WO2006040869A1 - フィルタ回路、及びそれを搭載する差動伝送システムと電源装置 - Google Patents

フィルタ回路、及びそれを搭載する差動伝送システムと電源装置 Download PDF

Info

Publication number
WO2006040869A1
WO2006040869A1 PCT/JP2005/014040 JP2005014040W WO2006040869A1 WO 2006040869 A1 WO2006040869 A1 WO 2006040869A1 JP 2005014040 W JP2005014040 W JP 2005014040W WO 2006040869 A1 WO2006040869 A1 WO 2006040869A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
filter circuit
common mode
mode choke
input
Prior art date
Application number
PCT/JP2005/014040
Other languages
English (en)
French (fr)
Inventor
Hiroshi Suenaga
Osamu Shibata
Yoshiyuki Saito
Noboru Katta
Yuji Mizuguchi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/664,129 priority Critical patent/US20070252659A1/en
Priority to JP2006540840A priority patent/JPWO2006040869A1/ja
Publication of WO2006040869A1 publication Critical patent/WO2006040869A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
    • H03H7/425Balance-balance networks
    • H03H7/427Common-mode filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/30Reducing interference caused by unbalanced currents in a normally balanced line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40032Details regarding a bus interface enhancer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F2017/0093Common mode choke coil
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/4026Bus for use in automation systems

