ノキシ }フエ-ル]スルホン、 1, 4-ビス [4- (4-アミノフエノキシ) -α, α-ジメチルベン ジル]ベンゼン、 1, 3-ビス [4- (4-アミノフエノキシ) -α, α-ジメチルベンジル]ベン ゼン、 1, 3-ビス(3- (4-アミノフエノキシ)フエノキシ)ベンゼン、 1, 3-ビス(3- (2-アミ ノフエノキシ)フエノキシ)ベンゼン、 1, 3-ビス(4- (2-アミノフエノキシ)フエノキシ)ベン ゼン、 1, 3-ビス(2- (2-アミノフエノキシ)フエノキシ)ベンゼン、 1, 3-ビス(2- (3-アミ ノフエノキシ)フエノキシ)ベンゼン、 1, 3-ビス(2- (4-アミノフエノキシ)フエノキシ)ベン ゼン、 1, 4-ビス(3- (3-アミノフエノキシ)フエノキシ)ベンゼン、 1, 4-ビス(3- (4-アミ ノフエノキシ)フエノキシ)ベンゼン、 1, 4-ビス(3- (2-アミノフエノキシ)フエノキシ)ベン ゼン、 1, 4-ビス(4- (2-アミノフエノキシ)フエノキシ)ベンゼン、 1, 4-ビス(2- (2-アミ ノフエノキシ)フエノキシ)ベンゼン、 1, 4-ビス(2- (3-アミノフエノキシ)フエノキシ)ベン ゼン、 1, 4-ビス(2- (4-アミノフエノキシ)フエノキシ)ベンゼン、 1, 2-ビス(3- (3-アミ ノフエノキシ)フエノキシ)ベンゼン、 1, 2-ビス(3- (4-アミノフエノキシ)フエノキシ)ベン ゼン、 1, 2-ビス(3- (2-アミノフエノキシ)フエノキシ)ベンゼン、 1, 2-ビス(4- (4-アミ ノフエノキシ)フエノキシ)ベンゼン、 1, 2-ビス(4- (3-アミノフエノキシ)フエノキシ)ベン ゼン、 1, 2-ビス(4- (2-アミノフエノキシ)フエノキシ)ベンゼン、 1, 2-ビス(2- (2-アミ ノフエノキシ)フエノキシ)ベンゼン、 1, 2-ビス(2- (3-アミノフエノキシ)フエノキシ)ベン ゼン、 1, 2-ビス(2- (4-アミノフエノキシ)フエノキシ)ベンゼン、 1, 3-ビス(3- (3-アミ ノフエノキシ)フエノキシ)-2-メチルベンゼン、 1, 3-ビス(3- (4-アミノフエノキシ)フエ ノキシ)-4-メチルベンゼン、 1, 3-ビス(4- (3-アミノフエノキシ)フエノキシ)-2-ェチル ベンゼン、 1, 3-ビス(3- (2-アミノフエノキシ)フエノキシ)-5-sec-ブチルベンゼン、 [0032] 1, 3-ビス(4- (3-アミノフエノキシ)フエノキシ)-2, 5-ジメチルベンゼン、 1, 3-ビス(4 - (2-ァミノ- 6-メチルフエノキシ)フエノキシ)ベンゼン、 1, 3-ビス(2- (2-ァミノ- 6-ェ チルフエノキシ)フエノキシ)ベンゼン、 1, 3-ビス(2- (3-アミノフエノキシ) -4-メチルフ エノキシ)ベンゼン、 1 , 3-ビス(2- (4-アミノフエノキシ) - 4-tert-ブチルフエノキシ)ベ ンゼン、 1, 4-ビス(3- (3-アミノフエノキシ)フエノキシ)-2, 5-ジ -tert-ブチルベンゼ ン、 1, 4-ビス(3- (4-アミノフエノキシ)フエノキシ)-2, 3-ジメチルベンゼン、 1, 4-ビ ス(3- (2-ァミノ- 3-プロピルフエノキシ)フエノキシ)ベンゼン、 1, 2-ビス(3- (3-ァミノ フエノキシ)フエノキシ)-4-メチルベンゼン、 1, 2-ビス(3- (4-アミノフエノキシ)フエノ キシ) -3-n-ブチルベンゼン、 1 , 2-ビス(3- (2-ァミノ- 3-プロピルフエノキシ)フエノキ シ)ベンゼンビス(3-ァミノプロピル)テトラメチルジシロキサン、ビス(10-アミノデカメ チレン)テトラメチルジシロキサン、ビス(3-アミノフエノキシメチル)テトラメチルジシロ キサン等が挙げられる。これらは単独あるいは 2種以上混合して、用いることができる
[0033] 使用できる酸二無水物としては、例えばピロメリット酸二無水物、 3-フルォロピロメリ ット酸二無水物、 3, 6-ジフルォロピロメリット酸ニ無水物、 3, 6-ビス(トリフルォロメチ ル)ピロメリット酸二無水物、 1, 2, 3, 4-ベンゼンテトラカルボン酸二無水物、 2, 2' , 3, 3,-ベンゾフエノンテトラカルボン酸二無水物、 3, 3,, 4, 4,-ビフエ-ルテトラカル ボン酸二無水物、 3, 3 " , 4, 4,,-テルフエ-ルテトラカルボン酸二無水物、 3, 3,,, , 4, 4",-クァテルフエ-ルテトラカルボン酸二無水物、 3, 3 " " , 4, 4" ',-キン クフエ-ルテトラカルボン酸二無水物、 2, 2' , 3, 3,_ビフエ-ルテトラカルボン酸二 無水物、メチレン- 4, 4,-ジフタル酸二無水物、 1, 1-ェチ-リデン -4, 4,-ジフタル 酸二無水物、 2, 2-プロピリデン- 4, 4,-ジフタル酸二無水物、 1, 2-エチレン- 4, 4, -ジフタル酸二無水物、 1, 3-トリメチレン- 4, 4,-ジフタル酸二無水物、 1, 4-テトラメ チレン- 4, 4,-ジフタル酸二無水物、 1, 5-ペンタメチレン- 4, 4,-ジフタル酸二無水 物、 2, 2-ビス(3, 