WO2014155873A1 - 積層型コイル部品および整合回路 - Google Patents

積層型コイル部品および整合回路 Download PDF

Info

Publication number
WO2014155873A1
WO2014155873A1 PCT/JP2013/084194 JP2013084194W WO2014155873A1 WO 2014155873 A1 WO2014155873 A1 WO 2014155873A1 JP 2013084194 W JP2013084194 W JP 2013084194W WO 2014155873 A1 WO2014155873 A1 WO 2014155873A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
conductor pattern
coil conductor
opening
magnetic flux
Prior art date
Application number
PCT/JP2013/084194
Other languages
English (en)
French (fr)
Inventor
石塚健一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014532747A priority Critical patent/JP5979233B2/ja
Priority to CN201390001152.2U priority patent/CN205092107U/zh
Publication of WO2014155873A1 publication Critical patent/WO2014155873A1/ja
Priority to US14/841,795 priority patent/US9812245B2/en
Priority to US15/722,010 priority patent/US10049807B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0073Printed inductances with a special conductive pattern, e.g. flat spiral
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance

Definitions

  • the present invention relates to a laminated coil component formed by laminating a plurality of insulating layers on which conductor patterns are formed, and a matching circuit including the laminated coil component.
  • Patent Document 1 A structure in which a ground conductor layer is inserted between layers of each coil conductor pattern has been proposed.
  • Patent Document 1 in a structure in which a ground conductor layer is inserted between layers of each coil conductor pattern, the coil and the conductor layer are easily unnecessarily coupled, and the Q value of the coil deteriorates due to this unnecessary coupling. Therefore, a large space is still required between the coil conductor pattern and the ground conductor layer.
  • An object of the present invention is to provide a laminated coil component in which a plurality of coils are arranged close to each other while suppressing unnecessary coupling between the coils, and a matching circuit including the same.
  • the conductor pattern includes the first coil conductor pattern and the second coil.
  • the first coil conductor pattern includes a conductor pattern, the first coil conductor pattern forms a coil opening that generates a magnetic flux in a first direction, and the second coil conductor pattern includes a first coil opening that generates a magnetic flux in a first direction, and a first direction.
  • the coil opening of the first coil conductor pattern is in a state in plan view, and the first coil opening of the second coil conductor pattern and the second coil opening. It is characterized by overlapping with a plurality of coil openings including the coil openings.
  • both coils are not coupled or relatively weakly coupled. Therefore, the interlayer distance between the first coil conductor pattern and the second coil conductor pattern can be reduced, and a plurality of coils can be arranged in a limited space.
  • both the first coil conductor pattern and the second coil conductor pattern can constitute a coil having a large opening diameter in a limited space. That is, it is not necessary to form a small-diameter coil to suppress the coupling, and a coil having a required inductance can be configured with a small number of turns.
  • the first coil opening and the second coil opening in the region where the coil openings of the first coil conductor pattern overlap in a plan view state.
  • the total area of the first coil openings is equal to the total area of the second coil openings.
  • the first coil opening and the second coil opening in the region where the coil openings of the first coil conductor pattern overlap in a plan view state.
  • the total area of the first coil opening is different from the total area of the second coil opening.
  • At least one of the first coil conductor pattern or the second coil conductor pattern is formed across a plurality of insulating layers.
  • One of the first coil conductor pattern or the second coil conductor pattern constitutes a transformer with two coils coupled to each other, for example, and the other is connected to the primary side or the secondary side of the transformer. Constitutes the inductor.
  • a coil component including, for example, a filter including an inductor and a transformer-type impedance conversion circuit can be configured.
  • One of the first coil conductor pattern and the second coil conductor pattern constitutes, for example, a plurality of coils that are coupled to each other, and the plurality of coils are positioned so as to sandwich the other coil conductor pattern in the layer direction. It is the formed outer coil conductor pattern. With this configuration, it is possible to configure inductors that are weakly coupled to each other with the outer coil conductor pattern.
  • a matching circuit of the present invention includes the multilayer coil component described in (7) above, and includes a band-pass filter including two LC parallel resonant circuits in which inductors are coupled to each other, and two inductors coupled to each other.
  • a transformer-type impedance converter circuit wherein the inductors of the two LC parallel resonant circuits are configured by the outer coil conductor pattern, and the inductors of the transformer-type impedance converter circuit are sandwiched between the outer coil conductor patterns Consists of.
  • a small matching circuit including a band-pass filter and a transformer-type impedance conversion circuit can be configured.
  • the interlayer distance between the first coil conductor pattern and the second coil conductor pattern is short, the coil by the first coil conductor pattern and the coil by the second coil conductor pattern are not coupled or relatively weakly coupled. Can be in a state. Therefore, the interlayer distance between the first coil conductor pattern and the second coil conductor pattern can be reduced, and a plurality of coils can be arranged in a limited space. Even if the interlayer distance is short, the degree of coupling between the coil formed by the first coil conductor pattern and the coil formed by the second coil conductor pattern can be determined with high accuracy.
  • FIG. 1 is an exploded perspective view of the main part of the multilayer coil component 101 according to the first embodiment.
  • FIG. 2 is a plan view of each insulating layer of the multilayer coil component 101.
