WO2006057111A1 - 冷凍空調装置、冷凍空調装置の運転制御方法、冷凍空調装置の冷媒量制御方法 - Google Patents

冷凍空調装置、冷凍空調装置の運転制御方法、冷凍空調装置の冷媒量制御方法 Download PDF

Info

Publication number
WO2006057111A1
WO2006057111A1 PCT/JP2005/018619 JP2005018619W WO2006057111A1 WO 2006057111 A1 WO2006057111 A1 WO 2006057111A1 JP 2005018619 W JP2005018619 W JP 2005018619W WO 2006057111 A1 WO2006057111 A1 WO 2006057111A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure
temperature
amount
heat exchanger
Prior art date
Application number
PCT/JP2005/018619
Other languages
English (en)
French (fr)
Inventor
Fumitake Unezaki
Tetsuji Saikusa
Takashi Okazaki
Makoto Saitou
Hirokuni Shiba
Sou Nomoto
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to US11/665,008 priority Critical patent/US8109105B2/en
Priority to EP05790633.1A priority patent/EP1818627B1/en
Priority to ES05790633.1T priority patent/ES2641814T3/es
Priority to CN2005800404339A priority patent/CN101065622B/zh
Publication of WO2006057111A1 publication Critical patent/WO2006057111A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02331Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02334Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2102Temperatures at the outlet of the gas cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2108Temperatures of a receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant

Definitions

  • Refrigeration air conditioner operation control method of refrigeration air conditioner, refrigerant amount of refrigeration air conditioner
  • the present invention relates to a refrigeration air conditioner, and in particular, for example, carbon dioxide (CO 2).
  • receiver that stores refrigerant at the inlet of the pressure device and controls the amount of refrigerant in the receiver to control the operating high pressure of the device and to provide a predetermined cooling capacity.
  • Patent Document 1 Japanese Patent Publication No. 7-18602 (page 11-15, Fig. 2, Fig. 3)
  • the conventional refrigeration and air-conditioning apparatus has the following problems because the operation state of the evaporator is changed by controlling the pressure reducing device in order to control the amount of refrigerant in the receiver.
  • a change in the state of the evaporator causes a change in the amount of refrigerant in the receiver, which in turn causes a change in the amount of refrigerant on the high-pressure side, causing a change in the state of the evaporator and stabilizing the power operation.
  • a problem that it takes time and operation control tends to be unstable.
  • a decompression device corresponding to the evaporator of each indoor unit is generally provided so that each indoor unit is installed and operation control is performed according to the load condition. It is operated so that the capacity suitable for the load can be demonstrated by controlling the equipment.
  • an object of the present invention is to obtain a refrigeration air conditioner that can easily and quickly control the refrigerant amount distribution in the refrigeration air conditioner and stably perform the operation control.
  • a refrigeration and air-conditioning apparatus is configured by circulating a refrigerant through a compressor, a use-side heat exchanger, a use-side decompression device, a heat-source-side decompression device, and a heat-source-side heat exchanger.
  • a refrigerant is circulated through a compressor, a radiator, a decompression device, and an evaporator to constitute a refrigeration cycle, and the decompression device inlet is formed from the compressor discharge side.
  • the refrigerant amount control means of the refrigerating and air-conditioning apparatus performs the refrigerating and air-conditioning with the evaporator or the radiator by circulating the refrigerant through the compressor, the radiator, the decompressor, and the evaporator.
  • a high-pressure and high-temperature refrigerant storage step for causing the high-pressure and high-temperature refrigerant flowing in the refrigerant piping from the discharge port of the compressor to the radiator inlet to flow into the refrigerant storage container and storing the high-pressure and high-temperature refrigerant in the refrigerant storage container;
  • a high-pressure and low-temperature refrigerant storage step in which high-pressure and low-temperature refrigerant flowing in a refrigerant pipe from a container outlet to the decompression device inlet flows into the refrigerant storage container and stores the high-pressure and low-temperature refrigerant in the refrigerant storage container; and storage in the refrigerant storage container
  • a low-pressure and low-temperature refrigerant storage step for causing the high-pressure refrigerant to flow out to the suction side of the compressor, and circulating the refrigerant by storing refrigerants having different densities in the refrigerant storage container It is
  • the amount of refrigerant existing in the heat exchanger serving as the evaporator can be operated in a substantially constant state by controlling the degree of superheat at the heat exchanger serving as the evaporator to a predetermined value.
  • the refrigerant amount is adjusted by the refrigerant amount adjusting circuit, so that the refrigerant amount existing in the radiator can be adjusted stably and quickly.
  • a refrigeration air conditioner that can be operated with high efficiency can be obtained.
  • a control method for a refrigeration air conditioner that can be controlled to operate in a dredged state is obtained.
  • FIG. 1 is a refrigerant circuit diagram of a refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a PH diagram showing the operating status of the refrigeration air conditioner during high pressure fluctuation according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing a correlation between high pressure and operating efficiency COP according to Embodiment 1 of the present invention.
  • FIG. 4 is an explanatory diagram showing a configuration of a control device in a cooling operation according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart showing a control operation in the cooling operation according to the first embodiment of the present invention.
  • FIG. 6 is a diagram showing the correlation between the high pressure and the heat exchanger heat exchange amount according to Embodiment 1 of the present invention.
  • FIG. 7 A graph (FIG. 7 (a)) showing a correlation between the high pressure and the radiator outlet temperature under the constant heat exchanger heat exchange condition according to Embodiment 1 of the present invention and the constant heat exchanger heat exchange condition.
  • the graph below shows the correlation between high pressure and operating efficiency COP (Fig. 7 (b)).
  • FIG. 8 is an explanatory diagram showing a configuration of a control device in the heating operation according to Embodiment 1 of the present invention.
  • FIG. 9 is a flowchart showing a control operation in the heating operation according to Embodiment 1 of the present invention.
  • FIG. 10 is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 11 is a refrigerant circuit diagram showing a temperature adjustment heat exchange section according to the second embodiment of the present invention.
  • FIG. 12 is a flowchart showing a refrigerant amount adjustment operation in a cooling trial operation according to Embodiment 3 of the present invention.
  • FIG. 1 is a refrigerant circuit diagram showing a refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention.
  • an outdoor unit 1 there are a compressor 3, a four-way valve 4 that is a flow path switching valve, and a heat source side heat exchanger.
  • Outdoor heat exchanger 5 outdoor expansion valve 6 that is an outdoor decompression device, high / low pressure heat exchanger 7, refrigerant storage container 12, refrigerant storage container 12, and part that becomes outdoor heat exchanger 5 outlet during cooling operation
  • a flow control valve 14 is mounted.
  • the refrigerant storage container 12, the flow control valves 13a, 13b, and 13c, and the connection pipes 18a, 18b, and 18c constitute a refrigerant amount adjusting circuit 20.
  • the compressor 1 is a type in which the rotation speed is controlled by an inverter and the capacity is controlled, and the outdoor expansion valve 6 and the indoor expansion valves 9a and 9b are electronic expansion valves whose opening degree is variably controlled.
  • two indoor units 2a and 2b are provided as a plurality of units. Inside the indoor units 2a and 2b, the indoor side expansion valves 9a and 9b, which are indoor side pressure reducing devices, are exchanged with the use side heat.
  • the indoor heat exchanger 10 & 10b is installed inside the indoor units 2a and 2b.
  • the liquid pipe 8 and the gas pipe 11 are connecting pipes that connect the outdoor unit 1 and the indoor units 2a and 2b.
  • a refrigerant for this refrigeration air conditioner for example, CO is a refrigerant for this refrigeration air conditioner.
  • a pressure sensor 15 a is provided between the compressor 3 discharge side, a pressure sensor 15 b is provided on the compressor 3 suction side, and a pressure sensor 15 c is provided between the outdoor expansion valve 6 and the liquid pipe 8. Measure the refrigerant pressure at each installation location. Also, the temperature sensor 16a is the compressor 3 discharge side, the temperature sensor 16b is between the outdoor heat exchanger 5 and the outdoor expansion valve 6, and the temperature sensor 16c is between the outdoor expansion valve 6 and the high-low pressure heat exchanger 7. Sensor 16d is installed between high and low pressure heat exchanger 7 and liquid pipe 8, temperature sensor 16e is installed on high and low pressure heat exchanger 7 low pressure outlet side, and temperature sensor 16f is installed on compressor 3 suction side. Measure the refrigerant temperature. The temperature sensor 16g measures the temperature of the outside air around the outdoor unit 1, and the temperature sensor 161 is provided in the refrigerant storage container 12, and measures the temperature of the refrigerant stored in the refrigerant storage container 12.
  • temperature sensors 16h and 16j are indoor side heat exchangers ⁇ between 10a and 10b and indoor side expansion valves 9a and 9b, and temperature sensors 16i and 16k are indoor side heat exchangers ⁇ It is provided between 10a, 10b and the gas pipe 11 and measures the refrigerant temperature at each installation location.
  • the outdoor control unit 17 is provided with a measurement control device 17 composed of, for example, a microcomputer. Measurement information from the pressure sensor 15 and the temperature sensor 16 and the refrigeration and air-conditioning device user power are instructed.
  • the outdoor unit 1 in which the compressor 3 is stored is used as the heat source side
  • Indoor unit 2 is called the user side.
  • the outdoor heat exchanger 5 is a heat source side heat exchanger
  • the outdoor expansion valve 6 is a heat source side pressure reducing device
  • the indoor heat exchanger 10 is a use side heat exchanger
  • the indoor side expansion valve 9 is a use side pressure reduction. It becomes a device.
  • the operation of the refrigeration air conditioner will be described.
  • the flow path of the four-way valve 4 is set in the direction of the solid line in FIG. 1, and the refrigerant flows in the direction of the solid arrow.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 flows into the outdoor heat exchanger 5 through the four-way valve 4 and decreases in temperature while releasing heat in the outdoor heat exchanger 5 serving as a radiator.
  • the refrigerant since the high pressure value is operated above the critical pressure of the refrigerant, the refrigerant lowers its temperature and dissipates heat in a supercritical state.
  • the refrigerant when the high pressure value becomes lower than the critical pressure, the refrigerant dissipates heat while being liquid.
  • the high-pressure and low-temperature refrigerant exiting the outdoor heat exchanger 5 is slightly decompressed by the outdoor expansion valve 6 and then branched by the high-low pressure heat exchanger 7 at the outlet of the high-low pressure heat exchanger 7 to become low pressure. It exchanges heat with the refrigerant and is cooled down to a lower temperature. Thereafter, the refrigerant flows into the indoor units 2a and 2b via the liquid pipe 8.
  • the indoor side expansion valves 9a and 9b After the pressure is reduced to the low-pressure two-phase state by the indoor side expansion valves 9a and 9b, it flows into the indoor side heat exchangers 10 & 10b that serve as evaporators, absorbs heat there, and converts to the indoor unit side while evaporating gas Supply cold energy to the load side medium such as air and water.
  • some of the refrigerant branched at the outlet of the high / low pressure heat exchanger 7 is depressurized by the flow control valve 14 to be in a low pressure two-phase state, then flows into the high / low pressure heat exchanger 7 and heated by the high pressure side refrigerant. Then, after evaporating to become a low-pressure gas refrigerant, it merges with the refrigerant flowing in from the indoor units 2a and 2b via the gas pipe 11, and is sucked into the compressor 3.
  • the flow path of the four-way valve 4 is set in the direction of the dotted line in FIG. 1, and the refrigerant flows in the direction of the dotted arrow.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 flows out of the outdoor unit 1 through the four-way valve 4 and flows into the indoor units 2a and 2b through the gas pipe 11.
  • indoor side heat exchanger 10a, 10b The temperature decreases while radiating heat from the indoor heat exchanger 10 & 10b, which becomes a radiator.
  • the refrigerant since the high pressure value is operated at the critical pressure or higher of the refrigerant, the refrigerant lowers its temperature and dissipates heat while maintaining the supercritical state.
  • the refrigerant when the high pressure value becomes lower than the critical pressure, the refrigerant dissipates heat while liquefying. Heating is performed by applying heat radiated from the refrigerant to a load-side medium such as air or water on the load side.
  • the high-pressure and low-temperature refrigerant that exits the indoor heat exchange 10 & , 10b is slightly decompressed by the indoor expansion valves 9a, 9b, then flows into the outdoor unit 1 via the liquid pipe 8, In low-pressure heat exchanger 7, heat is exchanged with the refrigerant that is branched at the inlet of high-low pressure heat exchanger 7 and becomes low pressure. After the pressure is reduced to a low-pressure two-phase state by the outdoor expansion valve 6, it flows into the outdoor heat exchanger 5 serving as an evaporator, where it absorbs heat and is vaporized into gas. The low-pressure gas refrigerant exiting the outdoor heat exchanger 5 is sucked into the compressor 3 through the four-way valve 4.
  • a part of the refrigerant branched at the high-low pressure heat exchange 7 inlet is depressurized by the flow control valve 14 to become a low-pressure two-phase state, and then flows into the high-low pressure heat exchanger 7 and heated by the high-pressure side refrigerant. After evaporating into a low-pressure gas refrigerant, it passes through the four-way valve 4 and merges with the refrigerant sucked by the compressor 3 and sucked into the compressor 3.
  • FIG. 2 shows the refrigeration cycle in the PH diagram when the high-pressure value is changed when the radiator outlet temperature is the same.
  • the enthalpy difference ⁇ He in the evaporator increases and the refrigeration capacity increases accordingly.
  • the enthalpy difference ⁇ He in the compressor corresponding to the compressor input also increases.
  • Figure 3 shows the tendency of the change due to the high pressure values of A He and ⁇ He at this time.
  • FIG. 3 is a graph showing the high pressure value on the horizontal axis and the enthalpy and COP on the vertical axis.
  • ⁇ He and ⁇ He are indicated by dotted lines
  • COP is indicated by solid lines.
  • the high pressure value at which the COP is maximum is a value that varies depending on the heat exchanger heat exchange amount and the radiator outlet temperature.
  • the high pressure value in the refrigeration air conditioner is determined by the amount of refrigerant existing in the radiator.
  • the refrigerant state is the supercritical state
  • the density of the refrigerant increases with pressure, so the refrigerant amount in the radiator when operating at the high pressure value P3 in Fig. 2 is operated at the high pressure value P1. More than the amount of refrigerant in the radiator.
  • the high pressure value increases, and if the operation is performed so that the amount of refrigerant present in the radiator decreases, the high pressure value decreases. Therefore, in this embodiment, by controlling the amount of refrigerant present in the radiator, the high pressure value is controlled to be close to the pressure at which the COP is maximum.
  • FIG. 4 shows a configuration of the control device 17 in the cooling operation
  • FIG. 5 is a flowchart showing a control operation of the control device 17 in the cooling operation.
  • the indoor side heat exchange 10 & , 10b is the evaporator, so the evaporation temperature (the two-phase refrigerant temperature of the evaporator) is set so that a predetermined heat exchange amount is emitted here
  • the low pressure value that realizes this evaporation temperature is set as the low pressure target value.
  • the compressor control means 31 controls the rotational speed by an inverter.
  • the operating capacity of the compressor 3 is controlled such that the low pressure value measured by the pressure sensor 15b becomes a low pressure corresponding to a predetermined target value, for example, a saturation temperature of 10 ° C.
  • the superheat degree control means 32 allows the indoor expansion valve 9a to open so that the refrigerant superheat degree at the outlet of the indoor heat exchanger 10a calculated by the temperature of the temperature sensor 16i-temperature of the temperature sensor 16h becomes the target value. Control.
  • the indoor side expansion valve 9b is adjusted so that the refrigerant superheat degree at the outlet of the indoor side heat exchanger 1 Ob calculated by the temperature of the temperature sensor 16k becomes the target value. Control the opening.
  • a predetermined target value for example, 5 ° C is used.
  • the outdoor expansion valve 6 is controlled to an initial opening predetermined by the pressure reducing device control means 33, for example, a predetermined opening close to or fully open.
  • the number of rotations of the fan that transports air or water, which is a heat transfer medium, and the pump flow rate are determined in advance from the heat exchange amount of the outdoor heat exchanger 5 and the heat exchange amounts of the indoor heat exchangers 10a and 10b. drive.
  • the flow control valve 14 is a high-low pressure heat exchanger that is calculated with the refrigerant saturation temperature converted from the low-pressure sensor measured by the temperature sensor 16e of the temperature sensor 16e.
  • the opening degree is controlled so that the refrigerant superheat degree at the low-pressure side outlet becomes a target value.
  • a predetermined target value for example, 5 ° C is used. Since the opening degree of the outdoor expansion valve 6 is fully open or a predetermined opening degree close to full opening, the refrigerant that has exited the outdoor heat exchanger 5 is controlled so that it is hardly decompressed by the outdoor expansion valve 6. At this time, it is desirable to operate in the supercritical state at the upstream portion from the inlets of the indoor expansion valves 9a and 9b, so that the pressure measured by the pressure sensor 15c is equal to or higher than the critical pressure.
  • the opening degree is controlled, and when the pressure measured by the pressure sensor 15c is lower than the critical pressure, the opening degree of the outdoor expansion valve 6 is controlled to be opened. The control process so far is shown in step 1 of Figure 5!
  • the high pressure value when operating in this state is detected by the pressure sensor 15a (step 2).
  • a predetermined calculation formula is calculated from the operating conditions such as the outlet temperature of the outdoor heat exchanger 5 that is a radiator measured by the temperature sensor 16b, the outside temperature detected by the temperature sensor 16g, and the operating capacity of the compressor 3.
  • the target value setting means 34 sets the high pressure target value of the refrigeration cycle based on the optimum high pressure value (step 3).
  • the high pressure target value set by the target value setting means 34 sets a pressure range in the vicinity of the optimum high pressure value at which the COP is maximum. Then, this high pressure target value is compared with the measured high pressure (Step 4).
  • the refrigerant quantity control means 35 controls the refrigerant quantity adjustment circuit 20 as shown in step 5 and step 6 to control the outdoor heat exchanger. Adjust the amount of refrigerant present in 5. Specifically, if the current high pressure value is lower than the high pressure target value, in step 5, an operation of increasing the amount of refrigerant in the radiator is performed so that the amount of refrigerant in the outdoor heat exchanger 5 as a radiator increases. On the other hand, if the current high pressure value is higher than the high pressure target value, step 6 is performed to reduce the amount of refrigerant in the radiator so that the amount of refrigerant in the outdoor heat exchanger 5 decreases. If the high pressure value satisfies the high pressure target value in the comparison in Step 4, return to Step 1.
  • the amount of refrigerant existing in the outdoor heat exchanger 5 is adjusted by changing the density of the refrigerant stored in the refrigerant storage container 12.
  • the flow control valves 13a, 13b, 13c for example, an open / close valve that can only be opened / closed is used to perform open / close control, and the flow control valves 13a, 13c, 13c are cooled through the refrigerant pipe connected to the flow control valve 13a.
  • Refrigerant (high pressure / low temperature), refrigerant flowing through the refrigerant pipe connected to the flow control valve 13b (high pressure / high temperature), or refrigerant flowing through the refrigerant pipe connected to the flow control valve 13c (low pressure / low temperature).
  • the amount of refrigerant in the refrigerant storage container 12 is the amount of refrigerant in the refrigerant storage container 12 .
  • the gas pipe 11 is also controlled to a low-pressure and low-temperature gas state by the same control, a large change in the refrigerant amount does not occur. Since the amount of refrigerant charged in the refrigeration air conditioner is constant, fluctuations in the amount of refrigerant in the refrigerant storage container 12 If this occurs, the effect appears in the amount of refrigerant in the outdoor heat exchange 5. That is, when the amount of refrigerant in the refrigerant storage container 12 increases, the amount of refrigerant in the outdoor heat exchanger 5 decreases, and when the amount of refrigerant in the refrigerant storage container 12 decreases, the refrigerant in the outdoor heat exchanger 5 Quantity increases
  • the amount of refrigerant existing in the outdoor heat exchanger 5 that is a radiator may be controlled to be large. Therefore, when the flow control valve 13a is open, the flow control valve 13a is closed and 13b is controlled to open.When the flow control valve 13b is open, the flow control valve 13b is closed and 13c is opened. To do. Note that when the flow control valve 13c is open, the refrigerant charging amount is smaller than the required amount, and therefore, it is necessary to take measures such as additionally charging the refrigerant or reducing the capacity of the refrigerant storage container 12.
  • the actual operation of the flow control valve 13 is that when the flow control valve 13a is open, the flow control valve 13a is closed and the flow control valve 13c is opened.
  • the low-temperature refrigerant flows out to the low pressure side through the flow control valve 13c and the connection pipe 18c.
  • the flow control valve 13b when the flow control valve 13b is open, the flow control valve 13b is closed and the flow control valve 13c is opened, so that the high-pressure and high-temperature refrigerant stored in the refrigerant storage container 12 is transferred to the flow control valve 13c, The refrigerant that flows out to the low-pressure side through the connection pipe 18c and is stored in the refrigerant storage container 12 becomes low-pressure and low-temperature.
  • the opening / closing timing of the flow control valves 13b, 13c when replacing the high-pressure / high-temperature refrigerant with the high-pressure / low-temperature refrigerant may be controlled by detecting the temperature of the refrigerant storage container 12 with the temperature sensor 161! Set it to open and close with ⁇ .
  • the amount of refrigerant existing in the outdoor heat exchanger 5 that is a radiator may be controlled to be small.
  • the flow control valve 13c when the flow control valve 13c is open, the flow control valve 13c is closed and the flow control valve 13b is opened, so that high-pressure and high-temperature refrigerant flows through the flow control valve 13b and the refrigerant storage container.
  • the flow control valve 13b when the flow control valve 13b is open, the flow control valve 13b is closed and the flow control valve 13b is controlled to open so that the high-pressure and low-temperature refrigerant flows through the flow control valve 13a and the refrigerant is stored.
  • the flow control valve 13a when the flow control valve 13a is open, the refrigerant charging amount is larger than the required amount, so it is necessary to take measures such as recovering and recovering the refrigerant with the equipment and increasing the capacity of the refrigerant storage container 12. It becomes.
  • the actual operation of the flow control valve 13 is to open the flow control valve 13b when the flow control valve 13c is open, so that high-pressure and high-temperature refrigerant passes through the flow control valve 13b and connection pipe 18b. Store in storage container 12.
  • the flow control valve 13b is open, the flow control valve 13b is closed and the flow control valve 13c is opened, so that the high-pressure and high-temperature refrigerant stored in the refrigerant storage container 12 flows into the flow control valve 13c, It flows out to the low pressure side through the connecting pipe 18c.
  • the opening / closing timing of the flow control valves 13a, 13c when the high-pressure / low-temperature refrigerant is replaced with the high-pressure / high-temperature refrigerant may be controlled by detecting the temperature of the refrigerant storage container 12 with the temperature sensor 161! You can set it to open and close at a predetermined time in advance.
  • the amount of refrigerant present in the heat exchanger serving as an evaporator is reduced. It can be operated in a roughly constant state.
  • the refrigerant amount existing on the high-pressure side can be adjusted stably and quickly to control the operation.
  • efficient operation can be realized, and highly reliable and efficient refrigeration air conditioning. Equipment operation can be realized.
  • the amount of refrigerant in the radiator can be increased and decreased so that the high pressure value can be controlled to a value close to the high pressure value at which COP is maximized.
  • YO ! Refrigeration air conditioner operation can be realized.
  • the movement of the refrigerant amount is not directly controlled between the outdoor heat exchanger 5 and the refrigerant storage container 12, instead of causing a state change in the evaporator and controlling the refrigerant amount as in the conventional device. Since it can be carried out so as to exert an influence, the refrigerant amount control can be carried out stably in a short time, and more efficient operation of the refrigeration air conditioner can be realized stably.
  • a high-low pressure heat exchanger 7 is provided as a temperature adjusting heat exchanger for adjusting the temperature of the refrigerant flowing in the pipe, and the temperature of the refrigerant flowing in the liquid pipe 8 is controlled to be a predetermined temperature. For this reason, the amount of refrigerant present in the liquid pipe 8 can be controlled more accurately, and stable operation can be realized.
  • the decompression device control means 33 controls the outdoor expansion valve 6 so that the refrigerant state in the pipe connecting the outdoor expansion valve 6 and the indoor expansion valves 9a, 9b becomes a supercritical state.
  • a refrigeration air conditioner that can be operated in a stable refrigerant state is obtained.
  • the compressor 3 is a variable capacity compressor, and the compressor control means 31 is configured to control the capacity so that the low pressure value of the refrigeration cycle becomes a predetermined value.
  • This low pressure value is set based on the amount of cold heat required by the indoor heat exchangers 10a and 10b, so that the amount of cold heat can be obtained, so that a refrigeration air conditioner that can reliably perform the necessary capacity can be obtained.
  • the following method may be used.
  • the low pressure target value was determined and the capacity control was performed so that the predetermined heat exchange amount was exhibited at the indoor side heat exchange 10 & 10b, but the capacity control method was changed according to the cooling condition on the load side. It's okay. For example, if the load side is an indoor space and the air temperature in the indoor space is higher than the set air temperature set by the user of the device, a larger amount of heat exchange is required than at the present time. Change it lower. Conversely, when the air temperature in the indoor space is lower than the set air temperature, the heat exchange amount is excessive, so the low pressure target value is changed to be higher so that the heat exchange amount is smaller than the current time.
  • the capacity control of the compressor 3 may be directly performed based on the cooling condition on the load side, such as a deviation between the set air temperature and the air temperature in the indoor space, without using a low pressure. . For example, when the air temperature in the indoor space is higher than the set air temperature, the capacity of the compressor 3 is increased. When the air temperature in the indoor space is lower than the set air temperature, the capacity of the compressor 3 is decreased.
  • the compressor 3 is controlled by the compressor control means 31 so that the amount of cold heat required for the indoor heat exchange 10 & 10b can be obtained.
  • a refrigerating and air-conditioning apparatus that can reliably perform the necessary capacity can be obtained.
  • the refrigerant quantity is adjusted and controlled by setting the high pressure target value, but the refrigerant temperature at the outlet of the radiator is used. May be. That is, the outlet refrigerant temperature target value of the outdoor heat exchanger 5 is set, and the refrigerant amount is adjusted and controlled so that the outlet refrigerant temperature of the outdoor heat exchanger 5 becomes this target value.
  • the correlation between the high pressure value at which the efficiency is maximum and the radiator outlet refrigerant temperature is obtained in advance, and the refrigerant outlet refrigerant temperature at which the correlation efficiency is maximized using the high pressure value detected by the pressure sensor 15a.
  • the outlet refrigerant temperature target value of the outdoor heat exchanger 5 is set. Then, the refrigerant temperature at the outlet of the outdoor heat exchanger 5 detected by the temperature sensor 16b is compared with the target value. When the actual refrigerant temperature is lower than the target value for the outlet refrigerant temperature of the outdoor heat exchanger 5, the amount of refrigerant existing in the outdoor heat exchanger 5 is too large, so that it exists in the outdoor heat exchanger 5. A control operation as shown in Step 6 of FIG. 5 is performed so that the amount of refrigerant is reduced, and the amount of refrigerant in the refrigerant storage container 12 is increased.
  • Step 5 of FIG. 5 A control operation as shown in Step 5 of FIG. 5 is performed so that the amount of refrigerant to be increased is reduced, and the amount of refrigerant in the refrigerant storage container 12 is decreased.
  • the heat exchange amount of the radiator is generally governed by the high pressure value of the refrigeration cycle and the radiator outlet temperature.
  • Fig. 6 is a graph showing the relationship between the high pressure value and the heat exchanger heat exchange amount at different radiator outlet temperatures. The horizontal axis shows the high pressure value and the vertical axis shows the heat exchanger heat exchange amount.
  • the average refrigerant temperature in the radiator changes in parallel according to the level of the radiator outlet temperature.
  • the mouth temperature is shown in Fig. 7 (a)
  • the COP for the high pressure value is shown in Fig. 7 (b).
  • Fig. 7 (a) there is a correlation between the high pressure value and the radiator outlet temperature under the condition of constant heat exchange.
  • PK high pressure value
  • FIG. 8 shows the configuration of the control device 17 in the heating operation
  • FIG. 9 is a flowchart showing the control operation of the control device 17 in the heating operation.
  • the compressor control means 31 controls the rotational speed by an inverter.
  • the operating capacity of the compressor 3 is controlled so that the high pressure value measured by the pressure sensor 15a is close to the high pressure target value PK set as described above, for example, lOMPa.
  • the decompression device control means 33 adjusts the opening degree of each of the indoor side expansion valves 9a, 9b so that the flow resistance is determined according to a predetermined capacity based on a predetermined heat exchange amount of each of the indoor units 2a, 2b.
  • This opening is a fixed opening.
  • the predetermined capacity of the indoor unit 2 is large, the fixed opening degree is large.
  • the predetermined capacity of the indoor unit 2 is small, the fixed opening degree is set small.
  • the fixed opening degree of the indoor expansion valves 9a and 9b is set so that, for example, the differential pressure is about 0.5 MPa so that the refrigerant at the outlet of the indoor expansion valves 9a and 9b is not greatly depressurized and becomes less than the critical pressure. To be determined. Accordingly, the refrigerant in the high-pressure pipe of the refrigeration cycle, that is, the refrigerant flowing through the refrigerant pipe between the indoor expansion valves 9a and 9b and the outdoor expansion valve 6 is in a supercritical state.
  • the outdoor expansion valve 6 has the refrigerant superheat degree of the compressor 3 sucked calculated by the refrigerant saturation temperature converted to the low pressure value force measured by the temperature pressure sensor 15b of the temperature sensor 16f.
  • the opening degree is controlled so as to be the target value.
  • a predetermined target value for example, 2 ° C is used.
  • the heat exchange amount of the outdoor heat exchanger 5 and the heat exchange amounts of the indoor heat exchangers 9a and 9b are determined in advance with the number of rotations of the fan that conveys air or water as a heat transfer medium, the pump flow rate, etc. drive.
  • a predetermined target value for example, 5 ° C is used. This control process is shown in step 13 of Figure 9!
  • the temperature at the inlet of the high / low pressure heat exchanger 7 when operating in this state is measured by the temperature sensor 16d (step 14).
  • This temperature indicates the temperature at which the refrigerant at the indoor heat exchange 10 outlet, which is a radiator, joins, and can be regarded as the representative temperature of the radiator outlet temperature.
  • the average refrigerant temperature of the entire radiator also increases, and conversely, the average refrigerant temperature of the entire radiator decreases. Since the refrigerant density generally increases as the temperature decreases, if the radiator outlet temperature is high, the amount of refrigerant present in the radiator is small, and if the radiator outlet temperature is low, the amount of refrigerant present in the radiator increases.
  • the refrigerant quantity control means 35 if the representative temperature of the measured radiator outlet temperature is higher than the target value of the radiator outlet temperature, the quantity of refrigerant in the radiator is insufficient. Therefore, control is performed so that the amount of refrigerant in the indoor-side heat exchanger 10 that is a radiator increases (step 16). Conversely, if the representative temperature of the radiator outlet temperature measured is lower than the target value, the radiator will have more refrigerant than necessary, so the inside of the indoor heat exchanger 10 that is the radiator Control to reduce the amount of refrigerant (step 17). If the representative temperature of the radiator outlet temperature measured in the comparison in Step 15 satisfies the target value, return to Step 11.
  • Control of the refrigerant amount in the indoor heat exchanger 10 in the refrigerant amount control means 35 is performed in the same manner as in the cooling operation. If the representative temperature of the measured radiator outlet temperature is higher than the target value, the refrigerant is stored in the refrigerant storage container 12 in order to control the amount of refrigerant in the indoor heat exchanger 10 that is a radiator to increase. Reduce the density of the refrigerant. Therefore, as shown in Step 16, when the flow control valve 13a is open, the flow control valve 13a is closed and 13b is controlled to open, and when the flow control valve 13b is open, the flow control valve 13b is Close and control 13c to open. When the flow control valve 13c is open, the refrigerant charging amount is less than the required amount. Therefore, it is necessary to take measures such as additionally charging the refrigerant or reducing the capacity of the refrigerant storage container 12.
  • the actual operation of the flow control valve 13 is that when the flow control valve 13a is open, the flow control valve 13a is closed and the flow control valve 13c is opened.
  • the low-temperature refrigerant flows out to the low pressure side through the flow control valve 13c and the connection pipe 18c.
  • the flow control valve 13b when the flow control valve 13b is open, the flow control valve 13b is closed and the flow control valve 13c is opened, so that the high-pressure and high-temperature refrigerant stored in the refrigerant storage container 12 is transferred to the flow control valve 13c, The refrigerant that flows out to the low-pressure side through the connection pipe 18c and is stored in the refrigerant storage container 12 becomes low-pressure and low-temperature.
  • the opening / closing timing of the flow control valves 13b, 13c when replacing the high-pressure / high-temperature refrigerant with the high-pressure / low-temperature refrigerant may be controlled by detecting the temperature of the refrigerant storage container 12 with the temperature sensor 161! Set it to open and close with ⁇ .
  • the refrigerant is stored in the refrigerant storage container 12 in order to control the amount of refrigerant in the indoor heat exchanger, which is a radiator. Increase the density of the refrigerant. For this reason, as shown in step 17, when the flow control valve 13c is open, the flow control valve 13c is closed and 13b is controlled to open, and when the flow control valve 13b is open, the flow control valve 13b is Close and control 13a to open.
  • the refrigerant charging amount is larger than the required amount, so it is necessary to take measures such as discharging and collecting the refrigerant from the device and increasing the capacity of the refrigerant storage container 12. It becomes.
  • the actual flow control valve 13 is operated by closing the flow control valve 13c and opening the flow control valve 13b, so that high-pressure and high-temperature refrigerant is connected to the flow control valve 13b.
  • the refrigerant is stored in the refrigerant storage container 12 through the pipe 18b.
  • the flow control valve 13b is open, the flow control valve 13b is closed and the flow control valve 13c is opened, so that the high-pressure and high-temperature refrigerant is stored in the refrigerant storage container 12, and the flow control valve 13c Then, it flows out to the low pressure side through the connecting pipe 18c.
  • the timing of opening and closing the control valves 13a and 13c may be controlled by detecting the temperature of the refrigerant storage container 12 with the temperature sensor 161, or may be set to open and close in advance for a predetermined time. ⁇ In this way, by controlling the degree of superheat at the outlet of the heat exchanger, which is the evaporator, to a predetermined value, the amount of refrigerant present in the heat exchanger, which is the evaporator, is roughly constant. It is possible to drive in the state of. By adjusting the refrigerant amount by the refrigerant amount adjustment circuit 20 in this state, the refrigerant amount existing on
  • the required heat exchange can be supplied indoors.
  • the high pressure target value and controlling it to the maximum operating efficiency efficient operation can be realized, and highly reliable and efficient operation of the refrigeration air conditioner can be realized.
  • the amount of refrigerant in the radiator is increased or decreased to set the radiator outlet temperature to the target value, and the necessary heat exchange amount is reliably supplied by the radiator. I ’m going to drive.
  • the superheat degree of the compressor 3 suction substantially equal to the refrigerant superheat degree at the outlet of the outdoor heat exchanger 5 is made substantially constant. Therefore, the operation is controlled so that the refrigerant amount in the outdoor heat exchange 5 does not change. Further, the liquid pipe 8 is controlled so that the high-pressure and low-temperature supercritical refrigerant always stays by controlling the opening of the indoor expansion valves 9a and 9b and the outdoor expansion valve 6 performed by the decompression device control means 33. Therefore, there is no large change in the refrigerant amount.
  • the refrigerant amount control can be performed stably in a short time, and more efficient operation of the refrigeration air conditioner can be realized stably.
  • the representative value of the radiator outlet temperature used for adjusting the refrigerant amount during heating operation is the temperature detected by the temperature sensor 16d, but each indoor-side heat exchanger 10a, 10b outlet serving as a radiator is used.
  • the representative refrigerant temperature may be determined based on the refrigerant temperatures 16h and 16j. At this time, it is desirable to obtain a representative refrigerant temperature by taking a weighted average according to the refrigerant flow ratio flowing through the indoor heat exchangers 10a and 10b. The weighted average is calculated based on the opening ratio and the set capacity ratio of indoor units 2a and 2b.
  • the multiple radiator outlet temperatures are not all the same, it is possible to measure or calculate the temperature that can be regarded as the average radiator outlet temperature for multiple radiators during operation. What is necessary is just to make it the representative value of temperature. If the amount of refrigerant is adjusted so that the representative value of the radiator outlet temperature becomes the target radiator outlet temperature, the necessary heat exchange amount can be supplied and the refrigeration cycle can be operated efficiently.
  • the refrigerant outlet temperature is controlled to be the target value when the refrigerant quantity control means 35 adjusts the refrigerant quantity in the refrigerant storage container 12, but the target value of the high pressure value is set. Adjust the amount of refrigerant so that it reaches the high pressure target value.
  • capacity control of the compressor 3 is performed so that the representative value of the radiator outlet temperature detected by the temperature sensor 16d becomes the target value of the radiator outlet temperature determined by the heat exchange capacity required by the indoor heat exchanger 10. I do.
  • the refrigerant pressure is adjusted so that the high pressure value detected by the pressure sensor 15a becomes the high pressure target value set together with the radiator outlet temperature target value in step 12 of FIG.
  • the detected high pressure value is higher than the high pressure target value, the amount of refrigerant present in the indoor heat exchange 10 is too large, so the amount of refrigerant present in the indoor heat exchange 10 decreases.
  • the amount of refrigerant in the refrigerant storage container 12 is increased!].
  • the capacity control method of the compressor 3 may be changed according to the heating condition on the load side. For example, if the load side is an indoor space and the air temperature in the indoor space is lower than the set air temperature set by the user of the device, Therefore, the predetermined heat exchange amount for indoor heat exchange is changed to a larger value, and the high pressure target value and the radiator outlet temperature target value are changed accordingly. Correct it. Conversely, if the air temperature in the indoor space is higher than the set air temperature, the heat exchange amount is excessive at the present time, so the predetermined heat exchange amount of the indoor heat exchanger 10 is changed to a smaller value, and this change is made. Correct the high pressure target value and the radiator outlet temperature target value accordingly. Even if such control is performed, a refrigerating and air-conditioning apparatus that can reliably obtain a necessary amount of heat and that operates with high efficiency can be obtained.
  • a capacity control method of the compressor 3 it is based on the heating condition on the load side, such as a deviation between the set air temperature and the air temperature in the indoor space, without passing through a predetermined heat exchange amount of indoor heat exchange such as high pressure.
  • the capacity control of the compressor 3 may be performed directly. For example, when the air temperature in the indoor space is lower than the set air temperature, the capacity of the compressor 3 is increased. When the air temperature in the indoor space is higher than the set air temperature, the capacity of the compressor 3 is decreased.
  • the refrigerant amount is adjusted by judging the amount of refrigerant in the radiator from the correlation between the high pressure and the radiator outlet temperature.
  • the correlation between the radiator outlet temperature that maximizes efficiency from the high pressure and the capacity of the compressor 3 is obtained in advance, and the radiator outlet temperature at which this correlation is also obtained is set as the target value, and the radiator outlet temperature becomes this target value. Adjust the amount of refrigerant in the radiator. Even if such control is performed, a refrigerating and air-conditioning apparatus that can reliably obtain the necessary amount of heat and that operates with high efficiency can be obtained in the same manner as described above.
  • the opening degree of the indoor expansion valves 9a, 9b is preferably controlled so that the refrigerant state in the pipe connecting the indoor expansion valves 9a, 9b and the outdoor expansion valve 6 becomes a supercritical state. .
  • the refrigerant amount existing in the liquid pipe 8 can be operated as a constant amount. For this reason, by adjusting the amount of refrigerant in the radiator 10 in this state, the amount of refrigerant can be stably controlled in a short time, and the effect can be obtained more reliably.
  • each of the indoor side expansion valves 9a, 9b is within an opening range in which the refrigerant state in the pipe connecting the indoor side expansion valves 9a, 9b and the outdoor side expansion valve 6 becomes a supercritical state. Further, the flow resistance is set so that the fixed opening degree is determined based on the predetermined capacity ratio based on the predetermined heat exchange amount of the indoor units 2a and 2b. For this reason, it is easy to drive and to some extent indoor heat exchange The refrigerant can be distributed and circulated according to the heat exchange amount of 10b.
  • the opening degree of the indoor side expansion valves 9a, 9b may be changed as appropriate according to the operating state without making the opening degree a fixed opening degree. It is desirable to control the refrigerant state in the pipe connecting the indoor side expansion valves 9a, 9b and the outdoor side expansion valve 6 to a supercritical state, but depending on the operating condition of the outdoor unit 1, the indoor side expansion valve 9a, The refrigerant state in the pipe connecting 9b and the outdoor expansion valve 6 may not be in a supercritical state. Therefore, the opening degree of the indoor expansion valves 9a and 9b and the outdoor expansion valve 6 is controlled by the pressure reducing device control means 33 so that the pressure measured by the pressure sensor 15c is equal to or higher than the critical pressure.
  • the opening of the indoor expansion valves 9a, 9b is appropriately changed according to the operating state, and the indoor expansion valves 9a, 9b are respectively replaced with the indoor expansion valves 9a, 9b and the outdoor expansion valve 6 Connect to Set the opening range so that the refrigerant state in the pipe becomes supercritical, and make the following corrections.
