WO2006059642A1 - 変性ポリテトラフルオロエチレン成形体及びその製造方法 - Google Patents

変性ポリテトラフルオロエチレン成形体及びその製造方法 Download PDF

Info

Publication number
WO2006059642A1
WO2006059642A1 PCT/JP2005/021986 JP2005021986W WO2006059642A1 WO 2006059642 A1 WO2006059642 A1 WO 2006059642A1 JP 2005021986 W JP2005021986 W JP 2005021986W WO 2006059642 A1 WO2006059642 A1 WO 2006059642A1
Authority
WO
WIPO (PCT)
Prior art keywords
modified polytetrafluoroethylene
powder
modified
modified ptfe
average particle
Prior art date
Application number
PCT/JP2005/021986
Other languages
English (en)
French (fr)
Inventor
Tomihiko Yanagiguchi
Shinichi Yano
Masamichi Sukegawa
Hirokazu Yukawa
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to JP2006547978A priority Critical patent/JP5012027B2/ja
Priority to US11/791,717 priority patent/US7528221B2/en
Priority to EP05811241A priority patent/EP1829904A4/en
Publication of WO2006059642A1 publication Critical patent/WO2006059642A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/02Moulding by agglomerating
    • B29C67/04Sintering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Definitions

  • the present invention relates to a modified polytetrafluoroethylene molded product and a method for producing a modified polytetrafluoroethylene molded product.
  • compression molding has been frequently used as a method for obtaining these PTFE molded articles.
  • the compression molding of PTFE includes a batch-type molding method in which a resin powder is put into a mold and compressed to form a preformed body and then fired, and a powder is put into a long-axis mold and compressed and sintered.
  • a PTFE-strength seal ring with a reduced crystallinity and a crystal with a crystallinity controlled to 25 to 35% have been proposed for the purpose of improving durability (for example, Patent Documents). (See 2.)
  • the crystallinity of the PTFE molded product greatly affects the gas-chemical solution barrier property, and it is necessary to increase the crystallinity in order to improve the barrier property.
  • ram extrusion is generally excellent in productivity.
  • the PTFE molded body obtained by ram extrusion molding has low crystallinity due to its manufacturing method.
  • joints called nodes with low tensile strength and tensile elongation may have an extremely adverse effect, and PTFE molded bodies obtained by ram extrusion are generally not used for important parts. It is.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-70558
  • Patent Document 2 JP 2001-304420 A
  • Patent Document 3 JP-A-6-8344
  • Patent Document 4 International Publication No. 93Z16126 Pamphlet
  • An object of the present invention is to obtain a PTFE molded article excellent in bending resistance without impairing the tensile strength and tensile elongation in view of the above-mentioned present situation.
  • the present invention is a modified polytetrafluoroethylene molded body formed using a modified polytetrafluoroethylene molding powder, wherein the modified polytetrafluoroethylene molding powder is
  • the modified polytetrafluoroethylene which cannot be melt-molded and constitutes the above-mentioned modified polytetrafluoroethylene molding powder, has the following formula (I):
  • the modified polytetrafluoroethylene molded product is A modified polytetrafluoroethylene molded product characterized by having a heat of fusion of 28 jZg or less and a bending life of 2 million times or more.
  • the present invention is a method for producing a modified polytetrafluoroethylene molded body comprising subjecting a pre-processed fired compression molded body using a modified polytetrafluoroethylene powder to a baking treatment,
  • the pre-processed fired compression molded article is obtained by firing an unfired compression molded article using a modified polytetrafluoroethylene powder at a temperature equal to or higher than the melting point of the modified polytetrafluoroethylene powder and then modifying the modified polytetrafluoroethylene powder. It is obtained by cooling to a temperature lower than the melting point of the polyethylene powder, and the firing treatment is performed by firing at a temperature equal to or higher than the melting point of the modified polytetrafluoroethylene powder.
  • the present invention is a modified polytetrafluoroethylene molded body characterized by being manufactured by the above-described method for manufacturing a modified polytetrafluoroethylene molded body.
  • the modified polytetrafluoroethylene [modified PTFE] shaped article of the present invention is formed using a modified PTFE powder.
  • the modified PTFE powder is not particularly limited as long as it cannot be melt-molded. Among them, the modified PTFE molding powder described later is preferable.
  • the modified PTFE constituting the modified PTFE molding powder is tetrafluoroethylene [TFE
  • the perfluorobule ether unit is derived from perfluorolobyl ether.
  • perfluorovinyl ether examples include perfluoro (alkyl butyl ether) having a C 1-6 perfluoroalkyl group, and perfluoro (alkoxyalkyl butyl ether) having a C 4-9 alkoxyalkyl group. It is done.
  • perfluoro alkyl butyl ether
  • nor fluoro (propyl butyl ether) [PPVE] perfluoro (butyl butyl ether).
  • perfluoro alkoxyalkyl butyl ether
  • -Ruether perfluoro (2-propoxypropyl vinyl ether).
  • the above perfluorobull ether is more preferably PPVE, more preferably PPVE, PEVE, and PMVE from the viewpoint of thermal stability.
  • the modified PTFE are those containing the par full O b a 0.01 to 1 mass Bulle ether units 0/0.
  • the preferable lower limit of the content of the perfluorobule ether unit is 0.03% by mass, and the preferable upper limit is 0.2% by mass.
  • the modified PTFE may have one perfluorovinyl ether unit or two or more perfluorovinyl ether units within the above range.
  • the par full O b Bulle ether units are values obtained by performing infrared spectroscopy in the range of characteristic absorption 1,040-89 OCM _1.
  • the modified PTFE has a crystallization heat power of 8.0 to 25. OJ Zg measured by a differential scanning calorimeter.
  • the upper limit of the heat of crystallization is preferably 23.5 jZg.
  • the heat of crystallization was raised to 250 ° C at a rate of 50 ° CZ with a differential scanning calorimeter DSC-50 (manufactured by Shimadzu Corporation) and held at that temperature. Furthermore, after melting the crystal by raising the temperature to 380 ° C at a rate of 10 ° CZ, it is converted from the peak of the crystallization point measured when the temperature is lowered at a rate of 10 ° CZ. The amount of heat that is produced.
  • the modified PTFE can be obtained by polymerizing TFE and perfluorovinyl ether.
  • the modified PTFE is not particularly limited, but is preferably obtained by suspension polymerization.
  • the suspension polymerization is preferably performed, for example, in the presence of an aqueous medium by setting the polymerization temperature to 0 to 100 ° C.
  • an emulsifier etc. can also be used in the said suspension polymerization.
  • a polymerization initiator It is preferable to use a persulfate such as ammonium persulfate.
  • the amounts of the emulsifier and the polymerization initiator used can be appropriately set according to the type of monomer used, the composition of the desired modified PTFE, and the like.
  • a modified PTFE molding powder having a large specific surface area as described later can be obtained.
  • Modified PTFE molding powder obtained by suspension polymerization is sometimes referred to as molding powder.
  • the modified PTFE molding powder is a modified PTFE obtained by performing the above polymerization, for example, drying, pulverizing treatment, etc. by a known method such as the method described in WO 93Z16126. Can be obtained.
  • Examples of the pulverization treatment include shear pulverization and impact pulverization.
  • the shearing pulverization is a pulverization method based on crushing or grinding by a shearing force.
  • the shearing pulverization is usually pulverization by the impact action of a hammer rotating at high speed, and includes pulverization using a pulverizer such as a hammer mill.
  • impact pulverization is a pulverization method based on pulverization by impact force without substantially applying a shearing force.
  • the impact pulverization is usually pulverization by causing particles to collide with a high-speed air flow, and examples thereof include pulverization using a pulverizer such as an air jet mill.
  • impact pulverization is preferable from the viewpoint of bending resistance.
  • the modified PTFE molding powder in the present invention is either a powder itself obtained from a polymerization reaction solution obtained after polymerization, a fine powder obtained by appropriately pulverizing the powder, or a powder obtained by granulating the powder or fine powder.
  • a granulated product is preferable from the viewpoint of handleability and workability.
  • the modified PTFE molding powder has a small particle size distribution!
  • the modified PTFE molding powder may contain additives such as a colorant and an antistatic agent.
  • the modified PTFE molding powder preferably has a specific surface area of 0.5 to 9.0 m 2 Zg.
  • the specific surface area has a more preferable lower limit of 0.8 m 2 Zg and a more preferable upper limit of 4. Om 2 Zg.
  • the specific surface area is determined by monosoap (manufactured by Yuasa Iotas Co., Ltd.) according to the nitrogen adsorption method described in Analytical 'Chemistry (Anal. Chem), ⁇ ol. 30, page 1387 (1985). It is measured.
  • the modified PTFE molding powder in the present invention is obtained by suspension polymerization
  • the modified PTFE can be obtained by, for example, pulverizing to obtain a small particle size. Preferable in that it tends to reduce voids in the molded body.
  • the average particle size measured by the dry laser method is 100 ⁇ m or less.
  • the more preferable upper limit is 50 ⁇ m, and more preferable.
  • the upper limit is 40 ⁇ m, and a particularly preferable upper limit is 30 ⁇ m.
  • the average particle size measured by a dry laser method is preferably 100 ⁇ m or less, and preferably 50 ⁇ m or less. Within these more preferred ranges, it may be 3 m or more.
  • the powder obtained by shearing-type grinding is usually an amorphous fine powder.
  • the average particle size measured by dry laser method is preferably 50 ⁇ m or less, preferably 30 ⁇ m or less. If it is a fine powder within these ranges, which is more preferred, it may be 3 m or more.
  • the modified PTFE molding powder in the present invention is a granulated product, that is, a granulated product
  • the average particle size within the above range in the powder before granulation or the fine powder before granulation is preferably 1000 m or less, more preferably 90 or less, more preferably S, more preferably 200 to 900 111, Particularly preferably, it is 600 ⁇ m or less.
  • the above average particle diameter is measured by a dry laser method using a particle size distribution measuring device HELOS & RODOS (manufactured by SYMPATEC) when granulated, before or after granulation. It is.
  • HELOS & RODOS manufactured by SYMPATEC
  • the average particle size after granulation is the dry sieve method, specifically, International Publication No.99Z12996 It was measured by the average particle size measurement method described in the pamphlet, page 12, line 23 to page 13, line 4.
  • the above modified PTFE molding powder usually has a specific surface area and an average particle size within the above-mentioned range, it has a good pressure transmission at the time of molding. It is possible to obtain a molded article excellent in the above.
  • the modified PTFE molding powder of the present invention preferably has an apparent density of 0.60 to 0.95 gZml.
  • the above apparent density has a more preferable lower limit of 0.65 gZml and a more preferable upper limit of 0.90 g / ml.
  • the apparent density is a value measured in accordance with JIS K 6891-5.3.
  • the modified PTFE molding powder of the present invention has an apparent density of 0.60-0.95 gZml and an average particle size of 1000 gm in terms of bending resistance and other electrical and mechanical properties.
  • the preferred apparent density is less than m and the average particle size is more preferably 600 ⁇ m or less.
  • Each modified PTFE molding powder having an apparent density within the above range, an average particle diameter within the above range, or an apparent density and an average particle diameter within the above range is, for example, (1 ) Granulate fine powder with an average particle size of 100 m or less, preferably 50 m, obtained by shearing grinding and measured by dry laser method. (2) Obtained by impact grinding and measured by dry laser method. It can be prepared by granulating a fine powder having an average particle size of 50 ⁇ m or less, preferably 30 ⁇ m or less.
  • the granulated product obtained by granulating the fine powder obtained by the above various pulverization methods is usually a granular powder.
  • the granular powder having an apparent density within the above range preferably has an average particle size after granulation of 1000 ⁇ m or less, more preferably 900 ⁇ m or less, and further preferably 20 to 900. It is desirable that the granulated product be ⁇ m, particularly preferably 600 ⁇ m or less.
