WO2006054678A1 - フォークリフトの転倒防止装置 - Google Patents

フォークリフトの転倒防止装置 Download PDF

Info

Publication number
WO2006054678A1
WO2006054678A1 PCT/JP2005/021209 JP2005021209W WO2006054678A1 WO 2006054678 A1 WO2006054678 A1 WO 2006054678A1 JP 2005021209 W JP2005021209 W JP 2005021209W WO 2006054678 A1 WO2006054678 A1 WO 2006054678A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
load
vehicle
limit
detecting
Prior art date
Application number
PCT/JP2005/021209
Other languages
English (en)
French (fr)
Inventor
Tomohiro Akaki
Masataka Kawaguchi
Fujio Eguchi
Toshiyuki Honda
Shinjiro Murata
Satoshi Matsuda
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004335475A external-priority patent/JP2005200212A/ja
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to EP05806682A priority Critical patent/EP1813569A1/en
Priority to US11/660,999 priority patent/US20100063682A1/en
Publication of WO2006054678A1 publication Critical patent/WO2006054678A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F17/00Safety devices, e.g. for limiting or indicating lifting force
    • B66F17/003Safety devices, e.g. for limiting or indicating lifting force for fork-lift trucks

Definitions

  • the present invention relates to a forklift overturn prevention device.
  • Patent Document 1 detects the current steering amount, load position, and load weight, calculates the fall limit angle from these values, and calculates the fall limit speed that is the fall limit angle to regulate the vehicle speed. Is disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-175800
  • Patent Document 1 calculates the fall limit angle from the current steering amount, load position, and load weight, and further calculates the fall limit vehicle speed that is the fall limit angle to obtain the fall limit speed. It discloses that the vehicle speed is regulated so that it does not become. However, it is not shown in other ways.
  • an object of the present invention is to provide a variety of forklift fall prevention devices.
  • Load height detecting means for detecting the load height
  • Limit speed calculation means for calculating the limit speed that does not fall from the load height, the amount of load, and the minimum turning radius;
  • Vehicle speed detection means for detecting the actual vehicle speed;
  • Speed comparison means for comparing the actual vehicle speed and the limit speed
  • a warning device that issues a warning to the driver
  • a forklift tip-over device that activates a warning device when the actual vehicle speed reaches a critical speed.
  • a forklift fall prevention device that issues warnings in multiple stages according to the difference between the actual vehicle speed and the limit speed.
  • Vehicle speed estimation means for estimating the vehicle speed after a predetermined time from the current vehicle speed
  • the speed comparison means compares the vehicle speed estimated by the vehicle speed estimation means with the limit speed, and when the estimated vehicle speed reaches the limit speed, a warning device is activated. .
  • a forklift overturn prevention device that executes any one of the following operations: deceleration of a vehicle, reduction of a load height, and prohibition of an increase in steering rotation angle after the warning device is activated.
  • Load height detecting means for detecting the load height
  • Limit speed calculation means for calculating the limit speed that does not fall from the load height, the amount of load, and the minimum turning radius
  • Vehicle speed detection means for detecting the actual vehicle speed
  • a speed comparison means for comparing the actual vehicle speed and the limit speed
  • a forklift overturn prevention device is provided.
  • a forklift toppling prevention device that activates the decelerating means when the actual vehicle speed exceeds the limit speed.
  • the forklift includes an accelerator pedal
  • a forklift toppling prevention device in which the deceleration means is an accelerator blocking means for blocking a path for transmitting a driver's input to the accelerator pedal to the driving means.
  • a forklift toppling prevention device is provided in which the speed reducing means is an output control device that controls the output of the internal combustion engine so that the speed becomes equal to or lower than the limit speed.
  • a forklift overturn prevention device in which the speed reduction means is a braking means for braking the vehicle.
  • the forklift overturn prevention device When the actual rolling moment is larger than the limit rolling moment, the forklift overturn prevention device is provided to actuate the braking means to reduce the vehicle speed!
  • a fall prevention device is provided.
  • a load height detecting means for detecting the load height for detecting the load height
  • a load detecting means for detecting the load load for detecting the load load
  • a vehicle body lateral acceleration detecting means for detecting the vehicle lateral acceleration for detecting the vehicle lateral acceleration
  • the limit rolling moment calculation means calculates the limit rolling moment based on the load height detected by the load height detection means and the load load detected by the load load amount detection means.
  • the actual rolling moment calculation means calculates the actual rolling moment based on the load height detected by the load height detection means, the product load detected by the load detection means, and the vehicle lateral acceleration detected by the vehicle lateral acceleration detection means.
  • a forklift toppling prevention device is provided that calculates the above.
  • the lateral acceleration detection means is provided with a forklift fall prevention device which is a lateral acceleration sensor attached to the vehicle body.
  • the lateral acceleration detecting means includes a tire turning angle detecting means and a short rate detecting means attached to the vehicle body, and the tire turning angle detecting means detects
  • a forklift overturn prevention device configured to detect a lateral acceleration based on a tire turning angle and a angular velocity detected by a rate detecting means.
  • It includes a rolling moment estimator that estimates the rolling moment after a lapse of a predetermined time, and compares the estimated rolling moment estimated by the rolling moment estimator with the limit rolling moment instead of the actual rolling moment.
  • a device for preventing the fall of the foot is provided.
  • Load height detecting means for detecting the load height
  • Limit speed calculation means for calculating the limit speed that does not fall from the load height, the amount of load, and the minimum turning radius;
  • Vehicle speed detection means for detecting the actual vehicle speed;
  • a speed comparison means for comparing the actual vehicle speed and the limit speed
  • a steering resistance device that provides resistance to the steering device
  • a forklift toppling prevention device is provided.
  • Load height detecting means for detecting the load height
  • a vehicle front-rear center-of-gravity position calculation means for obtaining a vehicle front-rear center-of-gravity position from the load height detected by the load height detection means and the load amount detected by the load amount detection means;
  • a vehicle vertical center-of-gravity position calculating means for obtaining a vehicle vertical center-of-gravity position from the load height detected by the load height detection means and the product load amount detected by the product load amount detection means;
  • Allowable acceleration estimation means for estimating the allowable acceleration without causing the vehicle longitudinal gravity center position obtained by the vehicle longitudinal gravity center position computing means and the vehicle vertical gravity center position force obtained by the vehicle vertical gravity center position computing means to fall in the longitudinal direction.
  • a forklift toppling prevention device characterized by having running torque control means for controlling the running torque like this can be provided.
  • the travel torque control means is provided with a forklift overturn prevention device that calculates an allowable acceleration force allowable torque estimated by the allowable acceleration estimation means and limits a command torque commanded to the travel motor by the allowable torque. .
  • Tire steering angle prediction means for predicting the tire steering angle
  • the vehicle vertical center-of-gravity position obtained by the vehicle vertical center-of-gravity position calculating means and the tag
  • the tire steering angle force predicted by the steering angle prediction means and further includes an allowable speed estimation means for estimating an allowable speed that does not fall laterally.
  • the running torque control means does not exceed the allowable acceleration estimated by the allowable acceleration estimation means and the allowable speed estimated by the allowable speed estimation means!
  • a forklift overturn prevention device that controls the running torque is provided.
  • the allowable torque calculated from the allowable acceleration estimated by the allowable acceleration estimation means or the allowable torque calculated from the allowable speed estimation means is calculated, and the command torque commanded to the travel motor is limited by the allowable torque.
  • a forklift toppling prevention device is provided.
  • a warning can be issued so that the forklift does not fall over based on the speed.
  • warnings can be issued in multiple stages, and the driver can avoid a fall with a margin.
  • the warning since the warning is issued based on the estimated speed after a predetermined time of the current force, the fall can be avoided with a sufficient margin.
  • the vehicle is decelerated, the load height is reduced, or the steering rotation angle is prohibited from being increased. ,.
  • the rolling moment is prevented from exceeding the limit moment, and the control for preventing the forklift from falling is executed.
  • the current force is highly safe because the fall prevention control is executed based on the estimated rolling moment after a predetermined time.
  • the allowable acceleration that does not fall in the front-rear direction is estimated, and the running torque is controlled so as not to exceed the allowable acceleration. Therefore, the vehicle falls during sudden operation of the running system.
  • the inventions of claims 19 and 20 Of course, it is safe because it can prevent a lateral fall.
  • FIG. 1 is a diagram for explaining a first embodiment, wherein (A) is a diagram showing a structure, and (B) is a diagram showing a signal flow.
  • FIG. 2 is a diagram for explaining control in the first embodiment.
  • FIG. 3 is a diagram for explaining the control in the first modification of the first embodiment.
  • Step 15 is performed instead of step S15 in step 2.
  • FIG. 4 is a diagram for explaining the control in the second modification of the first embodiment.
  • step S14a performed between step S14 and step S15 in Fig. 2, and (B) shows
  • Step 15 "performed in place of step S15 of 2 is shown.
  • FIG. 5 is a diagram for explaining a second embodiment, wherein (A) is a diagram showing a structure, and (B) is a diagram showing a signal flow.
  • FIG. 6 is a diagram for explaining a hydraulic control device and a relief valve.
  • FIG. 7 is a diagram for explaining control in the second embodiment.
  • FIG. 8 is a diagram for explaining a modification of the second embodiment, where (A) is a diagram showing a structure, and (B) is a diagram showing a signal flow.
  • Fig. 9 is a diagram for explaining a control step 25 'in a modification of the second embodiment.
  • FIG. 10 is a diagram for explaining a third embodiment, (A) is a diagram showing a structure, and (B) is a diagram showing a signal flow.
  • FIG. 11 is a diagram illustrating a brake control device according to a third embodiment.
  • FIG. 12 is a diagram for explaining control in the third embodiment.
  • FIG. 13 is a diagram for explaining a first modified example of the third embodiment, wherein (A) is a diagram showing a structure, and (B) is a diagram showing a signal flow.
  • FIG. 14 is a diagram for explaining the structure of a steering resistance measure of a first modification of the third embodiment.
  • FIG. 15 is a diagram for explaining a step S35 ′ of control in the first modified example of the third embodiment.
  • FIG. 16 is a diagram for explaining the control of the second modified example of the third embodiment, wherein (A) is a diagram for explaining step S32 ′, and (B) is a diagram for explaining step S34 ′. It is a figure explaining.
  • FIG. 17 is a diagram for explaining a fourth embodiment, (A) is a diagram showing a structure, and (B) is a diagram showing a signal flow.
  • FIG. 18 is a diagram for explaining control in the fourth embodiment.
  • FIG. 19 is a diagram for explaining the control of the modification of the fourth embodiment, wherein (A) is a diagram for explaining step S43a, and (B) is for explaining step S44 ′. It is a figure to do.
  • FIG. 20 is a diagram for explaining a fifth embodiment, and (A) is a diagram showing a structure.
  • (B) is a figure which shows the flow of a signal.
  • FIG. 21 is a diagram for explaining the control of the fifth embodiment.
  • FIG. 22 is a system configuration diagram according to the sixth embodiment.
  • FIG. 23 is a block diagram of allowable torque processing according to the sixth embodiment.
  • FIG. 24 is a system configuration diagram according to the seventh embodiment.
  • FIG. 25 is a block diagram of allowable torque processing according to the seventh embodiment.
  • Fig.26 shows the layout of the three limit switches SW, SW and SW, and Fig.26 (b) shows the actual
  • FIG. 27 is a schematic view of a mast mechanism.
  • FIG. 28 is a graph showing prediction of tire steering angle.
  • FIG. 29 is a side view of the forklift.
  • FIG. 30 is a front view of the forklift.
  • FIG. 31 is a graph showing the relationship between encoder count and time.
  • 2 is the vehicle body
  • 3 is the engine
  • 3a is the output control device
  • 11 is the outer mast
  • 12 is the inner mast
  • 13 is the fork
  • 14 is the lift cylinder
  • 15 is the piston
  • 16 is the hydraulic control device
  • 17 is the lift lever
  • 18 is the tilt device 20 is a controller
  • 21 is a displacement sensor
  • 22 is a pressure sensor
  • 23 is a speed sensor
  • 24 is an accelerator opening sensor
  • 25 is an engine speed sensor
  • 26 is a relief valve
  • 27 is a (lateral) acceleration sensor
  • 29 is tire angle sensor
  • 30 is warning device
  • 110 is lift cylinder
  • 120 is accelerator
  • 130 is front / rear lever
  • 140 is displacement Sensor
  • 150 is a pressure sensor
  • 160 is a speed sensor
  • 170 is a controller
  • 180 is a traveling motor
  • 190 is a steering device
  • 200 is an angle sensor.
  • FIG. 1 is a diagram for explaining the first embodiment.
  • the forklift 1 has a vehicle body 2, and a diesel engine 3 is accommodated in the vehicle body 2 as a drive device.
  • the engine 3 is provided with an output control device 3a.
  • the power of the drive device is transmitted to the front wheels 4a through a transmission (not shown).
  • the rear wheel 4b is a steering wheel and power is not transmitted.
  • a brake 5 is attached to the front wheel 4a.
  • a driver's seat 2a is disposed at the upper center of the vehicle body 2.
  • a steering wheel 7 attached to the steering support member 6 is disposed in front of the driver seat 2a.
  • An accelerator pedal 8a and a brake pedal 8b are disposed near the root of the steering support member 6! /.
  • four vertical struts and a protective member 9 having an upper frame force attached to the upper end of the vertical strut.
  • the accelerator pedal 8a is directly connected to the output control device 3a of the engine 3.
  • the brake pedal 8b is connected to the brake 5 by a hydraulic circuit (not shown).
  • An elevating device 10 is attached to the front end of the vehicle body 2.
  • the lifting device 10 has a general structure, and is attached to the outer mast 11 attached to the vehicle body 2, the inner mast 12 attached to the outer mast 11 so as to be movable up and down, and attached to the inner mast 12 so as to be movable up and down.
  • the inner mast 12 is raised and lowered by a piston 15 that is moved up and down by a hydraulic lift cylinder 14.
  • a pulley (not shown) is attached to the upper end of the inner mast 12, and a chain is provided so as to pass above the pulley.
  • One end of the chain is fixed to the fork 13 and the other end is fixed to the outer mast 12. ing. Then, by raising and lowering the inner mast 12, the fork 13 moves up and down at a speed twice as high as the inner mast 12. Further, the inner mast 12 can be tilted by the tilt device 18.
  • a hydraulic control mechanism 16 that controls the hydraulic pressure of the lift cylinder 14 is mounted inside the vehicle body 2. ing. The hydraulic control mechanism 16 is operated by a driver by a lift lever 17. The hydraulic control mechanism 16 also supplies hydraulic pressure to the tilt device 18.
  • a displacement sensor 21 for detecting the displacement of the piston 15 is attached to the upper end portion of the lift cylinder 14.
  • a pressure sensor 22 for detecting the pressure in the lift cylinder is attached to the lower part of the lift cylinder 14.
  • a speed sensor 23 for detecting the rotational speed of the front wheel 4a is attached to the vehicle body 2 adjacent to the front wheel 4a.
  • Each sensor is coupled to a controller 20 attached to the vehicle body 2.
  • a warning device 30 is attached to the steering support member 6, and the warning device 30 is also coupled to the controller 20.
  • FIG. 1B is a diagram for explaining the flow of signals between the devices.
  • the displacement of the piston 15 is detected by the displacement sensor 21, and the detected displacement X is sent to the controller 20.
  • the pressure of the lift cylinder is detected by the pressure sensor 22, and the detected pressure P is sent to the controller 20.
  • the speed (rotational speed) of the front wheel 4a is detected by the speed sensor 23, and the detected speed V is sent to the controller 20. Then, a warning signal is sent from the controller 20 to the warning device 30.
  • FIG. 2 is a diagram for explaining control by the devices configured as described above.
  • step SI 1 the detected piston displacement X is substituted into a calculator C 1 (stored in the controller 20) that obtains the load height H from the piston displacement X to calculate the load height H. Since the actual center-of-gravity height of the load on the fork 13 varies depending on the load, it is assumed to be a constant virtual value for the fork 13.
  • step S12 the load cylinder W is calculated by substituting the lift cylinder pressure P into the calculator C2 (stored in the controller 20) that also calculates the load cylinder pressure P force.
  • the critical speeds VI and V2 are both the speed at which the vehicle falls when it turns fully and turns with the minimum turning radius. Therefore, the controller 20 stores the value of the minimum turning radius.
  • step S14 the calculation unit C4 performs linear interpolation on the load weight W obtained in step S12, the no-load limit speed VI and the constant load limit speed V2 obtained in step S13. Substituting into (stored in the controller 20), the limit speed Vc when the load weight is W is calculated.
  • step S15 a speed difference ⁇ is obtained by subtracting the limit speed Vc obtained in step S14 from the detected vehicle speed value Va detected by the speed sensor 23, and the speed difference ⁇ V is calculated by the calculator C5 (controller 20). If the speed difference ⁇ V is positive (greater than 0), a warning signal (command for generating a warning) is sent to the warning device 30. The warning device 30 sounds a warning buzzer based on the warning signal or turns on the warning lamp to notify the driver of overspeed.
  • the first embodiment is configured and operates as described above.
  • a warning is issued to the driver by the warning device.
  • the driver can prevent the vehicle from falling by decelerating based on the warning and other actions to avoid falling.
  • the limit speed Vc is calculated with the minimum turning radius, even if the turning angle is increased, it does not fall.
  • step S15 shown in FIG. 3 is performed instead of step S15 in the first embodiment.
  • step S15 the limit speed Vc obtained in step S14 of the speed detection value V and the difference ⁇ are obtained, and a warning is generated step by step according to the magnitude of ⁇ .
  • the controller 20 stores the arithmetic unit C5a instead of the arithmetic unit C5, and the arithmetic unit C5a sets the first warning level when ⁇ reaches 80% of the limit speed Vc.
  • the corresponding warning signal el is issued and ⁇ reaches 90% of the limit speed Vc
  • the corresponding warning signal e2 is issued as the second warning level
  • ⁇ V reaches 100% of the limit speed Vc.
  • the corresponding warning signal e3 is issued as the third warning level.
  • the first embodiment is configured and operates as described above, and warnings are generated step by step, so that the driver can avoid the fall with a margin.
  • the current vehicle speed Va force is estimated to estimate the estimated vehicle speed Va 'after a predetermined time, the estimated vehicle speed Va' is compared with the limit speed Vc, and a warning is issued if it exceeds the Va 'force. is there.
  • Va ′ is obtained by extrapolating the current speed with the calculator C6 (stored in the controller 20) in step S14a shown in FIG.
  • step S15 " the difference ⁇ between the estimated vehicle speed Va and the critical speed Vc obtained in step S14 is obtained. This is substituted into the aforementioned computer C5. If ⁇ is positive (greater than 0), a warning is given. Send a warning signal (command to generate a warning) to device 30.
  • the second modification of the first embodiment is configured and operates as described above, and since the warning is issued before the speed reaches the limit speed, the driver can further avoid the fall.
  • the second embodiment obtains the limit speed Vc and compares it with the current speed V. If the force limit speed Vc is exceeded, the load height is reduced and the output is reduced. It is forbidden to increase.
  • FIG. 5 (A) is a diagram showing the configuration of the second embodiment, and the basic part is the same as that of the first embodiment, and the description thereof is omitted. Similar to the first embodiment, a displacement sensor 21, a pressure sensor 22, and a speed sensor 23 are provided.