  • each indoor-side heat exchanger measured by temperature sensors 16h and 16j ⁇ 10a and 10b, and the high and low-pressure heat exchanger 7 inlet temperature measured by temperature sensor 16d, that is, the outlet of the radiator The representative temperature is compared and the opening degree is corrected based on the comparison result.
  • the opening degree of each indoor expansion valve 9a, 9b is controlled so as to be within a predetermined temperature difference, for example, 5 ° C.
  • the refrigerant temperature at the outlet of the indoor heat exchanger 10a is higher than the representative temperature at the radiator outlet by a predetermined temperature or more, and the refrigerant temperature at the outlet of the indoor heat exchanger 10b is lower than the representative temperature at the radiator outlet by a predetermined temperature or more.
  • the heat exchange amount when the average refrigerant temperature of the indoor heat exchanger 10a is higher than the predetermined value is higher than the predetermined value, and the heat exchange amount when the average refrigerant temperature of the indoor heat exchanger 10b is lower than the predetermined value. It is getting less. In such a case, the capacity of the indoor heat exchanger 10b is insufficient, and the opening degree needs to be changed. Room with a large flow rate of refrigerant flowing through indoor heat exchanger 10a Since the flow rate of the refrigerant flowing through the inner heat exchanger 10b is decreasing, the opening degree of the indoor side expansion valve 9b is controlled so as to reduce the opening degree of the indoor side expansion valve 9a.
  • the opening of the indoor expansion valve 9 is changed to a smaller value.
  • the refrigerant temperature at the outlet of the indoor heat exchanger 10 is lower than the predetermined temperature with respect to the representative temperature at the outlet of the radiator, the opening degree of the indoor expansion valve 9 is largely changed.
  • each of the indoor expansion valves 9a and 9b By controlling the opening of each of the indoor expansion valves 9a and 9b with such a configuration including a plurality of indoor units 2, it is possible to eliminate the excess or deficiency of the heat exchange amount of the indoor heat exchanger 10 with respect to a predetermined amount. Thus, a refrigeration air conditioner that can supply an appropriate amount of heat exchange to each of the plurality of indoor heat exchangers 10 in a balanced manner is obtained.
  • the refrigerant amount control method described above is effective in the following points, particularly in a multi-type refrigeration air conditioner to which a plurality of indoor units 2 are connected, in the configuration of the refrigeration air conditioner.
  • the pipes 8 and 11 that connect the outdoor unit 1 and the indoor unit 2 become longer, so the amount of refrigerant charged in the device increases.
  • the amount of refrigerant fluctuates depending on the operating conditions, making the operation unstable and reducing the operating efficiency that makes it difficult to operate with the optimal amount of refrigerant. Cheap.
  • connection piping when the connection piping is in a gas-liquid two-phase state, large fluctuations in the amount of refrigerant are likely to occur due to fluctuations in the amount of liquid present there.
  • a larger refrigerant amount fluctuation occurs.
  • the superheat degree at the outlet of the evaporator is set to a predetermined value, and the refrigerant state of the connection pipe is controlled to be a supercritical state. That is, since the control can be performed so that the fluctuation of the refrigerant amount is reduced, the operation is easily stabilized, the operation with the optimum refrigerant amount can be easily realized, and the operation with high efficiency can be performed.
  • the control of the indoor unit side expansion valve 9 in the control according to this embodiment can be mounted for general use regardless of the capacity and form of the indoor unit 2.
  • the compressor 3 on the outdoor unit 1 side, the expansion valve 6 and the refrigerant amount control can be performed universally regardless of the capacity and form of the indoor unit 2. Therefore, even when an unspecified indoor unit 2 is connected to the outdoor unit 1 assuming a multi-type device, it is possible to easily realize a flexible device configuration without changing the control.
  • the cooling / heating operation is realized by switching the flow path of the four-way valve 4, and the refrigerant is stored in both the cooling and heating operations by controlling the opening of the outdoor expansion valve 6 and the indoor expansion valve 9.
  • the container 12 can be supplied with a cryogenic refrigerant in a supercritical state. Therefore, the refrigerant amount can be adjusted by the same control even in the cooling / heating operation, realizing a high efficiency operation and simplifying the control.
  • the refrigerant amount is adjusted by the difference in refrigerant density among the high-pressure and high-temperature refrigerant, the high-pressure and low-temperature refrigerant, and the low-pressure and low-temperature refrigerant.
  • the low-temperature refrigerant having a high density can be stored in the refrigerant storage container 12
  • a large amount of refrigerant can be stored, and conversely, the refrigerant quantity can be adjusted with the small refrigerant storage container 12. Therefore, the refrigerant storage container 12 can be downsized and the cost can be reduced accordingly.
  • the capacity of the refrigerant storage container 12 provided in this embodiment is about 10 liters when the amount of refrigerant charged is about 20 kg. If the refrigerant is CO,
  • the density of the refrigerant is about 700kgZm3
  • the density of the high-pressure and high-temperature refrigerant is about 150kgZm3
  • the density of the low-pressure and low-temperature refrigerant is about 100kgZm3
  • the amount of refrigerant that can be stored in the refrigerant storage container 12 is 7kg, 1.5kg, 1kg. Can be adjusted step by step.
  • the refrigerant amount adjusting circuit 20 includes the refrigerant storage container 12 and can connect and disconnect the refrigerant pipe between the outdoor expansion valve 6 and the indoor expansion valve 9 and the refrigerant storage container 12.
  • the refrigerant storage container 12 has three stages by providing the refrigerant amount adjustment circuit 20 with a high-pressure and high-temperature refrigerant connection pipe 18b that can connect and disconnect the refrigerant storage container 12 and the compressor 3 discharge side.
  • the amount of refrigerant can be stored, and the amount of refrigerant present in the radiator can be controlled in three stages.
  • the refrigerant quantity control means 35 is a high-pressure / low-temperature refrigerant connection pipe so that a refrigerant with a low density is stored in the refrigerant storage container 12 when the quantity of refrigerant existing in the heat exchanger serving as a radiator is small.
  • the refrigerant storage container 12 ⁇ contains a high-density refrigerant As described above, by connecting the high-pressure / low-temperature refrigerant connection pipe 18a or the high-pressure / high-temperature refrigerant connection pipe 18b and disconnecting the low-pressure / low-temperature refrigerant connection pipe 18c, the amount of refrigerant existing in the radiator can be quickly controlled.
  • a refrigerant is circulated through the compressor, radiator, decompressor, and evaporator to form a refrigeration cycle, and the decompressor from the compressor discharge side.
  • Refrigeration and air conditioning steps in which the high pressure side to the inlet is above the critical pressure and the low pressure side from the decompressor outlet to the compressor inlet is operated at a pressure lower than the critical pressure to perform refrigeration and air conditioning with an evaporator or radiator, and the evaporator outlet Superheat degree control step (Step 1, Step 13) for controlling the superheat degree of the refrigerant to become a predetermined value, and surplus refrigerant is stored in the refrigerant storage means 12 that can be disconnected from the refrigeration cycle.
  • a refrigerant amount control step (steps 5, 6, 16, and 17) for adjusting the amount of refrigerant to be supplied.
  • an operation control method for the refrigeration air conditioner that can operate efficiently by stably and quickly adjusting the amount of refrigerant in the radiator that contributes to the efficiency of the apparatus can be obtained.
  • a target setting step for setting a high pressure target value and a radiator outlet refrigerant temperature target value so as to obtain a required heat quantity in the radiator
  • a circulation A compressor control step for controlling the capacity of the compressor so that a high pressure value of the refrigerant to be reached becomes the high pressure target value
  • the refrigerant amount control step (steps 16 and 17) is circulated.
  • Refrigerant in the radiator that contributes to the efficiency of the device by adjusting the amount of refrigerant so that the temperature of the refrigerant at the outlet of the radiator reaches the target value of the refrigerant at the outlet of the radiator and supplying the heat with the radiator It is possible to adjust the amount stably and quickly and efficiently operate using heat, and to obtain the operation control method of the refrigeration air conditioner that can obtain the required amount of heat
  • a target setting step (step 3) for setting a high pressure target value is provided.
  • the refrigerant quantity control step (steps 5 and 6) the refrigerant quantity is adjusted so that the high-pressure value of the circulating refrigerant becomes the high-pressure target value, and cold energy is supplied and used by the evaporator. This makes it possible to obtain an operation control method for a refrigeration air conditioner that can efficiently and efficiently operate using cold energy by stably and quickly adjusting the amount of refrigerant in the radiator that contributes to heat.
  • the compressor control step (Step 1) for controlling the capacity of the compressor so that the low pressure value of the circulating refrigerant becomes a predetermined value is provided, so that the amount of cold heat necessary for the use-side heat exchanger can be ensured.
  • a refrigerating and air-conditioning operation control method can be obtained.
  • a compressor control step for controlling the capacity of the compressor so as to obtain the amount of cold necessary for the evaporator is provided, so that the necessary amount of cold for the use-side heat exchanger can be ensured.
  • An operation control method for the air conditioner is obtained.
  • control of the indoor expansion valve 9 that controls the degree of outlet superheat of the indoor heat exchanger 10 during the cooling operation, and the control of the outdoor expansion valve 6 that controls the suction superheat degree of the compressor 3 during the heating operation is preferably performed at a control interval shorter than the control interval for adjusting the refrigerant amount control in the refrigerant storage container 12.
  • these superheat control functions have a function to prevent the amount of refrigerant in the heat exchanger as an evaporator from fluctuating.
  • the refrigerant amount control in the refrigerant storage container 12 is adjusted. Since the refrigerant amount is also stable and becomes a high pressure value or a radiator outlet temperature corresponding to the refrigerant amount, it is easier to appropriately control the refrigerant amount in the refrigerant storage container 12. Therefore, more stable operation of the device can be realized.In addition, even when the capacity control of the compressor 3 is performed, the superheat degree of the heat exchanger as an evaporator fluctuates and the refrigerant amount fluctuates.
  • the time interval to be performed is also shorter than the time interval to control the amount of refrigerant, and the amount of refrigerant in the heat exchanger that serves as the evaporator is stabilized to control the amount of heat and cooling, so that more stable operation of the equipment is possible. Can be realized.
  • the time interval for superheat degree control and compressor capacity control by each expansion valve is set to about 30 seconds to 1 minute, and the time interval for refrigerant amount control is about 3 minutes to 5 minutes. A longer time may be set.
  • the time interval of compressor capacity control performed in the compressor control step is set as the refrigerant.
  • an operation control method of the refrigeration air conditioner that can be stably operated is obtained.
  • the time interval of the superheat degree control at the evaporator outlet performed in the superheat degree control step is set to a time interval shorter than the time interval of the refrigerant amount adjustment control performed in the refrigerant amount control step, so that the refrigeration that can be stably operated is performed.
  • An operation control method for the air conditioner is obtained.
  • the temperature adjustment heat exchange unit for adjusting the temperature of the refrigerant flowing in the pipe connecting the indoor expansion valve 9 and the outdoor expansion valve 6 is the refrigerant in the refrigerant storage container 12.
  • the power may be discharged to the low pressure side inlet of the high and low pressure heat exchanger 7 as shown in FIG. 10. Even if the refrigerant staying in the refrigerant storage container 12 is in a supercritical state, if it is a low-temperature refrigerant, if it is discharged as it is to the compressor 3 suction side, it will be in a gas-liquid two-phase state when the pressure is reduced to a low pressure.
  • High-low pressure heat exchange 7 When the refrigerant in the refrigerant storage container 12 is discharged to the low-pressure side inlet, heat exchange is performed in the high-low pressure heat exchanger 7, the low-pressure refrigerant is heated, and the liquid refrigerant evaporates. The operation of returning the liquid to 3 can be avoided, and the reliability of the operation of the compressor 3 can be improved.
  • the refrigerant storage container 12 is provided, and the refrigerant pipe between the heat source decompression device 6 and the use-side decompression device 9 and the refrigerant storage container 12 can be connected and disconnected.
  • a refrigerant quantity adjustment circuit is configured by providing a connection pipe 18c having a flow rate control valve 13c as a low-pressure low-temperature refrigerant connection pipe capable of connecting and disconnecting the container 12 and the compressor 3 suction side.
  • the amount of refrigerant in the refrigerant storage container 12 is adjusted.
  • the refrigerant stored in the refrigerant storage container 12 is stored in three states: high-pressure / low-temperature refrigerant, high-pressure / high-temperature refrigerant, and low-pressure / low-temperature refrigerant, and the amount of refrigerant existing in the heat radiator is adjusted in three stages. It was possible. In this embodiment, the refrigerant amount in the radiator can be changed in multiple stages or continuously by making it possible to store more refrigerant in the refrigerant storage container 12.
  • the flow control valves 13a, 13b, and 13c are valves whose opening degree is variable such as an electromagnetic valve, and the flow control valves 13a, 13b, and 13
  • the amount of refrigerant flowing into the refrigerant storage container 12 through c is arbitrarily changed. As a result, the amount of refrigerant stored in the refrigerant storage container 12 can be continuously controlled.
  • the high-pressure and low-temperature refrigerant flows into the refrigerant storage container 12 through the flow control valve 13a, and the high-pressure and high-temperature refrigerant through the flow control valve 13b.
  • the refrigerant flows into the refrigerant storage container 12.
  • the high-pressure refrigerant flows out to the compressor suction side through the flow control valve 13c due to the pressure difference. Will come to do.
  • the refrigerant temperature in the refrigerant storage container 12 is determined by the flow rate ratio of the high and low refrigerant flowing in.
  • the refrigerant temperature in the refrigerant storage container 12 decreases, the refrigerant density increases and more refrigerant can be stored. For this reason, when controlling the amount of refrigerant present in the refrigerant storage container 12 to be large, if the control is performed so that the ratio of the opening degree of the flow control valve 13a to the flow control valve 13b increases, A lot of low-temperature refrigerant flows into the container 12, and the refrigerant temperature in the refrigerant storage container 12 is lowered.
  • the amount of refrigerant present in the refrigerant storage container 12 when controlling the amount of refrigerant present in the refrigerant storage container 12 to be small, if the ratio of the opening degree of the flow control valve 13b to the flow control valve 13a is controlled to be large, the refrigerant storage A lot of high-temperature refrigerant flows into the container 12, and the refrigerant temperature in the refrigerant storage container 12 becomes high.
  • the temperature in the refrigerant storage container 12 can be continuously controlled by the ratio of the opening amounts of the flow control valves 13a and 13b, and the amount of refrigerant in the refrigerant storage container 12 can also be controlled continuously. The amount of refrigerant in the radiator can be adjusted more carefully.
  • the low-pressure low-temperature refrigerant is stored in the refrigerant storage container 12, and the flow control valves 13b and 13c are respectively set to appropriate openings, the high-pressure high-temperature refrigerant passes through the flow control valve 13b. Inflow. That is, the state of the refrigerant stored in the refrigerant storage container 12 can be changed in multiple steps or continuously between the low-pressure low-temperature refrigerant and the high-pressure high-temperature refrigerant.
  • the opening ratio of the flow control valves 13a, 13b, 13c may be controlled based on this measured value.
  • the flow rate control valves 13a and 13b may be variable in opening degree. By controlling, it becomes possible to continuously control the opening ratio of the flow control valves 13a and 13b.
  • the flow control valve 13c may be opened or closed or may be kept at a fixed opening.
  • the refrigerant circulating in the refrigeration cycle should not be bypassed to the low pressure side through the refrigerant storage container 12, and the opening degree may be maintained so that about 1% of the refrigerant always flows through the flow control valve 13c. Good.
  • both the flow control valves 13a and 13b are closed, the low-pressure and low-density refrigerant is stored in the refrigerant storage container 12 through the flow control valve 13c.
  • the flow control valve 13c is also a valve having a variable opening, such as a solenoid valve, and the amount of refrigerant flowing into the refrigerant storage container 12 through each of the flow control valves 13a, 13b, 13c is arbitrarily set. By changing to, the amount of refrigerant can be adjusted more finely.
  • a pressure sensor may be provided in the refrigerant storage container 12, and the pressure in the refrigerant storage container 12 may be measured to control this pressure.
  • the pressure in the refrigerant storage container 12 is determined by the ratio of the opening degrees of the control valves 13a and 13b that are the inflow side and the control valve 13c that is the outflow side. .
  • the opening degree of the flow rate control valves 13a and 13b is larger than the opening degree of the flow rate control valve 13c, the pressure in the refrigerant storage container 12 becomes closer to high pressure and becomes higher.
  • the opening degree of the flow control valve 13c is larger than the opening degree of the flow control valves 13a and 13b, the pressure in the refrigerant storage container 12 becomes lower and closer to a low pressure.
  • the flow control valves 13a and 13b for the flow control valve 13c are used.
  • the ratio of the opening degree is controlled so as to increase, and the pressure in the refrigerant storage container 12 is increased.
  • the flow control valves 13a, 13b The flow rate control valve 13c is controlled so that the ratio of the opening degree of the flow control valve 13c is increased, and the pressure in the refrigerant storage container 12 is lowered.
  • the pressure in the refrigerant storage container 12 can be continuously controlled by the ratio of the opening degrees 13b and 13c, and the amount of refrigerant in the refrigerant storage container 12 can also be controlled continuously. It is possible to adjust the refrigerant amount more finely.
  • the density of the high-pressure and low-temperature refrigerant is 700 kgZm.
  • the density of the high-pressure and high-temperature refrigerant is about 150 kgZm3
  • the density of the low-pressure and low-temperature refrigerant is about 100 kgZm3
  • the amount of refrigerant that can be stored in the refrigerant storage container 12 is 7 kg ⁇ : Lkg continuously. Can be adjusted.
  • the refrigerant is circulated through the compressor 3, the indoor heat exchanger 2 serving as a radiator, the outdoor decompression device 6, and the outdoor heat exchange 5 serving as an evaporator, and refrigeration and air conditioning is performed using the indoor heat exchange lO.
  • the compressor 3 When the compressor 3 is discharged, the high pressure and high temperature refrigerant flowing into the refrigerant pipe up to the indoor heat exchange 10 inlet also flows into the refrigerant storage container 12 and the high pressure and high temperature refrigerant is stored in the refrigerant storage container 12.
  • a refrigerant storage step, and a low-pressure and low-temperature refrigerant storage step for allowing the high-pressure refrigerant stored in the refrigerant storage container 12 to flow out to the suction side of the compressor 3, and circulating the refrigerant storage container 12 by storing refrigerants having different densities. Control the amount of refrigerant to be circulated.
  • the refrigerant is circulated through the compressor 3, the outdoor heat exchanger 5 serving as a radiator, the indoor decompression device 9, and the outdoor heat exchanger 5 serving as an evaporator, and the indoor heat exchanger 2 performs refrigeration and air conditioning.
  • the high-pressure and high-temperature refrigerant that stores the high-pressure and high-temperature refrigerant in the refrigerant storage container 12 by flowing the high-pressure and high-temperature refrigerant flowing through the refrigerant piping from the discharge lock of the compressor 3 to the outdoor heat exchanger 5 to the inlet into the refrigerant storage container 12
  • Refrigerant storage step and high-pressure low-temperature refrigerant that flows into the refrigerant storage container 12 by storing the high-pressure low-temperature refrigerant flowing in the refrigerant piping from the outlet of the indoor heat exchanger 10 to the inlet of the outdoor decompression device 6 into the refrigerant storage container 12
  • the refrigerant in the high pressure and high temperature state and the refrigerant in the low pressure and low temperature state can be The density range can be widened, and a large amount of refrigerant can be stored when supercritical refrigerant is stored. Therefore, a large amount of refrigerant can be stored even in the small refrigerant storage container 12, in other words, the refrigerant storage container 12 can be made small.
  • the opening degree of the flow rate control valve 13a and the flow rate control valve 13b by adjusting the opening degree of the flow rate control valve 13a and the flow rate control valve 13b, the amount of high-pressure and high-temperature refrigerant stored in the refrigerant storage container 12 in the high-pressure and high-temperature refrigerant storage step, and refrigerant storage in the high-pressure and low-temperature refrigerant storage step If the density of the refrigerant stored in the refrigerant storage container 12 is continuously changed by changing the ratio of the amount of the high-pressure and low-temperature refrigerant stored in the container 12, the followability can be improved according to the operation status of the refrigeration air conditioner. It is possible to control operation with a high degree of efficiency and to realize operation with efficiency.
  • the temperature of the high-pressure and low-temperature refrigerant flowing through the flow control valve 13a is controlled to control the temperature in the refrigerant storage container 12. Examples of implementation will be described below.
  • the high / low pressure heat exchanger 7 is disposed upstream of the connection between the high pressure / low temperature refrigerant connection pipe 18a provided with the flow control valve 13a and the refrigerant pipe of the refrigeration cycle, for example, in heating operation. It acts as a heat exchanger for temperature adjustment that adjusts the temperature of the refrigerant flowing through the section.
  • the flow control valve 13a is opened during the heating operation, the refrigerant after being heat-exchanged and cooled by the high-low pressure heat exchanger 7 flows into the refrigerant storage container 12. Therefore, the refrigerant temperature in the refrigerant storage container 12 can be controlled by controlling the heat exchange amount of the high / low pressure heat exchanger 7.
  • the amount of heat exchange between the high and low pressure heat exchange ⁇ 7 is determined by the refrigerant flow rate bypassed via the flow control valve 14, and if the bypassed refrigerant flow rate is small, the heat exchange amount is small and the bypassed refrigerant flow rate is high. And the amount of heat exchange increases. Therefore, when controlling so that the amount of refrigerant in the refrigerant storage container 12 increases, the opening of the flow control valve 14 is increased to increase the flow rate of bypassed refrigerant, and heat exchange in the high-low pressure heat exchanger 7 Increase the amount.
  • the refrigerant temperature at the outlet of the high-low pressure heat exchanger 7 decreases, the refrigerant temperature in the refrigerant storage container 12 also decreases, and the amount of refrigerant stored in the refrigerant storage container 12 increases. Conversely, the amount of refrigerant in the refrigerant storage container 12 is small.
  • the opening degree of the flow control valve 14 is reduced to reduce the flow rate of the bypassed refrigerant, and the heat exchange amount in the high-low pressure heat exchange 7 is reduced.
  • the refrigerant temperature at the outlet of the high / low pressure heat exchanger 7 increases, the refrigerant temperature in the refrigerant storage container 12 also increases, and the amount of refrigerant stored in the refrigerant storage container 12 decreases.
  • the flow control valve 13c on the low pressure side is required when the refrigerant in the refrigerant storage container 12 flows in and out, but the flow control valve 13b on the high pressure and high temperature side is not necessarily provided.
  • the amount of refrigerant in the target refrigerant storage container 12 is determined, and the temperature determined from this refrigerant amount is used as the target value. Control the opening of the flow control valve 14 so that the temperature measured by the sensor 16c is the target.
  • the high and low pressure heat exchanger 7 which is a temperature adjusting heat exchanging unit which is a means for adjusting the temperature of the refrigerant flowing in the pipe connecting the indoor expansion valve 9 and the outdoor expansion valve 6 is provided.
  • the temperature of the refrigerant flowing into the refrigerant storage container 12 is adjusted by exchanging heat between the refrigerant flowing upstream from the connection to the refrigerant storage container 12 and the low-temperature refrigerant that has been partially depressurized by branching the refrigerant. It was configured to save. For this reason, the temperature of the refrigerant flowing into the refrigerant storage container 12 can be continuously finely adjusted with a simple circuit, stable operation control can be performed, and a refrigeration air conditioner that can be operated with high operational efficiency is obtained.
  • the refrigerant stored in the refrigerant storage container 12 may be discharged to the low-pressure side inlet of the high-low pressure heat exchanger 7.
  • the refrigerant flowing out of the refrigerant storage container 12 is heat-exchanged by the high / low pressure heat exchanger 7, and the operation of returning the liquid to the compressor 3 can be avoided by heating the low pressure two-phase refrigerant. Can be improved.
  • the high-pressure side of the high-low pressure heat exchanger 7 is a refrigerant pipe between the outdoor expansion valve 6 and the indoor expansion valve 9 in FIG.
  • the low-pressure side is a refrigerant pipe in which a part of the high-pressure side is branched and depressurized.
  • an internal heat exchanger may be installed to control the amount of heat exchange!
  • a heat exchanger that exchanges heat with other heat sources such as air is installed, The amount of heat exchange may be controlled.
  • the internal heat exchange ⁇ may be, for example, as shown in FIG.
  • FIG. 11 is a refrigerant circuit diagram showing the internal heat exchanger portion of the refrigeration cycle.
  • a part of the refrigerant piping between the outdoor expansion valve 6 and the indoor expansion valve 9 is branched into a high pressure side, and the low pressure side is a refrigerant piping on the suction side of the compressor 3 to constitute a high / low pressure heat exchanger 7.
  • a part of the high-pressure and low-temperature refrigerant is branched, exchanges heat with the low-pressure and low-temperature refrigerant, becomes low temperature, and merges with the high-pressure and low-temperature refrigerant again.
  • the temperature of the refrigerant passing through the indoor expansion valve 9 during cooling and the refrigerant storage container 12 during warming are stored.
  • the temperature of the refrigerant to be controlled can be controlled.
  • connection part of the refrigerant flowing out from the refrigerant storage container 12 through the flow control valve 13c is connected to the upstream side of the high-low pressure heat exchanger 7 on the low-pressure side, the gas-liquid two-phase from the refrigerant storage container 12 Even if the refrigerant flows out to the low pressure side, it is heated by the high and low pressure heat exchanger 7 to become refrigerant gas, so that liquid back to the compressor 3 can be prevented.
  • the high-low pressure heat exchanger 7 is installed upstream so that a large amount of refrigerant can be accommodated in the refrigerant storage container 12 during heating operation. If the outdoor heat exchanger 5 is water-cooled heat exchanger ⁇ , etc., and the air volume is smaller than the internal volume of the indoor heat exchanger 10, the required amount of refrigerant is Since it is less during operation, it is desirable that the high-low pressure heat exchanger 7 be installed upstream of the branch to the flow control valve 13a during cooling operation.
  • the temperature sensor 161 for measuring the refrigerant temperature in the refrigerant storage container 12 or the pressure sensor for measuring pressure is installed, and these temperatures are set.
  • the pressure is the target value that determines the required amount of refrigerant in the refrigerant storage container 12
  • the opening control of the flow control valves 13a, 13b, 13c, and 14 may be performed. For example, if the operating condition changes greatly, such as the initial state when the device is started or the number of indoor units operating is unstable, the refrigerant amount to be stored in the refrigerant storage container 12 is determined in advance.
  • the target temperature or target pressure is set so as to realize this amount of refrigerant, and the opening control of the flow control valve 13 is performed.
  • the refrigerant amount can be adjusted appropriately even in a situation where the operation is unstable and feedback control based on the high pressure value or the radiator outlet temperature cannot be performed sufficiently, and the operation of the refrigeration air conditioner can be stabilized. Can obtain a highly reliable device.
  • the refrigerant amount charged in the device may be adjusted using the refrigerant amount control method of the refrigeration air conditioner described in the first embodiment or the second embodiment!
  • the operation during the trial operation of the refrigeration air conditioner will be described.
  • the refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to this embodiment is the same as that of FIG. 1 or FIG. 10, and detailed description thereof is omitted here.
  • FIG. 12 is a flowchart showing the procedure of the refrigerant amount adjustment method during the trial operation of the refrigeration air conditioner when performing the cooling operation.
  • the flow rate control valves 13a, 13b are closed and 13c are opened (step 21) so that the amount of refrigerant in the refrigerant storage container 12 is minimized.
  • a cooling trial operation is performed in this state, and it is determined whether the amount of refrigerant charged is insufficient.
  • the operation procedure from Step 1 to Step 4 is the same as the operation shown in Fig. 5.
  • the refrigerant amount circulating through the refrigeration cycle is the largest and the refrigerant amount is insufficient, and the refrigerant amount is insufficient. It is determined that the amount is insufficient (step for determining the amount of refrigerant to be filled shortage), and the refrigerant is additionally charged (step 22). The refrigerant is additionally charged until the current high pressure value becomes higher than the high pressure target value.
  • step 23 the flow control valve 13a is opened, 13b and 13c are closed (step 23), and the refrigeration cycle is circulated.
  • a cooling test operation is performed in a state where the amount of refrigerant that is accumulated is the smallest, and an excess amount of refrigerant is determined.
  • Step 31 to step 34 are the same operations as the operation of step 1 to step 4.
  • the refrigerant amount circulating / refrigerating through the refrigeration cycle is the smallest! It is determined that the amount of refrigerant charged is excessive, and the refrigerant is discharged and recovered (step 24). Then, the procedure returns to step 1 and the procedure from the refrigerant amount shortage determination is repeated again.
  • the high pressure value can be controlled to the high pressure target value by adjusting the refrigerant amount in the refrigerant storage container 12.
  • this state is an optimum state in which the amount of refrigerant charged in the refrigeration air conditioner is optimal.
  • the flow control valve 13a is opened first, 13b and 13c are closed, and a cooling trial operation is performed to determine whether the amount of refrigerant charged is excessive, and then the flow control valves 13a and 13b are closed and 13c It is also possible to determine whether the charged refrigerant amount is insufficient by performing a cooling trial operation with the valve open.
  • the high pressure value can be controlled to the high pressure target value, and the amount of refrigerant present in the heat exchanger that becomes a radiator during normal operation is optimized.
  • High-efficiency operation can be performed by controlling.
  • the test operation in the power heating operation in which the test operation of the refrigeration air conditioner is performed by the cooling operation can be performed in the same manner. Also in this case, first, the flow control valves 13a and 13b are closed and 13c is opened, and a heating trial operation is performed to determine whether or not the amount of refrigerant charged is insufficient. If the representative value of the radiator outlet temperature is higher than the target value of the radiator outlet temperature, the amount of refrigerant to be charged is insufficient.Therefore, additional refrigerant charging is not performed until the representative value of the radiator outlet temperature becomes lower than the target value. Do.
  • the flow control valve 13a is opened, 13b and 13c are closed, a heating trial operation is performed, and the process proceeds to excess refrigerant amount determination. If the representative value of the radiator outlet temperature at this time is lower than the target value, the amount of refrigerant charged is excessive, so that the refrigerant is discharged from the device and recovered, and the procedure from the determination of insufficient refrigerant amount is repeated again. Release When the representative value of the heater outlet temperature is higher than or equal to the target value, the representative value of the radiator outlet temperature can be controlled to the target value by adjusting the amount of refrigerant in the refrigerant storage container 12. In other words, this state is the optimum amount of refrigerant charged in the refrigeration air conditioner.
  • the amount of refrigerant to be controlled can be optimally controlled, and highly efficient operation can be performed. Even in the case of heating operation, the same effect can be obtained also in this case where the refrigerant amount deficiency determination may be performed after the refrigerant amount excess determination is performed first.
  • the operation is performed in the high-pressure and low-temperature refrigerant storage step for storing the high-pressure and low-temperature refrigerant in the refrigerant storage container 12, and the high-pressure value of the circulating refrigerant is compared with the high-pressure target value, or the radiator Comparing the outlet refrigerant temperature and the radiator outlet refrigerant temperature target value to determine whether the refrigerant quantity is insufficient or not (Step 4), and the low-pressure and low-temperature area in which the low-pressure and low-temperature refrigerant is stored in the refrigerant storage container 12 Operate in the refrigerant storage step V, compare the high pressure value of the circulating refrigerant with the high pressure target value, or compare the radiator outlet refrigerant temperature with the radiator outlet refrigerant temperature target value!
  • the refrigerant amount excess determination step for determining whether or not the refrigerant amount to be charged in the refrigeration air conditioner can be optimally
  • the operating state of the device that determines whether the amount of refrigerant is excessive or insufficient is not limited to that described above, but may be determined using the radiator outlet temperature during cooling operation, as described in Embodiment 1. You can also use high pressure during heating operation.
  • the internal volume of the outdoor heat exchanger 5 is generally larger than the internal volume of the entire indoor heat exchanger 10. Therefore, a larger amount of refrigerant is required during the cooling operation in which the outdoor heat exchanger 5 serves as a radiator. Therefore, when determining whether the amount of refrigerant charged is insufficient, it is determined by performing cooling operation, and when determining whether the amount of refrigerant charged is excessive, it is determined by performing heating operation to adjust the refrigerant amount to a more optimal range. It can be performed.
  • Such a refrigerant amount adjustment method for the refrigeration air-conditioning apparatus is not limited to the trial operation, and can also be used when adjusting the refrigerant amount in maintenance inspection.
  • the configurations shown in Embodiments 1, 2, and 3 also apply to devices that supply only cold heat as refrigeration devices, for example, device configurations that use a condensing unit as an outdoor unit and a showcase as an indoor unit. Applicable. In this case, since the cooling operation described above is controlled, the four-way valve 4 and the outdoor expansion valve 6 may be omitted.
  • the number of indoor units is one or three or more, the same effect can be obtained by performing the same control.
  • the operation of each indoor unit is stopped according to the use status of each indoor unit.
  • the amount of refrigerant required in the refrigeration cycle fluctuates significantly, and the refrigerant adjustment circuit 20 can quickly adjust the amount of refrigerant present in the heat exchanger that is a radiator to an appropriate amount. It is possible to improve efficiency.
  • Embodiments 1, 2, and 3 the configuration of the indoor unit 2 and the indoor heat exchanger 10 and the load-side heat exchange medium for exchanging heat with the refrigerant are air, water, and the like. However, the same effect can be obtained.
  • the compressor 3 may be of any type such as scroll, rotary, reciprocating, and the capacity control method is not limited to the rotation speed control by the inverter, but the number of units when there are multiple compressors.
  • Various methods may be used such as control, indication, refrigerant bypass between high and low pressure, and changing stroke volume for variable stroke volume type.
  • the refrigerant has been described as CO. Using CO
  • the refrigerant is not limited to CO, ethylene, ethane, acid
  • a plurality of units including a compressor, an outdoor heat exchanger, an outdoor decompressor, an outdoor unit including a refrigerant amount adjustment circuit, an indoor heat exchanger and an indoor decompressor.
  • a refrigeration air conditioner that is an indoor unit, a compressor, an indoor heat exchanger, an indoor decompressor, an outdoor decompressor, and an outdoor heat exchanger are connected in an annular shape, and the high pressure is higher than the critical pressure.
  • the outdoor decompression device is controlled so that the degree of superheat at the outlet becomes a predetermined value, and the refrigerant amount adjustment circuit adjusts the amount of refrigerant existing in the indoor heat exchanger so that the operating state of the refrigeration air conditioner becomes a predetermined state. Because it is equipped with a control device that controls The amount of refrigerant present can be adjusted, and there is an effect that a refrigeration air conditioner that can be operated in a stable and highly efficient state can be obtained.
  • the compressor is a variable capacity compressor, and the target value of the high pressure target value and the radiator outlet temperature is determined based on the load side situation where the heat is supplied, and based on the high pressure target value! / Further control the compressor capacity and based on the target temperature at the radiator outlet! By performing the refrigerant amount adjustment control, it is possible to obtain a refrigeration air conditioner that can operate with high efficiency while demonstrating the necessary capacity in the operation of supplying warm heat.
  • the outdoor decompressor and each indoor decompressor are controlled so that the connection pipe between the outdoor unit and the indoor unit connecting the outdoor decompressor and the indoor decompressor becomes a supercritical state.
  • the capacity control of the compressor is controlled by the refrigerant amount adjusting circuit in the cooling system existing in the indoor heat exchanger.
  • each indoor-side decompression device is determined according to the predetermined capacity of each indoor unit, there is an effect that a refrigeration air-conditioning apparatus that can reliably exhibit the necessary capacity is obtained.
  • each indoor-side decompression device controls each indoor-side decompression device so that the refrigerant temperature at the outlet of each indoor-side heat exchanger becomes a target temperature determined by the operating state of the outdoor unit, the necessary capacity can be reliably exhibited. There is an effect that a refrigeration air conditioner can be obtained.
  • each indoor-side decompressor controls each indoor-side decompressor so that the temperature at the outlet of each indoor-side heat exchanger is within a predetermined temperature difference from the refrigerant temperature at the inlet of the outdoor decompressor, a plurality of indoor-side heat exchanges are performed.
  • a refrigeration air conditioner that can supply refrigerant in a balanced manner with respect to the amount of heat exchange in the factory and reliably demonstrate the required capacity.
  • a plurality of indoor units having a compressor, an outdoor heat exchanger, an outdoor decompressor, an outdoor unit equipped with a refrigerant amount adjustment circuit, an indoor heat exchanger and an indoor decompressor are provided.
  • the compressor, outdoor heat exchanger, outdoor decompressor, indoor decompressor, and indoor heat exchanger are connected in a ring shape, with the high pressure being higher than the critical pressure and the low pressure being higher than the critical pressure.
  • the outdoor heat exchanger ⁇ is a radiator and each indoor heat exchanger becomes an evaporator and cold air is supplied from the indoor heat exchanger
  • the outdoor heat exchanger ⁇ Each indoor side decompression device is individually controlled so that the degree of superheat becomes a predetermined value, and the refrigerant amount existing in the outdoor heat exchanger is adjusted by the refrigerant amount adjustment circuit so that the operation state of the refrigeration air conditioner is predetermined.
  • the refrigerant state is stabilized by controlling the outdoor decompression device so that the connection pipe between the outdoor unit and the indoor unit connecting the outdoor decompression device and the indoor decompression device becomes a supercritical state.
  • the compressor is a variable capacity compressor, and by performing the capacity control of the compressor so that the low pressure is in a predetermined state, it is possible to obtain a refrigeration air conditioner that can surely perform the necessary capacity There is.
  • the compressor is a variable capacity compressor, and the capacity control of the compressor is performed according to the cooling condition on the load side to which the cold heat is supplied, so that the refrigerating air conditioner that can surely demonstrate the necessary capacity is achieved. There is an effect that a device can be obtained.
  • the superheat degree control of each indoor heat exchanger outlet by the indoor decompressor is performed at a shorter time interval than the adjustment control of the refrigerant amount existing in the outdoor heat exchanger by the refrigerant amount adjustment circuit.
  • the compressor capacity control is performed at a shorter time interval than the control of the amount of refrigerant existing in the outdoor heat exchanger by the refrigerant amount adjustment circuit, so that the operation control can be stably performed. Is effective.
  • a plurality of units including a compressor, a four-way valve, an outdoor heat exchanger, an outdoor decompressor, an outdoor unit equipped with a refrigerant amount adjustment circuit, an indoor heat exchanger and an indoor decompressor.
  • refrigeration and air-conditioning equipment which is an indoor unit, a compressor, an outdoor heat exchanger, an outdoor decompressor, an indoor decompressor, and an indoor heat exchanger are connected in an annular shape by switching the flow path using a four-way valve.
  • the superheat degree at the outlet of the heat exchanger as an evaporator is controlled to be a predetermined value, and as a refrigerant amount adjustment circuit, a refrigerant storage container, a refrigerant storage container, an outdoor decompression device, and an indoor decompression device
  • a refrigerant amount adjustment circuit a refrigerant storage container, a refrigerant storage container, an outdoor decompression device, and an indoor decompression device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 超臨界域で使用するCO2などの冷媒を用いた冷凍空調装置において、装置の効率に寄与する放熱器内の冷媒量を安定かつ速やかに調整して効率のよい冷凍空調装置を提供する。温熱利用運転で、蒸発器5出口の過熱度を蒸発器5の上流側に設けた膨張弁6の開度制御によって所定値に制御すると共に、高圧側の接続配管の冷媒状態が超臨界状態となるように膨張弁9を制御する。この状態で流量制御弁13を制御して冷媒貯留容器12に貯留する冷媒の密度を変化させ、放熱器10内に存在する冷媒量を調整する。また、高圧目標値と放熱器出口温度目標値を設定し、この目標値になるように圧縮機3を容量制御すると共に冷媒量調整回路20で放熱器10に存在する冷媒量を調整する。