Definitions

  • the present invention relates to a differential transmission system that performs communication between electronic devices using a differential transmission method, and a power supply device that converts power supplied from an external power source such as a commercial AC power source, and particularly to them.
  • the present invention relates to a filter circuit to be mounted.
  • a high-speed serial transmission employs a differential transmission system.
  • the differential transmission method is a method of transmitting a series of serial data with two signals (differential signal or normal mode signal) having opposite phases to each other.
  • the transmission paths for the differential signals run in parallel.
  • the receiver (differential receiver) reads the differential force serial data between the two differential signals.
  • the differential transmission method requires only half the amplitude of the signal compared to a method in which serial data is transmitted as a single signal (single-ended transmission method). Therefore, the rising edge and falling edge of the signal are generally fast. That is, the slew rate is low.
  • the differential transmission method is advantageous for further high-speed signal transmission.
  • the differential transmission method is further advantageous in reducing electromagnetic interference (EMI). For example, since two differential signal transmission paths (differential transmission paths) run side by side, electromagnetic waves radiated from each differential transmission path to the periphery cancel each other. Therefore, unnecessary electromagnetic radiation is extremely weak in the differential transmission method. vice versa When electromagnetic waves are radiated to the differential transmission path from surrounding electronic devices, noise in the same phase (common mode noise) is generated in the two differential transmission paths. However, the common mode noise on each differential transmission path cancels out with the difference between the two differential signals. Thus, the differential transmission method is resistant to common mode noise caused by unnecessary electromagnetic radiation from external force.
  • EMI electromagnetic interference
  • the differential transmission method is commonly used in various in-vehicle LANs such as CAN.
  • key components such as engines and various electronic control units (ECUs) (for example, motors that rotate door mirrors) add noise to the in-vehicle LAN.
  • ECUs electronice control units
  • the in-vehicle LAN receives various electromagnetic radiation from outside the automobile. Therefore, the advantage of the differential transmission system, which makes it difficult to generate noise and is resistant to noise, is essential for in-vehicle lan.
  • a transmission / reception device that uses a differential transmission system is generally equipped with a filter circuit that more reliably suppresses the adverse effects of common mode noise.
  • the filter circuit includes a common mode choke to keep the common mode noise level below the upper limit of the differential receiver input range. This prevents malfunction and destruction of the differential receiver.
  • a circuit including a common mode choke and a normal mode choke connected to the subsequent stage is known (see, for example, Patent Document 1). .
  • This filter circuit is mounted on a device that heats cells B in a living body at a high frequency.
  • Cell B in the living body is placed between two electrodes Tl and ⁇ 2.
  • the high-frequency generator ⁇ ⁇ ⁇ changes each voltage of the electrodes Tl and ⁇ 2 at a high frequency.
  • the common mode choke 110 shows high impedance and the normal mode choke 120 shows low impedance with respect to the in-phase component (that is, common mode noise) of the voltage fluctuation of each electrode Tl, ⁇ 2.
  • the current (common mode current) flowing through the inductors Ll and L2 in the same phase can be suppressed.
  • most of the suppressed common mode current passes through the normal mode choke 120 at the subsequent stage.
  • no common mode current flows between the two electrodes Tl, ⁇ 2 and the cell ⁇ in the living body. In other words, current leakage from the cell wall to the electrodes other than the electrodes Tl and 2 is prevented.
  • the conventional filter circuit includes, for example, a termination element as shown in FIG. , Including a common mode choke and a resistance element (for example, patent literature)
  • the termination element 210 is two equivalent resistance elements connected in series between the terminations of the two differential transmission lines 200, and the connection point between them is grounded.
  • the resistance element 230 is connected between the output terminals of the common mode choke 220.
  • the common mode impedance of the termination element 210 matches the common mode impedance of the differential transmission line 200.
  • the impedance of the common mode choke 220 is extremely low with respect to the differential signal propagating through the differential transmission path 200, the combination of the differential impedance of the termination element 210 and the impedance of the resistance element 230 is differential. It is adjusted to match the differential impedance of transmission line 200.
  • the common mode current transmitted through the differential transmission path 200 flows separately into the termination element 210 and the common mode choke 220. Accordingly, since the common mode current flowing through the common mode choke 220 is reduced, the core of the common mode choke 220 is less likely to cause magnetic saturation and no overcurrent flows in the subsequent circuit. Thus, this filter circuit maintains high reliability.
  • EMI countermeasures are also important for power supply devices that convert AC power supplied from outside, not only by a communication system using a differential transmission system (differential transmission system), into appropriate power.
  • the power supply device is connected to an external AC power source such as a commercial AC power source, and preferably converts the AC voltage into a DC voltage using a switching power source.
  • an external AC power source such as a commercial AC power source
  • the power factor of power supplied from an external AC power source will be improved.
  • EMI countermeasures are indispensable when the power supply is used for power line communication (PLC).
  • the above filter circuit is effective in reducing EMI.
  • the filter circuit stabilizes the power sent to the subsequent stage by blocking the common mode noise generated in the external power line from the power supply.
  • the filter circuit further cuts off the external power supply line power, for example, common mode noise caused by switching in the power supply device or common mode noise transmitted from the subsequent circuit. As a result, unnecessary electromagnetic radiation caused by the power supply device is suppressed.
  • Patent Document 1 JP 59-207148 A
  • Patent Document 2 JP 2002-261842 A
  • the termination element 210 suppresses reflection by the common mode choke 220 with respect to common mode noise, unnecessary electromagnetic radiation from the filter circuit is weak. Furthermore, since the common mode current flows separately into the termination element 210 and the common mode choke 220, the core of the common mode choke 220 is unlikely to cause magnetic saturation. On the other hand, the combined impedance of the termination element 210 and the resistance element 230 matches the differential impedance of the differential transmission line 200 for the differential signal. Therefore, the differential signal output from the filter circuit has little distortion and attenuation.
  • the differential impedance of the termination element 210 is determined by its common mode impedance (that is, the resistance value of each resistance element), and the difference between the two is small (the differential impedance is the common mode impedance). 4 times the impedance). Therefore, it is difficult to further increase the differential impedance of the termination element 210 under the condition of “matching the common mode impedance between the termination element 210 and the differential transmission path”. Therefore, if the reflection of the common mode noise by the common mode choke 220 is sufficiently suppressed, it is difficult to further suppress the distortion and attenuation of the differential signal by the termination element 210 and the resistance element 230.
  • the resistance element 230 in order to suppress the distortion and attenuation of the differential signal caused by the common mode choke 220, the resistance element 230 must be installed at the subsequent stage of the common mode choke 220. In that case, the path length between the termination element 210 and the resistance element 230 must be increased to some extent. Therefore, when the frequency of the differential signal is further increased and its wavelength is shortened to a level that cannot be ignored with respect to the path length between the termination element 210 and the resistance element 230, the combination of the termination element 210 and the resistance element 230 is performed. It is difficult to match the impedance to the differential impedance of the differential transmission line with high accuracy. Thus, it is difficult to further suppress the distortion and attenuation of the differential signal in a higher frequency band.
  • the present invention separates the differential signal from the common mode signal without causing excessive distortion or attenuation to the differential signal and reflecting the common mode signal in a sufficiently wide frequency band, and Another object of the present invention is to provide a filter circuit that reliably avoids magnetic saturation of the core of the common mode choke due to the common mode current.
  • a filter circuit according to the present invention comprises:
  • a first inductor connected between the first input terminal and the first output terminal, and magnetically coupled to the first inductor and between the second input terminal and the second output terminal
  • a second inductor connected with the same polarity as the first inductor
  • a third inductor connected between the first input terminal and the third output terminal, and magnetically coupled to the third inductor and between the second input terminal and the fourth output terminal.
  • a fourth inductor connected in the opposite polarity to the third inductor,
  • the first to fourth inductors are preferably multilayer inductors or thin film inductors.
  • the common mode choke and the normal mode choke are integrated on the same chip, so this filter circuit is extremely small! /.
  • each of the common mode choke and the normal mode choke may include one core and two coils wound around the core.
  • the two coils are wound on the core in such a direction that the magnetic fluxes generated by the common mode currents cancel each other. That is, one of the two coils is wound in the opposite direction to the bifilar winding or cancel winding.
  • two coils may be wound by bifilar winding or cancel winding, as in a common mode choke.
  • the polarity of the connection to the input terminal Z output terminal of the filter circuit may be reversed between the third and fourth inductors.
  • the impedance of the common mode choke is sufficiently low for a differential signal that is sufficiently high for a common mode signal.
  • the impedance of a normal mode choke is high enough for differential signals that are low enough for common mode signals.
  • the difference in impedance between them is sufficiently large.
  • the normal mode choke is installed in front of the common mode choke, that is, connected to the first and second input terminals closer to the common mode choke. Therefore, of the signals received through the first and second input terminals, substantially only the normal mode component is present. It passes through the common mode choke and only the common mode component passes through the normal mode choke. Thus, common mode noise received through the first and second input terminals is blocked from the first and second output terminals.
  • the filter circuit according to the present invention further includes first and second impedance elements.
  • the first impedance element is connected either between the third inductor and the third output terminal, or between the first input terminal and the third inductor, or both.
  • the second impedance element is connected between the fourth inductor and the fourth output terminal, or between the second input terminal and the fourth inductor, or both.
  • the first and second impedance elements further improve the impedance matching accuracy for the common mode signal while maintaining the impedance matching for the differential signal with high accuracy between the differential transmission path and the filter circuit. As a result, reflection of common mode noise by the common mode choke is further suppressed, and unnecessary electromagnetic radiation to the surroundings is further effectively suppressed.
  • the above filter circuit according to the present invention is preferably
  • a fifth inductor connected between the first output terminal and the fifth output terminal, and magnetically coupled to the fifth inductor, between the second output terminal and the sixth output terminal.
  • a sixth inductor connected in the opposite polarity to the fifth inductor,
  • a second normal mode choke including:
  • the fifth and sixth inductors are preferably multilayer inductors or thin film inductors.
  • the second normal mode choke may include one core and two coils wound around the core. In that case, it is preferable that the two coils are wound in the opposite direction to the bifilar winding or cancel winding. What is it Separately, similarly to the normal mode choke described above, two coils may be wound by bifilar winding or cancellation winding. In that case, the polarity of the connection to the output terminal of the filter circuit may be reversed between the fifth and sixth inductors.
  • the impedance of the second normal mode choke is sufficiently low for the common mode signal. Therefore, the common mode noise received through the first and second output terminals is sent to the fifth and sixth output terminals through the second normal mode choke and is not transmitted to the common mode choke. That is, common mode noise received through the first and second output terminals is also blocked from the input terminal forces of the first and second terminals. Furthermore, the reflection of common mode noise by the common mode choke is weak. As a result, unnecessary electromagnetic radiation to the periphery is suppressed.
  • the above filter circuit according to the present invention is highly effective in suppressing common mode noise in both directions even if the input and output are reversed.
  • the filter circuit according to the present invention further includes third and fourth impedance elements.
  • the third impedance element is connected between the fifth inductor and the fifth output terminal, or between the first output terminal and the fifth inductor, or both.
  • the fourth impedance element is connected between the sixth inductor and the sixth output terminal, or between the second output terminal and the sixth inductor, or both.
  • the third and fourth impedance elements further improve the impedance matching accuracy for the common mode signal while maintaining the impedance matching for the differential signal with high accuracy between the filter circuit and the outside. As a result, unnecessary electromagnetic radiation to the surroundings is further effectively suppressed.
  • the differential receiver according to the present invention preferably has the above-described filter circuit according to the present invention and a pair of input terminals connected to the first and second output terminals of the filter circuit.
  • a receiver Particularly in this differential receiver, the first and second input terminals are connected to an external differential transmission line, and the third and fourth output terminals are maintained at a constant potential (preferably a ground potential). The Therefore, the common mode noise transmitted through the differential transmission line force is transmitted to the third and fourth output terminals and not to the differential receiver. In addition, common mode The noise is not reflected on the differential transmission path.
  • the differential receiver according to the present invention is strong against common mode noise and sufficiently reduces unnecessary electromagnetic radiation.
  • the differential transmission device preferably includes the above-described filter circuit according to the present invention, and a pair of output terminals connected to the first and second input terminals of the filter circuit.
  • a driver Particularly in this differential transmitter, the first and second output terminals are connected to an external differential transmission line, and the third and fourth output terminals are maintained at a constant potential (preferably a ground potential). The Therefore, the common mode noise transmitted from the differential dryer is transmitted to the third and fourth output terminals and not transmitted to the differential transmission path. Furthermore, common mode noise is not reflected to the differential driver.
  • the differential transmitter according to the present invention is strong against common mode noise and sufficiently reduces unnecessary electromagnetic radiation.
  • the filter circuit according to the present invention having the second normal mode choke is preferably mounted in a differential transceiver.
  • the first and second input terminals of the filter circuit are used as first and second input / output terminals, and the first and second output terminals are third and fourth. Used as input / output terminal.
  • the first and second input / output terminals are connected to the differential receiver input terminal pair and the differential driver output terminal pair, and the third and fourth input / output terminals are connected to an external differential transmission line.
  • the third to sixth output terminals (hereinafter referred to as first to fourth output terminals) of the filter circuit are all maintained at a constant potential (preferably ground potential).
  • the differential transceiver according to the present invention is resistant to common mode noise and sufficiently reduces unnecessary electromagnetic radiation.
  • the power supply device is preferably a power conversion unit having the filter circuit according to the present invention and an input terminal pair connected to the first and second output terminals of the filter circuit.
  • the first and second input terminals are connected to an external power supply.
  • the third and fourth output terminals are maintained at a constant potential (preferably ground potential). Therefore, the common mode noise that also receives the power line force is transmitted to the third and fourth output terminals, and is not transmitted to the power converter. Furthermore, common mode noise is not reflected on the power line.
  • the power supply device according to the present invention may further include a second normal mode choke. As a result, the common mode noise transmitted from the power conversion unit or the subsequent circuit force is cut off from the external power line.
  • the power supply device is strong against common mode noise and sufficiently reduces unnecessary electromagnetic radiation.
  • the filter circuit according to the present invention As described above, of the signals received through the first and second input terminals, the normal mode component passes through the common mode choke and the common mode component passes through the normal mode choke. To do. In particular, the common mode noise is not transmitted to the first and second output terminals and is not reflected to the first and second input terminals. Thus, the filter circuit according to the present invention separates the differential signal from the common mode signal without causing excessive distortion or attenuation to the differential signal and reflecting the common mode signal. In particular, the differential signal force is also removed without reflecting the common mode noise. Therefore, unnecessary electromagnetic radiation caused by common mode noise is sufficiently reduced, and malfunction and destruction of circuit elements due to excessive common mode noise are surely prevented. Furthermore, since the common mode current passes through the normal mode choke and not through the common mode choke, the common mode choke core does not cause magnetic saturation. As a result, in the filter circuit according to the present invention, in particular, the core can be easily downsized and has high reliability.
  • the filter circuit according to the present invention is particularly advantageous for reducing EMI, enhancing resistance to common mode noise, and downsizing as compared with the conventional filter circuit. Therefore, for example, differential transmission systems mounted on various serial interfaces such as USB, IEEE1394, LVDS, DVI, HDMI, serial ATA, PCI Express, etc., especially in in-vehicle LANs and portable information devices (mono devices). Suitable for use in differential transmission systems and power supplies.
  • FIG. 1 is a block diagram showing an in-vehicle LAN according to an embodiment of the present invention.
  • Figure 2 Block diagram showing the connection form of the in-vehicle LAN shown in Figure 1
  • FIG. 3 Block diagram showing another connection form of the in-vehicle LAN shown in Fig. 1
  • FIG. 11 Diagram showing another core of normal mode choke shown in Fig. 9
  • FIG. 12 A diagram showing yet another core of the normal mode choke shown in FIG. 9.
  • ⁇ 13 A diagram showing still another equivalent circuit of the filter circuit according to Embodiment 1 of the present invention.
  • ⁇ 14 Implementation of the Present Invention The figure which shows the equivalent circuit of the filter circuit by form 2
  • FIG. 15 Disassembled perspective view showing common mode choke and normal mode choke shown in Fig. 14
  • FIG. 17 is a view showing a cross section along the straight line XVII-XVII shown in FIG.
  • FIG. 18 is an exploded perspective view showing another common mode choke and a normal mode choke included in the filter circuit according to the second embodiment of the present invention.
  • FIG. 19 As shown in FIG. 18! /, A cross-section along the straight line XIX—XIX
  • FIG. 20 is an exploded perspective view showing a magnetic separation layer sandwiched between a common mode choke and a normal mode choke included in the filter circuit according to Embodiment 2 of the present invention.
  • FIG. 21 is an exploded perspective view showing still another common mode choke and normal mode choke included in the filter circuit according to Embodiment 2 of the present invention.
  • FIG.22 Plan view of the common mode choke and normal mode choke shown in Fig. 21
  • FIG.23 A cross-section along the line XXIII-XXIII shown in Fig. 22! /
  • FIG. 25 is an exploded perspective view showing a common mode choke and a normal mode choke included in the filter circuit shown in FIG.
  • FIG.26 Plan view of common mode choke and normal mode choke shown in Fig. 25 ⁇ 27] Diagram showing an equivalent circuit of the filter circuit according to Embodiment 3 of the present invention
  • FIG. 30 is a diagram showing an equivalent circuit of a filter circuit according to Embodiment 3 of the present invention, which includes a common mode choke and a normal mode choke as a laminated (or thin film) inductor.
  • FIG. 31 A diagram showing an equivalent circuit of a filter circuit according to Embodiment 3 of the present invention, in which the third and fourth output terminals are integrated into a common output terminal.
  • FIG. 32 A diagram showing an equivalent circuit of a filter circuit according to Embodiment 4 of the present invention.
  • ⁇ 33 Diagram showing an equivalent circuit of a filter circuit according to Embodiment 4 of the present invention, including a common mode choke and two normal mode chokes as one package
  • FIG. 35 is an exploded perspective view showing a common mode choke and two normal mode chokes included in the filter circuit shown in FIG.
  • FIG.36 Plan view of common mode choke and two normal mode chokes shown in Fig. 35
  • FIG.37 Diagram showing a cross section along the straight line 37-37 shown in Fig. 36
  • FIG. 39 is an exploded perspective view showing a common mode choke and two normal mode chokes included in the filter circuit shown in FIG. 38.
  • FIG. 43 A diagram showing an equivalent circuit of a filter circuit according to Embodiment 6 of the present invention including a common mode choke and two normal mode chokes as a laminated (or thin film) inductor. The figure which shows the equivalent circuit of the filter circuit by Embodiment 6 of this invention with which the output terminal and the output terminal of 5th and 6th are respectively integrated by the common output terminal
  • FIG. 49 is an equivalent circuit diagram showing another conventional filter circuit.
  • Embodiment 1 The differential transmission system according to Embodiment 1 of the present invention is preferably mounted on an in-vehicle LAN such as CAN (see FIG. 1).
  • Various ECUs are connected to the in-vehicle LAN.
  • ECUE1 that controls the drive system (powertrain system) of automobiles such as engines, transmissions, and brakes
  • ECUE2 that controls safety devices (safety driving systems) such as ABS and airbags
  • Headlights, air conditioners, and side ECUE3 which controls the accessory parts (body system) of the car such as a mirror is included.
  • the in-vehicle LAN further includes sensors such as in-vehicle cameras, inter-vehicle distance measurement lasers, and acceleration sensors; information electronic devices such as car navigation systems and ETC (ITS) E4; and AV devices such as DVD players and audio components Connected.
  • the connection form of these ECUs and in-vehicle electronic devices (hereinafter abbreviated as ECU etc.) is preferably a bus type. In addition, a star shape may be used.
  • ECUs communicate with each other via the in-vehicle LAN and cooperate with each other. Thereby, various advanced functions are realized.
  • the ECU and the like are connected by a cable 40.
  • the cable 40 is generally long (including, for example, 2m or more).
  • electromagnetic waves are radiated from various parts such as a motor that rotates an engine E, a door mirror DM, and the like.
  • various electromagnetic waves from the outside force enter the automobile.
  • Those electromagnetic waves generate noise in the cable 40.
  • noise sent directly from the ECU or the like to the cable 40 is radiated as electromagnetic waves around the cable 40, and gives noise to other cables 40 and the antenna AT.
  • in-vehicle LAN has both high unnecessary electromagnetic radiation and noise caused by it. In order to reduce the adverse effects of these noises on ECUs, etc., that is, EMI, communication on the in-vehicle LAN is performed by the differential transmission method.
  • Each of the ECUs Ul, U2, U3, ... includes the differential receiver 10, the differential transmitter 20, or the differential transmitter / receiver 30 as communication ports (see FIGS. 2 and 3). These communication ports are connected to each other via cable 40 to form a differential transmission system.
  • Cable 40 includes two differential transmission paths. The phase of signals (differential signals) propagating through each differential transmission path is opposite to each other.
  • the cable 40 is preferably a shielded twisted pair cable. In addition, unshielded twisted pair cable, flat cable, or flexible cable may be used. Cable 40 preferably connects the communication ports on a one-to-one basis (see Figure 2). See).
  • a bus-type LAN is logically configured by repeating the signals received by each ECU, such as Ul, U2, U3, ..., to the next ECU.
  • the cable may be physically separated into a bus 40B and a branch line 40A (see Figure 3).
  • the differential receiver 10 is a device dedicated to reception, and is mounted on, for example, the display U1 (see FIG.
  • the differential receiver 10 includes a filter circuit 1, a differential receiver 11, and a differential wiring 12 according to the present invention.
  • the two input terminals la and lb of the filter circuit 1 are connected to the differential transmission line included in the cable 40.
  • a DC blocking capacitor or an electrostatic protection diode may be further connected between the cable 40 and the filter circuit 1.
  • the finoletor circuit 1 receives another ECU equal force differential signal through the cable 40 and removes common mode noise from the differential signal.
  • the filter circuit 1 substantially completely transmits the normal mode component of the differential signal. On the other hand, it absorbs practically completely without reflecting common mode noise (details will be described later).
  • the two output terminals 2a and 2b of the filter circuit 1 are connected to the differential wiring 12.
  • a low-pass filter may be connected between the filter circuit 1 and the differential wiring 12.
  • the differential signal transmitted from the filter circuit 1 passes through the differential wiring 12 and is received by the input terminal pair of the differential receiver 11.
  • the differential receiver 11 amplifies the difference between the received differential signals.
  • the display U1 decodes, for example, image data from the output signal of the differential receiver 11, and reproduces the image on the screen based on the decoded image data.
  • the terminating element 1 is more preferably connected to the input terminal pair of the differential receiver 11.
  • each input terminal of the differential receiver 11 is connected to a constant potential terminal (preferably a ground terminal) through termination elements 13 and 14.
  • the input terminals of the differential receiver 11 are connected by a termination element 15.
  • the impedance of the filter circuit 1 is sufficiently low. Therefore, the differential impedance of the differential wiring 12 and the impedance of the termination elements 13, 14, 15 are adjusted so as to match the differential impedance of the cable 40, respectively. For example, when the differential impedance of the cable 40 is 100 ⁇ , the differential impedance of the differential wiring 12 is set to about 100 ⁇ .
  • the impedance of the termination elements 13 and 14 is set to about 50 ⁇
  • the impedance of the termination element 15 is set to about 100 ⁇ .
  • the differential transmission device 20 is a device dedicated to transmission, and is mounted on, for example, the control circuit U2 of the display U1 (see FIGS. 2 and 3).
  • the differential transmission device 20 includes a differential driver 21, a filter circuit 1 according to the present invention, and a differential wiring 22.
  • a differential signal is generated based on image data.
  • the differential driver 21 amplifies the differential signal.
  • the amplified differential signal is sent to the output terminal counter differential wiring 22 of the differential driver 21.
  • the two input terminals la and lb of the filter circuit 1 are connected to the differential wiring 22.
  • a low-pass filter for example, may be connected between the differential wiring 22 and the filter circuit 1.
  • the filter circuit 1 receives the differential signal through the differential wiring 22, and removes the differential signal force common mode noise. In particular, the filter circuit 1 substantially completely transmits the normal mode component of the differential signal. On the other hand, it absorbs substantially completely without reflecting the common mode noise (details will be described later).
  • the two output terminals 2a and 2b of the filter circuit 1 are connected to a differential transmission line included in the cable 40.
  • a direct current blocking capacitor or an electrostatic protection diode may be further connected between the filter circuit 1 and the cable 40.
  • the filter circuit 1 sends a differential signal to another ECU through the cable 40.
  • the output terminal pair of the differential driver 21 is connected to the differential wiring 22 through the termination elements 23 and 24, respectively (see FIG. 6).
  • the termination elements 23 and 24 are preferably resistance elements, and more preferably integrated with the differential driver 21 on one LSI.
  • the differential driver 21 may be mounted as an independent element. Since the differential impedance of the filter circuit 1 is sufficiently low, the differential impedance of the differential wiring 22 and the combination of the ON resistance of the differential driver 21 and the impedance of the termination elements 23 and 24 are respectively Is adjusted to match the differential impedance.
  • the differential impedance of the cable 40 is 100 ⁇
  • the differential impedance of the differential wiring 22 is set to about 100 ⁇
  • the ON resistance of the differential driver 21 and the impedance of the termination elements 23 and 24 are set.
  • the differential wiring 22 Since the outout is not greatly limited in terms of impedance matching power, the differential transmitter 20 has high circuit design flexibility.
  • the differential transmission / reception device 30 is a device in which the differential reception device 10 and the differential transmission device 20 are integrated, and is mounted on an ECU or the like U3 that performs both transmission and reception (Figs. 2 and 3). reference).
  • the differential transmission / reception device 30 includes a differential receiver 31, a differential driver 32, a filter circuit 1 according to the present invention, and a differential wiring 33.
  • the two input terminals la and lb of the filter circuit 1 are connected to a differential transmission line included in the cable 40.
  • a direct current blocking capacitor or an electrostatic protection diode may be further connected.
  • the filter circuit 1 receives another ECU equal force differential signal through the cable 40, and removes the differential signal force common mode noise.
  • the filter circuit 1 substantially completely transmits the normal mode component of the differential signal. On the other hand, it absorbs the common mode noise completely without reflecting (details will be described later).
  • the two output terminals 2a and 2b of the filter circuit 1 are connected to the differential wiring 33.
  • a low-pass filter for example, may be connected between the filter circuit 1 and the differential wiring 33.
  • the differential signal transmitted from the filter circuit 1 is received by the input terminal pair of the differential receiver 31 through the differential wiring 33.
  • the differential receiver 31 amplifies the difference between the received differential signals. ECU etc. U3 decodes output signal power communication data of differential receiver 31
  • a differential signal is generated based on data to be transmitted to other ECUs, etc.
  • the differential driver 32 amplifies the differential signal.
  • the amplified differential signal is sent to the output terminal counter differential wiring 33 of the differential driver 32.
  • the filter circuit 1 receives the differential signal through the differential wiring 33 and the first and second output terminals 2a and 2b, and removes common mode noise from the differential signal. In particular, the filter circuit 1 substantially completely transmits the normal mode component of the differential signal.
  • the filter circuit 1 further sends a differential signal to the cable 40 through the first and second input terminals la and lb. As described above, in the differential transmission / reception device 30, the two input terminals la and lb and the two output terminals 2a and 2b of the filter circuit 1 are used as input / output terminals.
  • the differential receiver 31 is similar to the differential receiver 10. Termination elements 13, 14, or 15 are connected to the input terminal pair (see Figs. 4 and 5). Thereby, the differential signal received by the differential receiver 31 is not substantially distorted or attenuated. More preferably, like the differential transmission device 20, the output terminal pair of the differential driver 32 is connected to the differential wiring 33 through the termination elements 23 and 24, respectively (see FIG. 6). As a result, there is no substantial distortion or attenuation in the differential signal sent to the cable 40. In addition, since the layout of the differential wiring 33 is not greatly restricted in terms of impedance matching power, the differential transceiver 30 has high circuit design flexibility.
  • the filter circuit 1 has two input terminals la and lb, four output terminals 2a, 2b, 3a and 3b, a common mode choke 2 and a normal mode choke 3 (see FIG. 7).
  • the two input terminals la and lb are connected to the cable 40 in the differential receiver 10 and the differential transmitter / receiver 30, and in the differential transmitter 20 the differential driver 21 Connected to the output terminal.
  • the first and second output terminals 2a and 2b are connected to the input terminals of the differential receivers 11 and 31 in the differential receiver 10 and the differential transceiver 30 as shown in FIGS.
  • the differential transmitter 20 is connected to the cable 40.
  • the third and fourth output terminals 3a and 3b are connected to constant potential terminals (preferably ground terminals).
  • the common mode choke 2 includes two inductors Ll and L2.
  • the first inductor L1 is connected between the first input terminal la and the first output terminal 2a.
  • the second inductor L2 is connected between the second input terminal lb and the second output terminal 2b.
  • the two inductors Ll and L2 are magnetically coupled to each other, and in particular are connected with the same polarity between the input terminal and the output terminal. That is, when the common mode current flows between the two input terminals la and lb and the two output terminals 2a and 2b, the magnetic fluxes generated in the two inductors Ll and L2 strengthen each other, and the normal mode current flows. The magnetic flux generated in the two inductors Ll and L2 cancels. As a result, the impedance of the common mode choke 2 is extremely low for the normal mode component, which is very high for the common mode component among the signals received through the two input terminals la and lb.
  • the common mode choke 2 includes one core and two coils wound around the core. Preferably, the two coils are wound around the core by bifilar winding or cancellation winding.
  • the normal mode choke 3 includes two inductors L3 and L4.
  • the third inductor L3 is connected between the first input terminal la and the third output terminal 3a.
  • the fourth inductor L4 is connected between the second input terminal lb and the fourth output terminal 3b.
  • the two inductors L3 and L4 are magnetically coupled to each other, and in particular are connected with opposite polarities between the input terminal and the output terminal.
  • the normal mode choke 3 includes one core and two coils wound around the core. Preferably, two coils are wound around the core by bifilar winding or cancellation winding. That is, the normal mode choke 3 has the same configuration as the common mode choke 2. In that case, as shown in FIG. 7, the polarity of the connection to the input terminal Z output terminal is reversed between the third and fourth inductors L3 and L4. More preferably, a common mode choke array 2A including two common mode chokes is used as a combination of the common mode choke 2 and the normal mode choke 3 according to the first embodiment of the present invention (see FIG. 8). As a result, the common mode choke 2 and the normal mode choke 3 are integrated into one package, which is advantageous for reducing the size of the filter circuit 1.
  • two coils may be wound around the core in such a direction that the magnetic fluxes generated by the common mode currents cancel each other (see FIG. 9).
  • one of the two coils is wound in the opposite direction to the bifilar winding or cancellation winding (see Figs. 10, 11, and 12).
  • two coils L3 and L4 are wound around the toroidal core TC (the solid line coil corresponds to the third inductor L3, and the broken line coil corresponds to the fourth inductor L4).
  • the winding method on the toroidal core TC is reversed between the two coils L3 and L4.
  • the impedance of the common mode choke 2 is sufficiently low for a differential signal that is sufficiently high for a common mode signal.
  • the impedance of normal mode choke 3 is sufficiently high for differential signals that are sufficiently low for common mode signals. In particular, the difference in impedance between them is sufficiently large.
  • the normal mode choke 3 is installed in front of the common mode choke 2, that is, connected to the first and second input terminals la and lb closer to the common mode choke 2 (see FIGS. 7, 8, and 9). ).
  • the filter circuit 1 substantially completely normal component of the differential signal received through the cable 40. Make it transparent. Therefore, as described above for the normal mode component of the differential signal, impedance matching between the differential receiver 11 (31), the differential wiring 12 (33), and the cable 40 is a substantial distortion of the differential signal. And suppress attenuation (see Figures 4 and 5). In addition, since the impedance matching does not place a great restriction on the layout of the differential wiring 12 (33), the differential receiver 10 (differential transmitter / receiver 30) has high circuit design flexibility. Furthermore, in the filter circuit 1, the normal mode choke 3 substantially completely absorbs the common mode noise.
  • the difference The dynamic receiver 11 and the subsequent circuit are reliably protected from common mode noise. Further, the reflection of the common mode noise by the common mode choke 2 is substantially completely suppressed. Therefore, unnecessary electromagnetic radiation from the cable 40 to the periphery is sufficiently reduced.
  • the input impedance of the differential receiver 11 connected to the first and second output terminals 2a and 2b with respect to the common mode signal. Is sufficiently higher than the impedance of normal mode choke 3.
  • the common mode choke 2 may be removed from the filter circuit 1 (see FIG. 13).
  • Common mode noise entering from the two input terminals la and lb passes through the normal mode choke 3 and is not transmitted to the differential receiver 11 from the two output terminals 2a and 2b.
  • the filter circuit 1 transmits the normal mode component of the differential signal transmitted from the differential driver 21 substantially completely. Therefore, for the normal mode component of the differential signal, as described above, impedance matching between the differential driver 21, the differential wiring 22, and the cable 40 suppresses substantial distortion and attenuation of the differential signal ( (See Figure 6.) In addition, since the impedance matching does not place a great restriction on the layout of the differential wiring 22, the differential transmitter 20 has high circuit design flexibility. Further, in the filter circuit 1, the normal mode choke 3 substantially completely absorbs the common mode noise caused by the differential driver 21 or the differential wiring 22. Therefore, unnecessary electromagnetic radiation from the cable 40 to the surrounding area is sufficiently reduced. Furthermore, reflection of common mode noise by the common mode choke 2 is substantially completely suppressed. Therefore, the differential driver 21 is reliably protected from the common mode noise reflected by the common mode choke 2.
  • the differential transmission system according to the second embodiment of the present invention is preferably mounted on an in-vehicle LAN, like the system according to the first embodiment.
  • Embodiment 2 of the present invention is different from Embodiment 1 in that the filter circuit 1 includes a multilayer inductor or a thin film inductor.
  • the same constituent elements as those according to the first embodiment are referred to the description of the constituent elements according to the first embodiment and the drawings.
  • the filter circuit 1 according to the second embodiment of the present invention is the same as the filter circuit according to the first embodiment. It is represented by an equivalent circuit (see Figure 14). However, unlike the filter circuit according to the first embodiment, the inductors Ll, L2, L3, and L4 included in the common mode choke 2 and the normal mode choke 3 are all laminated inductors or thin film inductors on the same chip 2B. (See Figures 15, 16, and 17). Thereby, the filter circuit 1 according to Embodiment 2 of the present invention is extremely small.
  • first and second input terminals la, lb, and the first to fourth output terminals 2a, 2b, 3a, 3b are preferably installed on the same plane as the chip 2B.
  • any or all of these terminals may be installed on a plane perpendicular to the force chip 2B.
  • the filter circuit 1 preferably includes twelve laminated magnetic sheets (hereinafter referred to as layers) Sl, S 2,..., S 12 (see FIG. 15).
  • the magnetic sheet is preferably a ceramic sheet.
  • Conductive wires (preferably metal foils) Cl, C2,..., C12 are preferably formed by screen printing on each layer Sl, S2,. In addition, it may be formed by sputtering or vapor deposition.
  • the layers are referred to as the first layer Sl, the second layer S2,...
  • the three layers from the first layer S1 to the third layer S3 correspond to the first inductor L1 (see FIG. 15).
  • Conductor C1 on the first layer S1 and conductor C2 on the second layer S2 are connected by the second via hole V2
  • the conductor C2 on the second layer S2 and the conductor C3 on the third layer S3 are the third.
  • the three conductors Cl, C2, and C3 consist of a rectangular coil wound approximately (2 + 1/4) clockwise as viewed from the direction of the normal N extending from the third layer S3 to the first layer SI. (See Figure 16).
  • One end T1A of the conductor C1 on the first layer S1 is connected to the first input terminal la
  • one end T2A of the conductor C3 on the third layer S3 is connected to the first output terminal 2a (see FIG. 14).
  • the three layers from the fourth layer S4 to the sixth layer S6 correspond to the second inductor L2 (see FIG. 15).
  • Conductor C4 on the fourth layer S4 and conductor C5 on the fifth layer S5 are connected by the fifth via hole V5
  • the conductor C5 on the fifth layer S5 and the conductor C6 on the sixth layer S6 are the sixth.
  • the three conductors C4, C5, C6 form a rectangular coil wound approximately (2 + 3Z4) clockwise as viewed from the direction of the normal N passing through the fourth layer S4 to the sixth layer S6 ( (See Figure 16).
  • One end T1B of the conductor C4 on the fourth layer S4 is connected to the second input terminal lb, and one end T2B of the conductor C6 on the sixth layer S6 is connected to the second output terminal 2b (see FIG. 14).
  • the three layers from the seventh layer S7 to the ninth layer S9 correspond to the third inductor L3 (see FIG. 15).
  • Conductor C7 on the seventh layer S7 and conductor C8 on the eighth layer S8 are connected by the seventh via hole V7, and the conductor C8 on the eighth layer S8 and the conductor C9 on the ninth layer S9 are the eighth. Connected via via hole V8.
  • the three conductors C7, C8, C9 consist of a rectangular coil wound approximately (2 + 1/8) turns clockwise as viewed from the direction of the normal N passing through the ninth layer S9 force to the seventh layer S7.
  • One end of the conductor C7 on the seventh layer S7 is connected to one end T1A of the conductor C1 on the first layer S1 through the first via hole VI, so that it is connected to the first input terminal la (see FIG. 14).