  • the force that the accelerator pedal 8a and the output control device 3a of the engine 3 are mechanically connected directly.
  • the amount of depression of the accelerator pedal is below the accelerator pedal 8a.
  • An accelerator pedal sensor 24 is provided to detect this, and this accelerator pedal sensor 24 is connected to the controller 20.
  • the output control device 3a ′ has an electronically controlled actuator (not shown) (not shown), and the output is adjusted by a signal sent from the controller 20 to this actuator.
  • FIG. 6 is a diagram illustrating the hydraulic control device 16 and the relief valve 16c.
  • the hydraulic control apparatus has a switching valve 16b to which a pump 16a and a lift lever 17 are directly connected, and in addition, a relief valve 16c is added in the second embodiment.
  • FIG. 5B is a diagram for explaining the flow of signals between devices in the second embodiment.
  • the displacement of the piston 15 is detected by the displacement sensor 21 and detected.
  • the displacement X is sent to the controller 20.
  • the pressure in the lift cylinder is detected by the pressure sensor 22, and the detected pressure P is sent to the controller 20.
  • the speed (rotational speed) of the front wheel 4a is detected by the speed sensor 23, and the detected speed V is sent to the controller 20.
  • the depression amount As of the accelerator pedal 8 a is further detected by the accelerator pedal sensor 24 and sent to the controller 20.
  • the controller 20 sends control signals to the output control device 3a ′ and the relief valve 16c as follows.
  • FIG. 7 is a diagram for explaining the control in the second embodiment configured as described above. Steps S 21 to 24 are exactly the same as those in the first embodiment, and a description thereof will be omitted. .
  • a speed difference ⁇ is obtained by subtracting the limit speed Vc obtained in step S14 from the speed detection value Va. If ⁇ is positive (greater than 0), it is stored in the arithmetic unit C6 (controller 20). The relief valve 16c of the hydraulic control device 16 is opened on the basis of the pressure to reduce the load height. At the same time, even if the accelerator pedal sensor 24 signal indicates an output increase request based on the arithmetic unit C7 (stored in the controller 20), the output is not transmitted to the output control device 3a '. Suppresses increase and prohibits speed increase.
  • the second embodiment is configured and operates as described above.
  • the load height is reduced and the speed is not increased, so that a fall is prevented.
  • FIG. 8A is a diagram showing a configuration of a modified example of the second embodiment, and similarly to the second embodiment, a displacement sensor 21, a pressure sensor 22, a speed sensor 23, an accelerator pedal sensor, and the like. 2 and an engine speed sensor 25.
  • the output control device 3a ' is the same as that in the second embodiment.
  • the output control device 3a controls the governor so that the current output is maintained even when there is a request to increase the output from the accelerator pedal sensor 24.
  • (B) in Fig. 8 shows the signal flow between each device.
  • step 25 of FIG. 9 is executed instead of step 25 of the second embodiment.
  • the load height is reduced by the arithmetic unit C6 as in the second embodiment.
  • the control signal Ga of the governor is determined by the calculator C8 (stored in the controller 20) at the same time as the signal to be sent is sent. For example, Gal corresponding to the current output request is calculated based on the accelerator pedal stroke As and the engine speed, and Ga2 corresponding to the limit speed Vc is calculated based on the limit speed Vc and the engine speed. Select the smaller one of.
  • the modification of the second embodiment is configured and operated as described above, and when the vehicle speed Va reaches the limit speed Vc, the load height decreases and the speed is not increased, so that the overturn is prevented.
  • the actual mouth moment of the vehicle is obtained and compared with the limit rolling moment stored in advance. If the actual rolling moment exceeds the limit rolling moment, the limit rolling moment is obtained. The vehicle speed is reduced by operating the braking device so that it is less than the moment.
  • FIG. 10A shows a configuration of the third embodiment.
  • the displacement sensor 21 and pressure sensor 22 used in the first and second embodiments and the acceleration sensor 26 for detecting the lateral acceleration disposed below the seat 2a are controlled. Used for.
  • a brake control device 18 is attached to the brake 5.
  • (B) in FIG. 10 is a diagram for explaining the signal flow between the devices.
  • FIG. 11 is a diagram schematically showing the configuration of the brake control device 18 attached to the brake 5.
  • the brake 5 includes a brake disc 5a, a caliper 5b that presses the friction material against the brake disc 5a, and a master cylinder 5c that converts the operating force stored in the brake pedal 8a into hydraulic pressure and sends it to the caliper 5b.
  • the brake control device 18 sends the hydraulic pressure generated by the hydraulic pump 18a to the cylinder 18c via the electromagnetic switching valve 18b, and moves the piston 5d of the master cylinder 5c by the piston 18d moving in the cylinder 18c. . Then, a signal is sent from the controller 20 to the electromagnetic switching valve 18b.
  • FIG. 12 is a diagram for explaining the control of the third embodiment.
  • Step S31 is the same as S11 of the first embodiment.
  • step S32 the detected value P of the pressure sensor 22 and the force of the calculator C9 (stored in the controller 20) are also calculated as the total vehicle weight GW.
  • step S33 Finds the limit moment Ml from the total vehicle weight GW obtained in step 32 and the calculator CIO.
  • the computing unit C10 multiplies the overall center of gravity CG and the distance L of the outer edge of the front wheel 4a to obtain the limit moment Ml.
  • L is the overall center of gravity CG is on the horizontal center line of the vehicle body 2, and the distance between this and the outer edge of the front wheel 4a is determined, so L is stored as a known value by the controller.
  • step S34 from the load height H obtained in step S31, the total vehicle weight GW obtained in step S32, the lateral acceleration a obtained by the acceleration sensor 26, and the calculator C11 (stored in the controller 20). Calculate the rolling moment M2. Specifically, the height H of the entire center CG from the ground is obtained, and the total vehicle weight GW and lateral addition are added to this height H.
  • step S35 the limit moment Ml obtained in step S32 is compared with the rolling moment M2 obtained in step 34. If limit moment Ml ⁇ rolling moment M2, then limit moment Ml> rolling moment M2 is established.
  • the brake control device 18 is instructed to operate the brake 5 as follows.
  • the third embodiment is configured and operated as described above, and the brake 5 is actuated so that the rolling moment M2 does not become larger than the limit moment Ml, and the fall is prevented.
  • FIG. 13 (A) is a diagram showing the configuration of the first modification of the third embodiment, which differs from the third embodiment only in that a steering resistance device 19 is added.
  • FIG. 13B is a diagram for explaining the flow of signals between devices in the first modification of the third embodiment.
  • FIG. 14 is a diagram schematically showing the structure of the steering resistance device 19.
  • the steering resistance device 19 is a kind of brake device, which is fixed to the steering shaft 7a and consists of a disc 19a that turns on / off, and a carrier 19b that presses the friction plate against the disc 19a.
  • the caliper 19b is supplied with the hydraulic pressure generated by the pump 18a of the brake control device 18. Then, instead of step S35 of the third embodiment, step 35 as shown in FIG. 15 is executed. Step 35 is only added to give the steering resistance command value when the limit moment Ml and the rolling moment M2 with respect to step S35 of the third embodiment.
  • the estimated lateral acceleration a 'after a predetermined time is estimated from the lateral acceleration a of the current vehicle, and the estimated vehicle speed Va' is compared with the limit speed Vc. If it becomes larger, the steering resistance device 18 is operated.
  • step S32 of the third embodiment the current lateral acceleration a is extrapolated by the calculator C13 (stored in the controller 20) at step S32 shown in Fig. 16A.
  • the lateral acceleration a ′ after a predetermined time is obtained, and the lateral acceleration a estimated in step S 34 shown in FIG. 16B instead of step S 34 is used to estimate the lateral acceleration a ′.
  • the second modified example of the third embodiment is configured and operates as described above, and compared with the third embodiment, control is started at an earlier stage and it is avoided that the control is not in time and is safer. It is.
  • the calculation of the force overturning moment which calculates the overturning moment and keeps it below the allowable value, (1) angular acceleration), and the angular force of the tire is different.
  • FIG. 17A is a diagram showing a configuration of the fourth exemplary embodiment.
  • the tire break angle sensor 28 is used to detect the vehicle state, and the speed is controlled by the brake control device 18 attached to the brake 5 based on the result.
  • FIG. 17B is a diagram for explaining the signal flow between the devices.
  • FIG. 18 is a diagram for explaining the control of the fourth embodiment.
  • Steps S41 to 43 are the same as steps S31 to 33 of the third embodiment, and thus the description thereof is omitted.
  • step S44 based on the load height H obtained in step S41, the total vehicle weight GW obtained in step S42, the vehicle speed ⁇ obtained by the gyro sensor 27, and the tire turning angle ⁇ detected by the tire turning angle sensor 28. Then, calculate the rolling moment M2 using the calculator C14 (stored in the controller 20).
  • Rolling moment M2 is the moment (force X arm length) around the contact point of the outer edge of the wheel.
  • the arm length of this moment is the height H of the center CG, and the load height H force calculated in step S41 is also obtained. Also this
  • the lateral acceleration that induces the moment force is determined as r ⁇ 2 from the turning radius r and vehicle ⁇ .
  • the turning radius r can be calculated based on the tire turning angle ⁇ , and the vehicle normal rate ⁇ is detected by the gyro sensor 27.
  • step S35 the limit moment Ml obtained in step S32 and the rolling moment M2 obtained in step 34 are compared by the calculator C12. If the limit moment Ml is the rolling moment M2, the rolling moment M2 is the limit.
  • the brake control device 18 is commanded to operate the brake so that the moment is less than Ml.
  • the fourth embodiment is configured and operates as described above. As in the third embodiment, the brake 5 is operated so that the mouth ring moment M2 is smaller than the limit moment Ml. Is prevented from falling.
  • the current tire turning angle j8 force is estimated as the estimated tire turning angle ⁇ ′ after a predetermined time, and the rolling moment after a predetermined time is estimated using the estimated tire cutting angle ⁇ .
  • M2 ' is calculated and the rolling moment ⁇ 2 after a predetermined time is compared with the allowable rolling moment Ml, and the brake controller 18 is operated according to the result.
  • step S43 of the fourth embodiment at step S43a shown in FIG. 19A, the current tire turning angle ⁇ is extrapolated by the calculator C15 (stored in the controller 20). Then, the tire turning angle ⁇ after a predetermined time is obtained, and the lateral acceleration a estimated at step S44 shown in FIG. 19 ( ⁇ ) instead of step S44 is used to calculate the lateral angle estimated by the calculator C11. Find the tipping moment M2 based on acceleration a '. Then, the same step S45 as in the fourth embodiment is performed.
  • the modified example of the fourth embodiment is configured and operates as described above. Compared to the fourth embodiment, the control is started at an earlier stage, and it is avoided that the control is not in time and is safer. is there.
  • FIG. 20A shows a configuration of the fifth embodiment.
  • a displacement sensor 21, a pressure sensor 22, and a speed sensor 23 are provided.
  • the steering support member 6 has a steerer for detecting the rotational speed of the steering wheel 7.
  • a sensor 29 is provided.
  • a brake control device 18 and a steering resistance device 19 are provided as in the first modification of the third embodiment.
  • FIG. 20B is a diagram for explaining the flow of signals between the above devices.
  • FIG. 21 is a diagram for explaining the control in the fifth embodiment. Steps S51 to S54 are the same as steps S11 to S14 in the first embodiment, and thus the description thereof is omitted.
  • the calculator 16 (stored in the controller 20) generates an ON signal when ⁇ V obtained by subtracting the limit speed Vc from the vehicle speed calculated value Va is positive, and the calculator 17 (stored in the controller 20). ) Generates an ON signal when the steering speed co s exceeds a predetermined value.
  • the brake command value and the steering resistance command value are sent to the brake control device 18 and the steering resistance device 19 via the AND circuit C18.
  • the brake control device 16 may be operated to perform the control as in the fourth embodiment. it can.
  • a warning device is used as in the first embodiment. After the device 30 is operated, the brake control device 16 can be operated as in the fourth embodiment.
  • FIG. 22 is a system configuration diagram
  • FIG. 23 is an allowable torque processing block diagram.
  • the allowable acceleration is estimated from the mast lifting height (load height) and the lift load, and the running torque is controlled so as not to exceed the allowable acceleration.
  • the actual displacement and the actual pressure of the lift cylinder 110 are detected by the displacement sensor 140 and the pressure sensor 150, and are input to the controller 170 as the detected displacement X and the detected pressure p.
  • the accelerator signal is input from 120 to the controller 170
  • the lever signal is input from the front / rear lever 130 to the controller 170
  • the actual rotational speed of the traveling motor 180 is detected by the speed sensor 160
  • the detected speed V is input to the controller 170.
  • the controller 170 gives a torque command to the traveling motor 180, and estimates the allowable acceleration according to the allowable torque processing block diagram shown in FIG. 23, and travels so as not to exceed the allowable acceleration. Torque is controlled.
  • the permissible torque processing block diagram shown in Fig. 23 shows the calculation of the mast lift (step T1), the load load (step T2), the vehicle longitudinal center of gravity position (step T3), and the vehicle vertical center of gravity position. Calculation (step ⁇ 4), allowable acceleration calculation (step ⁇ 5), allowable torque calculation (step ⁇ 6), and limit processing (step ⁇ 7).
  • the mast lift height h (t) is divided into three stages (lower, middle, upper) using three limit switches SW, SW, SW (ONZOFF) that are displacement sensors 140. Check separately
  • Equation (1) The formula for calculating the mast lift is shown in Equation (1).
  • SW Lower switch (Detected value, ON: l, OFF: 0)
  • SW Middle switch (Detected value, ON: l, OFF: 0)
  • h 0.5m
  • an inner mast 112 is mounted on the outer mast 111 so as to be movable up and down, and a lift bracket 113 is mounted on the inner mast 112 so as to be movable up and down.
  • a fork 114 to be placed is projected horizontally, and the lift bracket 113 is connected to the chain 117 via the chain wheel 116! Therefore, the lift pressure p of the lift cylinder 110 is detected by the pressure sensor 140, and the product load m (t) is calculated. Equation (2) shows the calculation formula for the load mass m.
  • 29 and 30 show the relationship between the load m (t), mast lift h (t), and vehicle center of gravity position X.
  • the vehicle body 119 has a front wheel 118a and a rear wheel 118b, and a mast mechanism is attached to the front portion of the vehicle body 119 so as to be tiltable.
  • the vehicle front-rear center-of-gravity position X is calculated by equation (4) g based on the product load m (t) and the mast lift h (t).
  • X (t) (m ⁇ + m ⁇ + m ⁇ + m (t) ⁇ ) / (m + m + m + m (t)) g 1 1 2 2 3 3 4 1 2 3
  • the vehicle vertical center-of-gravity position Z is calculated using Equation (5).
  • the allowable acceleration ⁇ is based on the vehicle longitudinal center of gravity position X and the vehicle vertical center of gravity position ⁇ a g g
  • Equation (6) is an operator that selects the smaller one.
  • a (t) min (a, g -X (t) / Z (t))... Equation (6)
  • the permissible torque ⁇ is calculated by equation (10) based on the permissible acceleration ⁇ .
  • T (t) a-(m + m + m + m (t)) -K / S (10)
  • the command torque calculated by the command torque calculation unit 210 does not exceed the allowable torque T (t) based on the accelerator operation amount, the lever signal of the front / rear switching lever, and the vehicle speed.
  • the load load m (t) and the mast lift height Mt) are first calculated (steps Tl and T2), and then the load load m ( t) and mast lift h (t), calculate vehicle longitudinal center of gravity position X and vehicle vertical center of gravity position Z (steps T3, T4) and continue gg
  • the allowable acceleration (deceleration) a is calculated from the vehicle longitudinal center of gravity position X and the vehicle vertical center of gravity position Z (step T5), and the allowable acceleration (deceleration) a is then calculated as the allowable torque T (step T a 2
  • step T7 Since the running torque is controlled (step T7), the acceleration does not exceed the allowable acceleration (deceleration) a, so it is possible to prevent the vehicle from tipping forward and backward when starting or suddenly stopping.
  • controller 170 shown in FIG. 22 may be configured by hardware for performing each step, or may be configured by software.
  • the seventh embodiment will be described with reference to FIGS. 24 and 25.
  • FIG. 24 is a system configuration diagram
  • FIG. 25 is an allowable torque processing block diagram.
  • the allowable acceleration and the allowable vehicle speed are estimated from the mast lifting height, the lift load, and the tire steering angle, and the running torque is controlled so as not to exceed the allowable acceleration and the allowable vehicle speed.
  • the actual displacement and the actual pressure of the lift cylinder 110 are detected by the displacement sensor 140 and the pressure sensor 150, and are input to the controller 170 as the detected displacement X and the detected pressure p.
  • the accelerator signal from 120 is input to the controller 170
  • the lever signal is input from the front / rear lever 130 to the controller 170
  • the actual turning angle from the steering device 190 is detected by the angle sensor 200
  • 8 is input to the controller 170.
  • the actual rotational speed of the traveling motor 180 is detected by the speed sensor 160 and is input to the controller 170 as the detected speed V.
  • the controller 170 Based on these input signals, the controller 170 gives a torque command to the traveling motor 180, estimates the allowable acceleration and the allowable speed according to the allowable torque processing block diagram shown in FIG. The running torque is controlled so that the speed is not exceeded.
  • the permissible torque processing block shown in FIG. 25 is a calculation of a predicted tire break angle (step T8), a permissible vehicle speed calculation (step T9), and a permissible torque based on the permissible vehicle speed. (Step T10) and final allowable torque calculation (step T11) are added, and the description overlapping with the sixth embodiment will be omitted.
  • the tire rudder angle is shown in the figure h h c c f f between the past value (t, 13), the current value (t,
  • the allowable vehicle speed V is the absolute value of the predicted tire rudder angle j8.For example, it exceeds 5.0 °.
  • V (t) 20km / h
  • the allowable vehicle speed V is set to a constant value fa.
  • V (t) 3.6 ⁇ ( ⁇ (t) / a)- ⁇ (L 2 -g- ⁇ (t)) / (Z (t) ⁇
  • V Vehicle speed detection value (variable) [km / h]
  • the vehicle speed V is a force detected by the speed sensor 160.
  • the encoder count is reset to 0 every time the calculation cycle At elapses. Say it with words.
  • V (t) CF X CNT (t) / At ... Equation (8)
  • V (t) Vehicle speed (variable) [km / h]
  • the final allowable torque T is the allowable torque T calculated based on the allowable acceleration a and the allowable vehicle speed a a 1
  • the limit process is a process for limiting the command torque calculated by the command torque calculation unit 210 so that it does not exceed the final allowable torque ⁇ a based on the accelerator operation amount, the lever signal of the front / rear switching lever, and the vehicle speed.
  • the load m (t) and the mast lifting (Mt) is calculated (Step Tl, ⁇ 2), and then the vehicle longitudinal center of gravity position X and vehicle vertical center of gravity position Z are calculated from the load m (t) and mast lift height h (t) (Steps T3, T4). ), Continue gg
  • step T5 calculate the allowable acceleration (deceleration) a from the vehicle longitudinal center of gravity position X and vehicle vertical center of gravity position Z (step T5), and calculate the allowable acceleration (deceleration) a and the allowable torque T (step T a 1
  • step T8 the predicted value j8 of the tire rudder angle is detected (step T8), the allowable vehicle speed V is calculated from the vehicle vertical center-of-gravity position Z and the predicted value j8 of the fg tire rudder angle (step T9), and the allowable vehicle speed V ⁇ Calculate the permissible faa torque command value T (step T10) and set the allowable torque ⁇ and allowable torque command value ⁇ .
  • the running torque is controlled so that does not exceed the allowable torque ⁇ .
  • controller 170 shown in FIG. 24 may be configured by hardware for performing each step, or may be configured by software.
  • the present invention can also be applied to an electric forklift except for those including control of the output of an internal combustion engine.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