  • the modified PTFE molding powder can be formed into a molded body having excellent bending resistance and a long bending life.
  • the modified PTFE molded product of the present invention is preferably formed using the above-mentioned modified PTFE molding powder.
  • the modified PTFE molding powder cannot be melt-molded, but can be suitably manufactured by, for example, the method for manufacturing a modified PTFE molded body of the present invention described later.
  • the modified PTFE molded product of the present invention has a heat of fusion of 28 jZg or less.
  • the heat of fusion is within the above range, it may be 18 jZg or more, preferably 25 jZg or less, more preferably 23 jZg or less.
  • the modified PTFE molded product of the present invention has a heat of fusion within the above range, it has a low degree of crystallinity and excellent bending resistance.
  • the heat of fusion is obtained by cutting out a modified PTFE compact strength piece, and about 3 mg of the piece with a differential scanning calorimeter RDC220 (manufactured by Seiko Denshi Kogyo Co., Ltd.) at a rate of 50 ° CZ in a nitrogen atmosphere. Raise the temperature to 250 ° C, hold for 1 minute, further raise the temperature to 380 ° C at a rate of 10 ° CZ, and then melt the crystals sufficiently, then speed from 380 ° C to 10 ° CZ This is the value obtained by converting the curve peak of the crystallization point measured when the temperature is lowered to 250 ° C.
  • the modified PTFE molded product of the present invention has a bending life [MIT] of 2 million times or more.
  • the MIT is preferably 2.5 million times or more. If the above MIT is within the above range, it can be, for example, 3 million times or less, or 2.8 million times or less.
  • modified PTFE molded product of the present invention has an MIT within the above range, it is very excellent in bending resistance.
  • MIT fold resistance tester manufactured by Yasuda Seiki Co., Ltd.
  • MIT fold resistance tester manufactured by Yasuda Seiki Co., Ltd.
  • MIT fold resistance tester is used for specimens cut from each modified PTFE molded body to a width of 5 mm, thickness of 0.5 mm, and length of 120 mm. It was measured using.
  • the modified PTFE molded product of the present invention uses a dumbbell having a specific shape with a cut in the center of the length, and is used in a dematching test (hereinafter sometimes referred to as "special dematching test") in accordance with JIS K 6301.
  • special dematching test a dematching test
  • the bending life at 10 ° C can be increased to 300,000 times or more.
  • the bending life by the special dematcher test is 90% at the center of the length.
  • the bending life by the special dematcher test measures the bending resistance of the DUT with higher accuracy than the MIT described above. Therefore, in general, even if the MIT value is within the above range, the bending life by the special dematcher test may be less than the above range, while if the bending life by the special dematcher test is within the above range, The MIT value falls within the above range.
  • the modified PTFE molded article of the present invention has an MIT value within the above-mentioned range, and further, can achieve a flex life by a special dematcher test within the above-mentioned range. .
  • the modified PTFE molded product of the present invention preferably has a tensile strength of 30 MPa or more.
  • the tensile strength is more preferably a lower limit of 35 MPa and a further preferable lower limit force of 0 MPa, but may be 60 MPa or less as long as it is within the above range.
  • the modified PTFE molded product of the present invention preferably has a tensile elongation of 300% or more.
  • the tensile elongation is more preferably 350% and further preferably 380%, but may be 500% or less as long as it is within the above range.
  • the tensile strength and tensile elongation are measured according to JIS K6891.
  • the modified PTFE molded article of the present invention can obtain excellent bending resistance without impairing the mechanical strength such as the tensile strength and the tensile elongation.
  • the method for producing a modified PTFE molded product of the present invention is a method for producing a modified PTFE molded product by subjecting a pre-processed sintered compression molded product using a modified PTFE powder to a firing treatment.
  • the modified PTFE powder is preferably used as the modified PTFE powder.
  • fired compression molded body before treatment is a method in which an unfired compression molded body using a modified PTFE powder is fired at a temperature equal to or higher than the melting point of the modified PTFE powder. Primary firing There are times when it is said that the process is complete. ) And then cooled to a temperature below the melting point of the modified PTFE powder (sometimes referred to as “primary cooling step” in this specification).
  • the "green fired compact” is a compact formed by putting a modified PTFE powder in a mold and compressing it, and has no history of heating to a temperature higher than the melting point of the modified PTFE powder. ⁇ It is a thing.
  • the lower limit of 0.1 MPa to 1 OOMPa is more preferable, and the upper limit of 80 MPa is more preferable.
  • the primary firing step of firing the "green fired compact" at a temperature equal to or higher than the melting point of the modified PTFE powder depends on the thickness of the green compact, the firing time, etc.
  • a more preferable lower limit of the calcination temperature, which is preferably performed by heating at a temperature of ° C, is 360 ° C, and a more preferable upper limit is 390 ° C.
  • the primary firing step can usually be carried out by placing an unfired compression molded product produced at room temperature into a firing furnace that has been previously adjusted to a firing temperature within the above range.
  • the melting point of the modified PTFE powder is that when a sample of 3 mg is heated to 380 ° C at a rate of 10 ° CZ with a differential scanning calorimeter DSC-50 (manufactured by Shimadzu Corporation). It is the value obtained as the temperature of the melting heat peak that can be measured.
  • the primary cooling step of cooling to a temperature below the melting point of the modified PTFE powder is usually preferable to cool to room temperature to 300 ° C, more preferably, Cool to normal temperature to 150 ° C.
  • the cooling rate in the primary cooling step is not particularly limited. For example, it may be performed by air cooling.
  • the "compression molding” performed when producing the above-mentioned unsintered compression molded product is as follows: (i) “Narrow sense” in which a resin powder is put into a mold and compressed to form a preform (preform) and then fired (Ii) Ram extrusion molding, in which a compact formed by pouring resin powder into a long-axis mold is lowered into a firing section in the mold and fired. It may be.
  • the pre-treatment fired compression-molded body is produced as described above and then continued.
  • the time point at which the pre-processed fired compression molded article is finished and the time point at which the fired process described below is started are discontinuous. A certain method may be used.
  • the pre-processed fired compression-molded body is prepared, bow I is continued!
  • the pre-processed fired compression-molded body is prepared and fired. Examples include a method in which the inside of a long axis mold is continuously transferred.
  • discontinuous method of the latter (2) for example, a commercially available product corresponding to the pre-processed fired compression molded article may be purchased and subjected to the firing process described below, or by a so-called batch method.
  • a method may be used in which a pre-treatment baked compression-molded body is prepared and then subjected to the calcination treatment described below.
  • the latter notch type method is a preferred method when using narrowly-defined compression molding.
  • the firing treatment in the method for producing a modified PTFE molded body of the present invention is performed on the above-mentioned calcined compact before firing.
  • the firing treatment is performed by firing at a temperature equal to or higher than the melting point of the modified PTFE powder (sometimes referred to as “secondary firing step” in this specification).
  • the second firing step is preferably performed by heating at a temperature of 345 to 400 ° C, although it depends on the thickness, firing time, etc. of the fired compression molded body before treatment.
  • a more preferable lower limit of the temperature is 350 ° C.
  • a more preferable lower limit is 360 ° C.
  • a more preferable upper limit is 395 ° C.
  • a further preferable upper limit is 390 ° C.
  • the rate of temperature rise at the start of firing in the secondary firing step is not particularly limited.
  • the firing treatment is performed continuously with the preparation of the pre-treatment fired compression molded article by the ram extrusion molding of (1) described above.
  • the long axis mold is divided into about three equal parts in the axial direction, the zone for performing the primary firing step set at 350 to 400 ° C, the zone for performing the primary cooling step, and 350 to 400 It is preferable to divide the zone into the zones where the secondary firing step set at ° C is performed, and move the compression molded body in this order.
  • the pre-treatment fired compression molded article prepared at room temperature is It is preferable to carry out by placing in a firing furnace set to a firing temperature within the range.
  • the secondary firing fired compacts of step through the can (in the present specification, sometimes referred to as "secondary cooling step”.) Which cooled the 0 the first
  • the secondary cooling step is to cool to a temperature below the melting point of the modified PTFE powder.
  • the cooling temperature in this step is not particularly limited, and may usually be a temperature at which the obtained modified PTFE molded product is stored or used.
  • the cooling rate in the secondary cooling step depends on the shape and size of the molded body, the degree of crystallinity can be adjusted according to the desired bending resistance by controlling and adjusting the cooling rate.
  • the cooling rate is, in terms of ease of management, actually (a) rapid cooling by throwing it into water immediately after the completion of the secondary firing process, or (b) secondary After completion of the firing step, it is sufficient to take out the firing furnace power and perform slow cooling by leaving it in the atmosphere at room temperature.
  • the method for producing a modified PTFE molded article of the present invention performs the above-described firing treatment, for example, annealing is performed at a temperature lower than the melting point of the resin instead of the firing treatment.
  • annealing is performed at a temperature lower than the melting point of the resin instead of the firing treatment.
  • the method for producing the modified PTFE molded product of the present invention is not sufficient in improving the bending resistance, and the above-mentioned firing treatment is performed at a temperature equal to or higher than the melting point of the modified PTFE powder. It is thought to promote the relaxation of
  • a modified PTFE molded article obtained by performing the above-described method for producing a modified PTFE molded article of the present invention is also one aspect of the present invention.
  • modified PTFE molded product (B) of the present invention obtained by carrying out the method for producing the modified PTFE molded product of the present invention may be referred to as “modified PTFE molded product (B) of the present invention”.
  • the modified PTFE molded product (B) of the present invention is obtained by performing the above-described method for producing the modified PTFE molded product of the present invention, and is the same crystal as the modified PTFE molded product (A) of the present invention. It is excellent in mechanical properties such as flex resistance and the like with low degree of conversion.
  • modified PTFE molded product of the present invention used without the symbols (A) and (B) hereinafter is the above-mentioned "modified PTFE molded product of the present invention ( A) "and” of the present invention
  • Modified PTFE molded product (B) Represents a concept that can contain j.
  • the modified PTFE molded product of the present invention is excellent in mechanical properties, in particular, bending resistance and creep resistance, and therefore can be suitably used as a bending resistant molded product, a creep resistant molded product or the like. it can.
  • Examples of the bending resistant molded body include bellows, diaphragms, hoses, piston rings, butterfly bubbles, and the like.
  • creep resistant molded body examples include ball bubble sheets, diaphragms, packings, gaskets, piston rings, bellows, diaphragms, butterfly bubbles, and the like.