  • FIG. 3A is a diagram in which the first coil conductor patterns 11a, 11b, and 11c are overlaid, and
  • FIG. 3B is a diagram in which the second coil conductor patterns 12a, 12b, and 12c are overlaid.
  • FIG. 4 is a cross-sectional view of the laminated coil component 101.
  • FIG. 5 is a circuit diagram of the laminated coil component 101.
  • FIG. 6 is an exploded perspective view of the main part of the matching circuit 201 according to the second embodiment.
  • FIG. 7 is a plan view of each insulating layer of the matching circuit 201.
  • FIG. 8 is a circuit diagram of the matching circuit 201.
  • FIG. 9 is an exploded perspective view of the main part of the matching circuit 202 according to the third embodiment.
  • FIG. 10 is a plan view of each insulating layer of the matching circuit 202.
  • 11A is a diagram in which the first coil conductor patterns 11a, 11b, and 11c of the matching circuit 202 are overlaid
  • FIG. 11B is a diagram in which the second coil conductor patterns 12a, 12b, and 12c are overlaid. It is.
  • FIG. 12 is a cross-sectional view of the coil conductor pattern forming layer portion of the matching circuit 202.
  • FIG. 13 is a circuit diagram of the matching circuit 202.
  • FIG. 14 is a plan view of each insulating layer of the matching circuit 203 according to the fourth embodiment.
  • FIG. 15 is a circuit diagram of the matching circuit 203.
  • FIGS. 16A, 16B, and 16C are plan views of the first coil conductor pattern and the second coil conductor pattern of the multilayer coil component according to the fifth embodiment.
  • FIGS. 17A and 17B are plan views of the first coil conductor pattern and the second coil conductor pattern of the multilayer coil component according to the fifth embodiment.
  • FIGS. 18A and 18B are plan views of the first coil conductor pattern and the second coil conductor pattern of the multilayer coil component according to the fifth embodiment.
  • FIG. 19 is a plan view of the first coil conductor pattern and the second coil conductor pattern of the multilayer coil component according to the fifth embodiment.
  • FIG. 1 is an exploded perspective view of the main part of the multilayer coil component 101 according to the first embodiment.
  • the laminated coil component 101 is formed by laminating insulating layers 10a to 10f on which conductor patterns are formed, and a plurality of coils are constituted by the conductor patterns.
  • the conductor patterns include first coil conductor patterns 11a, 11b, 11c and second coil conductor patterns 12a, 12b, 12c. That is, the first coil conductor patterns 11a, 11b, and 11c are formed on the insulating layers 10a, 10b, and 10c, and the second coil conductor patterns 12a, 12b, and 12c are formed on the insulating layers 10d, 10e, and 10f. Predetermined portions of each conductor pattern are connected to each other through via conductors (not shown).
  • the external terminals of the laminated coil component are formed on the end face or the lower face of the laminated body, but are not shown in FIG.
  • the first end of the first coil conductor pattern 11a is connected to the terminal P1.
  • the second end of the first coil conductor pattern 11a is connected to the first end of the first coil conductor pattern 11b, and the second end of the first coil conductor pattern 11b is connected to the first end of the first coil conductor pattern 11c. Has been.
  • the second end of the first coil conductor pattern 11c is connected to the terminal P2.
  • the first end of the second coil conductor pattern 12a is connected to the terminal P4.
  • the second end of the second coil conductor pattern 12a is connected to the first end of the second coil conductor pattern 12b, and the second end of the second coil conductor pattern 12b is connected to the first end of the second coil conductor pattern 12c.
  • the second end of the second coil conductor pattern 12c is connected to the terminal P3.
  • FIG. 2 is a plan view of each insulating layer of the multilayer coil component 101.
  • FIG. 2 shows an example of the direction of current flowing through each coil conductor pattern and the direction of magnetic flux passing through the coil opening.
  • FIG. 3A is a diagram in which the first coil conductor patterns 11a, 11b, and 11c are overlaid, and
  • FIG. 3B is a diagram in which the second coil conductor patterns 12a, 12b, and 12c are overlaid.
  • FIG. 4 is a cross-sectional view of the laminated coil component 101.
  • a current flows through each coil conductor pattern, and as a result, a magnetic flux having a direction as indicated by a cross symbol and a dot symbol is generated in the drawing.
  • the direction of the current is represented by an arrow and the direction of the magnetic flux is represented by a cross symbol and a dot symbol, as is the case with other drawings described below.
  • the first coil conductor patterns 11a, 11b, and 11c form one coil opening CA1 that generates magnetic flux in the first direction (for example, the depth direction on the paper surface).
  • the second coil conductor patterns 12a, 12b, and 12c include a first coil opening CA21 that generates a magnetic flux in a first direction (the depth direction on the paper surface), and a second coil opening CA22 that generates a magnetic flux in a second direction (the front side on the paper surface). Form.
  • the areas of the first coil opening CA21 and the second coil opening CA22 are equal.
  • the coil openings CA1 of the first coil conductor patterns 11a, 11b, and 11c overlap the first coil openings CA21 and the second coil openings CA22 of the second coil conductor patterns 12a, 12b, and 12c in a plan view state.