 さまざまな手段を用いたフォークリフトの転倒防止装置を提供することが課題であり、変位センサ(21)の検出したピストン変位から積荷高さHを求め、圧力センサ(22)の検出した圧力Pから積荷重量Wを求める。コントローラ(20)は積荷重量が0の時と定格(最大)の際の限界速度V1,V2をもとめる。V1、V2を線形補間して積荷重量がWのときの限界速度Vcを算出する。この際、回転半径はコントローラが記憶している最小回転半径の値を使用する。速度センサ(23)の測定した実速度Vaが限界速度Vcに達したならば警告装置(30)を作動せしめ運転者に警告を与える。                                                                                 

Description

明 細 書
フォークリフトの転倒防止装置
技術分野
[0001] 本発明はフォークリフトの転倒防止装置に関する。
背景技術
[0002] フォークリフトの走行動作にぉ 、て充分に減速せずに旋回をおこなった場合に車 体に大きな横力が作用して転倒する可能性がある。
これを防止するものとして例えば特許文献 1に記載の装置がある。この装置では、 現在の操舵量、積載物位置、積載物重量を検出し、それらの値から転倒限界角度を 演算し、さらに、転倒限界角度となる転倒限界速度を演算して車速を規制することを 開示している。
[0003] 特許文献 1 :特開平 10— 175800号公報
発明の開示
発明が解決しょうとする課題
[0004] 上記特許文献 1の装置は、現在の操舵量、積載物位置、積載物重量から転倒限界 角度を演算し、さらに、その転倒限界角度となる転倒限界車速を演算し、転倒限界 速度にならないように車速を規制することを開示している。し力しながら、その他の方 法にっ ヽては示されて ヽな 、。
そこで、本発明はさらに多様なフォークリフトの転倒防止装置を提供することを目的 とする。
課題を解決するための手段
[0005] 請求項 1の発明によれば、
積荷高さを検出する積荷高さ検出手段と、
積荷重量を検出する積荷重量検出手段と、
最小回転半径を記憶する記憶手段と、
積荷高さと、積荷重量と、最小回転半径とから転倒しない限界速度を算出する限界 速度算出手段と、 実車両速度を検出する車速検出手段と、
実車両速度と限界速度を比較する速度比較手段と、
運転者へ警告を発する警告装置と、を具備し、
実車両速度が限界速度に達した場合に警告装置を作動せしめる、ようにされてい るフォークリフトの転倒防止装置が提供される。
[0006] 請求項 2の発明では、請求項 1の発明において、
実車両速度が限界速度に達する前から、
実車両速度と限界速度の差に応じて多段階に警告を発するようにしたフォークリフ トの転倒防止装置が提供される。
[0007] 請求項 3の発明の発明では、請求項 1の発明において、
現在の車両速度から所定時間後の車両速度を推定する車両速度推定手段を具備 し、
速度比較手段は車両速度推定手段が推定した車両速度と限界速度を比較し、 推定した車両速度が限界速度に達した場合に警告装置を作動せしめる、ようにした フォークリフトの転倒防止装置が提供される。
[0008] 請求項 4の発明では、請求項 1の発明において、
警告装置を作動後に、車両の減速、積荷高さの減少、ステアリング回転角増大の 禁止の ヽずれかを実行する、ようにしたフォークリフトの転倒防止装置が提供される。
[0009] 請求項 5の発明では、
積荷高さを検出する積荷高さ検出手段と、
積荷重量を検出する積荷重量検出手段と、
最小回転半径を記憶する記憶手段と、
積荷高さと、積荷重量と、最小回転半径とから転倒しない限界速度を算出する限界 速度算出手段と、
実車速を検出する車速検出手段と、
実車速と限界速度を比較する速度比較手段と、
積荷高さを減少せしめる積荷高さ減少装置と、を具備し、
実車速が限界速度に達した場合には積荷高さ減少装置を作動せしめる、ようにさ れているフォークリフトの転倒防止装置が提供される。
[0010] 請求項 6の発明では、請求項 5の発明にお 、て、
さらに、速度を減少せしめる減速手段を具備し、
実車速が限界速度を超えた場合には、減速手段も作動せしめる、ようにしたフォー クリフトの転倒防止装置が提供される。
[0011] 請求項 7の発明のフォークリフトの転倒防止装置では、請求項 6の発明において、 フォークリフトがアクセルペダルを備え、
減速手段は運転者のアクセルペダルへの入力を駆動手段に伝える経路を遮断す るアクセル遮断手段とされているフォークリフトの転倒防止装置が提供される。
[0012] 請求項 8の発明のフォークリフトの転倒防止装置では、請求項 6の発明において、 フォークリフトが内燃機関の出力で駆動され、
減速手段が、速度が限界速度以下になるように内燃機関の出力を制御する出力制 御装置でとされているフォークリフトの転倒防止装置が提供される。
[0013] 請求項 9の発明のフォークリフトの転倒防止装置では、請求項 6の発明において、 減速手段が車両に制動をかける制動手段とされているフォークリフトの転倒防止装 置が提供される。
[0014] 請求項 10の発明によれば、
限界ローリングモーメントを算出する限界ローリングモーメント算出手段と、 走行中の実ローリングモーメントを算出する実ローリングモーメント算出手段とを具 備し、
実ローリングモーメントが限界ローリングモーメントよりも大きい場合には、制動手段 を作動せしめて車両速度を減少する、ようにされて!、るフォークリフトの転倒防止装置 が提供される。
[0015] 請求項 11の発明では、請求項 10の発明において、
実ローリングモーメントが限界ローリングモーメントよりも大きい場合には、制動手段 を作動せしめて車両速度を減少することに加えて、さらに、転舵角の増大を禁止する 、ようにされて!ヽるフォークリフトの転倒防止装置が提供される。
[0016] 請求項 12の発明では、請求項 10の発明において、 積荷高さを検出する積荷高さ検出手段と、積荷重量を検出する積荷重量検出手段 と、車体横加速度を検出する車体横加速度検出手段を含み、
限界ローリングモーメント算出手段は、積荷高さ検出手段の検出した積荷高さと、 積荷重量検出手段の検出した積荷重量とに基づいて、限界ローリングモーメントを算 出し、
実ローリングモーメント算出手段は、積荷高さ検出手段の検出した積荷高さと、積 荷重量検出手段の検出した積荷重量と、車体横加速度検出手段の検出した車体横 加速度とに基づいて、実ローリングモーメントを算出する、ようにしたフォークリフトの 転倒防止装置が提供される。
[0017] 請求項 13の発明では、請求項 12の発明において、
横加速度検出手段は、車体に取付けられた横加速度センサとされているフォークリ フトの転倒防止装置が提供される。
[0018] 請求項 14の発明では、請求項 12の発明において、横加速度検出手段は、タイヤ 切れ角検出手段と、車体に取付けられたョーレート検出手段とを含み、タイヤ切れ角 検出手段が検出したタイヤ切れ角と、ョーレート検出手段の検出したョー角速度に基 づき横加速度を検出する、ようにされているフォークリフトの転倒防止装置が提供され る。
[0019] 請求項 15の発明では、請求項 10から 14のいずれか一つの発明において、
所定時間経過後のローリングモーメントを推定するローリングモーメント推定手段を 含み、実ローリングモーメントの代わりに、ローリングモーメント推定手段の推定した口 一リングモーメントと限界ローリングモーメントを比較する、ようにされて 、るフォークリ フトの転倒防止装置が提供される。
[0020] 請求項 16の発明では、
積荷高さを検出する積荷高さ検出手段と、
積荷重量を検出する積荷重量検出手段と、
最小回転半径を記憶する記憶手段と、
積荷高さと、積荷重量と、最小回転半径とから転倒しない限界速度を算出する限界 速度算出手段と、 実車速を検出する車速検出手段と、
実車速と限界速度を比較する速度比較手段と、
車両を制動せしめる制動装置と、
ステアリング装置に抵抗を与えるステアリング抵抗装置を具備し、
実車速が限界速度に達した場合には制動装置およびステアリング抵抗装置を作動 せしめる、ようにされて!、るフォークリフトの転倒防止装置が提供される。
[0021] 請求項 17の発明では、
積荷高さを検出する積荷高さ検出手段と、
積荷重量を検出する積荷重量検出手段と、
前記積荷高さ検出手段により検出された積荷高さ及び前記積荷重量検出手段によ り検出された積荷重量から、車両前後重心位置を求める車両前後重心位置演算手 段と、
前記積荷高さ検出手段により検出された積荷高さ及び前記積荷重量検出手段によ り検出された積荷重量から、車両上下重心位置を求める車両上下重心位置演算手 段と、
前記車両前後重心位置演算手段により求められた車両前後重心位置及び前記車 両上下重心位置演算手段により求められた車両上下重心位置力も前後方向に転倒 しな ヽ許容加速度を推定する許容加速度推定手段と、
前記許容加速度推定手段により推定された許容加速度を超えな!/ヽように走行トルク を制御する走行トルク制御手段を有することを特徴とするフォークリフトの転倒防止装 置を提供できる。
[0022] 請求項 18の発明では、請求項 17において、
前記走行トルク制御手段は、前記許容加速度推定手段により推定された許容加速 度力 許容トルクを演算し、該許容トルクにより走行モータへ指令する指令トルクを制 限するフォークリフトの転倒防止装置が提供される。
[0023] 請求項 19の発明では、請求項 17において、
タイヤ舵角を予測するタイヤ舵角予測手段と、
前記車両上下重心位置演算手段により求められた車両上下重心位置及び前記タ ィャ舵角予測手段により予測されたタイヤ舵角力 横方向に転倒しない許容速度を 推定する許容速度推定手段とを更に備え、
前記走行トルク制御手段は、前記許容加速度推定手段により推定された許容加速 度及び前記許容速度推定手段により推定された許容速度を超えな!/ヽように走行トル クを制御するフォークリフトの転倒防止装置が提供される。
[0024] 請求項 20の発明では、請求項 19において、
前記許容加速度推定手段により推定された許容加速度から演算した許容トルク又 は前記許容速度推定手段により推定された許容速度から許容トルクを演算し、該許 容トルクにより走行モータへ指令する指令トルクを制限するフォークリフトの転倒防止 装置が提供される。
発明の効果
[0025] 請求項 1から 4の発明によれば、速度に基いてフォークリフトが転倒しないように警 告を発することができる。特に、請求項 2の発明によれば多段階に警告を発すること ができ運転者は余裕をもって転倒を回避できる。特に請求項 3の発明によれば現在 力 所定時間後における推定速度に基いて警告を発するのでさらに余裕をもって転 倒を回避することができる。特に請求項 4の発明に警告後に車両の減速、積荷高さ の減少、ステアリング回転角増大の禁止のいずれかが実行され、警告後に転倒防止 の処置が実行され運転者が驚くようなことがな 、。
[0026] 請求項 5から 9の発明によれば、速度が限界速度に達すると積荷高さが減少されて 、転倒が防止される。特に、請求項 6から 9のようにすれば、速度も減少され、より安全 である。
[0027] 請求項 10から 15の発明によれば、ローリングモーメントが限界モーメントを超えな いようにされてフォークリフトの転倒防止の制御が実行される。特に、請求項 15の発 明によれば現在力 所定時間後における推定ローリングモーメントに基いて転倒防 止の制御が実行されるので安全度が高!、。
[0028] 請求項 17から 20の発明によれば、前後方向に転倒しない許容加速度を推定し、 許容加速度を超えな ヽように走行トルクを制御するので、走行系の急操作時におけ る車両転倒を防止でき、特に、請求項 19, 20の発明によれば、車両の前後方向の みならず、横方向の転倒を防止できるので安全性が高い。
図面の簡単な説明
[図 1]図 1は第 1の実施の形態を説明する図であって、(A)は構造を示す図であり、 ( B)は信号のフローを示す図である。
[図 2]図 2は第 1の実施の形態における制御を説明する図である。
[図 3]図 3は第 1の実施の形態の第 1変形例における制御を説明する図であって、図
2のステップ S 15の代わりに行われるステップ 15,を示している。
[図 4]図 4は第 1の実施の形態の第 2変形例における制御を説明する図であって、 (A
)は図 2のステップ S14とステップ S15の間に行われるステップ S14aを示し、(B)は図
2のステップ S 15の代わりに行われるステップ 15"を示す。
[図 5]図 5は第 2の実施の形態を説明する図であって、(A)は構造を示す図であり、 ( B)は信号のフローを示す図である。
[図 6]図 6は油圧制御装置、および、リリーフ弁を説明する図である。
[図 7]図 7は第 2の実施の形態における制御を説明する図である。
[図 8]図 8は第 2の実施の形態の変形例を説明する図であって、(A)は構造を示す図 であり、(B)は信号のフローを示す図である。
[図 9]図 9は第 2の実施の形態の変形例における制御のステップ 25'を説明する図で ある。
[図 10]図 10は第 3の実施の形態を説明する図であって、(A)は構造を示す図であり 、 (B)は信号のフローを示す図である。
[図 11]図 11は第 3の実施の形態のブレーキ制御装置を説明する図である。
[図 12]図 12は第 3の実施の形態における制御を説明する図である。
[図 13]図 13は第 3の実施の形態の第 1変形例を説明する図であって、(A)は構造を 示す図であり、(B)は信号のフローを示す図である。
[図 14]図 14は第 3の実施の形態の第 1変形例のステアリング抵抗措置の構造を説明 する図である。
[図 15]図 15は第 3の実施の形態の第 1変形例の制御のステップ S35'を説明する図 である。 [図 16]図 16は第 3の実施の形態の第 2変形例の制御を説明する図であって、(A)は ステップ S32'を説明する図であり、 (B)はステップ S34'を説明する図である。
[図 17]図 17は第 4の実施の形態を説明する図であって、 (A)は構造を示す図であり 、 (B)は信号のフローを示す図である。
[図 18]図 18は第 4の実施の形態における制御を説明する図である。