4-ジカルボキシフエ-ル)- 1, 1, 1, 3, 3, 3-へキサフルォロプロ パンニ無水物、ジフルォロメチレン- 4, 4,-ジフタル酸二無水物、 1, 1, 2, 2-テトラフ ルォ口- 1, 2-エチレン- 4, 4,-ジフタル酸二無水物、 1, 1, 2, 2, 3, 3-へキサフルォ 口- 1, 3-トリメチレン- 4, 4,-ジフタル酸二無水物、 1, 1, 2, 2, 3, 3, 4, 4 -オタタフ ルォ口- 1, 4-テ卜ラメチレン- 4, 4,-ジフタル酸二無水物、 1, 1, 2, 2, 3, 3, 4, 4, 5 , 5-デカフルォロ- 1, 5-ペンタメチレン- 4, 4,-ジフタル酸二無水物、ォキシ -4, 4,- ジフタル酸二無水物、チォ- 4, 4,-ジフタル酸二無水物、スルホニル- 4, 4,-ジフタ ル酸ニ無水物、 1, 3-ビス(3, 4-ジカルボキシフエ-ル) -1, 1, 3, 3-テトラメチルシ ロキサン二無水物、 1, 3-ビス(3, 4-ジカルボキシフエ-ル)ベンゼン二無水物、 1, 4 -ビス(3, 4-ジカルボキシフエ-ル)ベンゼン二無水物、 1, 3-ビス(3, 4-ジカルボキ シフエノキシ)ベンゼン二無水物、 1, 4-ビス(3, 4-ジカルボキシフエノキシ)ベンゼン 二無水物、 1, 3-ビス〔2- (3, 4-ジカルボキシフエ-ル) -2-プロピル〕ベンゼン二無 水物、
1, 4-ビス [2- (3, 4-ジカルボキシフエ-ル) -2-プロピル〕ベンゼン二無水物、ビス〔3 - (3, 4-ジカルボキシフエノキシ)フエ-ル〕メタン二無水物、ビス〔4-(3, 4-ジカルボ キシフエノキシ)フエ-ル〕メタン-無水物、 2, 2-ビス〔3-(3, 4-ジカルボキシフエノキ シ)フエニル〕プロパン二無水物、 2, 2-ビス〔4- (3, 4-ジカルボキシフエノキシ)フエ- ル〕プロパン二無水物、 2, 2-ビス〔3- (3, 4-ジカルボキシフエノキシ)フエ-ル〕 -1, 1 , 1, 3, 3, 3-へキサフルォロプロパン二無水物、 2, 2-ビス〔4- (3, 4-ジカルボキシ フエノキシ)フエ-ル〕プロパン二無水物、ビス(3, 4-ジカルボキシフエノキシ)ジメチ ルシラン二無水物、 1, 3-ビス(3, 4-ジカルボキシフエノキシ) -1, 1, 3, 3-テトラメチ ルジシロキサン二無水物、 2, 3, 6, 7-ナフタレンテトラカルボン酸二無水物、 1, 2, 5 , 6-ナフタレンテトラカルボン酸二無水物、 3, 4, 9, 10-ペリレンテトラカルボン酸二 無水物、 2, 3, 6, 7-アントラセンテトラカルボン酸二無水物、 1, 2, 7, 8-フエナント レンテトラカルボン酸二無水物、 1, 2, 3, 4-ブタンテトラカルボン酸二無水物、 1, 2, 3, 4-シクロブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水 物、シクロへキサン- 1, 2, 3, 4-テトラカルボン酸二無水物、シクロへキサン- 1, 2, 4 , 5-テトラカルボン酸二無水物、 3, 3' , 4, 4,-ビシクロへキシルテトラカルボン酸二 無水物、カルボ-ル- 4, 4,-ビス(シクロへキサン- 1, 2-ジカルボン酸)二無水物、メ チレン- 4, 4,-ビス(シクロへキサン- 1, 2-ジカルボン酸)二無水物、 1, 2-エチレン-
4, 4,-ビス(シクロへキサン- 1, 2-ジカルボン酸)二無水物、 1, 1-ェチ-リデン -4, 4 ,-ビス(シクロへキサン- 1, 2-ジカルボン酸)二無水物、 2, 2-プロピリデン- 4, 4,-ビ ス(シクロへキサン- 1, 2-ジカルボン酸)二無水物、 1, 1, 1, 3, 3, 3-へキサフルォ 口- 2, 2-プロピリデン- 4, 4,-ビス(シクロへキサン- 1, 2-ジカルボン酸)二無水物、 ォキシ -4, 4,-ビス(シクロへキサン- 1, 2-ジカルボン酸)二無水物、チォ- 4, 4,-ビ ス(シクロへキサン- 1, 2-ジカルボン酸)二無水物、スルホ -ル- 4, 4,-ビス(シクロへ キサン- 1, 2-ジカルボン酸)二無水物、 2, 2,-ジフルォロ- 3, 3, , 4, 4,-ビフエ-ル テトラカルボン酸二無水物、 5, 5,-ジフルォロ- 3, 3,, 4, 4,-ビフエ-ルテトラカルボ ン酸ニ無水物、 6, 6,-ジフルォロ- 3, 3,, 4, 4,-ビフエ-ルテトラカルボン酸二無水 物、 2, 2, , 5, 5, , 6, 6,-へキサフルォロ- 3, 3' , 4, 4,-ビフエ-ルテトラカルボン 酸二無水物、 2, 2,-ビス(トリフルォロメチル) -3, 3,, 4, 4,-ビフエ-ルテトラカルボ ン酸ニ無水物、 5, 5,-ビス(トリフルォロメチル) -3, 3,, 4, 4,-ビフエ-ルテトラカル ボン酸二無水物、 6, 6,-ビス(トリフルォロメチル) -3, 3,, 4, 4,-ビフエ-ルテトラ力 ルボン酸二無水物、 2, 2' , 5, 5,-テトラキス(トリフルォロメチル) -3, 3' , 4, 4,-ビフ ェ -ルテトラカルボン酸二無水物、 2, 2,, 6, 6,-テトラキス(トリフルォロメチル) -3, 3' , 4, 4,-ビフエ-ルテトラカルボン酸二無水物、 5, 5,, 6, 6,-テトラキス(トリフル ォロメチル) -3, 3' , 4, 4,-ビフエ-ルテ卜ラカルボン酸二無水物、 2, 2' , 5, 5' , 6, 6,-へキサキス(トリフルォロメチル) -3, 3,, 4, 4,-ビフエ-ルテトラカルボン酸二無 水物、 3, 3,-ジフルォロォキシ- 4, 4,-ジフタル酸二無水物、