  • the first coil conductor patterns 11a, 11b, and 11c generate a magnetic flux ⁇ 1 in the first direction
  • the second coil conductor patterns 12a, 12b, and 12c have the magnetic flux ⁇ 21 and the second magnetic flux in the first direction.
  • Magnetic flux ⁇ 22 is generated in each direction.
  • the magnetic flux ⁇ 22 passing through the coil opening CA22 formed by the second coil conductor patterns 12a, 12b, and 12c reinforces the magnetic flux ⁇ 1 passing through the coil opening CA1 formed by the first coil conductor patterns 11a, 11b, and 11c (inductance increases).
  • the magnetic flux ⁇ 21 passing through the coil opening CA21 acts in a direction in which the magnetic flux ⁇ 1 passing through the coil opening CA1 weakens (inductance decreases).
  • FIG. 5 is a circuit diagram of the laminated coil component 101.
  • a first inductor L1 is connected between the terminals P1 and P2, and a second inductor L2 is connected between the terminals P3 and P4.
  • the second inductor L2 includes inductors L21 and L22 connected in series.
  • the inductor L1 is an inductor constituted by the first coil conductor patterns 11a, 11b, and 11c
  • the inductor L2 is an inductor constituted by the second coil conductor patterns 12a, 12b, and 12c.
  • the inductors L21 and L22 are respectively configured by portions of the second coil conductor patterns 12a, 12b, and 12c that form the coil openings CA21 and CA22.
  • the inductor L1 and the inductor L22 are coupled with the same polarity
  • the inductor L1 and the inductor L21 are coupled with the opposite polarity.
  • the two coils are equivalent. It will be in the state which does not couple
  • FIG. 6 is an exploded perspective view of the main part of the matching circuit 201 according to the second embodiment.
  • FIG. 7 is a plan view of each insulating layer of the matching circuit 201.
  • the matching circuit 201 is formed by laminating insulating layers 10a to 10l each having a conductor pattern, and a plurality of coils are formed by the conductor pattern.
  • the conductor patterns include first coil conductor patterns 11a to 11d and second coil conductor patterns 12a to 12c. Predetermined portions of each conductor pattern are connected to each other through via conductors (not shown).
  • First coil conductor patterns 11a to 11d are formed on the insulating layers 10a to 10d.
  • Second coil conductor patterns 12a to 12c are formed on the insulating layers 10e to 10g.
  • Capacitor electrodes 21 to 23 are formed on the insulating layers 10h to 10j.
  • a ground electrode 24 is formed on the insulating layer 10k. Input / output terminals 31 and 32 and ground terminals 33 and 34 are formed on the lowermost insulating layer 10l.
  • FIG. 8 is a circuit diagram of the matching circuit 201.
  • the inductor L1 is composed of coil conductor patterns 11b and 11c, and the inductor L2 is composed of coil conductor patterns 11a and 11d.
  • the inductor L3 includes coil conductor patterns 12a, 12b, and 12c.
  • the capacitor C1 is composed of a capacitor electrode 23 and a ground electrode 24, and the capacitor C2 is composed of capacitor electrodes 21, 22, and 23.
  • the inductor L1 and the inductor L2 constitute an impedance conversion circuit having an autotransformer (single-winding transformer) structure.
  • Inductors L1 and L2 are coupled by mutual inductance M.
  • M the inductances of the inductors L1 and L2
  • M the mutual inductance
  • capacitors C1 and C2 and inductor L3 function as a band rejection filter that suppresses unnecessary frequency bands. Since the inductor L3 of the filter and the inductors L1 and L2 of the impedance conversion transformer are not substantially coupled, the filter and the transformer operate independently without interfering with each other.
  • FIG. 9 is an exploded perspective view of the main part of the matching circuit 202 according to the third embodiment.
  • FIG. 10 is a plan view of each insulating layer of the matching circuit 202.
  • FIG. 11A is a diagram in which the first coil conductor patterns 11a, 11b, 11c, and 11d of the matching circuit 202 are superimposed and
  • FIG. 11B is a diagram in which the second coil conductor patterns 12a, 12b, and 12c are superimposed.
  • FIG. FIG. 12 is a cross-sectional view of the coil conductor pattern forming layer portion of the matching circuit 202.
  • FIG. 13 is a circuit diagram of the matching circuit 202.
  • the second coil conductor patterns 12a, 12b, and 12c are astigmatic.
  • the first coil conductor patterns 11a, 11b, 11c, and 11d form one coil opening CA1 that generates a magnetic flux in the first direction (for example, the depth direction in the drawing).
  • the second coil conductor patterns 12a, 12b, and 12c include a first coil opening CA21 that generates a magnetic flux in a first direction (the depth direction on the paper surface), and a second coil opening CA22 that generates a magnetic flux in a second direction (the front side on the paper surface).
  • the second coil conductor patterns 12a, 12b, and 12c are asymmetrical, the areas of the first coil opening CA21 and the second coil opening CA22 are different.
  • the coil openings CA1 of the first coil conductor patterns 11a, 11b, 11c, and 11d overlap the first coil openings CA21 and the second coil openings CA22 of the second coil conductor patterns 12a, 12b, and 12c in a plan view.
  • the first coil conductor patterns 11a, 11b, 11c, and 11d generate a magnetic flux ⁇ 1 in the first direction
  • the second coil conductor patterns 12a, 12b, and 12c Magnetic flux ⁇ 22 is generated in the second direction.