[図 19]図 19は第 4の実施の形態の変形例の制御を説明する図であって、(A)はステ ップ S43aを説明する図であり、 (B)はステップ S44'を説明する図である。
[図 20]図 20は第 5の実施の形態を説明する図であって、(A)は構造を示す図であり
、 (B)は信号のフローを示す図である。
[図 21]図 21は第 5の実施の形態の制御を説明する図である。
[図 22]図 22は第 6の実施の形態に係るシステム構成図である。
[図 23]図 23は第 6の実施の形態に係る許容トルク処理ブロック図である。
[図 24]図 24は第 7の実施の形態に係るシステム構成図である。
[図 25]図 25は第 7の実施の形態に係る許容トルク処理ブロック図である。
[図 26]図 26 (a)は、 3つのリミットスィッチ SW , SW , SWの配置図、図 26 (b)は実
1 2 3
際の揚高と演算値との関係を示すグラフである。
[図 27]図 27はマスト機構の概略図である。
[図 28]図 28はタイヤ舵角の予測を示すグラフである。
[図 29]図 29はフォークリフトの側面図である。
[図 30]図 30はフォークリフトの正面図である。
[図 31]図 31はエンコーダカウント数と時間との関係を示すグラフである。
符号の説明
2は車体、 3はエンジン、 3aは出力制御装置、 11はァウタマスト、 12はインナマスト 、 13はフォーク、 14はリフトシリンダ、 15はピストン、 16は油圧制御装置、 17はリフト レバー、 18はチルト装置、 20はコントローラ、 21は変位センサ、 22は圧力センサ、 2 3は速度センサ、 24はアクセル開度センサ、 25はエンジン回転数センサ、 26はリリー フ弁、 27は(横)加速度センサ、 28はジャイロセンサ、 29はタイヤ切れ角センサ、 30 は警告装置、 110はリフトシリンダ、 120はアクセル、 130は前後レバー、 140は変位 センサ、 150は圧力センサ、 160は速度センサ、 170はコントローラ、 180は走行モー タ、 190は操舵装置、 200は角度センサである。
発明を実施するための最良の形態
[0031] 以下、添付の図面を参照して本発明の各実施の形態を説明する。
図 1は第 1の実施の形態を説明する図である。
初めに、フォークリフト 1の全体構造を説明する。フォークリフト 1は車体 2を有し、車 体 2の内部には、駆動装置としてディーゼル式のエンジン 3、が収容されている。ェン ジン 3には出力制御装置 3aが取付けられている。駆動装置の動力は図示しない変速 装置を介して前輪 4aに伝達される。後輪 4bは操舵輪であって動力は伝達されない。 前輪 4aにはブレーキ 5が付設されている。
[0032] 車体 2の中央上部には運転席 2aが配設されている。運転席 2aの前にはステアリン グ支持部材 6に取付けられたステアリング 7が配設されて 、る。ステアリング支持部材 6の根元近傍にはアクセルペダル 8aとブレーキペダル 8bが配設されて!/、る。そして、 運転席 2aに座った運転者を保護するために 4本の縦支柱と縦支柱の上端に取付け られた上部枠力も成る保護部材 9が設けられて 、る。アクセルペダル 8aはエンジン 3 の出力制御装置 3aと直結されている。ブレーキペダル 8bは図示しない油圧回路で ブレーキ 5に接続されている。
[0033] 車体 2の前端には昇降装置 10が取付けられている。昇降装置 10は、一般的な構 造のものであり、車体 2に取付けられているァウタマスト 11、ァウタマスト 11に対して 昇降可能に取付けられているインナーマスト 12、インナーマスト 12に昇降可能に取 付けられているフォーク 13を有する。
[0034] インナマスト 12は油圧式のリフトシリンダ 14により上下動されるピストン 15により昇 降せしめられる。インナマスト 12の上端部には図示しない滑車が取付けられ、滑車の 上側を通るようにチェーンが設けられ、チェーンの一方の端部はフォーク 13に固定さ れ、他方の端部はァウタマスト 12に固定されている。そして、インナマスト 12を昇降さ せることにより、インナマスト 12の昇降速度の 2倍の速度でフォーク 13が昇降する。ま た、インナーマスト 12はチルト装置 18により傾斜させることができる。
リフトシリンダ 14の油圧を制御する油圧制御機構 16が車体 2の内部に取付けられ ている。油圧制御機構 16はリフトレバー 17により運転者により操作される。油圧制御 機構 16はチルト装置 18にも油圧を供給する。
[0035] 次に、第 1の実施の形態に特有の機器類について説明する。先ず、リフトシリンダ 1 4の上端部にピストン 15の変位を検出する変位センサ 21が取付けられている。リフト シリンダ 14の下部には、リフトシリンダ内の圧力を検出する圧力センサ 22が取付けら れて ヽる。前輪 4aの回転数を検出する速度センサ 23が前輪 4aに近接した車体 2の 取付けられている。各センサは車体 2に取付けられたコントローラ 20と結合されている 。ステアリング支持部材 6には警告装置 30が取付けられており、警告装置 30もコント ローラ 20と結合されている。
[0036] 図 1の(B)が上記の機器類の間の信号の流れを説明する図である。
ピストン 15の変位が変位センサ 21で検出され、検出された変位 Xがコントローラ 20 に送られる。リフトシリンダの圧力が圧力センサ 22で検出され、検出された圧力 Pがコ ントローラ 20に送られる。前輪 4aの速度(回転速度)が速度センサ 23で検出され、検 出された速度 Vがコントローラ 20に送られる。そして、コントローラ 20から警告装置 30 に警告信号が送られる。
[0037] 図 2は上記のように構成された機器類による制御を説明する図である。
ステップ SI 1では検出されたピストン変位 Xを、ピストン変位 Xから積荷高さ Hを求め る演算器 C1 (コントローラ 20に記憶されている)に代入して積荷高さ Hを算出する。 なお、フォーク 13に対する積荷の実際の重心高さは積荷によって変動するので、フ オーク 13に対して一定の仮想値とされる。
ステップ S12ではリフトシリンダ圧力 Pを、リフトシリンダ圧力 P力も負荷重量 Wを求め る演算器 C2 (コントローラ 20に記憶されている)に代入して負荷重量 Wを算出する。
[0038] ステップ S13では、ステップ S11で算出した積荷高さ Hと無負荷(=空荷)時の限界 速度の関係を示す演算器 C3a (コントローラ 20に記憶されて 、る)に基づき無負荷( =空荷)時の限界速度 V1を算出し、また、ステップ S11で算出した積荷高さ Hと定格 負荷(=最大積載)時の限界速度の関係を示す演算器 C3b (コントローラ 20に記憶さ れている)に基づき定格負荷(=空荷)時の限界速度 V2を算出する。ここで、限界速 度 VI、 V2はいずれも、フル転舵して最小回転半径で旋回した場合に転倒する速度 であり、そのために、コントローラ 20は最小回転半径の値を記憶している。
[0039] ステップ S 14では、ステップ S 12で求めた負荷重量 Wと、ステップ S 13で求めた無 負荷時の限界速度 VIと定負荷時の限界速度 V2を、線形補間計算をする演算器 C4 (コントローラ 20に記憶されている)に代入して、負荷重量が Wの時の限界速度 Vcを 算出する。
[0040] ステップ S15では、速度センサ 23が検出した車両速度の検出値 Vaからステップ S1 4で求めた限界速度 Vcを減算した速度差 Δνを求め、速度差 Δ Vを演算器 C5 (コン トローラ 20に記憶されて 、る)に代入し、速度差 Δ Vが正の(0より大き 、)場合には、 警告装置 30に警告信号 (警告を発生させる命令)を送る。警告装置 30は警告信号 にもとづき警告ブザーを吹鳴、または、警告ランプを点灯して運転者に速度オーバー を知らしめる。
[0041] 第 1の実施の形態は上記のように構成され作用し、車両の速度 Vaが限界速度 Vcよ り大きくなつた場合には警告装置により運転者に向けて警告が発せられる。運転者は 警告に基づき減速、その他の転倒回避動作をすることにより転倒を防止することがで きる。そして、最小回転半径で限界速度 Vcを計算しているので転舵角が増大されて も転倒はしない。
[0042] 次に第 1の実施の形態の第 1変形例を説明する。この第 1変形例は警告を段階的 に発するものである。そこで、第 1の実施の形態のステップ S15の代わりに、図 3に示 すステップ S15,を行う。ステップ S15,では、速度の検出値 Vのステップ S14で求め た限界速度 Vcと差 Δνを求め Δνの大きさに応じて段階的に警告を発生する。
[0043] そこで、例えば、コントローラ 20は、演算器 C5の代わりに演算器 C5aを記憶してい て、演算器 C5aは Δνが限界速度 Vcの 80%に達した時を第 1警告レベルとしてそれ に対応する警告信号 elを発し、 Δνが限界速度 Vcの 90%に達した時を第 2警告レ ベルとしてそれに対応する警告信号 e2を発し、 Δ Vが限界速度 Vcの 100%に達した 時を第 3警告レベルとしてそれに対応する警告信号 e3を発する。
第 1の実施の形態は上記のように構成され作用し、段階的に警告が発生られるので 、運転者は余裕をもって転倒を回避することができる。
[0044] 次に第 1の実施の形態の第 2変形例を説明する。この第 1の実施の形態の第 2変形 例では現在の車両の速度 Va力 所定時間後の推定車両速度 Va'を推定し、推定車 両速度 Va'と限界速度 Vcを比較して、 Va'力 よりも大きくなつたら警告を発するも のである。
そこで、第 1の実施の形態のステップ S 14の次に、図 4に示すステップ S 14aで演算 器 C6 (コントローラ 20に記憶されて 、る)で現在の速度を外挿して Va 'を求め、ステツ プ S 15"で推定車両速度 Vaと、ステップ S 14で求めた限界速度 Vcの差 Δνを求め、 これを前述の演算機 C5に代入し、 Δνが正 (0より大きい)場合には警告装置 30に警 告信号 (警告を発生させる命令)を送る。
第 1の実施の形態の第 2変形例は上記のように構成され作用し、速度が限界速度 に達する前に警告が発せられるので運転者はさらに余裕をもって転倒を回避できる。
[0045] 次に第 2の実施の形態を説明する。この第 2の実施の形態は第 1の実施の形態と同 様に限界速度 Vcを求め現在の速度 Vと比較する力 限界速度 Vcを超えていれば、 積荷高さを減少し、かつ、出力の増大上昇を禁止するものである。
図 5の (A)が第 2の実施の形態の構成を示す図であって、基本部分は第 1の実施 の形態と同様であるので説明は省略する。第 1の実施の形態と同様に、変位センサ 2 1、圧力センサ 22、速度センサ 23が設けられている。
[0046] 第 1の実施の形態ではアクセルペダル 8aとエンジン 3の出力制御装置 3aは機械的 に直結されていた力 この第 2の実施の形態では、アクセルペダル 8aの下にアクセル ペダルの踏み込み量を検出するアクセルペダルセンサ 24が設けられ、このアクセル ペダルセンサ 24がコントローラ 20に接続されている。一方、出力制御装置 3a'は図 示しない電子制御式のァクチユエータ(図示せず)を有し、このァクチユエータにコン トローラ 20から送られてく信号で出力調整を行うようにされて ヽる。
[0047] また、リフトシリンダ 14に油圧を送る油圧制御装置 16にリリーフ弁 16cが設けられて いる。図 6は油圧制御装置 16およびリリーフ弁 16cを説明する図である。油圧制御装 置はポンプ 16a,リフトレバー 17が直結されている切換弁 16bを有し、それに、第 2の 実施の形態ではリリーフ弁 16cが追加されている。
[0048] 図 5の(B)が第 2の実施の形態における機器間の信号の流れを説明する図である。
第 1の実施の形態と同様に、ピストン 15の変位が変位センサ 21で検出され、検出さ れた変位 Xがコントローラ 20に送られる。リフトシリンダの圧力が圧力センサ 22で検出 され、検出された圧力 Pがコントローラ 20に送られる。前輪 4aの速度(回転速度)が速 度センサ 23で検出され、検出された速度 Vがコントローラ 20に送られる。そして、この 第 2の実施の形態では、さらに、アクセルペダル 8aの踏み込み量 Asがアクセルぺダ ルセンサ 24で検出されコントローラ 20に送られる。
そして、コントローラ 20は、以下のようにして、出力制御装置 3a'、および、リリーフ 弁 16cに制御信号を送る。
[0049] 図 7は上記のように構成された第 2の実施の形態における制御を説明する図である ステップ S21からステップ 24までは第 1の実施の形態と全く同じであるので説明を 省略する。ステップ S25では、速度の検出値 Vaからステップ S14で求めた限界速度 Vcを減算した速度差 Δνを求め、 Δνが正 (0より大きい)場合には、演算器 C6 (コン トローラ 20に記憶されている)にもとづき油圧制御装置 16のリリーフ弁 16cを開き積 荷の高さを減少せしめる。同時に演算器 C7 (コントローラ 20に記憶されている)にもと づきアクセルペダルセンサ 24の信号が出力増大要求を示しても、この増大要求を出 力制御装置 3a'には伝えないようにして出力増大を抑制し、速度の増大を禁止する。
[0050] 第 2の実施の形態は上記のように構成され作用し、車両の速度 Vaが限界速度 Vc に達すると積荷高さが減少し、速度も増大されないので転倒が防止される。
[0051] 次に第 2の実施の形態の変形例について説明する。
図 8の (A)が第 2の実施の形態の変形例の構成を示す図であって、第 2の実施の 形態と同様に、変位センサ 21、圧力センサ 22、速度センサ 23、アクセルペダルセン サ 24を有するが、さらに、エンジン回転数センサ 25を有する。出力制御装置 3a'も第 2の実施の形態と同様のものが使用される。
[0052] そして、アクセルペダルセンサ 24から出力増大の要求があっても、現在の出力が維 持されるように、出力制御装置 3a'はガバナーをコントロールする。図 8の(B)が各機 器間の信号の流れである。