  • the modified PTFE molded article of the present invention is excellent in chemical resistance, it can be suitably used as a chemical resistant permeable molded article.
  • Examples of the chemical-resistant permeable molded body include bellows and diaphragms of chemical pumps.
  • the above chemical pumps are highly corrosive fluids used in the chemical industry, semiconductor manufacturing equipment, etc .; for example, gases such as fluorine, hydrogen chloride, sulfur oxides, nitrogen oxides; hydrogen fluoride, hydrochloric acid, It can be used for transporting various organic acids such as sulfuric acid, nitric acid, phosphorus oxychloride, chlorothionyl chloride, sulfuryl chloride, chromic acid, and liquids such as acid halogen oxalic acid.
  • gases such as fluorine, hydrogen chloride, sulfur oxides, nitrogen oxides
  • hydrogen fluoride hydrochloric acid
  • It can be used for transporting various organic acids such as sulfuric acid, nitric acid, phosphorus oxychloride, chlorothionyl chloride, sulfuryl chloride, chromic acid, and liquids such as acid halogen oxalic acid.
  • the modified PTFE molded article of the present invention has the above-described configuration, it has excellent bending resistance without impairing tensile strength and tensile elongation.
  • a modified PTFE molded article of the present invention Since the method for producing a modified PTFE molded article of the present invention has the above-described configuration, a modified PTFE molded article having the above characteristics can be produced by a simple method.
  • modified PTFE powder was taken out and pulverized with a hammer mill until the average particle size force became 2 ⁇ m, and modified PTFE molding powder 1 was obtained.
  • modified tetrafluoroethylene [modified PTFE] molding powder and the granulated powder described below were measured for PPVE content, specific surface area, heat of crystallization, apparent density, and average particle size according to the following methods. .
  • a 3mg sample was obtained by analyzing the peak of heat of fusion that can be measured when the temperature was raised to 380 ° C at a rate of 10 ° CZ with a differential scanning calorimeter DSC-50 (manufactured by Shimadzu Corporation). .
  • the particle size distribution was measured by a dry laser method using a HELOS & RODOS (manufactured by SYMPATEC).
  • the modified PTFE molding powder obtained from this synthesis example had a PPVE content of 0.062% by mass and a specific surface area of 1.5m 2 Zg.
  • the granulated powder of modified PTFE molding powder 1 obtained in Synthesis Example 1 was obtained using a ram extrusion mold with a mold inner diameter of 46 ⁇ , a mold length of 1100 mm, and a heating length of 900 mm set to the temperature of C. Then, extrusion was performed at a filling length of 60 mm, a pressure of 3 MPa, a pressurization time of 55 seconds, and a cycle of 65 seconds, and then cooled to room temperature to obtain a pre-processed sintered compact.
  • the obtained pre-processed fired compression-molded body was cut into an arbitrary length, fired in an electric furnace set in advance at 380 ° C. for 30 minutes, and allowed to cool at room temperature to form the modified PTFE molding of the present invention.
  • Got body 1
  • the granulated powder of modified PTFE molding powder 1 obtained in Synthesis Example 1 was obtained using a ram extrusion mold with a mold inner diameter of 46 ⁇ , a mold length of 1100 mm, and a heating length of 900 mm set to the temperature of C.
  • the primary firing process was performed by extrusion at a filling length of 60 mm, pressure of 3 MPa, pressurization time of 55 seconds, and a cycle of 65 seconds, followed by a jacket connected to the lower part of the ram extrusion mold (The jacket was passed through a cooling zone (length: about 300 mm) of 5 ° C refrigerant to obtain a pre-processed calcined compact. Subsequently, the obtained pre-processed fired compression molded article was passed through an extrusion mold having a mold inner diameter of 50 ⁇ and a length of 500 mm set at 380 ° C. and melted again to perform a secondary firing step. The product was taken out from the mold and allowed to cool at room temperature to obtain a modified PTFE molded product 2.
  • the granulated powder 21 Og of the modified PTFE molding powder 1 obtained in Synthesis Example 1 was put into a compression molding mold with a mold inner diameter of 50 ⁇ and a mold length of 500 mm, and the temperature was increased to 29.4 MPa at room temperature. The pressure was maintained for 5 minutes to obtain a green compact.
  • the obtained green compact was taken out of the mold and fired at 370 ° C for 5 hours. Then, the fired compression molding before processing was obtained by standing to cool at room temperature.
  • the obtained pre-processed sintered compression molded body was fired for 5 hours in an electric furnace set in advance at 380 ° C., then taken out of the furnace and allowed to cool at room temperature to obtain the modified PTFE molded body 3 of the present invention. Obtained.
  • the granulated powder of modified PTFE molding powder 1 obtained in Synthesis Example 1 is 380 in the upper 300 mm. C, middle 300mm 380. C, 350 for the bottom 300mm.
  • a ram extrusion mold with a mold inner diameter of 46 ⁇ , a mold length of 1100 mm and a heating length of 900 mm, set to a temperature of C, filling length 60 mm, pressure 3 MPa, pressurization time 55 seconds, 1 cycle 65 seconds
  • the molded product A was obtained by extruding the resulting fired product and taking out the mold force and cutting it into an arbitrary length.
  • 210 g of the granulated powder of modified PTFE molding powder 1 obtained in Synthesis Example 1 was put into a compression molding mold with a mold inner diameter of 50 ⁇ and a mold length of 500 mm, and pressurized to 29.4 MPa at room temperature. Hold for 5 minutes, then take out the internal force of the mold, then raise the temperature to 370 ° C in an electric furnace at a speed of 50 ° CZ time, calcinate for 5 hours at 370 ° C, then 50 ° C
  • the molded body B was obtained by lowering the temperature to the room temperature at the rate of CZ time.
  • Test example For each molded body obtained from Examples 1 to 3 and Comparative Examples 1 to 4, bending life (MIT), tensile strength (TS), tensile elongation (EL), and heat of fusion were measured by the following test methods. It was measured. Test method
  • MIT folding resistance tester manufactured by Yasuda Seiki Co., Ltd.
  • IS P 8115 cut from each molded product to a width of 5 mm, thickness of 0.5 mm, and a minimum length of 120 mm!
  • Molded body strength A small piece was cut out, about 3 mg of the small piece was precisely weighed, stored in a dedicated aluminum pan, and measured with DSC apparatus RDC220 (manufactured by Seiko Denshi Kogyo Co., Ltd.). In the measurement, first, the aluminum pan was heated to 250 ° C at a rate of 50 ° CZ in a nitrogen atmosphere, held for 1 minute, and further heated to 380 ° C at a rate of 10 ° CZ for crystal growth. Thawed sufficiently. Next, the temperature was lowered from 380 ° C to 250 ° C at a rate of 10 ° C Z, and the thermal peak at the crystallization point was converted.
  • Modified PTFE molded products 1 to 3 obtained by calcining the pre-treated calcined compressed molded product were subjected to the secondary calcining process, molded product A, and molded product B obtained using the above-mentioned commercially available modified PTFE and C Compared to MIT, the MIT, tensile strength, and tensile elongation were all excellent.
  • Molded product B obtained by compression molding in the narrow sense without performing the secondary firing step was excellent in tensile strength, but modified PTFE molded products 1 to 3 did not impair the tensile strength compared to molded product B. ⁇ Excellent MIT and tensile elongation.
  • Modified PTFE powder was prepared in the same manner as in Synthesis Example 1.
  • the obtained modified PTFE powder was subjected to impact pulverization using an air jet mill to prepare a fine powder with an average particle size of 20 m, and the fine powder was further granulated to give an apparent density of 0.80 gZml, an average particle size.
  • a cylindrical compression mold having an inner diameter of 50 mm and a length of 500 mm was filled with 210 g of modified PTFE molding powder 2 and held at a molding pressure of 29.4 MPa for 5 minutes at room temperature to prepare a preform.
  • the obtained preform was heated to 365 ° C at 50 ° CZ time, fired at 365 ° C for 5 hours, then cooled down at 50 ° CZ time, heat of fusion 26jZg, modified PTFE with a bending life of 2.8 million times A compact 4 was obtained.
  • the obtained modified PTFE molded body 4 was subjected to a special dematcher test and an endurance test at 10 ° C.
  • the bending life was 300,000 times.
  • the special dematcher test described above is to create a test piece with a width of 10 mm, a width of 20 mm, a length of 150 mm, and a thickness of 1 mm.
  • a compliant dematcher tester manufactured by Yasuda Seiki Co., Ltd.
  • the above bending life is due to bending fatigue.
  • the above test was repeated 5 times for the same sample, and the maximum and minimum values were removed! The average value for the 3 test values was obtained as the measured value.
  • a cylindrical compression mold with an inner diameter of 50 mm and a length of 500 mm is filled with 210 g of modified PTFE molding powder 2 and held at room temperature for 5 minutes at a molding pressure of 29.4 MPa, 50 ⁇ , height of 50 mm, unfired
  • a compression molded body was produced.
  • the resulting green compact was fired at 365 ° C for 5 hours. Thereafter, it was allowed to cool to produce a pre-processed fired compression molded body, which was further fired at 380 ° C. for 5 hours and then allowed to cool to obtain a modified PTFE molded body 5 having a melting heat of 22 jZg and a bending life of 3.7 million times.
  • the modified PTFE molding powder 2 was molded in the same manner as in Example 1 to obtain a modified PTFE molded body 6 having a heat of fusion of 22 jZg and a bending life of 3.8 million times.
  • modified PTFE powder prepared in the same manner as in Synthesis Example 1 was sheared using a hammer mill to prepare modified PTFE molding powder 3 having a crystallization heat of 2 jZg and an average particle size of 42 m.
  • Impact-type pulverization was performed in the same manner as in Synthesis Example 2, modified with an average particle size of 20 / zm.
  • Modified PTFE molding powder 6 having a particle size of 27 m and a crystallization heat of 23 jZg and modified PTFE molding powder 7 having an average particle size of 34 m and a crystallization heat of 2 jZg were prepared.
  • Modified PTFE molding powders 3 to 7 were each filled into a cylindrical compression molding mold with an inner diameter of 50 mm and a length of 500 mm, 210 g, held at room temperature at a molding pressure of 29.4 MPa for 5 minutes, 50 ⁇ , height 50 mm , Calcined at 365 ° C for 5 hours, and then cooled down at a rate of 50 ° CZ time.
  • Body 7 modified heat of 26jZg, modified PTFE molded body with 3.9 million times of bending life 8, modified heat of 26jZg, modified life of 3.6 million times of modified PTFE molded body 9, modified heat of 26jZg, bent life of 3.4 million times of modified PTFE molded body 10 Further, a modified PTFE molded article 11 having a heat of fusion of 27 jZg and a bending life of 3 million times was obtained.
  • Example 4 ⁇ Table 2 shows data for each modified PTFE molded body of L1.
  • Modified PTFE molding powders 3 to 7 were filled in a cylindrical compression molding die with an inner diameter of 50 mm and a length of 500 mm, respectively, and held at room temperature for 5 minutes at a molding pressure of 29.4 MPa, 50 ⁇ , height 50 mm An unfired compression molded body was prepared. The obtained green compacts were fired at 365 ° C. for 5 hours, and then allowed to cool to obtain pre-treated fired compacts. The obtained pre-treated fired compression molded bodies were fired at 380 ° C. for 5 hours, and allowed to cool to obtain modified PTFE molded bodies 12-16.
  • a special dematcher test was conducted on each modified PTFE molded body 12 to 16 in the same manner as in Example 4, and a durability test at ⁇ 10 ° C. was conducted. It was 10,000, 660,000, 540,000, 490,000, and 480,000.
  • a special dematcher test was performed on each molded body in the same manner as in Example 4, and a durability test at -10 ° C was performed.
  • the bending life was 90,000 times and 80,000 times in the order of molded bodies E to I. It was 20,000 times, 1.80,000 times, and 17,000 times.
  • Table 3 shows data for each molded body obtained in Examples 12 to 16 and Comparative Examples 5 to 9.
  • Example 1 2 Example 1 3
  • Example 1 4 Example 1 5
  • Example 1 6 Modified PTFE (Modified PTFE (Modified PTFE (Modified PTFE (Modified PTFE (Modified PTFE Molded Body 1 2)) Molded Body 1 3) Molded Body 1 4) Molded body 1 5) Molded body 1 6) Special dematcher
  • the modified PTFE molded article of the present invention has the above-described configuration, it has excellent bending resistance without impairing tensile strength and tensile elongation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