  • the magnetic flux ⁇ 22 passing through the coil opening CA22 by the second coil conductor patterns 12a, 12b, and 12c intensifies the magnetic flux ⁇ 1 passing through the coil opening CA1 by the first coil conductor patterns 11a, 11b, 11c, and 11d (increases inductance).
  • the magnetic flux ⁇ 21 passing through the coil opening CA21 acts in a direction in which the magnetic flux ⁇ 1 passing through the coil opening CA1 weakens (inductance decreases).
  • the coil by the first coil conductor patterns 11a, 11b, 11c, and 11d is equal to the difference in strength between the magnetic fluxes ⁇ 21 and ⁇ 22.
  • (L1, L2) and the coil (L3) by the second coil conductor patterns 12a, 12b, 12c are coupled. More precisely, the coils (L1, L2) by the first coil conductor patterns 11a, 11b, 11c, 11d mainly based on the ratio of the difference between the areas of the coil openings CA21, CA22 and the area of the coil opening CA1. And the coupling coefficient between the second coil conductor patterns 12a, 12b and 12c and the coil (L3) are determined.
  • impedance conversion is performed by the transformer ratio of the transformer constituted by the inductors L1 and L2.
  • the band rejection filter including the inductor L3 removes second-order and third-order harmonic components in the used frequency band.
  • the inductor L3 is connected in series with the inductor L1 of the transformer formed by the inductors L1 and L2, a deviation occurs in the transformer ratio of the transformer as compared with the case of a single transformer.
  • the inductor L3 is weakly coupled to the inductors (L1, L2), the transformer ratio of the transformer by the inductors L1, L2 can be corrected.
  • the interlayer distance between the first coil conductor patterns 11a to 11d and the second coil conductor patterns 12a to 12c is reduced, a desired weak coupling can be generated, so that a plurality of coils are provided in a limited space.
  • a matching circuit can be configured. Even if the interlayer distance is short, the degree of coupling between the inductor L3 and the inductors (L1, L2) can be determined with high accuracy.
  • FIG. 14 is a plan view of each insulating layer of the matching circuit 203 according to the fourth embodiment.
  • first coil conductor patterns 11a, 11b, and 11c are formed on the insulating layers 10d, 10e, and 10f
  • second coil conductor patterns 12 and 13 are formed on the insulating layers 10c and 10g.
  • Capacitor electrodes 21 and 22 are formed on the insulating layers 10a and 10b, and a capacitor electrode 23 and a ground electrode 24 are formed on the insulating layers 10h and 10i, respectively.
  • the first end of the first coil conductor pattern 11a is connected to the capacitor electrode 22, and the second end of the first coil conductor pattern 11a is connected to the first end of the first coil conductor pattern 11b.
  • the second end of the first coil conductor pattern 11b is connected to the first end of the first coil conductor pattern 11c.
  • the second end of the first coil conductor pattern 11 c is connected to the ground electrode 24.
  • the first end of the second coil conductor pattern 12 is connected to the capacitor electrode 22, and the first end of the second coil conductor pattern 13 is connected to the capacitor electrode 23.
  • the first ends of the second coil conductor patterns 12 and 13 are connected to the ground electrode 24, respectively.
  • FIG. 15 is a circuit diagram of the matching circuit 203.
  • the inductor L1 is composed of coil conductor patterns 11a and 11b, and the inductor L2 is composed of coil conductor patterns 11b and 11c.
  • the inductor L3 is composed of the coil conductor pattern 12, and the inductor L4 is composed of the coil conductor pattern 13.
  • the capacitor C1 is composed of capacitor electrodes 21 and 22, and the capacitor C2 is composed of a capacitor electrode 23 and a ground electrode 24.
  • the inductor L1 and the inductor L2 constitute an impedance transformer circuit having an autotransformer (single-winding transformer) structure.
  • the parallel resonant circuit including the capacitor C2 and the inductor L4 and the parallel resonant circuit including the capacitor C1 and the inductor L3 are coupled by a transformer coupling of the inductor L3 and the inductor L4.
  • These capacitors C1 and C2 and inductors L3 and L4 constitute a band pass filter.
  • the first coil conductor patterns 11a, 11b, and 11c form coil openings that generate magnetic flux in the first direction
  • the second coil conductor patterns 12 and 13 include first coil openings and first coil that generate magnetic flux in the first direction.
  • a second coil opening that generates magnetic flux in two directions is formed.
  • the coil opening of the first coil conductor pattern overlaps with the plurality of coil openings including the first coil opening and the second coil opening of the second coil conductor pattern in a plan view.
  • the second coil conductor patterns 12 and 13 are not connected and are separated in terms of direct current. Further, the second coil conductor patterns 12 and 13 are arranged so as to sandwich the first coil conductor pattern in the layer direction.
  • the inductor (L1, L2) by the first coil conductor and the inductor (L3, L4) by the second coil conductor are coupled to each other, and the inductors L3 and L4 are coupled by the second coil conductor patterns 12 and 13 which are separated from each other.
  • the layer spacing between the second coil conductor patterns 12 and 13 is relatively large, the coupling coefficient between the inductors L3 and L4 can be set small. Thereby, the pass band width of the band pass filter can be set to a desired narrow band.