5, 5,-ジフルォロォキシ- 4, 4,-ジフタル酸二無水物、 6, 6,-ジフルォロォキシ- 4, 4,-ジフタル酸二無水物、 3, 3,, 5, 5,, 6, 6,-へキサフルォロォキシ- 4, 4,-ジフタ ル酸ニ無水物、 3, 3,-ビス(トリフルォロメチル)ォキシ -4, 4,-ジフタル酸二無水物、
5, 5,-ビス(トリフルォロメチル)ォキシ -4, 4,-ジフタル酸二無水物、 6, 6,-ビス(トリ フルォロメチル)ォキシ -4, 4,-ジフタル酸二無水物、 3, 3,, 5, 5 テトラキス(トリフ ルォロメチル)ォキシ -4, 4,-ジフタル酸二無水物、 3, 3,, 6, 6 テトラキス(トリフル ォロメチル)ォキシ -4, 4,-ジフタル酸二無水物、 5, 5,, 6, 6,-テトラキス(トリフルォ ロメチル)ォキシ -4, 4,-ジフタル酸二無水物、 3, 3,, 5, 5,, 6, 6,-へキサキス(トリ フルォロメチル)ォキシ -4, 4,-ジフタル酸二無水物、 3, 3,-ジフルォロスルホ-ル- 4, 4,-ジフタル酸二無水物、 5, 5,-ジフルォロスルホ -ル- 4, 4,-ジフタル酸二無水 物、 6, 6,-ジフルォロスルホ -ル- 4, 4,-ジフタル酸二無水物、 3, 3,, 5, 5,, 6, 6, -へキサフルォロスルホ -ル- 4, 4,-ジフタル酸二無水物、 3, 3,-ビス(トリフルォロメ チル)スルホ -ル- 4, 4,-ジフタル酸二無水物、 5, 5,-ビス(トリフルォロメチル)スル ホ-ル -4, 4,-ジフタル酸二無水物、 6, 6,-ビス(トリフルォロメチル)スルホ -ル- 4, 4,-ジフタル酸二無水物、 3, 3,, 5, 5,-テトラキス(トリフルォロメチル)スルホ -ル- 4 , 4,-ジフタル酸二無水物、 3, 3,, 6, 6,-テトラキス(トリフルォロメチル)スルホ-ル- 4, 4,-ジフタル酸二無水物、 5, 5,, 6, 6,-テトラキス(トリフルォロメチル)スルホ-ル -4, 4,-ジフタル酸二無水物、 3, 3,, 5, 5,, 6, 6,-へキサキス(トリフルォロメチル) スルホ -ル- 4, 4,-ジフタル酸二無水物、 3, 3,-ジフルォロ- 2, 2-パーフルォロプロ ピリデン- 4, 4,-ジフタル酸二無水物、 5, 5,-ジフルォロ- 2, 2-パーフルォロプロピリ デン- 4, 4,-ジフタル酸二無水物、 6, 6,-ジフルォロ- 2, 2-パーフルォロプロピリデ ン- 4, 4,-ジフタル酸二無水物、 3, 3,, 5, 5,, 6, 6,-へキサフルォロ- 2, 2-パーフ ルォロプロピリデン- 4, 4,-ジフタル酸二無水物、 3, 3,-ビス(トリフルォロメチル) -2 , 2-パーフルォロプロピリデン- 4, 4,-ジフタル酸二無水物、 5, 5,-ビス(トリフルォロ メチル)-2, 2-パーフルォロプロピリデン- 4, 4,-ジフタル酸二無水物、 6, 6,-ジフル ォロ- 2, 2-パーフルォロプロピリデン- 4, 4,-ジフタル酸二無水物、 3, 3,, 5, 5,-テ トラキス(トリフルォロメチル) -2, 2-パーフルォロプロピリデン- 4, 4,-ジフタル酸二無 水物、 3, 3,, 6, 6,-テトラキス(トリフルォロメチル) -2, 2-パーフルォロプロピリデン- 4, 4,-ジフタル酸二無水物、 5, 5,, 6, 6,-テトラキス(トリフルォロメチル) -2, 2-パ 一フルォロプロピリデン- 4, 4,-ジフタル酸二無水物、 3, 3,, 5, 5,, 6, 6,-へキサキ ス(トリフルォロメチル) -2, 2-パーフルォロプロピリデン- 4, 4,-ジフタル酸二無水物 、 9-フエ-ル -9- (トリフルォロメチル)キサンテン- 2, 3, 6, 7-テトラカルボン酸二無 水物、 9, 9-ビス(トリフルォロメチル)キサンテン- 2, 3, 6, 7-テトラカルボン酸二無水 物、ビシクロ〔2, 2, 2〕ォクト -7-ェン- 2, 3, 5, 6-テトラカルボン酸二無水物、 9, 9- ビス〔4- (3, 4-ジカルボキシ)フエ-ル〕フルオレン二無水物、 9, 9-ビス〔4- (2, 3-ジ カルボキシ)フエ-ル〕フルオレン二無水物等が挙げられる。これらは単独あるいは 2 種以上混合して、使用することができる。