  • one end T3A of the conductor C9 on the ninth layer S9 is connected to the third output terminal 3a, it is maintained at a constant potential (preferably the ground potential) (see FIG. 14).
  • the three layers from the tenth layer S10 to the twelfth layer S12 correspond to the fourth inductor L4 (see FIG. 15).
  • Conductor C10 on the tenth layer S10 and conductor C11 on the tenth layer S11 are connected by the ninth via hole V9.
  • Conductor C11 on the tenth layer S11 and conductor C12 on the twelfth layer S12 Are connected via the tenth via hole V10.
  • the three conductors C10, Cll, and C12 consist of rectangular coils wound approximately (2 + 1Z8) counterclockwise when viewed from the direction of the normal N passing through the twelfth layer S12 to the tenth layer S10. (See Figure 16).
  • One end of the conductor C10 on the tenth layer S10 is connected to one end T1B of the conductor C4 on the fourth layer S4 through the fourth via hole V4, so that it is connected to the second input terminal lb (see FIG. 14). ). Since one end T3B of the conducting wire C12 on the twelfth layer S12 is connected to the fourth output terminal 3b, it is maintained at a constant potential (preferably ground potential) (see FIG. 14).
  • the coils Cl, C2, C3 from the first layer S1 to the third layer S3, and the coils C4, C5, C6 from the fourth layer S4 to the sixth layer S6 are magnetically integrated.
  • the inductors Ll and L2 from the first layer S1 to the sixth layer S6, ie, the first and second layers, are common mode chokes 2 Configure.
  • the coils C7, C8, C9 from the seventh layer S7 to the ninth layer S9 and the coils C10, Cll, C12 from the tenth layer S10 to the twelfth layer S12 are integrated into the core.
  • the filter circuit according to the second embodiment of the present invention as in the filter circuit according to the first embodiment, among the differential signals received through the first and second input terminals la and lb, there is substantially no difference. Only the normal mode component passes through the common mode choke 2, and only the common mode component passes through the normal mode choke 3. Thus, both components are separated from the differential signal. In particular, common mode noise received through the first and second input terminals la and lb is blocked from the first and second output terminals la and lb. In addition, there is virtually no reflection of common mode noise by the common mode choke 2. On the other hand, since the common mode current does not substantially flow through the common mode choke 2, the core of the common mode choke 2 does not cause magnetic saturation. Therefore, the filter circuit 1 is highly reliable. In particular, since the core volume of the common mode choke 2 may be small, the common mode choke 2 can be formed as a multilayer inductor (or thin film inductor) as described above.
  • the coil may have a circular shape or other polygonal shape, unlike the rectangular shape shown in FIGS.
  • the exact number and shape are different. Match is preferred.
  • the exact number and shape are Matching is preferable. As a result, a high degree of balance is maintained between the first and second input terminals la and lb, so that the differential signal transmitted through the filter circuit 1 is not distorted.
  • one end T3A of the conductor C9 on the ninth layer S9 and one end T3B of the conductor C12 on the twelfth layer S12 and the force may be provided at a position equidistant from one end T1A of the conducting wire C1 and one end T1B of the conducting wire C4 on the fourth layer S4 (see, for example, the portions T3D and T3E shown by the one-dot chain line in FIG. 16).
  • a high balance is maintained between the first and second input terminals la and lb, so that the differential signal transmitted through the filter circuit 1 is not distorted.
  • the three layers S7, S8, S9 constituting the third inductor L3 and the three layers S10, S11, constituting the fourth inductor L4, S12 may be alternately stacked (not shown).
  • the six layers S7 to S12 constituting the normal mode choke 3 may be formed on the six layers S1 to S6 constituting the common mode choke 2.
  • a magnetic separation layer Ss may be inserted between the common mode choke 2 and the normal mode choke 3, for example, between the sixth layer S6 and the seventh layer S7 (see FIG. 20).
  • the magnetic separation layer Ss is preferably a magnetic sheet, on which a conductor film GND is formed.
  • the conductor film GND uniformly covers the entire area surrounded by the conductive lines Cl,..., C12 on each layer Sl,.
  • the conductor film GND may be a mesh-like conductor film extending over the entire area.
  • Conductor film GND is maintained at a constant potential (preferably ground potential).
  • the two chokes 2 and 3 may be formed in different areas on the sex sheet (see FIGS. 21, 22, and 23).
  • the right half of the seven magnetic sheets Sl, S2, ..., S7 shown in Figs. 21, 22, and 23 corresponds to the common mode choke 2, and the left half force corresponds to the single mode choke 3.
  • the first conductor C1 on the first layer S1 is connected to the first conductor C3 on the third layer S3 by the second via hole V2, and the first conductor C3 on the third layer S3 is connected to the first conductor C3. It is connected to the conductor C5 on the fifth layer S5 by the third via hole V3.
  • the three first conductors Cl, C3, C5 In this way, a rectangular coil wound approximately (2 + 1Z2) clockwise as viewed from the direction of the first normal Nl that penetrates the first layer SI is formed (see Fig. 21).
  • the first coils Cl, C3, and C5 correspond to the first inductor L1.
  • One end T1A of the first conductor C1 on the first layer S1 is connected to the first input terminal la
  • one end T2A of the first conductor C5 on the fifth layer S5 is connected to the first output terminal 2a. (See Figure 14).
  • the second conductor C7 on the first layer S1 is connected to the first conductor C2 on the second layer S2 by the fifth via hole V5, and the first conductor C2 on the second layer S2 is connected to the first conductor C2 on the second layer S2.
  • the first conductor C4 on the fourth layer S4 is connected to the sixth via hole V6, and the first conductor C4 on the fourth layer S4 is connected to the first conductor C6 on the sixth layer S6 and the seventh via hole.
  • V7 the three first conductors C2, C4, C6 are wound approximately (2 + 1Z2) turns clockwise as viewed from the direction of the first normal N1 penetrating from the sixth layer S6 to the first layer S1.
  • a rectangular coil see Fig.
  • the second coils C2, C4, and C6 correspond to the second inductor L2.
  • One end T1B of the second conductor C7 on the first layer S1 is connected to the second input terminal lb, and one end T2B of the first conductor C6 on the sixth layer S6 is connected to the second output terminal 2b. (See Figure 14).
  • the first conductor C1 on the first layer S1 is connected to the second conductor C8 on the second layer S2 by the first via hole VI, and the second conductor C8 on the second layer S2 is connected to the first conductor C8.
  • the second conductor C10 on the fourth layer S4 is connected to the eighth via hole V8, and the second conductor C10 on the fourth layer S4 is connected to the second conductor C12 on the sixth layer S6 and the ninth via hole. Connected with V9.
  • the three second conductors C8, C10, and C12 are wound approximately (2 + 3Z4) clockwise in view of the sixth layer S6 force and the directional force of the second normal N2 that penetrates the first layer S1.
  • a rectangular coil see Fig. 21).
  • the third coils C8, C10, C12 correspond to the third inductor L3. Since one end T3A of the second conductor C12 on the sixth layer S6 is connected to the third output terminal 3a, it is maintained at a constant potential (preferably a ground potential) (see FIG. 14).
  • the second conductor C7 on the first layer S1 is connected to the second conductor C9 on the third layer S3 by the fourth via hole V4, and the second conductor C9 on the third layer S3 is connected to the first conductor C9.
  • the second conductor C11 on the fifth layer S5 is connected to the tenth via hole V10.
  • the second conductor C11 on the fifth layer S5 is connected to the conductor C13 on the seventh layer S7 and the ⁇ ⁇ th via hole VII. Connected with.
  • the three conductors C9, Cll, and C13 are arranged counterclockwise when viewed from the direction of the second normal N2 that penetrates from the seventh layer S7 to the first layer SI.
  • the fourth coils C9, Cll, and C13 correspond to the fourth inductor L4. Since one end T3B of the conducting wire C13 on the seventh layer S7 is connected to the fourth output terminal 3b, it is maintained at a constant potential (preferably ground potential) (see FIG. 14).
  • first layer S1 On the first layer S1, another magnetic sheet SO is further stacked (see FIG. 23).
  • the magnetic materials of all layers are integrated.
  • the magnetic material integrated with the first coils Cl, C3, C5 and the second coils C2, C4, C6 is magnetically coupled as a core.
  • both coils are wound in the same direction around the first normal line N1, the first and second inductors Ll and L2 form the common mode choke 2.
  • the third coils C8, C10, C12 and the fourth coils C9, Cll, C13 are magnetically coupled using the integrated magnetic body as a core.
  • both coils are wound in opposite directions around the second normal N2, the third and fourth inductors L3 and L4 constitute the normal mode choke 3.
  • the magnetic flux generated by the first and second coils C1 to C6 hardly interacts with the magnetic flux generated by the third and fourth coils C8 to C13. Therefore, the common mode choke 2 and the normal mode choke 3 are magnetically separated. As a result, the common mode choke 2 and the normal mode choke 3 do not interfere with each other, further improving the reliability of each.
  • the coil may have a circular shape or other polygonal shape, unlike the rectangular shape shown in FIGS.
  • an exact match between the power and the shape is preferred between the first coils Cl, C2, C3 and the second coils C4, C5, C6.
  • an exact match between the number and shape of the third coil C8, C10, C12 and the fourth coil C9, Cll, C13 is preferable.
  • one end T3A of the second conductor C12 on the sixth layer S6 and one end T3B of the conductor C13 on the seventh layer S7 and the force are different from those shown in FIGS.
  • Top first lead C1 One end TIA of the second lead wire C7 and one end TIB of the second conductor C7 may be provided at an equidistant position. As a result, a high degree of balance is maintained between the first and second input terminals la and lb, so that the differential signal transmitted through the filter circuit 1 is not distorted.
  • the third and fourth output terminals 3a and 3b are divided into separate terminals.
  • the common output terminal 3c may be used as the third and fourth output terminals 3a and 3b (see FIG. 24).
  • the conductor C9A on the ninth layer S9 is connected to the conductor C12A on the twelfth layer S12 through the ⁇ ⁇ via hole VII ( (See Figure 25). Furthermore, one end T3C of the conducting wire C12A on the twelfth layer S12 is connected to the common output terminal 3c, and is maintained at a constant potential (preferably ground potential).
  • one end T3C of the conductor C12A on the twelfth layer S12 is also provided at the same distance from the one end T1A of the conductor C1 on the first layer S1 and the one T1B of the conductor C4 on the fourth layer S4 (see FIG. 26). As a result, a high balance is maintained between the first and second input terminals 1a and lb, so that the differential signal transmitted through the filter circuit 1 is not distorted.
  • the differential transmission system according to the third embodiment of the present invention is preferably mounted on the in-vehicle LAN, similarly to the system according to the first embodiment.
  • Embodiment 3 of the present invention is different from Embodiments 1 and 2 in that the filter circuit 1 includes a termination element.
  • the same components as those according to the first and second embodiments are referred to the description of the components according to the first and second embodiments and the drawings.
  • the filter circuit 1 according to Embodiment 3 of the present invention is expressed by an equivalent circuit similar to the filter circuit 1 according to Embodiment 1 (see FIGS. 27, 28, 29, 30, and 31).
  • the termination elements Zl and Z2 are connected to the normal mode choke 3.
  • Termination elements Zl and Z2 are impedance elements, preferably capacitors.
  • an inductor, a NORISTOR, a diode, a resistance element, or a combination thereof may be used.
  • the first termination element Z1 is preferably connected between the third inductor L3 and the third output terminal 3a.
  • the second termination element Z2 is connected between the fourth inductor L4 and the fourth output terminal 3b (see FIG. 27).
  • the first termination element Z1 is connected between the first input terminal la and the third inductor L3, and the second termination element Z2 is connected to the second input terminal lb and the fourth inductor L4. It can be connected between the two (see Figure 28).
  • the first termination element Z1 is the third inductor L3.
  • the third output terminal 3a, and the second termination element Z2 is connected between the fourth inductor L4 and the fourth output terminal 3b (see FIG. 29).
  • the first termination element Z1 is connected between the first input terminal la and the third inductor L3, and the second termination element Z2 is connected between the second input terminal lb and the fourth inductor L4. (See the broken line shown in FIG. 29).
  • the first termination element Z1 is one end of the third inductor L3. Connected between T3A and the third output terminal 3a, and the second termination element Z2 is connected between one end T3B of the fourth inductor L4 and the fourth output terminal 3b (see Figs. 14 and 30). ). Furthermore, when the common output terminal 3c is also used as the third and fourth output terminals 3a and 3b, the first and second termination elements Zl and Z2 are integrated into one termination element Z, and the third And fourth inductors L3 and L4 are connected between common end T3C and common output terminal 3c (see Figs. 24 and 31)
  • the impedance of the common mode choke 2 is extremely high, and the impedance of the normal mode choke 3 is extremely low. Therefore, in the differential receiver 10 (and the differential transmitter / receiver 30) shown in FIGS. 2 and 3, the impedances of the first and second termination elements Zl and Z2 (in FIG. 31, they are integrated).
  • the impedance of the termination element Z) is adjusted to match the common mode impedance of the 1S cable 40. For example, when the common mode impedance force of the cable 40 is 3 ⁇ 4 0 ⁇ , the impedances of the first and second termination elements Zl and Z2 are set to about 60 ⁇ (in FIG. 31, the integrated termination element).
  • Z impedance is set to about 30 ⁇ ).
  • the impedances of the first and second termination elements Zl and Z 2 (in FIG. 31, the impedance of the integrated termination element Z). ) Force Adjusted to match the common mode impedance of differential wiring 22.
  • the impedances of the first and second termination elements Zl and Z2 are set to about 60 ⁇ (in FIG. 31, the integrated termination element Z impedance is set to about 30 ⁇ ).
  • impedance matching between the differential wiring 22 and the filter circuit 1 is realized with high accuracy with respect to the common mode signal, so that reflection of common mode noise by the common mode choke 2 is further reduced. Therefore, intrusion of common mode noise to the LSI including the differential driver 21 and further to the preceding circuit is prevented, and fluctuations in the power supply potential and ground potential due to the reflected common mode noise are reliably suppressed.
  • the first and second termination elements Zl and Z2 are inductors, their impedances change depending on the frequency of the differential signal (generally peaking at a specific frequency called the self-resonant frequency). Reach).
  • the frequency characteristic of the common mode impedance synthesized between the normal mode choke 3 and the first and second termination elements Zl and Z2 is adjusted.
  • a common mode signal may be transmitted through a differential transmission line, such as using a speed signal in IEEE1394 (a signal for checking a transmission speed between communication devices).
  • IEEE1394 a signal for checking a transmission speed between communication devices.
  • the above common mode impedance is adjusted to be sufficiently high in the frequency band of the common mode signal and sufficiently low in other frequency bands. This eliminates common mode noise that does not cause excessive distortion or attenuation in the common mode signal.
  • each impedance is sufficiently high for the low frequency band (especially including the bias voltage) of the common mode component of the differential signal. It is low enough for high frequency bands.
  • the filter circuit 1 Can prevent short circuit to the constant potential terminal through the third and fourth output terminals 3a, 3b.
  • the filter circuit 1 connects the first and second input terminals la and lb to the constant potential. Short circuit to terminal. As a result, it is possible to prevent circuit elements from being destroyed due to excessive common mode noise and generation of excessive unnecessary electromagnetic radiation.
  • the differential transmission system according to the fourth embodiment of the present invention is preferably mounted on an in-vehicle LAN, like the system according to the first embodiment.
  • the fourth embodiment of the present invention is different from the first embodiment in that the filter circuit 1 includes a second normal mode choke 4.
  • the description of the constituent elements according to the fourth embodiment and the drawings are used for the same constituent elements as those according to the first embodiment.
  • the filter circuit 1 further includes fifth and sixth output terminals 4a and 4b and a second normal mode choke 4 (see FIG. 32).
  • the fifth and sixth output terminals 4a and 4b are connected to constant potential terminals (preferably ground terminals).
  • the second normal mode choke 4 includes two inductors L5 and L6.
  • the fifth inductor L5 is connected between the first output terminal 2a and the fifth output terminal 4a.
  • the sixth inductor L6 is connected between the second output terminal 2b and the sixth output terminal 4b.
  • the two inductors L5 and L6 are magnetically coupled to each other, and are connected in particular with opposite polarities between the input terminal and the output terminal. That is, when normal mode current flows between the first and second output terminals 2a and 2b and the fifth and sixth output terminals 4a and 43b, the magnetic flux generated in the two inductors L5 and L6. When the common mode current flows, the magnetic fluxes generated in the two inductors L5 and L6 cancel each other. As a result, the impedance of the second normal mode choke 4 is extremely high for the normal mode component of the signals received through the first and second output terminals 2a and 2b, and for the common mode component. Is extremely low.
  • the second normal mode choke 4 includes one core and two coils attached thereto.
  • the two coils are bifilar on the core. It is wound in a roll or cancel. That is, the second normal mode choke 4 has the same configuration as the common mode choke 2.
  • the polarity of the connection to the input terminal Z output terminal is reversed between the fifth and sixth inductors L5 and L6.
  • a common mode choke array 2C including three common mode chokes is used as a combination of the common mode choke 2, the normal mode choke 3, and the second normal mode choke 4 according to Embodiment 4 of the present invention. (See Figure 33).
  • the common mode choke 2 and the two normal mode chokes 3 and 4 are combined into one package, which is advantageous for downsizing the filter circuit 1.
  • the first and second input terminals la and lb and the first and second output terminals 2a and 2b are arranged symmetrically with respect to the common mode yoke 2. Furthermore, the normal mode choke 3 and the second normal mode choke 4 have symmetrical impedance characteristics. That is, the impedance of the second normal mode choke 4 is sufficiently high for a differential signal that is sufficiently low for a common mode signal, like the impedance of the normal mode choke 3. In particular, the difference in impedance is large enough.
  • the differential signal received through the first and second output terminals 2a, 2b The normal mode component passes through the common mode choke 2, and the common mode component passes through the second normal mode choke 4. Furthermore, a few common mode components that could pass through the common mode choke 2 pass through the normal mode choke 3.
  • the common mode noise received through the first and second output terminals 2a and 2b is reliably cut off from the first and second input terminals la and lb.
  • the common mode choke 2 does not have a common mode current upstream, so the core of the common mode choke 2 does not cause magnetic saturation. Therefore, the filter circuit 1 is highly reliable as a bidirectional common mode noise filter.
  • the filter circuit 1 transmits the normal mode component of the differential signal received through the cable 40 substantially completely. Therefore, for normal mode components of differential signals, impedance matching between the differential receiver 11, differential wiring 12, and cable 40 suppresses substantial distortion and attenuation of the differential signals ( Figure 4). 5). Further, since the impedance matching does not place a great restriction on the layout of the differential wiring 12, the differential receiver 10 has a high circuit design flexibility. Furthermore, in the filter circuit 1, the two normal mode chokes 3 and 4 substantially completely absorb the common mode noise before and after the common mode choke 2. Therefore, the differential receiver 11 and the subsequent circuit are reliably protected from common mode noise. In addition, the reflection of common mode noise by the common mode choke 2, the differential wiring 12, and the differential receiver 11 is substantially completely suppressed. As a result, unnecessary electromagnetic radiation around the cable 40 and 12 differential wires is sufficiently reduced.
  • the filter circuit 1 transmits the normal mode component of the differential signal transmitted from the differential driver 21 substantially completely. Therefore, for the normal mode component of the differential signal, impedance matching between the differential driver 21, the differential wiring 22, and the cable 40 suppresses substantial distortion and attenuation of the differential signal (see Fig. 6). See). Furthermore, since the impedance matching does not place a great restriction on the layout of the differential wiring 22, the differential transmitter 20 has a high circuit design flexibility.
  • filter circuit 1 two normal mode chokes 3 and 4 are connected to the common mode noise before and after common mode choke 2. Absorbs virtually completely. Therefore, unnecessary electromagnetic radiation from the differential wiring 22 and cable 40 to the surrounding area is sufficiently reduced.
  • the differential driver 21 is reliably protected from both common mode noise reflected by the common mode choke 2 and common mode noise entering through the cable 40.
  • the filter circuit 1 substantially converts the normal mode component of the differential signal between the differential wiring 33 and the cable 40 in both directions. Make it completely transparent. Therefore, for the normal mode component of the differential signal, impedance matching between the differential receiver 31, differential wiring 33, and cable 40 suppresses substantial distortion and attenuation of the differential signal (Figs. 4 and 5). reference). Furthermore, since the impedance matching does not place a great constraint on the layout of the differential wiring 33, the differential transceiver 30 has high circuit design flexibility. Further, in the filter circuit 1, the two normal mode chokes 3 and 4 substantially completely absorb the common mode noise before and after the common mode choke 2. Therefore, the differential receiver 31, the subsequent circuit, and the differential driver 32 are reliably protected from common mode noise. In addition, unnecessary electromagnetic radiation from the differential wiring 33 and the cable 40 to the periphery is sufficiently reduced.
  • the differential transmission system according to the fifth embodiment of the present invention is preferably mounted on an in-vehicle LAN, similarly to the system according to the fourth embodiment.
  • Embodiment 5 of the present invention is different from Embodiment 4 in that the filter circuit 1 includes a multilayer inductor or a thin film inductor.
  • the same constituent elements as those according to the fourth embodiment are referred to the description of the constituent elements according to the fourth embodiment and the drawings.
  • the filter circuit 1 according to Embodiment 5 of the present invention is represented by an equivalent circuit similar to the filter circuit according to Embodiment 4 (see FIG. 34).
  • the inductors Ll, L2, L3, L4, L5, and L6 included in the common mode choke 2, the normal mode choke 3, and the second normal mode choke 4 are Both are multilayer or thin film inductors integrated on the same chip 2D (see Figures 35, 36, and 37). Thereby, the filter circuit 1 according to Embodiment 5 of the present invention is extremely small.
  • the first and second input terminals la, lb and the first to sixth output terminals 2a, 2b, 3a, 3b, 4a, 4b are preferably installed on the same plane as the chip 2D.
  • the filter circuit 1 preferably includes 18 laminated magnetic sheets (hereinafter referred to as layers) Sl, S2, ..., S12, S13, S14, ..., S18 (Fig. 35). reference).
  • the magnetic material sheet is preferably a ceramic sheet.
  • the layers are referred to as the first layer Sl, the second layer S2,.
  • the first layer S1 to the twelfth layer S12 of the filter circuit 1 have the same structure as the filter circuit according to the first embodiment of the present invention shown in FIG. Therefore, the description of Embodiment 1 is used for the details.
  • the coils C7, C8, C9 from the seventh layer S7 to the ninth layer S9 form a rectangular coil wound approximately (2 + 1Z4)
  • the coil C10 from the tenth layer S10 to the twelfth layer S12. , Cll, C12 form a rectangular coil wound approximately (2 + 1Z4) (see Figure 36)
  • Conductive wires are preferably formed on the thirteenth layer S13 to the eighteenth layer S18 by screen printing. In addition, it may be formed by sputtering or vapor deposition.
  • the three layers from the thirteenth layer S13 to the fifteenth layer S15 correspond to the fifth inductor L5 (see FIG. 35).
  • Conductor C13 on the thirteenth layer S13 and conductor C14 on the fourteenth layer S14 are connected by the twelfth via hole V12, and the conductor C14 on the fourteenth layer S14 and the conductor C15 on the fifteenth layer S15 Are connected via the thirteenth via hole V13.
  • the three conductors C13, C14, and C15 were wound approximately (2 + 1/4) counterclockwise when viewed from the direction of the normal N passing through the fifteenth layer S15 to the thirteenth layer S13. Forms a rectangular coil (see Figure 36).
  • One end of the conductor C13 on the thirteenth layer S13 is connected to one end T2A of the conductor C3 on the third layer S3 through the ⁇ ⁇ via hole VII, so that it is connected to the first output terminal 2a (see FIG. 34). ). Since one end T4A of the conducting wire C15 on the 15th layer S15 is connected to the fifth output terminal 4a, it is maintained at a constant potential (preferably the ground potential) (see FIG. 34).
  • Conductor C16 on the sixteenth layer S16 and conductor C17 on the seventeenth layer S17 are connected by the fifteenth via hole V15, and the conductor C17 on the seventeenth layer S17 and the conductor C18 on the eighteenth layer S18. And the 16th via hole V16.
  • the three conductors C16, C17, and C18 are rectangular (2 + 1/4) turns clockwise with the directional force of the normal N passing through the eighteenth layer S18 to the sixteenth layer S16.
  • a coil is formed (see Fig. 36).
  • One end of the lead wire C16 on the sixteenth layer S16 is connected to one end T4B of the lead wire C6 on the sixth layer S6 through the fourteenth via hole V14, so that it is connected to the second output terminal 2b (see FIG. 34). ). Since one end T4B of the conductor C18 on the eighteenth layer S18 is connected to the sixth output terminal 4b, it is maintained at a constant potential (preferably ground potential) (see FIG. 34).
  • Another magnetic sheet SO is further stacked on the first layer S1 (see FIG. 37).
  • all the magnetic materials are integrated.
  • the coils C13, C14, C15 from the thirteenth layer S13 to the fifteenth layer S15, and the sixteenth layer S16 to the eighteenth layer, as well as the first layer S1 to the twelfth layer S12.
  • Coils C16, C17, and C18 up to S18 are magnetically coupled by using an integrated magnetic body as a core.
  • the thirteenth layer S13 to the eighteenth layer S18 that is, the fifth and sixth inductors L5 and L6 are the second ones.
  • the filter circuit 1 according to Embodiment 5 of the present invention as in the filter circuit according to Embodiment 4, the first and second input terminals la and lb, and the first and second output terminals 2a and 2b, respectively.
  • the normal mode choke 3 and the second normal mode choke 4 are arranged symmetrically with respect to the common mode choke 2. Furthermore, the impedance of both the normal mode choke 3 and the second normal mode choke 4 is sufficiently high for differential signals that are sufficiently low for common mode signals. Therefore, the common mode noise received through the first and second input terminals la and lb is surely cut off from the first and second output terminals 2a and 2b.
  • the filter circuit 1 is highly reliable as a bidirectional common mode noise filter.
  • the choke 2 can be formed as a multilayer inductor (or thin film inductor) as described above.
  • the number of layers and the number of conductors may be different from those shown in FIG.
  • the coil may have a circular shape or other polygonal shape, unlike the rectangular shape shown in FIGS.
  • the exact number and shape are different. Match is preferred.
  • the first layer It may be provided at an equal distance from one end T1A of the conductor C1 on S1 and one end T1B of the conductor C4 on the fourth layer S4 (for example, see the parts T3D and T3E shown by the one-dot chain line in FIG. 36. ).
  • one end T4A of the conductor C15 on the fifteenth layer S15 and one end T4B of the conductor C18 on the eighteenth layer S18 are connected to one end T2A of the conductor C3 on the third layer S3 and the sixth layer S6. It may be provided at a position equidistant from one end T2B of the conducting wire C6 (see, for example, the portions T3D and T3E shown by the one-dot chain line in FIG. 36). As a result, a high balance is maintained between the first and second input terminals la and lb and between the first and second output terminals 2a and 2b, so that the filter circuit 1 is transmitted. There is no distortion in the differential signal.
  • the common mode choke 2 unlike the one shown in Figs. 35 and 37, the three layers Sl, S2, S3 constituting the first inductor L1 and the three inductors L2 constituting the first inductor L1.
  • Two layers S4, S5, S6 may be alternately stacked (see FIGS. 18 and 19).
  • the conductors Cl, C2, C3 contained in the first inductor L 1 and the conductors C4, C5, C6 contained in the second inductor for example, the distance between the lines and depending on it
  • the parasitic capacitance is made uniform (see Figure 19).
  • the balance of the differential signal path included in the filter circuit 1 is further improved. The Therefore, the differential signal that passes through the filter circuit 1 is not distorted.
  • the three layers S7, S8, S9 constituting the third inductor L3 and the three layers S10, Sl l, S12 constituting the fourth inductor L4 are arranged. They may be stacked alternately (not shown). Furthermore, in the second normal mode choke 4, the three layers S13, S14, S15 constituting the fifth inductor L5 and the three layers S16, S17, S18 constituting the sixth inductor L6 are alternately stacked. (Not shown).
  • the normal mode choke 3 and the second normal mode choke 4 may include a magnetic separation layer Ss (see FIG. 20).
  • the magnetic separation layer Ss is the same as that according to the first embodiment, and particularly blocks the magnetic field.
  • the common mode choke 2 and the two normal mode chokes 3 and 4 are magnetically separated from each other.
  • the common mode choke 2 and the two normal mode chokes 3 and 4 do not interfere with each other, so that the reliability of each is further improved.
  • the three chokes 2, 3, and 4 are placed in different areas on the magnetic sheet. It may be formed (see Figures 21, 22, and 23).
  • the third and fourth output terminals 3a and 3b and the fifth and sixth output terminals 4a and 4b are respectively separate from each other. Divided into terminals.
  • the first common output terminal 3c is also used as the third and fourth output terminals 3a and 3b
  • the second common output terminal 4c is used as the fifth and sixth output terminals 4a and 4b. It may be used also (see Figure 38). As a result, the number of terminals of the filter circuit 1 is reduced, so that the flexibility in designing peripheral circuits is further improved.
  • the conductor C9A on the ninth layer S9 is connected to the conductor C12A on the twelfth layer S12 through the seventeenth via hole V17 ( (See Figure 39).
  • Twelve layer S12 Lead wire C12A One end T3C is connected to the first common output terminal 3c , Maintained at a constant potential (preferably ground potential).
  • one end T3C of the conductor C12A on the twelfth layer S12 is also provided at the same distance from the one end T1A of the conductor C1 on the first layer S1 and the one T1B of the conductor C4 on the fourth layer S4 (see FIG. 40).
  • the conductor C15A on the fifteenth layer S15 is connected to the conductor C18A on the eighteenth layer S18 through the eighteenth via hole V18 (see FIG. 39).
  • One end T4C of the conducting wire C18A on the eighteenth layer S18 is connected to the second common output terminal 4c and maintained at a constant potential (preferably ground potential).
  • one end T4C of the conductor C18A on the eighteenth layer S18 is provided at an equal distance from one end T2A of the conductor C3 on the third layer S3 and one end T2B of the conductor C6 on the sixth layer S6 ( (See Figure 40). Since the balance between the first and second input terminals la and lb and between the first and second output terminals 2a and 2b is maintained at a high level, the differential signal transmitted through the filter circuit 1 is converted into a differential signal. No distortion occurs.
  • the differential transmission system according to the sixth embodiment of the present invention is preferably mounted on an in-vehicle LAN, similarly to the system according to the fourth embodiment.
  • Embodiment 6 of the present invention is different from Embodiments 4 and 5 in that the filter circuit 1 includes a termination element.
  • the same constituent elements as those according to the fourth and fifth embodiments are referred to the description of the constituent elements according to the fourth and fifth embodiments and the drawings.
  • the filter circuit 1 according to the sixth embodiment of the present invention includes termination elements Zl, Z2, Z3, and Z4 in one or both of the two normal mode chokes 3 and 4. Connected (see Figure 41, 42, 43, 44).
  • the termination elements Zl, Z2, Z3, and Z4 are all impedance elements similar to the termination elements Zl and Z2 according to the third embodiment. Therefore, the description in Embodiment 3 is used for the details.
  • the first termination element Z1 is preferably disposed between the third inductor L3 and the third output terminal 3a.
  • the second termination element Z2 is connected between the fourth inductor L4 and the fourth output terminal 3b
  • the third termination element Z3 is connected between the fifth inductor L5 and the fifth output terminal 4a.
  • the fourth termination element Z4 is connected between the sixth inductor L6 and the sixth output terminal 4b (see FIG. 41).
  • the first terminal element Z1 is connected between the first input terminal la and the third inductor L3, and the second terminal element Z2 is connected to the second input terminal lb and the fourth terminal.
  • the third termination element Z3 is connected between the fifth inductor L5 and the fifth output terminal 4a
  • the fourth termination element Z4 is connected to the sixth inductor L6 and the sixth inductor L6. It may be connected between the six output terminals 4b (see the broken line portion shown in FIG. 41).
  • either the first and second termination elements Zl and Z2 or the third and fourth termination elements Z3 and Z4 may be omitted.
  • the common mode choke array 2C including three common mode chokes is used as a combination of the common mode choke 2 and the two normal mode chokes 3 and 4 (see Fig. 42).
  • the first termination element Z1 is the third termination element Z1.
  • the inductor L3 is connected between one end T3A of the inductor L3 and the third output terminal 3a, and the second terminal element Z2 is connected between one end T3B of the fourth inductor L4 and the fourth output terminal 3b.
  • the third termination element Z3 is connected between one end T4A of the fifth inductor L5 and the fifth output terminal 4a, and the fourth termination element Z4 is one end T4B of the sixth inductor L6 and the sixth output terminal. Connected to 4b (see Figures 35 and 43).
  • the first common output terminal 3c is also used as the third and fourth output terminals 3a and 3b
  • the second common output terminal 4c is also used as the fifth and sixth output terminals 4a and 4b.
  • the first and second termination elements Zl and Z2 are integrated into the first common termination element Z
  • the third and fourth inductors L3 and L4 have a common end T3C and a first common output terminal 3c. Connected between and.
  • the third and fourth termination elements Z3 and Z4 are integrated into the second common termination element Za, and the common ends T4C and second common output terminals 4c of the fifth and sixth inductors L5 and L6 are integrated. (See Figures 39 and 44).
  • each impedance of the first and second termination elements Zl and Z2 (in FIG. 44, the first Impedance of common termination element Z) Force is adjusted to match the common mode impedance of cable 40. Furthermore, the impedance of each of the third and fourth termination elements Z3 and Z4 (in Fig.
  • the impedance of the second common termination element Za) is different from the input impedance of the differential receiver 11 (31). Adjusted to match the common mode impedance of the dynamic wiring 12 (33). In this way, impedance matching is realized with high accuracy for the common mode signal between the cable 40 and the filter circuit 1 and between the filter circuit 1 and the differential wiring 12 (33). Therefore, the reflection of common mode noise by the common mode choke 2 is further reduced. As a result, unnecessary electromagnetic radiation from the cable 40 and the differential wiring 12 (33) to the periphery is further reduced, and the differential receiver 11 (31) is more reliably protected from the reflected common mode noise.
  • the impedances of the first and second termination elements Zl and Z2 (in Fig. 44, the first common termination element Z Impedance) force The output impedance of the differential driver 21 and the common mode impedance of the differential wiring 22 are adjusted to match each other. Further, the impedances of the third and fourth termination elements Z3 and Z4 (in FIG. 44, the impedance of the second common termination element Za) are adjusted to match the common mode impedance of the 1S cable 40. In this way, impedance matching is realized with high accuracy for the common mode signal between the differential wiring 22 and the filter circuit 1 and between the filter circuit 1 and the cable 40, respectively.
  • the reflection of common mode noise by the common mode choke 2 is further reduced.
  • unnecessary electromagnetic radiation around the cable 40, the differential wiring 22, and the force is further reduced.
  • the common mode noise is prevented from entering the LSI including the differential driver 32 and the preceding circuit, fluctuations in the power supply potential and the ground potential due to the reflected common mode noise are reliably suppressed.
  • the differential transmission system according to Embodiment 7 of the present invention is preferably mounted on a portable information device such as a cellular phone (see FIG. 45).
  • a portable information device such as a cellular phone (see FIG. 45).
  • Various modules such as LSI M1 for image processing and RF circuit M2 are mounted on the portable information device. These modules are connected to CPUM3 through cable 41 and controlled in an integrated manner.
  • the LSI M1 for image processing includes the differential transmission device 20 as a communication port, and the CPU M3 includes the differential reception device 10 as a communication port (see Fig. 46). See).
  • a differential transmission / reception device 30 as shown in FIGS. 2 and 3 may be included as each communication port.
  • These communication ports are connected to each other by a cable 41 to form a differential transmission system.
  • Cable 41 includes two differential transmission lines. The phases of signals (differential signals) propagating through each differential transmission path are opposite to each other.
  • the cable 41 is preferably a twisted pair cable with a shield.
  • unshielded twisted pair cable, flat cable, or flexible cable may be used. Especially in mobile phones that can be folded, the cable 41 may be connected between the circuits beyond the hinge H (see Fig. 45).
  • Both the differential receiver 10 and the differential transmitter 20 have the same components as those according to the first embodiment (see Figs. 2, 3, and 46).
  • it includes a filter circuit 1 according to the invention.
  • the filter circuit 1 may be the same as that due to the deviation in the first to sixth embodiments.
  • the differential signal force propagating through the cable 41 substantially completely eliminates the common mode noise and substantially completely transmits the normal mode component of the differential signal.
  • it absorbs virtually complete common mode noise without reflecting it.
  • unnecessary electromagnetic radiation from the cable 41 and the differential wirings 12 and 22 to the periphery is reduced, and the differential receiver 11 and the differential driver 21 are reliably protected from the reflected common mode noise.
  • the filter circuit 1 since the common mode current does not flow into the common mode choke core, the common mode choke core does not cause magnetic saturation. Therefore, the filter circuit 1 is highly reliable. In addition, the volume of the core of the common mode choke may be small. . Therefore, since the filter circuit 1 can be easily downsized, it is advantageous for use in a portable information device.
  • termination elements are connected to the differential wirings 12 and 22 as in the first embodiment (see FIGS. 4 and 5). Since the impedance of the filter circuit 1 is sufficiently low for differential signals, the differential impedance of the differential wirings 12 and 22 and the impedance of the termination element must match the differential impedance of the cable 41, respectively. Adjusted to As a result, there is no substantial distortion or attenuation in the differential signal. In addition, since the layout of the differential wirings 12 and 22 is not greatly restricted by impedance matching, both the differential receiver 10 and the differential transmitter 20 have high circuit design flexibility.
  • the system on which the differential transmission system according to the present invention can be mounted is not limited to the in-vehicle LAN as in the first to sixth embodiments and the portable information device as in the seventh embodiment.
  • the differential transmission system according to the present invention can be used in all electronic devices using a serial interface such as USB, IE EE1394, LVDS, DVI, HDMI, serial ATA, and PCI Express. It will be obvious to those skilled in the art that the above-described embodiments are also possible.
  • the power supply device according to Embodiment 8 of the present invention is preferably mounted on an electronic device (see FIG. 47).
  • the electronic device DV is preferably an information processing device such as a personal computer, a mobile phone, or a fax machine.
  • the power supply device may be a power supply device that supplies power to other circuits by a differential transmission method.
  • the power supply device 50 is connected to an external AC power source AC such as a commercial AC power source through the plug PL and the power line 42.
  • the power line 42 includes two differential transmission lines. Between these differential transmission lines, the phases of the voltage Z current are opposite to each other.
  • the power supply device may be built in the plug PL itself.
  • the power supply device 50 includes the filter circuit 1 and the switching power supply 51 according to the present invention.
  • the filter circuit 1 is connected to the power supply line 42 and removes the common mode noise from the power supply line 42 substantially completely.
  • external AC power supply AC power The supplied power (differential signal) is virtually completely transmitted.
  • Switching power supply 51 is a power converter, preferably a filter
  • the external AC power supply AC power also receives AC voltage through circuit 1 and converts the AC voltage into the specified DC voltages Vdd and Vss.
  • the power factor of the power supplied with AC power may be improved.
  • power may be supplied to other circuits by a differential transmission method.
  • PLC power line communication
  • the filter circuit 1 may be one according to any of the first to sixth embodiments.
  • the common mode noise is substantially completely absorbed without being reflected by the filter circuit 1.
  • unnecessary electromagnetic radiation from the power supply line 42 and internal wiring to the surrounding area is reduced, and the circuit inside the switching power supply 51 and electronic equipment DV is reliably protected from the reflected common mode noise.
  • PLC the communication quality is improved.
  • the filter circuit 1 since the common mode current does not flow to the common mode choke core, the common mode choke core does not cause magnetic saturation. Therefore, the filter circuit 1 is highly reliable.
  • the volume of the common mode choke core may be small. Therefore, the filter circuit 1 can be easily downsized, which is advantageous for downsizing the power supply device DV.
  • the present invention relates to a filter circuit mounted in a differential transmission system or a power supply device, and as described above, common mode noise and differential signal power are also removed using a combination of a common mode choke and a normal mode choke.
  • the present invention is clearly industrially applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Filters And Equalizers (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