  • the first coil conductor pattern 11 forms one coil opening that generates a magnetic flux in the first direction
  • the second coil conductor pattern 12 includes the first coil opening and the first coil opening that generate a magnetic flux in the first direction.
  • a second coil opening that generates magnetic flux in two directions is formed.
  • the second coil conductor pattern 12 forms one first coil opening that generates magnetic flux in the first direction and two second coil openings that generate magnetic flux in the second direction.
  • the second coil conductor pattern 12 forms two first coil openings that generate magnetic flux in the first direction and two second coil openings that generate magnetic flux in the second direction.
  • the second coil conductor pattern 12 forms two first coil openings that generate magnetic flux in the first direction and three second coil openings that generate magnetic flux in the second direction.
  • the second coil conductor pattern may be formed so as to form three or more coil openings.
  • the second coil conductor pattern 12 includes a first coil opening that generates magnetic flux in the first direction and a second coil opening that generates magnetic flux in the second direction.
  • the coil opening formed by the second coil conductor pattern is not limited to a triangle or a trapezoid, and the two coil openings formed by the second coil conductor pattern may have a rectangular bowl shape as in the example of FIG.
  • the end points of the start point and the end point may be located closer to the center of the pattern formation region.
  • the second coil conductor pattern 12 includes a first coil opening that generates a magnetic flux in the first direction and a second coil opening that generates a magnetic flux in the second direction.
  • the second coil conductor patterns 12 are arranged vertically and horizontally.
  • two second coil conductor patterns 12A and 12B are provided.
  • the second coil conductor patterns 12A and 12B form a first coil opening that generates magnetic flux in the first direction and a second coil opening that generates magnetic flux in the second direction. Therefore, the second coil conductor pattern 12A and the first coil conductor pattern 11 are not substantially coupled, and the second coil conductor pattern 12B and the first coil conductor pattern 11 are not substantially coupled.
  • the first coil conductor pattern is not limited to a single coil opening, and a plurality of coil openings may be formed. In that case, each coil opening or one coil opening of the first coil conductor pattern only needs to overlap the first coil opening and the second coil opening of the second coil conductor pattern.
  • CA1 Coil opening CA21... First coil opening CA22.