変性ポリテトラフルォロエチレン成形体及びその製造方法
技術分野
[0001] 本発明は、変性ポリテトラフルォロエチレン成形体及び変性ポリテトラフルォロェチレ ン成形体の製造方法に関する。
背景技術
[0002] ポリテトラフルォロエチレン〔PTFE〕の成形体の一用途として、ポンプ、ベローズ、ダ ィャフラム等の著しく耐屈曲性を要する装置部材がある。
[0003] これらの PTFE成形体を得る方法としては、従来一般に、圧縮成形が頻用されてきた 。 PTFEの圧縮成形としては、金型に榭脂粉末を入れ圧縮して予備成形体を形成し たのち焼成するバッチ式の成形方法、及び、長軸の金型に粉末を投入して圧縮と焼 成とを連続して行うラム押出成形がある。
[0004] PTFE成形体の耐屈曲性の向上を目的として、成形体における結晶化度を低下させ ることが知られており、例えば、結晶化度が 30〜50%、長手方向の強度と直径方向 の強度の比が 2. 5 : 1〜1: 1である可動部用耐スパッタポリテトラフノレォロエチレンチ ユーブが提案されている (例えば、特許文献 1参照。 ) oし力しながら、この技術は、乳 化重合により得たファインパウダーを用いるものであり、適用可能な成形方法が限定 される不都合がある。
[0005] 結晶化度を低下させた PTFE力 なるシールリングとして、また、耐久性向上を目的と して、結晶化度を 25〜35%に管理したものが提案されている(例えば、特許文献 2 参照。)。
[0006] その一方、 PTFE成形体の結晶化度は、ガス'薬液バリア性に大きく影響し、バリア性 向上のためには結晶化度を高くする必要がある。
[0007] 高結晶化度 PTFE成形体として、 PTFE成形体を該榭脂の融点以上の温度にて焼 結したのち結晶化温度付近の温度にて 0. 5〜10分間かけて冷却する方法が提案さ れている(例えば、特許文献 3参照。 ) 0この方法は、多孔質体を得るものであるが、 焼成後の冷却を徐々に行う必要があるので、焼成 ·冷却工程に時間を要し、生産性 に劣る問題があった。
[0008] 狭義の圧縮成形により PTFE成形体を得る際には、耐屈曲性を要する用途の場合、 結晶化度を低下させる目的のために、予備成形体 (プレフオーム)を焼成する工程に て急冷することが一般的である (例えば、特許文献 1参照。 ) o
[0009] しかしながら、焼成炉内にて急冷しょうとしても、余熱等の影響により急冷が不充分と なる問題がある。また、炉内から溶融状態のまま一気に炉外に取り出して水中に投じ る方法によれば、比較的容易に急冷することができるが、作業性、操作性に問題があ る。
[0010] 狭義の圧縮成形としてはまた、予備成形したプレフォームを金型内に残したまま、押 しパンチのみを取り除き、焼成炉にて PTFEが溶融するまで加熱し、溶融状態のまま 焼成炉から金型ごと取り出し、溶融状態のまま再び加圧下に保持し、水冷する方法 が知られている(ホットコイニング)。この方法であれば、結晶化度を容易に下げること ができ、耐屈曲性に優れた PTFE成形体を得ることができる。し力しながら、生産性に 乏しい問題がある。
[0011] これに対し、ラム押出成形は、一般に、生産性に優れている。ラム押出成形により得 られた PTFE成形体は、その製法上、結晶化度は低い。し力しながら、狭義の圧縮成 形やホットコイニングに比べて、機械的物性に乏しい問題がある。そのため、引張り強 さ、引張り伸びが低ぐ節と呼ばれる継目が極端に悪影響を及ぼす場合があり、ラム 押出成形により得た PTFE成形体は、一般的に重要部品には使用されていないのが 現状である。
[0012] 狭義の圧縮成形、ラム押出成形に好適な成形用粉末として、特定のパーフルォロビ ニルエーテル単位を特定量含有し特定の結晶化熱を有する変性 PTFEの粉末であ つて、特定の比表面積と平均粒径を有し、且つ、得られる成形品において特定の曲 げ寿命と耐クリープ性とを有する粉末が提案されている (例えば、特許文献 4参照。 ) 。し力しながら、近年では、更なる高度な成形品物性が要求されている。
特許文献 1:特開平 11― 70558号公報
特許文献 2:特開 2001— 304420号公報
特許文献 3:特開平 6— 8344号公報 特許文献 4:国際公開第 93Z16126号パンフレット
発明の開示
発明が解決しょうとする課題
[0013] 本発明の目的は、上記現状に鑑み、引張り強度及び引張り伸びを損なうことなぐ耐 屈曲性に優れた PTFEの成形体を得ることにある。
課題を解決するための手段
[0014] 本発明は、変性ポリテトラフルォロエチレン成形用粉末を用いて形成してなる変性ポ リテトラフルォロエチレン成形体であって、上記変性ポリテトラフルォロエチレン成形 用粉末は、溶融成形できず、上記変性ポリテトラフルォロエチレン成形用粉末を構成 する変性ポリテトラフルォロエチレンは、下記式 (I):
[0015] [化 1]
— C F2 - C F—
I CD
0— X
[0016] (式中、 Xは、炭素数 1〜6のパーフルォロアルキル基又は炭素数 4〜9のパーフルォ 口アルコキシアルキル基である)で表わされるパーフルォロビュルエーテル単位を 0. 01〜1質量%含有するものであり、且つ、示差走査型熱量計により測定する結晶化 熱が 18. 0-25. OjZgであるものであり、上記変性ポリテトラフルォロエチレン成形 体は、融解熱が 28jZg以下、且つ、曲げ寿命が 200万回以上であることを特徴とす る変性ポリテトラフルォロエチレン成形体である。
[0017] 本発明は、変性ポリテトラフルォロエチレン粉末を用いてなる処理前焼成圧縮成形 体に焼成処理を施すことよりなる変性ポリテトラフルォロエチレン成形体の製造方法 であって、上記処理前焼成圧縮成形体は、変性ポリテトラフルォロエチレン粉末を用 いてなる未焼成圧縮成形体を上記変性ポリテトラフルォロエチレン粉末の融点以上 の温度にて焼成したのち上記変性ポリテトラフルォロエチレン粉末の融点未満の温 度に冷却することにより得られたものであり、上記焼成処理は、上記変性ポリテトラフ ルォロエチレン粉末の融点以上の温度にて焼成することにより行うものであることを特 徴とする変性ポリテトラフルォロエチレン成形体の製造方法である。 [0018] 本発明は、上記変性ポリテトラフルォロエチレン成形体の製造方法により製造したこ とを特徴とする変性ポリテトラフルォロエチレン成形体である。
以下に本発明を詳細に説明する。
[0019] 本発明の変性ポリテトラフルォロエチレン [変性 PTFE]成形体は、変性 PTFE粉末 を用いて形成してなるものである。該変性 PTFE粉末は、溶融成形することができな いものであれば特に限定されないが、なかでも、後述の変性 PTFE成形用粉末が好 ましい。
[0020] 上記変性 PTFE成形用粉末を構成する変性 PTFEは、テトラフルォロエチレン [TFE
]に由来する TFE単位にカ卩え、下記式 (I):
[0021] [化 1]
— C F2 — C F—
I CD
0— X
[0022] (式中、 Xは、炭素数 1〜6のパーフルォロアルキル基又は炭素数 4〜9のパーフルォ 口アルコキシアルキル基である)で表わされるパーフルォロビニルエーテル単位を含 有するものである。
[0023] 上記パーフルォロビュルエーテル単位は、パーフルォロビュルエーテルに由来する ものである。
上記パーフルォロビニルエーテルとしては、例えば、炭素数 1〜6のパーフルォロア ルキル基を有するパーフルォロ(アルキルビュルエーテル)、炭素数 4〜9のアルコキ シアルキル基を有するパーフルォロ(アルコキシアルキルビュルエーテル)等が挙げ られる。
上記パーフルォロ(アルキルビュルエーテル)としては、例えば、パーフルォロ(メチ ルビ-ルエーテル) [PMVE]、パーフルォロ(ェチルビ-ルエーテル) [PEVE]、ノ 一フルォロ(プロピルビュルエーテル) [PPVE]、パーフルォロ(ブチルビ-ルエーテ ル)等が挙げられる。
上記パーフルォロ(アルコキシアルキルビュルエーテル)としては、例えば、パーフル ォロ(2—メトキシプロピルビュルエーテル)、パーフルォロ(2—プロポキシプロピルビ -ルエーテル)等が挙げられる。
上記パーフルォロビュルエーテルとしては、熱的安定性の点で、 PPVE、 PEVE、 P MVEであることが好ましぐ PPVEであることがより好ましい。
[0024] 上記変性 PTFEは、上記パーフルォロビュルエーテル単位を 0. 01〜1質量0 /0含有 するものである。
上記パーフルォロビュルエーテル単位の含有量は、上記範囲より低い場合、耐クリ ープ性が低下し、上記範囲より高い場合、引張り強度、耐クラック性が低下し、また、 コスト上不利である。
上記パーフルォロビュルエーテル単位の含有量は、好ましい下限が 0. 03質量%で あり、好ましい上限が 0. 2質量%である。
本発明において、上記変性 PTFEは、上記範囲内であれば、上記パーフルォロビニ ルエーテル単位を 1種有するものであってもよ 、し、 2種以上有するものであってもよ い。
本明細書において、上記パーフルォロビュルエーテル単位は、特性吸収 1040〜89 Ocm_1の範囲で赤外分光分析を行うことにより得られる値である。
[0025] 上記変性 PTFEは、示差走査型熱量計により測定する結晶化熱力^ 8. 0〜25. OJ Zgであるものである。
上記結晶化熱は、好ましい上限が 23. 5jZgである。
上記結晶化熱は、示差走査型熱量計 DSC— 50 (島津製作所製)にて、約 3mgの試 料を 50°CZ分の速度にて 250°Cに昇温させ、ー且該温度に保持し、更に 10°CZ分 の速度にて 380°Cに昇温することにより結晶を融解させた後、 10°CZ分の速度で降 温させた際に測定される結晶化点のピークから換算される熱量である。
[0026] 上記変性 PTFEは、 TFEとパーフルォロビニルエーテルとを重合することにより得る ことができる。
上記変性 PTFEは、特に限定されないが、懸濁重合により得られるものが好ましい。 上記懸濁重合は、例えば、重合温度を 0〜100°Cに設定して、水性媒体の存在下に て行うことが好ましい。
また、上記懸濁重合において、乳化剤等を使用することもできる。重合開始剤として 過硫酸アンモニゥム等の過硫酸塩等を使用することが好ましい。
上記乳化剤及び上記重合開始剤の使用量は、使用する単量体等の種類、所望の変 性 PTFEの組成等に応じて適宜設定することができる。
例えば、上記乳化剤を水性媒体の l〜200ppmの量にて使用した場合、後述するよ うな比表面積が大きい変性 PTFE成形用粉末を得ることができる。
懸濁重合により得られる変性 PTFE成形用粉末は、モールディングパウダーと称され ることがある。
[0027] 上記変性 PTFE成形用粉末は、上記重合を行うことにより得られた変性 PTFEを、例 えば、国際公開第 93Z16126号パンフレットに記載の方法等、公知の方法にて乾 燥、粉砕処理等を行うことにより得ることができる。
上記粉砕処理としては、例えば、剪断式粉砕、衝撃式粉砕が挙げられる。
本明細書において、剪断式粉砕は、剪断力による破砕や摩砕を基本とする粉砕方 法である。剪断式粉砕は、通常、高速で回転するハンマーの衝撃作用による粉砕で あり、例えば、ハンマーミル等の粉砕機を用いた粉砕が挙げられる。
本明細書において、衝撃式粉砕は、剪断力を実質的に与えずに、衝撃力による粉砕 を基本とする粉砕方法である。衝撃式粉砕は、通常、高速の気流によって粒子を衝 突させること〖こよる粉砕であり、例えば、エアジェットミル等の粉砕機を用いた粉砕が 挙げられる。
上記変性ポリマー成形用粉末を調製する際における粉砕方法としては、耐屈曲性の 点で、衝撃式粉砕が好ましい。
本発明における変性 PTFE成形用粉末は、重合後に得られる重合反応液から得た 粉末そのもの、該粉末を適宜粉砕してなる微粉末、又は、該粉末若しくは微粉末を 造粒したものの何れであってもよいが、取り扱い性、作業性の点で、造粒したものが 好ましい。