Description

明 細 書
冷凍空調装置、冷凍空調装置の運転制御方法、冷凍空調装置の冷媒量 技術分野
[0001] この発明は、冷凍空調装置に関するものであり、特に、例えば二酸化炭素 (CO )な
2 どの超臨界域で使用する冷媒を用いる冷凍空調装置に関するものである。
背景技術
[0002] 従来の冷凍空調装置に、冷媒として COを用いるとともに、蒸発器出口、または減
2
圧装置の入口に冷媒を貯留するレシーバを設け、このレシーバ内の冷媒量を制御す ることで、装置の運転高圧を制御し、所定の冷却能力をもたらすようにしたものがある
(例えば、特許文献 1参照)。
[0003] 特許文献 1 :特公平 7— 18602号公報 (第 1一 5頁、第 2図、第 3図)
発明の開示
発明が解決しょうとする課題
[0004] 従来の冷凍空調装置では、レシーバ内の冷媒量を制御するために減圧装置を制 御して蒸発器の運転状態を変更するようにしていたため、以下のような問題があった 。まず蒸発器内の状態変化がレシーバ内の冷媒量変化を生じさせ、その変化が高圧 側の冷媒量変化を生じさせるようになるので、蒸発器内の状態変化を起こして力 運 転が安定するのに時間を要し、運転制御が不安定となりやすいという問題があった。 特に複数の蒸発器となる室内側熱交換器を備えたマルチ型の冷凍空調装置の場合 、室外機と室内機との延長配管の距離が長いため、運転が安定するためにさらに長 い時間が必要となり、運転制御が不安定となりやすい。またマルチ型の冷凍空調装 置の場合、各室内機が設置されて 、る負荷状況に応じて運転制御がなされるように 一般に各室内機の蒸発器に対応した減圧装置が設けられ、この減圧装置の制御で 負荷に見合った能力が発揮されるように運転される。そこで、蒸発器の状態変化を起 こさせて冷媒量制御をする場合、複数ある減圧装置の中でどの減圧装置に冷媒量 調整作用を機能させる力決定せねばならず制御が煩雑になるという問題があった。ま た、室内機内に減圧装置が設けられている場合、冷媒量調整の判断制御が室外機 でなされ、その判断を室内機に通信して減圧装置の制御を実施することになり、より 制御が煩雑になるという問題があった。
[0005] この発明は以上の課題に鑑み、冷凍空調装置内の冷媒量分布の制御を簡易にか つ迅速に行 、、運転制御を安定して実施できる冷凍空調装置を得ることを目的とす る。
また、例えば COなどの超臨界域で使用する冷媒を用いた冷凍サイクルでは、運
2
転状態に応じて運転効率 (COP)が最大となる高圧値が存在することが知られており 、冷媒量分布の制御によって高圧値を COP最大となる高圧値近傍になるようにし、 効率のよ!ヽ運転を実現する冷凍空調装置を得ることを目的とする。
また、上記のような冷凍空調装置の運転制御方法を得ることを目的とする。 また、上記のような冷凍空調装置の冷媒量制御方法を得ることを目的とする。 課題を解決するための手段
[0006] この発明に係る冷凍空調装置は、圧縮機、利用側熱交換器、利用側減圧装置、熱 源側減圧装置、熱源側熱交換器に冷媒を循環して構成され高圧値を前記冷媒の臨 界圧力より高い圧力とし低圧値を前記臨界圧力より低い圧力で運転する冷凍サイク ルと、前記冷凍サイクルに存在する冷媒量を増減可能な冷媒量調整回路と、前記利 用側熱交換器で温熱を供給する温熱利用運転時に前記熱源側熱交換器出口の過 熱度が所定値となるように前記熱源側減圧装置を制御する過熱度制御手段と、前記 温熱利用運転時に前記冷媒量調整回路により前記利用側熱交換器に存在する冷 媒量を調整して前記冷凍サイクルを循環する前記冷媒の温度または圧力が所定の 状態になるように制御する冷媒量制御手段と、を備えたものである。
[0007] また、この発明に係る冷凍空調装置の制御方法は、圧縮機、放熱器、減圧装置、 蒸発器に冷媒を循環させて冷凍サイクルを構成し、前記圧縮機吐出側から前記減圧 装置入口までの高圧側を臨界圧力以上、前記減圧装置出口から前記圧縮機入口ま での低圧側を臨界圧力よりも低い圧力で運転して前記蒸発器または前記放熱器で 冷凍空調を行う冷凍空調ステップと、前記蒸発器出口の過熱度を所定値になるよう に制御する過熱度制御ステップと、前記冷凍サイクルに接続切離し可能な冷媒貯留 手段に余剰の冷媒を貯留することで前記放熱器に存在する冷媒量を調整する冷媒 量制御ステップと、を備えたものである。
[0008] また、この発明に係る冷凍空調装置の冷媒量制御手段は、圧縮機、放熱器、減圧 装置、蒸発器に冷媒を循環させて前記蒸発器または前記放熱器で冷凍空調を行う 際に、前記圧縮機の吐出口から前記放熱器入口までの冷媒配管に流れる高圧高温 冷媒を冷媒貯留容器に流入させて前記高圧高温冷媒を前記冷媒貯留容器に貯留 する高圧高温冷媒貯留ステップと、前記放熱器出口から前記減圧装置入口までの 冷媒配管に流れる高圧低温冷媒を前記冷媒貯留容器に流入させて前記高圧低温 冷媒を前記冷媒貯留容器に貯留する高圧低温冷媒貯留ステップと、前記冷媒貯留 容器に貯留した高圧冷媒を前記圧縮機の吸入側に流出させる低圧低温冷媒貯留ス テツプと、を備え、前記冷媒貯留容器に密度の異なる冷媒を貯留することで循環する 前記冷媒の量を調整することを特徴とするものである。
発明の効果
[0009] この発明は、蒸発器となる熱交 出口の過熱度を所定値に制御することにより、 蒸発器となる熱交換器に存在する冷媒量を大凡一定の状態で運転できる。この状態 で冷媒量調整回路により冷媒量調整を行うことで、放熱器に存在する冷媒量を安定 にかつ迅速に調整して運転できる。また、高圧側に循環させる冷媒量を調整して高 圧値が高圧目標値になるように制御することで、高 、効率で運転することができる冷 凍空調装置が得られる。
また放熱器に存在する冷媒量を速やかに調整し、高圧値を運転効率の高!ヽ状態 で運転するように制御できる冷凍空調装置の制御方法が得られる。
また、密度の異なる冷媒を冷媒貯留容器に貯留することで、冷媒貯留容器に貯留 する冷媒量を変化させ、放熱器に存在する冷媒量を幅広く増減できる冷凍空調装置 の冷媒量制御方法が得られる。
図面の簡単な説明
[0010] [図 1]この発明の実施の形態 1による冷凍空調装置の冷媒回路図である。
[図 2]この発明の実施の形態 1に係わる高圧変動時の冷凍空調装置の運転状況を表 した PH線図である。 [図 3]この発明の実施の形態 1に係わる高圧を運転効率 COPとの相関を示す図であ る。
[図 4]この発明の実施の形態 1に係わる冷房運転における制御装置の構成を示す説 明図である。
[図 5]この発明の実施の形態 1に係わる冷房運転における制御動作を示すフローチ ヤートである。
[図 6]この発明の実施の形態 1に係わる高圧と放熱器熱交換量との相関を示す図で ある。
[図 7]この発明の実施の形態 1に係わる放熱器熱交換量一定条件下での高圧と放熱 器出口温度との相関を示すグラフ(図 7(a))及び放熱器熱交換量一定条件下での高 圧と運転効率 COPとの相関を示すグラフ(図 7 (b) )である。
[図 8]この発明の実施の形態 1に係わる暖房運転における制御装置の構成を示す説 明図である。
[図 9]この発明の実施の形態 1に係わる暖房運転における制御動作を示すフローチ ヤートである。
[図 10]この発明の実施の形態 1に係わる冷凍空調装置の冷媒回路図である。
[図 11]この発明の実施の形態 2に係わる温度調節用熱交換部を示す冷媒回路図で ある。
[図 12]この発明の実施の形態 3に係わる冷房試運転における冷媒量調整動作を示 すフローチャートである。 発明を実施するための最良の形態
実施の形態 1.
以下、この発明の実施の形態 1について説明する。図 1はこの発明の実施の形態 1 に係る冷凍空調装置を示す冷媒回路図であり、室外機 1内には圧縮機 3、流路切換 弁である四方弁 4、熱源側熱交換器である室外側熱交換器 5、室外側減圧装置であ る室外側膨張弁 6、高低圧熱交換器 7、冷媒貯留容器 12、冷媒貯留容器 12と冷房 運転時に室外側熱交換器 5出口となる部分とを接続する接続配管 18aに設けられた 流量制御弁 13a、冷媒貯留容器 12と圧縮機 3吐出側を接続する接続配管 18bに設 けられた流量制御弁 13b、冷媒貯留容器 12と圧縮機 3吸入側を接続する接続配管 1 8cに設けられた流量制御弁 13c、高低圧熱交 7低圧側にバイパスされる流路に 設けられた流量制御弁 14が搭載されている。この冷媒貯留容器 12、流量制御弁 13 a、 13b、 13c、接続配管 18a、 18b、 18cで、冷媒量調整回路 20を構成している。 圧縮機 1はインバータにより回転数が制御され容量制御されるタイプであり、室外側 膨張弁 6、室内側膨張弁 9a、 9bは開度が可変に制御される電子膨張弁である。
[0012] また、利用側では複数台として例えば 2台の室内機 2a、 2bを有し、室内機 2a、 2b 内には室内側減圧装置である室内側膨張弁 9a、 9bと利用側熱交換器である室内側 熱交翻10&、 10bが搭載されている。液管 8及びガス管 11は室外機 1と室内機 2a 、 2bを接続する接続配管である。この冷凍空調装置の冷媒としては、例えば COが
2 用いられる。
[0013] 室外機 1内には圧力センサ 15aが圧縮機 3吐出側、圧力センサ 15bが圧縮機 3吸 入側、圧力センサ 15cが室外側膨張弁 6と液配管 8の間に設けられており、それぞれ 設置場所の冷媒圧力を計測する。また温度センサ 16aが圧縮機 3吐出側、温度セン サ 16bが室外側熱交換器 5と室外側膨張弁 6の間、温度センサ 16cが室外膨張弁 6 と高低圧熱交換器 7の間、温度センサ 16dが高低圧熱交換器 7と液管 8の間、温度セ ンサ 16eが高低圧熱交換器 7低圧出口側、温度センサ 16fが圧縮機 3吸入側に設け られており、それぞれ設置場所の冷媒温度を計測する。また温度センサ 16gは室外 機 1周囲の外気温度を計測し、温度センサ 161は冷媒貯留容器 12に設けられ、冷媒 貯留容器 12内に貯留される冷媒の温度を計測する。
[0014] 室内機 2a、 2b内には温度センサ 16h、 16jが室内側熱交^^ 10a、 10bと室内側 膨張弁 9a、 9bの間に、温度センサ 16i、 16kが室内側熱交^^ 10a、 10bとガス管 1 1の間に設けられており、それぞれ設置場所の冷媒温度を計測する。
[0015] また、室外機 1内には例えばマイクロコンピュータで構成された計測制御装置 17が 設けられており、圧力センサ 15や温度センサ 16などによる計測情報や、冷凍空調装 置使用者力 指示される運転内容に基づいて、圧縮機 3の運転方法、四方弁 4の流 路切換、室外側熱交換器 5の熱交換量、室外側膨張弁 6の開度、流量制御弁 13、 1 4の開度などを制御する。 [0016] ここで、冷凍空調装置全体から見た場合や、設置場所を室内または室外に限定し ない場合には、その働きカゝら圧縮機 3が格納されている室外機 1を熱源側、室内機 2 を利用側と称する。このため、室外側熱交換器 5は熱源側熱交換器、室外側膨張弁 6は熱源側減圧装置、室内側熱交換器 10は利用側熱交換器、室内側膨張弁 9は利 用側減圧装置となる。
[0017] 次にこの冷凍空調装置での運転動作について説明する。まず冷熱運転利用モード である冷房運転時の動作について説明する。冷房運転時には、四方弁 4の流路は図 1の実線方向に設定され、冷媒は実線矢印方向に流れる。そして圧縮機 3から吐出 された高温高圧のガス冷媒は、四方弁 4を経て室外側熱交換器 5に流入し、放熱器 となる室外側熱交 5で放熱しながら温度低下する。この実施の形態では高圧値 が冷媒の臨界圧力以上で運転するので、冷媒は超臨界状態のまま温度低下し放熱 する。ここで高圧値が臨界圧力よりも低くなつた場合には、冷媒は液ィ匕しながら放熱 する。室外側熱交換器 5を出た高圧低温の冷媒は室外側膨張弁 6でわずかに減圧さ れた後、高低圧熱交換器 7にて高低圧熱交換器 7出口で分岐され低圧となった冷媒 と熱交換し、より冷却され低温となる。その後冷媒は液管 8を経由して、室内機 2a、 2 bに流入する。そして室内側膨張弁 9a、 9bで低圧二相の状態に減圧された後で、蒸 発器となる室内側熱交翻10&、 10bに流入し、そこで吸熱し、蒸発ガス化しながら 室内機側の空気や水などの負荷側媒体に冷熱を供給する。室内側熱交換器 10a、 10bを出た低圧ガス冷媒は室内機 2a、 2bを出て、ガス管 11を経由し室外機 1に流入 し、四方弁 4を経て圧縮機 3に吸入される。また高低圧熱交換器 7出口で分岐した一 部の冷媒は流量制御弁 14で減圧され、低圧二相の状態となった後で、高低圧熱交 7に流入し、高圧側の冷媒により加熱され蒸発し、低圧のガス冷媒となった後、 ガス管 11を経由して室内機 2a、 2bから流入する冷媒と合流し、圧縮機 3に吸入され る。
[0018] 次に温熱利用運転モードである暖房運転時の動作について説明する。暖房運転 時には、四方弁 4の流路は図 1の点線方向に設定され、冷媒は点線矢印方向に流れ る。そして圧縮機 3から吐出された高温高圧のガス冷媒は四方弁 4を経て室外機 1を 流出しガス管 11を経て室内機 2a、 2bに流入する。そして室内側熱交換器 10a、 10b に流入し、放熱器となる室内側熱交翻10&、 10bで放熱しながら温度低下する。こ の実施の形態では高圧値が冷媒の臨界圧力以上で運転するので、冷媒は超臨界状 態のまま温度低下し放熱する。ここで高圧値が臨界圧力よりも低くなつた場合には、 冷媒は液化しながら放熱する。冷媒から放熱された熱を負荷側の空気や水などの負 荷側媒体に与えることで暖房を行う。室内側熱交翻10&、 10bを出た高圧低温の 冷媒は室内側膨張弁 9a、 9bでわずかに減圧された後、液管 8を経由して、室外機 1 に流入した後で、高低圧熱交 7にて高低圧熱交 7入口で分岐され低圧とな つた冷媒と熱交換し、より冷却され低温となる。そして室外側膨張弁 6で低圧二相の 状態に減圧された後で、蒸発器となる室外側熱交換器 5に流入し、そこで吸熱し、蒸 発ガス化される。室外側熱交換器 5を出た低圧ガス冷媒は四方弁 4を経て圧縮機 3 に吸入される。また高低圧熱交 7入口で分岐した一部の冷媒は流量制御弁 14 で減圧され、低圧二相の状態となった後で、高低圧熱交換器 7に流入し、高圧側の 冷媒により加熱され蒸発し、低圧のガス冷媒となった後、四方弁 4を経て圧縮機 3〖こ 吸入される冷媒と合流し、圧縮機 3に吸入される。
次にこの冷凍空調装置での運転制御動作について説明する。冷媒が COである場
2 合などのように高圧側が超臨界状態で運転される冷凍サイクルでは、よく知られて!/、 るように、運転効率が最大となる高圧値が存在する。図 2は、放熱器出口温度が同一 であるときに高圧値を変化させたときの冷凍サイクルを PH線図に示したものである。 図 2において高圧値が Pl、 P2、 P3と上昇すると蒸発器でのェンタルピ差 Δ Heが拡 大し、その分冷凍能力が増加する。一方高圧値が上昇すると圧縮機入力に相当する 圧縮機でのェンタルピ差 Δ Heも増大する。このときの A He、 Δ Heの高圧値による 変化の傾向を示すと図 3のようになる。図 3は横軸に高圧値、縦軸にェンタルピ及び COPを示すグラフである。図 2の Pl、 P2、 P3に対応して、点線で Δ He及び Δ Heを 示し、実線で COPを示す。図 3で示されるように、高圧上昇に伴う能力に相当する Δ Heの増加率が入力に相当する Δ Heの増加率よりも上回る領域では、 Δ He/ Δ He であらわされる冷凍サイクルの効率 COPが上昇する。逆に能力に相当する A Heの 増加率が入力に相当する A Hcの増加率よりも下回る領域では、 COPが低下する。 従って COPが最大となる高圧値が存在し、図 3の場合には P2が該当する。なお、こ の COPが最大となる高圧値は、放熱器熱交換量及び放熱器出口温度によって変化 する値である。
[0020] 冷凍空調装置での高圧値は、放熱器内に存在する冷媒量によって決定される。冷 媒状態が超臨界状態であるとき、冷媒の密度は圧力に応じて増加するので、図 2の 高圧値 P3で運転されるときの放熱器内の冷媒量は、高圧値 P1で運転されるときの 放熱器内の冷媒量よりも多くなる。逆に放熱器内に存在する冷媒量が多くなるように 運転すれば、高圧値は上昇し、放熱器内に存在する冷媒量が少なくなるように運転 すれば、高圧値は低下する。そこでこの実施の形態では、放熱器内に存在する冷媒 量を制御することで、高圧値を COP最大となる圧力の近傍になるように制御する。
[0021] 以下、冷房運転時の計測制御装置 17によって行われる制御動作について、図 4、 図 5に基づいて説明する。図 4は冷房運転における制御装置 17の構成を示し、図 5 は冷房運転における制御装置 17の制御動作を示すフローチャートである。冷房運転 では、室内側熱交翻10&、 10bが蒸発器となるので、ここで所定の熱交換量が発 揮されるように、蒸発温度 (蒸発器の二相冷媒温度)が設定され、この蒸発温度を実 現する低圧値を低圧目標値として設定する。そして圧縮機制御手段 31でインバータ による回転数制御を行う。圧縮機 3の運転容量は圧力センサ 15bで計測される低圧 値が定められた目標値、例えば飽和温度 10°Cに相当する低圧になるように制御され る。また過熱度制御手段 32によって、室内側膨張弁 9aは温度センサ 16iの温度-温 度センサ 16hの温度で演算される室内側熱交換器 10a出口の冷媒過熱度が目標値 となるように開度制御する。また同様に過熱度制御手段 32によって、室内側膨張弁 9 bは温度センサ 16kの温度 温度センサ 16jの温度で演算される室内側熱交換器 1 Ob出口の冷媒過熱度が目標値となるように開度制御する。この目標値としては、予 め定められた目標値、例えば 5°Cを用いる。また室外側膨張弁 6は減圧装置制御手 段 33によって予め定められた初期開度、例えば全開又は全開に近い所定開度に制 御される。また伝熱媒体である空気や水を搬送するファン回転数やポンプ流量など を室外側熱交換器 5の熱交換量や室内側熱交換器 10a、 10bの熱交換量から予め 定められた状態で運転する。流量制御弁 14は、温度センサ 16eの温度 圧力セン サ 15bで計測される低圧カゝら換算される冷媒飽和温度で演算される高低圧熱交 7低圧側出口の冷媒過熱度が目標値となるように開度制御される。この目標値として は、予め定められた目標値、例えば 5°Cを用いる。室外側膨張弁 6の開度が全開また は全開に近い所定開度であるため、室外側熱交換器 5を出た冷媒が室外側膨張弁 6 でほとんど減圧されないように制御される。このとき室内側膨張弁 9a、 9b入口より上 流部分では超臨界状態に運転されることが望ましぐ圧力センサ 15cで計測される圧 力が臨界圧力以上になるように室外側膨張弁 6の開度を制御し、圧力センサ 15cで 計測される圧力が臨界圧力以下の場合は室外側膨張弁 6の開度を開く制御を実施 する。これまでの制御工程が図 5のステップ 1に示されて!/、る。
[0022] この状態で運転したときの高圧値を圧力センサ 15aで検知する (ステップ 2)。そして 温度センサ 16bで計測される放熱器となる室外側熱交 5の出口温度、温度セン サ 16gで検知される外気温度、圧縮機 3の運転容量などの運転状態から予め定めら れた演算式によって COP最大となる最適高圧値を演算する。そして目標値設定手 段 34によって最適高圧値に基づ 、て冷凍サイクルの高圧目標値を設定する (ステツ プ 3)。ここで目標値設定手段 34で設定する高圧目標値は COP最大となる最適高圧 値の近傍となる圧力範囲を設定する。そしてこの高圧目標値と計測された高圧とを比 較する (ステップ 4)。比較した結果、高圧目標値の範囲に入っていな力つた場合には 、冷媒量制御手段 35によって、ステップ 5、ステップ 6に示すように冷媒量調整回路 2 0を制御して室外側熱交換器 5内に存在する冷媒の量を調整する。具体的には、現 在の高圧値が高圧目標値より低ければ、ステップ 5で放熱器である室外側熱交換器 5内の冷媒量が多くなるような放熱器冷媒量増加運転を実施する。逆に現在の高圧 値が高圧目標値より高ければ、ステップ 6で室外側熱交換器 5内の冷媒量が少なくな るような放熱器冷媒量減少運転を実施する。ステップ 4の比較で高圧値が高圧目標 値を満足している場合には、ステップ 1に戻る。
[0023] 以下、冷媒量制御手段 35におけるステップ 5、ステップ 6に示した室外側熱交換器 5内の冷媒量の制御方法をさらに詳しく説明する。冷媒貯留容器 12内に貯留する冷 媒の密度を変化させることで、室外側熱交換器 5内に存在する冷媒量を調整する。こ の実施の形態では、流量制御弁 13a、 13b、 13cとして、例えば開閉のみを行うことの できる開閉弁を用いて開閉制御し、流量制御弁 13aが接続する冷媒配管を流れる冷 媒 (高圧低温)、流量制御弁 13bが接続する冷媒配管を流れる冷媒 (高圧高温)、流 量制御弁 13c接続する冷媒配管を流れる冷媒 (低圧低温)、のいずれかの冷媒を冷 媒貯留容器 12内に貯留する。
[0024] 流量制御弁 13aを開、 13b、 13cを閉とすると、室外側熱交換器 5を出た高圧低温 冷媒が接続配管 18aを通って冷媒貯留容器 12内に流入するので、高圧低温の超臨 界状態の冷媒が冷媒貯留容器 12内に滞留する。流量制御弁 13bを開、 13a、 13cを 閉とすると、圧縮機 3から吐出された高圧高温冷媒が接続配管 18bを通って冷媒貯 留容器 12内に流入するので、高圧高温の超臨界状態の冷媒が滞留する。流量制御 弁 13cを開、 13a、 13bを閉とすると、冷媒貯留容器 12内に高圧の冷媒が貯留され ている場合には接続配管 18cを通って圧縮機 3の吸入側に流出し、冷媒貯留容器 1 2内の冷媒状態は圧縮機 3に吸入される冷媒状態と同じとなり、低圧低温のガス冷媒 が滞留する。
[0025] 冷媒密度は、
高圧低温の超臨界状態冷媒>高圧高温の超臨界状態冷媒>低圧低温のガス冷 媒
であるので、冷媒貯留容器 12内の冷媒量は、
流量制御弁 13aを開とした場合 >流量制御弁 13bを開とした場合 >流量制御弁 13cを開とした場合
となる。
[0026] 冷凍空調装置内で室外側熱交換器 5、冷媒貯留容器 12以外で、容積が大きく多く の冷媒が滞留する可能性のある箇所は、液管 8、室内側熱交翻10&、 10b、ガス管 11であるが、液管 8については、室外側膨張弁 6の開度がほぼ全開に制御され、常 に高圧低温の超臨界状態冷媒が滞留するように制御されるので大きな冷媒量の変 動は生じない。室内側熱交翻10&、 10bは、室内側膨張弁 9a、 9bの制御及び圧 縮機 3の制御により、熱交換器出口過熱度及び低圧が同じになるように制御されるの で、こちらも大きな冷媒量の変動は生じない。またガス管 11も同様の制御により、低 圧低温のガス状態に制御されるので、大きな冷媒量の変動は生じない。冷凍空調装 置に充填されている冷媒量は一定であるので、冷媒貯留容器 12内に冷媒量の変動 が生じた場合には、その影響は室外側熱交翻 5内の冷媒量に表れる。即ち、冷媒 貯留容器 12内の冷媒量が増加すると、室外側熱交換器 5内の冷媒量は減少し、冷 媒貯留容器 12内の冷媒量が減少すると、室外側熱交換器 5内の冷媒量は増加する
[0027] そこで、大きな COPが得られる高圧目標値よりも現在の高圧値が低ければ、放熱 器である室外側熱交 5内に存在する冷媒量が多くなるように制御すればよい。こ のため、流量制御弁 13aが開の場合は、流量制御弁 13aを閉、 13bを開に制御し、 流量制御弁 13bが開の場合は、流量制御弁 13bを閉、 13cを開に制御する。なお、 流量制御弁 13cが開である場合には冷媒充填量が必要量より少ないことになるので 、冷媒を追加充填したり、冷媒貯留容器 12の容量を小さくするなどの対応が必要と なる。
実際の流量制御弁 13の動作としては、流量制御弁 13aが開の場合は、流量制御 弁 13aを閉、流量制御弁 13cを開にすることで、冷媒貯留容器 12内に貯留していた 高圧低温の冷媒が流量制御弁 13c、接続配管 18cを通って低圧側に流出する。次 に流量制御弁 13cを閉、流量制御弁 13bを開にすることで、流量制御弁 13b、接続 配管 18bを通って高圧高温の冷媒が流入して冷媒貯留容器 12内に貯留する。また 、流量制御弁 13bが開の場合は、流量制御弁 13bを閉、流量制御弁 13cを開にする ことで、冷媒貯留容器 12内に貯留していた高圧高温の冷媒が流量制御弁 13c、接 続配管 18cを通って低圧側に流出し、冷媒貯留容器 12内に貯留する冷媒は低圧低 温になる。高圧高温冷媒を高圧低温冷媒に入れかえる際の流量制御弁 13b、 13cの 開閉のタイミングは、温度センサ 161で冷媒貯留容器 12の温度を検知して制御しても よ!、し、予め所定の時間で開閉するように設定してぉ 、てもよ 、。
[0028] 逆に、大きな COPが得られる高圧目標値よりも現在の高圧値が高ければ、放熱器 である室外側熱交換器 5内に存在する冷媒量が少なくなるように制御すればよい。こ のため、流量制御弁 13cが開の場合は、流量制御弁 13cを閉、流量制御弁 13bを開 にすることで、流量制御弁 13bを通って高圧高温の冷媒が流入して冷媒貯留容器 1 2内に貯留する。また、流量制御弁 13bが開の場合は、流量制御弁 13bを閉、 13aを 開に制御することで、流量制御弁 13aを通って高圧低温の冷媒が流入して冷媒貯留 容器 12内に貯留する。なお、流量制御弁 13aが開である場合には冷媒充填量が必 要量より多いことになるので、冷媒を装置力 放出回収したり、冷媒貯留容器 12の容 量を増やすなどの対応が必要となる。
実際の流量制御弁 13の動作としては、流量制御弁 13cが開の場合は、流量制御 弁 13bを開にすることで、高圧高温の冷媒が流量制御弁 13b、接続配管 18bを通つ て冷媒貯留容器 12内に貯留する。また、流量制御弁 13bが開の場合は、流量制御 弁 13bを閉、流量制御弁 13cを開にすることで、冷媒貯留容器 12内に貯留していた 高圧高温の冷媒が流量制御弁 13c、接続配管 18cを通って低圧側に流出する。次 に流量制御弁 13cを閉、流量制御弁 13aを開にすることで、流量制御弁 13a、接続 配管 18aを通って高圧低温の冷媒が流入して冷媒貯留容器 12内に貯留する。この 場合にも、高圧低温冷媒を高圧高温冷媒に入れかえる際の流量制御弁 13a、 13cの 開閉のタイミングは、温度センサ 161で冷媒貯留容器 12の温度を検知して制御しても よ!、し、予め所定の時間で開閉するように設定してぉ 、てもよ 、。
[0029] このようにして、冷房運転にお!、て、蒸発器となる熱交換器出口の過熱度を所定値 に制御することにより、蒸発器となる熱交^^に存在する冷媒量を大凡一定の状態 で運転できる。この状態で冷媒量調整回路 20により冷媒量調整を行うことで、高圧側 に存在する冷媒量を安定にかつ迅速に調整して運転制御できる。また、高圧目標値 を設定して、高圧側に循環させる冷媒量によって高圧値を運転効率最大となる状態 に制御することで、効率のよい運転を実現でき、高信頼性かつ高効率の冷凍空調装 置の運転を実現できる。
特に流量制御弁 13a、 13b、 13cの開閉を制御することで、放熱器内の冷媒量を増 減して高圧値を COPが最大となる高圧値近傍の値となるように制御でき、効率のよ!、 冷凍空調装置の運転を実現できる。
[0030] 上記では、従来装置のように蒸発器内に状態変化を起こさせて冷媒量を制御する のではなぐ冷媒量の移動を室外側熱交換器 5と冷媒貯留容器 12との間で直接影 響が表れるように実施できることから、短時間で安定的に冷媒量制御を実施すること ができ、より効率のよい冷凍空調装置の運転を安定的に実現できる。
[0031] また、図 1に示した冷媒回路では、室内側膨張弁 9と室外側膨張弁 6を接続する配 管内を流れる冷媒の温度を調節する温度調節用熱交換部として高低圧熱交換器 7 を設けて、液管 8に流れる冷媒の温度が所定の温度になるように制御している。この ため、液管 8に存在する冷媒量をより正確に制御でき、安定した運転を実現できる。
[0032] また、減圧装置制御手段 33によって室外側膨張弁 6と室内側膨張弁 9a、 9bを接 続する配管内の冷媒状態が超臨界状態になるように室外側膨張弁 6を制御するよう に構成して 、るので、安定した冷媒状態で運転できる冷凍空調装置が得られる。
[0033] また、圧縮機 3を可変容量圧縮機とし、圧縮機制御手段 31で冷凍サイクルの低圧 値が所定値になるように容量制御するように構成した。この低圧値は室内側熱交換 器 10a、 10bで必要とされる冷熱量に基づき、その冷熱量が得られるように設定して いるので、確実に必要能力を発揮できる冷凍空調装置が得られる。
[0034] ここで、圧縮機 3の容量制御方法としては以下のような方法をとつてもよい。室内側 熱交翻10&、 10bで所定の熱交換量が発揮されるように低圧目標値を決定して、 容量制御を実施したが、負荷側の冷却状況に応じて容量制御方法を変更しても良 い。例えば負荷側が室内空間であり、装置使用者が設定する設定空気温度よりも室 内空間の空気温度が高い場合には、現時点よりもより大きな熱交換量が必要とされる ので、低圧目標値を低く変更する。逆に設定空気温度よりも室内空間の空気温度が 低い場合には、熱交換量過剰であるので、現時点より熱交換量が少なくなるように、 低圧目標値を高く変更する。
また圧縮機 3の容量制御方法として、低圧を介さずに、設定空気温度と室内空間の 空気温度の偏差など、負荷側の冷却状況をもとに直接圧縮機 3の容量制御を行って もよい。例えば設定空気温度に対し室内空間の空気温度が高い場合には、圧縮機 3 の容量を増加させ、設定空気温度に対し室内空間の空気温度が低い場合には、圧 縮機 3の容量を減少させる。
このように圧縮機 3を可変容量圧縮機とし、圧縮機制御手段 31によって、室内側熱 交翻10&、 10bで必要とされる冷熱量が得られるように圧縮機 3を容量制御しても、 確実に必要能力を発揮できる冷凍空調装置が得られる。
[0035] なお、上記では冷媒量制御手段 35によって冷媒貯留容器 12内の冷媒量調整を行 う際に、高圧目標値を設定して冷媒量を調整制御したが、放熱器出口冷媒温度を用 いてもよい。即ち室外側熱交換器 5の出口冷媒温度目標値を設定し、室外側熱交換 器 5の出口冷媒温度がこの目標値になるように冷媒量を調整制御する。例えば、効 率が最大となる高圧値と放熱器出口冷媒温度の相関を予め求めておき、圧力センサ 15aで検知された高圧値を用いて前記相関力 効率が最大となる放熱器出口冷媒 温度を決定し、これに基づいて室外熱交翻5の出口冷媒温度目標値とする。そし て、温度センサ 16bで検知される室外熱交 5の出口冷媒温度と、その目標値と を比較する。室外熱交換器 5の出口冷媒温度目標値に対し、実際の冷媒温度が低 い場合には、室外側熱交換器 5に存在する冷媒量が多すぎるので、室外側熱交換 器 5に存在する冷媒量が少なくなるように図 5のステップ 6に示すような制御動作を行 つて、冷媒貯留容器 12内の冷媒量を増加させる。逆に室外熱交換器 5の出口冷媒 温度目標値に対し、実際の冷媒温度が高い場合には、室外側熱交換器 5に存在す る冷媒量が少ないので、室外側熱交換器 5に存在する冷媒量が多くなるように図 5の ステップ 5に示すような制御動作を行って、冷媒貯留容器 12内の冷媒量を減少させ る。このように放熱器出口冷媒温度目標値を設定して高圧側に存在する冷媒量を制 御しても、高効率で高信頼性の冷凍空調装置が得られる。