  • Coil conductor patterns 11a-11d ... Coil conductor patterns 12, 13 ... Second coil conductor patterns 12a-12c ... Coil conductor patterns 12A, 12B ... Coil conductor patterns 21, 22, 23 ... Capacitor electrodes 24 ... Ground electrodes 31, 32 ... On Output terminals 33, 34 ... ground terminals 101 ... laminated coil components 201, 202, 203 ... matching circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

 第1コイル導体パターン(11a,11b,11c)は、第1方向(例えば紙面奥行き方向)に磁束を生じさせる1つのコイル開口を形成する。第2コイル導体パターン(12a,12b,12c)は、第1方向に磁束を生じさせる第1コイル開口と第2方向(紙面手前方向)に磁束を生じさせる第2コイル開口とを形成する。また、第1コイル開口および第2コイル開口の面積の差によって、第1コイル導体パターンによるコイルと第2コイル導体パターンによるコイルとの結合度を定める。これにより、コイル間の不要結合を抑制しつつ複数のコイルを近接配置する。

Description

積層型コイル部品および整合回路
 本発明は、導体パターンが形成された複数の絶縁層が積層されて構成される積層型コイル部品およびそれを備えた整合回路に関するものである。
 最近の電子機器の小型化/高集積化に伴い、内蔵する複数の部品を近接状態で実装する必要が生じる。しかし近接状態での実装に伴って、隣接する部品間の不要結合による特性の劣化が問題となる。
 複数のコイル(インダクタ)を近接配置せざるを得ない場合、そのコイルの開口面同士が対向しないように配置する、などの工夫が必要になる。また、コイルの開口面同士が近接してしまう場合(複数のコイルの巻回軸を同じ向きに積層した構造の場合)でも、インダクタ同士の不要結合を軽減するために、例えば特許文献1では、各コイル導体パターンの層間にグランド導体層を挿入する構造が提案されている。
特開平11-16738号公報
 特許文献1に示されているように、各コイル導体パターンの層間にグランド導体層を挿入する構造では、コイルと導体層とが不要結合しやすく、この不要結合によってコイルのQ値が劣化する。そのため、コイル導体パターンとグランド導体層との間には依然として大きなスペースが必要となる。
 本発明の目的は、コイル間の不要結合を抑制しつつ複数のコイルを近接配置した積層型コイル部品およびそれを備えた整合回路を提供することにある。
(1)本発明の積層型コイル部品は、導体パターンが形成された複数の絶縁層が積層されて、導体パターンにより複数のコイルが構成され、前記導体パターンは第1コイル導体パターンおよび第2コイル導体パターンを含み、第1コイル導体パターンは、第1方向に磁束を生じさせるコイル開口を形成し、第2コイル導体パターンは、第1方向に磁束を生じさせる第1コイル開口と、第1方向とは逆方向の第2方向に磁束を生じさせる第2コイル開口とを形成し、第1コイル導体パターンのコイル開口は、平面視状態で、第2コイル導体パターンの第1コイル開口および第2コイル開口を含む複数のコイル開口と重なることを特徴とする。
 上記構成により、第1コイル導体パターンによるコイルおよび第2コイル導体パターンによるコイルに磁束が貫いても両コイルは結合しない状態または比較的弱い結合状態になる。そのため、第1コイル導体パターンおよび第2コイル導体パターンの層間距離を近づけることができ、限られたスペースに複数のコイルを配置できる。
(2)前記第1コイル導体パターンおよび第2コイル導体パターンの外形は、平面視状態で重なっていることが好ましい。この構成により、第1コイル導体パターンおよび第2コイル導体パターンは共に、限られたスペースに開口径の大きなコイルを構成できる。すなわち、結合を抑制するために小径のコイルを形成する必要がなく、少ないターン数で必要なインダクタンスを有するコイルを構成できる。
(3)上記(1)または(2)において、目的に応じて、前記第1コイル開口および第2コイル開口のうち、平面視状態で前記第1コイル導体パターンのコイル開口が重なる領域内の前記第1コイル開口の総面積と前記第2コイル開口の総面積とは等しい。これにより、第1コイル導体パターンによるコイルと第2コイル導体パターンによるコイルとは実質上結合しない状態になる。
(4)上記(1)または(2)において、目的に応じて、前記第1コイル開口および第2コイル開口のうち、平面視状態で前記第1コイル導体パターンのコイル開口が重なる領域内の前記第1コイル開口の総面積と前記第2コイル開口の総面積とは異なる。これにより、第1コイル導体パターンによるコイルと第2コイル導体パターンによるコイルとは所定の弱い結合状態になる。
(5)前記第1コイル導体パターンまたは前記第2コイル導体パターンの少なくとも一方は、複数の絶縁層に亘って形成されていることが好ましい。この構成により、限られた占有面積に必要な大きなインダクタンスを有するコイルを構成できる。
(6)前記第1コイル導体パターンまたは前記第2コイル導体パターンのうちの一方は、例えば互いに結合する2つのコイルによるトランスを構成し、他方は、前記トランスの1次側または2次側に接続されるインダクタを構成する。この構成により、インダクタを含む例えばフィルタと、トランス型のインピーダンス変換回路とを備えたコイル部品を構成できる。
(7)前記第1コイル導体パターンまたは前記第2コイル導体パターンのうち一方は、例えば互いに結合する複数のコイルを構成し、これらの複数のコイルは他方のコイル導体パターンを層方向に挟む位置に形成されている外側コイル導体パターンである。この構成により、外側コイル導体パターンで、互いに弱く結合するインダクタを構成できる。
(8)本発明の整合回路は、上記(7)に記載の積層型コイル部品を備え、インダクタ同士が結合する2つのLC並列共振回路を含む帯域通過フィルタと、互いに結合する2つのインダクタで構成されるトランス型インピーダンス変換回路とを備え、前記2つのLC並列共振回路のインダクタは前記外側コイル導体パターンで構成され、前記トランス型インピーダンス変換回路のインダクタは前記外側コイル導体パターンで挟まれるコイル導体パターンで構成される。
 上記構成により、帯域通過フィルタと、トランス型のインピーダンス変換回路とを備えた小型の整合回路を構成できる。