変性 PTFE成形用粉末は、粒度分布が小さ!/、ものが好ま 、。
[0028] 上記変性 PTFE成形用粉末は、着色剤、帯電防止剤等の添加剤を配合するもので あってもよい。
[0029] 上記変性 PTFE成形用粉末は、比表面積が 0. 5〜9. 0m2Zgであるものが好ましい 上記比表面積は、より好ましい下限が 0. 8m2Zgであり、より好ましい上限が 4. Om2 Zgである。
本明細書において、上記比表面積は、アナリティカル 'ケミストリー (Anal. Chem) , ν ol. 30, 1387頁(1985年)記載の窒素吸着法に従い、モノソープ (湯浅アイォ-タス 社製)にて測定したものである。
[0030] 本発明における変性 PTFE成形用粉末は、懸濁重合により得られるものである場合 、例えば、粉砕により小粒径ィ匕することができ、平均粒径が小さいと、得られる変性 P TFE成形体におけるボイドを減少させる傾向にある点で、好ま 、。
上記変性 PTFE成形用粉末は、造粒していないものである場合、乾式レーザー法に より測定した平均粒径が 100 μ m以下であることが好ましぐより好ましい上限は 50 μ m、更に好ましい上限は 40 μ m、特に好ましい上限は 30 μ mである。
上記変性 PTFE成形用粉末は、剪断式粉砕を行うことにより得られる場合、乾式レー ザ一法により測定した平均粒径が 100 μ m以下であることが好ましぐ 50 μ m以下で あることがより好ましぐこれらの範囲内であれば、 3 m以上であってよい。剪断式粉 砕により得られる粉末は、通常、不定形微粉末である。
上記変性 PTFE成形用粉末は、衝撃式粉砕を行うことにより得られる場合、乾式レー ザ一法により測定した平均粒径が 50 μ m以下であることが好ましぐ 30 μ m以下であ ることがより好ましぐこれらの範囲内の微粉末であれば、 3 m以上であってよい。
[0031] 本発明における変性 PTFE成形用粉末は、造粒したもの、即ち造粒品である場合、 造粒前の粉末又は造粒前の微粉末にお 、て、上記範囲内の平均粒径を有するもの であることが好ましぐ造粒後の平均粒径が 1000 m以下であるものが好ましぐ 90 以下であるもの力 Sより好ましく、 200〜900 111でぁる のカ更に好ましく、 600 μ m以下であることが特に好ましい。
[0032] 上記平均粒径は、造粒して 、な 、もの又は造粒前のものである場合、粒子径分布測 定装置 HELOS&RODOS (SYMPATEC社製)を用いて、乾式レーザー法により 測定したものである。
上記造粒後の平均粒径は、ドライシーブ法、具体的には国際公開第 99Z12996号 パンフレット、 12頁 23行目〜 13頁 4行目に記載の平均粒径測定方法にて測定した ものである。
[0033] 上記変性 PTFE成形用粉末は、通常、上述の範囲内で比表面積及び平均粒径を有 するものであるので、成形時の圧力伝達性が良いため成形加工しやすぐまた、稠密 性に優れた成形体を得ることができる。
[0034] 本発明における変性 PTFE成形用粉末は、見掛密度が 0. 60〜0. 95gZmlである ことが好ましい。
上記見掛密度は、より好ましい下限が 0. 65gZml、より好ましい上限が 0. 90g/ml である。
本明細書において、上記見掛密度は、 JIS K 6891 - 5. 3に準拠して測定した値 である。
[0035] 本発明における変性 PTFE成形用粉末は、耐屈曲性の点、その他電気的及び機械 的物性の点で、見掛密度が 0. 60-0. 95gZmlであって、平均粒径が 1000 m以 下であるものが好ましぐ見掛密度が上記範囲内であり平均粒径が 600 μ m以下で あるものがより好ましい。
見掛密度が上記範囲内である、平均粒径が上記範囲内である、又は、見掛密度と平 均粒径とが上記範囲内である、各変性 PTFE成形用粉末は、例えば、(1)剪断式粉 砕により得られ乾式レーザー法により測定した平均粒径が 100 m以下、好ましくは 50 mの微粉末を造粒する、(2)衝撃式粉砕により得られ乾式レーザー法により測 定した平均粒径が 50 μ m以下、好ましくは 30 μ m以下の微粉末を造粒する、等して 調製することができる。
上記各種粉砕方法により得られる微粉末を造粒して得られる造粒品は、通常、顆粒 状粉末である。上記範囲内の見掛密度を有する顆粒状粉末としては、上述のとおり、 該造粒後の平均粒径が好ましくは 1000 μ m以下、より好ましくは 900 μ m以下、更 に好ましくは 20〜900 μ m、特に好ましくは 600 μ m以下である造粒品であることが 望ましい。
[0036] 上記変性 PTFE成形用粉末は、見掛密度及び造粒後の平均粒径がそれぞれ上述 の範囲内である場合、耐屈曲性に優れ、屈曲寿命が長い成形体にすることができる [0037] 本発明の変性 PTFE成形体は、好ましくは上述の変性 PTFE成形用粉末を用いて 形成してなるものである。
上記変性 PTFE成形用粉末は、溶融成形することができないものであるが、例えば、 後述の本発明の変性 PTFE成形体の製造方法により好適に製造することができる。
[0038] 本発明の変性 PTFE成形体は、融解熱が 28jZg以下であるものである。
上記融解熱は、上記範囲内であれば、 18jZg以上であってもよぐまた 25jZg以下 であることが好ましぐ 23jZg以下であることがより好ましい。
本発明の変性 PTFE成形体は、融解熱が上記範囲内にあるので、結晶化度が低ぐ 耐屈曲性に優れている。
本明細書において、上記融解熱は、変性 PTFE成形体力 小片を切り出し、該小片 約 3mgを示差走査型熱量計 RDC220 (セイコー電子工業社製)にて、窒素雰囲気 下 50°CZ分の速度にて 250°Cまで昇温して 1分間保持し、更に 10°CZ分の速度に て 380°Cまで昇温して結晶を充分融解させた後、次いで 380°Cから 10°CZ分の速 度にて 250°Cまで降温した際に測定される結晶化点の曲線ピークを換算した値であ る。
[0039] 本発明の変性 PTFE成形体は、曲げ寿命 [MIT]が 200万回以上であるものである。
上記 MITは、好ましくは 250万回以上である。上記 MITは、上記範囲内であれば、 例えば、 300万回以下とすることができ、また 280万回以下とすることもできる。
本発明の変性 PTFE成形体は、上記範囲内の MITを有するものであるので、耐屈曲 性に非常に優れている。
上記 MITは、 JIS P8115に準拠して、各変性 PTFE成形体から幅 5mm、厚み 0. 5 mm、長さ最小 120mmに切り出した試験片について、 MIT耐折度試験機(安田精 機社製)を用いて測定したものである。
[0040] 本発明の変性 PTFE成形体は、長さ中央部に切込みがある特定形状のダンベルを 用い JIS K 6301に準拠したデマッチャ試験(以下、「特殊デマッチャ試験」というこ とがある。)における一 10°Cでの屈曲寿命を一般に 30万回以上とすることができる。 本明細書において、上記特殊デマッチャ試験による屈曲寿命は、長さ中央部に 90 度角に切り込んだ切込部の幅が 10mmであり、幅 20mm X長さ 150mm X厚み lm mである試験片を作成し、 JIS K 6301に準拠したデマッチャ試験機 (安田精機社 製)を用いて測定することにより求めた値である。
上記特殊デマッチャ試験による屈曲寿命は、被試験体の耐屈曲性を上述の MITより も高い精度で測定するものである。従って、一般に、 MIT値が上述の範囲内であつ ても、上記特殊デマッチャ試験による屈曲寿命は上述の範囲を下回ることがある一方 、上記特殊デマッチャ試験による屈曲寿命が上述の範囲内であれば、 MIT値は上 述の範囲内に入る。本発明の変性 PTFE成形体は、上述の範囲内の MIT値を有す るものであり、また更に、上述の範囲内の特殊デマッチャ試験による屈曲寿命をも達 成することができたものである。
[0041] 本発明の変性 PTFE成形体は、引張り強度が 30MPa以上であるものが好ましい。
上記引張り強度は、より好ましい下限が 35MPaであり、更に好ましい下限力 0MPa であるが、上記範囲内であれば、 60MPa以下であってもよい。
[0042] 本発明の変性 PTFE成形体は、引張り伸びが 300%以上であることが好ましい。
上記引張り伸びは、より好ましい下限が 350%であり、更に好ましい下限が 380%で あるが、上記範囲内であれば、 500%以下であってもよい。
上記引張り強度及び上記引張り伸びは、 JIS K6891に準拠して測定したものである
[0043] 本発明の変性 PTFE成形体は、上記引張り強度、上記引張り伸び等の機械的強度 を損なうことなぐ優れた耐屈曲性を得ることができたものである。
以下、本明細書において、上記変性 PTFE成形用粉末を用いて形成してなる本発 明の変性 PTFE成形体を「本発明の変性 PTFE成形体 (A)」と 、うことがある。
[0044] 本発明の変性 PTFE成形体の製造方法は、変性 PTFE粉末を用いてなる処理前焼 成圧縮成形体に焼成処理を施すことにより変性 PTFE成形体を製造する方法である 。該製造方法において、上記変性 PTFE粉末としては、上述の変性 PTFE成形用粉 末を用いることが好ましい。
[0045] 上記「処理前焼成圧縮成形体」は、変性 PTFE粉末を用いてなる未焼成圧縮成形体 を上記変性 PTFE粉末の融点以上の温度にて焼成 (本明細書にお!、て、「第一次焼 成工程」と!、うことがある。 )したのち上記変性 PTFE粉末の融点未満の温度に冷却( 本明細書において、「第一次冷却工程」ということがある。)することにより得られたも のである。
[0046] 上記「未焼成圧縮成形体」は、金型に変性 PTFE粉末を入れて圧縮することにより形 成される成形体であって、変性 PTFE粉末の融点以上の温度に加熱した履歴がな ヽ ものである。
上記未焼成圧縮成形体を形成するために圧縮する際の加圧としては、 0. lMPa〜l OOMPaが好ましぐより好ましい下限は lMPa、より好ましい上限は 80MPaである。
[0047] 上記「未焼成圧縮成形体」を変性 PTFE粉末の融点以上の温度にて焼成する第一 次焼成工程は、未焼成圧縮成形体の厚み、焼成時間等にもよるが、 345〜400°Cの 温度にて加熱することにより行うことが好ましぐ該焼成温度のより好ましい下限は 36 0°C、より好ましい上限は 390°Cである。上記第一次焼成工程は、通常、室温にて作 製した未焼成圧縮成形体を、予め上記範囲内の焼成温度に調温した焼成炉内に入 れること〖こより行うことができる。
本明細書において、上記変性 PTFE粉末の融点は、 3mgの試料を示差走査型熱量 計 DSC— 50 (島津製作所社製)にて 10°CZ分の速度で 380°Cまで昇温させた際に 測定できる融解熱ピークの温度として求めた値である。
[0048] 上記第一次焼成工程ののち、変性 PTFE粉末の融点未満の温度に冷却する第一次 冷却工程は、通常、常温〜 300°Cにまで冷却することが好ましぐより好ましくは、常 温〜 150°Cまで冷却する。
最終的に得られる変性 PTFE成形体の結晶化度は、後述の第二次焼成工程後の冷 却速度により実質的に決まるので、上記第一次冷却工程における冷却速度としては 特に限定されないが、例えば、大気放冷にて行ってもよい。
[0049] 上記未焼成圧縮成形体を作製する際に行う「圧縮成形」としては、(i)金型に榭脂粉 末を入れ圧縮して予備成形体 (プレフオーム)を形成したのち焼成する「狭義の圧縮 成形」であってもよ!ヽし、 (ii)長軸の金型に榭脂粉末を投入して形成した圧縮体を該 金型内の焼成部に下降させて焼成するラム押出成形であってもよい。