[0036] 次に、暖房運転時の計測制御装置 17によって行われる制御動作について説明す る。暖房運転では、室内側熱交翻10&、 10bが放熱器となるので、冷凍サイクルの 効率に大きく影響を与える高圧値が、室内側熱交換器 10の熱交換量にも影響を与 える。そこで運転としては、単純に効率重視で高圧値を制御するだけでなぐまず室 内側熱交^^ 10の熱交換量が要求量以上となる運転を実現し、次 、で効率のょ 、 運転となるように制御する。
[0037] 放熱器の熱交換量は、概ね冷凍サイクルの高圧値と放熱器出口温度に支配される 。図 6は異なる放熱器出口温度の場合の高圧値と放熱器熱交換量の関係を示すグ ラフであり、横軸に高圧値、縦軸に放熱器熱交換量を示す。
図 6の 3本の曲線に示されるように、放熱器出口温度の高低に応じてほぼ平行に変 化し、高圧値が高いほど、また放熱器出口温度が高いほど、放熱器内平均冷媒温度 は高くなり熱交換量は増加する。熱交換量一定でみると、放熱器出口温度が低いほ ど高圧値は高くなる。放熱器熱交換量を一定にした時の、高圧値に対する放熱器出 口温度を図 7 (a)に示し高圧値に対する COPを図 7 (b)に示す。図 7 (a)に示されるよ うに熱交換量一定条件下での高圧値と放熱器出口温度の相関が得られる。この相 関上で冷凍サイクルの効率を求めると、図 7 (b)に示されるように効率 COPが最大と なる高圧値 (PK)が存在する。
図 8は暖房運転における制御装置 17の構成を示し、図 9は暖房運転における制御 装置 17の制御動作を示すフローチャートである。所定の熱交換量が決定される (ステ ップ 11)と、その熱交換量を実現するとともに効率最大となる高圧目標値 PKと最適 放熱器出口温度の組み合わせを目標値設定手段 34で設定する (ステップ 12)。そし てこの値を制御目標値として運転制御を行う。この制御目標値は最適値の近傍で、 ある程度の幅を持つように設定する。
圧縮機制御手段 31でインバータによる回転数制御を行なう。圧縮機 3の運転容量 は圧力センサ 15aで計測される高圧値が前述のように設定された高圧目標値 PK、 例えば lOMPaの近傍になるように制御される。
また減圧装置制御手段 33は室内側膨張弁 9a、 9bそれぞれの開度を、室内機 2a、 2bそれぞれの所定熱交換量に基づく所定容量に応じて決定される流動抵抗になる ように調整する。この開度は固定開度とする。室内機 2の所定容量が大きい場合には 固定開度は大きぐ室内機 2の所定容量が小さい場合には固定開度は小さく設定さ れる。なお、室内側膨張弁 9a、 9bの固定開度のそれぞれは、室内側膨張弁 9a、 9b 出口の冷媒が大きく減圧されて臨界圧力以下とならないように、例えば差圧が 0. 5 MPa程度になるように決定される。従って、冷凍サイクルの高圧配管内の冷媒、即ち 室内側膨張弁 9a、 9bと室外側膨張弁 6の間の冷媒配管を流れる冷媒は超臨界状態 になる。
また過熱度制御手段 32によって、室外側膨張弁 6は、温度センサ 16fの温度 圧 力センサ 15bで計測される低圧値力 換算される冷媒飽和温度で演算される圧縮機 3吸入の冷媒過熱度が目標値となるように開度制御される。この目標値としては、予 め定められた目標値、例えば 2°Cを用いる。また室外側熱交換器 5の熱交換量、室 内側熱交換器 9a、 9bの熱交換量は伝熱媒体である空気や水を搬送するファン回転 数やポンプ流量などを予め定められた状態で運転する。流量制御弁 14は、温度セン サ 16eの温度—圧力センサ 15bで計測される低圧力も換算される冷媒飽和温度で演 算される高低圧熱交 7の低圧側出口の冷媒過熱度が目標値となるように開度制 御される。この目標値としては、予め定められた目標値、例えば 5°Cを用いる。この制 御工程が図 9のステップ 13に示されて!/、る。
[0039] この状態で運転したときの高低圧熱交換器 7入口の温度を温度センサ 16dで計測 する (ステップ 14)。この温度は放熱器である各室内側熱交翻10出口の冷媒が合 流したときの温度を示すため、放熱器出口温度の代表温度と見なすことができる。こ の放熱器出口温度の値と前述した方法で設定された放熱器出口温度目標値とを比 較する (ステップ 15)。ここで放熱器出口温度と冷媒量との相関を見ると、放熱器出口 温度が高くなると、放熱器全体の平均冷媒温度も高ぐ逆に低くなると、放熱器全体 の平均冷媒温度も低くなる一方、冷媒密度は温度が一般に低いほど高くなるので、 放熱器出口温度が高いと、放熱器に存在する冷媒量は少なぐ放熱器出口温度が 低いと、放熱器に存在する冷媒量は多くなる。
[0040] 従って、冷媒量制御手段 35では、計測される放熱器出口温度の代表温度が放熱 器出口温度目標値に比べて高 、場合は放熱器の冷媒量が必要量に足りな 、ことに なるので、放熱器である室内側熱交翻10内の冷媒量が多くなるように制御する (ス テツプ 16)。逆に計測される放熱器出口温度の代表温度が目標値に比べて低い場 合は放熱器に必要量以上の冷媒量があることになるので、放熱器である室内側熱交 翻 10内の冷媒量が少なくなるように制御する (ステップ 17)。ステップ 15の比較で 計測される放熱器出口温度の代表温度が目標値を満足している場合には、ステップ 11に戻る。
[0041] 冷媒量制御手段 35における室内側熱交換器 10内の冷媒量制御は、冷房運転の 場合と同様に実施する。計測される放熱器出口温度の代表温度が目標値に比べて 高ければ、放熱器である室内側熱交換器 10内の冷媒量が多くなるように制御するた め、冷媒貯留容器 12に貯留する冷媒の密度を小さくする。このため、ステップ 16〖こ 示すように、流量制御弁 13aが開の場合は、流量制御弁 13aを閉、 13bを開に制御 し、流量制御弁 13bが開の場合は、流量制御弁 13bを閉、 13cを開に制御する。な お、流量制御弁 13cが開である場合には冷媒充填量が必要量より少ないことになる ので、冷媒を追加充填したり、冷媒貯留容器 12の容量を小さくするなどの対応が必 要となる。
実際の流量制御弁 13の動作としては、流量制御弁 13aが開の場合は、流量制御 弁 13aを閉、流量制御弁 13cを開にすることで、冷媒貯留容器 12内に貯留していた 高圧低温の冷媒が流量制御弁 13c、接続配管 18cを通って低圧側に流出する。次 に流量制御弁 13cを閉、流量制御弁 13bを開にすることで、流量制御弁 13b、接続 配管 18bを通って高温高圧の冷媒が流入して冷媒貯留容器 12内に貯留する。また 、流量制御弁 13bが開の場合は、流量制御弁 13bを閉、流量制御弁 13cを開にする ことで、冷媒貯留容器 12内に貯留していた高圧高温の冷媒が流量制御弁 13c、接 続配管 18cを通って低圧側に流出し、冷媒貯留容器 12内に貯留する冷媒は低圧低 温になる。高圧高温冷媒を高圧低温冷媒に入れかえる際の流量制御弁 13b、 13cの 開閉のタイミングは、温度センサ 161で冷媒貯留容器 12の温度を検知して制御しても よ!、し、予め所定の時間で開閉するように設定してぉ 、てもよ 、。
逆に、計測される放熱器出口温度の代表温度が目標値に比べて低ければ、放熱 器である室内側熱交 内の冷媒量が少なくなるように制御するため、冷媒貯留 容器 12に貯留する冷媒の密度を大きくする。このため、ステップ 17に示すように、流 量制御弁 13cが開の場合は、流量制御弁 13cを閉、 13bを開に制御し、流量制御弁 13bが開の場合は、流量制御弁 13bを閉、 13aを開に制御する。なお、流量制御弁 1 3aが開である場合には冷媒充填量が必要量より多いことになるので、冷媒を装置か ら放出回収したり、冷媒貯留容器 12の容量を増やすなどの対応が必要となる。
実際の流量制御弁 13の動作としては、流量制御弁 13cが開の場合は、流量制御 弁 13cを閉、流量制御弁 13bを開にすることで、高圧高温の冷媒が流量制御弁 13b 、接続配管 18bを通って冷媒貯留容器 12内に貯留する。また、流量制御弁 13bが開 の場合は、流量制御弁 13bを閉、流量制御弁 13cを開にすることで、冷媒貯留容器 12内に貯留して 、た高圧高温の冷媒が流量制御弁 13c、接続配管 18cを通って低 圧側に流出する。次に流量制御弁 13cを閉、流量制御弁 13aを開にすることで、流 量制御弁 13a、接続配管 18aを通って高圧低温の冷媒が流入して冷媒貯留容器 12 内に貯留する。この場合にも、高圧低温冷媒を高圧高温冷媒に入れかえる際の流量 制御弁 13a、 13cの開閉のタイミングは、温度センサ 161で冷媒貯留容器 12の温度を 検知して制御してもよ 、し、予め所定の時間で開閉するように設定してぉ 、てもよ ヽ このようにして、暖房運転にお!、て、蒸発器となる熱交換器出口の過熱度を所定値 に制御することにより、蒸発器となる熱交^^に存在する冷媒量を大凡一定の状態 で運転できる。この状態で冷媒量調整回路 20により冷媒量調整を行うことで、高圧側 に存在する冷媒量を安定にかつ迅速に調整して運転制御できる。
また、高圧目標値と放熱器出口温度目標値のそれぞれ目標値を設定して圧縮機 の容量制御と冷媒量制御を行うことで、必要とされる熱交換量を室内側熱交 力 供給できる。また、高圧目標値を設定して運転効率最大となる状態に制御するこ とで、効率のよい運転を実現でき、高信頼性かつ高効率の冷凍空調装置の運転を実 現できる。
さらに、流量制御弁 13a、 13b、 13cの開閉を制御することで、放熱器内の冷媒量を 増減して放熱器出口温度を目標値とし、放熱器で必要な熱交換量を確実に供給す るよう〖こ運転でさる。
また、過熱度制御手段 32によって室外側膨張弁 6の開度を制御することで、室外 側熱交換器 5出口の冷媒過熱度とほぼ等しい圧縮機 3吸入の過熱度がほぼ一定に なるように制御されるため、室外側熱交 5の冷媒量が変化しな 、ように運転制御 される。また液管 8については、減圧装置制御手段 33で行なう室内側膨張弁 9a、 9b 及び室外側膨張弁 6の開度制御により、常に高圧低温の超臨界状態冷媒が滞留す るように制御されるので、大きな冷媒量の変動は生じない。ガス管 11も常に高圧高温 の超臨界状態の冷媒が存在することになるので、大きな冷媒量の変動は生じない。 冷凍空調装置に充填されている冷媒量は一定であるので、冷媒貯留容器 12内の冷 媒量変動が生じた場合には、その影響は主に室内側熱交翻10内の冷媒量に表 れることになる。即ち、従来装置のように蒸発器内に状態変化を起こさせて冷媒量を 制御するのではなぐ冷媒量の移動を室内側熱交翻10と冷媒貯留容器 12との間 で直接影響が表れるように実施できることから、短時間で安定的に冷媒量制御を実 施することができ、より効率のよい冷凍空調装置の運転を安定的に実現できる。 [0044] 上記では暖房運転時の冷媒量調整に用いる放熱器出口温度の代表値を温度セン サ 16dで検知される温度としているが、放熱器となる各室内側熱交翻 10a、 10b出 口の冷媒温度 16h、 16jをもとに代表冷媒温度を決定してもよい。このとき、各室内側 熱交^^ 10a、 10bを流れる冷媒流量比に応じて加重平均をとつて代表冷媒温度を 求めることが望ましぐ冷媒流量比に相当する室内側膨張弁 9a、 9bの開度比や室内 機 2a、 2bの設定容量比などに基づ 、て加重平均を求める。
複数の放熱器出口温度が全て同じ温度であるとは限らないので、運転中に複数の 放熱器に対して平均的な放熱器出口温度であると見なせる温度を計測または演算 することで放熱器出口温度の代表値とすればよい。この放熱器出口温度の代表値を 目標放熱器出口温度になるように冷媒量を調整すれば、必要な熱交換量を供給で きると共に効率よく冷凍サイクルを運転できる。
[0045] なお、上記では冷媒量制御手段 35によって冷媒貯留容器 12内の冷媒量調整を行 う際に放熱器出口温度が目標値となるように制御したが、高圧値の目標値を設定し てこの高圧目標値になるように冷媒量調整を行ってもょ 、。
例えば、温度センサ 16dで検知される放熱器出口温度の代表値が、室内側熱交換 器 10で必要となる熱交換量力 決定される放熱器出口温度目標値となるように圧縮 機 3の容量制御を行う。そして圧力センサ 15aで検知される高圧値力 図 9のステップ 12における放熱器出口温度目標値とともに設定される高圧目標値となるように冷媒 量調整を行う。この場合には、検知した高圧値が高圧目標値より高い場合には、室 内側熱交翻10に存在する冷媒量が多すぎるので、室内側熱交翻10に存在す る冷媒量が少なくなるように冷媒貯留容器 12内の冷媒量を増力!]させる。逆に検知し た高圧値が高圧目標値より低い場合には、室内側熱交 に存在する冷媒量が 少ないので、室内側熱交換器 10に存在する冷媒量が多くなるように冷媒貯留容器 1 2内の冷媒量を減少させる。このように高圧側に存在する冷媒量を制御しても、高効 率で高信頼性の冷凍空調装置が得られる。
[0046] 暖房運転でも冷房運転と同様、圧縮機 3の容量制御方法として、負荷側の加熱状 況に応じて容量制御方法を変更してもよい。例えば負荷側が室内空間であり、装置 使用者が設定する設定空気温度よりも室内空間の空気温度が低い場合には、現時 点よりもより大きな熱交換量が必要とされるので、室内側熱交 の所定熱交換 量をより大きな値に変更し、この変更に応じて、高圧目標値及び放熱器出口温度目 標値を修正する。逆に設定空気温度よりも室内空間の空気温度が高い場合には、現 時点で熱交換量過剰であるので、室内側熱交換器 10の所定熱交換量をより小さな 値に変更し、この変更に応じて、高圧目標値及び放熱器出口温度目標値を修正す る。このような制御を行なっても、必要な温熱量を確実に得られ、かつ高効率で運転 される冷凍空調装置が得られる。
[0047] また圧縮機 3の容量制御方法として、高圧など室内側熱交 の所定熱交換量 を介さずに、設定空気温度と室内空間の空気温度の偏差など、負荷側の加熱状況 をもとに直接圧縮機 3の容量制御を行ってもよい。例えば設定空気温度に対し室内 空間の空気温度が低い場合には、圧縮機 3の容量を増加させ、設定空気温度に対 し室内空間の空気温度が高い場合には、圧縮機 3の容量を減少させる。このような暖 房運転を行った場合、高圧と放熱器出口温度の相関から、放熱器内の冷媒量の多 少を判断して冷媒量調整を行う。例えば高圧及び圧縮機 3の容量から効率最大とな る放熱器出口温度の相関を予め求めておき、この相関力も得られる放熱器出口温度 を目標値として、放熱器出口温度がこの目標値となるように放熱器内の冷媒量調整 を行う。このような制御を行なっても、上記と同様、必要な温熱量を確実に得られ、か つ高効率で運転される冷凍空調装置が得られる。
[0048] 室内側膨張弁 9a、 9bの開度については、室内側膨張弁 9a、 9bと室外側膨張弁 6 を接続する配管内の冷媒状態が超臨界状態となるように制御することが望ましい。室 内側膨張弁 9a、 9bと室外側膨張弁 6を接続する配管内の冷媒状態を臨界状態に保 つことで、液管 8内に存在する冷媒量を一定量として運転することができる。このため 、この状態で放熱器 10内の冷媒量の調整を行うことで、短時間で安定的に冷媒量制 御を実施することができ、より確実に効果を得ることができる。
[0049] 上記では、室内側膨張弁 9a、 9bのそれぞれは、室内側膨張弁 9a、 9bと室外側膨 張弁 6を接続する配管内の冷媒状態が超臨界状態となる開度の範囲に設定され、さ らに室内機 2a、 2bの所定熱交換量に基づく所定容量比から決定される固定開度と なるように流動抵抗を設定している。このため、運転が簡単で、ある程度室内側熱交 10bの熱交換量に応じて冷媒を分配して循環させることができる。
[0050] また室内側膨張弁 9a、 9bの開度を固定開度とせずに、運転状態に応じて適宜変 更してもよい。室内側膨張弁 9a、 9bと室外側膨張弁 6を接続する配管内の冷媒状態 が超臨界状態となるように制御することが望ましいが、室外機 1の運転状態によって は室内側膨張弁 9a、 9bと室外側膨張弁 6を接続する配管内の冷媒状態が超臨界状 態にならない場合もある。そこで圧力センサ 15cで計測される圧力が臨界圧力以上 になるように減圧装置制御手段 33によって室内側膨張弁 9a、 9b及び室外側膨張弁 6の開度を制御する。例えば、圧力センサ 15cで計測される圧力が臨界圧力以下で ある場合は膨張弁開度を開く制御を実施する。このように室内側膨張弁 9a、 9bのそ れぞれの開度即ち流動抵抗を変更して、液管 8を流れる冷媒の状態を超臨界状態と なる開度に制御すれば、安定して運転することができる。
[0051] また室内側膨張弁 9a、 9bの開度を運転状態に応じて適宜変更する構成で、室内 側膨張弁 9a、 9bのそれぞれを、室内側膨張弁 9a、 9bと室外側膨張弁 6を接続する 配管内の冷媒状態が超臨界状態となる開度の範囲に設定し、さらに以下のように補 正してちょい。
例えば、温度センサ 16h、 16jで計測される各室内側熱交^^ 10a、 10b出口の冷 媒温度と、温度センサ 16dで計測される高低圧熱交換器 7入口の温度、すなわち放 熱器出口代表温度とを比較し、比較結果に基づいて開度補正する。各室内側熱交
10bの出口温度と放熱器出口代表温度との偏差が大きくない場合、例え ば 5°C程度以下の場合には、室内側膨張弁 9a、 9bの開度を変更する必要がない。 一方、温度偏差が大きく例えば 5°Cよりも大きい場合には所定温度差、例えば 5°C以 内になるように、各室内側膨張弁 9a、 9bの開度を制御する。例えば室内側熱交翻 10a出口の冷媒温度が放熱器出口代表温度に対して所定温度以上高ぐ室内側熱 交換器 10b出口の冷媒温度が放熱器出口代表温度に対して所定温度以上低くなつ ているような場合には、室内側熱交換器 10aの平均冷媒温度が高ぐ熱交換量が所 定値よりも多ぐ室内側熱交換器 10bの平均冷媒温度が低ぐ熱交換量が所定値より も少なくなつている。このようなの場合には、室内側熱交換器 10bの能力不足が発生 しており、開度変更が必要となる。室内側熱交換器 10aを流れる冷媒流量が多ぐ室 内側熱交換器 10bを流れる冷媒流量が少なくなつているので、室内側膨張弁 9aの 開度を小さぐ室内側膨張弁 9bの開度を大きく制御する。一般的な制御手法で記す と、放熱器出口代表温度に対し、室内側熱交換器 10出口の冷媒温度が所定温度以 上高い場合には、室内側膨張弁 9の開度を小さく変更し、放熱器出口代表温度に対 し、室内側熱交換器 10出口の冷媒温度が所定温度以上低い場合には、室内側膨 張弁 9の開度を大きく変更する。
このような複数の室内機 2を備えた構成で、室内膨張弁 9a、 9bそれぞれの開度制 御を行うことで、所定量に対する室内側熱交換器 10の熱交換量の過不足を解消で き、複数の室内側熱交換器 10のそれぞれにバランスよく適切な熱交換量を供給でき る冷凍空調装置が得られる。
[0052] 以上の冷媒量制御方法は、冷凍空調装置の構成が特に複数台の室内機 2が接続 されるマルチ型の冷凍空調装置において以下の点で有効となる。一般にマルチ型の 装置の場合、室外機 1と室内機 2間を接続する配管 8、 11が長くなるため、装置に充 填される冷媒量が多くなる。一方では、各室内機 2それぞれで運転停止が発生する ため、運転条件による冷媒量変動が大きくなり、運転が不安定となるとともに、最適冷 媒量での運転が行いにくぐ運転効率が低下しやすい。とくに接続配管の状態が気 液二相状態となると、そこに存在する液量の変動によって大きな冷媒量変動が生じ やすくなる。配管長の長いマルチ型の装置ではより大きな冷媒量変動を生じることに なる。この実施の形態では、このような条件の下でも、蒸発器出口の過熱度を所定値 とすると共に、接続配管の冷媒状態を超臨界状態とするように制御する。即ち、冷媒 量変動が少なくなるように制御することができるので、運転が安定しやすくなり、最適 冷媒量での運転を容易に実現でき、高効率の運転を行うことができる。
[0053] また、この実施の形態による制御における室内機側膨張弁 9の制御は、室内機 2の 容量や形態によらず汎用的に搭載可能である。同時に室外機 1側の圧縮機 3、膨張 弁 6、冷媒量制御も室内機 2の容量や形態によらず汎用的に実施できる。従って、マ ルチ型の装置を想定した室外機 1に不特定の室内機 2が接続される場合でも制御変 更を行わなくてもよぐ自在な装置構成を容易に実現することができ、より汎用的とな る。 [0054] この実施の形態では、四方弁 4の流路切換により冷暖房運転を実現しており、室外 側膨張弁 6、室内側膨張弁 9の開度制御により、冷暖いずれの運転においても冷媒 貯留容器 12に超臨界状態である低温冷媒の供給を可能としている。従って冷暖ぃ ずれの運転においても同様の制御で冷媒量調整を行うことができ、高効率運転を実 現するとともに、制御の簡素化を可能としている。
特に冷房と暖房の両方を行う冷凍空調装置では、冷房運転と暖房運転で必要とな る冷媒の量が異なる。このような場合には過剰な冷媒を貯留し、不足である冷媒を補 充することが必要となり、この実施の形態における冷媒貯留回路 20の作用効果は大 きいものである。
[0055] この実施の形態では、高圧高温冷媒、高圧低温冷媒、低圧低温冷媒の冷媒密度 の差によって冷媒量を調整するので、調整できる冷媒量の幅が大きくできる。特に冷 媒貯留容器 12に密度の大きい低温冷媒を貯留できるので、多量の冷媒を貯留でき 、逆に言うと小さい冷媒貯留容器 12で冷媒量調整が可能となっている。従って冷媒 貯留容器 12の小型化及びこれに伴って低コストィ匕を図ることができる。
[0056] この実施の形態で設けた冷媒貯留容器 12の容量は、充填冷媒量が 20kg程度の 場合には約 10リットル程度としている。冷媒が COの場合には、例えば高圧低温の
2
冷媒の密度が 700kgZm3程度、高圧高温の冷媒の密度が 150kgZm3程度、低 圧低温の冷媒の密度が 100kgZm3程度であり、冷媒貯留容器 12に貯留できる冷 媒量は、 7kg、 1. 5kg、 1kgのように、段階的に調整できる。
[0057] このように、冷媒量調整回路 20として、冷媒貯留容器 12を有すると共に、室外側膨 張弁 6と室内膨張弁 9の間の冷媒配管と冷媒貯留容器 12とを接続及び切離し可能 な高圧低温冷媒接続配管 18aと、冷媒貯留容器 12と圧縮機 3吸入側を接続及び切 離し可能な低圧低温冷媒接続配管 18cとを備えることで、密度の異なる冷媒を冷媒 貯留容器 12に貯留できる構成である。特に高圧低温冷媒を貯留することで、多量の 冷媒を貯留することができ、低圧低温冷媒を貯留することで、少量の冷媒を貯留する ことができ、貯留冷媒量の範囲を広くできる。
また、冷媒量調整回路 20にさらに冷媒貯留容器 12と圧縮機 3吐出側を接続及び 切離し可能な高圧高温冷媒接続配管 18bを備えることで、冷媒貯留容器 12に 3段階 の冷媒量を貯留でき、放熱器に存在する冷媒の量を 3段階で制御できる。
[0058] さらに冷媒量制御手段 35は、放熱器となる熱交^^に存在する冷媒量が少ない場 合に冷媒貯留容器 12に密度の小さな冷媒が格納されるように高圧低温冷媒接続配 管 18aを切離して高圧高温冷媒接続配管 18bまたは低圧低温冷媒接続配管 18cを 接続し、放熱器となる熱交^^に存在する冷媒量が多い場合に冷媒貯留容器 12〖こ 密度の大きい冷媒が格納されるように高圧低温冷媒接続配管 18aまたは高圧高温 冷媒接続配管 18bを接続し低圧低温冷媒接続配管 18cを切離すことで、速やかに 放熱器に存在する冷媒量を制御できる。
[0059] また、図 5、図 9の運転制御手順に示したように、圧縮機、放熱器、減圧装置、蒸発 器に冷媒を循環させて冷凍サイクルを構成し、圧縮機吐出側から減圧装置入口まで の高圧側を臨界圧力以上、減圧装置出口から圧縮機入口までの低圧側を臨界圧力 よりも低い圧力で運転して蒸発器または放熱器で冷凍空調を行う冷凍空調ステップ と、蒸発器出口の過熱度を所定値になるように制御する過熱度制御ステップ (ステツ プ 1、ステップ 13)と、冷凍サイクルに接続切離し可能な冷媒貯留手段 12に余剰の 冷媒を貯留することで放熱器に存在する冷媒量を調整する冷媒量制御ステップ (ス テツプ 5、 6、 16、 17)と、を備えたことにより、超臨界域で使用する COなどの冷媒を
2
用いた冷凍空調装置において、装置の効率に寄与する放熱器内の冷媒量を安定か つ速やかに調整して効率よく運転できる冷凍空調装置の運転制御方法が得られる。
[0060] また、図 9に示すように、放熱器で必要とする温熱量が得られるように高圧目標値及 び放熱器出口冷媒温度目標値を設定する目標設定ステップ (ステップ 12)と、循環 する冷媒の高圧値が前記高圧目標値になるように前記圧縮機を容量制御する圧縮 機制御ステップ (ステップ 13)と、を備え、前記冷媒量制御ステップ (ステップ 16、 17) は、循環する前記冷媒の放熱器出口冷媒温度が前記放熱器出口冷媒温度目標値 になるように冷媒量を調整して前記放熱器で温熱を供給利用することで、装置の効 率に寄与する放熱器内の冷媒量を安定かつ速やかに調整して効率よく温熱利用運 転できると共に、必要な温熱量が得られる冷凍空調装置の運転制御方法が得られる
[0061] また、図 5に示すように、高圧目標値を設定する目標設定ステップ (ステップ 3)を備 え、冷媒量制御ステップ (ステップ 5、 6)は、循環する冷媒の高圧値が前記高圧目標 値になるように冷媒量を調整して前記蒸発器で冷熱を供給利用することで、装置の 効率に寄与する放熱器内の冷媒量を安定かつ速やかに調整して効率よく冷熱利用 運転できる冷凍空調装置の運転制御方法が得られる。
[0062] また、循環する冷媒の低圧値が所定値になるように圧縮機を容量制御する圧縮機 制御ステップ (ステップ 1)を備えたことで、利用側熱交換器で必要な冷熱量を確実に 確保できる冷凍空調装置の運転制御方法が得られる。
また、蒸発器で必要とする冷熱量が得られるように前記圧縮機を容量制御する圧 縮機制御ステップを備えたことで、利用側熱交換器で必要な冷熱量を確実に確保で きる冷凍空調装置の運転制御方法が得られる。
[0063] また、冷房運転時に室内側熱交換器 10の出口過熱度を制御する室内側膨張弁 9 の制御、及び暖房運転時に圧縮機 3の吸入過熱度を制御する室外側膨張弁 6の制 御については、冷媒貯留容器 12内の冷媒量制御を調整する制御間隔よりは短い制 御間隔で実施することが望ましい。前述したようにこれらの過熱度制御は蒸発器とな る熱交換器の冷媒量が変動しないようにする機能を持つ。従って、過熱度制御を一 定回数以上実施し、ある程度過熱度が安定してから、冷媒貯留容器 12内の冷媒量 制御を調整する方が、その時点で放熱器となる熱交換器に存在する冷媒量も安定し 、その冷媒量に応じた高圧値や放熱器出口温度となるので、冷媒貯留容器 12内の 冷媒量制御をより適切に実施しやすい。従ってより安定した装置の運転を実現できる なお、圧縮機 3の容量制御を行った場合も蒸発器となる熱交換器の過熱度が変動し 冷媒量が変動するので、圧縮機 3の容量制御を行う時間間隔も冷媒量制御を行う時 間間隔より短い間隔で実施し、蒸発器となる熱交^^の冷媒量を安定させて力 冷 媒量制御を行うことで、より安定した装置の運転を実現できる。
例えば、各膨張弁による過熱度制御及び圧縮機の容量制御の時間間隔は 30秒〜 1分程度に設定し、冷媒量制御を行う時間間隔は 3分〜 5分程度のように前記の時間 間隔よりも長い時間を設定すればよい。
[0064] このように、圧縮機制御ステップで行う圧縮機の容量制御の時間間隔を、前記冷媒 量制御ステップで行う冷媒量調整制御の時間間隔よりも短い時間間隔とすることで、 安定して運転できる冷凍空調装置の運転制御方法が得られる。
また、過熱度制御ステップで行う蒸発器出口の過熱度制御の時間間隔を、冷媒量 制御ステップで行う冷媒量調整制御の時間間隔よりも短い時間間隔とすることで、安 定して運転できる冷凍空調装置の運転制御方法が得られる。
[0065] また、室内側膨張弁 9と室外側膨張弁 6を接続する配管内を流れる冷媒の温度を 調節するための温度調節用熱交換部は、図 1では、冷媒貯留容器 12内の冷媒を流 量制御弁 13cを介して圧縮機 3吸入側に放出する回路構成としている力 図 10に示 すように、高低圧熱交 7の低圧側入口に放出する構成としてもよい。冷媒貯留容 器 12内に滞留している冷媒が超臨界状態であっても低温冷媒の場合、圧縮機 3吸 入側にそのまま放出すると低圧に減圧したときに気液二相状態となり、圧縮機 3に液 が戻る運転となり、圧縮機 3運転の信頼性上問題となる。高低圧熱交 7低圧側入 口に冷媒貯留容器 12内の冷媒が放出するようにすると、高低圧熱交換器 7で熱交換 し、低圧冷媒が加熱され、液冷媒が蒸発するので、圧縮機 3に液が戻る運転を回避 することができ、圧縮機 3運転の信頼性を高めることができる。
[0066] 実施の形態 2.
以下、この発明の実施の形態 2について説明する。実施の形態 2の回路構成、冷 熱利用、温熱利用における圧縮機 3、四方弁 4、室外側膨張弁 6、室内側膨張弁 9、 流量制御弁 14の制御は実施の形態 1と同様であり、ここでは冷媒量調整回路の別の 構成及び作用、即ち冷媒量貯留容器 12の冷媒量調整における別の実施の形態に ついて説明する。
ここでも実施の形態 1と同様、冷媒貯留容器 12を有すると共に、熱源側減圧装置 6 と利用側減圧装置 9の間の冷媒配管と冷媒貯留容器 12とを接続及び切離し可能な 高圧低温冷媒接続配管として流量制御弁 13aを備えた接続配管 18aと、冷媒貯留容 器 12と圧縮機 3吐出側を接続及び切離し可能な高圧高温冷媒接続配管として流量 制御弁 13bを備えた接続配管 18bと、冷媒貯留容器 12と圧縮機 3吸入側を接続及 び切離し可能な低圧低温冷媒接続配管として流量制御弁 13cを備えた接続配管 18 cとを設けて冷媒量調整回路を構成して ヽる。 [0067] 実施の形態 1に示したように放熱器内の冷媒量を調整するために、冷媒貯留容器 1 2内の冷媒量を調整する。実施の形態 1では冷媒貯留容器 12内に貯留する冷媒を 高圧低温冷媒、高圧高温冷媒、低圧低温冷媒の 3つの状態の冷媒を貯留して、放 熱器に存在する冷媒量を 3段階に調整可能とした。この実施の形態では、さらに多く の状態の冷媒を冷媒貯留容器 12内に貯留可能とすることで、放熱器に存在する冷 媒量を多段階さらには連続して変化させるように構成した。