 本発明によれば、第1コイル導体パターンおよび第2コイル導体パターンの層間距離が近いながらも、第1コイル導体パターンによるコイルと第2コイル導体パターンによるコイルとは結合しない状態または比較的弱い結合状態にできる。そのため、第1コイル導体パターンおよび第2コイル導体パターンの層間距離を近づけることができ、限られたスペースに複数のコイルを配置できる。また、層間距離が短くても、第1コイル導体パターンによるコイルと第2コイル導体パターンによるコイルとの結合度を精度良く定めることができる。
図1は第1の実施形態に係る積層型コイル部品101の主要部の分解斜視図である。 図2は積層型コイル部品101の各絶縁層の平面図である。 図3(A)は第1コイル導体パターン11a,11b,11cを重ねて表した図、図3(B)は第2コイル導体パターン12a,12b,12cを重ねて表した図である。 図4は積層型コイル部品101の断面図である。 図5は積層型コイル部品101の回路図である。 図6は第2の実施形態に係る整合回路201の主要部の分解斜視図である。 図7は整合回路201の各絶縁層の平面図である。 図8は整合回路201の回路図である。 図9は第3の実施形態に係る整合回路202の主要部の分解斜視図である。 図10は整合回路202の各絶縁層の平面図である。 図11(A)は整合回路202の第1コイル導体パターン11a,11b,11cを重ねて表した図、図11(B)はその第2コイル導体パターン12a,12b,12cを重ねて表した図である。 図12は整合回路202のコイル導体パターン形成層部分の断面図である。 図13は整合回路202の回路図である。 図14は第4の実施形態に係る整合回路203の各絶縁層の平面図である。 図15は整合回路203の回路図である。 図16(A)、図16(B)、図16(C)は、第5の実施形態に係る積層型コイル部品の第1コイル導体パターンおよび第2コイル導体パターンの平面図である。 図17(A)、図17(B)は、第5の実施形態に係る積層型コイル部品の第1コイル導体パターンおよび第2コイル導体パターンの平面図である。 図18(A)、図18(B)は、第5の実施形態に係る積層型コイル部品の第1コイル導体パターンおよび第2コイル導体パターンの平面図である。 図19は、第5の実施形態に係る積層型コイル部品の第1コイル導体パターンおよび第2コイル導体パターンの平面図である。
 以降、幾つかの具体的な例を挙げて、本発明を実施するための形態を示す。各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせによって更なる他の実施形態とし得ることは言うまでもない。
《第1の実施形態》
 図1は第1の実施形態に係る積層型コイル部品101の主要部の分解斜視図である。
 積層型コイル部品101は、導体パターンが形成された絶縁層10a~10fが積層され、導体パターンにより複数のコイルが構成されたものである。その導体パターンは第1コイル導体パターン11a,11b,11cおよび第2コイル導体パターン12a,12b,12cを含む。すなわち、絶縁層10a,10b,10cに第1コイル導体パターン11a,11b,11cが形成されていて、絶縁層10d,10e,10fに第2コイル導体パターン12a,12b,12cが形成されている。各導体パターンの所定箇所はビア導体(不図示)を介して層間接続されている。この積層型コイル部品の外部端子は積層体の端面または下面に形成されるが、図1においては図示を省略している。
 第1コイル導体パターン11aの第1端は端子P1に接続されている。第1コイル導体パターン11aの第2端は第1コイル導体パターン11bの第1端に接続されていて、第1コイル導体パターン11bの第2端は第1コイル導体パターン11cの第1端に接続されている。第1コイル導体パターン11cの第2端は端子P2に接続されている。
 第2コイル導体パターン12aの第1端は端子P4に接続されている。第2コイル導体パターン12aの第2端は第2コイル導体パターン12bの第1端に接続されていて、第2コイル導体パターン12bの第2端は第2コイル導体パターン12cの第1端に接続されている。第2コイル導体パターン12cの第2端は端子P3に接続されている。
 図2は積層型コイル部品101の各絶縁層の平面図である。図2には、各コイル導体パターンに流れる電流の向きとコイル開口を通る磁束の向きの例を示している。図3(A)は第1コイル導体パターン11a,11b,11cを重ねて表した図、図3(B)は第2コイル導体パターン12a,12b,12cを重ねて表した図である。図4は積層型コイル部品101の断面図である。
 図2に矢印で示すように、各コイル導体パターンに電流が流れ、それによって同図中にクロス記号およびドット記号で示すような向きの磁束が生じる。このように電流の向きを矢印で表し、磁束の向きをクロス記号およびドット記号で表すことは、以降に示す別の図についても同様である。
 図3(A)、図3(B)に示すように、第1コイル導体パターン11a,11b,11cは、第1方向(例えば紙面奥行き方向)に磁束を生じさせる1つのコイル開口CA1を形成する。第2コイル導体パターン12a,12b,12cは、第1方向(紙面奥行き方向)に磁束を生じさせる第1コイル開口CA21と第2方向(紙面手前方向)に磁束を生じさせる第2コイル開口CA22とを形成する。第1コイル開口CA21および第2コイル開口CA22の面積は等しい。
 第1コイル導体パターン11a,11b,11cのコイル開口CA1は、平面視状態で、第2コイル導体パターン12a,12b,12cの第1コイル開口CA21および第2コイル開口CA22と重なる。
 図4に示すように、第1コイル導体パターン11a,11b,11cは、第1方向に磁束φ1を生じさせ、第2コイル導体パターン12a,12b,12cは、第1方向に磁束φ21および第2方向に磁束φ22をそれぞれ生じさせる。
 上記構成により、第2コイル導体パターン12a,12b,12cによるコイル開口CA22を通る磁束φ22は、第1コイル導体パターン11a,11b,11cによるコイル開口CA1を通る磁束φ1を強め合う(インダクタンスが増大する)方向に作用し、コイル開口CA21を通る磁束φ21は、コイル開口CA1を通る磁束φ1を弱め合う(インダクタンスが減少する)方向に作用する。