そして、第 2の実施の形態のステップ 25の代わりに、図 9のステップ 25,が実行され る。このステップ 25'では、第 2の実施の形態と同様に、演算器 C6で積荷高さを減少 せしめる信号を送ると同時に演算器 C8 (コントローラ 20に記憶されている)によって ガバナの制御量 Gaを決定する。例えば、アクセルペダルストローク Asとエンジン回転 数にもとづき現在の出力要求に対応する Galを算出し、また、限界速度 Vcとェンジ ン回転数にもとづき限界速度 Vcに対応する Ga2を算出し、 Galと Ga2の内の小さい 方を選択する。
第 2の実施の形態の変形例はこのように構成され作用し、車両の速度 Vaが限界速 度 Vcに達すると積荷高さが減少し、速度も増大されないので転倒が防止される。
[0053] 次に、第 3の実施の形態について説明する。この第 3の実施の形態では車両の実口 一リングモーメントを求め、これを予め記憶しておいた限界ローリングモーメントと比較 し、実ローリングモーメントが限界ローリングモーメントを超えた場合には、限界ローリ ングモーメント以下になるように制動装置を作用せしめて車両速度を減少せしめるも のである。
[0054] 図 10の (A)が第 3の実施の形態の構成を示す図である。この第 3の実施の形態で は第 1、第 2の実施の形態でも使用した変位センサ 21、圧力センサ 22と座席 2aの下 方に配設された横方向加速度を検出する加速度センサ 26を制御に使用する。そし てブレーキ 5にブレーキ制御装置 18が付設されている。図 10の(B)は上記の機器間 の信号の流れを説明する図である。
[0055] 図 11がブレーキ 5に付設されたブレーキ制御装置 18の構成を模式的に示す図で ある。ブレーキ 5はブレーキディスク 5a、ブレーキディスク 5aに摩擦材を押し付けるキ ャリパ 5b、および、ブレーキペダル 8aにカ卩えられた操作力を油圧に変換してキヤリパ 5bに送るマスタシリンダ 5cを含む。
[0056] ブレーキ制御装置 18は油圧ポンプ 18aで発生せしめた油圧を電磁切換弁 18bを 介してシリンダ 18cに送り、シリンダ 18c内を移動するピストン 18dでマスタシリンダ 5c のピストン 5dを移動せしめるものである。そして、電磁切換弁 18bにコントローラ 20か ら信号が送られる。
[0057] 図 12が第 3の実施の形態の制御を説明する図である。ステップ S31は第 1の実施 の形態の S11と同じである。ステップ S32では圧力センサ 22の検出値 Pと演算器 C9 (コントローラ 20に記憶されている)力も車両総重量 GWを算出する。ステップ S33で はステップ 32で求めた車両総重量 GWと演算器 CIOから限界モーメント Mlを求める 。具体的には、演算器 C10は、全体の重心 CGと前輪 4aの外縁の距離 Lを乗算して 限界モーメント Mlを求める。 Lは全体の重心 CGは車体 2の横方向中心線上にあり、 これと前輪 4aの外縁との距離は決まっているので、 Lは既知の値として、コントローラ が記憶している。
[0058] ステップ S34ではステップ S31で求めた積荷高さ Hとステップ S32で求めた車両総 重量 GWと、加速度センサ 26の求めた横向き加速度 aと演算器 C11 (コントローラ 20 に記憶されている)からローリングモーメント M2を算出する。具体的には、全体の重 心 CGの地面からの高さ H 位置を求め、この高さ H に車両総重量 GWと横向き加
CG CG
速度 aを重力加速度 gで除した値を乗算して求める。
[0059] そしてステップ S35では、ステップ S32で求めた限界モーメント Mlとステップ 34で 求めたローリングモーメント M2を比較し、限界モーメント Ml <ローリングモーメント M 2であれば、限界モーメント Ml >ローリングモーメント M2となるようにブレーキ制御 装置 18にブレーキ 5を作動させる指令を出す。
第 3の実施の形態は上記のように構成され作用し、ローリングモーメント M2が限界 モーメント Mlより大きくならないようにブレーキ 5が作動せしめられ転倒が防止される
[0060] 次に第 3の実施の形態の第 1変形例を説明する。これは、ステアリング 7の回転を制 動せしめるステアリング抵抗装置 19を有し、限界モーメント Mlくローリングモーメント M2であれば、ステアリング抵抗装置 19を作動せしめてステアリング 7の舵角の増大 を禁止するものである。図 13の (A)が第 3の実施の形態の第 1変形例の構成を示す 図であり、第 3の実施の形態に比して、ステアリング抵抗装置 19が追加されている点 のみが異なる。図 13の(B)はこの第 3の実施の形態の第 1変形例における機器間の 信号の流れを説明する図である。
[0061] 図 14がステアリング抵抗装置 19の構造を模式的に示す図である。ステアリング抵 抗装置 19は一種のブレーキ装置であつてステアリング軸 7aに固定されて!/ヽるデイス ク 19aとこのディスク 19aに摩擦板を押し付けるキヤリパ 19bと力ら成る。キヤリパ 19b にはブレーキ制御装置 18のポンプ 18aが発生した油圧が供給される。 そして、第 3の実施の形態のステップ S35の代わりに、図 15に示すようなステップ 3 5,が実行される。ステップ 35,は第 3の実施の形態のステップ S35に対して、限界モ 一メント Mlくローリングモーメント M2の時に、ステアリング抵抗指令値を出すことが 追加されただけである。
[0062] 次に第 3の実施の形態の第 2変形例について説明する。この第 3の実施の第 2変形 例では現在の車両の横加速度 aから所定時間後の推定横加速度 a'を推定し、推定 車両速度 Va'と限界速度 Vcを比較して、 Va'力 よりも大きくなつたらステアリング 抵抗装置 18を作動せしめるものである。
[0063] そこで、第 3の実施の形態のステップ S32の次に図 16の(A)に示すステップ S32, で演算器 C13 (コントローラ 20に記憶されている)によって現在の横加速度 aを外挿し て所定時間後の横加速度 a'を求め、ステップ S34の代わりの図 16の(B)に示すステ ップ S 34,で推定された横加速度 a,を用 、て演算器 C 11で推定された横加速度 a, にもとづく転倒モーメント M2を求める。
第 3の実施の形態の第 2変形例は上記のように構成され作用し、第 3の実施の形態 に比して、より早い段階で制御が始まり、制御が間に合わなくなることが回避されより 安全である。
[0064] 次に、第 4の実施の形態について説明する。
第 4の実施の形態は、第 3の実施の形態と同様に、転倒モーメントを算出して、それ が許容値以下になるようにするものである力 転倒モーメントの算出を、車両ョーレー ト(=ョ一角加速度)、タイヤ切れ角力も行う点が異なる。
[0065] 図 17の (A)が第 4の実施の形態の構成を示す図である。この第 4の実施の形態で は変位センサ 21、圧力センサ 22にカ卩えて、座席 2aの下方に配設された車体 2のョ 一レートを検出するジャイロセンサ 27、後輪 4bに付設されたタイヤ切れ角センサ 28 を車両状態の検出のために使用し、その結果にもとづき、ブレーキ 5に付設されたブ レーキ制御装置 18で速度を制御する。
図 17の(B)は上記の機器間の信号の流れを説明する図である。
[0066] 図 18が第 4の実施の形態の制御を説明する図である。ステップ S41〜ステップ 43 は第 3の実施の形態のステップ S31〜ステップ 33と同じであるので説明は省略する。 ステップ S44ではステップ S41で求めた積荷高さ Hと、ステップ S42で求めた車両総 重量 GWと、ジャイロセンサ 27の求めた車両ョーレート ωと、タイヤ切れ角センサ 28 の検出したタイヤ切れ角 βに基づき、演算器 C14 (コントローラ 20に記憶されている) によってローリングモーメント M2を算出する。
[0067] ここで演算器 C14の演算内容を説明する。ローリングモーメント M2は車輪の外縁 の接地点を中心としたモーメント(力 X腕長さ)である。このモーメントの腕の長さは重 心 CGの高さ H であり、ステップ S41で算出した積荷高さ H力も求められる。また、こ
CG
のモーメントの力を誘起する横向き加速度は旋回半径 rと車両ョーレート ωから r ω 2と して求められる。旋回半径 rはタイヤ切れ角 βに基づいて算出することができ、車両ョ 一レート ωはジャイロセンサ 27で検出される。
[0068] そしてステップ S35では、ステップ S32で求めた限界モーメント Mlとステップ 34で 求めたローリングモーメント M2を演算器 C12で比較し、限界モーメント Mlくローリン グモーメント M2であれば、ローリングモーメント M2が限界モーメント Mlよりも小さく なるようにブレーキ制御装置 18にブレーキを作動させる指令を出す。
[0069] 第 4の実施の形態は上記のように構成され作用し、第 3の実施の形態と同様に、口 一リングモーメント M2が限界モーメント Mlよりも小さくなるようにブレーキ 5が作動せ しめられ転倒が防止される。
[0070] 次に、第 4の実施の形態の変形例について説明する。この第 4の実施の形態の第 1 変形例では現在のタイヤ切れ角 j8力 所定時間後の推定タイヤ切れ角 β 'を推定し 、推定タイヤ切れ角 β,を利用して所定時間後のローリングモーメント M2'を演算し、 所定時間後のローリングモーメント Μ2,を許容ローリングモーメント Mlと比較して、そ の結果に応じてブレーキ制御装置 18を作動せしめるものである。
[0071] そこで、第 4の実施の形態のステップ S43の次に図 19の(A)に示すステップ S43a で演算器 C15 (コントローラ 20に記憶されている)によって現在のタイヤ切れ角 βを 外挿して所定時間後のタイヤ切れ角 β,を求め、ステップ S44の代わりの図 19の(Β) に示すステップ S44,で推定された横加速度 a,を用 ヽて演算器 C 11で推定された横 加速度 a'にもとづく転倒モーメント M2を求める。そして、第 4の実施の形態と同じス テツプ S45を実施する。 第 4の実施の形態の変形例は上記のように構成され作用し、第 4の実施の形態に 比して、より早い段階で制御が始まり、制御が間に合わなくなることが回避されより安 全である。
[0072] 次に、第 5の実施の形態について説明する。この第 5の実施の形態は、走行速度 V aが限界速度 Vcを超え、且つ、ステアリング 7の回転速度が所定知を超えた場合に、 車体 2に制動を与えると共にステアリング 7に抵抗を与えるものである。
図 20の (A)が第 5の実施の形態の構成を示す図である。この第 5の実施の形態で は第 1の実施の形態と同様に、変位センサ 21、圧力センサ 22、速度センサ 23を備え 、さらに、ステアリング支持部材 6にはステアリング 7の回転速度を検出するステアリン グセンサ 29を備える。また、第 3の実施の形態の第 1変形例と同様にブレーキ制御装 置 18とステアリング抵抗装置 19を備える。図 20の(B)は上記の機器間の信号の流 れを説明する図である。
[0073] 図 21は第 5の実施の形態における制御を説明する図である。ステップ S51〜ステツ プ S54までは第 1の実施の形態のステップ S11〜ステップ S14と同じであるので説明 は省略する。ステップ S55では演算器 16 (コントローラ 20に記憶されている)は車両 速度演算値 Vaから限界速度 Vcを減算した Δ Vが正の場合に ONの信号を発生し、 演算器 17 (コントローラ 20に記憶されている)はステアリング回転速度 co sが所定値を 超えた場合に ONの信号を発生する。演算器 16と演算器 17が共に ONの信号を発 生した場合には、 AND回路 C18を経てブレーキ制御装置 18およびステアリング抵 抗装置 19に、ブレーキ指令値およびステアリング抵抗指令値が送られる。
[0074] 第 5の実施の形態は上記のように車両速度 Vaが限界速度 Vcに達し、かつ、ステア リング速度 ω sが所定値を超えた場合に車体 2の制動とステアリング 7の制動が行わ れ転倒が防止される。
[0075] 以上、第 1の実施の形態〜第 5の実施の形態を説明してきたが、これらは、部分的 に、あるいは、全体的に、適宜、組みあわせることができる。
例えば、前者の一例としては、第 2の実施の形態における積荷上昇禁止、出力増 大禁止の代わりに、第 4の実施の形態のようにブレーキ制御装置 16を作動させて制 動を行うこともできる。また、後者の一例としては、第 1の実施の形態のように警告装 置 30を作動させた後に、第 4の実施の形態のようにブレーキ制御装置 16を作動させ ることがでさる。
[0076] 第 6の実施の形態について、図 22及び図 23を参照して説明する。図 22はシステム 構成図、図 23は許容トルク処理ブロック図である。
この第 6の実施の形態は、マスト揚高 (積荷高さ)、リフト負荷より許容加速度を推定 し、許容加速度を超えな ヽように走行トルクの制御を行なうものである。
[0077] 即ち、図 22に示すように、リフトシリンダ 110の実変位、実圧力は変位センサ 140、 圧力センサ 150により検出され、検出変位 X及び検出圧力 pとしてコントローラ 170へ 入力され、また、アクセル 120からアクセル信号がコントローラ 170へ入力され、前後 レバー 130からレバー信号がコントローラ 170へ入力され、走行モータ 180の実回転 速度が速度センサ 160で検出され、検出速度 Vとしてコントローラ 170へ入力される。 コントローラ 170は入力されたこれらの信号に基づいて、トルク指令を走行モータ 1 80へ与えると共に、図 23に示す許容トルク処理ブロック図に従って許容加速度を推 定し、許容加速度を超えな ヽように走行トルクの制御を行なう。
[0078] 図 23に示す許容トルク処理ブロック図は、マスト揚高の演算 (ステップ T1)、積荷荷 重の演算 (ステップ T2)、車両前後重心位置の演算 (ステップ T3)、車両上下重心位 置の演算 (ステップ Τ4)、許容加速度の演算 (ステップ Τ5)、許容トルクの演算 (ステツ プ Τ6)、リミット処理 (ステップ Τ7)よりなる。
[0079] [マスト揚高の演算 (ステップ T1) ]