 フィルタ回路(1)では、二つの入力端子(1a、1b)を通して受信されるコモンモード信号に対し、コモンモードチョーク(2)のインピーダンスが極めて高く、ノーマルモードチョーク(3)のインピーダンスが極めて低い。差動信号に対してはその逆である。特に、それらのインピーダンス間の差が大きい。更に、ノーマルモードチョーク(3)がコモンモードチョーク(2)の前段に設置されるので、二つの入力端子(1a、1b)を通して侵入するコモンモードノイズはノーマルモードチョーク(3)を透過し、コモンモードチョーク(2)を透過せず、かつコモンモードチョーク(2)で反射されない。特にコモンモード電流がノーマルモードチョーク(3)を流れ、コモンモードチョーク(2)を流れない。                                                                                 

Description

明 細 書
フィルタ回路、及びそれを搭載する差動伝送システムと電源装置 技術分野
[0001] 本発明は、差動伝送方式で電子機器間の通信を行う差動伝送システム、及び、例 えば商用交流電源等の外部電源力 供給される電力を変換する電源装置に関し、 特にそれらに搭載されるフィルタ回路に関する。
背景技術
[0002] 電子機器全般にわたり、多機能化や高機能化への要求に応えるベぐ処理速度が 更なる上昇を続けている。それに伴い、電子機器間の通信に対し、更なる高速化が 求められている。通信の更なる高速ィ匕にはパラレル伝送よりシリアル伝送が有利であ る。従って、近年では例えば、 USB、 IEEE1394、 LVDS、 DVI、 HDMI、シリアル A TA、 PCIエクスプレス等、様々な規格で広範に、シリアル伝送方式が採用されている 特に、カーナビや運転支援システム等の車載電子機器 (電子制御ユニット (ECU) ) では動作周波数の上昇が著しい。従って、車載 LANでは、シリアル通信プロトコルで あるコントローラエリアネットワーク(CAN)が実質上、標準化されつつある。
[0003] 高速のシリアル伝送では一般に、差動伝送方式が採用されている。差動伝送方式 とは、一連のシリアルデータを互いに逆位相の二つの信号 (差動信号又はノーマル モード信号)で伝送する方式をいう。特に、各差動信号の伝送路が並走する。受信装 置 (差動レシーバ)は二つの差動信号間の差分力 シリアルデータを読み取る。それ により、差動伝送方式では、シリアルデータを単独の信号で伝送する方式 (シングル エンド伝送方式)と比べ、信号の振幅が半分で良い。従って、信号の立ち上がり Z立 ち下がりが一般に速い。すなわち、スルーレートが低い。こうして、差動伝送方式は信 号伝送の更なる高速ィ匕に有利である。
[0004] 差動伝送方式は更に、電磁障害 (EMI)の低減に有利である。例えば、二つの差 動信号の伝送路 (差動伝送路)が並走するので、各差動伝送路から周辺に輻射され る電磁波が相殺する。従って、差動伝送方式では不要電磁輻射が極めて弱い。逆に 、周辺の電子機器等から差動伝送路に電磁波が輻射された場合、二つの差動伝送 路には同相のノイズ (コモンモードノイズ)が生じる。しかし、各差動伝送路上のコモン モードノイズは、二つの差動信号間の差分では互いに相殺する。こうして、差動伝送 方式は外部力 の不要電磁輻射に起因するコモンモードノイズに強い。
[0005] 差動伝送方式は特に、 CANを初め、様々な車載 LANに共通して採用されている 。自動車内ではエンジン等の基幹部品や様々な電子制御ユニット (ECU) (例えば、 ドアミラーを回転させるモータ)が車載 LANにノイズを与える。更に、自動車は様々な 環境を走行するので、車載 LANは自動車の外部からも様々な電磁輻射を受ける。 従って、ノイズを出しにくぐかつノイズに強いという差動伝送方式の利点が車載 LA Nには不可欠である。
[0006] 差動伝送方式を利用する送受信装置 (差動送受信装置)には一般に、コモンモー ドノイズによる悪影響を更に確実に抑えるベぐフィルタ回路が搭載される。フィルタ 回路はコモンモードチョークを含み、コモンモードノイズのレベルを差動レシーバの入 力レンジの上限以下に抑える。それにより、差動レシーバの誤動作と破壊とを防止す る。
[0007] 従来のフィルタ回路には、例えば図 48に示されているように、コモンモードチョーク とその後段に接続されたノーマルモードチョークとを含むものが知られている(例えば 特許文献 1参照)。このフィルタ回路は、高周波で生体内の細胞 Bを加熱する装置に 搭載される。生体内の細胞 Bは二つの電極 Tl、 Τ2の間に置かれている。高周波発生 器 Αは電極 Tl、 Τ2の各電圧を高い周波数で変化させる。そのとき、各電極 Tl、 Τ2の 電圧変動の同相成分(すなわちコモンモードノイズ)に対し、コモンモードチョーク 110 は高 、インピーダンスを示し、ノーマルモードチョーク 120は低 、インピーダンスを示 す。従って、前段のコモンモードチョーク 110では、インダクタ Ll、 L2を同相で流れる 電流(コモンモード電流)が抑えられる。更に、その抑えられたコモンモード電流の大 部分が後段のノーマルモードチョーク 120を通る。こうして、二つの電極 Tl、 Τ2と生体 内の細胞 Βとの間にはコモンモード電流が流れない。すなわち、細胞 Βから電極 Tl、 Τ2以外への電流の漏れが防止される。
[0008] 従来のフィルタ回路には上記の他に、例えば図 49に示されているように、終端素子 、コモンモードチョーク、及び、抵抗素子を含むものが知られている(例えば特許文献
2参照)。終端素子 210は二つの差動伝送路 200の終端間に直列に接続された二つ の等価な抵抗素子であり、それらの間の接続点が接地されている。抵抗素子 230はコ モンモードチョーク 220の出力端子間に接続される。
[0009] 差動伝送路 200を伝搬するコモンモード信号に対し、コモンモードチョーク 220のィ ンピーダンスは極めて高いので、終端素子 210のコモンモードインピーダンスが差動 伝送路 200のコモンモードインピーダンスと整合するように設定される。一方、差動伝 送路 200を伝搬する差動信号に対し、コモンモードチョーク 220のインピーダンスは極 めて低 、ので、終端素子 210の差動インピーダンスと抵抗素子 230のインピーダンスと の合成が差動伝送路 200の差動インピーダンスと整合するように調整される。こうして 、コモンモードチョーク 220によるコモンモードノイズの反射が抑えられ、かつ、終端素 子 210とコモンモードチョーク 220とによる差動信号の歪みや減衰が抑えられる。更に 、差動伝送路 200を伝わるコモンモード電流は終端素子 210とコモンモードチョーク 22 0とに分かれて流れる。従って、コモンモードチョーク 220を流れるコモンモード電流が 低減するので、コモンモードチョーク 220のコアが磁気飽和を生じにくぐかつ後段の 回路には過電流が流れない。こうして、このフィルタ回路は高い信頼性を維持する。
[0010] EMI対策は、差動伝送方式による通信システム (差動伝送システム)だけでなぐ外 部から供給される交流電力を適切な電力に変換する電源装置についても重要である 。その電源装置は例えば商用交流電源等、外部の交流電源に接続され、好ましくは スイッチング電源を利用して交流電圧を直流電圧に変換する。その他に、外部の交 流電源から供給される電力の力率を改善する。更に、電源装置を電力線通信 (PLC )に利用する場合、 EMI対策は不可欠である。
そのような電源装置では差動伝送システムと同様に、上記のフィルタ回路が EMIの 低減に有効である。フィルタ回路は外部の電源線に生じるコモンモードノイズを電源 装置から遮断することで、後段に送出される電力を安定化させる。フィルタ回路は更 に、例えば電源装置内のスイッチングに伴うコモンモードノイズ、又は後段の回路か ら伝わるコモンモードノイズを外部の電源線力も遮断する。それにより、電源装置に 起因する不要電磁輻射が抑えられる。 特許文献 1:特開昭 59 - 207148号公報
特許文献 2 :特開 2002— 261842号公報
発明の開示
発明が解決しょうとする課題
[0011] シリアル伝送を更に高速ィ匕するには、差動伝送路でのコモンモードノイズの発生を 更に効果的に抑制することで、シリアル信号の品質を更に向上させ、かつ周辺に対 する不要電磁輻射を更に抑制しなければならない。一方、電源装置の信頼性を更に 向上させるには、電源線でのコモンモードノイズの発生を更に効果的に抑制すること で、変換された電力の品質を更に向上させ、かつ周辺に対する不要電磁輻射を更に 抑制しなければならない。このように、差動伝送システムと電源装置とのいずれでも、 コモンモードノイズに対するフィルタ回路の抑制効果を更に向上させることが望まれる
[0012] しかし、図 48に示されているような従来のフィルタ回路では、高周波発生器 Aから送 出されたコモンモードノイズの大半はコモンモードチョーク 110で反射され、その電力 は高周波発生器 Aとコモンモードチョーク 110との間のケーブルから周辺に電磁輻射 として放散される。すなわち、このフィルタ回路では、不要電磁輻射に対する抑制効 果を更に向上させることは困難である。更に、コモンモード電流が過大な場合、コモ ンモードチョーク 110ではコアが磁気飽和を生じ、コモンモードノイズに対する抑制効 果を損なうおそれがある。すなわち、このフィルタ回路では、コモンモードチョーク 110 のコアを小型に維持したまま、コモンモードノイズに対する抑制効果を更に向上させ ることが困難である。
[0013] 図 49に示されているような従来のフィルタ回路では、コモンモードノイズに対しては 終端素子 210がコモンモードチョーク 220での反射を抑えるので、フィルタ回路からの 不要電磁輻射が弱い。更に、コモンモード電流が終端素子 210とコモンモードチョー ク 220とに分かれて流れるので、コモンモードチョーク 220のコアが磁気飽和を生じにく い。一方、差動信号に対しては終端素子 210と抵抗素子 230との合成インピーダンス が差動伝送路 200の差動インピーダンスと整合する。従って、フィルタ回路から出力さ れる差動信号は歪みや減衰が小さ ヽ。 [0014] し力し、終端素子 210の差動インピーダンスはそのコモンモードインピーダンス(すな わち、各抵抗素子の抵抗値)で決まり、しかも両者間の差が小さい (差動インピーダン スはコモンモードインピーダンスの四倍程度である)。従って、「終端素子 210と差動伝 送路との間でコモンモードインピーダンスを整合させる」という条件下では、終端素子 210の差動インピーダンスを更に上昇させることが困難である。それ故、コモンモード チョーク 220によるコモンモードノイズの反射を十分に抑えたままでは、終端素子 210 や抵抗素子 230による差動信号の歪みや減衰を更に抑制することが困難である。
[0015] その他に、コモンモードチョーク 220に起因する差動信号の歪みや減衰を抑えるに は、抵抗素子 230がコモンモードチョーク 220の後段に設置されねばならない。その場 合、終端素子 210と抵抗素子 230との間の経路長がある程度、大きくならざるを得ない 。従って、差動信号の周波数が更に上昇し、その波長が終端素子 210と抵抗素子 230 との間の経路長に対して無視できない程度まで短縮するとき、終端素子 210と抵抗素 子 230との合成インピーダンスを差動伝送路の差動インピーダンスに高精度で整合さ せることが困難である。こうして、更に高い周波数帯域では、差動信号の歪みや減衰 を更に抑制することが困難である。
[0016] 本発明は、十分に広い周波数帯域で、差動信号に過大な歪みや減衰を生じさせる ことなぐかつコモンモード信号を反射することなぐ差動信号とコモンモード信号とを 分離し、その上、コモンモード電流によるコモンモードチョークのコアの磁気飽和を確 実に回避するフィルタ回路、の提供を目的とする。
課題を解決するための手段
[0017] 本発明によるフィルタ回路は、
第一と第二との入力端子;
第一、第二、第三、及び第四の出力端子;
第一の入力端子と第一の出力端子との間に接続された、第一のインダクタ、及び 第一のインダクタと磁気的に結合し、第二の入力端子と第二の出力端子との間に 第一のインダクタと同じ極性で接続された、第二のインダクタ、
を含む、コモンモードチョーク; 並びに、
第一の入力端子と第三の出力端子との間に接続された、第三のインダクタ、及び 第三のインダクタと磁気的に結合し、第二の入力端子と第四の出力端子との間に 第三のインダクタとは逆の極性で接続された、第四のインダクタ、
を含む、ノーマルモードチョーク;
を有する。
ここで、第一から第四までのインダクタは好ましくは、積層インダクタ又は薄膜インダ クタである。その場合、コモンモードチョークとノーマノレモードチョークとが同じチップ 上に集積されるので、このフィルタ回路は極めて小さ!/、。
[0018] その他に、コモンモードチョークとノーマルモードチョークとがそれぞれ、一つのコア とそれに巻き付けられた二本のコイルとを含んでも良い。特にノーマルモードチョーク では好ましくは、コモンモード電流により生じる磁束が互いに相殺するような向きで、 二本のコイルがコアに卷かれている。すなわち、二本のコイルのいずれかが、バイフ アイラ巻き又はキャンセル巻きとは逆向きに巻かれている。それにより、ノーマルモー ドチョークとフィルタ回路の入力端子又は出力端子との間の配線が短いので、フィル タ回路の小型化が容易である。
更に、ノーマルモードチョークでは一般的なコモンモードチョークと同様に、二本の コイルがバイフアイラ巻き又はキャンセル巻きで巻かれていても良い。その場合、第三 と第四とのインダクタ間で、フィルタ回路の入力端子 Z出力端子への接続の極性が 逆であれば良い。
[0019] 本発明によるこのフィルタ回路では、コモンモードチョークのインピーダンスがコモン モード信号に対しては十分に高ぐ差動信号に対しては十分に低い。ノーマルモード チョークのインピーダンスは逆に、コモンモード信号に対しては十分に低ぐ差動信 号に対しては十分に高い。特に、それらのインピーダンスの差が十分に大きい。更に 、ノーマルモードチョークがコモンモードチョークの前段に設置され、すなわちコモン モードチョークより第一と第二との入力端子に近い所に接続される。従って、第一と第 二との入力端子を通して受信される信号のうち、実質上、ノーマルモード成分のみが コモンモードチョークを透過し、コモンモード成分のみがノーマルモードチョークを透 過する。こうして、第一と第二との入力端子を通して受信されるコモンモードノイズが 第一と第二との出力端子から遮断される。その上、コモンモードチョークによるコモン モードノイズの反射が実質上生じな 、ので、周辺への不要電磁輻射が抑制される。 それにカ卩え、コモンモードチョークにはコモンモード電流が実質上流れないので、コ モンモードチョークのコアが磁気飽和を生じない。従って、コモンモードチョークは信 頼'性が高い。
[0020] 好ましくは、本発明による上記のフィルタ回路が更に、第一と第二とのインピーダン ス素子を含む。第一のインピーダンス素子は、第三のインダクタと第三の出力端子と の間、若しくは第一の入力端子と第三のインダクタとの間のいずれか、又はその両方 に接続される。第二のインピーダンス素子は、第四のインダクタと第四の出力端子と の間、若しくは第二の入力端子と第四のインダクタとの間のいずれか、又はその両方 に接続される。第一と第二のインピーダンス素子により、差動伝送路とフィルタ回路と の間では、差動信号に対するインピーダンス整合が高精度に維持されたまま、コモン モード信号に対するインピーダンス整合の精度が更に向上する。それにより、コモン モードチョークによるコモンモードノイズの反射が更に抑えられるので、周辺への不要 電磁輻射が更に効果的に抑制される。
[0021] 本発明による上記のフィルタ回路は、好ましくは、
第五と第六との出力端子;並びに、
第一の出力端子と第五の出力端子との間に接続された、第五のインダクタ、及び 第五のインダクタと磁気的に結合し、第二の出力端子と第六の出力端子との間に 第五のインダクタとは逆の極性で接続された、第六のインダクタ、
を含む、第二のノーマルモードチョーク;
を更に有する。ここで、第五と第六のインダクタは好ましくは、積層インダクタ又は薄 膜インダクタである。その他に、第二のノーマルモードチョークが一つのコアとそれに 巻き付けられた二本のコイルとを含んでも良い。その場合、好ましくは、二本のコイル の!、ずれかがバイフアイラ巻き又はキャンセル巻きとは逆に巻かれて 、る。それとは 別に、上記のノーマルモードチョークと同様に、二本のコイルがバイフアイラ巻き又は キャンセル巻きで巻かれていても良い。その場合、第五と第六とのインダクタ間でフィ ルタ回路の出力端子への接続の極性が逆であれば良い。
[0022] 第二のノーマルモードチョークのインピーダンスはコモンモード信号に対しては十 分に低い。従って、第一と第二との出力端子を通して受信されるコモンモードノイズ は第二のノーマルモードチョークを通して第五と第六との出力端子に送出され、コモ ンモードチョークには伝達されない。すなわち、第一と第二との出力端子を通して受 信されるコモンモードノイズが第一と第二との入力端子力も遮断される。更に、コモン モードチョークによるコモンモードノイズの反射が弱い。その結果、周辺への不要電 磁輻射が抑制される。
その上、二つのノーマノレモードチョークがコモンモードチョークに対し、対称的に配 置される。従って、本発明による上記のフィルタ回路は入力と出力とを逆にしても、す なわち双方向で、コモンモードノイズの抑制効果が高い。
[0023] 好ましくは、本発明による上記のフィルタ回路が更に、第三と第四とのインピーダン ス素子を含む。第三のインピーダンス素子は、第五のインダクタと第五の出力端子と の間、若しくは第一の出力端子と第五のインダクタとの間のいずれか、又はその両方 に接続される。第四のインピーダンス素子は、第六のインダクタと第六の出力端子と の間、若しくは第二の出力端子と第六のインダクタとの間のいずれか、又はその両方 に接続される。第三と第四とのインピーダンス素子により、フィルタ回路と外部との間 で、差動信号に対するインピーダンス整合が高精度に維持されたまま、コモンモード 信号に対するインピーダンス整合の精度が更に向上する。それにより、周辺への不 要電磁輻射が更に効果的に抑制される。
[0024] 本発明による差動受信装置は、好ましくは、本発明による上記のフィルタ回路、及 び、そのフィルタ回路の第一と第二との出力端子に接続された入力端子対を有する 差動レシーバ、を具備する。この差動受信装置では特に、第一と第二との入力端子 が外部の差動伝送路に接続され、第三と第四との出力端子が一定の電位 (好ましく は接地電位)に維持される。従って、差動伝送路力 伝わるコモンモードノイズは第 三と第四との出力端子に伝達され、差動レシーバには伝達されない。更に、コモンモ ードノイズは差動伝送路には反射されない。こうして、本発明による差動受信装置は コモンモードノイズに強ぐかつ不要電磁輻射を十分に低減させる。
[0025] 本発明による差動送信装置は、好ましくは、本発明による上記のフィルタ回路、及 び、そのフィルタ回路の第一と第二との入力端子に接続された出力端子対を有する 差動ドライバ、を具備する。この差動送信装置では特に、第一と第二との出力端子が 外部の差動伝送路に接続され、第三と第四との出力端子が一定の電位 (好ましくは 接地電位)に維持される。従って、差動ドライノから送出されるコモンモードノイズは 第三と第四との出力端子に伝達され、差動伝送路には伝達されない。更に、コモン モードノイズは差動ドライバには反射されない。こうして、本発明による差動送信装置 はコモンモードノイズに強ぐかつ不要電磁輻射を十分に低減させる。
[0026] 第二のノーマルモードチョークを有する本発明による上記のフィルタ回路は、好まし くは、差動送受信装置に搭載される。その差動送受信装置では、フィルタ回路の第 一と第二との入力端子が第一と第二との入出力端子として利用され、第一と第二との 出力端子が第三と第四との入出力端子として利用される。第一と第二との入出力端 子は差動レシーバの入力端子対と差動ドライバの出力端子対とに接続され、第三と 第四との入出力端子は外部の差動伝送路に接続される。更に、フィルタ回路の第三 から第六までの出力端子 (以下、第一から第四までの出力端子という)はいずれも、 一定の電位 (好ましくは接地電位)に維持される。従って、差動ドライバから送出され るコモンモードノイズはノーマルモードチョークを通して第一と第二との出力端子に伝 達され、差動伝送路には伝達されない。更に、コモンモードノイズは差動レシーバと 差動ドライバとには反射されない。逆に、差動伝送路力 伝わるコモンモードノイズは 第二のノーマルモードチョークを通して第三と第四との出力端子に伝達され、差動レ シーバと差動ドライバとには伝達されない。更に、コモンモードノイズは差動伝送路に は反射されない。こうして、本発明による差動送受信装置はコモンモードノイズに強く 、かつ不要電磁輻射を十分に低減させる。
[0027] 本発明による電源装置は、好ましくは、本発明による上記のフィルタ回路、及び、そ のフィルタ回路の第一と第二との出力端子に接続された入力端子対を有する電力変 換部、を具備する。この電源装置では特に、第一と第二との入力端子が外部の電源 線に接続され、第三と第四との出力端子が一定の電位 (好ましくは接地電位)に維持 される。従って、電源線力も受信されるコモンモードノイズは第三と第四との出力端子 に伝達され、電力変換部には伝達されない。更に、コモンモードノイズは電源線には 反射されない。本発明による電源装置は更に、第二のノーマルモードチョークを搭載 しても良い。それにより、電力変換部、又は後段の回路力 送出されるコモンモードノ ィズが、外部の電源線から遮断される。こうして、本発明による電源装置はコモンモー ドノイズに強ぐかつ不要電磁輻射を十分に低減させる。
発明の効果
[0028] 本発明によるフィルタ回路では上記の通り、第一と第二との入力端子を通して受信 される信号のうち、ノーマルモード成分はコモンモードチョークを透過し、コモンモー ド成分はノーマルモードチョークを透過する。特に、コモンモードノイズは第一と第二 との出力端子には伝達されず、第一と第二との入力端子には反射されない。こうして 、本発明によるフィルタ回路は、差動信号に過大な歪みや減衰を生じさせることなぐ かつコモンモード信号を反射することなぐ差動信号とコモンモード信号とを分離する 。特に、差動信号力もコモンモードノイズが反射されることなく除去される。従って、コ モンモードノイズに起因する不要電磁輻射が十分に低減すると共に、過大なコモン モードノイズによる回路素子の誤動作や破壊が確実に阻止される。更に、コモンモー ド電流がノーマルモードチョークを通り、コモンモードチョークを通らないので、コモン モードチョークのコアが磁気飽和を生じない。その結果、本発明によるフィルタ回路 では特に、コアの小型化が容易であり、かつ信頼性が高い。
[0029] このように、本発明によるフィルタ回路は従来のフィルタ回路と比べ、特に、 EMIの 低減、コモンモードノイズに対する耐性の強化、及び小型化に有利である。従って、 例えば、 USB、 IEEE1394、 LVDS、 DVI、 HDMI、シリアル ATA、 PCIエクスプレス 等、様々なシリアルインタフェースに搭載される差動伝送システム、特に車載 LANや 携帯情報機器 (モノ ィル機器)に搭載される差動伝送システム、及び電源装置での 利用に適している。
図面の簡単な説明
[0030] [図 1]本発明の実施形態による車載 LANを示すブロック図 [図 2]図 1に示されて ヽる車載 LANの接続形態を示すブロック図
[図 3]図 1に示されて ヽる車載 LANの別の接続形態を示すブロック図
圆 4]図 2、 3に示されている差動受信装置の変形例を示すブロック図
圆 5]図 2、 3に示されている差動受信装置の別の変形例を示すブロック図
圆 6]図 2、 3に示されている差動送信装置の変形例を示すブロック図
圆 7]本発明の実施形態 1によるフィルタ回路の等価回路を示す図
圆 8]コモンモードチョークとノーマルモードチョークとを一つのパッケージとして含む
、本発明の実施形態 1によるフィルタ回路の等価回路を示す図
圆 9]本発明の実施形態 1によるフィルタ回路の別の等価回路を示す図
[図 10]図 9に示されているノーマルモードチョークのコアを示す図
[図 11]図 9に示されているノーマルモードチョークの別のコアを示す図
[図 12]図 9に示されているノーマルモードチョークの更に別のコアを示す図 圆 13]本発明の実施形態 1によるフィルタ回路の更に別の等価回路を示す図 圆 14]本発明の実施形態 2によるフィルタ回路の等価回路を示す図
[図 15]図 14に示されているコモンモードチョークとノーマルモードチョークとを示す分 解斜視図
[図 16]図 15に示されているコモンモードチョークとノーマルモードチョークとの平面図
[図 17]図 16に示されている直線 XVII— XVIIに沿った断面を示す図
[図 18]本発明の実施形態 2によるフィルタ回路に含まれている、別のコモンモードチヨ ークとノーマルモードチョークとを示す分解斜視図
[図 19]図 18に示されて!/、る直線 XIX— XIXに沿った断面を示す図
[図 20]本発明の実施形態 2によるフィルタ回路に含まれているコモンモードチョークと ノーマルモードチョークとの間に挟まれている磁気分離層を示す分解斜視図
[図 21]本発明の実施形態 2によるフィルタ回路に含まれている、更に別のコモンモー ドチョークとノーマルモードチョークとを示す分解斜視図
[図 22]図 21に示されているコモンモードチョークとノーマルモードチョークとの平面図 [図 23]図 22に示されて!/、る直線 XXIII— XXIIIに沿った断面を示す図
圆 24]本発明の実施形態 2によるフィルタ回路の別の等価回路を示す図 [図 25]図 24に示されているフィルタ回路に含まれているコモンモードチョークとノーマ ルモードチョークとを示す分解斜視図
[図 26]図 25に示されているコモンモードチョークとノーマルモードチョークとの平面図 圆 27]本発明の実施形態 3によるフィルタ回路の等価回路を示す図
圆 28]本発明の実施形態 3によるフィルタ回路の別の等価回路を示す図
[図 29]コモンモードチョークとノーマルモードチョークとを一つのパッケージとして含む
、本発明の実施形態 3によるフィルタ回路の等価回路を示す図
[図 30]コモンモードチョークとノーマルモードチョークとを積層(又は薄膜)インダクタと して含む、本発明の実施形態 3によるフィルタ回路の等価回路を示す図
圆 31]第三と第四との出力端子が共通の出力端子に統合されている、本発明の実施 形態 3によるフィルタ回路の等価回路を示す図
圆 32]本発明の実施形態 4によるフィルタ回路の等価回路を示す図
圆 33]コモンモードチョークと二つのノーマルモードチョークとを一つのパッケージとし て含む、本発明の実施形態 4によるフィルタ回路の等価回路を示す図
圆 34]本発明の実施形態 5によるフィルタ回路の等価回路を示す図
[図 35]図 34に示されているフィルタ回路に含まれているコモンモードチョークと二つの ノーマルモードチョークとを示す分解斜視図
[図 36]図 35に示されているコモンモードチョークと二つのノーマルモードチョークとの 平面図
[図 37]図 36に示されて ヽる直線 37— 37に沿った断面を示す図