[0036] 上記ポリイミド系榭脂の合成は、一般的には N-メチルピロリドン (NMP)、メチルホ ルムアミド(DMF)、ジメチルァセトアミド(DMAc)、ジメチルスルフオキサイド(DMS O)、硫酸ジメチル、スルフォラン、ブチロラタトン、クレゾール、フエノール、ハロゲン化 フエノール、シクロへキサン、ジ才キサン、テトラヒドロフラン、ジグライム、トリグライムな どの溶媒中にぉ 、て、上記テトラカルボン酸二無水物と上記ジァミンを所定の割合で 混合し、反応温度 0°C〜100°Cの範囲内で反応させることにより、ポリイミド系榭脂の 前駆体溶液が得られ、さらに、この溶液を 200°C〜500°Cの高温雰囲気で熱処理し て、イミドィ匕することによりポリイミド系榭脂が得られる。
[0037] 本発明のポリイミド金属積層体は、ポリイミド系榭脂と金属箔とを加熱圧着することに より製造することができる。ポリイミド系榭脂と金属箔とを加熱圧着する方法について 述べる。加熱圧着する方法について特に制限はない。但し、ポリイミド系榭脂と金属 箔を加熱圧着する前に、ポリイミドの吸湿率を 0. 1%ZRH以下に乾燥することが好ま しい。吸湿したまま加熱圧着をするとポリイミド中に水分が含まれた状態で金属積層 体となるため、加熱膨れがポリイミドの中に発生しやすくなるという問題点がある。吸 湿率を 0.1%RH以下にしておけば、加熱膨れが発生しなくなり、特性が安定化する。
[0038] 加熱圧着前にポリイミドを乾燥させる方法としては、特に制限は無いが、 80°C以上 に加熱したオーブン中に長時間、例えば、 10時間以上、ポリイミドを放置し、乾燥さ せる方法が挙げられる。また、 IRヒーターや、加熱ロールによりポリイミドを乾燥させる 方法もある。吸湿率の測定は、カールフィッシャー法による測定や、熱重量減少法に よる柳』定で行うことができる。
[0039] 加熱圧着する方法としては、例えば、代表的方法として、加熱プレス法及び Z又は 熱ラミネート法が挙げられる。加熱プレス法としては、例えば、ポリイミド系榭脂と金属 箔をプレス機の所定のサイズに切りだし、重ね合わせを行な 、加熱プレスにより加熱 圧着することにより製造できる。加熱温度としては、 150〜600°Cの温度範囲が望まし い。加圧力としては、制限は無いが、好ましくは 0.1〜5OOkgZcm2で製造できる。カロ 圧時間としては、特に制限はない。
[0040] 熱ラミネート方法としては、特に制限は無いが、ロールとロール間に挟み込み、張り 合わせを行なう方法が好ましい。ロールは金属ロール、ゴムロール等が利用できる。 材質に制限はないが、金属ロールとしては、鋼材やステンレス材料が使用される。表 面にクロムメツキ等が処理されたロールを使用することが好まし 、。ゴムロールとして は、金属ロールの表面に耐熱性のあるシリコンゴム、フッ素系のゴムを使用することが 好ましい。ラミネート温度としては、 100〜300°Cの温度範囲が好ましい。加熱方式は、 伝導加熱方式の他、遠赤外等の輻射加熱方式、誘導加熱方式等も利用できる。
[0041] 熱ラミネート後、加熱ァニールすることも好ま 、。加熱装置として、通常の加熱炉、 オートクレープ等が利用できる。加熱雰囲気として、空気、イナートガス(窒素、ァルゴ ン)等が利用できる。加熱方法としては、フィルムを連続的に加熱する方法またはフィ ルムをコアに卷 、た状態で加熱炉に放置する方法のどちらの方法も好まし 、。加熱 方式としては、伝導加熱方式、輻射加熱方式、及び、これらの併用方式等が好ましい 。加熱温度は、 200〜600°Cの温度範囲が好ましい。加熱時間は、 0.05〜5000分の 時間範囲が好ましい。
[0042] また、本発明のポリイミド金属積層体は、ポリイミド系榭脂の前駆体ワニスを金属箔 に塗布した後、乾燥することにより製造することができる。金属箔上に熱可塑性ポリイ ミドの溶液、または、該熱可塑性ポリイミドの前駆体であるポリアミック酸溶液 (以下、こ れらを総称してワニスという)を直接塗布 ·乾燥することにより製造することが出来る。 ワニスは、前記の特定のジァミンとテトラカルボン酸二無水物を溶媒中で重合して得 られた溶液である。
[0043] 金属箔上に直接塗布する方法としては、ダイコーター、コンマコーター、ロールコー ター、グラビアコーター、カーテンコーター、スプレーコーター等の公知の方法が採 用できる。塗布する厚み、ワニスの粘度等に応じて適宜利用できる。
[0044] 塗布したワニスを乾燥'キュアする方法は、通常の加熱乾燥炉が利用できる。乾燥 炉の雰囲気としては、空気、イナートガス(窒素、アルゴン)等が利用できる。乾燥の 温度としては、溶媒の沸点により適宜選択する力 60〜600°Cの温度範囲が好適に 利用される。乾燥の時間は、厚み、濃度、溶媒の種類により適宜選択するが 0.05〜5 00分程度で行なうのが望ま U、。
[0045] 本発明によれば、耐熱性に優れたポリイミド金属積層体が得られる。そのため、本 発明のポリイミド金属積層体は、特にハードディスク用サスペンションとして好適に使 用される。
<実施例 >
[0046] 以下、実施例及び比較例に基づき、本発明を更に具体的に説明する。なお、実施 例における各種特性の評価は以下の方法による。
[加熱膨れ'変形の評価]