マスト揚高 h(t)は、図 26 (a)に示すように、変位センサ 140である 3つのリミットスィ ツチ SW , SW , SW (ONZOFF)を用いて、 3段階(下段、中段、上段)に分けて検
1 2 3
出する。マスト揚高の演算式を式(1)に示す。
h (t) = (0. 5 X SW (t) + l. 5 X SW (t) +SW (t) ) X IOOO
1 2 3
…式 (1)
但し、
t :時間 [sec]
h:マスト揚高 (変数) [mm]
SW:下段スィッチ(検出値、 ON:l、 OFF: 0) SW:中段スィッチ(検出値、 ON:l、 OFF: 0)
2
SW:上段スィッチ(検出値、 ON:l、 OFF: 0)
3
従って、図 26 (b)に示すように、実際の揚高が 0. Om以上〜 0. 5m未満の場合、 h =0. 5mと演算され、実際の揚高が 0. 5m以上、 1. Om未満の場合、 h= l. Omと演 算され、実際の揚高が 1. Om以上〜 2. Om未満の場合、 h= 2. Omと演算され、実 際の揚高が 2. Om以上〜 3. Om未満の場合、 h= 3. Omと演算される。
[0080] [積荷質量 mの検出 (ステップ T2) ]
図 27にマスト機構を示すように、アウターマスト 111にインナーマスト 112が上下動 自在に装着されると共にインナーマスト 112にリフトブラケット 113が上下動自在に装 着され、リフトブラケット 113には積荷 115を乗せるフォーク 114が水平に突設され、リ フトブラケット 113はチェーンホイール 116を介してチェーン 117に接続されて!、る。 従って、リフトシリンダ 110のリフト圧力 pを圧力センサ 140により検出し、積荷重量 m (t)を算出する。積荷質量 mの演算式を式 (2)に示す。
m (t) = { (p (t) XA) /g-m 2. O X m }/2 …式(2)
2 3
但し、
m:積荷質量 (定数) [kg]
p:リフトシリンダ圧力(検出値) [MPa]
A:リフトシリンダ受圧面積 (定数) [mm2]
g :重力加速度 (定数) [m/s2]
m:インナーマスト重量 (定数) [kg]
2
m:フォーク +リフトブラケット重量 (定数) [kg]
3
[0081] [車両前後重心位置 Xの演算 (ステップ T3) ]
g
図 29及び図 30に、積荷荷重 m(t)、マスト揚高 h(t)と車両重心位置車両前後重心 位置 Xの関係を示す。
g
両図に示すように、車体 119は前輪 118a及び後輪 118bを有すると共に、車体 11 9の前部にマスト機構を傾動可能に取り付けられている。
従って、積荷重量 m(t)、マスト揚高 h(t)に基づいて車両前後重心位置 Xを式 (4) g により演算する。 X (t) = (m ·χ +m ·χ +m ·χ +m(t) ·χ )/(m +m +m +m(t)) g 1 1 2 2 3 3 4 1 2 3
…(
但し、
X:車両前後重心位置 (変数) [mm]
g
m:車体質量 (定数) [kg]
1
m:インナーマスト質量 (定数) [kg]
2
m:フォーク +リフトブラケット質量 (定数) [kg]
3
m:積荷重量 (変数) [kg]
X
1:車体前後重心位置 (定数) [mm]
X:インナーマスト前後重心位置(定数) [mm]
2
X:フォーク +リフトブラケット前後重心位置(定数) [mm]
3
X
4:積荷前後重心位置 (定数) [mm]
[0082] [車両上下重心位置 Zの演算 (ステップ T4) ]
g
積荷荷重 m(t)、マスト揚高 h(t)と車両上下重心位置 Zの関係は、図 29及び図 30
g
に示す通りであり、マスト揚高 Mt)及び積荷重量 m(t)に基づいて、車両上下重心位 置 Zを式 (5)により演算する。
g
Z (t) = {m ·ζ +m -(x +h(t)/2)+m · (z +h(t)) +m(t) · (x +h(t))}/(m g 1 1 2 2 3 3 4 1
+m +m +m(t)) ·'·(5)
2 3
但し、
Z:車両上下重心位置 (変数) [mm]
g
h:マスト揚高 (変数) [mm]
z:車体上下重心位置 (定数) [mm]
1
z:インナーマスト上下重心位置(定数) [mm]
2
z:フォーク +リフトブラケット上下重心位置(定数) [mm]
3
z:積荷上下重心位置 (定数) [mm]
4
[0083] [許容加速度 (減速度) αの演算 (ステップ Τ5)]
a
許容加速度 αは、車両前後重心位置 X及び車両上下重心位置 Ζに基づいて、 a g g
式 (6)により求める。「min」とは、いずれか小さい方を選択する演算子である。 a (t) =min ( a , g -X (t) /Z (t) ) …式(6)
a max g g
但し、
a :許容加速度 (減速度) [mZs2]
a
a :空荷時の最大減速度 (定数) [m/s2]
max
g :重力加速度 [mZs2]
X:車両前後重心位置 (変数) [mm]
g
Z:車両上下重心位置 (変数) [mm]
g
[0084] [許容加速度による許容トルク Tの演算 (ステップ Τ6) ]
1
許容トルク Τは、許容加速度 α に基づいて、式(10)により演算する。
1 a
T (t) = a - (m +m +m +m (t) ) -K /S …式(10)
1 a 1 2 3 r f
但し、
T:許容加速度による許容トルク指令 (変数) [N -m]
1
K:駆動力→駆動トルク換算係数 (定数) [N -m/N]
S :安全係数 (定数) [一]
f
[0085] [リミット処理 (ステップ T7) ]
リミット処理は、アクセル操作量、前後切り替えレバーのレバー信号及び車速に基 づ 、て指令トルク演算部 210で演算された指令トルクが許容トルク T (t)を超えな ヽ
1
ように制限する処理である。
[0086] このように説明したように、第 6の実施の形態は、先ず、積荷荷重 m (t)及びマスト揚 高 Mt)を演算し (ステップ Tl, T2)、次に、積荷荷重 m (t)及びマスト揚高 h (t)から 車両前後重心位置 X及び車両上下重心位置 Zを演算し (ステップ T3, T4)、引き続 g g
き、車両前後重心位置 X及び車両上下重心位置 Zから許容加速度 (減速度) aを g g a 演算し (ステップ T5)、許容加速度 (減速度) aカゝら許容トルク Tを演算し (ステップ T a 2
6)、指令トルク演算部 210で算出されたトルク指令が許容トルク Tを超えないように
2
走行トルクを制御するので (ステップ T7)、加速度が許容加速度 (減速度) aを超え a ることがなく、そのため、発進、急停止時の前後方向への転倒を防止できる。
なお、図 22に示すコントローラ 170は、各ステップを実施するためのハードウェアに より構成してもよいし、ソフトウェアにより構成しても良い。 [0087] 第 7の実施の形態について、図 24及び図 25を参照して説明する。図 24はシステム 構成図、図 25は許容トルク処理ブロック図である。
この実施の形態は、マスト揚高、リフト負荷、タイヤ舵角より許容加速度と許容車速 を推定し、許容加速度、許容車速を超えないように走行トルクの制御を行なうもので ある。
[0088] 即ち、図 24に示すように、リフトシリンダ 110の実変位、実圧力は変位センサ 140、 圧力センサ 150により検出され、検出変位 X及び検出圧力 pとしてコントローラ 170へ 入力され、また、アクセル 120からアクセル信号がコントローラ 170へ入力され、前後 レバー 130からレバー信号がコントローラ 170へ入力され、操舵装置 190からの実切 れ角が角度センサ 200により検出され検出角度 |8としてコントローラ 170へ入力され 、走行モータ 180の実回転速度が速度センサ 160で検出され、検出速度 Vとしてコン トローラ 170へ入力される。
[0089] コントローラ 170は入力されたこれらの信号に基づいて、トルク指令を走行モータ 1 80へ与えると共に、図 25に示す許容トルク処理ブロック図に従って許容加速度及び 許容速度を推定し、許容加速度及び許容速度を超えな ヽように走行トルクの制御を 行なう。
図 25に示す許容トルク処理ブロックは、図 23に示す許容トルク処理ブロックの他に 、タイヤ切れ角予想値の演算 (ステップ T8)、許容車速の演算 (ステップ T9)、許容車 速に基づく許容トルクの演算 (ステップ T10)、最終許容トルク演算 (ステップ T11)の 各処理を追加したものであり、以下、第 6の実施の形態と重複する説明は省略する。
[0090] [タイヤ舵角(切れ角)の予測値 βの検出 (ステップ Τ8) ]
f
タイヤの舵角は、過去の値 (t, 13 )、現在の値 (t , |8 )及び予測値 (t , |8 )の間に図 h h c c f f
28に示す関係があることから、式(3)により、タイヤ舵角の予測値 j8を検出する。
f
Figure imgf000025_0001
= { β )
c ( - β (t- A t) } x ( A t / A t
c f
…式 (3)
但し、
A t :演算周期 (定数) [sec] j8 c:現在のタイヤ舵角(変数) [deg]
β = β (t At):過去のタイヤ舵角(変数) [deg]
h c
β :タイヤ舵角の予測値 (変数) [deg]
f
[0091] [許容車速 Vの演算 (ステップ T9) ]
a
許容車速 Vは、タイヤ舵角の予測値 j8の絶対値力 例えば、 5.0° を超えるか否 a f
力により、以下のように求める。
(a)— 5.0° ≤ β (t)≤+5.0° の時
f
V (t)=20km/h
a
タイヤ舵角の予測値 j8の絶対値が比較的小さいときには、許容車速 Vを一定値と f a するものである。
(b) I j8 (t)
f I > + 5.0° の時
V (t)=3.6·(α (t)/a )-{(L2-g- ^ (t))/(Z (t) · | β (t) | ·1000)}。·5 a a max max g f
…式 (7)
タイヤ舵角の予測値 j8の絶対値が比較的大きいときには、変数である a (t), a f a ma
, L, β (t), Zに基づいて許容車速 Vを変更する。
max g a
但し、
Va:許容車速 (変数) [km/h]
Zg:車両上下重心位置 (変数) [mm]
L:フロントトレッドの半分(定数) [mm]
β :タイヤ最大舵角(定数) [deg]
max
β :右旋回時のタイヤ最大舵角(定数) [deg]
maxl
β :左旋回時のタイヤ最大舵角(定数) [deg]
max2
β :タイヤ舵角予測値 (変数) [deg]
f
[0092] [許容車速による許容トルク指令値 Tの演算 (ステップ T10) ]
1
許容車速 Vに基づいて、既存プログラムのリミッタ処理後、更に以下のリミッタ処理 a
を行い、許容トルク指令値 τを求める。
2
T (t)=K -(V(t)-V (t)) …式 (9)
2 V a
但し、 T:許容車速による (変数) [N 'm]
2
K:トルク制御ゲイン(定数) [N · mZ (km/h) ]
V:車速検出値 (変数) [km/h]
なお、車速 Vは、速度センサ 160により検出する力 これ以外に、図 31に示すように 、エンコーダーカウント数が演算周期 A t経過ごとに 0リセットされることから、式 (8)に より演算することちでさる。
V (t) =CF X CNT (t) / A t …式(8)
但し、
V (t) :車速 (変数) [km/h]
CNT (t):エンコーダカウント数 [pulse]
(演算周期 A t経過ごとに 0リセット)
CF:車速換算係数 (定数) [km/h/ (pulse/s) ]
[0093] [最終許容トルク Tの演算 (ステップ Tl 1) ]
a
最終許容トルク Tは、許容加速度 a に基づいて求めた許容トルク Tと、許容車速 a a 1
Vに基づいて求めた許容トルク指令値 Tと力 以下の(a) (b) (c)の関係にあるとき、 a 2
以下のように求める。
(a) I T I <Tの時
2 1
τ (t) =τ (t)
a 2
(b) I T |≥τおよび T
2 1 2≥oの時
T (t) =T (t)
a 1
(c) I T
2 I ≥Tおよび T
1 2 <oの時
τ (t) = -τ (t)
a 1
…ひ。)
[0094] [リミット処理 (ステップ T7) ]
リミット処理は、アクセル操作量、前後切り替えレバーのレバー信号及び車速に基 づ 、て指令トルク演算部 210で演算された指令トルクが最終許容トルク Τを超えな ヽ a ように制限する処理である。
[0095] このように説明したように、第 7の実施の形態は、先ず、積荷荷重 m (t)及びマスト揚 高 Mt)を演算し (ステップ Tl, Τ2)、次に、積荷荷重 m (t)及びマスト揚高 h (t)から 車両前後重心位置 X及び車両上下重心位置 Zを演算し (ステップ T3, T4)、引き続 g g
き、車両前後重心位置 X及び車両上下重心位置 Zから許容加速度 (減速度) aを g g a 演算し (ステップ T5)、許容加速度 (減速度) aカゝら許容トルク Tを演算し (ステップ T a 1
6)、更に、タイヤ舵角の予測値 j8を検出し (ステップ T8)、車両上下重心位置 Z及び f g タイヤ舵角の予測値 j8から許容車速 Vを演算し (ステップ T9)、許容車速 V〖こよる許 f a a 容トルク指令値 Tを演算し (ステップ T10)、許容トルク Τと許容トルク指令値 Τとに
2 1 2 基づ 、て定めた最終許容トルク Τが指令トルク演算部 210で算出されたトルク指令 a
が許容トルク τをこえないように走行トルクを制御するので、加速度が許容加速度 (減
1
速度) aを超えることがなぐかつ、速度が許容速度 Vを超えることなぐそのため、 a a
発進、急停止時の前後方向への転倒を防止できるだけでなぐ急旋回時の横方向へ の転倒を防止できる。
なお、図 24に示すコントローラ 170は、各ステップを実施するためのハードウェアに より構成してもよいし、ソフトウェアにより構成しても良い。
産業上の利用可能性
本発明は、内燃機関の出力の制御を含むものを除き、電動のフォークリフトにも適 用することができる。