[0068] 流量制御弁 13a、 13b、 13cのうち少なくとも高圧冷媒を通過させる流量制御弁 13 a、 13bを例えば電磁弁のような開度可変である弁とし、各流量制御弁 13a、 13b、 13 cを通って冷媒貯留容器 12内に流入する冷媒量を任意に変化させる。これにより冷 媒貯留容器 12内に貯留する冷媒量を連続的に制御できる。例えば、流量制御弁 13 a、 13b、 13cの全てを開とすると、流量制御弁 13aを介して高圧低温の冷媒が冷媒 貯留容器 12内に流入するとともに、流量制御弁 13bを介して高圧高温の冷媒が冷 媒貯留容器 12内に流入する。そして、これらの冷媒が混合されて冷媒貯留容器 12 内を満たし、冷媒貯留容器 12が高圧冷媒で満たされた後、圧力差によって流量制 御弁 13cを介して圧縮機吸入側に高圧冷媒が流出するようになる。この時の冷媒貯 留容器 12内の冷媒温度は流入する高温と低温の冷媒流量比で決まる。冷媒貯留容 器 12内の冷媒温度が低くなるほど冷媒密度が高くなつてより多くの冷媒を貯留できる 。このため、冷媒貯留容器 12内に存在する冷媒量が多くなるように制御する場合は、 流量制御弁 13bに対して流量制御弁 13aの開度の比が大きくなるように制御すれば 、冷媒貯留容器 12内に多くの低温冷媒が流入し、冷媒貯留容器 12内の冷媒温度 は低くなる。逆に冷媒貯留容器 12内に存在する冷媒量が少なくなるように制御する 場合は、流量制御弁 13aに対して流量制御弁 13bの開度の比が大きくなるように制 御すれば、冷媒貯留容器 12内に多くの高温冷媒が流入し、冷媒貯留容器 12内の 冷媒温度は高くなる。このような運転を実施すると、流量制御弁 13a、 13bの開度の 比で、冷媒貯留容器 12内の温度を連続的に制御でき、冷媒貯留容器 12内の冷媒 量も連続的に制御できるので、放熱器内の冷媒量調整をよりきめ細力べ実施できる。
[0069] さらに、冷媒貯留容器 12内に低圧低温冷媒が貯留している状態で、流量制御弁 1 3bと 13cをそれぞれ適度の開度とすると、高圧高温の冷媒が流量制御弁 13bを通つ て流入する。即ち冷媒貯留容器 12内に貯留する冷媒状態を、低圧低温冷媒から高 圧高温冷媒の間で多段階または連続的に変化させることができる。
[0070] 冷媒貯留容器 12内に貯留されている冷媒の温度は温度センサ 161で計測できるの で、この計測値に基づいて流量制御弁 13a、 13b、 13cの開度の比率を制御すれば よい。
[0071] なお、流量制御弁 13a、 13bともに開度可変である必要はなぐどちらか一方が開 度可変、どちらか一方が開度固定であっても、開度可変の方の弁開度を制御するこ とで、流量制御弁 13a、 13bの開度の比を連続的に制御することが可能となる。 流量制御弁 13cに関しては、開閉可能であってもよぐまたは固定開度で保つよう にしてもよい。例えば冷凍サイクルを循環する冷媒が冷媒貯留容器 12内を通って低 圧側にバイパスしな 、ような開度に保ち、常に流量制御弁 13cを通って冷媒の約 1 % 程度が流れるようにしてもよい。この場合にも、流量制御弁 13a、 13bを共に閉とする と、冷媒貯留容器 12内には流量制御弁 13cを通って低圧低温の密度の低い冷媒が 貯留されること〖こなる。
[0072] また、さらに流量制御弁 13cも例えば電磁弁のような開度可変である弁とし、各流 量制御弁 13a、 13b、 13cを通って冷媒貯留容器 12内に流入する冷媒量を任意に 変化させるとさらにきめ細力べ冷媒量を調整できる。冷媒貯留容器 12内の冷媒量を 調整する他の方法として、冷媒貯留容器 12に圧力センサを設けて、冷媒貯留容器 1 2内の圧力を計測してこの圧力を制御してもよい。流量制御弁 13a、 13b、 13cが開 である場合、冷媒貯留容器 12内の圧力は流入側の制御弁である 13a、 13bと流出側 の制御弁である 13cの開度の比で決定される。流量制御弁 13a、 13bの開度が流量 制御弁 13cの開度よりも大きい場合は冷媒貯留容器 12内の圧力はより高圧に近ぐ 高くなる。逆に流量制御弁 13cの開度が流量制御弁 13a、 13bの開度よりも大きい場 合は冷媒貯留容器 12内の圧力はより低圧に近ぐ低くなる。冷媒圧力が高いほど冷 媒貯留容器 12内の冷媒量が多くなるので、冷媒貯留容器 12内に存在する冷媒量 が多くなるように制御する場合は、流量制御弁 13cに対する流量制御弁 13a、 13bの 開度の比が大きくなるように制御し、冷媒貯留容器 12内の圧力を高くする。逆に冷媒 貯留容器 12内の冷媒量が少なくなるように制御する場合は、流量制御弁 13a、 13b に対する流量制御弁 13cの開度の比が大きくなるように制御し、冷媒貯留容器 12内 の圧力を低くする。このような運転を実施すると、、 13b、 13cの開度の比で、冷媒貯 留容器 12内の圧力を連続的に制御でき、冷媒貯留容器 12内の冷媒量も連続的に 制御できるので、よりきめ細力べ冷媒量調整を実施できる。
例えば実施の形態 1と同様の構成の場合、即ち冷媒貯留容器 12の容量が約 10リ ットル程度で、冷媒が COの場合には、例えば高圧低温の冷媒の密度が 700kgZm
2
3程度、高圧高温の冷媒の密度が 150kgZm3程度、低圧低温の冷媒の密度が 10 0kgZm3程度であり、冷媒貯留容器 12に貯留できる冷媒量は、 7kg〜: Lkgの間で 連続的に細力べ調整できる。
例えば暖房運転では、圧縮機 3、放熱器となる室内側熱交換器 2、室外側減圧装 置 6、蒸発器となる室外側熱交 5に冷媒を循環させて室内側熱交 lOで冷凍 空調を行う際に、圧縮機 3の吐出ロカも室内側熱交翻10入口までの冷媒配管に 流れる高圧高温冷媒を冷媒貯留容器 12に流入させて高圧高温冷媒を冷媒貯留容 器 12に貯留する高圧高温冷媒貯留ステップと、室内側熱交 出口力も室外側 減圧装置 6入口までの冷媒配管に流れる高圧低温冷媒を冷媒貯留容器 12に流入さ せて高圧低温冷媒を冷媒貯留容器 12に貯留する高圧低温冷媒貯留ステップと、冷 媒貯留容器 12に貯留した高圧冷媒を圧縮機 3の吸入側に流出させる低圧低温冷媒 貯留ステップと、を備え、冷媒貯留容器 12に密度の異なる冷媒を貯留することで循 環させる冷媒量を制御する。冷房運転では、圧縮機 3、放熱器となる室外側熱交換 器 5、室内側減圧装置 9、蒸発器となる室外側熱交 5に冷媒を循環させて室内 側熱交換器 2で冷凍空調を行う際に、圧縮機 3の吐出ロカゝら室外側熱交換器 5入口 までの冷媒配管に流れる高圧高温冷媒を冷媒貯留容器 12に流入させて高圧高温 冷媒を冷媒貯留容器 12に貯留する高圧高温冷媒貯留ステップと、室内側熱交換器 10出口から室外側減圧装置 6入口までの冷媒配管に流れる高圧低温冷媒を冷媒貯 留容器 12に流入させて高圧低温冷媒を冷媒貯留容器 12に貯留する高圧低温冷媒 貯留ステップと、冷媒貯留容器 12に貯留した高圧冷媒を圧縮機 3の吸入側に流出さ せる低圧低温冷媒貯留ステップと、を備え、冷媒貯留容器 12に多段階の密度の冷 媒を貯留することで循環させる冷媒量を制御する。これにより、放熱器に存在する冷 媒量を速やかに増減して高効率な状態で運転できる。
もちろんこのような冷媒量制御は、冷熱利用する冷房運転でも、同様である。
[0074] さらにこのような冷媒量制御を行うことにおいて、循環する冷媒の高圧側を臨界圧 力領域とするステップを備えれば、高圧高温状態の冷媒と低圧低温状態の冷媒とで 、冷媒の密度の範囲を広くでき、超臨界状態の冷媒を貯留した時に多量の冷媒を貯 留できる。このことから、小さい冷媒貯留容器 12でも多量の冷媒を貯留でき、言いか えれば冷媒貯留容器 12を小さくすることもできる。
[0075] さらに流量制御弁 13aと流量制御弁 13bの開度を調節して、高圧高温冷媒貯留ス テツプで冷媒貯留容器 12に貯留する高圧高温冷媒量と、高圧低温冷媒貯留ステツ プで冷媒貯留容器 12に貯留する高圧低温冷媒量との割合を変化させることで、冷 媒貯留容器 12に貯留する冷媒の密度を連続的に変化させれば、冷凍空調装置の 運転状況に応じて追随性よく細力べ制御でき、効率のょ 、運転を実現できる。
[0076] また、冷媒貯留容器 12内の冷媒量を調整する他の方法として、流量制御弁 13aを 介して流入する高圧低温冷媒の温度を制御することで、冷媒貯留容器 12内の温度 制御を行う実施例について、以下に説明する。
高低圧熱交換器 7は、例えば暖房運転において、流量制御弁 13aを設けた高圧低 温冷媒接続配管 18aと冷凍サイクルの冷媒配管との接続部よりも上流側に配設され ており、その接続部を流れる冷媒の温度を調節する温度調節用熱交換部として作用 する。暖房運転時で流量制御弁 13a開の場合には、高低圧熱交換器 7で熱交換し 冷却された後の冷媒が冷媒貯留容器 12内に流入する。従って、高低圧熱交換器 7 の熱交換量を制御することで、冷媒貯留容器 12内の冷媒温度を制御できる。高低圧 熱交^^ 7の熱交換量は流量制御弁 14を介してバイパスされる冷媒流量によって決 定され、バイパスされる冷媒流量が少ないと熱交換量は少なぐバイパスされる冷媒 流量が多いと熱交換量は多くなる。そこで、冷媒貯留容器 12内の冷媒量が多くなる ように制御する場合は、流量制御弁 14の開度を大きくして、バイパスされる冷媒流量 を増加させ、高低圧熱交 7での熱交換量を増加させる。すると高低圧熱交 7出口の冷媒温度は低下し、冷媒貯留容器 12内の冷媒温度も低下し、冷媒貯留容 器 12内に貯留される冷媒量は増加する。逆に、冷媒貯留容器 12内の冷媒量が少な くなるように制御する場合は、流量制御弁 14の開度を小さくして、バイパスされる冷 媒流量を減少させ、高低圧熱交 7での熱交換量を減少させる。これにより高低圧 熱交換器 7出口の冷媒温度は上昇し、冷媒貯留容器 12内の冷媒温度も上昇し、冷 媒貯留容器 12内に貯留される冷媒量は減少する。
なお、この場合には低圧側の流量制御弁 13cは冷媒貯留容器 12内の冷媒を流入 流出させる際に必要となるが、高圧高温側の流量制御弁 13bは必ずしも設けなくても よい。
冷媒貯留容器 12内に流入する冷媒温度は温度センサ 16cで計測されるので、目 標となる冷媒貯留容器 12内の冷媒量を決定し、この冷媒量から決定される冷媒温度 を目標値として温度センサ 16cで計測される温度が目標となるように、流量制御弁 14 の開度制御を行ってもょ 、。
[0077] ここでは、室内側膨張弁 9と室外側膨張弁 6を接続する配管内を流れる冷媒の温度 を調節するための手段である温度調節用熱交換部である高低圧熱交換器 7を、冷媒 貯留容器 12への接続部よりも上流側を流れる冷媒とその冷媒の一部を分岐して減 圧した低温冷媒とを熱交換することで冷媒貯留容器 12に流入する冷媒の温度を調 節するように構成した。このため、簡単な回路で冷媒貯留容器 12に流入する冷媒の 温度を連続的に細力べ調節でき、安定した運転制御ができると共に、高い運転効率 で運転可能な冷凍空調装置が得られる。
[0078] この実施の形態においても図 10に示すように、冷媒貯留容器 12内に貯留している 冷媒を高低圧熱交換器 7の低圧側入口に放出する構成としてもよい。冷媒貯留容器 12内から流出する冷媒を高低圧熱交換器 7で熱交換し、低圧二相冷媒を加熱するこ とで圧縮機 3に液が戻る運転を回避することができ、圧縮機 3運転の信頼性を高める ことができる。
[0079] また冷媒貯留容器 12に流入する冷媒温度を調整するための手段として、図 1では 高低圧熱交換器 7の高圧側は室外側膨張弁 6と室内側膨張弁 9の間の冷媒配管とし 、低圧側はこの高圧側の一部を分岐して減圧した冷媒配管としたが、他の構成でもよ ぐまた高低圧熱交換器 7以外の手段を用いてもよい。例えば内部熱交換器を設け て熱交換量を制御してもよ!ヽし、空気などの他の熱源と熱交換する熱交換器を設け、 熱交換量を制御してもよい。
[0080] 内部熱交^^としては、例えば、図 11に示すものでもよい。図 11は冷凍サイクルの うちの内部熱交換器の部分を示す冷媒回路図である。
室外側膨張弁 6と室内側膨張弁 9の間の冷媒配管の一部を分岐して高圧側とし、 低圧側は圧縮機 3吸入側の冷媒配管として、高低圧熱交換器 7を構成する。高圧低 温冷媒の一部は分岐されて低圧低温冷媒と熱交換して低温になり、再び高圧低温 冷媒と合流させる。流量制御弁 17の開度を制御して高低圧熱交 7に流入させる 冷媒量を増減することにより、冷房時には室内側膨張弁 9を通過する冷媒の温度、暖 房時には冷媒貯留容器 12に貯留する冷媒の温度を制御できる。なお、冷媒貯留容 器 12から流量制御弁 13cを通って流出される冷媒の接続部を、低圧側の高低圧熱 交換器 7の上流側に接続すれば、冷媒貯留容器 12から気液二相冷媒が低圧側へ 流出したとしても高低圧熱交 7で加熱されて冷媒ガスになるため、圧縮機 3への 液バックを防止できる。
[0081] 一般に室外側熱交 5、室内側熱交 ともに空冷である場合には、室外側 熱交換器 5の内容積 >室内側熱交換器 10の内容積であるので、冷暖運転で比較す ると、必要冷媒量は高圧となる部分の容積が大きい冷房運転の方が多ぐ暖房運転 の方が少なくなる。このため、暖房運転時に、冷媒貯留容器 12内に多くの冷媒を収 容することが求められる。冷媒貯留容器 12内に滞留する冷媒量は低温であればある ほど多くなるので、高低圧熱交換器 7と、高圧低温の冷媒を供給する流量制御弁 13 aへの分岐部との流路位置では、図 1に示されるように、暖房運転時に高低圧熱交換 器 7の方が上流となるように設置され、冷媒貯留容器 12内に多くの冷媒が収容可能 となることが望ましい。なお、室外側熱交 5が水冷熱交^^などで、空冷時に比 ベ内容積が小さくなり、室内側熱交換器 10の内容積よりも小さくなるような場合には、 必要冷媒量は冷房運転時の方が少なくなるので、冷房運転時に高低圧熱交換器 7 の方が流量制御弁 13aへの分岐部の上流となるように設置するのが望ましい。
[0082] なお、以上の冷媒貯留容器 12内の冷媒量調整を行うときに、冷媒貯留容器 12内 の冷媒温度を計測する温度センサ 161、または圧力を計測する圧力センサを設置し、 これらの温度、圧力が冷媒貯留容器 12内の必要冷媒量力 決定される目標値となる ように、流量制御弁 13a、 13b、 13c、 14の開度制御を行ってもよい。例えば、装置起 動時の初期状態や、室内機運転台数が変化するなど運転条件が大きく変化し不安 定である場合には、予め冷媒貯留容器 12内に保持したい冷媒量を決定しておき、こ の冷媒量を実現するように目標温度または目標圧力を設定して流量制御弁 13の開 度制御を実施する。このように制御を行うと、運転不安定で、高圧値や放熱器出口温 度によるフィードバック制御が十分に行えない状況でも冷媒量調整を適切に実施で き、冷凍空調装置の運転を安定させることができ高信頼性の装置を得ることができる
[0083] 実施の形態 3.
装置据え付け時などに行う試運転時に、実施の形態 1または実施の形態 2で述べ た冷凍空調装置の冷媒量制御方法を利用して装置に充填される冷媒量の調整を行 つてもよ!、。この実施の形態では冷凍空調装置の試運転時の作業にっ 、て説明す る。この実施の形態に係る冷凍空調装置の冷媒回路図は図 1または図 10と同様であ り、ここでは詳しい説明を省略する。
[0084] 試運転時に冷房及び暖房の!/ヽずれかの運転を行う。例えば、冷房運転を行う場合 について説明する。図 12は冷房運転を行う場合の冷凍空調装置の試運転時の冷媒 量調整方法の手順を示すフローチャートである。まず、冷媒貯留容器 12内の冷媒量 が最も少なくなるように、流量制御弁 13a、 13bを閉、 13cを開にして (ステップ 21)、 冷凍サイクルを循環して 、る冷媒量が最も多 、状態で冷房試運転を行 、、充填冷媒 量不足を判定する。ステップ 1〜ステップ 4の運転手順は、図 5に示した動作と同様で ある。ステップ 4の比較で、現在の高圧値が高圧目標値より低い場合には、冷凍サイ クルを循環して 、る冷媒量が最も多 、状態でありかつ、冷媒量不足状態であるので、 充填冷媒量が不足であると判断し (充填冷媒量不足判定ステップ)、冷媒の追加充 填を行う (ステップ 22)。そして、現在の高圧値が高圧目標値より高くなるまで、冷媒 の追加充填を行う。
[0085] 現在の高圧値が高圧目標値より高くなると、充填冷媒量不足判定を終了し、充填 冷媒量過剰判定に移行する。ここでは、冷媒貯留容器 12内の冷媒量が最も多くなる ように、流量制御弁 13aを開、 13b、 13cを閉にして (ステップ 23)、冷凍サイクルを循 環して ヽる冷媒量が最も少な ヽ状態で冷房試運転を行 ヽ、充填冷媒量過剰を判定 する。ステップ 31〜ステップ 34はステップ 1〜ステップ 4の運転と同様の動作である。 ステップ 34の比較で、現在の高圧値が高圧目標値より高い場合には、冷凍サイクル を循環して!/ヽる冷媒量が最も少な!ヽ状態でありかつ、冷媒量過剰状態であるので、 充填冷媒量が過剰であると判断し、冷媒の放出回収を行う(ステップ 24)。そして、ス テツプ 1に戻り再度冷媒量不足判定からの手順を繰り返す。
[0086] ステップ 34の判定で、現在の高圧値が高圧目標値より低!、あるいは目標値である 場合には、冷媒貯留容器 12内の冷媒量調整により、高圧値を高圧目標値に制御で きる状態であり、即ちこの状態が冷凍空調装置に充填される冷媒量が最適な状態と いうことになる。
このように冷房試運転時に冷媒量の過不足の判断を行!、、装置に充填される冷媒 量を最適に調整することで、装置が通常に運転される際も、放熱器となる熱交換器に 存在する冷媒量を最適に制御することができ、高効率の運転を行うことができる。 なお、この手順とは逆に、先に流量制御弁 13aを開、 13b、 13cを閉にして冷房試 運転を行い、充填冷媒量過剰を判定し、その後流量制御弁 13a、 13bを閉、 13cを 開にして冷房試運転を行い、充填冷媒量不足を判定してもよい。この場合も同様に 冷媒貯留容器 12内の冷媒量調整により、高圧値を高圧目標値に制御できる状態に することができ、通常運転時に放熱器となる熱交換器に存在する冷媒量を最適に制 御することで高効率の運転を行うことができる。
[0087] 上記では冷房運転によって冷凍空調装置の試運転を行った力 暖房運転での試 運転も同様に行うことができる。この場合にもまず、流量制御弁 13a、 13bを閉、 13c を開にして、暖房試運転を行い、充填冷媒量不足を判定する。放熱器出口温度の代 表値が放熱器出口温度目標値に比べて高ければ、充填冷媒量が不足であるので、 放熱器出口温度の代表値が目標値より低くなるまで、冷媒の追加充填を行う。放熱 器出口温度の代表値が目標値より低くなると、次に流量制御弁 13aを開、 13b、 13c を閉にして、暖房試運転を行い、充填冷媒量過剰判定に移行する。このときの放熱 器出口温度の代表値が目標値に比べて低ければ、充填冷媒量が過剰であるので、 冷媒の装置からの放出回収を行い、再度冷媒量不足判定からの手順を繰り返す。放 熱器出口温度の代表値が目標値より高いあるいは目標値である場合には、冷媒貯 留容器 12内の冷媒量調整により、放熱器出口温度の代表温度を目標値に制御でき る状態であり、即ちこの状態が冷凍空調装置に充填される冷媒量が最適な状態とい うことになる。
このように暖房試運転時に冷媒量の過不足の判断を行い、装置に充填される冷媒 量を最適に調整することで、装置が通常に運転される際も、放熱器となる熱交換器に 存在する冷媒量を最適に制御することができ、高効率の運転を行うことができる。 また暖房運転にぉ 、ても、冷媒量過剰判定を先に行った後で冷媒量不足判定を 行ってもよぐこの場合も同様の効果を得ることができる。
このように冷凍空調装置の試運転時に、高圧低温冷媒を冷媒貯留容器 12に貯留 する高圧低温冷媒貯留ステップで運転を行!、、循環する冷媒の高圧値と高圧目標 値との比較、もしくは放熱器出口冷媒温度と放熱器出口冷媒温度目標値との比較を 行い、充填冷媒量不足を判定する充填冷媒量不足判定ステップ (ステップ 4)と、低 圧低温冷媒を冷媒貯留容器 12に貯留する低圧低温冷媒貯留ステップで運転を行 V、、循環する冷媒の高圧値と高圧目標値との比較、もしくは放熱器出口冷媒温度と 放熱器出口冷媒温度目標値との比較を行!ヽ、充填冷媒量過剰を判定する充填冷媒 量過剰判定ステップ (ステップ 34)と、を備えることで、冷凍空調装置に充填される冷 媒量を最適に調整することができる。
なお、冷媒量の過不足の判断を行う装置の運転状態は前述したものに限るもので はなぐ実施の形態 1で述べたように、冷房運転時に放熱器出口温度を用いて判定 してもょ 、し、暖房運転時に高圧を用いて判定してもよ 、。
また冷凍空調装置では一般的に室外側熱交換器 5の内容積が室内側熱交換器 1 0全体の内容積よりも大きい。従って室外側熱交換器 5が放熱器となる冷房運転時の 方がより多くの冷媒量を必要とする。そこで、充填冷媒量が不足かどうか判断するとき は冷房運転を行って判定し、充填冷媒量が過剰であるかどうか判断するときは暖房 運転を行って判定すると、より最適な範囲に冷媒量調整を行うことができる。
また、このような冷凍空調装置の冷媒量調整方法は、試運転時に限るものではなく 、保守点検で冷媒量を調整する際に用いることもできる。 [0089] なお、実施の形態 1、 2、 3に示した構成は、冷凍装置として冷熱のみを供給する装 置、例えば室外機としてコンデンシングユニット、室内機としてショーケースを用いた 装置構成においても適用可能である。この場合、前述した冷房運転の制御を行うこと になるので、四方弁 4、室外側膨張弁 6はなくてもよい。
[0090] また、図 1、図 10では室外機 1と室内機 2とで冷凍サイクルを構成している冷凍空調 装置について説明したが、これに限るものではない。室外機 1と室内機 2とに分離さ れている冷凍空調装置では、室外機 1と室内機 2との間の冷媒配管が長くなり、その 分充填する冷媒量も多くなる。そこで実施の形態 1、 2、 3で説明したように放熱器とな る熱交^^に存在する冷媒量を効率の点から好ましい量に制御することによって得 られる効果は大きい。ただし、室内機と室外機に分離されていないような一体型の冷 凍空調装置に適用しても、放熱器に存在する冷媒量を制御して高効率な運転を安 定して運転できる効果がある。
また、室内機 2を 2台備えた装置について説明したが、室内機が 1台、または室内 機が 3台以上の台数であっても、同様の制御を実施することにより、同様の効果を得 ることができる。ただし特に実施の形態 1で説明したように、室内機 2が複数接続され る冷凍空調装置に対しては、室内機のそれぞれがそれぞれの利用状況に応じて運 転'停止するので、運転が不安定になりやすぐ冷凍サイクルで必要な冷媒量が大幅 に変動する冷凍空調装置に対し、冷媒調整回路 20によって放熱器となる熱交換器 に存在する冷媒量を速やかに適度な量とすることができ、効率の向上を図ることがで きる。
[0091] また実施の形態 1、 2、 3おいて、室内機 2や室内側熱交換器 10の形態、及び冷媒 と熱交換する負荷側熱交換媒体が空気、水などどのようなものであっても同様の効果 を得ることができる。
また、圧縮機 3については、スクロール、ロータリー、レシプロなどどのような種類の ものであってもよいし、容量制御方法としてもインバータによる回転数制御だけでなく 、複数台圧縮機がある場合の台数制御や、インジヱクシヨン、高低圧間の冷媒バイパ ス、ストロークボリューム可変タイプならストロークボリュームを変更するなど各種方法 をとつてもよい。 [0092] また、実施の形態 1、 2、 3において、冷媒を COとして説明した。 COを用いること
2 2
で、地球温暖化効果やオゾン層破壊の点で問題がない自然冷媒を利用して冷凍空 調を行うことができ、高圧領域で相変化のない超臨界状態を利用して運転の安定ィ匕 を実現している。ただし、冷媒として COに限るものではなぐエチレン、ェタン、酸ィ匕
2
窒素などの超臨界域で使用する他の冷媒を用いたものに適用できる。
[0093] 以上のように、圧縮機、室外側熱交換器、室外側減圧装置、冷媒量調整回路を備 える室外機と、室内側熱交^^と室内側減圧装置とを備える複数台の室内機力 な る冷凍空調装置において、圧縮機、室内側熱交換器、室内側減圧装置、室外側減 圧装置、室外側熱交換器が環状に接続され、高圧が臨界圧力より高い状態、低圧が 臨界圧力より低い状態にて運転されるとともに各室内側熱交^^が放熱器、室外側 熱交換器が蒸発器となり室内側熱交換器から温熱を供給する運転モードにて、室外 側熱交 出口の過熱度が所定値となるように室外側減圧装置を制御するとともに 、冷媒量調整回路により室内側熱交換器に存在する冷媒量を調整し冷凍空調装置 の運転状態が所定の状態になるように制御する制御装置を備えたことにより、高圧側 に存在する冷媒量を調整でき、安定して効率の高!、状態で運転できる冷凍空調装 置が得られる効果がある。
[0094] また、圧縮機が可変容量圧縮機であり、温熱が供給される負荷側の状況に基づい て高圧目標値および放熱器出口温度の目標値を決定するとともに、高圧目標値に 基づ!/ヽて圧縮機容量制御を行うとともに、放熱器出口温度目標値に基づ!ヽて冷媒量 調整制御を行うことにより、温熱を供給する運転において必要能力を発揮しつつ高 効率で運転できる冷凍空調装置が得られる効果がある。
[0095] また、室外側減圧装置と室内側減圧装置を接続する室外機 ·室内機間の接続配管 の状態が超臨界状態になるように室外側減圧装置および各室内側減圧装置を制御 することにより、冷媒状態を安定に運転できる冷凍空調装置が得られる効果がある。
[0096] また、室外側減圧装置による室外側熱交換器出口の過熱度制御を冷媒量調整回 路により室内側熱交換器に存在する冷媒量の調整制御よりも短い時間間隔で実施 することにより、安定して運転制御できる冷凍空調装置が得られる効果がある。
[0097] また、圧縮機の容量制御を冷媒量調整回路により室内側熱交換器に存在する冷 媒量の調整制御よりも短い時間間隔で実施することにより、安定して運転制御できる 冷凍空調装置が得られる効果がある。
[0098] また、各室内側減圧装置の流動抵抗が各室内機の所定容量に応じて決定されるこ とにより、確実に必要能力を発揮できる冷凍空調装置が得られる効果がある。
[0099] また、各室内側熱交換器出口の冷媒温度が室外機の運転状態によって決定される 目標温度となるように各室内側減圧装置を制御することにより、確実に必要能力を発 揮できる冷凍空調装置が得られる効果がある。
[0100] また、各室内側熱交換器出口の温度が室外側減圧装置入口の冷媒温度から所定 温度差以内になるように各室内側減圧装置を制御することにより、複数の室内側熱 交翻での熱交換量にバランスよく冷媒を供給し、確実に必要能力を発揮できる冷 凍空調装置が得られる効果がある。
[0101] また、圧縮機、室外側熱交換器、室外側減圧装置、冷媒量調整回路を備える室外 機と、室内側熱交^^と室内側減圧装置とを備える複数台の室内機力 なる冷凍空 調装置において、圧縮機、室外側熱交換器、室外側減圧装置、室内側減圧装置、 室内側熱交換器が環状に接続され、高圧が臨界圧力より高い状態、低圧が臨界圧 力より低い状態にて運転されるとともに室外側熱交^^が放熱器、各室内側熱交換 器が蒸発器となり室内側熱交換器から冷熱を供給する運転モードにて、各室内側熱 交 出口の過熱度が所定値となるように各室内側減圧装置を個別に制御するとと もに、冷媒量調整回路により室外側熱交換器に存在する冷媒量を調整し冷凍空調 装置の運転状態が所定の状態になるように制御する制御装置を備えたことにより、冷 熱を供給する運転において必要能力を発揮しつつ高効率で運転できる冷凍空調装 置が得られる効果がある。
[0102] また、室外側減圧装置と室内側減圧装置を接続する室外機'室内機間の接続配管 の状態が超臨界状態になるように室外側減圧装置を制御することにより、冷媒状態を 安定に運転できる冷凍空調装置が得られる効果がある。
[0103] また、高圧または室外側熱交換器出口の冷媒温度が所定の状態になるように冷媒 量調整回路により室外側熱交換器に存在する冷媒量の調整制御を実施することによ り、冷媒状態を安定に運転できる冷凍空調装置が得られる効果がある。 [0104] また、圧縮機が可変容量圧縮機であり、低圧が所定の状態になるように圧縮機の 容量制御を実施することにより、確実に必要能力を発揮できる冷凍空調装置が得ら れる効果がある。
[0105] また、圧縮機が可変容量圧縮機であり、冷熱が供給される負荷側の冷却状況に応 じて圧縮機の容量制御を実施することにより、確実に必要能力を発揮できる冷凍空 調装置が得られる効果がある。
[0106] また、室内側減圧装置による各室内側熱交換器出口の過熱度制御を冷媒量調整 回路により室外側熱交換器に存在する冷媒量の調整制御よりも短い時間間隔で実 施することにより、安定して運転制御できる冷凍空調装置が得られる効果がある。
[0107] また、圧縮機の容量制御を冷媒量調整回路により室外側熱交換器に存在する冷 媒量の調整制御よりも短い時間間隔で実施することにより、安定して運転制御できる 冷凍空調装置が得られる効果がある。
[0108] また、圧縮機、四方弁、室外側熱交換器、室外側減圧装置、冷媒量調整回路を備 える室外機と、室内側熱交^^と室内側減圧装置とを備える複数台の室内機力 な る冷凍空調装置において、四方弁による流路切換により、圧縮機、室外側熱交換器 、室外側減圧装置、室内側減圧装置、室内側熱交換器が環状に接続され、高圧が 臨界圧力より高い状態、低圧が臨界圧力より低い状態にて運転されるとともに室外側 熱交^^が放熱器、各室内側熱交^^が蒸発器となり室内側熱交 力ゝら冷熱を 供給する運転モードと、圧縮機、室内側熱交換器、室内側減圧装置、室外側減圧装 置、室外側熱交換器が環状に接続され、高圧が臨界圧力より高い状態、低圧が臨界 圧力より低い状態にて運転されるとともに各室内側熱交^^が放熱器、室外側熱交 換器が蒸発器となり室内側熱交換器から温熱を供給する運転モードとを実現するとと もに、両運転モードにおいて、室外側減圧装置、室内側減圧装置により、両減圧装 置間の冷媒状態を超臨界状態にし、かつ蒸発器となる熱交換器出口の過熱度を所 定値となるように制御するとともに、冷媒量調整回路として、冷媒貯留容器および冷 媒貯留容器と室外側減圧装置と室内側減圧装置間の冷媒流路とを接続する接続回 路と、圧縮機吐出側または圧縮機吸入側のうち少なくとも 1箇所と接続する接続回路 、を備えることにより、室内側熱交換器から温熱を供給する運転モードと冷熱を供給 する運転モードの両運転モードで運転でき、複数の室内機を有していても、安定して 効率の高い状態で運転できる冷凍空調装置が得られる効果がある。
[0109] また、冷媒として二酸ィ匕炭素を用いることにより、超臨界状態を介する冷凍サイクル で、高効率で運転できる冷凍空調装置が得られる効果がある。
符号の説明
[0110] 1 室外機
2a, 2b 室内機
3 圧縮機
4 流路切換弁
5 熱源側熱交換器
6 熱源側減圧装置
7 温度調節用熱交換部
9a, 9b 利用側減圧装置
10a, 10b 利用側熱交換器
12 冷媒貯留容器
13a、 13b、 13c 流量制御弁
14 流量制御弁
15a, 15b、 15c 圧力センサ
16a、 16b、 16c、 16d、 16e、 16f、 16g、 16h、 16i、 16j、 16k、 161 温度センサ
17 計測制御装置
18 接続配管
20 冷媒量調整回路
31 圧縮機制御手段
32 過熱度制御手段
33 減圧装置制御手段
34 目標値設定手段
35 冷媒量制御手段