金属箔上にポリイミド系榭脂層を形成し、ポリイミド金属積層体を作成した。次いで、 雰囲気温度が 350°Cとなって!/、るイナートオーブン (株式会社エスペック社製)中に導 入し、 60分間放置した。その後、当該ポリイミド金属積層体をイナートオーブン力 取 りだし、室温まで冷却した後、片面の金属箔をエッチングにより除去し、ポリイミド系榭 脂の表面から、 100倍の実体顕微鏡にて膨れ及び剥がれが発生して 、な 、か (変形 していないか)確認を行なった。また、剥がれが存在していた場合、剥がれの大きさを 測定し、 100 m以上のものがあった場合には、不合格、 100 m以上のものがなか つた場合は、合格と判定した。
[0047] [剥離強度の測定]
IPC- TM- 650、 TypeA Sec2.4.9に準拠した方法にて測定を行った。加熱後のピール 強度 (剥離強度)は、剥離強度試験片を作成した後に、試験片を 350°Cに加熱したィ ナートオーブン中に 60分間放置し、その後、室温まで試験片を冷却した後、測定を 行った。
[貯蔵弾性率の測定]
レオメトリックス社製 RSA-2を用い、引張りモードで測定を行った。昇温速度は毎分 3°C、測定温度は 100°C〜400°C、印加周波数は 1Hzで行った。粘弾性解析を行い、 300°C、 350°Cにおける貯蔵弾性率を算出した。
[ガラス転移温度の測定法] ブルカーエイエックスエス社製、 TMA-4000を用い、引張りモードで測定を行った。 昇温速度は毎分 10°C、測定温度は 100°C〜400°Cで行った。温度における伸びの偏 極点をガラス転移温度とした。
[0048] また、実施例等に用いた溶剤、酸二無水物、ジァミンの略称は以下の通りである。
DMAc :N, N,-ジメチルァセトアミド
NMP: N-メチル -2-ピロリドン
PPD: p-フエ-レンジァミン
ODA:4, 4,-ジアミノジフエ二ルエーテル
m-BP :4, 4, -ビス(3-アミノフエノキシ)ビフエ-ノレ
APB: 1, 3-ビス(3-アミノフエノキシ)ベンゼン
APB5: 1 , 3—ビス (3- (3-アミノフエノキシ)フエノキシ)ベンゼン
DABP : 3, 3,-ジァミノべンゾフエノン
TPE: 1 , 3-ビス(4-アミノフエノキシ)ベンゼン
p-BAPP: 2, 2—ビス [4- (4-アミノフエノキシ)フエ-ノレ]プロパン
BTDA: 3, 3,, 4, 4,-ベンゾフエノンテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
BPDA: 3, 3,, 4, 4,-ビフエ-ルテトラカルボン酸二無水物
[0049] 合成例 1
く熱可塑性ポリイミド前駆体の合成〉
表 1に記載したテトラカルボン酸二無水物及びジァミンを秤量し、 1000mlのセパラブ ルフラスコの中で DMAc630gに窒素気流下にて溶解させた。溶解後、 6時間攪拌を続 けて重合反応を行な 、、熱可塑性ポリイミド前駆体ワニス A〜Dを得た。
[0050] [表 1]
Figure imgf000019_0001
[0051] 合成例 2
〈熱可塑性ポリイミド前駆体の合成〉
表 2に記載したテトラカルボン酸二無水物及びジァミンを秤量し、 1000mlのセパラブ ルフラスコの中で DMAc630gに窒素気流下にて溶解させた。溶解後、 6時間攪拌を続 けて重合反応を行ない、熱可塑性ポリイミド前駆体ワニス E〜Iを得た。
[0052] [表 2]
Figure imgf000019_0002
合成例 3
<非熱可塑性ポリイミド前駆体の合成 >
ジァミン成分として PPDを 7. 7モル、 ODAを 1. 15^/V, m-BP^l. 15モル秤量 した。テトラカルボン酸成分として、 BPDAを 5. 4モル、 PMDAを 4. 45モル秤量した 。 DMAcと NMP混合溶媒に溶解し混合した。溶媒の比率は、前者 23重量%、後者 77 重量0 /。であった。得られたポリアミック酸ワニスの粘度は E型粘度計にて 25°Cにお ヽ て 30000cpsであり、塗工に適したものであった。
実施例 1
[0054] <ポリイミド単層フィルムの評価 >
市販のステンレス箔 (新日鐡 (株)社製、商品名: SUS304H- TA、厚み: 20 m)上 に、熱可塑性ポリイミド層として、合成例 1の A〜Dのポリアミック酸ワニスをそれぞれ 塗布し、乾燥を行った。塗布 ·乾燥後のポリイミド層の厚みは 13 mであった。尚、乾 燥条件は 100°C、 150°C、 200°C、 250°C、 300°Cで各 5分間段階的に熱処理を行 なった。ステンレス箔をエッチングにより除去し、ポリイミド単層フィルム A,〜D,を得た 。前述の方法にて動的粘弾性の測定を実施、 300°C、 350°Cにおける貯蔵弾性率を 算出した。結果を表 3に示す。
[0055] [表 3]
Figure imgf000020_0001
実施例 2
[0056] くポリイミド金属積層体の製造〉