Claims

請求の範囲
[1] 積荷高さを検出する積荷高さ検出手段と、
積荷重量を検出する積荷重量検出手段と、
最小回転半径を記憶する記憶手段と、
積荷高さと、積荷重量と、最小回転半径とから転倒しない限界速度を算出する限界 速度算出手段と、
実車両速度を検出する車速検出手段と、
実車両速度と限界速度を比較する速度比較手段と、
運転者へ警告を発する警告装置と、を具備し、
実車両速度が限界速度に達した場合に警告装置を作動せしめる、
ことを特徴とするフォークリフトの転倒防止装置。
[2] 実車両速度が限界速度に達する前から、
実車両速度と限界速度の差に応じて多段階に警告を発することを特徴とする、 請求項 1に記載のフォークリフトの転倒防止装置。
[3] 現在の車両速度から所定時間後の車両速度を推定する車両速度推定手段を具備 し、
速度比較手段は車両速度推定手段が推定した車両速度と限界速度を比較し、 推定した車両速度が限界速度に達した場合に警告装置を作動せしめる、 ことを特徴とする請求項 1に記載のフォークリフトの転倒防止装置。
[4] 警告装置を作動後に、車両の減速、積荷高さの減少、ステアリング回転角増大の 禁止の 、ずれかを実行する、
ことを特徴とする請求項 1に記載のフォークリフトの転倒防止装置。
[5] 積荷高さを検出する積荷高さ検出手段と、
積荷重量を検出する積荷重量検出手段と、
最小回転半径を記憶する記憶手段と、
積荷高さと、積荷重量と、最小回転半径とから転倒しない限界速度を算出する限界 速度算出手段と、
実車速を検出する車速検出手段と、 実車速と限界速度を比較する速度比較手段と、
積荷高さを減少せしめる積荷高さ減少装置と、を具備し、
実車速が限界速度に達した場合には積荷高さ減少装置を作動せしめる、 ことを特徴とするフォークリフトの転倒防止装置。
[6] さらに、速度を減少せしめる減速手段を具備し、
実車速が限界速度を超えた場合には、減速手段も作動せしめる、
ことを特徴とする請求項 5に記載のフォークリフトの転倒防止装置。
[7] フォークリフトがアクセルペダルを備え、
減速手段は運転者のアクセルペダルへの入力を駆動手段に伝える経路を遮断す るアクセル遮断手段である、
ことを特徴とする請求項 6に記載のフォークリフトの転倒防止装置。
[8] フォークリフトが内燃機関の出力で駆動され、
減速手段が、速度が限界速度以下になるように内燃機関の出力を制御する出力制 御装置である、
ことを特徴とする請求項 6に記載のフォークリフトの転倒防止装置。
[9] 減速手段が車両に制動をかける制動手段である、
ことを特徴とする請求項 6に記載のフォークリフトの転倒防止装置。
[10] 限界ローリングモーメントを算出する限界ローリングモーメント算出手段と、
走行中の実ローリングモーメントを算出する実ローリングモーメント算出手段とを具 備し、
実ローリングモーメントが限界ローリングモーメントよりも大きい場合には、制動手段 を作動せしめて車両速度を減少する、
ことを特徴とするフォークリフトの転倒防止装置。
[11] 実ローリングモーメントが限界ローリングモーメントよりも大きい場合には、制動手段 を作動せしめて車両速度を減少することに加えて、さらに、転舵角の増大を禁止する ことを特徴とする請求項 10に記載のフォークリフトの転倒防止装置。
[12] 積荷高さを検出する積荷高さ検出手段と、積荷重量を検出する積荷重量検出手段 と、車体横加速度を検出する車体横加速度検出手段を含み、
限界ローリングモーメント算出手段は、積荷高さ検出手段の検出した積荷高さと、 積荷重量検出手段の検出した積荷重量とに基づいて、限界ローリングモーメントを算 出し、
実ローリングモーメント算出手段は、積荷高さ検出手段の検出した積荷高さと、積 荷重量検出手段の検出した積荷重量と、車体横加速度検出手段の検出した車体横 加速度とに基づいて、実ローリングモーメントを算出する、
ことを特徴とする請求項 10に記載のフォークリフトの転倒防止装置。
[13] 横加速度検出手段は、車体に取付けられた横加速度センサである、ことを特徴とす る請求項 12に記載のフォークリフトの転倒防止装置。
[14] 横加速度検出手段は、タイヤ切れ角検出手段と、車体に取付けられたョーレート検 出手段とを含み、タイヤ切れ角検出手段が検出したタイヤ切れ角と、ョーレート検出 手段の検出したョー角速度に基づき横加速度を検出する、ことを特徴とする請求項 1
2に記載のフォークリフトの転倒防止装置。
[15] 所定時間経過後のローリングモーメントを推定するローリングモーメント推定手段を 含み、実ローリングモーメントの代わりに、ローリングモーメント推定手段の推定した口 一リングモーメントと限界ローリングモーメントを比較する、
ことを特徴とする請求項 10から 14のいずれか一つに記載のフォークリフトの転倒防 止装置。
[16] 積荷高さを検出する積荷高さ検出手段と、
積荷重量を検出する積荷重量検出手段と、
最小回転半径を記憶する記憶手段と、
積荷高さと、積荷重量と、最小回転半径とから転倒しない限界速度を算出する限界 速度算出手段と、
実車速を検出する車速検出手段と、
実車速と限界速度を比較する速度比較手段と、
車両を制動せしめる制動装置と、
ステアリング装置に抵抗を与えるステアリング抵抗装置を具備し、 実車速が限界速度に達した場合には制動装置およびステアリング抵抗装置を作動 せしめる、
ことを特徴とするフォークリフトの転倒防止装置。
[17] 積荷高さを検出する積荷高さ検出手段と、
積荷重量を検出する積荷重量検出手段と、
前記積荷高さ検出手段により検出された積荷高さ及び前記積荷重量検出手段によ り検出された積荷重量から、車両前後重心位置を求める車両前後重心位置演算手 段と、
前記積荷高さ検出手段により検出された積荷高さ及び前記積荷重量検出手段によ り検出された積荷重量から、車両上下重心位置を求める車両上下重心位置演算手 段と、
前記車両前後重心位置演算手段により求められた車両前後重心位置及び前記車 両上下重心位置演算手段により求められた車両上下重心位置力も前後方向に転倒 しな ヽ許容加速度を推定する許容加速度推定手段と、
前記許容加速度推定手段により推定された許容加速度を超えな!/ヽように走行トルク を制御する走行トルク制御手段を有することを特徴とするフォークリフトの転倒防止装 置。
[18] 前記走行トルク制御手段は、前記許容加速度推定手段により推定された許容加速 度力 許容トルクを演算し、該許容トルクにより走行モータへ指令する指令トルクを制 限することを特徴とする請求項 17記載のフォークリフトの転倒防止装置。
[19] タイヤ舵角を予測するタイヤ舵角予測手段と、
前記車両上下重心位置演算手段により求められた車両上下重心位置及び前記タ ィャ舵角予測手段により予測されたタイヤ舵角力 横方向に転倒しない許容速度を 推定する許容速度推定手段とを更に備え、
前記走行トルク制御手段は、前記許容加速度推定手段により推定された許容加速 度及び前記許容速度推定手段により推定された許容速度を超えな!/ヽように走行トル クを制御することを特徴とする請求項 17記載のフォークリフトの転倒防止装置。
[20] 前記走行トルク制御手段は、前記許容加速度推定手段により推定された許容加速 度力 演算した許容トルク又は前記許容速度推定手段により推定された許容速度か ら許容トルクを演算し、該許容トルクにより走行モータへ指令する指令トルクを制限す ることを特徴とする請求項 19記載のフォークリフトの転倒防止装置。
PCT/JP2005/021209 2004-11-19 2005-11-18 フォークリフトの転倒防止装置 WO2006054678A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05806682A EP1813569A1 (en) 2004-11-19 2005-11-18 Overturning prevention device for forklift truck
US11/660,999 US20100063682A1 (en) 2004-11-19 2005-11-18 Overturning prevention device for forklift vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004335475A JP2005200212A (ja) 2003-11-20 2004-11-19 フォークリフトの転倒防止装置
JP2004-335475 2004-11-19