圆 38]本発明の実施形態 5によるフィルタ回路の別の等価回路を示す図
[図 39]図 38に示されているフィルタ回路に含まれているコモンモードチョークと二つの ノーマルモードチョークとを示す分解斜視図
[図 40]図 39に示されているコモンモードチョークと二つのノーマルモードチョークとの 平面図
圆 41]本発明の実施形態 6によるフィルタ回路の等価回路を示す図
圆 42]コモンモードチョークと二つのノーマルモードチョークとを一つのパッケージとし て含む、本発明の実施形態 6によるフィルタ回路の等価回路を示す図 [図 43]コモンモードチョークと二つのノーマルモードチョークとを積層(又は薄膜)イン ダクタとして含む、本発明の実施形態 6によるフィルタ回路の等価回路を示す図 圆 44]第三と第四との出力端子、及び第五と第六との出力端子がそれぞれ、共通の 出力端子に統合されている、本発明の実施形態 6によるフィルタ回路の等価回路を 示す図
圆 45]本発明の実施形態 7による携帯情報機器を示すブロック図
圆 46]図 45に示されている携帯情報機器に搭載されている、本発明の実施形態 7に よる差動伝送システムを示すブロック図
圆 47]本発明の実施形態 8による電源装置を示すブロック図
圆 48]従来のフィルタ回路を示す等価回路図
[図 49]従来の別のフィルタ回路を示す等価回路図
符号の説明
1 フィルタ回路
la 第一の入力端子
lb 第二の入力端子
2 コモンモードチョーク
し 1 第一のインダクタ
L2 第二のインダクタ
2a 第一の出力端子
2b 第二の出力端子
3 ノーマノレモードチョーク
L3 第三のインダクタ
し 4 第四のインダクタ
3a 第三の出力端子
3b 第四の出力端子
発明を実施するための最良の形態
以下、本発明の最良の実施形態について、図面を参照しつつ説明する。
《実施形態 1》 本発明の実施形態 1による差動伝送システムは好ましくは、 CAN等の車載 LANに 搭載される(図 1参照)。車載 LANには様々な ECUが接続される。例えば、エンジン 、トランスミッション、及びブレーキ等、 自動車の駆動系統 (パワートレイン系)を制御 する ECUE1; ABSやエアバック等、安全装置類 (安全走行系)を制御する ECUE2; ヘッドライト、エアコン、及びサイドミラー等、自動車の付属部品(ボディ系)を制御す る ECUE3 ;が含まれる。車載 LANには更に、車載カメラ、車間距離計測用レーザ、 及び加速度センサ等のセンサ類;カーナビや ETC等の情報電子機器類 (ITS系) E4 ;並びに、 DVDプレーヤやオーディオコンポ等の AV機器が接続される。それらの E CUや車載電子機器 (以下、 ECU等と略す)の接続形態は好ましくはバス型である。 その他に、スター型であっても良い。多種多様な ECU等が車載 LANを通して通信を 行い、相互に連携する。それにより、様々な、高度な機能が実現される。
[0033] 車載 LANでは ECU等の間がケーブル 40で接続される。このケーブル 40は一般に 長い(例えば 2m以上のものを含む)。一方、自動車内では、例えばエンジン Eゃドアミ ラー DMを回転させるモータ等、様々な部品から電磁波が放射される。更に、 自動車 は様々な環境を走行するので、外部力 も様々な電磁波が自動車内に侵入する。そ れらの電磁波がケーブル 40にノイズを発生させる。そのノイズに加え、 ECU等からケ 一ブル 40に直接送出されたノイズがケーブル 40の周囲に電磁波として放射され、他 のケーブル 40やアンテナ ATにノイズを与える。このように車載 LANでは、不要電磁 輻射とそれに起因するノイズとが共に高 、。それらのノイズによる各 ECU等に対する 悪影響、すなわち EMIを抑える目的で、車載 LANでの通信は差動伝送方式で行わ れる。
[0034] ECU等 Ul、 U2、 U3、…はそれぞれ、差動受信装置 10、差動送信装置 20、又は差 動送受信装置 30を通信ポートとして含む(図 2、 3参照)。これらの通信ポートがケープ ル 40で互いに接続され、差動伝送システムを構成する。ケーブル 40は二本の差動伝 送路を含む。各差動伝送路を伝搬する信号 (差動信号)間では位相が互いに逆であ る。ケーブル 40には好ましくは、シールド付ツイストペアケーブルが使用される。その 他に、シールドなしのツイストペアケーブル、フラットケーブル、又はフレキケーブルが 使用されても良い。ケーブル 40は好ましくは、通信ポートを一対一で接続する(図 2参 照)。その場合、各 ECU等 Ul、 U2、 U3、…が受信した信号を次の ECU等へリピート することで、バス型の LANを論理的に構成する。その他に、ケーブルがバス 40Bと分 岐線 40Aとに物理的に分けられても良い(図 3参照)。
[0035] 差動受信装置 10は受信専用の装置であり、例えばディスプレイ U1に搭載される(図
2、 3参照)。差動受信装置 10は、本発明によるフィルタ回路 1、差動レシーバ 11、及び 差動配線 12を含む。フィルタ回路 1の二つの入力端子 la、 lbは、ケーブル 40に含ま れている差動伝送路に接続される。ここで、ケーブル 40とフィルタ回路 1との間には、 例えば直流阻止キャパシタゃ静電保護ダイオードが更に接続されても良い。フイノレタ 回路 1はケーブル 40を通して他の ECU等力 差動信号を受信し、その差動信号から コモンモードノイズを除去する。フィルタ回路 1は特に、差動信号のノーマルモード成 分を実質上完全に透過させる。その一方で、コモンモードノイズを反射することなぐ 実質上完全に吸収する(詳細は後述)。フィルタ回路 1の二つの出力端子 2a、 2bは差 動配線 12に接続される。ここで、フィルタ回路 1と差動配線 12との間には、例えばロー ノ スフィルタが接続されても良い。フィルタ回路 1から送出された差動信号は、差動配 線 12を通し、差動レシーバ 11の入力端子対で受信される。差動レシーバ 11は受信さ れた差動信号の差分を増幅する。ディスプレイ U1は差動レシーバ 11の出力信号から 、例えば画像データを解読し、それに基づいてスクリーンに画像を再現する。
[0036] 差動受信装置 10では更に好ましくは、差動レシーバ 11の入力端子対に終端素子 1
3、 14、又は 15が接続される(図 4、 5参照)。終端素子 13、 14、 15は好ましくは抵抗素 子であり、差動レシーバ 11と共に、一つの LSI上に集積される。図 4では、差動レシ一 バ 11の各入力端子が終端素子 13、 14を通して定電位端子 (好ましくは接地端子)に 接続される。図 5では、差動レシーバ 11の入力端子間が終端素子 15で接続される。 差動信号に対してはフィルタ回路 1のインピーダンスが十分に低い。従って、差動配 線 12の差動インピーダンスと終端素子 13、 14、 15のインピーダンスとがそれぞれ、ケ 一ブル 40の差動インピーダンスと整合するように調整される。例えば、ケーブル 40の 差動インピーダンスが 100 Ωである場合、差動配線 12の差動インピーダンスが 100 Ω 程度に設定される。更に、図 4では終端素子 13、 14のインピーダンスがそれぞれ 50 Ω 程度に設定され、図 5では終端素子 15のインピーダンスが 100 Ω程度に設定される。 その結果、差動レシーバ 11により受信される差動信号には実質的な歪みや減衰が生 じない。その上、差動配線 12のレイアウトがインピーダンス整合からは大きな制約を受 けな 、ので、差動受信装置 10は回路設計の柔軟性が高 、。
[0037] 差動送信装置 20は送信専用の装置であり、例えばディスプレイ U1の制御回路 U2に 搭載される(図 2、 3参照)。差動送信装置 20は、差動ドライバ 21、本発明によるフィル タ回路 1、及び差動配線 22を含む。制御回路 U2内では、例えば画像データに基づい て差動信号が生成される。差動ドライバ 21はその差動信号を増幅する。増幅された 差動信号は差動ドライバ 21の出力端子対力 差動配線 22に送出される。フィルタ回 路 1の二つの入力端子 la、 lbは差動配線 22に接続される。ここで、差動配線 22とフィ ルタ回路 1との間には、例えばローノ スフィルタが接続されても良い。フィルタ回路 1は 差動配線 22を通して差動信号を受信し、その差動信号力 コモンモードノイズを除去 する。フィルタ回路 1は特に、差動信号のノーマルモード成分を実質上完全に透過さ せる。その一方で、コモンモードノイズを反射することなぐ実質上完全に吸収する( 詳細は後述)。フィルタ回路 1の二つの出力端子 2a、 2bは、ケーブル 40に含まれてい る差動伝送路に接続される。ここで、フィルタ回路 1とケーブル 40との間には、例えば 直流阻止キャパシタゃ静電保護ダイオードが更に接続されても良い。フィルタ回路 1 はケーブル 40を通して他の ECU等に差動信号を送出する。
[0038] 差動送信装置 20では更に好ましくは、差動ドライバ 21の出力端子対がそれぞれ、 終端素子 23、 24を通して差動配線 22に接続される(図 6参照)。終端素子 23、 24は好 ましくは抵抗素子であり、更に好ましくは、差動ドライバ 21と共に、一つの LSI上に集 積される。その他に、差動ドライバ 21とは異なる独立素子として実装されても良い。 フィルタ回路 1の差動インピーダンスが十分に低いので、差動配線 22の差動インピ 一ダンス、及び、差動ドライバ 21のオン抵抗と終端素子 23、 24のインピーダンスとの合 成がそれぞれ、ケーブル 40の差動インピーダンスと整合するように調整される。例え ば、ケーブル 40の差動インピーダンスが 100 Ωである場合、差動配線 22の差動インピ 一ダンスが 100 Ω程度に設定され、差動ドライバ 21のオン抵抗と終端素子 23、 24のィ ンピーダンスとの合成がそれぞれ 50 Ω程度に設定される。その結果、ケーブル 40〖こ 送出される差動信号には実質的な歪みや減衰が生じない。その上、差動配線 22のレ ィアウトがインピーダンス整合力もは大きな制約を受けな 、ので、差動送信装置 20は 回路設計の柔軟性が高い。
[0039] 差動送受信装置 30は差動受信装置 10と差動送信装置 20とを一体化した装置であ り、送信と受信との両方を行う ECU等 U3に搭載される(図 2、 3参照)。差動送受信装 置 30は、差動レシーバ 31、差動ドライバ 32、本発明によるフィルタ回路 1、及び差動配 線 33を含む。
[0040] フィルタ回路 1の二つの入力端子 la、 lbは、ケーブル 40に含まれている差動伝送路 に接続される。ここで、ケーブル 40とフィルタ回路 1との間には、例えば直流阻止キヤ パシタゃ静電保護ダイオードが更に接続されても良い。フィルタ回路 1はケーブル 40 を通して他の ECU等力 差動信号を受信し、その差動信号力 コモンモードノイズを 除去する。フィルタ回路 1は特に、差動信号のノーマルモード成分を実質上完全に透 過させる。その一方で、コモンモードノイズを反射することなぐ実質上完全に吸収す る(詳細は後述)。フィルタ回路 1の二つの出力端子 2a、 2bは差動配線 33に接続され る。ここで、フィルタ回路 1と差動配線 33との間には、例えばローパスフィルタが接続さ れても良い。フィルタ回路 1から送出された差動信号は、差動配線 33を通し、差動レ シーバ 31の入力端子対で受信される。差動レシーバ 31は受信された差動信号の差 分を増幅する。 ECU等 U3は差動レシーバ 31の出力信号力 通信データを解読する
[0041] ECU等 U3内では、他の ECU等に伝えられるべきデータに基づいて差動信号が生 成される。差動ドライバ 32はその差動信号を増幅する。増幅された差動信号は差動ド ライバ 32の出力端子対力 差動配線 33に送出される。フィルタ回路 1は、差動配線 33 、及び第一と第二との出力端子 2a、 2bを通して差動信号を受信し、その差動信号か らコモンモードノイズを除去する。フィルタ回路 1は特に、差動信号のノーマルモード 成分を実質上完全に透過させる。フィルタ回路 1は更に、第一と第二との入力端子 la 、 lbを通してケーブル 40に差動信号を送出する。このように、差動送受信装置 30では 、フィルタ回路 1の二つの入力端子 la、 lb、及び二つの出力端子 2a、 2bがいずれも、 入出力端子として利用される。
[0042] 差動送受信装置 30では好ましくは、差動受信装置 10と同様に、差動レシーバ 31の 入力端子対に終端素子 13、 14、又は 15が接続される(図 4、 5参照)。それにより、差 動レシーバ 31により受信される差動信号には実質的な歪みや減衰が生じない。更に 好ましくは、差動送信装置 20と同様に、差動ドライバ 32の出力端子対がそれぞれ、終 端素子 23、 24を通して差動配線 33に接続される(図 6参照)。それにより、ケーブル 40 に送出される差動信号には実質的な歪みや減衰が生じない。その上、差動配線 33 のレイアウトがインピーダンス整合力もは大きな制約を受けな 、ので、差動送受信装 置 30は回路設計の柔軟性が高い。
[0043] フィルタ回路 1は、二つの入力端子 la、 lb、四つの出力端子 2a、 2b、 3a、 3b、コモン モードチョーク 2、及びノーマルモードチョーク 3を有する(図 7参照)。
二つの入力端子 la、 lbは図 2、 3に示されている通り、差動受信装置 10と差動送受 信装置 30とではケーブル 40に接続され、差動送信装置 20では差動ドライバ 21の出力 端子に接続される。第一と第二との出力端子 2a、 2bは図 2、 3に示されている通り、差 動受信装置 10と差動送受信装置 30とでは差動レシーバ 11、 31の入力端子に接続さ れ、差動送信装置 20ではケーブル 40に接続される。第三と第四との出力端子 3a、 3b は定電位端子 (好ましくは接地端子)に接続される。
[0044] コモンモードチョーク 2は二つのインダクタ Ll、 L2を含む。第一のインダクタ L1は第 一の入力端子 laと第一の出力端子 2aとの間に接続される。第二のインダクタ L2は第 二の入力端子 lbと第二の出力端子 2bとの間に接続される。二つのインダクタ Ll、 L2 は互いに磁気的に結合し、特に、入力端子と出力端子との間に同じ極性で接続され る。すなわち、二つの入力端子 la、 lbと二つの出力端子 2a、 2bとの間に、コモンモー ド電流が流れるときは二つのインダクタ Ll、 L2に生じる磁束が互いに強め合い、ノー マルモード電流が流れるときは二つのインダクタ Ll、 L2に生じる磁束が相殺する。そ れにより、コモンモードチョーク 2のインピーダンスは、二つの入力端子 la、 lbを通して 受信される信号のうち、コモンモード成分に対しては極めて高ぐノーマルモード成分 に対しては極めて低い。
本発明の実施形態 1では、コモンモードチョーク 2がーつのコアとそれに巻き付けら れたニ本のコイルとを含む。好ましくは、二本のコイルがコアにバイフアイラ巻き又は キャンセル巻きで巻かれて 、る。 [0045] ノーマルモードチョーク 3は二つのインダクタ L3、 L4を含む。第三のインダクタ L3は 第一の入力端子 laと第三の出力端子 3aとの間に接続される。第四のインダクタ L4は 第二の入力端子 lbと第四の出力端子 3bとの間に接続される。二つのインダクタ L3、 L 4は互いに磁気的に結合し、特に、入力端子と出力端子との間に逆の極性で接続さ れる。すなわち、二つの入力端子 la、 lbと二つの出力端子 3a、 3bとの間に、ノーマル モード電流が流れるときは二つのインダクタ L3、L4に生じる磁束が互いに強め合い、 コモンモード電流が流れるときは二つのインダクタ L3、L4に生じる磁束が相殺する。 それにより、ノーマルモードチョーク 3のインピーダンスは、二つの入力端子 la、 lbを 通して受信される信号のうち、ノーマルモード成分に対しては極めて高ぐコモンモー ド成分に対しては極めて低 、。
[0046] 本発明の実施形態 1では、ノーマルモードチョーク 3がーつのコアとそれに巻き付け られた二本のコイルとを含む。好ましくは、二本のコイルがコアにバイフアイラ巻き又 はキャンセル巻きで巻かれている。すなわち、ノーマルモードチョーク 3がコモンモー ドチョーク 2と同じ構成を持つ。その場合、図 7に示されている通り、第三と第四とのィ ンダクタ L3、 L4間で入力端子 Z出力端子への接続の極性が逆である。更に好ましく は、二つのコモンモードチョークを含むコモンモードチョークアレイ 2Aが、本発明の実 施形態 1によるコモンモードチョーク 2とノーマルモードチョーク 3との組み合わせとして 利用される(図 8参照)。それにより、コモンモードチョーク 2とノーマルモードチョーク 3 とが一つのパッケージに集約されるので、フィルタ回路 1の小型化に有利である。
[0047] ノーマルモードチョーク 3では上記の他に、コモンモード電流により生じる磁束が互 V、に相殺するような向きで二本のコイルがコアに巻かれても良 ヽ(図 9参照)。すなわ ち、二本のコイルのいずれかがバイフアイラ巻き又はキャンセル巻きとは逆向きに卷 かれている(図 10、 11、 12参照)。図 10ではトロイダルコア TCに二本のコイル L3、 L4が 重ねて巻かれている(実線のコイルが第三のインダクタ L3に相当し、破線のコイルが 第四のインダクタ L4に相当する)。但し、バイフアイラ巻きとは異なり、二本のコイル L3 、 L4間ではトロイダルコア TCへの巻き方が逆である。図 11ではトロイダルコア TCに二 本のコイル L3、 L4が半周ずつ、別々に巻かれている。但し、キャンセル巻きとは異な り、二本のコイル L3、 L4間では、トロイダルコア TCへの巻き方が同じである。図 12では 棒状コア RCに二本のコイル L3、 L4が重ねて巻かれている(実線のコイルが第三のィ ンダクタ L3に相当し、破線のコイルが第四のインダクタ L4に相当する)。但し、バイフ アイラ巻きとは異なり、二本のコイル L3、 L4間では棒状コア RCへの巻き方が逆である 。図 10、 11、 12のいずれでも、図 9に示されている通り、ノーマルモードチョーク 3とフィ ルタ回路 1の入力端子 la、 lbZ出力端子 3a、 3bとの間の配線は図 7、 8に示されてい る配線より短い。従って、フィルタ回路 1の小型化には有利である。
[0048] 本発明の実施形態 1によるフィルタ回路 1では上記の通り、コモンモードチョーク 2の インピーダンスがコモンモード信号に対しては十分に高ぐ差動信号に対しては十分 に低い。ノーマルモードチョーク 3のインピーダンスは逆に、コモンモード信号に対し ては十分に低ぐ差動信号に対しては十分に高い。特に、それらのインピーダンスの 差が十分に大きい。更に、ノーマルモードチョーク 3がコモンモードチョーク 2の前段に 設置され、すなわちコモンモードチョーク 2より第一と第二との入力端子 la、 lbに近い 所に接続される(図 7、 8、 9参照)。従って、第一と第二との入力端子 la、 lbを通して受 信される差動信号のうち、実質上、ノーマルモード成分のみがコモンモードチョーク 2 を透過し、コモンモード成分のみがノーマルモードチョーク 3を透過する。こうして、差 動信号から両成分が分離される。特に、第一と第二との入力端子 la、 lbを通して受 信されるコモンモードノイズが第一と第二との出力端子 la、 lbから遮断される。その上 、コモンモードチョーク 2によるコモンモードノイズの反射が実質上生じない。それに加 え、コモンモードチョーク 2にはコモンモード電流が実質上流れないので、コモンモー ドチョーク 2のコアが磁気飽和を生じない。それ故、フィルタ回路 1は信頼性が高い。
[0049] 図 2、 3に示されている差動受信装置 10 (及び、差動送受信装置 30)では、フィルタ 回路 1が、ケーブル 40を通して受信される差動信号のノーマルモード成分を実質上 完全に透過させる。従って、差動信号のノーマルモード成分に対しては上記の通り、 差動レシーバ 11 (31)、差動配線 12 (33)、及びケーブル 40間でのインピーダンス整合 が差動信号の実質的な歪みや減衰を抑える(図 4、 5参照)。その上、そのインピーダ ンス整合は差動配線 12 (33)のレイアウトに大きな制約を与えないので、差動受信装 置 10 (差動送受信装置 30)は回路設計の柔軟性が高い。フィルタ回路 1では更に、ノ 一マルモードチョーク 3がコモンモードノイズを実質上、完全に吸収する。従って、差 動レシーバ 11とその後段の回路 (差動レシーバ 31とその後段の回路、及び差動ドライ ノ 32)がコモンモードノイズから確実に保護される。更に、コモンモードチョーク 2によ るコモンモードノイズの反射が実質上完全に抑制される。それ故、ケーブル 40から周 辺への不要電磁輻射が十分に低減する。
[0050] 尚、図 2、 3に示されている差動受信装置 10では、コモンモード信号に対し、第一と 第二との出力端子 2a、 2bに接続される差動レシーバ 11の入力インピーダンスがノー マルモードチョーク 3のインピーダンスより十分に高い。その場合、フィルタ回路 1では コモンモードチョーク 2が除去されても良い(図 13参照)。二つの入力端子 la、 lbから 侵入するコモンモードノイズはノーマルモードチョーク 3を透過し、二つの出力端子 2a 、 2bから差動レシーバ 11へは伝達されない。
[0051] 図 2、 3に示されている差動送信装置 20では、フィルタ回路 1が、差動ドライバ 21から 送出される差動信号のノーマルモード成分を実質上完全に透過させる。従って、差 動信号のノーマルモード成分に対しては上記の通り、差動ドライバ 21、差動配線 22、 及びケーブル 40間でのインピーダンス整合が差動信号の実質的な歪みや減衰を抑 える(図 6参照)。その上、そのインピーダンス整合は差動配線 22のレイアウトに大きな 制約を与えないので、差動送信装置 20は回路設計の柔軟性が高い。フィルタ回路 1 では更に、ノーマルモードチョーク 3が、差動ドライバ 21又は差動配線 22に起因するコ モンモードノイズを実質上、完全に吸収する。従って、ケーブル 40から周辺への不要 電磁輻射が十分に低減する。更に、コモンモードチョーク 2によるコモンモードノイズ の反射が実質上完全に抑制される。それ故、差動ドライバ 21が、コモンモードチョー ク 2により反射されたコモンモードノイズから確実に保護される。
[0052] 《実施形態 2》
本発明の実施形態 2による差動伝送システムは好ましくは、実施形態 1によるシステ ムと同様に、車載 LANに搭載される。フィルタ回路 1が積層インダクタ又は薄膜インダ クタを含む点で、本発明の実施形態 2は実施形態 1とは異なる。本発明の実施形態 2 による構成要素のうち、実施形態 1による構成要素と同様な構成要素については、実 施形態 1による構成要素についての説明と図面とを援用する。
[0053] 本発明の実施形態 2によるフィルタ回路 1は実施形態 1によるフィルタ回路と同様な 等価回路で表される(図 14参照)。しかし、実施形態 1によるフィルタ回路とは異なり、 コモンモードチョーク 2とノーマルモードチョーク 3とに含まれているインダクタ Ll、 L2、 L3、 L4がいずれも積層インダクタ又は薄膜インダクタであり、同じチップ 2B上に集積 される(図 15、 16、 17参照)。それにより、本発明の実施形態 2によるフィルタ回路 1は 極めて小さい。
この場合、第一と第二との入力端子 la、 lb、第一から第四までの出力端子 2a、 2b、 3 a、 3bは好ましくは、チップ 2Bと同一平面上に設置される。その他に、それらの端子の いずれか、又は全部力 チップ 2Bと垂直に交わる平面上に設置されても良い。
[0054] フィルタ回路 1は好ましくは、積層された 12枚の磁性体シート(以下、層という) Sl、 S 2、 · ··、 S12を含む(図 15参照)。ここで、磁性体シートは好ましくは、セラミック製のシー トである。各層 Sl、 S2、 · ··、 S12上には、導線 (好ましくは金属箔) Cl、 C2、 · ··、 C12が 好ましくは、スクリーン印刷により形成されている。その他に、スパッタリングや蒸着で 形成されていても良い。以下、各層を上から順に、第一層 Sl、第二層 S2、 ···、と呼ぶ
[0055] 第一層 S1から第三層 S3までの三つの層が第一のインダクタ L1に相当する(図 15参 照)。第一層 S1上の導線 C1と第二層 S2上の導線 C2とが第二のビアホール V2で接続 され、第二層 S2上の導線 C2と第三層 S3上の導線 C3とが第三のビアホール V3で接続 される。それにより、三つの導線 Cl、 C2、 C3は、第三層 S3から第一層 SIへ貫く法線 N の方向から見て時計回りにほぼ (2 + 1/4)回巻かれた矩形コイルを成す(図 16参照) 。第一層 S1上の導線 C1の一端 T1Aは第一の入力端子 laに接続され、第三層 S3上の 導線 C3の一端 T2Aは第一の出力端子 2aに接続される(図 14参照)。
[0056] 第四層 S4から第六層 S6までの三つの層が第二のインダクタ L2に相当する(図 15参 照)。第四層 S4上の導線 C4と第五層 S5上の導線 C5とが第五のビアホール V5で接続 され、第五層 S5上の導線 C5と第六層 S6上の導線 C6とが第六のビアホール V6で接続 される。それにより、三つの導線 C4、 C5、 C6は、第四層 S4から第六層 S6へ貫く法線 N の方向から見て時計回りにほぼ (2 + 3Z4)回巻かれた矩形コイルを成す(図 16参照) 。第四層 S4上の導線 C4の一端 T1Bは第二の入力端子 lbに接続され、第六層 S6上の 導線 C6の一端 T2Bは第二の出力端子 2bに接続される(図 14参照)。 [0057] 第七層 S7から第九層 S9までの三つの層が第三のインダクタ L3に相当する(図 15参 照)。第七層 S7上の導線 C7と第八層 S8上の導線 C8とが第七のビアホール V7で接続 され、第八層 S8上の導線 C8と第九層 S9上の導線 C9とが第八のビアホール V8で接続 される。それにより、三つの導線 C7、 C8、 C9は、第九層 S9力 第七層 S7へ貫く法線 N の方向から見て時計回りにほぼ (2 + 1/8)回巻かれた矩形コイルを成す(図 16参照) 。第七層 S7上の導線 C7の一端は第一のビアホール VIを通して第一層 S1上の導線 C 1の一端 T1Aに接続されるので、第一の入力端子 laに接続される(図 14参照)。第九 層 S9上の導線 C9の一端 T3Aは第三の出力端子 3aに接続されるので、一定電位 (好 ましくは接地電位)に維持される(図 14参照)。
[0058] 第十層 S10から第十二層 S12までの三つの層が、第四のインダクタ L4に相当する( 図 15参照)。第十層 S10上の導線 C10と第十一層 S11上の導線 C11とが第九のビアホ ール V9で接続され、第十一層 S11上の導線 C11と第十二層 S12上の導線 C12とが第 十のビアホール V10で接続される。それにより、三つの導線 C10、 Cll、 C12は、第十 二層 S12から第十層 S10へ貫く法線 Nの方向から見て反時計回りにほぼ (2 + 1Z8)回 巻かれた矩形コイルを成す(図 16参照)。第十層 S10上の導線 C10の一端は第四のビ ァホール V4を通して第四層 S4上の導線 C4の一端 T1Bに接続されるので、第二の入 力端子 lbに接続される(図 14参照)。第十二層 S12上の導線 C12の一端 T3Bは第四の 出力端子 3bに接続されるので、一定電位 (好ましくは接地電位)に維持される(図 14 参照)。