市販の銅合金箔 (オーリン社製、商品名: C7025、厚み :18 /z m)上に、熱可塑性 ポリイミド層として、合成例 1の A〜Dのポリアミック酸ワニスをそれぞれ塗布し、乾燥を 行い、次いで、非熱可塑性ポリイミドとして、合成例 3のポリアミック酸ワニスを塗布、 乾燥を行ない、さらに、合成例 1の A〜Dのポリアミック酸ワニスをそれぞれ塗布し、乾 燥を行い、片面ポリイミド金属積層体を得、さらに市販のステンレス箔 (新日鐡社製、 商品名 SUS304H- TA、厚み 20 /z m)を積層し、熱圧着を行うことにより、ポリイミド 金属積層体 A' '〜D' 'を作製した。合成例 1のポリアミック酸ワニスの塗布には、リバ 一スロールコーターを使用し、合成例 3のポリアミック酸ワニスの塗布には、ダイコータ 一を使用した。塗布'乾燥後のポリイミド層の厚みはそれぞれ 2 m、 11 mであった 尚、乾燥条件は 100。C、 150。C、 200。C、 250°C, 300。C、 350。Cで各 5分間段階的 に熱処理を行なった。熱圧着の条件は、 300°C、 50kgf/cm2、 1時間 30分であった。 [0057] くポリイミド金属積層体の評価〉
得られたポリイミド金属積層体を用いて、加熱膨れ'変形、ピール強度 (剥離強度) 及び 350°C、 60分間加熱後のピール強度 (剥離強度)を前述のように測定した。結 果を表 4に示す。
[0058] [表 4]
Figure imgf000021_0001
実施例 3
[0059] く両面接着シートの製造〉
非熱可塑性ポリイミド層として、市販のポリイミドフィルム((株)カネ力製、商品名:ァ ピカル(登録商標) 12. 5NPI、厚み: 12. 5 μ πι)の両面に合成例 1の A〜Dのポリアミ ック酸ワニスを塗布.乾燥し、両面接着シートを作製した。合成例 1の熱可塑性ポリア ミック酸ワニスの塗布には、リバースロールコーターを使用し、塗布'乾燥後のポリイミ ド層の総厚みは 18 mであった。尚、乾燥条件は 100°C、 150°C、 200°C、 250°C、 300°Cで各 5分間段階的に熱処理を行なった。
〈熱プレスの実施〉
金属として、銅合金箔 (オーリン社製、商品名: C7025 (特注銘柄)、厚み: 18 m) とステンレス箔 (新日鐡株式会社製,商品名: SUS304H-TA、厚み: 20 /X m)を使用し た。両面接着シートに C7025と SUS304H-TA箔を各々重ね合わせたものをクッシ ヨン材 (金陽株式会社製、商品名:キンョーボード F200)ではさみ、加熱プレス機で 2 50°C、 70kgZcm2の条件下で、 60分間加熱圧着して、 SUS304H-TAZ熱可塑 性ポリイミド Z非熱可塑性ポリイミド Z熱可塑性ポリイミド ZC7025の 5層力もなるポリ イミド金属積層体 A, "〜! ' 'を作製した。
[0060] 〈ポリイミド金属積層体の評価〉
得られたポリイミド金属積層体を用いて、加熱膨れ'変形、ピール強度及び 350°C、 60分間加熱後のピール強度を前述のように測定した。結果を表 5に示す。実施例 2 〜3のポリイミド金属積層体をハードディスク用サスペンションとしてカ卩ェした場合、ポ リイミドの耐熱性が良ぐカバー材のキュア後においても配線剥離が見られない、高 生産性 ·高品質のサスペンションを製造可能であった。
[表 5]
Figure imgf000022_0001
[0062] 比較例 1
<ポリイミド単層フィルムの評価〉
市販のステンレス箔 (新日鐡社製、商品名: SUS304H-TA、厚み: 20 μ m)上に、 熱可塑性ポリイミド層として、合成例 2の E〜Iのポリアミック酸ワニスをそれぞれ塗布し 、乾燥を行った。塗布'乾燥後のポリイミド層の厚みは 13 mであった。尚、乾燥条 件は 100°C、 150°C、 200°C、 250°C、 300°Cで各 5分間段階的に熱処理を行なつ た。ステンレス箔をエッチングにより除去し、ポリイミド単層フィルム Ε,〜Γを得た。前 述の方法にて動的粘弾性の測定を実施、 300°C、 350°Cにおける貯蔵弾性率を算出 した。結果を表 6に示す。
[0063] [表 6]
Figure imgf000022_0002
[0064] 比較例 2
くポリイミド金属積層体の製造及び評価〉
熱可塑性ポリイミドとして合成例 2の E〜Iの熱可塑性ポリイミド前駆体を用いた以外、 実施例 2と同様の方法で、ポリイミド金属積層体 Ε' '〜Γ 'を製造し、評価を行なった。 結果を表 7に示す。
[0065] [表 7] E" F" G" H" Γ
加熱膨れ,変形 不合格 合格 不合格 合格 合格 ピール強度(kN/m) 1.5 1.2 1.4 0.7 0.8 加熱ピール強度(kN/m) 2.1 0.5 1.9 0.7 1.3
[0066] 比較例 3
〈ポリイミド金属積層体の製造及び評価〉
熱可塑性ポリイミドとして合成例 2の E〜Iの熱可塑性ポリイミド前駆体を用いた以外
、実施例 3と同様の方法で、ポリイミド金属積層体 E' ' '〜Γ ' 'を製造し、評価を行なつ た。結果を表 8に示す。
[0067] [表 8]
Figure imgf000023_0001
[0068] 比較例 2〜3のポリイミド金属積層体をハードディスク用サスペンションとして使用し た場合、ポリイミドの耐熱性が悪ぐカバーコート材のキュア後において配線剥離等が 起こり、サスペンションとして望まれる特性のものが製造できな力つた。
産業上の利用可能性
[0069] 本発明により、超微細加工が可能な積層板を得ることができ、これは、ハードデイス クドライブのサスペンション材料等の微細加工品に適用することができる。