Publications (1)

Publication Number Publication Date
WO2006054678A1 true WO2006054678A1 (ja) 2006-05-26

Family

ID=36407214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021209 WO2006054678A1 (ja) 2004-11-19 2005-11-18 フォークリフトの転倒防止装置

Country Status (3)

Country Link
US (1) US20100063682A1 (ja)
EP (1) EP1813569A1 (ja)
WO (1) WO2006054678A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037259A (ja) * 2006-08-07 2008-02-21 Toyota Motor Corp 車両の直進制動時の運転制御装置及び運転制御方法
JP2009060685A (ja) * 2007-08-30 2009-03-19 Nippon Yusoki Co Ltd 走行制御装置、及び走行制御方法
US11755011B2 (en) * 2018-01-15 2023-09-12 Jungheinrich Aktiengesellschaft Method for controlling an industrial truck as well as a system comprising a superordinate control unit and an industrial truck

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8560181B2 (en) * 2006-01-26 2013-10-15 Volvo Construction Equipment Ab Method for controlling a movement of a vehicle component
MX2008014783A (es) 2008-02-05 2009-08-27 Krueger Int Inc Armazon para silla con soporte hueco ergonomico integral.
TW200943565A (en) 2008-04-21 2009-10-16 Angelantoni Ind Spa Concentration photovoltaic system and concentration method thereof
US9522817B2 (en) 2008-12-04 2016-12-20 Crown Equipment Corporation Sensor configuration for a materials handling vehicle
US8140228B2 (en) * 2009-03-27 2012-03-20 The Raymond Corporation System and method for dynamically maintaining the stability of a material handling vehicle having a vertical lift
US8731777B2 (en) 2009-08-18 2014-05-20 Crown Equipment Corporation Object tracking and steer maneuvers for materials handling vehicles
JP5045736B2 (ja) * 2009-12-04 2012-10-10 株式会社豊田自動織機 産業車両の走行制御装置
DE102010031531A1 (de) * 2010-07-19 2012-01-19 Noell Mobile Systems Gmbh Verfahren und System zur Regelung eines Fahrverhaltens eines Flurförderzeugs
DE102011016543A1 (de) * 2011-04-08 2012-10-11 Jungheinrich Aktiengesellschaft Verfahren zur Fahrzeuggeschwindigkeitsreduzierung bei einer Kurvenfahrt eines Flurförderzeugs
CL2012000933A1 (es) 2011-04-14 2014-07-25 Harnischfeger Tech Inc Un metodo y una pala de cable para la generacion de un trayecto ideal, comprende: un motor de oscilacion, un motor de izaje, un motor de avance, un cucharon para excavar y vaciar materiales y, posicionar la pala por medio de la operacion del motor de izaje, el motor de avance y el motor de oscilacion y; un controlador que incluye un modulo generador de un trayecto ideal.
CN103781971B (zh) 2011-04-29 2016-05-04 哈尼施费格尔技术公司 控制工业机械的挖掘操作
US8620536B2 (en) 2011-04-29 2013-12-31 Harnischfeger Technologies, Inc. Controlling a digging operation of an industrial machine
WO2013033179A1 (en) * 2011-08-29 2013-03-07 Crown Equipment Corporation Vehicular navigation control interface
JP5800194B2 (ja) * 2011-11-08 2015-10-28 株式会社ジェイテクト 車両用操舵装置及び荷役車両
US8909437B2 (en) * 2012-10-17 2014-12-09 Caterpillar Inc. Payload Estimation system
US9302893B2 (en) * 2013-02-07 2016-04-05 The Raymond Corporation Vibration control systems and methods for industrial lift trucks
US9002557B2 (en) * 2013-03-14 2015-04-07 The Raymond Corporation Systems and methods for maintaining an industrial lift truck within defined bounds
GB2516611B (en) * 2013-05-20 2015-09-16 Sevcon Ltd Vehicle controller and method of controlling a vehicle
WO2015038705A1 (en) * 2013-09-11 2015-03-19 Harvest Automation, Inc. Computer-implemented methods and systems for wheelie control in diwheel-type autonomous mobile robots
US9593469B2 (en) * 2013-12-20 2017-03-14 Cnh Industrial America Llc System and method for controlling a work vehicle based on a monitored tip condition of the vehicle
KR102075808B1 (ko) * 2013-12-30 2020-03-02 주식회사 두산 지게차의 제어장치 및 제어방법
CL2015000136A1 (es) 2014-01-21 2015-11-27 Harnischfeger Tech Inc Control de un parametro de extension de una maquina industrial
WO2016155561A1 (zh) * 2015-03-27 2016-10-06 江苏省电力公司常州供电公司 绝缘高空作业平台的幅度限制系统
US10821992B2 (en) 2015-06-03 2020-11-03 Volvo Construction Equipment Ab Method and system for predicting a risk for rollover of a working machine
US20160368493A1 (en) * 2015-06-19 2016-12-22 The Raymond Corporation Systems and methods for weight determination and closed loop speed control
DE102015111178A1 (de) * 2015-07-10 2017-01-12 Jungheinrich Aktiengesellschaft Standplattform für ein Flurförderzeug
NL2015715B1 (nl) * 2015-11-03 2017-05-24 Ravas Europe B V Hefvoertuig.
CN106219446A (zh) * 2016-08-24 2016-12-14 太仓宏璟瑞远物业管理有限公司 一种设有限速警报的内燃式叉车
EP3431435B1 (fr) * 2017-07-17 2020-04-22 Manitou Bf Commande d'une machine de manutention
JP7035448B2 (ja) * 2017-10-26 2022-03-15 株式会社アイシン 移動体
EP3849932A1 (en) 2018-09-13 2021-07-21 Crown Equipment Corporation System and method for controlling a maximum vehicle speed for an industrial vehicle based on a calculated load
JP7188449B2 (ja) * 2018-11-05 2022-12-13 株式会社島津製作所 産業車両
EP3918588A1 (en) 2019-02-01 2021-12-08 Crown Equipment Corporation On-board charging station for a remote control device
US11641121B2 (en) 2019-02-01 2023-05-02 Crown Equipment Corporation On-board charging station for a remote control device
CN111169284B (zh) * 2020-02-25 2021-06-08 杭叉集团股份有限公司 一种内燃叉车用限速报警控制方法及系统
CN116057491A (zh) 2020-08-11 2023-05-02 克朗设备公司 远程控制设备
CN113147394A (zh) * 2021-02-23 2021-07-23 张建松 一种叉车驾驶操作安全辅助警示系统

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4872666U (ja) * 1971-12-16 1973-09-11
JPH02131305A (ja) * 1988-11-08 1990-05-21 Toyota Autom Loom Works Ltd バッテリ式フォークリフトの走行速度自動制御装置
JPH07242398A (ja) * 1994-03-03 1995-09-19 Toyota Autom Loom Works Ltd 荷役車両の安定度報知装置
JPH0976891A (ja) * 1995-09-19 1997-03-25 Komatsu Forklift Co Ltd 産業車両の転倒防止装置
JPH09315797A (ja) * 1996-05-24 1997-12-09 Toyota Autom Loom Works Ltd 車両の横転警報装置
JPH10175800A (ja) * 1996-12-17 1998-06-30 Toyota Autom Loom Works Ltd フォ−クリフトの速度規制装置
JPH11208500A (ja) * 1998-01-30 1999-08-03 Toyota Autom Loom Works Ltd 車両用パワーステアリング装置
JPH11310399A (ja) * 1998-04-27 1999-11-09 Toyota Autom Loom Works Ltd 産業車両の速度制御方法および速度制御装置
JPH11322297A (ja) * 1998-05-11 1999-11-24 Toyota Autom Loom Works Ltd 産業車両の走行速度制御装置
JPH11322298A (ja) * 1998-05-11 1999-11-24 Toyota Autom Loom Works Ltd 産業車両の走行速度制御装置
JPH11334635A (ja) * 1998-05-27 1999-12-07 Toyota Autom Loom Works Ltd パワーステアリング装置
JP2001163597A (ja) * 1999-12-15 2001-06-19 Komatsu Forklift Co Ltd フォークリフトの走行制御装置
JP2002019485A (ja) * 2000-07-07 2002-01-23 Hitachi Ltd 運転支援装置
JP2004291895A (ja) * 2003-03-28 2004-10-21 Nissan Diesel Motor Co Ltd 車両のロールオーバ防止装置
JP2005200212A (ja) * 2003-11-20 2005-07-28 Mitsubishi Heavy Ind Ltd フォークリフトの転倒防止装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5131801A (en) * 1990-12-10 1992-07-21 Tandy Corporation Forklift fork tilt angle indicator
US5409346A (en) * 1991-10-31 1995-04-25 Grether; Martin Self-loading and unloading forklift truck
US6050770A (en) * 1997-05-30 2000-04-18 Schaeff Incorporated Stabilization system for load handling equipment
US6785597B1 (en) * 2003-02-07 2004-08-31 Wiggins Lift Co., Inc. Hydraulic stabilizer system and process for monitoring load conditions
JP4793134B2 (ja) * 2005-09-30 2011-10-12 株式会社豊田自動織機 フォークリフトの走行制御装置
JP4609390B2 (ja) * 2005-09-30 2011-01-12 株式会社豊田自動織機 フォークリフトの走行制御装置
WO2007081020A1 (ja) * 2006-01-16 2007-07-19 Mitsubishi Heavy Industries, Ltd. フォークリフト及びフォークリフトの転倒防止制御方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4872666U (ja) * 1971-12-16 1973-09-11
JPH02131305A (ja) * 1988-11-08 1990-05-21 Toyota Autom Loom Works Ltd バッテリ式フォークリフトの走行速度自動制御装置
JPH07242398A (ja) * 1994-03-03 1995-09-19 Toyota Autom Loom Works Ltd 荷役車両の安定度報知装置
JPH0976891A (ja) * 1995-09-19 1997-03-25 Komatsu Forklift Co Ltd 産業車両の転倒防止装置
JPH09315797A (ja) * 1996-05-24 1997-12-09 Toyota Autom Loom Works Ltd 車両の横転警報装置
JPH10175800A (ja) * 1996-12-17 1998-06-30 Toyota Autom Loom Works Ltd フォ−クリフトの速度規制装置
JPH11208500A (ja) * 1998-01-30 1999-08-03 Toyota Autom Loom Works Ltd 車両用パワーステアリング装置
JPH11310399A (ja) * 1998-04-27 1999-11-09 Toyota Autom Loom Works Ltd 産業車両の速度制御方法および速度制御装置
JPH11322297A (ja) * 1998-05-11 1999-11-24 Toyota Autom Loom Works Ltd 産業車両の走行速度制御装置
JPH11322298A (ja) * 1998-05-11 1999-11-24 Toyota Autom Loom Works Ltd 産業車両の走行速度制御装置
JPH11334635A (ja) * 1998-05-27 1999-12-07 Toyota Autom Loom Works Ltd パワーステアリング装置
JP2001163597A (ja) * 1999-12-15 2001-06-19 Komatsu Forklift Co Ltd フォークリフトの走行制御装置
JP2002019485A (ja) * 2000-07-07 2002-01-23 Hitachi Ltd 運転支援装置
JP2004291895A (ja) * 2003-03-28 2004-10-21 Nissan Diesel Motor Co Ltd 車両のロールオーバ防止装置
JP2005200212A (ja) * 2003-11-20 2005-07-28 Mitsubishi Heavy Ind Ltd フォークリフトの転倒防止装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037259A (ja) * 2006-08-07 2008-02-21 Toyota Motor Corp 車両の直進制動時の運転制御装置及び運転制御方法
JP2009060685A (ja) * 2007-08-30 2009-03-19 Nippon Yusoki Co Ltd 走行制御装置、及び走行制御方法
US11755011B2 (en) * 2018-01-15 2023-09-12 Jungheinrich Aktiengesellschaft Method for controlling an industrial truck as well as a system comprising a superordinate control unit and an industrial truck

Also Published As

Publication number Publication date
US20100063682A1 (en) 2010-03-11
EP1813569A1 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
WO2006054678A1 (ja) フォークリフトの転倒防止装置
JP4793134B2 (ja) フォークリフトの走行制御装置
US7706947B2 (en) Industrial truck having increased static or quasi-static tipping stability
JP4807028B2 (ja) フォークリフトの走行制御装置
EP2172359B1 (en) Improved control system for an industrial truck
EP1950171B1 (en) Travel control apparatus for industrial vehicle
AU2009244593B2 (en) Slip control for a materials handling vehicle
US20090057065A1 (en) Forklift and Method of Controlling Safety Against Overturning for Forklift
JP2005200212A (ja) フォークリフトの転倒防止装置
KR20060120507A (ko) 산업 차량의 제어 장치, 산업 차량, 및 산업 차량의 제어방법
JP6651803B2 (ja) モータ駆動装置およびモータ駆動システム
AU2009230755A1 (en) Industrial truck comprising a system for detecting spinning or locking of the drive wheel
US20130197773A1 (en) Descent control of vehicle speed
JP6221858B2 (ja) 産業車両の走行制御装置
JP5262296B2 (ja) 産業車両の走行制御装置
WO2022254891A1 (ja) ダンプトラック
KR101665725B1 (ko) 지게차용 인칭 자동제어 시스템
JP2019033635A (ja) 電動車両
JP5008432B2 (ja) フォークリフト車の安全装置
JP5567608B2 (ja) 産業用車両
JP2009067512A (ja) 安全装置
KR101512762B1 (ko) 엔진 rpm 제어를 통한 지게차의 주행속도 제어 구조
JPH05170399A (ja) 産業車両の転倒防止装置
JP3539346B2 (ja) リーチ式フォークリフト
JPH0976891A (ja) 産業車両の転倒防止装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005806682

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005806682

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11660999

Country of ref document: US