[0050] 本発明において、(1)上記処理前焼成圧縮成形体を上記により作製したのち引き続 、て後述の焼成処理を施す方法を用いてもよ!、し、 (2)上記処理前焼成圧縮成形体 を作製し終えた時点と、後述の焼成処理を開始する時点とが不連続的である方法を 用いてもよい。
前者( 1 )の処理前焼成圧縮成形体を作製したのち弓 Iき続!、て焼成処理を施す方法 としては、例えば、ラム押出成形により、処理前焼成圧縮成形体の作製と焼成処理と を連続して長軸の金型内を移送させながら行う方法等が挙げられる。
後者(2)の不連続的方法としては、例えば、上記処理前焼成圧縮成形体に相当する 市販品を購入してきて、後述の焼成処理を施す方法であってもよいし、いわゆるバッ チ式により処理前焼成圧縮成形体を作製したのち後述の焼成処理を施す方法であ つてもよい。後者のノ ツチ式による方法は、狭義の圧縮成形を用いる場合、好適な方 法である。
[0051] 本発明の変性 PTFE成形体の製造方法における焼成処理は、上述の処理前焼成圧 縮成形体に対して行う。
上記焼成処理は、変性 PTFE粉末の融点以上の温度にて焼成 (本明細書にお!、て 、「第二次焼成工程」ということがある。)することにより行うものである。
[0052] 上記第二次焼成工程は、処理前焼成圧縮成形体の厚み、焼成時間等にもよるが、 3 45〜400°Cの温度にて加熱することにより行うことが好ましぐ該焼成温度のより好ま しい下限は 350°C、更に好ましい下限は 360°C、より好ましい上限は 395°C、更に好 まし 、上限は 390°Cである。
上記第二次焼成工程における焼成を開始する際の昇温速度としては特に限定され ず、例えば、上述の(1)のラム押出成形により処理前焼成圧縮成形体の作製と連続 して焼成処理を行う場合、長軸の金型を軸方向に例えば約三等分し、 350〜400°C に設定した第一次焼成工程を行うゾーン、第一次冷却工程を行うゾーン、及び、 350 〜400°Cに設定した第二次焼成工程を行うゾーンに分け、この順に圧縮成形体を移 動させることにより行うことが好ましい。
上記第二次焼成工程における焼成を開始する際の昇温速度としては、また、上述の (2)のノツチ式等の場合、通常、室温にて用意した処理前焼成圧縮成形体を、予め 上記範囲内の焼成温度に設定した焼成炉内に入れることにより行うことが好ましい。 [0053] 上記焼成処理にお!、て、第二次焼成工程を経た焼成圧縮成形体は、冷却される (本 明細書において、「第二次冷却工程」ということがある。 )0上記第二次冷却工程は、 変性 PTFE粉末の融点未満の温度に冷却するものである。本工程における冷却温 度としては特に限定されず、通常、得られる変性 PTFE成形体が保管又は使用され る温度であればよい。
上記第二次冷却工程における冷却速度は、成形体の形状や大きさによるが、冷却速 度を管理'調整することにより、目的とする耐屈曲性に応じて結晶化度を調整し得るこ とがあり、一般的には、上記冷却速度は、管理容易等の点で、実際には、(a)第二次 焼成工程終了後直ちに水中に投じることによる急冷、又は、(b)第二次焼成工程終 了後、焼成炉力 取り出し、室温下の大気中に放置することによる徐冷を行うことで 充分である。
[0054] 本発明の変性 PTFE成形体の製造方法は、上述の焼成処理を施すものであるので 、例えば、該焼成処理の代わりに、榭脂の融点未満の温度にて加熱するァニーリン グを行う従来法の場合、上述の第一次焼成工程に相当する焼成の後に結晶部と非 晶部との境界に生じた一種の緊張を該アニーリングにより緩和していたものと考えら れるが、この緩和が耐屈曲性向上の点で不充分であつたのに対し、本発明の変性 P TFE成形体の製造方法は、上記焼成処理を変性 PTFE粉末の融点以上の温度に て行うことにより、上記緊張の緩和を促進するものと考えられる。
[0055] 上述した本発明の変性 PTFE成形体の製造方法を行うことにより得られる変性 PTF E成形体もまた、本発明の 1つである。
以下、本明細書において、本発明の変性 PTFE成形体の製造方法を行うことにより 得られる上記変性 PTFE成形体を「本発明の変性 PTFE成形体 (B)」と称することが ある。
本発明の変性 PTFE成形体 (B)は、上述した本発明の変性 PTFE成形体の製造方 法を行うことにより得られるものであり、本発明の変性 PTFE成形体 (A)と同じぐ結 晶化度が低ぐ耐屈曲性等の機械的物性等に優れている。
[0056] 本明細書において、以下、(A)及び (B)の符号を付さずに用いる「本発明の変性 PT FE成形体」なる用語は、上述の「本発明の変性 PTFE成形体 (A)」及び「本発明の 変性 PTFE成形体 (B) jを含み得る概念を表す。
[0057] 本発明の変性 PTFE成形体は、機械的特性、特に耐屈曲性及び耐クリープ性に優 れているので、耐屈曲性成形体、耐クリープ性成形体等として好適に使用することが できる。
上記耐屈曲性成形体としては、例えば、ベローズ、ダイヤフラム、ホース、ピストンリン グ、バタフライバブル等が挙げられる。
上記耐クリープ性成形体としては、例えば、ボールバブルシート、ダイヤフラム、パッ キン、ガスケット、ピストンリング、ベローズ、ダイヤフラム、バタフライバブル等が挙げ られる。
[0058] 本発明の変性 PTFE成形体は、耐薬品性にも優れているので、更に、耐薬品性透過 性成形体としても好適に使用することができる。
上記耐薬品性透過性成形体としては、ケミカルポンプのベローズやダイヤフラム等が 挙げられる。
上記ケミカルポンプは、化学工業や半導体製造装置等にお!、て使用する腐食性が 強い流体;例えば、フッ素、塩化水素、硫黄酸化物、窒素酸化物等の気体;フッ化水 素、塩酸、硫酸、硝酸、ォキシ塩化リン、塩ィ匕チォニル、塩化スルフリル、クロム酸等 の各種有機酸及び酸ハロゲンィ匕酸等の液体;等の輸送に使用することができる。 発明の効果
[0059] 本発明の変性 PTFE成形体は、上述の構成よりなるので、引張り強度及び引張り伸 びを損なうことなぐ耐屈曲性に優れたものである。
本発明の変性 PTFE成形体の製造方法は、上述の構成よりなるので、上記特性を有 する変性 PTFE成形体を簡便な方法により製造することができる。
発明を実施するための最良の形態
[0060] 以下に実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれら実 施例及び比較例に限定されるものではない。
[0061] 合成例 1
炭酸アンモ-ゥム 3. 3gを純水(水性媒体) 54. 8Lに溶力した溶液を 170L容のォ一 トクレーブに仕込み、イカリ型撹拌翼で撹拌(l lOr. p. m. )する。脱気したのちテトラ フルォロエチレン [TFE]を 0. 5kgZcm2 (ゲージ圧)まで仕込む。この操作を 3回繰 り返したのちパーフルォロ(プロピルビュルエーテル) [PPVE] 85gを TFEと合わせ て圧入し、反応系の温度を 50°Cに上昇させた後、 TFEを反応系内圧が 8kgZcm2 になるまで圧入する。続いて、過硫酸アンモ-ゥム水溶液 (濃度約 0. 36質量%) 0. 2Lを加えて重合を開始した。上記重合は、反応系内圧が 8kgZcm2に維持されるよ う TFEを連続的に圧入して行い、水性媒体の 22. 5質量%の TFEが消費された時 点で、オートクレーブから TFE及び PPVEを放出して、反応を終了させた。上記重合 の終了後、室温にまで冷却し、乾燥させて変性 PTFE粉末を得た。
得られた変性 PTFE粉末を取り出し、ハンマーミルにて平均粒径力 2 μ mになるま で粉砕し、変性 PTFE成形用粉末 1を得た。
得られた変性テトラフルォロエチレン [変性 PTFE]成形用粉末及び後述の造粒粉末 について、以下の方法に従い、 PPVE含有量、比表面積、結晶化熱、見掛密度及び 平均粒径を測定した。
(1) PPVE含有量
特性吸収 1040〜890cm_1の間において赤外分光分析を行うことにより測定した。
(2)比表面積
アナリティカル 'ケミストリー(Anal. Chem. ) 30卷、 1387頁(1985年)記載の窒素 吸着法に従い、モノソープ (湯浅アイォ-タス社製)にて測定した。
(3)結晶化熱
3mgの試料を、示差走査型熱量計 DSC— 50 (島津製作所社製)にて、 10°CZ分の 速度で 380°Cまで昇温させた際に測定できる融解熱ピークを解析して求めた。
(4)見掛密度
IS K6891 - 5. 3に準拠して測定した。
(5)粉砕粉末の平均粒径
粒子径分布測定装置 HELOS&RODOS (SYMPATEC社製)を用いて、乾式レ 一ザ一法により測定した。
(6)造粒後の平均粒径
IS K 6891— 5. 4に準拠して、 10分間の振動時間にて測定した。 [0063] 本合成例から得られた変性 PTFE成形用粉末は、 PPVE含有量が 0. 062質量%、 比表面積が 1. 5m2Zgであった。
この粉末を公知の方法で造粒したところ、見掛密度が 0. 8gZml、平均粒径が 500 / m、結晶化熱が 21. 9jZgの造粒粉末を得た。
[0064] 実施例 1
上部 300mmを 380。C、中部 300mmを 380。C、下部 300mmを 350。Cの温度に設 定した金型内径 46 φ、金型長さ 1100mm、加熱長さ 900mmのラム押出し金型を用 いて、合成例 1により得られた変性 PTFE成形用粉末 1の造粒粉末を、充填長 60m m、圧力 3MPa、加圧時間 55秒、 1サイクル 65秒にて押出した後、室温に冷却して、 処理前焼成圧縮成形体を得た。
得られた処理前焼成圧縮成形体を、任意の長さに切断し、予め 380°Cに設定した電 気炉で 30分間、焼成処理し、室温にて放冷して本発明の変性 PTFE成形体 1を得た
[0065] 実施例 2
上部 300mmを 380。C、中部 300mmを 380。C、下部 300mmを 350。Cの温度に設 定した金型内径 46 φ、金型長さ 1100mm、加熱長さ 900mmのラム押出し金型を用 いて、合成例 1により得られた変性 PTFE成形用粉末 1の造粒粉末を、充填長 60m m、圧力 3MPa、加圧時間 55秒、 1サイクル 65秒にて、押し出すことにより第一次焼 成工程を行い、続いて、上記ラム押出し金型の下部に接続したジャケット付 (ジャケッ ト内は 5°Cの冷媒を通水)の冷却ゾーン (長さ約 300mm)に通過させて、処理前焼成 圧縮成形体を得た。引き続き、得られた処理前焼成圧縮成形体を、 380°Cに設定し た金型内径 50 φ、長さ 500mmの押出金型に通過させ、再度溶融させて第二次焼 成工程を行い、金型から取り出して室温にて放冷し、変性 PTFE成形体 2を得た。
[0066] 実施例 3
金型内径 50 φ、金型長さ 500mmの圧縮成形用金型に、合成例 1により得られた変 性 PTFE成形用粉末 1の造粒粉末 21 Ogを投入し、室温で 29. 4MPaに加圧したま ま 5分間保持して、未焼成圧縮成形体を得た。
得られた未焼成圧縮成形体を、上記金型から取り出して、 370°Cにて 5時間焼成した 後、室温にて放冷することにより処理前焼成圧縮成形体を得た。得られた処理前焼 成圧縮成形体を、予め 380°Cに設定した電気炉にて 5時間焼成したのち炉外に取り 出し、室温にて放冷して本発明の変性 PTFE成形体 3を得た。
[0067] 比較例 1
合成例 1により得られた変性 PTFE成形用粉末 1の造粒粉末を、上部 300mmを 380 。C、中部 300mmを 380。C、下部 300mmを 350。Cの温度に設定した金型内径 46 φ 、金型長さ 1100mm、加熱長さ 900mmのラム押出し金型を用いて、充填長 60mm 、圧力 3MPa、加圧時間 55秒、 1サイクル 65秒にて押出し、得られた焼成物を金型 力 取り出し、任意の長さに切断して、成形体 Aを得た。