Claims

請求の範囲
[1] ポリイミド系榭脂の両側に銅箔及びステンレス箔、もしくは両側にステンレス箔が形成 されたポリイミド金属積層体にぉ ヽて、ステンレス箔及び銅箔とポリイミド系榭脂との剥 離強度が l.OkN/m以上であり、且つ該ポリイミド金属積層体を 350°C、 60分間の加熱 処理を施した後のステンレス箔及び銅箔とポリイミド系榭脂との剥離強度が l.OkN/m 以上であり、更に 350°C、 60分間の加熱処理後のポリイミド金属積層体の変形がない ことを特徴とするポリイミド金属積層体。
[2] ステンレス箔もしくは銅箔に接しているポリイミド系榭脂が、ガラス転移温度 180°C以 上であり、かつ 300°Cにおける貯蔵弾性率が 1 X 107Pa〜l X 108Pa、 350°Cにおける 貯蔵弾性率が 2 X 107Pa〜2 X 108Paであることを特徴とする請求項 1記載のポリイミド 金属積層体。
[3] ステンレス箔もしくは銅箔に接しているポリイミド系榭脂が、ジァミンとテトラカルボン酸 二無水物とを反応させて得られるポリイミドであって、使用するテトラカルボン酸二無 水物が、ピロメリット酸二無水物、 3, 3', 4, 4'-ビフエ-ルテトラカルボン酸二無水物 力 選ばれた少なくとも一種のテトラカルボン酸二無水物と、 3, 3', 4, 4'-ベンゾフエ ノンテトラカルボン酸二無水物を組み合わせたものであり、且つ 3, 3', 4, 4'_ベンゾ フエノンテトラカルボン酸二無水物が使用する全テトラカルボン酸二無水物の 8モル %以上、 20モル%以下であり、更に使用するジァミンとして、 1, 3-ビス (3-ァミノフエ ノキシ)ベンゼン、 4, 4しビス (3-アミノフエノキシ)ビフエ-ル及び、 1, 3-ビス (3-(3-ァ ミノフエノキシ)フエノキシ)ベンゼン、 2, 2-ビス [4- (4-アミノフエノキシ)フエ-ノレ]プロ パン力 選ばれた少なくとも一種のジァミンを含むものである請求項 1に記載のポリイ ミド金属積層体。
[4] 請求項 1〜3記載のポリイミド金属積層体力 製造されるハードディスク用サスペンシ ヨン。
PCT/JP2005/022110 2004-12-03 2005-12-01 ポリイミド金属積層体およびこれを用いたハードディスク用サスペンション WO2006059692A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006548010A JP4384674B2 (ja) 2004-12-03 2005-12-01 ポリイミド金属積層体およびこれを用いたハードディスク用サスペンション
US11/792,230 US20080268266A1 (en) 2004-12-03 2005-12-01 Polyimide Metal Laminate and Suspension for Hard Disk Using Same
CN2005800406230A CN101065242B (zh) 2004-12-03 2005-12-01 聚酰亚胺金属层叠体及使用其的硬盘用悬架

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-350958 2004-12-03
JP2004350958 2004-12-03

Publications (1)

Publication Number Publication Date
WO2006059692A1 true WO2006059692A1 (ja) 2006-06-08

Family

ID=36565125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022110 WO2006059692A1 (ja) 2004-12-03 2005-12-01 ポリイミド金属積層体およびこれを用いたハードディスク用サスペンション

Country Status (4)

Country Link
US (1) US20080268266A1 (ja)
JP (1) JP4384674B2 (ja)
CN (1) CN101065242B (ja)
WO (1) WO2006059692A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129464A1 (ja) * 2013-02-19 2014-08-28 新日鉄住金化学株式会社 積層体、太陽電池用部材、太陽電池、表示装置用部材、表示装置及び積層体の製造方法
JP2019130876A (ja) * 2018-02-03 2019-08-08 日鉄ケミカル&マテリアル株式会社 金属張積層板及びその製造方法
JP2020104340A (ja) * 2018-12-26 2020-07-09 日鉄ケミカル&マテリアル株式会社 金属張積層板及び回路基板

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100086792A1 (en) * 2008-10-03 2010-04-08 Eternal Chemical Co., Ltd. Polyimide precursor, its composition and polyimide laminate
KR101416782B1 (ko) * 2012-04-24 2014-07-08 에스케이이노베이션 주식회사 연성 금속박 적층체
KR20170007259A (ko) * 2014-05-22 2017-01-18 사빅 글로벌 테크놀러지스 비.브이. 회로 조립체 및 이의 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270038A (ja) * 2000-03-28 2001-10-02 Ube Ind Ltd フレキシブル金属箔積層体の製造方法
JP2001301089A (ja) * 2000-04-20 2001-10-30 Dainippon Printing Co Ltd 積層体、絶縁フィルム、電子回路及び積層体の製造方法
JP2002307609A (ja) * 2001-04-13 2002-10-23 Mitsui Chemicals Inc ポリイミド金属箔積層板及びその製造方法
JP2004017349A (ja) * 2002-06-13 2004-01-22 Mitsui Chemicals Inc ポリイミド金属積層板及びその製造方法
WO2004011247A1 (ja) * 2002-07-29 2004-02-05 Mitsui Chemicals, Inc. 金属積層体及びそのエッチング方法
JP2004276413A (ja) * 2003-03-17 2004-10-07 Mitsui Chemicals Inc ポリイミド金属積層体およびその製造方法
JP2004303358A (ja) * 2003-03-31 2004-10-28 Nippon Steel Chem Co Ltd Hddサスペンション用積層体及びhddサスペンション