Claims

請求の範囲
[1] 圧縮機、利用側熱交換器、利用側減圧装置、熱源側減圧装置、熱源側熱交換器に 冷媒を循環して構成され高圧値を前記冷媒の臨界圧力より高い圧力とし低圧値を前 記臨界圧力より低 、圧力で運転する冷凍サイクルと、前記冷凍サイクルに存在する 冷媒量を増減可能な冷媒量調整回路と、前記利用側熱交換器で温熱を供給する温 熱利用運転時に前記熱源側熱交換器出口の過熱度が所定値となるように前記熱源 側減圧装置を制御する過熱度制御手段と、前記温熱利用運転時に前記冷媒量調 整回路により前記利用側熱交換器に存在する冷媒量を調整して前記冷凍サイクルを 循環する前記冷媒の温度または圧力が所定の状態になるように制御する冷媒量制 御手段と、を備えることを特徴とする冷凍空調装置。
[2] 前記圧縮機を容量制御する圧縮機制御手段と、前記利用側熱交換器で必要とする 温熱量が得られるように高圧目標値及び前記利用側熱交換器の出口冷媒温度目標 値を設定する目標設定手段と、を備え、前記冷媒量制御手段と前記圧縮機制御手 段によって前記冷凍サイクルの高圧値が前記高圧目標値になるように制御すると共 に前記利用側熱交換器の出口冷媒温度が前記出口冷媒温度目標値になるように制 御することを特徴とする請求項 1記載の冷凍空調装置。
[3] 前記圧縮機制御手段は前記冷凍サイクルの高圧値が前記高圧目標値になるように 前記圧縮機を容量制御し、前記冷媒量制御手段は前記利用側熱交換器の出口冷 媒温度が前記出口冷媒温度目標値になるように前記冷媒量調整回路を制御するこ とを特徴とする請求項 2記載の冷凍空調装置。
[4] 前記熱源側減圧装置と前記利用側減圧装置を接続する配管内の冷媒状態が超臨 界状態になるように、前記熱源側減圧装置と前記利用側減圧装置のそれぞれを制 御する減圧装置制御手段を備えたことを特徴とする請求項 1または請求項 2または請 求項 3記載の冷凍空調装置。
[5] 前記利用側熱交^^と前記利用側減圧装置とを有する室内機を複数備えることを特 徴とする請求項 1乃至請求項 4のいずれか 1項に記載の冷凍空調装置。
[6] 前記減圧装置制御手段は、前記利用側熱交換器それぞれの所定容量に応じて前 記利用側減圧装置それぞれの流動抵抗を調整することを特徴とする請求項 5記載の 冷凍空調装置。
[7] 前記減圧装置制御手段は、前記利用側熱交換器それぞれの出口の冷媒温度また はそれらの冷媒温度を代表する代表冷媒温度が、前記冷凍サイクルの運転状態に よって決定される出口温度目標値となるように前記利用側減圧装置それぞれの流動 抵抗を調整することを特徴とする請求項 5記載の冷凍空調装置。
[8] 前記減圧装置制御手段は、前記利用側熱交換器それぞれの出口の冷媒温度が、 前記熱源側減圧装置の入口の冷媒温度と所定温度差以内になるように前記利用側 減圧装置それぞれの流動抵抗を調整することを特徴とする請求項 7記載の冷凍空調 装置。
[9] 圧縮機、熱源側熱交換器、熱源側減圧装置、利用側減圧装置、利用側熱交換器に 冷媒を循環して構成され高圧値を前記冷媒の臨界圧力より高い圧力とし低圧値を前 記臨界圧力より低 、圧力で運転する冷凍サイクルと、前記冷凍サイクルに存在する 冷媒量を増減可能な冷媒量調整回路と、前記利用側熱交換器で冷熱を供給する冷 熱利用運転時に前記利用側熱交換器出口の過熱度が所定値となるように前記利用 側減圧装置を制御する過熱度制御手段と、前記冷熱利用運転時に前記冷媒量調 整回路により前記熱源側熱交換器に存在する冷媒量を調整して前記冷凍サイクルを 循環する冷媒の温度または圧力が所定の状態になるように制御する冷媒量制御手 段と、を備えることを特徴とする冷凍空調装置。
[10] 前記熱源側減圧装置と前記利用側減圧装置を接続する配管内の冷媒状態が超臨 界状態になるように前記熱源側減圧装置を制御する減圧装置制御手段を備えたこと を特徴とする請求項 9記載の冷凍空調装置。
[11] 高圧目標値または前記熱源側熱交換器の出口冷媒温度目標値を設定する目標値 設定手段を備え、前記冷媒量制御手段は、前記目標値の少なくともいずれか一方を 満足するように前記冷媒量調整回路を制御することを特徴とする請求項 9または請求 項 10記載の冷凍空調装置。
[12] 前記圧縮機を可変容量圧縮機とし、前記冷凍サイクルの低圧値が所定値になるよう に前記圧縮機を容量制御する圧縮機制御手段を備えたことを特徴とする請求項 9乃 至請求項 11の!、ずれか 1項に記載の冷凍空調装置。
[13] 前記圧縮機を可変容量圧縮機とし、前記利用側熱交換器で必要とされる冷熱量が 得られるように前記圧縮機を容量制御する圧縮機制御手段を備えたことを特徴とす る請求項 9乃至請求項 11のいずれか 1項に記載の冷凍空調装置。
[14] 圧縮機、熱源側熱交換器、熱源側減圧装置、利用側減圧装置、利用側熱交換器を 冷媒配管で接続して冷媒を循環し、高圧値を前記冷媒の臨界圧力より高い圧力とし 低圧値を前記臨界圧力より低!、圧力で運転する冷凍サイクルと、前記冷凍サイクル に存在する冷媒量を増減可能な冷媒量調整回路と、を備えると共に、前記圧縮機、 前記利用側熱交換器、前記利用側減圧装置、前記熱源側減圧装置、前記熱源側 熱交換器に順に前記冷媒を循環して前記利用側熱交換器を放熱器とし前記熱源側 熱交換器を蒸発器として運転する温熱利用運転モードと、前記圧縮機、前記熱源側 熱交換器、前記熱源側減圧装置、前記利用側減圧装置、前記利用側熱交換器に順 に前記冷媒を循環して前記利用側熱交換器を蒸発器とし前記熱源側熱交換器を放 熱器として運転する冷熱利用運転モードと、を有し、前記温熱利用運転モードと前記 冷熱利用運転モードの前記冷媒の流れを切換える流路切換弁と、前記温熱利用運 転モード及び冷熱利用運転モードで運転する際に蒸発器となる熱交換器の出口の 過熱度が所定値となるように前記蒸発器となる熱交^^の上流側に配設されている 減圧装置を制御する減圧装置制御手段と、前記冷媒量調整回路により前記放熱器 となる熱交換器に存在する冷媒量を調整して前記冷凍サイクルに存在する冷媒の温 度または圧力が所定の状態になるように制御する冷媒量制御手段と、を備えたことを 特徴とする冷凍空調装置。
[15] 前記利用側熱交^^と前記利用側減圧装置とを有する室内機を複数備えることを特 徴とする請求項 9乃至請求項 14のいずれか 1項に記載の冷凍空調装置。
[16] 前記冷媒量調整回路は冷媒貯留容器を有すると共に、前記熱源側減圧装置と前記 利用側減圧装置の間の冷媒配管と前記冷媒貯留容器とを接続及び切離し可能な高 圧低温冷媒接続配管と、前記冷媒貯留容器と前記圧縮機吸入側を接続及び切離し 可能な低圧低温冷媒接続配管と、を備えたことを特徴とする請求項 1乃至請求項 15 の!、ずれか 1項に記載の冷凍空調装置。
[17] 前記利用側減圧装置と前記熱源側減圧装置を接続する配管内を流れる冷媒の温度 を調節する温度調節用熱交換部を設けたことを特徴とする請求項 1乃至請求項 16の いずれか 1項に記載の冷凍空調装置。
[18] 前記温度調節用熱交換部は、前記冷凍サイクルの冷媒配管と前記冷媒量調整回路 との接続部よりも上流側に設けられ、前記接続部よりも上流側を流れる冷媒とその冷 媒の一部を分岐して減圧した低温冷媒とを熱交換することで前記接続部を流れる冷 媒の温度を調節するように構成したことを特徴とする請求項 17記載の冷凍空調装置
[19] 前記冷媒量調整回路は、前記冷媒貯留容器と前記圧縮機吐出側を接続及び切離 し可能な高圧高温冷媒接続配管を備えることを特徴する請求項 16乃至請求項 18の いずれか 1項に記載の冷凍空調装置。
[20] 前記冷媒量制御手段は、前記放熱器となる熱交換器に存在する冷媒量が少な!、場 合に前記冷媒貯留容器に密度の小さな冷媒が格納されるように前記高圧低温冷媒 接続配管を切離して前記高圧高温冷媒接続配管または前記低圧低温冷媒接続配 管を接続し、前記放熱器となる熱交換器に存在する冷媒量が多 ヽ場合に前記冷媒 貯留容器に密度の大き!/、冷媒が格納されるように前記高圧低温冷媒接続配管また は前記高圧高温冷媒接続配管を接続し前記低圧低温冷媒接続配管を切離すことを 特徴する請求項 19記載の冷凍空調装置。
[21] 前記圧縮機、前記熱源側減圧装置、前記熱源側熱交換器、前記冷媒貯留容器を室 外機に格納し、前記利用側熱交換器と前記利用側減圧装置を室内機に格納し、前 記室内機と前記室外機間を冷媒配管で接続したことを特徴とする請求項 1乃至請求 項 20の 、ずれか 1項に記載の冷凍空調装置。
[22] 冷媒として二酸ィ匕炭素を用いることを特徴する請求項 1乃至請求項 21のいずれか 1 項に記載の冷凍空調装置。
[23] 圧縮機、放熱器、減圧装置、蒸発器に冷媒を循環させて冷凍サイクルを構成し、前 記圧縮機吐出側から前記減圧装置入口までの高圧側を臨界圧力以上、前記減圧装 置出口から前記圧縮機入口までの低圧側を臨界圧力よりも低 、圧力で運転して前 記蒸発器または前記放熱器で冷凍空調を行う冷凍空調ステップと、前記蒸発器出口 の過熱度を所定値になるように制御する過熱度制御ステップと、前記冷凍サイクルに 接続切離し可能な冷媒貯留手段に余剰の冷媒を貯留することで前記放熱器に存在 する冷媒量を調整する冷媒量制御ステップと、を備えたことを特徴とする冷凍空調装 置の運転制御方法。
[24] 前記過熱度制御ステップで行う前記蒸発器出口の過熱度制御の時間間隔を、前記 冷媒量制御ステップで行う冷媒量調整制御の時間間隔よりも短い時間間隔とするこ とを特徴とする請求項 23記載の冷凍空調装置の運転制御方法。
[25] 前記放熱器で必要とする温熱量が得られるように高圧目標値及び放熱器出口冷媒 温度目標値を設定する目標設定ステップと、循環する冷媒の高圧値が前記高圧目 標値になるように前記圧縮機を容量制御する圧縮機制御ステップと、を備え、前記冷 媒量制御ステップは、循環する前記冷媒の放熱器出口冷媒温度が前記放熱器出口 冷媒温度目標値になるように冷媒量を調整して前記放熱器で温熱を供給利用するこ とを特徴とする請求項 23または請求項 24記載の冷凍空調装置の運転制御方法。
[26] 高圧目標値を設定する目標設定ステップを備え、前記冷媒量制御ステップは、循環 する冷媒の高圧値が前記高圧目標値になるように冷媒量を調整して前記蒸発器で 冷熱を供給利用することを特徴とする請求項 23または請求項 24記載の冷凍空調装 置の運転制御方法。
[27] 前記循環する冷媒の低圧値が所定値になるように前記圧縮機を容量制御する圧縮 機制御ステップと、を備えたことを特徴とする請求項 26記載の冷凍空調装置の運転 制御方法。
[28] 前記蒸発器で必要とする冷熱量が得られるように前記圧縮機を容量制御する圧縮機 制御ステップと、を備えたことを特徴とする請求項 26記載の冷凍空調装置の運転制 御方法。
[29] 前記圧縮機制御ステップで行う圧縮機の容量制御の時間間隔を、前記冷媒量制御 ステップで行う冷媒量調整制御の時間間隔よりも短い時間間隔とすることを特徴とす る請求項 25または請求項 27または請求項 28に記載の冷凍空調装置の運転制御方 法。
[30] 圧縮機、放熱器、減圧装置、蒸発器に冷媒を循環させて前記蒸発器または前記放 熱器で冷凍空調を行う際に、前記圧縮機の吐出口から前記放熱器入口までの冷媒 配管に流れる高圧高温冷媒を冷媒貯留容器に流入させて前記高圧高温冷媒を前 記冷媒貯留容器に貯留する高圧高温冷媒貯留ステップと、前記放熱器出口から前 記減圧装置入口までの冷媒配管に流れる高圧低温冷媒を前記冷媒貯留容器に流 入させて前記高圧低温冷媒を前記冷媒貯留容器に貯留する高圧低温冷媒貯留ス テツプと、前記冷媒貯留容器に貯留した高圧冷媒を前記圧縮機の吸入側に流出さ せる低圧低温冷媒貯留ステップと、を備え、前記冷媒貯留容器に密度の異なる冷媒 を貯留することで循環する前記冷媒の量を調整することを特徴とする冷凍空調装置 の冷媒量制御方法。
[31] 循環する前記冷媒の高圧側を臨界圧力領域とするステップ、を備えたことを特徴とす る請求項 30記載の冷凍空調装置の冷媒量制御方法。
[32] 前記高圧高温冷媒貯留ステップで前記冷媒貯留容器に貯留する高圧高温冷媒量と 、前記高圧低温冷媒貯留ステップで前記冷媒貯留容器に貯留する高圧低温冷媒量 との割合を変化させることで、前記冷媒貯留容器に貯留する冷媒の密度を連続的に 変化させることを特徴とする請求項 30または請求項 31記載の冷凍空調装置の冷媒 量制御方法。
[33] 冷凍空調装置の試運転時に、高圧低温冷媒を前記冷媒貯留容器に貯留する前記 高圧低温冷媒貯留ステップで運転を行 、、循環する冷媒の高圧値と高圧目標値との 比較、もしくは放熱器出口冷媒温度と放熱器出口冷媒温度目標値との比較を行 ヽ、 充填冷媒量不足を判定する充填冷媒量不足判定ステップと、低圧低温冷媒を前記 冷媒貯留容器に貯留する前記低圧低温冷媒貯留ステップで運転を行 ヽ、循環する 冷媒の高圧値と高圧目標値との比較、もしくは放熱器出口冷媒温度と放熱器出口冷 媒温度目標値との比較を行 、、充填冷媒量過剰を判定する充填冷媒量過剰判定ス テツプと、を備えたことを特徴とする請求項 30乃至請求項 32のいずれか 1項に記載 の冷凍空調装置の冷媒量制御方法。
PCT/JP2005/018619 2004-11-29 2005-10-07 冷凍空調装置、冷凍空調装置の運転制御方法、冷凍空調装置の冷媒量制御方法 WO2006057111A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/665,008 US8109105B2 (en) 2004-11-29 2005-10-07 Refrigerating air conditioning system, method of controlling operation of refrigerating air conditioning system, and method of controlling amount of refrigerant in refrigerating air conditioning system
EP05790633.1A EP1818627B1 (en) 2004-11-29 2005-10-07 Refrigerating air conditioner, operation control method of refrigerating air conditioner, and refrigerant quantity control method of refrigerating air conditioner
ES05790633.1T ES2641814T3 (es) 2004-11-29 2005-10-07 Acondicionador de aire de refrigeración, método de control de operación de acondicionador de aire de refrigeración, y método de control de cantidad de refrigerante en acondicionador de aire de refrigeración
CN2005800404339A CN101065622B (zh) 2004-11-29 2005-10-07 制冷空气调节装置、制冷空气调节装置的运转控制方法、制冷空气调节装置的制冷剂量控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-343860 2004-11-29
JP2004343860A JP4670329B2 (ja) 2004-11-29 2004-11-29 冷凍空調装置、冷凍空調装置の運転制御方法、冷凍空調装置の冷媒量制御方法