[0059] 第一層 S1の上には更に、別の磁性体シート SOが重ねられる(図 17参照)。積層され た磁性体シート全体を加熱することにより、全層の磁性体が一体化する。それにより、 第一層 S1から第三層 S3までのコイル Cl、 C2、 C3と、第四層 S4から第六層 S6までのコ ィル C4、 C5、 C6と力 一体ィ匕された磁性体をコアとして磁気的に結合する。特に、両 方のコイルが法線 Nを中心に同じ方向に巻かれているので、第一層 S1から第六層 S6 まで、すなわち第一と第二とのインダクタ Ll、 L2がコモンモードチョーク 2を構成する。 同様に、第七層 S7から第九層 S9までのコイル C7、 C8、 C9と、第十層 S10から第十二 層 S12までのコイル C10、 Cll、 C12と力 一体化された磁性体をコアとして磁気的に 結合する。特に、両方のコイルが法線 Nを中心に逆方向に巻かれているので、第七 層 S7から第十二層 S12まで、すなわち第三と第四とのインダクタ L3、 L4がノーマルモ ードチョーク 3を構成する。
[0060] 本発明の実施形態 2によるフィルタ回路では実施形態 1によるフィルタ回路と同様 に、第一と第二との入力端子 la、 lbを通して受信される差動信号のうち、実質上、ノ 一マルモード成分のみがコモンモードチョーク 2を透過し、コモンモード成分のみがノ 一マルモードチョーク 3を透過する。こうして、差動信号から両成分が分離される。特 に、第一と第二との入力端子 la、 lbを通して受信されるコモンモードノイズが第一と第 二との出力端子 la、 lbから遮断される。その上、コモンモードチョーク 2によるコモンモ ードノイズの反射が実質上生じない。それにカ卩え、コモンモードチョーク 2にはコモン モード電流が実質上流れな 、ので、コモンモードチョーク 2のコアが磁気飽和を生じ ない。それ故、フィルタ回路 1は信頼性が高い。特に、コモンモードチョーク 2のコアの 体積が小さくても良いので、コモンモードチョーク 2が上記のように積層インダクタ(又 は薄膜インダクタ)として形成され得る。
[0061] 尚、層数や導線の卷数が図 15に示されているものとは異なっても良い。更に、コィ ルが図 15、 16に示されている矩形状とは異なり、円形状又は他の多角形状であって も良い。但し、第一のインダクタ L1に含まれているコイル Cl、 C2、 C3と、第二のインダ クタ L2に含まれているコイル C4、 C5、 C6との間では、卷数と形状との正確な一致が好 ましい。同様に、第三のインダクタ L3に含まれているコイル C7、 C8、 C9と、第四のイン ダクタ L4に含まれているコイル C10、 Cll、 C12との間では、卷数と形状との正確な一 致が好ましい。それにより、第一と第二との入力端子 la、 lb間では平衡度が高く維持 されるので、フィルタ回路 1を透過する差動信号に歪みが生じない。
その他に、第九層 S9上の導線 C9の一端 T3Aと第十二層 S12上の導線 C12の一端 T 3Bと力 図 15、 16に示されているものとは異なり、第一層 S1上の導線 C1の一端 T1Aと 第四層 S4上の導線 C4の一端 T1Bとから等距離の位置に設けられても良い (例えば、 図 16に一点鎖線で示されている部分 T3D、 T3E参照)。それにより、第一と第二との入 力端子 la、 lb間では平衡度が高く維持されるので、フィルタ回路 1を透過する差動信 号に歪みが生じない。
[0062] コモンモードチョーク 2では、図 15、 17に示されているものとは異なり、第一のインダ クタ LIを構成する三つの層 Sl、 S2、 S3と第二のインダクタ L2を構成する三つの層 S4、 S5、 S6とが交互に重ねられても良い(図 18、 19参照)。それにより、第一のインダクタ L 1に含まれている導線 Cl、 C2、 C3と第二のインダクタに含まれている導線 C4、 C5、 C6 との間で、例えば線間距離、及びそれに依存する寄生容量が均一化される(図 19参 照)。その結果、フィルタ回路 1に含まれる差動信号の経路では平衡度が更に向上す る。従って、フィルタ回路 1を透過する差動信号に歪みが生じない。
尚、コモンモードチョーク 2と同様に、ノーマルモードチョーク 3では、第三のインダク タ L3を構成する三つの層 S7、 S8、 S9と第四のインダクタ L4を構成する三つの層 S10、 S 11、 S12とが交互に重ねられても良い(図示せず)。
[0063] ノーマルモードチョーク 3を構成する六つの層 S7〜S12が、コモンモードチョーク 2を 構成する六つの層 S1〜S6の上に形成されても良い。
コモンモードチョーク 2とノーマルモードチョーク 3との間、例えば、第六層 S6と第七 層 S7との間には磁気分離層 Ssが挿入されても良い(図 20参照)。磁気分離層 Ssは好 ましくは磁性体シートであり、その上に導体膜 GNDが形成されている。導体膜 GNDは 、各層 Sl、 · ··、 S12上の導線 Cl、 · ··、 C12により囲まれる面積全体を一様に覆う。その 他に、導体膜 GNDが、その面積全体に拡がるメッシュ状の導体膜であっても良い。導 体膜 GNDは一定電位 (好ましくは接地電位)に維持される。それにより、磁界が導体 膜 GNDを透過できないので、コモンモードチョーク 2とノーマルモードチョーク 3との間 が磁気的に分離される。その結果、コモンモードチョーク 2とノーマルモードチョーク 3 とが互いに干渉しないので、それぞれの信頼性が更に向上する。
[0064] コモンモードチョーク 2とノーマルモードチョーク 3との間の磁気的干渉を抑える目的 では、磁気分離層 Ssが挿入される場合(図 20参照)の他に、二つのチョーク 2、 3が磁 性体シート上の異なる領域に形成されても良い(図 21、 22、 23参照)。図 21、 22、 23に 示されている 7枚の磁性体シート Sl、 S2、 · ··、 S7の右半分がコモンモードチョーク 2に 相当し、左半分力 一マルモードチョーク 3に相当する。
[0065] 第一層 S1上の第一の導線 C1が第三層 S3上の第一の導線 C3と、第二のビアホール V2で接続され、第三層 S3上の第一の導線 C3が第五層 S5上の導線 C5と、第三のビア ホール V3で接続される。それにより、三つの第一の導線 Cl、 C3、 C5は、第五層 S5か ら第一層 SIへ貫く第一の法線 Nlの方向から見て時計回りにほぼ (2 + 1Z2)回巻か れた矩形コイルを成す(図 21参照)。この第一のコイル Cl、 C3、 C5が第一のインダク タ L1に相当する。第一層 S1上の第一の導線 C1の一端 T1Aは第一の入力端子 laに接 続され、第五層 S5上の第一の導線 C5の一端 T2Aは第一の出力端子 2aに接続される (図 14参照)。
[0066] 第一層 S1上の第二の導線 C7が第二層 S2上の第一の導線 C2と、第五のビアホール V5で接続され、第二層 S2上の第一の導線 C2が第四層 S4上の第一の導線 C4と、第 六のビアホール V6で接続され、第四層 S4上の第一の導線 C4が第六層 S6上の第一 の導線 C6と、第七のビアホール V7で接続される。それにより、三つの第一の導線 C2 、 C4、 C6は、第六層 S6から第一層 S1へ貫く第一の法線 N1の方向から見て時計回り にほぼ (2 + 1Z2)回巻かれた矩形コイルを成す(図 21参照)。この第二のコイル C2、 C4、 C6が第二のインダクタ L2に相当する。第一層 S1上の第二の導線 C7の一端 T1B は第二の入力端子 lbに接続され、第六層 S6上の第一の導線 C6の一端 T2Bは第二 の出力端子 2bに接続される(図 14参照)。
[0067] 第一層 S1上の第一の導線 C1が第二層 S2上の第二の導線 C8と、第一のビアホール VIで接続され、第二層 S2上の第二の導線 C8が第四層 S4上の第二の導線 C10と、第 八のビアホール V8で接続され、第四層 S4上の第二の導線 C10が第六層 S6上の第二 の導線 C12と、第九のビアホール V9で接続される。それにより、三つの第二の導線 C8 、 C10、 C12は、第六層 S6力も第一層 S1へ貫く第二の法線 N2の方向力も見て時計回 りにほぼ (2 + 3Z4)回巻かれた矩形コイルを成す(図 21参照)。この第三のコイル C8 、 C10、 C12が、第三のインダクタ L3に相当する。第六層 S6上の第二の導線 C12の一 端 T3Aは第三の出力端子 3aに接続されるので、一定電位 (好ましくは接地電位)に維 持される(図 14参照)。
[0068] 第一層 S1上の第二の導線 C7が第三層 S3上の第二の導線 C9と、第四のビアホール V4で接続され、第三層 S3上の第二の導線 C9が第五層 S5上の第二の導線 C11と、第 十のビアホール V10で接続され、第五層 S5上の第二の導線 C11が第七層 S7上の導 線 C13と、第 ^—のビアホール VIIで接続される。それにより、三つの導線 C9、 Cll、 C13は、第七層 S7から第一層 SIへ貫く第二の法線 N2の方向から見て反時計回りにほ ぼ (2 + 3Z4)回巻かれた矩形コイルを成す(図 21参照)。この第四のコイル C9、 Cll、 C13が第四のインダクタ L4に相当する。第七層 S7上の導線 C13の一端 T3Bは第四の 出力端子 3bに接続されるので、一定電位 (好ましくは接地電位)に維持される(図 14 参照)。
[0069] 第一層 S1の上には更に、別の磁性体シート SOが重ねられる(図 23参照)。積層され た磁性体シート全体を加熱することにより全層の磁性体が一体ィ匕する。それにより、 第一のコイル Cl、 C3、 C5と第二のコイル C2、 C4、 C6と力 一体化された磁性体をコ ァとして磁気的に結合する。特に、両方のコイルが第一の法線 N1を中心に同じ方向 に卷かれているので、第一と第二とのインダクタ Ll、 L2がコモンモードチョーク 2を構 成する。
同様に、第三のコイル C8、 C10、 C12と第四のコイル C9、 Cll、 C13とが、一体化され た磁性体をコアとして磁気的に結合する。特に、両方のコイルが第二の法線 N2を中 心に逆方向に巻かれているので、第三と第四とのインダクタ L3、 L4がノーマルモード チョーク 3を構成する。
[0070] 図 21、 22、 23から明らかな通り、第一と第二とのコイル C1〜C6により生じる磁束は第 三と第四とのコイル C8〜C13により生じる磁束とほとんど相互作用をしない。従って、 コモンモードチョーク 2とノーマルモードチョーク 3との間が磁気的に分離される。その 結果、コモンモードチョーク 2とノーマルモードチョーク 3とが互いに干渉しないので、 それぞれの信頼性が更に向上する。
[0071] 尚、層数や導線の卷数が図 21に示されているものとは異なっても良い。更に、コィ ルが図 21、 22に示されている矩形状とは異なり、円形状又は他の多角形状であって も良い。但し、第一のコイル Cl、 C2、 C3と第二のコイル C4、 C5、 C6との間では、卷数 と形状との正確な一致が好ましい。同様に、第三のコイル C8、 C10、 C12と第四のコィ ル C9、 Cll、 C13との間では、卷数と形状との正確な一致が好ましい。それにより、第 一と第二との入力端子 la、 lb間では平衡度が高く維持されるので、フィルタ回路 1を 透過する差動信号に歪みが生じな 、。
その他に、第六層 S6上の第二の導線 C12の一端 T3Aと、第七層 S7上の導線 C13の 一端 T3Bと力 図 21、 22に示されているものとは異なり、第一層 S1上の第一の導線 C1 の一端 TIAと第二の導線 C7の一端 TIBとから等距離の位置に設けられても良い。そ れにより、第一と第二との入力端子 la、 lb間では平衡度が高く維持されるので、フィ ルタ回路 1を透過する差動信号に歪みが生じない。
[0072] 図 14に示されているフィルタ回路 1の等価回路では、第三と第四との出力端子 3a、 3 bが別々の端子に分かれている。その他に、共通の出力端子 3cが第三と第四との出 力端子 3a、 3bとして兼用されても良い(図 24参照)。それにより、フィルタ回路 1の端子 数が削減されるので、周辺の回路設計の柔軟性が更に向上する。
例えば、図 15、 16、 17に示されているフィルタ回路 1とは異なり、第九層 S9上の導線 C9Aが第 ^—のビアホール VIIで第十二層 S12上の導線 C12Aと接続される(図 25参 照)。更に、第十二層 S12上の導線 C12Aの一端 T3Cが共通の出力端子 3cに接続され 、一定電位 (好ましくは接地電位)に維持される。ここで、第十二層 S12上の導線 C12A の一端 T3Cは第一層 S1上の導線 C1の一端 T1Aと第四層 S4上の導線 C4の一端 T1Bと 力も等距離の位置に設けられる(図 26参照)。それにより、第一と第二との入力端子 1 a、 lb間で平衡度が高く維持されるので、フィルタ回路 1を透過する差動信号に歪み が生じない。
[0073] 《実施形態 3》
本発明の実施形態 3による差動伝送システムは好ましくは、実施形態 1によるシステ ムと同様に、車載 LANに搭載される。フィルタ回路 1が終端素子を含む点で、本発明 の実施形態 3は実施形態 1、 2とは異なる。本発明の実施形態 3による構成要素のう ち、実施形態 1、 2による構成要素と同様な構成要素については、実施形態 1、 2によ る構成要素についての説明と図面とを援用する。
[0074] 本発明の実施形態 3によるフィルタ回路 1は実施形態 1によるフィルタ回路 1と同様 な等価回路で表される(図 27、 28、 29、 30、 31参照)。しかし、実施形態 1によるフィル タ回路 1とは異なり、ノーマルモードチョーク 3に終端素子 Zl、 Z2が接続される。終端 素子 Zl、 Z2はインピーダンス素子であり、好ましくはキャパシタである。その他に、イン ダクタ、ノ リスタ、ダイオード、抵抗素子、又はそれらの組み合わせであっても良い。
[0075] ノーマルモードチョーク 3がコモンモードチョーク 2から独立した素子である場合、好 ましくは、第一の終端素子 Z1が第三のインダクタ L3と第三の出力端子 3aとの間に接 続され、第二の終端素子 Z2が第四のインダクタ L4と第四の出力端子 3bとの間に接続 される(図 27参照)。その他に、第一の終端素子 Z1が第一の入力端子 laと第三のイン ダクタ L3との間に接続され、第二の終端素子 Z2が第二の入力端子 lbと第四のインダ クタ L4との間に接続されても良 ヽ(図 28参照)。
[0076] 二つのコモンモードチョークを含むコモンモードチョークアレイ 2Aがコモンモードチ ヨーク 2とノーマルモードチョーク 3との組み合わせとして利用される場合も同様に、第 一の終端素子 Z1が第三のインダクタ L3と第三の出力端子 3aとの間に接続され、第二 の終端素子 Z2が第四のインダクタ L4と第四の出力端子 3bとの間に接続される(図 29 参照)。更に、第一の終端素子 Z1が第一の入力端子 laと第三のインダクタ L3との間 に接続され、第二の終端素子 Z2が第二の入力端子 lbと第四のインダクタ L4との間に 接続されても良 、(図 29に示されて 、る破線部参照)。
[0077] 本発明の実施形態 2のように、コモンモードチョーク 2とノーマルモードチョーク 3とが 積層インダクタ (又は薄膜インダクタ)である場合、第一の終端素子 Z1が第三のインダ クタ L3の一端 T3Aと第三の出力端子 3aとの間に接続され、第二の終端素子 Z2が第四 のインダクタ L4の一端 T3Bと第四の出力端子 3bとの間に接続される(図 14、 30参照)。 更に、共通の出力端子 3cが第三と第四との出力端子 3a、 3bとして兼用される場合、 第一と第二との終端素子 Zl、 Z2がーつの終端素子 Zに統合され、第三と第四とのイン ダクタ L3、 L4の共通端 T3Cと共通の出力端子 3cとの間に接続される(図 24、 31参照)
[0078] 第一と第二との入力端子 la、 lbを通して受信されるコモンモード信号に対し、コモン モードチョーク 2のインピーダンスは極めて高ぐノーマルモードチョーク 3のインピー ダンスは極めて低い。従って、図 2、 3に示されている差動受信装置 10 (及び、差動送 受信装置 30)では、第一と第二との終端素子 Zl、 Z2の各インピーダンス(図 31では、 統合された終端素子 Zのインピーダンス) 1S ケーブル 40のコモンモードインピーダン スと整合するように調整される。例えば、ケーブル 40のコモンモードインピーダンス力 ¾ 0 Ωである場合、第一と第二との終端素子 Zl、 Z2の各インピーダンスが 60 Ω程度に設 定される(図 31では、統合された終端素子 Zのインピーダンスが 30 Ω程度に設定され る)。こうして、コモンモード信号に対し、ケーブル 40とフィルタ回路 1との間でインピー ダンス整合が高精度に実現するので、コモンモードチョーク 2によるコモンモードノィ ズの反射が更に低減する。それ故、ケーブル 40から周辺への不要電磁輻射が更に 低減する。
[0079] 図 2、 3に示されている差動送信装置 20でも同様に、第一と第二との終端素子 Zl、 Z 2の各インピーダンス(図 31では、統合された終端素子 Zのインピーダンス)力 差動配 線 22のコモンモードインピーダンスと整合するように調整される。例えば、差動配線 22 のコモンモードインピーダンスが 30 Ωである場合、第一と第二との終端素子 Zl、 Z2の 各インピーダンスが 60 Ω程度に設定される(図 31では、統合された終端素子 Zのイン ピーダンスが 30 Ω程度に設定される)。こうして、コモンモード信号に対し、差動配線 2 2とフィルタ回路 1との間でインピーダンス整合が高精度に実現するので、コモンモー ドチョーク 2によるコモンモードノイズの反射が更に低減する。それ故、差動ドライバ 21 を含む LSI、更にその前段の回路へのコモンモードノイズの侵入が防止されるので、 反射されたコモンモードノイズによる電源電位や接地電位の変動が確実に抑制され る。
[0080] 第一と第二との終端素子 Zl、 Z2がインダクタである場合、各インピーダンスが差動 信号の周波数に依存して変化する(一般に、自己共振周波数と呼ばれる特定の周波 数でピークに達する)。そのインピーダンスの周波数特性を利用することで、ノーマル モードチョーク 3、及び第一と第二との終端素子 Zl、 Z2の間で合成されたコモンモー ドインピーダンスの周波数特性が調節される。例えば、 IEEE1394でのスピード信号( 通信機器間で伝送速度を照合するための信号)の利用のように、差動伝送路を通し てコモンモード信号が伝送される場合がある。その場合、上記のコモンモードインピ 一ダンスは、そのコモンモード信号の周波数帯域では十分に高ぐそれ以外の周波 数帯域では十分に低く調節される。それにより、上記のコモンモード信号に過大な歪 みや減衰を生じさせることなぐコモンモードノイズが除去される。
[0081] 第一と第二との終端素子 Zl、 Z2がキャパシタである場合、各インピーダンスが差動 信号のコモンモード成分の低周波数帯域 (特にバイアス電圧を含む)に対しては十 分に高ぐ高周波数帯域に対しては十分に低い。そのインピーダンス特性により、図 2 、 3に示されている差動伝送システムがバイアス電圧を利用する場合、フィルタ回路 1 は第三と第四との出力端子 3a、 3bを通した定電位端子への短絡を防止できる。
[0082] 第一と第二との終端素子 Zl、 Z2がバリスタ又はダイオードである場合、コモンモード ノイズが所定のレベルを超えるとき、各インピーダンスが急落する。そのインピーダン ス特性により、コモンモードノイズのレベルが所定のレベル(例えばバイアス電圧より 十分に高いレベル)を超えたときは、フィルタ回路 1が第一と第二との入力端子 la、 lb を定電位端子へ短絡させる。それにより、過大なコモンモードノイズによる回路素子 の破壊、及び過大な不要電磁輻射の発生を防止できる。
[0083] 《実施形態 4》
本発明の実施形態 4による差動伝送システムは好ましくは、実施形態 1によるシステ ムと同様に、車載 LANに搭載される。フィルタ回路 1が第二のノーマルモードチョーク 4を含む点で、本発明の実施形態 4は実施形態 1とは異なる。本発明の実施形態 4〖こ よる構成要素のうち、実施形態 1による構成要素と同様な構成要素については、実施 形態 1による構成要素についての説明と図面とを援用する。
[0084] フィルタ回路 1は、第五と第六との出力端子 4a、 4b、及び第二のノーマルモードチヨ ーク 4を更に有する(図 32参照)。
第五と第六との出力端子 4a、 4bは定電位端子 (好ましくは接地端子)に接続される。
[0085] 第二のノーマルモードチョーク 4は二つのインダクタ L5、 L6を含む。第五のインダク タ L5は第一の出力端子 2aと第五の出力端子 4aとの間に接続される。第六のインダク タ L6は第二の出力端子 2bと第六の出力端子 4bとの間に接続される。二つのインダク タ L5、 L6は互いに磁気的に結合し、特に入力端子と出力端子との間に逆の極性で 接続される。すなわち、第一と第二との出力端子 2a、 2b、及び第五と第六との出力端 子 4a、 43bの間に、ノーマルモード電流が流れるときは二つのインダクタ L5、 L6に生じ る磁束が互いに強め合い、コモンモード電流が流れるときは二つのインダクタ L5、 L6 に生じる磁束が相殺する。それにより、第二のノーマルモードチョーク 4のインピーダ ンスは第一と第二との出力端子 2a、 2bを通して受信される信号のうち、ノーマルモー ド成分に対しては極めて高く、コモンモード成分に対しては極めて低 、。
[0086] 本発明の実施形態 4では、第二のノーマルモードチョーク 4がーつのコアとそれに卷 き付けられた二本のコイルとを含む。好ましくは、二本のコイルがコアにバイフアイラ卷 き又はキャンセル巻きで巻かれている。すなわち、第二のノーマルモードチョーク 4が コモンモードチョーク 2と同じ構成を持つ。その場合、図 32に示されている通り、第五と 第六とのインダクタ L5、 L6間で入力端子 Z出力端子への接続の極性が逆である。更 に好ましくは、三つのコモンモードチョークを含むコモンモードチョークアレイ 2Cが、 本発明の実施形態 4によるコモンモードチョーク 2、ノーマルモードチョーク 3、及び第 二のノーマルモードチョーク 4の組み合わせとして利用される(図 33参照)。それにより コモンモードチョーク 2と二つのノーマノレモードチョーク 3、 4とが一つのパッケージに 集約されるので、フィルタ回路 1の小型化に有利である。
[0087] 第二のノーマルモードチョーク 4では上記の他に、ノーマルモードチョーク 3と同様に 、コモンモード電流により生じる磁束が互いに相殺するような向きで二本のコイルがコ ァに卷かれても良い(図 9参照)。すなわち、二本のコイルのいずれかがバイフアイラ 巻き又はキャンセル巻きとは逆向きに巻かれている(図 10、 11、 12参照)。図 10、 11、 1 2のいずれでも、第二のノーマルモードチョーク 4とフィルタ回路 1の出力端子 2a、 2b、 4a、 4bとの間の配線は図 32に示されている配線より短い(図 9参照)。従って、フィルタ 回路 1の小型化には有利である。
[0088] 本発明の実施形態 4によるフィルタ回路 1では、図 32に示されている通り、第一と第 二との入力端子 la、 lb、及び第一と第二との出力端子 2a、 2bの間に、コモンモードチ ヨーク 2に対してノーマルモードチョーク 3と第二のノーマルモードチョーク 4とが対称的 に配置される。更に、ノーマルモードチョーク 3と第二のノーマルモードチョーク 4とは インピーダンス特性も対称的である。すなわち、第二のノーマルモードチョーク 4のィ ンピーダンスはノーマルモードチョーク 3のインピーダンスと同様に、コモンモード信号 に対しては十分に低ぐ差動信号に対しては十分に高い。特に、それらのインピーダ ンスの差が十分に大きい。
[0089] 第一と第二との入力端子 la、 lbを通して受信される差動信号については、コモンモ ードチョーク 2を透過し得たわずかなコモンモード成分が第二のノーマルモードチョー ク 4を透過する。こうして、第一と第二との入力端子 la、 lbを通して受信されるコモンモ ードノイズが更に確実に、第一と第二との出力端子 2a、 2bから遮断される。
逆に、第一と第二との出力端子 2a、 2bを通して受信される差動信号については、そ のノーマルモード成分がコモンモードチョーク 2を透過し、コモンモード成分が第二の ノーマルモードチョーク 4を透過する。更に、コモンモードチョーク 2を透過し得たわず かなコモンモード成分がノーマルモードチョーク 3を透過する。こうして、第一と第二と の出力端子 2a、 2bを通して受信されるコモンモードノイズが確実に、第一と第二との 入力端子 la、 lbから遮断される。その上、コモンモードチョーク 2から第一と第二との 出力端子 2a、 2bへのコモンモードノイズの反射が実質上生じない。それに加え、コモ ンモードチョーク 2にはコモンモード電流が実質上流れないので、コモンモードチョー ク 2のコアが磁気飽和を生じない。それ故、フィルタ回路 1は双方向のコモンモードノィ ズフィルタとして、信頼性が高い。
[0090] 図 2、 3に示されている差動受信装置 10では、フィルタ回路 1が、ケーブル 40を通し て受信される差動信号のノーマルモード成分を実質上、完全に透過させる。従って、 差動信号のノーマルモード成分に対しては、差動レシーバ 11、差動配線 12、及びケ 一ブル 40間でのインピーダンス整合が差動信号の実質的な歪みや減衰を抑える(図 4、 5参照)。更に、そのインピーダンス整合は差動配線 12のレイアウトに大きな制約を 与えないので、差動受信装置 10は回路設計の柔軟性が高い。フィルタ回路 1では更 に、二つのノーマノレモードチョーク 3、 4が、コモンモードチョーク 2の前後でコモンモー ドノイズを実質上、完全に吸収する。それ故、差動レシーバ 11とその後段の回路とが コモンモードノイズから確実に保護される。その上、コモンモードチョーク 2、差動配線 12、及び差動レシーバ 11によるコモンモードノイズの反射がいずれも実質上完全に 抑制される。それにより、ケーブル 40や差動配線 12カゝら周辺への不要電磁輻射が十 分に低減する。
[0091] 図 2、 3に示されている差動送信装置 20では、フィルタ回路 1が、差動ドライバ 21から 送出される差動信号のノーマルモード成分を実質上、完全に透過させる。従って、差 動信号のノーマルモード成分に対しては、差動ドライバ 21、差動配線 22、及びケープ ル 40間でのインピーダンス整合が差動信号の実質的な歪みや減衰を抑える(図 6参 照)。更に、そのインピーダンス整合は差動配線 22のレイアウトに大きな制約を与えな いので、差動送信装置 20は回路設計の柔軟性が高い。フィルタ回路 1では更に、二 つのノーマルモードチョーク 3、 4が、コモンモードチョーク 2の前後でコモンモードノィ ズを実質上、完全に吸収する。それ故、差動配線 22やケーブル 40から周辺への不要 電磁輻射が十分に低減する。その上、差動ドライバ 21が、コモンモードチョーク 2によ り反射されたコモンモードノイズとケーブル 40を通して侵入するコモンモードノイズと の両方から確実に保護される。