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3107746B2 (ja) * 1996-04-27 2000-11-13 日本メクトロン株式会社 磁気ヘッド用サスペンションの製造法
WO2001028767A1 (fr) * 1999-10-21 2001-04-26 Nippon Steel Chemical Co., Ltd. Lamelle et procede de production
JP4508441B2 (ja) * 2001-02-16 2010-07-21 新日鐵化学株式会社 積層体及びその製造方法
US7026436B2 (en) * 2002-11-26 2006-04-11 E.I. Du Pont De Nemours And Company Low temperature polyimide adhesive compositions and methods relating thereto
JP4408277B2 (ja) * 2003-02-18 2010-02-03 三井化学株式会社 ポリイミド金属積層体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270038A (ja) * 2000-03-28 2001-10-02 Ube Ind Ltd フレキシブル金属箔積層体の製造方法
JP2001301089A (ja) * 2000-04-20 2001-10-30 Dainippon Printing Co Ltd 積層体、絶縁フィルム、電子回路及び積層体の製造方法
JP2002307609A (ja) * 2001-04-13 2002-10-23 Mitsui Chemicals Inc ポリイミド金属箔積層板及びその製造方法
JP2004017349A (ja) * 2002-06-13 2004-01-22 Mitsui Chemicals Inc ポリイミド金属積層板及びその製造方法
WO2004011247A1 (ja) * 2002-07-29 2004-02-05 Mitsui Chemicals, Inc. 金属積層体及びそのエッチング方法
JP2004276413A (ja) * 2003-03-17 2004-10-07 Mitsui Chemicals Inc ポリイミド金属積層体およびその製造方法
JP2004303358A (ja) * 2003-03-31 2004-10-28 Nippon Steel Chem Co Ltd Hddサスペンション用積層体及びhddサスペンション

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129464A1 (ja) * 2013-02-19 2014-08-28 新日鉄住金化学株式会社 積層体、太陽電池用部材、太陽電池、表示装置用部材、表示装置及び積層体の製造方法
JPWO2014129464A1 (ja) * 2013-02-19 2017-02-02 新日鉄住金化学株式会社 積層体、太陽電池用部材、太陽電池、表示装置用部材、表示装置及び積層体の製造方法
JP2019130876A (ja) * 2018-02-03 2019-08-08 日鉄ケミカル&マテリアル株式会社 金属張積層板及びその製造方法
JP6996997B2 (ja) 2018-02-03 2022-01-17 日鉄ケミカル&マテリアル株式会社 金属張積層板及びその製造方法
JP2020104340A (ja) * 2018-12-26 2020-07-09 日鉄ケミカル&マテリアル株式会社 金属張積層板及び回路基板
JP7212515B2 (ja) 2018-12-26 2023-01-25 日鉄ケミカル&マテリアル株式会社 金属張積層板及び回路基板

Also Published As

Publication number Publication date
CN101065242A (zh) 2007-10-31
CN101065242B (zh) 2012-08-29
US20080268266A1 (en) 2008-10-30
JPWO2006059692A1 (ja) 2008-06-05
JP4384674B2 (ja) 2009-12-16

Similar Documents

Publication Publication Date Title
JP4901125B2 (ja) ポリイミド接着シート、その製造方法並びに該シートからなるポリイミド金属積層体
JP4384674B2 (ja) ポリイミド金属積層体およびこれを用いたハードディスク用サスペンション
KR20070108942A (ko) 폴리이미드 필름 및 그것을 이용한 폴리이미드 금속적층체와 그 제조 방법
WO2006129526A1 (ja) ポリイミドフィルム、ポリイミド金属積層体及びその製造方法
JP2007098791A (ja) フレキシブル片面銅張ポリイミド積層板
JP4504602B2 (ja) ポリイミド銅張積層板及びその製造方法
JP3952196B2 (ja) フレキシブル金属箔ポリイミド積層板の製造方法
JP4473833B2 (ja) ポリイミド金属積層体とその製造方法
JP2005015596A (ja) ポリイミド系前駆体樹脂溶液組成物シート
JP4231511B2 (ja) ポリイミドフィルム、ポリイミド金属積層体及びその製造方法
JP4408277B2 (ja) ポリイミド金属積層体
JP3361569B2 (ja) 面状発熱体およびその製造方法
JP2007189011A (ja) フレキシブルプリント配線板用基板及びその製造方法
JP4174677B2 (ja) フレキシブル金属箔ポリイミド積層板及びその製造方法
KR100517233B1 (ko) 금속적층체
JP2001270035A (ja) フレキシブル金属箔積層体
JP6774285B2 (ja) 金属張積層板
JP2006015681A (ja) フレキシブル金属箔ポリイミド積層板及びその製造方法
JP4187465B2 (ja) 極薄銅箔を用いたポリイミド銅張積層板及びその製造方法
JP3568261B2 (ja) 面状発熱体
JP4709474B2 (ja) ポリイミド金属積層体およびその製造方法
JP4365663B2 (ja) ポリイミド金属積層板
JP7506438B2 (ja) 金属箔-ポリイミド積層体およびその製造方法
JP2005178248A (ja) 積層体及びその製造方法
JP2023103238A (ja) 金属箔-ポリイミド積層体およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006548010

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580040623.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05811271

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11792230

Country of ref document: US