[0068] 比較例 2
合成例 1により得られた変性 PTFE成形用粉末 1の造粒粉末 210gを、金型内径 50 φ、金型長さ 500mmの圧縮成形用金型に投入し、室温にて 29. 4MPaに加圧した まま 5分間保持して、続いて上記金型内力 取り出した後、電気炉で 50°CZ時間の 速度にて 370°Cに昇温し、 370°Cにて 5時間焼成した後、 50°CZ時間の速度にて室 温にまで降温して、成形体 Bを得た。
[0069] 比較例 3
金型内径 50 φ、金型長さ 500mmの圧縮成形用金型に、市販の PTFE粉末(三井 デュポンフルォロケミカル社製 70J)を 21 Og投入し、室温にて 29. 4MPaに加圧した まま 5分間保持した後、上記金型内から取り出し、電気炉内で 50°CZ時間の速度に て 370°Cに昇温し、 370°Cにて 5時間焼成した後、 50°CZ時間の速度にて室温にま で降温し、成形体 Cを得た。
[0070] 比較例 4
上部 300mmを 390。C、中部 300mmを 380。C、下部 300mmを 370。Cに設定した金 型内径 46 φ、金型長さ 1100mm、加熱長さ 900mmのラム押出し金型を用いて、巿 販の PTFE (旭硝子社製 G307)粉末を、充填長 60mm、圧力 2. 5MPa、加圧時間 55秒、 1サイクル 65秒にて押出し、得られた焼成物を金型から取り出し、任意の長さ に切断して、成形体 Dを得た。
[0071] 試験例 実施例 1〜3及び比較例 1〜4から得られた各成形体につ 、て、下記試験方法にて、 曲げ寿命 (MIT)、引張り強度 (TS)、引張り伸び (EL)及び融解熱を測定した。 試験方法
1) MIT
IS P 8115に準拠して、各成形体から幅 5mm、厚み 0. 5mm、長さ最小 120mm に切り出して作成した試験片につ!/ヽて、 MIT耐折度試験機 (安田精機社製)を用い て測定した。
2) TS及び EL
IS K 6891に準拠して、各成形体から JISダンベル 3号を用いて打ち抜いた試験 片について、測定した。
3)融解熱
成形体力 小片を切り出し、該小片約 3mgを精秤し、専用のアルミパンに収納し、 D SC装置 RDC220 (セイコー電子工業社製)にて測定した。測定は、まずアルミパンを 窒素雰囲気下 50°CZ分の速度にて 250°Cまで昇温して 1分間保持し、更に 10°CZ 分の速度にて 380°Cまで昇温して結晶を充分融解させた。次いで 380°Cから 10°C Z分の速度にて 250°Cまで降温し、結晶化点における熱ピークを換算した。
[表 1]
CO O 00
施実実施施例例例実 321 00
較例較例較例比比較例比 43比 21 (M J
変性 ( ( (変性変性TFTF F E PE P E PT
) ( ( (体))形成成)形体成体 (形成形体 C D B A
) )成成体形体形成形体 ) 3121
熱融解
(M 〇 <J5
CO CO
o 強度張引り
〇 ) (MP a o
00 L
<M 伸張引びり寸
-H co
(%)
〇 〇
CM o
〇 co
(
co
O 〇
(M CD
CO oo
(M 寸
〇 to
CO
00 00
CM 寸
CO
〇 ι 〇
00 00
(M CO
処理前焼成圧縮成形体を焼成して得た変性 PTFE成形体 1〜3は、第二次焼成ェ 程を行わなレ、成形体 A並びに上記市販の変性 PTFEを用いて得た成形体 B及び C に比較して、 MIT、引張り強度及び引張り伸びの何れにおいても優れていた。
第二次焼成工程を行わない狭義の圧縮成形により得た成形体 Bは、引張り強度に優 れていたが、変性 PTFE成形体 1〜3は、成形体 Bと比べ、引張り強度を損なうことな く MIT及び引張り伸びに優れて ヽた。
[0074] 合成例 2
合成例 1と同様に変性 PTFE粉末を調製した。得られた変性 PTFE粉末についてェ アジエツトミルを用いて衝撃式粉砕を行い、平均粒径 20 mの微粉末を調製し、更 に該微粉末を造粒して、見掛密度 0. 80gZml、平均粒径 600 m、結晶化熱 22. UZgの顆粒粉末 (変性 PTFE成形用粉末 2)を得た。
[0075] 実施例 4
内径 50mm、長さ 500mmの円筒状の圧縮成形用金型に変性 PTFE成形用粉末 2 を 210g充填し、室温にて成形圧力 29. 4MPaで 5分間保持し、予備成形品を作製し た。得られた予備成形品を 50°CZ時間で 365°Cまで昇温し、 365°Cで 5時間焼成し たのち 50°CZ時間で降温し、融解熱 26jZg、曲げ寿命 280万回の変性 PTFE成形 体 4を得た。
得られた変性 PTFE成形体 4につ 、て特殊デマッチャ試験を行 ヽ、 10°Cの耐久 試験を行ったところ、屈曲寿命が 30万回であった。
上記特殊デマッチャ試験は、長さ中央部に 90度角に切り込んだ切込部の幅が 10m mであり、幅 20mm X長さ 150mm X厚み lmmである試験片を作成し、 JIS K 63 01に準拠したデマッチャ試験機 (安田精機社製)を用い、 10°C士 1°Cの雰囲気で 屈曲ストローク距離 50mm、屈曲疲労 300回分を与える条件下で行い、上記屈曲寿 命は、屈曲疲労による破断を反射型レーザーセンサーの強度変化により検出した。 上記試験は同一サンプルにつ 、て 5回を行 、、最大値と最小値を除!、た 3回の試験 値に関する平均値を測定値として求めた。
[0076] 実施例 5
内径 50mm、長さ 500mmの円筒状の圧縮成形用金型に変性 PTFE成形用粉末 2 を 210g充填し、室温にて成形圧力 29. 4MPaで 5分間保持し、 50 φ、高さ 50mmの 未焼成圧縮成形体を作製した。得られた未焼成圧縮成形体を 365°Cで 5時間焼成し たのち放冷して処理前焼成圧縮成形体を作製し、更に 380°Cで 5時間焼成したのち 放冷し、融解熱 22jZg、曲げ寿命 370万回の変性 PTFE成形体 5を得た。
この変性 PTFE成形体 5につ 、て実施例 4と同様に特殊デマッチャ試験を行 、、 1 0°Cの耐久試験を行ったところ、屈曲寿命が 50万回であった。
[0077] 実施例 6
変性 PTFE成形用粉末 2について実施例 1と同様に成形を行い、融解熱 22jZg、曲 げ寿命 380万回の変性 PTFE成形体 6を得た。
この変性 PTFE成形体 6につ 、て実施例 4と同様に特殊デマッチャ試験を行 、、 一 1 0°Cの耐久試験を行ったところ、屈曲寿命が 50万回であった。
[0078] 合成例 3
合成例 1と同様に調製した変性 PTFE粉末についてハンマーミルを用いて剪断式粉 砕を行い、結晶化熱 2 jZg、平均粒径 42 mの変性 PTFE成形用粉末 3を調製し た。
[0079] 合成例 4〜7
合成例 2と同様に衝撃式粉砕を行い、平均粒径 20 /z m 結晶化熱 23jZgの変性 P TFE成形用粉末 4、平均粒径 25 m、結晶化熱 23jZgの変性 PTFE成形用粉末 5 、平均粒径 27 m、結晶化熱 23jZgの変性 PTFE成形用粉末 6、及び、平均粒径 3 4 m、結晶化熱 2 jZgの変性 PTFE成形用粉末 7を調製した。
[0080] 実施例 7〜11
変性 PTFE成形用粉末 3〜7をそれぞれ内径 50mm、長さ 500mmの円筒状の圧縮 成形用金型に 210g充填し、室温にて成形圧力 29. 4MPaで 5分間保持し、 50 φ 、 高さ 50mmの予備成形品を作り、 365°Cで 5時間焼成したのち 50°CZ時間の速度で 降温し、変性 PTFE成形用粉末 3〜7の順に、融解熱 27jZg、曲げ寿命 230万回の 変性 PTFE成形体 7、融解熱 26jZg、曲げ寿命 390万回の変性 PTFE成形体 8、融 解熱 26jZg、曲げ寿命 360万回の変性 PTFE成形体 9、融解熱 26jZg、曲げ寿命 340万回の変性 PTFE成形体 10、及び、融解熱 27jZg、曲げ寿命 300万回の変性 PTFE成形体 11を得た。
各変性 PTFE成形体にっ 、て実施例 4と同様に特殊デマッチャ試験を行 、、 10 °Cの耐久試験を行ったところ、屈曲寿命は変性 PTFE成形体 7〜: L 1の順に 32万回
、 50万回、 44万回、 42万回、 41万回であった。
[0081] 実施例 4〜: L 1の各変性 PTFE成形体について、データを表 2に示す。
[0082] [表 2]
Figure imgf000025_0001
[0083] 実施例 12〜16
変性 PTFE成形用粉末 3〜7をそれぞれ内径 50mm、長さ 500mmの円筒状の圧縮 成形用金型に 210g充填し、室温にて成形圧力 29. 4MPaで 5分間保持し、 50 φ、 高さ 50mmの未焼成圧縮成形体を作製した。得られた未焼成圧縮成形体をそれぞ れ 365°Cで 5時間焼成したのち放冷して処理前焼成圧縮成形体を得た。得られた処 理前焼成圧縮成形体をそれぞれ 380°Cで 5時間焼成し、放冷して変性 PTFE成形 体 12〜16を得た。
各変性 PTFE成形体 12〜16につ 、て実施例 4と同様に特殊デマッチャ試験を行 ヽ 、—10°Cの耐久試験を行ったところ、屈曲寿命は変性 PTFE成形体 12〜16の順に 36万回、 66万回、 54万回、 49万回、 48万回であった。
[0084] 比較例 5〜9
市販されて ヽる未変性 PTFEの微粉末 I (製品名 7AJ、三井デュポンフルォロケミカル 社製;見掛密度 0. 45gZml、平均粒径 36 /z m)、未変性の顆粒粉末 Π (製品名 810 J、三井デュポンフルォロケミカル社製;見掛密度 0. 86gZml、平均粒径 440 m)、 変性 PTFEの微粉末 III (製品名 70J、三井デュポンフルォロケミカル社製;平均粒経 35 m)、変性 PTFEの顆粒粉末 IV (製品名 TFM 1600、ダイネオン社製;見掛密 度 0. 84gZml、平均粒経 480 /z m)、変性 PTFEの顆粒粉末 V (製品名 TG170JS、 三井デュポンフルォロケミカル社製;見掛密度 0. 58g/ml、平均粒経 630 m)を、 それぞれ内径 50mm、金型長さ 500mmの円筒状の圧縮成形用金型に 210g充填し 、室温にて成形圧力 29. 4MPaで 5分間保持して、 50 φ、高さ 50mmの予備成形品 を作製した。得られた予備成形品をそれぞれ 365°Cにて 5時間焼成し、 50°CZ時間 の速度で降温し成形体 E〜Iを得た。
各成形体にっ 、て実施例 4と同様に特殊デマッチャ試験を行 、、 - 10°Cの耐久試 験を行ったところ、屈曲寿命は成形体 E〜Iの順に 9万回、 8万回、 2万回、 1. 8万回 、 1. 7万回であった。
[0085] 実施例 12〜16及び比較例 5〜9で得られた各成形体について、データを表 3に示 す。
[0086] [表 3] 実施例 1 2 実施例 1 3 実施例 1 4 実施例 1 5 実施例 1 6 (変性 PTFE (変性 PTFE (変性 PTFE (変性 PTFE (変性 PTFE 成形体 1 2 ) 成形体 1 3 ) 成形体 1 4 ) 成形体 1 5 ) 成形体 1 6 ) 特殊デマッチャ
3 6 6 6 5 4 4 9 4 8 試験 (万回)
比較例 5 比較例 6 比較例 7 比較例 8 比較例 9 (成幵さ体 E) 诚形体 F) (成形体 G) (成形体 H) (成形体 I ) 特殊デマッチャ
9 8 2 1 . 8 1 . 7 試験 (万回) 産業上の利用可能性
本発明の変性 PTFE成形体は、上述の構成よりなるので、引張り強度、引張り伸びを 損なうことなぐ耐屈曲性に優れている。
本発明の変性 PTFE成形体の製造方法は、上述の構成よりなるので、上記特性を有 する変性 PTFE成形体を容易に製造することができる。