[0092] 図 2、 3に示されている差動送受信装置 30では、フィルタ回路 1が、差動配線 33とケ 一ブル 40との間で双方向に、差動信号のノーマルモード成分を実質上、完全に透過 させる。従って、差動信号のノーマルモード成分に対しては、差動レシーバ 31、差動 配線 33、及びケーブル 40間でのインピーダンス整合が差動信号の実質的な歪みや 減衰を抑える(図 4、 5参照)。更に、そのインピーダンス整合は差動配線 33のレイァゥ トに大きな制約を与えないので、差動送受信装置 30は回路設計の柔軟性が高い。フ ィルタ回路 1では更に、二つのノーマルモードチョーク 3、 4が、コモンモードチョーク 2 の前後でコモンモードノイズを実質上、完全に吸収する。それ故、差動レシーバ 31と その後段の回路、及び差動ドライバ 32がコモンモードノイズから確実に保護される。 その上、差動配線 33やケーブル 40から周辺への不要電磁輻射が十分に低減する。
[0093] 《実施形態 5》
本発明の実施形態 5による差動伝送システムは好ましくは、実施形態 4によるシステ ムと同様に、車載 LANに搭載される。フィルタ回路 1が積層インダクタ又は薄膜インダ クタを含む点で、本発明の実施形態 5は実施形態 4とは異なる。本発明の実施形態 5 による構成要素のうち、実施形態 4による構成要素と同様な構成要素については、実 施形態 4による構成要素についての説明と図面とを援用する。
[0094] 本発明の実施形態 5によるフィルタ回路 1は実施形態 4によるフィルタ回路と同様な 等価回路で表される(図 34参照)。しかし、実施形態 4によるフィルタ回路とは異なり、 コモンモードチョーク 2、ノーマノレモードチョーク 3、及び第二のノーマノレモードチョーク 4に含まれているインダクタ Ll、 L2、 L3、 L4、 L5、 L6がいずれも積層インダクタ又は薄 膜インダクタであり、同じチップ 2D上に集積される(図 35、 36、 37参照)。それにより、 本発明の実施形態 5によるフィルタ回路 1は極めて小さい。
この場合、第一と第二との入力端子 la、 lb、第一から第六までの出力端子 2a、 2b、 3 a、 3b、 4a、 4bは好ましくは、チップ 2Dと同一平面上に設置される。その他に、それら の端子のいずれか、又は全部力 チップ 2Dと垂直に交わる平面上に設置されても良 い。
[0095] フィルタ回路 1は好ましくは、積層された 18枚の磁性体シート(以下、層という) Sl、 S 2、 · ··、 S12、 S13、 S14、 · ··、 S18を含む(図 35参照)。ここで、磁性体シートは好ましくは 、セラミック製のシートである。以下、各層を上から順に、第一層 Sl、第二層 S2、 ···、と 呼ぶ。
フィルタ回路 1の第一層 S1から第十二層 S12までは、図 15に示されている本発明の 実施形態 1によるフィルタ回路と全く同様な構造である。従って、その詳細は実施形 態 1についての説明を援用する。但し、第七層 S7から第九層 S9までのコイル C7、 C8、 C9はほぼ (2 + 1Z4)回巻かれた矩形コイルを成し、第十層 S10から第十二層 S12まで のコイル C10、 Cll、 C12はほぼ(2 + 1Z4)回巻かれた矩形コイルを成す(図 36参照)
[0096] 第十三層 S13から第十八層 S18上には、導線 (好ましくは金属箔) C13、 C14、 · ··、 CI 8が好ましくは、スクリーン印刷により形成されている。その他に、スパッタリングや蒸着 で形成されていても良い。
[0097] 第十三層 S13から第十五層 S15までの三つの層が第五のインダクタ L5に相当する( 図 35参照)。第十三層 S13上の導線 C13と第十四層 S14上の導線 C14が第十二のビア ホール V12で接続され、第十四層 S14上の導線 C14と第十五層 S15上の導線 C15とが 第十三のビアホール V13で接続される。それにより、三つの導線 C13、 C14、 C15は、 第十五層 S15から第十三層 S13へ貫く法線 Nの方向から見て反時計回りにほぼ (2 + 1 /4)回巻かれた矩形コイルを成す(図 36参照)。第十三層 S13上の導線 C13の一端 は第 ^—のビアホール VIIを通して第三層 S3上の導線 C3の一端 T2Aに接続される ので、第一の出力端子 2aに接続される(図 34参照)。第十五層 S15上の導線 C15の一 端 T4Aは第五の出力端子 4aに接続されるので、一定電位 (好ましくは接地電位)に維 持される(図 34参照)。
[0098] 第十六層 S16から第十八層 S18までの三つの層が、第六のインダクタ L6に相当する
(図 35参照)。第十六層 S16上の導線 C16と第十七層 S17上の導線 C17とが第十五の ビアホール V15で接続され、第十七層 S17上の導線 C17と第十八層 S18上の導線 C18 とが第十六のビアホール V16で接続される。それにより、三つの導線 C16、 C17、 C18 は、第十八層 S18から第十六層 S16へ貫く法線 Nの方向力も見て時計回りにほぼ (2 + 1/4)回巻かれた矩形コイルを成す(図 36参照)。第十六層 S16上の導線 C16の一端 は第十四のビアホール V14を通して第六層 S6上の導線 C6の一端 T4Bに接続される ので、第二の出力端子 2bに接続される(図 34参照)。第十八層 S18上の導線 C18の一 端 T4Bは第六の出力端子 4bに接続されるので、一定電位 (好ましくは接地電位)に維 持される(図 34参照)。
[0099] 第一層 S1の上には更に、別の磁性体シート SOが重ねられる(図 37参照)。積層され た磁性体シート全体を加熱することにより、全層の磁性体が一体化する。それにより、 第一層 S1から第十二層 S12までと同様に、第十三層 S13から第十五層 S15までのコィ ル C13、 C14、 C15と、第十六層 S16から第十八層 S18までのコイル C16、 C17、 C18とが 、一体ィ匕された磁性体をコアとして磁気的に結合する。特に、両方のコイルが法線 N を中心に逆方向に巻かれているので、第十三層 S13から第十八層 S18まで、すなわち 第五と第六とのインダクタ L5、 L6が第二のノーマルモードチョーク 4を構成する。
[0100] 本発明の実施形態 5によるフィルタ回路 1では実施形態 4によるフィルタ回路と同様 、第一と第二との入力端子 la、 lb、及び第一と第二との出力端子 2a、 2bの間に、コモ ンモードチョーク 2に対してノーマルモードチョーク 3と第二のノーマルモードチョーク 4 とが対称的に配置される。更に、ノーマルモードチョーク 3と第二のノーマルモードチヨ ーク 4とのいずれのインピーダンスも、コモンモード信号に対しては十分に低ぐ差動 信号に対しては十分に高い。従って、第一と第二との入力端子 la、 lbを通して受信さ れるコモンモードノイズが確実に、第一と第二との出力端子 2a、 2bから遮断される。逆 に、第一と第二との出力端子 2a、 2bを通して受信されるコモンモードノイズが確実に、 第一と第二との入力端子 la、 lbから遮断される。その上、コモンモードチョーク 2から 第一と第二との出力端子 2a、 2b、及び第一と第二との入力端子 la、 lbへのコモンモ ードノイズの反射が実質上生じない。それにカ卩え、コモンモードチョーク 2にはコモン モード電流が実質上流れな 、ので、コモンモードチョーク 2のコアが磁気飽和を生じ ない。それ故、フィルタ回路 1は双方向のコモンモードノイズフィルタとして、信頼性が 高い。特に、コモンモードチョーク 2のコアの体積が小さくても良いので、コモンモード チョーク 2が上記のように積層インダクタ (又は薄膜インダクタ)として形成され得る。
[0101] 尚、層数や導線の卷数が図 35に示されているものとは異なっても良い。更に、コィ ルが図 35、 36に示されている矩形状とは異なり、円形状又は他の多角形状であって も良い。但し、第一のインダクタ L1に含まれているコイル Cl、 C2、 C3と、第二のインダ クタ L2に含まれているコイル C4、 C5、 C6との間では、卷数と形状との正確な一致が好 ましい。同様に、第三のインダクタ L3に含まれているコイル C7、 C8、 C9と、第四のイン ダクタ L4に含まれているコイル C10、 Cll、 C12との間、及び、第五のインダクタ L5に含 まれているコイル C13、 C14、 C15と、第六のインダクタ L6に含まれているコイル C16、 C 17、 C18との間のそれぞれで、卷数と形状との正確な一致が好ましい。それにより、第 一と第二との入力端子 la、 lb間、及び第一と第二との出力端子 2a、 2b間ではいずれ も平衡度が高く維持されるので、フィルタ回路 1を透過する差動信号に歪みが生じな い。
[0102] その他に、第九層 S9上の導線 C9の一端 T3Aと第十二層 S12上の導線 C12の一端 T 3Bと力 図 35、 36に示されているものとは異なり、第一層 S1上の導線 C1の一端 T1Aと 第四層 S4上の導線 C4の一端 T1Bとから等距離の位置に設けられても良い (例えば、 図 36に一点鎖線で示されている部分 T3D、 T3E参照)。同様に、第十五層 S15上の導 線 C15の一端 T4Aと第十八層 S18上の導線 C18の一端 T4Bとが、第三層 S3上の導線 C 3の一端 T2Aと第六層 S6上の導線 C6の一端 T2Bとから等距離の位置に設けられても 良い(例えば、図 36に一点鎖線で示されている部分 T3D、 T3E参照)。それにより、第 一と第二との入力端子 la、 lb間、及び第一と第二との出力端子 2a、 2b間ではいずれ も、平衡度が高く維持されるので、フィルタ回路 1を透過する差動信号に歪みが生じ ない。
[0103] コモンモードチョーク 2では、図 35、 37に示されているものとは異なり、第一のインダ クタ L1を構成する三つの層 Sl、 S2、 S3と第二のインダクタ L2を構成する三つの層 S4、 S5、 S6とが交互に重ねられても良い(図 18、 19参照)。それにより、第一のインダクタ L 1に含まれている導線 Cl、 C2、 C3と第二のインダクタに含まれている導線 C4、 C5、 C6 との間で、例えば線間距離、及びそれに依存する寄生容量が均一化される(図 19参 照)。その結果、フィルタ回路 1に含まれる差動信号の経路では平衡度が更に向上す る。従って、フィルタ回路 1を透過する差動信号に歪みが生じない。
コモンモードチョーク 2と同様に、ノーマルモードチョーク 3では、第三のインダクタ L3 を構成する三つの層 S7、 S8、 S9と第四のインダクタ L4を構成する三つの層 S10、 Sl l、 S12とが交互に重ねられても良い(図示せず)。更に、第二のノーマルモードチョーク 4 では、第五のインダクタ L5を構成する三つの層 S13、 S14、 S15と第六のインダクタ L6を 構成する三つの層 S16、 S17、 S18とが交互に重ねられても良い(図示せず)。
[0104] コモンモードチョーク 2を構成する六つの層 S1〜S6、ノーマルモードチョーク 3を構成 する六つの層 S7〜S12、及び、第二のノーマルモードチョーク 4を構成する六つの層 S 13〜S18の間では、積層の順序が自由に設定されても良い。
コモンモードチョーク 2、ノーマノレモードチョーク 3、及び第二のノーマノレモードチョー ク 4のいずれか二つの間、例えば、第六層 S6と第七層 S7との間、又は、第十二層 S12 と第十三層 S13との間には磁気分離層 Ssが挿入されても良い(図 20参照)。磁気分離 層 Ssは実施形態 1によるものと同様であり、特に磁界を遮断する。それにより、コモン モードチョーク 2と二つのノーマルモードチョーク 3、 4とが互いに磁気的に分離される 。その結果、コモンモードチョーク 2と二つのノーマノレモードチョーク 3、 4とが互いに干 渉しないので、それぞれの信頼性が更に向上する。コモンモードチョーク 2と二つのノ 一マルモードチョーク 3、 4との間の磁気的干渉を抑える目的では、上記の他に、三つ のチョーク 2、 3、 4が磁性体シート上の異なる領域に形成されても良い(図 21、 22、 23 参照)。
[0105] 図 34に示されているフィルタ回路 1の等価回路では、第三と第四との出力端子 3a、 3 b、及び第五と第六との出力端子 4a、 4bがそれぞれ、別々の端子に分かれている。そ の他に、第一の共通出力端子 3cが第三と第四との出力端子 3a、 3bとして兼用され、 第二の共通出力端子 4cが第五と第六との出力端子 4a、 4bとして兼用されても良い( 図 38参照)。それによりフィルタ回路 1の端子数が削減されるので、周辺の回路設計 の柔軟性が更に向上する。
例えば、図 35、 36、 37に示されているフィルタ回路 1とは異なり、第九層 S9上の導線 C9Aが第十七のビアホール V17で第十二層 S12上の導線 C12Aと接続される(図 39参 照)。第十二層 S12上の導線 C12Aの一端 T3Cが第一の共通出力端子 3cに接続され 、一定電位 (好ましくは接地電位)に維持される。ここで、第十二層 S12上の導線 C12A の一端 T3Cは第一層 S1上の導線 C1の一端 T1Aと第四層 S4上の導線 C4の一端 T1Bと 力も等距離の位置に設けられる(図 40参照)。同様に、第十五層 S15上の導線 C15A が第十八のビアホール V18で第十八層 S18上の導線 C18Aと接続される(図 39参照)。 第十八層 S18上の導線 C18Aの一端 T4Cが第二の共通出力端子 4cに接続され、一定 電位 (好ましくは接地電位)に維持される。ここで、第十八層 S18上の導線 C18Aの一 端 T4Cは第三層 S3上の導線 C3の一端 T2Aと第六層 S6上の導線 C6の一端 T2Bとから 等距離の位置に設けられる(図 40参照)。第一と第二との入力端子 la、 lb間、及び第 一と第二との出力端子 2a、 2b間ではいずれも平衡度が高く維持されるので、フィルタ 回路 1を透過する差動信号に歪みが生じない。
[0106] 《実施形態 6》
本発明の実施形態 6による差動伝送システムは好ましくは、実施形態 4によるシステ ムと同様に、車載 LANに搭載される。フィルタ回路 1が終端素子を含む点で、本発明 の実施形態 6は実施形態 4、 5とは異なる。本発明の実施形態 6による構成要素のう ち、実施形態 4、 5による構成要素と同様な構成要素については、実施形態 4、 5によ る構成要素についての説明と図面とを援用する。
[0107] 本発明の実施形態 6によるフィルタ回路 1は実施形態 3によるフィルタ回路と同様に 、二つのノーマルモードチョーク 3、 4のいずれか一方、又は両方に終端素子 Zl、 Z2、 Z3、 Z4が接続される(図 41、 42、 43、 44参照)。終端素子 Zl、 Z2、 Z3、 Z4はいずれも、 実施形態 3による終端素子 Zl、 Z2と同様なインピーダンス素子である。従って、その 詳細は実施形態 3での説明を援用する。
[0108] 二つのノーマルモードチョーク 3、 4がコモンモードチョーク 2から独立した素子である 場合、好ましくは、第一の終端素子 Z1が第三のインダクタ L3と第三の出力端子 3aとの 間に接続され、第二の終端素子 Z2が第四のインダクタ L4と第四の出力端子 3bとの間 に接続され、第三の終端素子 Z3が第五のインダクタ L5と第五の出力端子 4aとの間に 接続され、第四の終端素子 Z4が第六のインダクタ L6と第六の出力端子 4bとの間に接 続される(図 41参照)。その他に、第一の終端素子 Z1が第一の入力端子 laと第三の インダクタ L3との間に接続され、第二の終端素子 Z2が第二の入力端子 lbと第四のィ ンダクタ L4との間に接続され、第三の終端素子 Z3が第五のインダクタ L5と第五の出 力端子 4aとの間に接続され、第四の終端素子 Z4が第六のインダクタ L6と第六の出力 端子 4bとの間に接続されても良い(図 41に示されている破線部参照)。但し、第一と 第二との終端素子 Zl、 Z2の組、又は第三と第四との終端素子 Z3、 Z4の組のいずれか 一方が省略されても良い。三つのコモンモードチョークを含むコモンモードチョークァ レイ 2Cがコモンモードチョーク 2と二つのノーマルモードチョーク 3、 4との組み合わせ として利用される場合も同様である(図 42参照)。
[0109] 本発明の実施形態 5のように、コモンモードチョーク 2と二つのノーマルモードチョー ク 3、 4とが積層インダクタ (又は薄膜インダクタ)である場合、第一の終端素子 Z1が第 三のインダクタ L3の一端 T3Aと第三の出力端子 3aとの間に接続され、第二の終端素 子 Z2が第四のインダクタ L4の一端 T3Bと第四の出力端子 3bとの間に接続され、第三 の終端素子 Z3が第五のインダクタ L5の一端 T4Aと第五の出力端子 4aとの間に接続さ れ、第四の終端素子 Z4が第六のインダクタ L6の一端 T4Bと第六の出力端子 4bとの間 に接続される(図 35、 43参照)。更に、第一の共通出力端子 3cが第三と第四との出力 端子 3a、 3bとして兼用され、第二の共通出力端子 4cが第五と第六との出力端子 4a、 4 bとして兼用される場合、第一と第二との終端素子 Zl、 Z2が第一の共通終端素子 Zに 統合され、第三と第四とのインダクタ L3、 L4の共通端 T3Cと第一の共通出力端子 3cと の間に接続される。更に、第三と第四との終端素子 Z3、 Z4が第二の共通終端素子 Za に統合され、第五と第六とのインダクタ L5、 L6の共通端 T4Cと第二の共通出力端子 4 cとの間に接続される(図 39、 44参照)。
[0110] 第一と第二との入力端子 la、 lb、又は第一と第二との出力端子 2a、 2bを通して受信 されるコモンモード信号に対し、コモンモードチョーク 2のインピーダンスは極めて高く 、二つのノーマルモードチョーク 3、 4のインピーダンスはいずれも極めて低い。従って 、図 2、 3に示されている差動受信装置 10 (及び、差動送受信装置 30)では、第一と第 二との終端素子 Zl、 Z2の各インピーダンス(図 44では、第一の共通終端素子 Zのイン ピーダンス)力 ケーブル 40のコモンモードインピーダンスと整合するように調整され る。更に、第三と第四との終端素子 Z3、 Z4の各インピーダンス(図 44では、第二の共 通終端素子 Zaのインピーダンス)力 差動レシーバ 11 (31)の入力インピーダンスと差 動配線 12 (33)のコモンモードインピーダンスとそれぞれ、整合するように調整される。 こうして、コモンモード信号に対し、ケーブル 40とフィルタ回路 1との間、及びフィルタ 回路 1と差動配線 12 (33)との間でそれぞれ、インピーダンス整合が高精度に実現す る。それ故、コモンモードチョーク 2によるコモンモードノイズの反射が更に低減する。 その結果、ケーブル 40と差動配線 12 (33)とから周辺への不要電磁輻射が更に低減 し、かつ差動レシーバ 11 (31)が、反射されたコモンモードノイズから更に確実に保護 される。
[0111] 図 2、 3に示されている差動送信装置 20でも同様に、第一と第二との終端素子 Zl、 Z 2の各インピーダンス(図 44では、第一の共通終端素子 Zのインピーダンス)力 差動ド ライバ 21の出力インピーダンスと差動配線 22のコモンモードインピーダンスとそれぞ れ、整合するように調整される。更に、第三と第四との終端素子 Z3、 Z4の各インピー ダンス(図 44では、第二の共通終端素子 Zaのインピーダンス) 1S ケーブル 40のコモ ンモードインピーダンスと整合するように調整される。こうして、コモンモード信号に対 し、差動配線 22とフィルタ回路 1との間、及びフィルタ回路 1とケーブル 40との間でそ れぞれ、インピーダンス整合が高精度に実現する。それ故、コモンモードチョーク 2に よるコモンモードノイズの反射が更に低減する。その結果、ケーブル 40と差動配線 22 と力 周辺への不要電磁輻射が更に低減する。更に、差動ドライバ 32を含む LSIや その前段の回路へのコモンモードノイズの侵入が防止されるので、反射されたコモン モードノイズによる電源電位や接地電位の変動が確実に抑制される。
[0112] 《実施形態 7》
本発明の実施形態 7による差動伝送システムは好ましくは、携帯電話等の携帯情 報機器に搭載される(図 45参照)。携帯情報機器には、例えば画像処理用 LSIM1や RF回路 M2等、様々なモジュールが搭載される。それらのモジュールがケーブル 41を 通して CPUM3に接続され、統合的に制御される。
[0113] 携帯情報機器、特に携帯電話は RF回路 M2を利用して外部と通信を行う。その際、 RF回路 M2やアンテナ AT力も電磁波が放射される。それらの電磁波がケーブル 41に ノイズを発生させる。そのノイズに加え、画像処理用 LSIM1や CPUM3からケーブル 4 1に直接送出されたノイズがケーブル 41の周囲に電磁波として放射され、他のケープ ル 41やアンテナ ATにノイズを与える。画像処理用 LSIM1や CPUM3が、特にカメラモ ジュール CAにより生成される画像データ等、大量のデータを処理する場合、その処 理速度が通信の周波数と近!、ので、 RF回路 M2やアンテナ ATに対してノイズを与え やすい。このように、携帯情報機器内では不要電磁輻射とそれに起因するノイズとが 共に高い。それらのノイズによる各回路 Ml、 M2、 M3等に対する悪影響、すなわち E Mlを抑える目的で、携帯情報機器内でのケーブル 41を用いた通信は一般に、差動 伝送方式で行われる。
[0114] 図 2、 3に示されている ECU等と同様に、画像処理用 LSIM1は差動送信装置 20を 通信ポートとして含み、 CPUM3は差動受信装置 10を通信ポートとして含む(図 46参 照)。その他に、図 2、 3に示されているような差動送受信装置 30が、各通信ポートとし て含まれても良い。これらの通信ポートはケーブル 41で互いに接続され、差動伝送シ ステムを構成する。ケーブル 41は二本の差動伝送路を含む。各差動伝送路を伝搬 する信号 (差動信号)間では位相が互いに逆である。ケーブル 41には好ましくは、シ 一ルド付ツイストペアケーブルが使用される。その他に、シールドなしのツイストペア ケーブル、フラットケーブル、又はフレキケーブルが使用されても良い。特に折り畳み 可能な携帯電話では、ケーブル 41が蝶番部 Hを超えて回路間を接続しても良い(図 4 5参照)。
[0115] 差動受信装置 10と差動送信装置 20とはいずれも、実施形態 1によるものと同様な構 成要素を有する(図 2、 3、 46参照)。特に、本発明によるフィルタ回路 1を含む。ここで 、フィルタ回路 1は上記の実施形態 1〜6の ヽずれによるものと同様であつても良い。 いずれのフィルタ回路 1も、ケーブル 41を伝搬する差動信号力もコモンモードノイズを 実質上完全に除去すると共に、差動信号のノーマルモード成分を実質上完全に透 過させる。その一方で、コモンモードノイズを反射することなぐ実質上完全に吸収す る。その結果、ケーブル 41や差動配線 12、 22から周辺への不要電磁輻射が低減し、 差動レシーバ 11や差動ドライバ 21が、反射されたコモンモードノイズから確実に保護 される。フィルタ回路 1では更に、コモンモード電流がコモンモードチョークのコアには 流れないので、コモンモードチョークのコアが磁気飽和を生じない。従って、フィルタ 回路 1は信頼性が高い。その上、コモンモードチョークのコアの体積が小さくても良い 。それ故、フィルタ回路 1は小型化が容易であるので、携帯情報機器での利用に有利 である。
[0116] 差動受信装置 10と差動送信装置 20とでは更に好ましくは、実施形態 1によるものと 同様に、差動配線 12、 22に終端素子が接続される(図 4、 5参照)。差動信号に対して はフィルタ回路 1のインピーダンスが十分に低いので、差動配線 12、 22の差動インピ 一ダンスと終端素子のインピーダンスとがそれぞれ、ケーブル 41の差動インピーダン スと整合するように調整される。その結果、差動信号には実質的な歪みや減衰が生じ ない。その上、差動配線 12、 22のレイアウトがインピーダンス整合からは大きな制約を 受けないので、差動受信装置 10と差動送信装置 20とはいずれも、回路設計の柔軟 '性が高い。
[0117] 本発明による差動伝送システムを搭載可能なシステムは、実施形態 1〜6のような 車載 LANや、実施形態 7のような携帯情報機器には限られない。例えば、 USB、 IE EE1394、 LVDS、 DVI、 HDMI、シリアル ATA、 PCIエクスプレス等のシリアルイン タフエースを利用する電子機器全般で、本発明による差動伝送システムは利用可能 である。そのことは、上記の実施形態力も当業者には自明であろう。
[0118] 《実施形態 8》
本発明の実施形態 8による電源装置は、好ましくは、電子機器に搭載される(図 47 参照)。ここで、電子機器 DVは、好ましくは、パソコン、携帯電話、 FAX等の情報処 理機器である。その他に、その電源装置が、差動伝送方式で他の回路に電力を供給 する給電装置であっても良い。
電源装置 50はプラグ PLと電源線 42とを通し、商用交流電源等、外部の交流電源 A Cに接続される。電源線 42は二本の差動伝送路を含む。それらの差動伝送路間では 電圧 Z電流の位相が互いに逆である。尚、電源装置がプラグ PL自体に内蔵されても 良い。
[0119] 電源装置 50は本発明によるフィルタ回路 1とスイッチング電源 51とを有する。フィル タ回路 1は電源線 42に接続され、電源線 42上カゝらコモンモードノイズを実質上完全に 除去する。それと共に、外部の交流電源 AC力 供給される電力(差動信号)を実質 上完全に透過させる。スイッチング電源 51は電力変換部であり、好ましくは、フィルタ 回路 1を通して外部の交流電源 AC力も交流電圧を受け、その交流電圧を所定の直 流電圧 Vdd、 Vssに変換する。その他に、交流電源 AC力も供給される電力の力率を 改善しても良い。更に、差動伝送方式で他の回路に電力を供給しても良い。電源装 置 50を電力線通信(PLC)に利用する場合、スイッチング電源 51に代え、 PLCモデム 力 Sフィルタ回路 1に接続されても良 、。
[0120] フィルタ回路 1は上記の実施形態 1〜6のいずれによるものであっても良い。それに より、コモンモードノイズがフィルタ回路 1により反射されることなぐ実質上完全に吸収 される。その結果、電源線 42や内部の配線から周辺への不要電磁輻射が低減し、ス イッチング電源 51や電子機器 DV内部の回路が、反射されたコモンモードノイズから 確実に保護される。 PLCを行う場合は、その通信品質が向上する。フィルタ回路 1で は更に、コモンモード電流がコモンモードチョークのコアには流れないので、コモンモ ードチョークのコアが磁気飽和を生じない。従って、フィルタ回路 1は信頼性が高い。 その上、コモンモードチョークのコアの体積が小さくても良い。それ故、フィルタ回路 1 は小型化が容易であるので、電源装置 DVの小型化に有利である。
産業上の利用可能性
[0121] 本発明は差動伝送システムや電源装置に搭載されるフィルタ回路に関し、上記の 通り、コモンモードチョークとノーマルモードチョークとの組み合わせを利用してコモン モードノイズを差動信号力も除去する。このように、本発明は明らかに産業上利用可 能である。