Publications (1)

Publication Number Publication Date
WO2006057111A1 true WO2006057111A1 (ja) 2006-06-01

Family

ID=36497855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018619 WO2006057111A1 (ja) 2004-11-29 2005-10-07 冷凍空調装置、冷凍空調装置の運転制御方法、冷凍空調装置の冷媒量制御方法

Country Status (7)

Country Link
US (1) US8109105B2 (ja)
EP (1) EP1818627B1 (ja)
JP (1) JP4670329B2 (ja)
KR (1) KR100856991B1 (ja)
CN (1) CN101065622B (ja)
ES (1) ES2641814T3 (ja)
WO (1) WO2006057111A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111449A1 (ja) * 2007-03-06 2008-09-18 Daikin Industries, Ltd. 空気調和機
US20100107665A1 (en) * 2007-01-26 2010-05-06 Satoshi Kawano Refrigerating apparatus
US20120174611A1 (en) * 2009-10-27 2012-07-12 Mitsubishi Electric Corporation Air-conditioning apparatus
US20130139539A1 (en) * 2010-09-14 2013-06-06 Mitsubishi Electric Corporation Air-conditioning apparatus
CN103292427A (zh) * 2012-02-29 2013-09-11 日立空调·家用电器株式会社 空气调和机
CN106766299A (zh) * 2016-12-29 2017-05-31 青岛海尔股份有限公司 制冷装置、具有该制冷装置的冰箱及冰箱的控制方法
US20180372379A1 (en) * 2015-06-18 2018-12-27 Daikin Industries, Ltd. Air conditioner
US20230184469A1 (en) * 2021-08-24 2023-06-15 Nihon Itomic Co., Ltd. Heat pump device

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758902B1 (ko) * 2004-11-23 2007-09-14 엘지전자 주식회사 멀티 공기조화 시스템 및 그 제어방법
JP4862198B2 (ja) * 2006-04-11 2012-01-25 株式会社前川製作所 Co2冷媒を用いた給湯装置及びその運転方法
JP5055884B2 (ja) * 2006-08-03 2012-10-24 ダイキン工業株式会社 空気調和装置
JP5324749B2 (ja) 2006-09-11 2013-10-23 ダイキン工業株式会社 冷凍装置
JP4258553B2 (ja) * 2007-01-31 2009-04-30 ダイキン工業株式会社 熱源ユニット及び冷凍装置
JP4245064B2 (ja) * 2007-05-30 2009-03-25 ダイキン工業株式会社 空気調和装置
US8353173B2 (en) 2007-07-18 2013-01-15 Mitsubishi Electric Corporation Refrigerating cycle apparatus and operation control method therefor
JP4948374B2 (ja) * 2007-11-30 2012-06-06 三菱電機株式会社 冷凍サイクル装置
JP5046895B2 (ja) * 2007-12-06 2012-10-10 三菱電機株式会社 空気調和装置およびその運転制御方法
NO328493B1 (no) * 2007-12-06 2010-03-01 Kanfa Aragon As System og fremgangsmåte for regulering av kjøleprosess
JP5145026B2 (ja) * 2007-12-26 2013-02-13 三洋電機株式会社 空気調和装置
JP5042058B2 (ja) * 2008-02-07 2012-10-03 三菱電機株式会社 ヒートポンプ式給湯用室外機及びヒートポンプ式給湯装置
JP5326488B2 (ja) * 2008-02-29 2013-10-30 ダイキン工業株式会社 空気調和装置
US20110011080A1 (en) * 2008-07-18 2011-01-20 Panasonic Corporation Refrigeration cycle apparatus
JP2010032104A (ja) * 2008-07-29 2010-02-12 Hitachi Appliances Inc 空気調和機
JP2010032105A (ja) * 2008-07-29 2010-02-12 Hitachi Appliances Inc 空気調和機
WO2010039630A2 (en) 2008-10-01 2010-04-08 Carrier Corporation High-side pressure control for transcritical refrigeration system
KR100927072B1 (ko) 2009-01-29 2009-11-13 정석권 가변속 냉동시스템의 과열도 및 용량 제어 장치
CN102395842B (zh) * 2009-04-17 2015-03-11 大金工业株式会社 热源单元
US8452459B2 (en) * 2009-08-31 2013-05-28 Fisher-Rosemount Systems, Inc. Heat exchange network heat recovery optimization in a process plant
CN105157266B (zh) * 2009-10-23 2020-06-12 开利公司 制冷剂蒸气压缩系统的运行
KR100952714B1 (ko) 2009-11-26 2010-04-13 이기승 자연냉매를 이용한 냉동, 냉장 및 냉방, 난방, 급탕 일체형 공기조화 시스템
WO2011092742A1 (ja) * 2010-01-29 2011-08-04 ダイキン工業株式会社 ヒートポンプシステム
DE202010001755U1 (de) * 2010-02-02 2011-06-09 Stiebel Eltron GmbH & Co. KG, 37603 Wärmepumpenvorrichtung
US20110219790A1 (en) * 2010-03-14 2011-09-15 Trane International Inc. System and Method For Charging HVAC System
JP2011196610A (ja) * 2010-03-19 2011-10-06 Panasonic Corp 冷凍サイクル装置
JP5578914B2 (ja) * 2010-04-01 2014-08-27 三菱重工業株式会社 マルチ形空気調和装置
WO2011161720A1 (ja) * 2010-06-23 2011-12-29 三菱電機株式会社 空気調和装置
US20120073316A1 (en) * 2010-09-23 2012-03-29 Thermo King Corporation Control of a transcritical vapor compression system
KR20120031842A (ko) * 2010-09-27 2012-04-04 엘지전자 주식회사 냉매시스템
CN103261814B (zh) * 2011-01-31 2016-05-11 三菱电机株式会社 空调装置
AU2011358038B2 (en) * 2011-01-31 2015-01-22 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2012207826A (ja) * 2011-03-29 2012-10-25 Fujitsu General Ltd 冷凍サイクル装置
JP2012207823A (ja) * 2011-03-29 2012-10-25 Fujitsu General Ltd 冷凍サイクル装置
ES2806940T3 (es) 2011-07-05 2021-02-19 Danfoss As Un procedimiento de control del funcionamiento de un sistema de compresión de vapor en modo subcrítico y supercrítico
JP5370560B2 (ja) * 2011-09-30 2013-12-18 ダイキン工業株式会社 冷媒サイクルシステム
ES2748573T3 (es) * 2011-11-29 2020-03-17 Mitsubishi Electric Corp Dispositivo de refrigeración/acondicionamiento de aire
JP5956743B2 (ja) * 2011-11-29 2016-07-27 日立アプライアンス株式会社 空気調和機
US9459033B2 (en) * 2012-08-02 2016-10-04 Mitsubishi Electric Corporation Multi air-conditioning apparatus
KR101368794B1 (ko) * 2012-08-30 2014-03-03 한국에너지기술연구원 냉동 사이클용 가변체적 리시버, 이를 포함하는 냉동 사이클 및 그의 제어방법
CN104685304B (zh) * 2012-10-02 2016-11-16 三菱电机株式会社 空调装置
WO2014080464A1 (ja) * 2012-11-21 2014-05-30 三菱電機株式会社 空気調和装置
EP2924367B1 (en) * 2012-11-21 2021-11-03 Mitsubishi Electric Corporation Air-conditioning device
JP6021955B2 (ja) * 2013-01-31 2016-11-09 三菱電機株式会社 冷凍サイクル装置、及び、冷凍サイクル装置の制御方法
CN104110922B (zh) * 2013-04-16 2017-02-15 广东美的暖通设备有限公司 一种热泵系统及其启动控制方法
JP5790729B2 (ja) * 2013-09-30 2015-10-07 ダイキン工業株式会社 空調システム及びその制御方法
US10260784B2 (en) * 2013-12-23 2019-04-16 General Electric Company System and method for evaporator outlet temperature control
JP2015170237A (ja) * 2014-03-10 2015-09-28 パナソニックIpマネジメント株式会社 自動販売機
US20150267951A1 (en) * 2014-03-21 2015-09-24 Lennox Industries Inc. Variable refrigerant charge control
CN103982987B (zh) * 2014-05-07 2016-08-31 广东美的暖通设备有限公司 防止多联式空调内冷媒偏流的方法及系统、多联式空调
JP6621616B2 (ja) * 2014-09-03 2019-12-18 三星電子株式会社Samsung Electronics Co.,Ltd. 冷媒量検知装置
JP6007965B2 (ja) * 2014-12-15 2016-10-19 ダイキン工業株式会社 空気調和装置
US10563877B2 (en) * 2015-04-30 2020-02-18 Daikin Industries, Ltd. Air conditioner
CN104896675B (zh) * 2015-06-12 2017-12-08 广东美的暖通设备有限公司 多联机系统的回气过热度测试方法和多联机系统
JP6555584B2 (ja) * 2015-09-11 2019-08-07 パナソニックIpマネジメント株式会社 冷凍装置
US10830515B2 (en) * 2015-10-21 2020-11-10 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling refrigerant in vapor compression system
CN105466087B (zh) * 2015-12-25 2018-01-23 珠海格力电器股份有限公司 热回收多联机外机系统及阀体失效检测方法
JP6569536B2 (ja) * 2016-01-08 2019-09-04 株式会社富士通ゼネラル 空気調和装置
WO2017151758A1 (en) * 2016-03-03 2017-09-08 Carrier Corporation Fluid pressure calibration in climate control system
WO2017175299A1 (ja) * 2016-04-05 2017-10-12 三菱電機株式会社 冷凍サイクル装置
CA2958388A1 (en) * 2016-04-27 2017-10-27 Rolls-Royce Corporation Supercritical transient storage of refrigerant
CN107228439B (zh) * 2017-06-29 2023-07-11 广东美的暖通设备有限公司 多联机系统及其控制方法
EP3655718A4 (en) 2017-07-17 2021-03-17 Alexander Poltorak SYSTEM AND PROCESS FOR MULTI-FRACTAL HEAT SINK
CN111094877B (zh) * 2017-09-14 2021-08-10 三菱电机株式会社 制冷循环装置以及制冷装置
CN110360729A (zh) * 2018-04-09 2019-10-22 珠海格力电器股份有限公司 一种机组高落差压力控制方法、装置及空调设备
ES2966611T3 (es) * 2018-04-11 2024-04-23 Mitsubishi Electric Corp Dispositivo de ciclo de refrigeración
US10823471B2 (en) 2018-05-23 2020-11-03 Carrier Corporation Refrigerant transfer control in multi mode air conditioner with hot water generator
US11879673B2 (en) * 2018-07-17 2024-01-23 United Electric Company. L.P. Refrigerant charge control system for heat pump systems
JP7257151B2 (ja) * 2019-01-24 2023-04-13 サンデン・リテールシステム株式会社 冷却装置
CN109798689A (zh) * 2019-03-01 2019-05-24 广东纽恩泰新能源科技发展有限公司 一种热泵系统容量调节方法
WO2020242736A1 (en) 2019-05-24 2020-12-03 Carrier Corporation Low refrigerant charge detection in transport refrigeration system
US11280529B2 (en) * 2019-06-10 2022-03-22 Trane International Inc. Refrigerant volume control
WO2020255355A1 (ja) * 2019-06-20 2020-12-24 三菱電機株式会社 室外ユニット、冷凍サイクル装置および冷凍機
JP6791315B1 (ja) * 2019-07-18 2020-11-25 ダイキン工業株式会社 冷凍装置
JP7283285B2 (ja) * 2019-07-22 2023-05-30 株式会社デンソー 冷凍サイクル装置
JP6881538B2 (ja) * 2019-09-30 2021-06-02 ダイキン工業株式会社 冷凍装置
JP7438363B2 (ja) * 2020-07-15 2024-02-26 三菱電機株式会社 冷熱源ユニットおよび冷凍サイクル装置
CN115247871B (zh) * 2021-04-26 2024-04-26 芜湖美智空调设备有限公司 空调器控制方法、空调器、存储介质及装置
CN114674095B (zh) * 2022-03-16 2024-04-23 青岛海尔空调器有限总公司 空调器、用于控制空调冷媒的方法、装置和存储介质
JP2024117151A (ja) * 2023-02-17 2024-08-29 ダイキン工業株式会社 冷凍サイクル装置

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718602A (ja) 1993-06-29 1995-01-20 Sekisui Chem Co Ltd 埋込栓
JPH0735429A (ja) * 1993-07-26 1995-02-07 Kubota Corp 空調装置の運転方法、及び、その方法を用いる空調装置
JPH09217974A (ja) * 1995-12-07 1997-08-19 Fuji Electric Co Ltd ショーケース冷却装置
JPH09273839A (ja) * 1996-04-05 1997-10-21 Hitachi Ltd 冷凍サイクル
JPH10253203A (ja) * 1997-03-13 1998-09-25 Mitsubishi Electric Corp 冷媒回収方法
JP2000146322A (ja) * 1998-11-16 2000-05-26 Zexel Corp 冷凍サイクル
JP2000266415A (ja) 1999-03-15 2000-09-29 Bosch Automotive Systems Corp 冷凍サイクル
JP2001004235A (ja) 1999-06-22 2001-01-12 Sanden Corp 蒸気圧縮式冷凍サイクル
JP2001141316A (ja) * 1999-11-17 2001-05-25 Sanden Corp Co2冷凍回路の制御機構
JP2001304714A (ja) 2000-04-19 2001-10-31 Daikin Ind Ltd Co2冷媒を用いた空気調和機
JP2002106959A (ja) * 2000-09-28 2002-04-10 Sanyo Electric Co Ltd ヒートポンプ給湯機
JP2002130770A (ja) * 2000-10-30 2002-05-09 Mitsubishi Electric Corp 冷凍サイクル装置およびその制御方法
JP2002228282A (ja) 2001-01-29 2002-08-14 Matsushita Electric Ind Co Ltd 冷凍装置
JP2002310519A (ja) * 2001-04-11 2002-10-23 Nishiyodo Kuchoki Kk ヒートポンプ給湯機
JP2003247742A (ja) * 2002-02-26 2003-09-05 Matsushita Electric Ind Co Ltd 多室形空気調和装置及びその制御方法
JP2003279174A (ja) * 2002-03-26 2003-10-02 Mitsubishi Electric Corp 空気調和装置
JP2004100979A (ja) * 2002-09-05 2004-04-02 Matsushita Electric Ind Co Ltd ヒートポンプ装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4467613A (en) * 1982-03-19 1984-08-28 Emerson Electric Co. Apparatus for and method of automatically adjusting the superheat setting of a thermostatic expansion valve
DE3721388C1 (de) * 1987-06-29 1988-12-08 Sueddeutsche Kuehler Behr Vorrichtung zur Klimatisierung des Innenraums von Personenkraftwagen
NO890076D0 (no) * 1989-01-09 1989-01-09 Sinvent As Luftkondisjonering.
JP2997487B2 (ja) * 1989-12-13 2000-01-11 株式会社日立製作所 冷凍装置及び冷凍装置における冷媒量表示方法
US5651263A (en) * 1993-10-28 1997-07-29 Hitachi, Ltd. Refrigeration cycle and method of controlling the same
JP3655681B2 (ja) * 1995-06-23 2005-06-02 三菱電機株式会社 冷媒循環システム
JP3813702B2 (ja) 1996-08-22 2006-08-23 株式会社日本自動車部品総合研究所 蒸気圧縮式冷凍サイクル
KR19980023922A (ko) * 1996-09-10 1998-07-06 나까사도 요시히꼬 쇼케이스 냉각장치
JPH1114170A (ja) * 1997-06-23 1999-01-22 Sanyo Electric Co Ltd ヒートポンプ
US5848537A (en) * 1997-08-22 1998-12-15 Carrier Corporation Variable refrigerant, intrastage compression heat pump
JP3279235B2 (ja) * 1997-11-11 2002-04-30 ダイキン工業株式会社 冷凍装置
JP3334660B2 (ja) * 1998-05-19 2002-10-15 三菱電機株式会社 冷凍サイクルの制御装置およびその制御方法
US6209338B1 (en) * 1998-07-15 2001-04-03 William Bradford Thatcher, Jr. Systems and methods for controlling refrigerant charge
JP4045654B2 (ja) 1998-07-15 2008-02-13 株式会社日本自動車部品総合研究所 超臨界冷凍サイクル
US6857285B2 (en) * 1998-10-08 2005-02-22 Global Energy Group, Inc. Building exhaust and air conditioner condensate (and/or other water source) evaporative refrigerant subcool/precool system and method therefor
JP3757796B2 (ja) * 1999-03-17 2006-03-22 株式会社日立製作所 空気調和機及びそれに用いられる室外機
JP2000346472A (ja) 1999-06-08 2000-12-15 Mitsubishi Heavy Ind Ltd 超臨界蒸気圧縮サイクル
US6418735B1 (en) 2000-11-15 2002-07-16 Carrier Corporation High pressure regulation in transcritical vapor compression cycles
US6606867B1 (en) 2000-11-15 2003-08-19 Carrier Corporation Suction line heat exchanger storage tank for transcritical cycles
US6826924B2 (en) * 2003-03-17 2004-12-07 Daikin Industries, Ltd. Heat pump apparatus

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718602A (ja) 1993-06-29 1995-01-20 Sekisui Chem Co Ltd 埋込栓
JPH0735429A (ja) * 1993-07-26 1995-02-07 Kubota Corp 空調装置の運転方法、及び、その方法を用いる空調装置
JPH09217974A (ja) * 1995-12-07 1997-08-19 Fuji Electric Co Ltd ショーケース冷却装置
JPH09273839A (ja) * 1996-04-05 1997-10-21 Hitachi Ltd 冷凍サイクル
JPH10253203A (ja) * 1997-03-13 1998-09-25 Mitsubishi Electric Corp 冷媒回収方法
JP2000146322A (ja) * 1998-11-16 2000-05-26 Zexel Corp 冷凍サイクル
JP2000266415A (ja) 1999-03-15 2000-09-29 Bosch Automotive Systems Corp 冷凍サイクル
JP2001004235A (ja) 1999-06-22 2001-01-12 Sanden Corp 蒸気圧縮式冷凍サイクル
JP2001141316A (ja) * 1999-11-17 2001-05-25 Sanden Corp Co2冷凍回路の制御機構
JP2001304714A (ja) 2000-04-19 2001-10-31 Daikin Ind Ltd Co2冷媒を用いた空気調和機
JP2002106959A (ja) * 2000-09-28 2002-04-10 Sanyo Electric Co Ltd ヒートポンプ給湯機
JP2002130770A (ja) * 2000-10-30 2002-05-09 Mitsubishi Electric Corp 冷凍サイクル装置およびその制御方法
JP2002228282A (ja) 2001-01-29 2002-08-14 Matsushita Electric Ind Co Ltd 冷凍装置
JP2002310519A (ja) * 2001-04-11 2002-10-23 Nishiyodo Kuchoki Kk ヒートポンプ給湯機
JP2003247742A (ja) * 2002-02-26 2003-09-05 Matsushita Electric Ind Co Ltd 多室形空気調和装置及びその制御方法
JP2003279174A (ja) * 2002-03-26 2003-10-02 Mitsubishi Electric Corp 空気調和装置
JP2004100979A (ja) * 2002-09-05 2004-04-02 Matsushita Electric Ind Co Ltd ヒートポンプ装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9010135B2 (en) * 2007-01-26 2015-04-21 Daikin Industries, Ltd. Refrigeration apparatus with a refrigerant collection operation between a plurality of outdoor units
US20100107665A1 (en) * 2007-01-26 2010-05-06 Satoshi Kawano Refrigerating apparatus
WO2008111449A1 (ja) * 2007-03-06 2008-09-18 Daikin Industries, Ltd. 空気調和機
US20120174611A1 (en) * 2009-10-27 2012-07-12 Mitsubishi Electric Corporation Air-conditioning apparatus
US9903601B2 (en) * 2009-10-27 2018-02-27 Mitsubishi Electric Corporation Air-conditioning apparatus
US20130139539A1 (en) * 2010-09-14 2013-06-06 Mitsubishi Electric Corporation Air-conditioning apparatus
US9587861B2 (en) * 2010-09-14 2017-03-07 Mitsubishi Electric Corporation Air-conditioning apparatus
CN103292427B (zh) * 2012-02-29 2016-01-13 日立空调·家用电器株式会社 空气调和机
CN103292427A (zh) * 2012-02-29 2013-09-11 日立空调·家用电器株式会社 空气调和机
US20180372379A1 (en) * 2015-06-18 2018-12-27 Daikin Industries, Ltd. Air conditioner
US11199342B2 (en) * 2015-06-18 2021-12-14 Daikin Industries, Ltd. Air conditioner
CN106766299A (zh) * 2016-12-29 2017-05-31 青岛海尔股份有限公司 制冷装置、具有该制冷装置的冰箱及冰箱的控制方法
US20230184469A1 (en) * 2021-08-24 2023-06-15 Nihon Itomic Co., Ltd. Heat pump device
US11965680B2 (en) * 2021-08-24 2024-04-23 Nihon Itomic Co., Ltd. Heat pump device

Also Published As

Publication number Publication date
US8109105B2 (en) 2012-02-07
JP4670329B2 (ja) 2011-04-13
US20090013700A1 (en) 2009-01-15
CN101065622A (zh) 2007-10-31
EP1818627A4 (en) 2009-04-29
ES2641814T3 (es) 2017-11-14
KR20070065417A (ko) 2007-06-22
CN101065622B (zh) 2012-02-01
JP2006153349A (ja) 2006-06-15
EP1818627B1 (en) 2017-08-30
EP1818627A1 (en) 2007-08-15
KR100856991B1 (ko) 2008-09-04

Similar Documents

Publication Publication Date Title
WO2006057111A1 (ja) 冷凍空調装置、冷凍空調装置の運転制御方法、冷凍空調装置の冷媒量制御方法
US9534807B2 (en) Air conditioning apparatus with primary and secondary heat exchange cycles
US8020393B2 (en) Heat pump type hot water supply outdoor apparatus
US9683768B2 (en) Air-conditioning apparatus
CN103975202B (zh) 空调装置
JP5046895B2 (ja) 空気調和装置およびその運転制御方法
US9797610B2 (en) Air-conditioning apparatus with regulation of injection flow rate
JP3861912B2 (ja) 冷凍装置
EP2960602B1 (en) Air conditioner
US9599378B2 (en) Air-conditioning apparatus
US9140459B2 (en) Heat pump device
WO2006013861A1 (ja) 冷凍装置
US8959940B2 (en) Refrigeration cycle apparatus
US20070022777A1 (en) Supercooling apparatus
US9651287B2 (en) Air-conditioning apparatus
JP2007093100A (ja) ヒートポンプ給湯機の制御方法及びヒートポンプ給湯機
JP4273493B2 (ja) 冷凍空調装置
JP6341326B2 (ja) 冷凍装置の熱源ユニット
JP4407689B2 (ja) ヒートポンプ給湯機
JP2009085479A (ja) 給湯装置
WO2017094172A1 (ja) 空気調和装置
JP2006071269A (ja) 過冷却装置
JPWO2019234986A1 (ja) 冷凍サイクル装置およびそれを備えた液体加熱装置
KR200304217Y1 (ko) 매개 열교환기를 갖는 열펌프식 공기조화 장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11665008

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077009952

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2005790633

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005790633

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580040433.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005790633

Country of ref document: EP