Claims

請求の範囲 [1] 変性ポリテトラフルォロエチレン成形用粉末を用いて形成してなる変性ポリテトラフル ォロエチレン成形体であって、 前記変性ポリテトラフルォロエチレン成形用粉末は、溶融成形できず、 前記変性ポリテトラフルォロエチレン成形用粉末を構成する変性ポリテトラフルォロェ チレンは、下記式 (I) :
[化 1]
—— C F2 - C F——
I CD
0— X
(式中、 Xは、炭素数 1〜6のパーフルォロアルキル基又は炭素数 4〜9のパーフルォ 口アルコキシアルキル基である)で表わされるパーフルォロビュルエーテル単位を 0. 01〜1質量%含有するものであり、且つ、示差走査型熱量計により測定する結晶化 熱が 18. 0〜25. OjZgであるものであり、
前記変性ポリテトラフルォロエチレン成形体は、融解熱が 28jZg以下、且つ、曲げ 寿命が 200万回以上である
ことを特徴とする変性ポリテトラフルォロエチレン成形体。
[2] 引張り強度が 30MPa以上である請求項 1記載の変性ポリテトラフルォロエチレン成 形体。
[3] 引張り伸びが 300%以上である請求項 1又は 2記載の変性ポリテトラフルォロェチレ ン成形体。
[4] 長さ中央部に切込みがある特定形状のダンベルを用い JIS K 6301に準拠したデ マツチヤ試験における— 10°Cでの屈曲寿命が 30万回以上である請求項 1、 2又は 3 記載の変性ポリテトラフルォロエチレン成形体。
[5] 変性ポリテトラフルォロエチレン粉末を用いてなる処理前焼成圧縮成形体に焼成処 理を施すことよりなる変性ポリテトラフルォロエチレン成形体の製造方法であって、 前記処理前焼成圧縮成形体は、変性ポリテトラフルォロエチレン粉末を用いてなる 未焼成圧縮成形体を前記変性ポリテトラフルォロエチレン粉末の融点以上の温度に て焼成したのち前記変性ポリテトラフルォロエチレン粉末の融点未満の温度に冷却 することにより得られたものであり、
前記焼成処理は、前記変性ポリテトラフルォロエチレン粉末の融点以上の温度にて 焼成することにより行うものである
ことを特徴とする変性ポリテトラフルォロエチレン成形体の製造方法。
[6] 変性ポリテトラフルォロエチレン粉末は、剪断式粉砕により得られ乾式レーザー法に より測定した平均粒径が 100 μ m以下の微粉末である請求項 5記載の変性ポリテトラ フルォロエチレン成形体の製造方法。
[7] 変性ポリテトラフルォロエチレン粉末は、剪断式粉砕により得られる微粉末を造粒し て得られる顆粒状粉末であり、
前記微粉末は、乾式レーザー法により測定した平均粒径が 100 m以下である請求 項 5記載の変性ポリテトラフルォロエチレン成形体の製造方法。
[8] 変性ポリテトラフルォロエチレン粉末は、剪断式粉砕により得られる微粉末を造粒し て得られ見掛密度が 0. 60-0. 95gZmlの顆粒状粉末であり、
前記微粉末は、乾式レーザー法により測定した平均粒径が 100 m以下である請求 項 5記載の変性ポリテトラフルォロエチレン成形体の製造方法。
[9] 変性ポリテトラフルォロエチレン粉末は、更に、ドライシーブ法により測定した平均粒 径が 900 μ m以下の造粒品である請求項 8記載の変性ポリテトラフルォロエチレン成 形体の製造方法。
[10] 変性ポリテトラフルォロエチレン粉末は、衝撃式粉砕により得られ乾式レーザー法に より測定した平均粒径が 50 μ m以下の微粉末である請求項 5記載の変性ポリテトラフ ルォロエチレン成形体の製造方法。
[11] 変性ポリテトラフルォロエチレン粉末は、衝撃式粉砕により得られる微粉末を造粒し て得られる顆粒状粉末であり、
前記微粉末は、乾式レーザー法により測定した平均粒径が 50 m以下である請求 項 5記載の変性ポリテトラフルォロエチレン成形体の製造方法。
[12] 変性ポリテトラフルォロエチレン粉末は、衝撃式粉砕により得られる微粉末を造粒し て得られ見掛密度が 0. 60-0. 95gZmlの顆粒状粉末であり、 前記微粉末は、乾式レーザー法により測定した平均粒径が 50 m以下である請求 項 5記載の変性ポリテトラフルォロエチレン成形体の製造方法。
[13] 変性ポリテトラフルォロエチレン粉末は、更に、ドライシーブ法により測定した平均粒 径が 900 μ m以下の造粒品である請求項 12記載の変性ポリテトラフルォロエチレン 成形体の製造方法。
[14] 請求項 5、 6、 7、 8、 9、 10、 11、 12又は 13記載の変性ポリテトラフルォロエチレン成 形体の製造方法により製造した
ことを特徴とする変性ポリテトラフルォロエチレン成形体。
PCT/JP2005/021986 2004-11-30 2005-11-30 変性ポリテトラフルオロエチレン成形体及びその製造方法 WO2006059642A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006547978A JP5012027B2 (ja) 2004-11-30 2005-11-30 変性ポリテトラフルオロエチレン成形体及びその製造方法
US11/791,717 US7528221B2 (en) 2005-11-30 2005-11-30 Modified polytetrafluoethylene molded article and process for manufacture thereof
EP05811241A EP1829904A4 (en) 2004-11-30 2005-11-30 FORM BODY OF MODIFIED POLYTETRAFLUOROETHYLENE AND METHOD OF MANUFACTURING THEREOF

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004346686 2004-11-30
JP2004-346686 2004-11-30
JP2005-289462 2005-09-30
JP2005289462 2005-09-30

Publications (1)

Publication Number Publication Date
WO2006059642A1 true WO2006059642A1 (ja) 2006-06-08

Family

ID=36565076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021986 WO2006059642A1 (ja) 2004-11-30 2005-11-30 変性ポリテトラフルオロエチレン成形体及びその製造方法

Country Status (4)

Country Link
EP (1) EP1829904A4 (ja)
JP (1) JP5012027B2 (ja)
KR (1) KR20070086795A (ja)
WO (1) WO2006059642A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041433A1 (ja) * 2007-09-26 2009-04-02 Iwaki Co., Ltd. ポリテトラフルオロエチレン製ベローズ、その製造方法、その製造装置およびそれを用いた流体圧送機器
JP2009154534A (ja) * 2007-12-03 2009-07-16 Daikin Ind Ltd 成形体、ダイヤフラム弁、ダイヤフラムポンプ及びその製造方法
JP2010520435A (ja) * 2007-03-07 2010-06-10 サン−ゴバン パフォーマンス プラスティックス コーポレイション 多層管
WO2013115374A1 (ja) * 2012-02-01 2013-08-08 ダイキン工業株式会社 封止材料
WO2022009781A1 (ja) * 2020-07-09 2022-01-13 ダイキン工業株式会社 三次元造形物
WO2024190687A1 (ja) * 2023-03-13 2024-09-19 ニチアス株式会社 変性ポリテトラフルオロエチレン樹脂の粉体、及び成形体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993016126A1 (en) * 1992-02-05 1993-08-19 Daikin Industries, Ltd. Polytetrafluoroethylene powder for molding
JPH1135709A (ja) * 1997-07-16 1999-02-09 Daikin Ind Ltd 焼成ポリテトラフルオロエチレンシートの平滑化方法
WO2001070854A1 (fr) * 2000-03-24 2001-09-27 Daikin Industries, Ltd. Anneau d'etancheite
WO2003035724A1 (fr) * 2001-10-24 2003-05-01 Daikin Industries, Ltd. Poudre de ptfe, et procede de fabrication correspondant, aux fins de moulage

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5709944A (en) * 1992-02-05 1998-01-20 Daikin Industries, Ltd. Polytetrafluoroethylene molding powder
DE4332712A1 (de) * 1993-09-25 1995-03-30 Hoechst Ag Verfahren zur Herstellung eines modifizierten Polytetrafluorethylens und seine Verwendung
US6870020B2 (en) * 2002-04-30 2005-03-22 E. I. Du Pont De Nemours And Company High vinyl ether modified sinterable polytetrafluoroethylene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993016126A1 (en) * 1992-02-05 1993-08-19 Daikin Industries, Ltd. Polytetrafluoroethylene powder for molding
JPH1135709A (ja) * 1997-07-16 1999-02-09 Daikin Ind Ltd 焼成ポリテトラフルオロエチレンシートの平滑化方法
WO2001070854A1 (fr) * 2000-03-24 2001-09-27 Daikin Industries, Ltd. Anneau d'etancheite
WO2003035724A1 (fr) * 2001-10-24 2003-05-01 Daikin Industries, Ltd. Poudre de ptfe, et procede de fabrication correspondant, aux fins de moulage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1829904A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520435A (ja) * 2007-03-07 2010-06-10 サン−ゴバン パフォーマンス プラスティックス コーポレイション 多層管
WO2009041433A1 (ja) * 2007-09-26 2009-04-02 Iwaki Co., Ltd. ポリテトラフルオロエチレン製ベローズ、その製造方法、その製造装置およびそれを用いた流体圧送機器
JP2009097725A (ja) * 2007-09-26 2009-05-07 Hirosuke Sato ポリテトラフルオロエチレン製ベローズ、その製造方法、その製造装置およびそれを用いた流体圧送機器
JP2009154534A (ja) * 2007-12-03 2009-07-16 Daikin Ind Ltd 成形体、ダイヤフラム弁、ダイヤフラムポンプ及びその製造方法
WO2013115374A1 (ja) * 2012-02-01 2013-08-08 ダイキン工業株式会社 封止材料
JP2013177574A (ja) * 2012-02-01 2013-09-09 Daikin Industries Ltd 封止材料
WO2022009781A1 (ja) * 2020-07-09 2022-01-13 ダイキン工業株式会社 三次元造形物
JP2022015603A (ja) * 2020-07-09 2022-01-21 ダイキン工業株式会社 三次元造形物
JP7048907B2 (ja) 2020-07-09 2022-04-06 ダイキン工業株式会社 三次元造形物
TWI825447B (zh) * 2020-07-09 2023-12-11 日商大金工業股份有限公司 三維造形物及其製造方法
EP4180210A4 (en) * 2020-07-09 2024-07-03 Daikin Ind Ltd THREE-DIMENSIONAL MOLDED PRODUCT
WO2024190687A1 (ja) * 2023-03-13 2024-09-19 ニチアス株式会社 変性ポリテトラフルオロエチレン樹脂の粉体、及び成形体

Also Published As

Publication number Publication date
EP1829904A4 (en) 2009-06-17
KR20070086795A (ko) 2007-08-27
JP5012027B2 (ja) 2012-08-29
EP1829904A1 (en) 2007-09-05
JPWO2006059642A1 (ja) 2008-06-05

Similar Documents

Publication Publication Date Title
JP4710832B2 (ja) 変性ポリテトラフルオロエチレンファインパウダー及び変性ポリテトラフルオロエチレン成形体
JP5012027B2 (ja) 変性ポリテトラフルオロエチレン成形体及びその製造方法
JP5983633B2 (ja) ポリテトラフルオロエチレンファインパウダーの製造方法
JPH02261810A (ja) 変性したポリテトラフルオロエチレン微細粉末及びその製造法
JP4858545B2 (ja) ポリテトラフルオロエチレン成形体及びその製造方法
KR102507245B1 (ko) 우수한 내블리스터성을 갖는 pfa 성형체 및 pfa 성형체에서의 블리스터의 발생을 제어하는 방법
JPH1087746A (ja) テトラフルオロエチレン共重合体造粒物とその製造方法
US7528221B2 (en) Modified polytetrafluoethylene molded article and process for manufacture thereof
JP6214708B2 (ja) 電線の製造方法
JP5756338B2 (ja) シール部材の製造方法およびその方法で作製されるシール部材
JPH0593086A (ja) 多孔質ポリテトラフルオロエチレン成形体の製法
JP6750172B2 (ja) 摺動部材に用いられるポリテトラフルオロエチレン成形体及びその製造方法
JP4714310B2 (ja) 非溶融加工性フッ素樹脂
JP2015108126A (ja) フッ素樹脂のリサイクル方法
US8192677B2 (en) Core/shell polymer and fluoropolymer blending blow molding and blown film process
EP2219847A1 (en) Core/shell polymer and fluoropolymer blend blown film process
CN101056902A (zh) 改性聚四氟乙烯成型体及其制造方法
RU2404055C2 (ru) Способ изготовления изделий из порошковых полимерных материалов (варианты)
WO2024190687A1 (ja) 変性ポリテトラフルオロエチレン樹脂の粉体、及び成形体
RU2813748C1 (ru) Способ получения термостойкого конструкционного полиимидного пенопласта на основе (мет)акриловых мономеров
JPH0698663B2 (ja) ポリテトラフルオロエチレン樹脂成形方法
JP6459598B2 (ja) 予備成形体の製造方法
WO2024143193A1 (ja) フッ素樹脂組成物、フッ素樹脂組成物の製造方法およびフッ素樹脂成形体の製造方法
JP2003311763A (ja) Ptfe中実成形体製造方法
JP2801658B2 (ja) ポリテトラフルオロエチレン多孔質体およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006547978

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580038326.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11791717

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005811241

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077014885

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005811241

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11791717

Country of ref document: US