Claims

請求の範囲
[1] 第一と第二との入力端子;
第一、第二、第三、及び第四の出力端子;
前記第一の入力端子と前記第一の出力端子との間に接続された、第一のインダ クタ、及び、
前記第一のインダクタと磁気的に結合し、前記第二の入力端子と前記第二の出 力端子との間に前記第一のインダクタと同じ極性で接続された、第二のインダクタ、 を含む、コモンモードチョーク;
並びに、
前記第一の入力端子と前記第三の出力端子との間に接続された、第三のインダ クタ、及び、
前記第三のインダクタと磁気的に結合し、前記第二の入力端子と前記第四の出 力端子との間に前記第三のインダクタとは逆の極性で接続された、第四のインダクタ を含む、ノーマルモードチョーク;
を有するフィルタ回路。
[2] 前記コモンモードチョークと前記ノーマルモードチョークとが同じパッケージに封入 された、請求項 1に記載のフィルタ回路。
[3] 前記ノーマルモードチョークがコアを含み;
前記第三と第四とのインダクタが、コモンモード電流により生じる磁束が相殺される ような向きで互いに重ねられて又は分離されて前記コアに巻かれている二本のコイル 、である;
請求項 1に記載のフィルタ回路。
[4] 前記第一力 第四までのインダクタがそれぞれ、表面に所定のパターンの導線を含 む磁性体シート、を重ねて形成された積層インダクタ又は薄膜インダクタであり、更に 前記第一と第二とのインダクタが互いに重なって形成され、
前記第三と第四とのインダクタが互いに重なって形成された、 請求項 1に記載のフィルタ回路。
[5] 前記コモンモードチョークと前記ノーマルモードチョークとが互いに重なって形成さ れたフィルタ回路であり、
前記コモンモードチョークと前記ノーマルモードチョークとの間に挟まれた磁気分離 層、
を更に有する、請求項 4に記載のフィルタ回路。
[6] 定電位に維持される導体を前記磁気分離層が含む、請求項 5に記載のフィルタ回 路。
[7] 前記第三のインダクタと前記第三の出力端子との間、若しくは前記第一の入力端 子と前記第三のインダクタとの間のいずれか、又は両方に接続された第一のインピー ダンス素子、及び、
前記第四のインダクタと前記第四の出力端子との間、若しくは前記第二の入力端 子と前記第四のインダクタとの間のいずれか、又は両方に接続された第二のインピー ダンス素子、
を更に有する、請求項 1に記載のフィルタ回路。
[8] 第五と第六との出力端子;並びに、
前記第一の出力端子と前記第五の出力端子との間に接続された、第五のインダ クタ、及び、
前記第五のインダクタと磁気的に結合し、前記第二の出力端子と前記第六の出 力端子との間に前記第五のインダクタとは逆の極性で接続された、第六のインダクタ を含む、第二のノーマルモードチョーク;
を更に有する、請求項 1に記載のフィルタ回路。
[9] 前記コモンモードチョーク、前記ノーマルモードチョーク、及び前記第二のノーマル モードチョークが同じパッケージに封入された、請求項 8に記載のフィルタ回路。
[10] 前記第二のノーマルモードチョークがコアを含み;
前記第五と第六とのインダクタが、コモンモード電流により生じる磁束が相殺される ような向きで互いに重ねられて又は分離されて前記コアに巻かれている二本のコイル 、である;
請求項 8に記載のフィルタ回路。
[11] 前記第一力 第六までのインダクタがそれぞれ、表面に所定のパターンの導線を含 む磁性体シート、を重ねて形成された積層インダクタ又は薄膜インダクタであり、更に 前記第一と第二とのインダクタが互いに重なって形成され、
前記第三と第四とのインダクタが互いに重なって形成され、
前記第五と第六とのインダクタが互いに重なって形成された、
請求項 8に記載のフィルタ回路。
[12] 前記コモンモードチョーク、前記ノーマルモードチョーク、及び前記第二のノーマル モードチョークのうち、少なくともいずれか二つが互いに重なって形成されたフィルタ 回路であり、
それら互いに重なって形成された二つのフィルタ間に挟まれた磁気分離層、 を更に有する、請求項 11に記載のフィルタ回路。
[13] 定電位に維持される導体を前記磁気分離層が含む、請求項 12に記載のフィルタ 回路。
[14] 前記第五のインダクタと前記第五の出力端子との間、若しくは前記第一の出力端 子と前記第五のインダクタとの間のいずれか、又は両方に接続された第三のインピー ダンス素子、及び、
前記第六のインダクタと前記第六の出力端子との間、若しくは前記第二の出力端 子と前記第六のインダクタとの間のいずれか、又は両方に接続された第四のインピー ダンス素子、
を更に有する、請求項 8に記載のフィルタ回路。
[15] 外部の差動伝送路に接続される、第一と第二との入力端子;
第一と第二との出力端子;
一定の電位に維持される、第三と第四との出力端子;
前記第一の入力端子と前記第一の出力端子との間に接続された、第一のイン ダクタ、及び、 前記第一のインダクタと磁気的に結合し、前記第二の入力端子と前記第二の出 力端子との間に前記第一のインダクタと同じ極性で接続された、第二のインダクタ、 を含む、コモンモードチョーク;
及び、
前記第一の入力端子と前記第三の出力端子との間に接続された、第三のイン ダクタ、及び、
前記第三のインダクタと磁気的に結合し、前記第二の入力端子と前記第四の出 力端子との間に前記第三のインダクタとは逆の極性で接続された、第四のインダクタ を含む、ノーマルモードチョーク;
を有するフィルタ回路;
並びに、
前記フィルタ回路の前記第一と第二との出力端子に接続された入力端子対、を有 する差動レシーバ;
を具備する差動受信装置。
[16] 前記差動レシーバの前記入力端子対と外部の定電位端子との間に接続される終 端素子、を更に具備する、請求項 15に記載の差動受信装置。
[17] 前記差動レシーバの前記入力端子対を互いに接続する終端素子、を更に具備す る、請求項 15に記載の差動受信装置。
[18] 第一と第二との入力端子;
外部の差動伝送路に接続される、第一と第二との出力端子;
一定の電位に維持される、第三と第四との出力端子;
前記第一の入力端子と前記第一の出力端子との間に接続された、第一のイン ダクタ、及び、
前記第一のインダクタと磁気的に結合し、前記第二の入力端子と前記第二の出 力端子との間に前記第一のインダクタと同じ極性で接続された、第二のインダクタ、 を含む、コモンモードチョーク;
及び、 前記第一の入力端子と前記第三の出力端子との間に接続された、第三のイン ダクタ、及び、
前記第三のインダクタと磁気的に結合し、前記第二の入力端子と前記第四の出 力端子との間に前記第三のインダクタとは逆の極性で接続された、第四のインダクタ を含む、ノーマルモードチョーク;
を有するフィルタ回路;
並びに、
前記フィルタ回路の前記第一と第二との入力端子に接続された出力端子対、を有 する差動ドライバ;
を具備する差動送信装置。
第一と第二との入出力端子;
外部の差動伝送路に接続される、第三と第四との入出力端子;
一定の電位に維持される、第一、第二、第三、及び第四の出力端子;
前記第一と第三との入出力端子間に接続された、第一のインダクタ、及び、 前記第一のインダクタと磁気的に結合し、前記第二と第四との入出力端子間に 前記第一のインダクタと同じ極性で接続された、第二のインダクタ、
を含む、コモンモードチョーク;
前記第一の入出力端子と前記第一の出力端子との間に接続された、第三のィ ンダクタ、及び、
前記第三のインダクタと磁気的に結合し、前記第二と第四との入出力端子間に 前記第三のインダクタとは逆の極性で接続された、第四のインダクタ、
を含む、第一のノーマノレモードチョーク;
及び、
前記第三の入出力端子と前記第三の出力端子との間に接続された、第五のィ ンダクタ、及び、
前記第五のインダクタと磁気的に結合し、前記第四の入出力端子と前記第四の 出力端子との間に前記第五のインダクタとは逆の極性で接続された、第六のインダク タ、
を含む、第二のノーマノレモードチョーク;
を有するフィルタ回路;
前記フィルタ回路の前記第一と第二との入出力端子に接続された入力端子対、を 有する差動レシーバ;
並びに、
前記フィルタ回路の前記第一と第二との入出力端子に接続された出力端子対、を 有する差動ドライバ;
を具備する差動送受信装置。
第一と第二との入力端子、
第一と第二との出力端子、
一定の電位に維持される、第三と第四との出力端子、
前記第一の入力端子と前記第一の出力端子との間に接続された、第一のイン ダクタ、及び、
前記第一のインダクタと磁気的に結合し、前記第二の入力端子と前記第二の出 力端子との間に前記第一のインダクタと同じ極性で接続された、第二のインダクタ、 を含む、第一のコモンモードチョーク、
及び、
前記第一の入力端子と前記第三の出力端子との間に接続された、第三のイン ダクタ、及び、
前記第三のインダクタと磁気的に結合し、前記第二の入力端子と前記第四の出 力端子との間に前記第三のインダクタとは逆の極性で接続された、第四のインダクタ を含む、第一のノーマノレモードチョーク、
を有する第一のフィルタ回路、
及び、
前記第一のフィルタ回路の前記第一と第二との入力端子に接続された出力端子対 、を有する差動ドライバ、 を具備する差動送信装置;
第三と第四との入力端子、
第五と第六との出力端子、
一定の電位に維持される、第七と第八との出力端子、
前記第三の入力端子と前記第五の出力端子との間に接続された、第五のイン ダクタ、及び、
前記第五のインダクタと磁気的に結合し、前記第四の入力端子と前記第六の出 力端子との間に前記第五のインダクタと同じ極性で接続された、第六のインダクタ、 を含む、第二のコモンモードチョーク、
及び、
前記第三の入力端子と前記第七の出力端子との間に接続された、第七のイン ダクタ、及び、
前記第七のインダクタと磁気的に結合し、前記第四の入力端子と前記第八の出 力端子との間に前記第七のインダクタとは逆の極性で接続された、第八のインダクタ を含む、第二のノーマノレモードチョーク、
を有する第二のフィルタ回路、
及び、
前記第二のフィルタ回路の前記第三と第四との出力端子に接続された入力端子対 、を有する差動レシーバ、
を具備する差動受信装置;
並びに、
前記第一と第二との出力端子を前記第三と第四との入力端子に接続する差動伝 送路;
を具備する差動伝送システム。
第一と第二との入出力端子;
第三と第四との入出力端子;
一定の電位に維持される、第一、第二、第三、及び第四の出力端子; 前記第一と第三との入出力端子間に接続された、第一のインダクタ、及び、 前記第一のインダクタと磁気的に結合し、前記第二と第四との入出力端子間に 前記第一のインダクタと同じ極性で接続された、第二のインダクタ、
を含む、第一のコモンモードチョーク;
前記第一の入出力端子と前記第一の出力端子との間に接続された、第三のィ ンダクタ、及び、
前記第三のインダクタと磁気的に結合し、前記第二と第四との入出力端子間に 前記第三のインダクタとは逆の極性で接続された、第四のインダクタ、
を含む、第一のノーマノレモードチョーク;
及び、
前記第三の入出力端子と前記第三の出力端子との間に接続された、第五のィ ンダクタ、及び、
前記第五のインダクタと磁気的に結合し、前記第四の入出力端子と前記第四の 出力端子との間に前記第五のインダクタとは逆の極性で接続された、第六のインダク タ、
を含む、第二のノーマノレモードチョーク;
を有するフィルタ回路;
前記フィルタ回路の前記第一と第二との入出力端子に接続された入力端子対、を 有する差動レシーバ;
及び、
前記フィルタ回路の前記第一と第二との入出力端子に接続された出力端子対、を 有する差動ドライバ;
をそれぞれ具備する、二つの差動送受信装置;
並びに、
前記二つの差動送受信装置間で、前記第三の入出力端子同士を接続し、前記第 四の入出力端子同士を接続する差動伝送路;
を具備する差動伝送システム。
外部の電源線に接続される、第一と第二との入力端子; 第一と第二との出力端子;
一定の電位に維持される、第三と第四との出力端子;
前記第一の入力端子と前記第一の出力端子との間に接続された、第一のイン ダクタ、及び、
前記第一のインダクタと磁気的に結合し、前記第二の入力端子と前記第二の出 力端子との間に前記第一のインダクタと同じ極性で接続された、第二のインダクタ、 を含む、コモンモードチョーク;
及び、
前記第一の入力端子と前記第三の出力端子との間に接続された、第三のイン ダクタ、及び、
前記第三のインダクタと磁気的に結合し、前記第二の入力端子と前記第四の出 力端子との間に前記第三のインダクタとは逆の極性で接続された、第四のインダクタ を含む、ノーマルモードチョーク;
を有するフィルタ回路;
並びに、
前記フィルタ回路の前記第一と第二との出力端子に接続された入力端子対、を有 する電力変換部;
を具備する電源装置。
PCT/JP2005/014040 2004-10-14 2005-08-01 フィルタ回路、及びそれを搭載する差動伝送システムと電源装置 WO2006040869A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/664,129 US20070252659A1 (en) 2004-10-14 2005-08-01 Filter Circuit, Differential Transmission System Having Same, and Power Supply
JP2006540840A JPWO2006040869A1 (ja) 2004-10-14 2005-08-01 フィルタ回路、及びそれを搭載する差動伝送システムと電源装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-299851 2004-10-14
JP2004299851 2004-10-14
JP2005004777 2005-01-12
JP2005-004777 2005-01-12

Publications (1)

Publication Number Publication Date
WO2006040869A1 true WO2006040869A1 (ja) 2006-04-20

Family

ID=36148171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014040 WO2006040869A1 (ja) 2004-10-14 2005-08-01 フィルタ回路、及びそれを搭載する差動伝送システムと電源装置

Country Status (3)

Country Link
US (1) US20070252659A1 (ja)
JP (1) JPWO2006040869A1 (ja)
WO (1) WO2006040869A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019990A (ja) * 2005-07-08 2007-01-25 Advantest Corp 差動伝送システム
JP2008172364A (ja) * 2007-01-09 2008-07-24 Denso Corp 通信装置
JP2009139310A (ja) * 2007-12-10 2009-06-25 Hitachi-Ge Nuclear Energy Ltd 原子力発電所用中性子モニタシステム
US7804188B2 (en) 2007-02-28 2010-09-28 Denso Corporation Termination circuit, vehicle-mounted control apparatus, and vehicle-mounted communication system
JP2011120003A (ja) * 2009-12-03 2011-06-16 Nippon Soken Inc 差動通信用送信装置
JP2012070279A (ja) * 2010-09-24 2012-04-05 Canon Inc ノイズフィルタ及び伝送装置
JP2013098279A (ja) * 2011-10-31 2013-05-20 Panasonic Corp コモンモードノイズフィルタ
JP2013182400A (ja) * 2012-03-01 2013-09-12 Nec Computertechno Ltd Usbノイズ改善器
JP2014053765A (ja) * 2012-09-07 2014-03-20 Panasonic Corp コモンモードノイズフィルタ
JP2016021461A (ja) * 2014-07-14 2016-02-04 株式会社村田製作所 インダクタ素子、及び、配線基板
JP2016144056A (ja) * 2015-02-03 2016-08-08 株式会社村田製作所 ノイズフィルタ部品、及び、吸収型ノイズフィルタ
WO2016143149A1 (ja) * 2015-03-11 2016-09-15 三菱電機株式会社 ノイズフィルタ
JP2017118311A (ja) * 2015-12-24 2017-06-29 株式会社村田製作所 D級アンプ回路
JP2018085554A (ja) * 2016-11-21 2018-05-31 株式会社村田製作所 無線回路搭載電子機器
KR20190064571A (ko) * 2016-10-17 2019-06-10 마이크로칩 테크놀로지 인코포레이티드 감소된 emi를 갖는 동축 데이터 통신
WO2019176353A1 (ja) * 2018-03-14 2019-09-19 日立オートモティブシステムズ株式会社 電子制御装置
JP2019201237A (ja) * 2018-05-14 2019-11-21 パナソニックIpマネジメント株式会社 信号伝送回路
JP2020167574A (ja) * 2019-03-29 2020-10-08 株式会社村田製作所 複合型電子部品および電子回路
JPWO2020012794A1 (ja) * 2018-07-13 2021-06-24 株式会社村田製作所 バイアスt回路および信号伝送装置
JP6925560B1 (ja) * 2020-09-18 2021-08-25 三菱電機株式会社 ノイズキャンセル装置およびそれを備えた電気装置
JP2021141499A (ja) * 2020-03-06 2021-09-16 株式会社豊田中央研究所 コモンモードノイズフィルタ
US11728778B2 (en) 2020-12-29 2023-08-15 Analog Devices International Unlimited Company Differential signaling transmission systems

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1030481C2 (nl) * 2005-11-22 2007-05-23 Atlas Copco Airpower Nv Inrichting voor aansluiting op een impedantie met een voornamelijk inductief karakter.
JP4586760B2 (ja) * 2006-03-29 2010-11-24 Tdk株式会社 ローパスフィルタ及びローパスフィルタアレイ
JP2009247121A (ja) * 2008-03-31 2009-10-22 Fuji Electric Device Technology Co Ltd 電力変換装置
JP5029726B2 (ja) * 2010-05-21 2012-09-19 Tdk株式会社 コモンモードノイズフィルタ
CN102315760A (zh) * 2010-07-09 2012-01-11 鸿富锦精密工业(深圳)有限公司 火线接口供电电路
TWI499302B (zh) * 2011-06-27 2015-09-01 Aten Int Co Ltd 訊號傳輸裝置及其傳送器與接收器
JP6108690B2 (ja) * 2012-06-06 2017-04-05 キヤノン株式会社 差動伝送回路及び電子機器
WO2014155873A1 (ja) * 2013-03-29 2014-10-02 株式会社村田製作所 積層型コイル部品および整合回路
KR101912270B1 (ko) * 2013-07-26 2018-10-29 삼성전기 주식회사 공통모드필터
SE537570C2 (sv) * 2013-10-24 2015-06-23 Scania Cv Ab Kommunikationsbuss för motorfordon
US9473205B2 (en) 2014-05-01 2016-10-18 Microchip Technology Incorporated Coaxial data communication with reduced EMI
US9866270B2 (en) 2014-05-01 2018-01-09 Microchip Technology Incorporated Coaxial data communication with reduced EMI
US9219422B1 (en) * 2014-08-21 2015-12-22 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Operating a DC-DC converter including a coupled inductor formed of a magnetic core and a conductive sheet
US9379619B2 (en) 2014-10-21 2016-06-28 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Dividing a single phase pulse-width modulation signal into a plurality of phases
US9618539B2 (en) 2015-05-28 2017-04-11 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Sensing current of a DC-DC converter
DE102018003564A1 (de) 2018-05-02 2018-10-25 Daimler Ag Vorrichtung zur Gleichtaktterminierung
KR20220099097A (ko) * 2021-01-05 2022-07-12 뉴라컴 인코포레이티드 변압기 기반 노치 필터
CN116527017B (zh) * 2023-07-03 2023-09-22 广汽埃安新能源汽车股份有限公司 电机控制器的滤波器件确定方法及装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5255809A (en) * 1975-11-04 1977-05-07 Nippon Telegr & Teleph Corp <Ntt> Power isolation filter
JPS5285448A (en) * 1976-01-09 1977-07-15 Tohoku Metal Ind Ltd Line filter
JPH0380708A (ja) * 1989-08-24 1991-04-05 Nippon Telegr & Teleph Corp <Ntt> 誘導電圧軽減用フィルタ
JPH04142824A (ja) * 1990-10-03 1992-05-15 Nec Corp データ伝送方式
JPH04251557A (ja) * 1990-12-11 1992-09-07 Yokogawa Electric Corp スイッチング装置
JPH0786863A (ja) * 1993-06-29 1995-03-31 Taiyo Yuden Co Ltd ノイズ除去部品
JPH07202616A (ja) * 1993-12-28 1995-08-04 Kyocera Corp 分布定数型ノイズフィルタ
JPH08115820A (ja) * 1994-10-12 1996-05-07 Murata Mfg Co Ltd コモンモードチョークコイル
JPH1168497A (ja) * 1997-08-27 1999-03-09 Nec Corp コモンモードフィルタ
JP2000299615A (ja) * 1999-04-13 2000-10-24 Nippon Telegraph & Telephone East Corp 低周波電源ノイズ防護装置
JP2003018224A (ja) * 2001-07-02 2003-01-17 Canon Inc 差動信号伝送方式および差動信号伝送における送信および受信に使用するic

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095291A (en) * 1990-11-08 1992-03-10 North Hill Electronics, Inc. Communication filter for unshielded, twisted-pair cable
US6163470A (en) * 1999-10-07 2000-12-19 Lucent Technologies, Inc. EMI filter for an inrush relay
JP3780414B2 (ja) * 2001-04-19 2006-05-31 株式会社村田製作所 積層型バラントランス
US6999743B2 (en) * 2001-12-07 2006-02-14 Analog Devices, Inc. Line interface with second order high pass transfer function
US7620121B1 (en) * 2004-12-09 2009-11-17 Xilinx, Inc. DC balance compensation for AC-coupled circuits

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5255809A (en) * 1975-11-04 1977-05-07 Nippon Telegr & Teleph Corp <Ntt> Power isolation filter
JPS5285448A (en) * 1976-01-09 1977-07-15 Tohoku Metal Ind Ltd Line filter
JPH0380708A (ja) * 1989-08-24 1991-04-05 Nippon Telegr & Teleph Corp <Ntt> 誘導電圧軽減用フィルタ
JPH04142824A (ja) * 1990-10-03 1992-05-15 Nec Corp データ伝送方式
JPH04251557A (ja) * 1990-12-11 1992-09-07 Yokogawa Electric Corp スイッチング装置
JPH0786863A (ja) * 1993-06-29 1995-03-31 Taiyo Yuden Co Ltd ノイズ除去部品
JPH07202616A (ja) * 1993-12-28 1995-08-04 Kyocera Corp 分布定数型ノイズフィルタ
JPH08115820A (ja) * 1994-10-12 1996-05-07 Murata Mfg Co Ltd コモンモードチョークコイル
JPH1168497A (ja) * 1997-08-27 1999-03-09 Nec Corp コモンモードフィルタ
JP2000299615A (ja) * 1999-04-13 2000-10-24 Nippon Telegraph & Telephone East Corp 低周波電源ノイズ防護装置
JP2003018224A (ja) * 2001-07-02 2003-01-17 Canon Inc 差動信号伝送方式および差動信号伝送における送信および受信に使用するic

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019990A (ja) * 2005-07-08 2007-01-25 Advantest Corp 差動伝送システム
JP2008172364A (ja) * 2007-01-09 2008-07-24 Denso Corp 通信装置
US7804188B2 (en) 2007-02-28 2010-09-28 Denso Corporation Termination circuit, vehicle-mounted control apparatus, and vehicle-mounted communication system
DE102008010939B4 (de) * 2007-02-28 2012-05-03 Denso Corporation Abschlussschaltung, in ein Fahrzeug eingebaute Steuervorrichtung und in ein Fahrzeug eingebautes Kommunikationssystem
JP2009139310A (ja) * 2007-12-10 2009-06-25 Hitachi-Ge Nuclear Energy Ltd 原子力発電所用中性子モニタシステム
JP2011120003A (ja) * 2009-12-03 2011-06-16 Nippon Soken Inc 差動通信用送信装置
JP2012070279A (ja) * 2010-09-24 2012-04-05 Canon Inc ノイズフィルタ及び伝送装置
JP2013098279A (ja) * 2011-10-31 2013-05-20 Panasonic Corp コモンモードノイズフィルタ
JP2013182400A (ja) * 2012-03-01 2013-09-12 Nec Computertechno Ltd Usbノイズ改善器
JP2014053765A (ja) * 2012-09-07 2014-03-20 Panasonic Corp コモンモードノイズフィルタ
JP2016021461A (ja) * 2014-07-14 2016-02-04 株式会社村田製作所 インダクタ素子、及び、配線基板
JP2016144056A (ja) * 2015-02-03 2016-08-08 株式会社村田製作所 ノイズフィルタ部品、及び、吸収型ノイズフィルタ
WO2016143149A1 (ja) * 2015-03-11 2016-09-15 三菱電機株式会社 ノイズフィルタ
JP2017118311A (ja) * 2015-12-24 2017-06-29 株式会社村田製作所 D級アンプ回路
KR102362810B1 (ko) 2016-10-17 2022-02-16 마이크로칩 테크놀로지 인코포레이티드 감소된 emi를 갖는 동축 데이터 통신
KR20190064571A (ko) * 2016-10-17 2019-06-10 마이크로칩 테크놀로지 인코포레이티드 감소된 emi를 갖는 동축 데이터 통신
JP2018085554A (ja) * 2016-11-21 2018-05-31 株式会社村田製作所 無線回路搭載電子機器
US10630335B2 (en) 2016-11-21 2020-04-21 Murata Manufacturing Co., Ltd. Wireless circuit-mounted electronic apparatus
WO2019176353A1 (ja) * 2018-03-14 2019-09-19 日立オートモティブシステムズ株式会社 電子制御装置
JP2019201237A (ja) * 2018-05-14 2019-11-21 パナソニックIpマネジメント株式会社 信号伝送回路
JPWO2020012794A1 (ja) * 2018-07-13 2021-06-24 株式会社村田製作所 バイアスt回路および信号伝送装置
JP2020167574A (ja) * 2019-03-29 2020-10-08 株式会社村田製作所 複合型電子部品および電子回路
US11159138B2 (en) 2019-03-29 2021-10-26 Murata Manufacturing Co., Ltd. Composite electronic component and electronic circuit
JP2021141499A (ja) * 2020-03-06 2021-09-16 株式会社豊田中央研究所 コモンモードノイズフィルタ
JP6925560B1 (ja) * 2020-09-18 2021-08-25 三菱電機株式会社 ノイズキャンセル装置およびそれを備えた電気装置
WO2022059160A1 (ja) * 2020-09-18 2022-03-24 三菱電機株式会社 ノイズキャンセル装置およびそれを備えた電気装置
US11728778B2 (en) 2020-12-29 2023-08-15 Analog Devices International Unlimited Company Differential signaling transmission systems

Also Published As

Publication number Publication date
US20070252659A1 (en) 2007-11-01
JPWO2006040869A1 (ja) 2008-05-15

Similar Documents

Publication Publication Date Title
WO2006040869A1 (ja) フィルタ回路、及びそれを搭載する差動伝送システムと電源装置
EP1583305A2 (en) Differential transmission circuit and common mode choke coil
JP7155107B2 (ja) 回路モジュール、ネットワークモジュール、及び車載電子機器
JPH11505677A (ja) 電磁妨害アイソレータ
JP2008244701A (ja) 電力線通信システム
EP3138205B1 (en) Coaxial data communication with reduced emi
JP2005318539A (ja) 差動伝送回路及びコモンモードチョークコイル
KR20130094320A (ko) 노이즈 필터
JP2010141642A (ja) 積層型電子部品
US20170041044A1 (en) Coaxial Data Communication With Reduced EMI
JP2004056197A (ja) 電力線通信システム
EP3526903B1 (en) Coaxial data communication with reduced emi
US20110234337A1 (en) Filter circuit for differential communication
WO2007086405A1 (ja) バランとこれを用いた電子機器
JP2002217031A (ja) ノイズフィルタおよびこのノイズフィルタを用いた電子機器
JP2003018224A (ja) 差動信号伝送方式および差動信号伝送における送信および受信に使用するic
JPH04372213A (ja) Lan用伝送インターフェース回路
JP2006191551A (ja) 差動伝送路の輻射ノイズ抑制回路
JP2010041316A (ja) ハイパスフィルタ、高周波モジュールおよびそれを用いた通信機器
JP2008503137A (ja) 電子装置の音声信号経路とインターフェイスし、この音声信号経路に関してesd及び無線信号を拒絶する受動処理デバイス
JP3095059B2 (ja) 雑音・サージ複合防護用emcコネクタ
JP5776297B2 (ja) 高周波トランス、高周波部品および通信端末装置
JP2012015395A (ja) コモンモードチョークコイル実装構造
CN106487520A (zh) 一种车载以太网电路板
JP2000252124A (ja) コモンモードフィルタ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006540840

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11664129

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580033785.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11664129

Country of ref document: US

122 Ep: pct application non-entry in european phase