 図5は積層型コイル部品101の回路図である。端子P1-P2間に第1インダクタL1が接続されていて、端子P3-P4間に第2インダクタL2が接続されている。第2インダクタL2は直列接続されたインダクタL21,L22で構成されている。ここで、インダクタL1は第1コイル導体パターン11a,11b,11cにより構成されるインダクタ、インダクタL2は第2コイル導体パターン12a,12b,12cにより構成されるインダクタである。インダクタL21,L22は、第2コイル導体パターン12a,12b,12cのうち、コイル開口CA21,CA22を形成する部分でそれぞれ構成される。このように、インダクタL1とインダクタL22とは同極性で結合し、インダクタL1とインダクタL21とは逆極性で結合する。
 このように、第1コイル導体パターン11a,11b,11cによるコイル開口CA1をおよび第2コイル導体パターン12a,12b,12cによるコイル開口CA21,CA22に磁束が貫いても、両コイルは等価的には結合しない状態となる。そのため、第1コイル導体パターン11a,11b,11cおよび第2コイル導体パターン12a,12b,12cの層間距離を近づけても、不要な結合が生じないので、限られたスペースに2つのコイルを配置できる。
《第2の実施形態》
 図6は第2の実施形態に係る整合回路201の主要部の分解斜視図である。図7は整合回路201の各絶縁層の平面図である。
 整合回路201は、導体パターンが形成された絶縁層10a~10lが積層され、導体パターンにより複数のコイルが構成されたものである。その導体パターンは第1コイル導体パターン11a~11dおよび第2コイル導体パターン12a~12cを含む。各導体パターンの所定箇所はビア導体(不図示)を介して層間接続されている。絶縁層10a~10dには第1コイル導体パターン11a~11dが形成されている。絶縁層10e~10gには第2コイル導体パターン12a~12cが形成されている。絶縁層10h~10jにはキャパシタ電極21~23が形成されている。絶縁層10kにはグランド電極24が形成されている。最下層の絶縁層10lには入出力端子31,32、グランド端子33,34が形成されている。
 図8は整合回路201の回路図である。インダクタL1はコイル導体パターン11b,11cで構成されていて、インダクタL2はコイル導体パターン11a,11dで構成されている。インダクタL3はコイル導体パターン12a,12b,12cで構成されている。キャパシタC1はキャパシタ電極23およびグランド電極24で構成されていて、キャパシタC2はキャパシタ電極21,22,23で構成されている。
 図8において、インダクタL1とインダクタL2とはオートトランス(単巻トランス)構造のインピーダンス変換回路を構成している。インダクタL1とL2は相互インダクタンスMで結合する。ここで、インダクタL1,L2のインダクタンスをL1,L2で表し、相互インダクタンスをMで表すと、左から順に、(L1+M)(L2+M)(-M)のインダクタで構成されるT字型等価回路に変換できる。したがって、このトランスによるインピーダンス変換比は{(L1+M)+(L2+M)}:{(L2+M)+(-M)}=(L1+L2+2M):L2である。
 図8において、キャパシタC1,C2およびインダクタL3は、不要周波数帯を抑制する帯域阻止フィルタとして作用する。このフィルタのインダクタL3と上記インピーダンス変換用トランスのインダクタL1,L2とは実質的に結合しないので、フィルタとトランスは干渉することなく独立して作用する。
《第3の実施形態》
 図9は第3の実施形態に係る整合回路202の主要部の分解斜視図である。図10は整合回路202の各絶縁層の平面図である。図11(A)は整合回路202の第1コイル導体パターン11a,11b,11c,11dを重ねて表した図、図11(B)はその第2コイル導体パターン12a,12b,12cを重ねて表した図である。図12は整合回路202のコイル導体パターン形成層部分の断面図である。さらに、図13は整合回路202の回路図である。
 第2の実施形態で示した整合回路201と異なるのは、第2コイル導体パターン12a,12b,12cの形状である。図9、図10に表れているように、第2コイル導体パターン12a,12b,12cは、非点対称形である。図11に表れているように、第1コイル導体パターン11a,11b,11c,11dは、第1方向(例えば紙面奥行き方向)に磁束を生じさせる1つのコイル開口CA1を形成する。第2コイル導体パターン12a,12b,12cは、第1方向(紙面奥行き方向)に磁束を生じさせる第1コイル開口CA21と第2方向(紙面手前方向)に磁束を生じさせる第2コイル開口CA22とを形成する。第2コイル導体パターン12a,12b,12cは非点対称形であるので、第1コイル開口CA21および第2コイル開口CA22の面積は異なる。第1コイル導体パターン11a,11b,11c,11dのコイル開口CA1は、平面視状態で、第2コイル導体パターン12a,12b,12cの第1コイル開口CA21および第2コイル開口CA22と重なる。
 図12に示すように、第1コイル導体パターン11a,11b,11c,11dは、第1方向に磁束φ1を生じさせ、第2コイル導体パターン12a,12b,12cは、第1方向に磁束φ21および第2方向に磁束φ22をそれぞれ生じさせる。第2コイル導体パターン12a,12b,12cによるコイル開口CA22を通る磁束φ22は、第1コイル導体パターン11a,11b,11c,11dによるコイル開口CA1を通る磁束φ1を強め合う(インダクタンスが増大する)方向に作用し、コイル開口CA21を通る磁束φ21は、コイル開口CA1を通る磁束φ1を弱め合う(インダクタンスが減少する)方向に作用する。ここで、磁束φ21が通るコイル開口CA21は、磁束φ22が通るコイル開口CA22より大きいので、この磁束φ21,φ22の強度の差の分だけ、第1コイル導体パターン11a,11b,11c,11dによるコイル(L1,L2)と第2コイル導体パターン12a,12b,12cによるコイル(L3)とは結合する。より正確には、主に、上記コイル開口CA21,CA22の面積の差分と、上記コイル開口CA1の面積との比によって、第1コイル導体パターン11a,11b,11c,11dによるコイル(L1,L2)と第2コイル導体パターン12a,12b,12cによるコイル(L3)との結合係数が定まる。
 図13に示した整合回路202において、インダクタL1,L2で構成されるトランスのトランス比によってインピーダンス変換がなされる。また、インダクタL3を含む帯域阻止フィルタは使用周波数帯の2次や3次の高調波成分を除去される。しかし、インダクタL1,L2によるトランスのインダクタL1にインダクタL3が直列接続されることによって、単体のトランスである場合に比べて、トランスのトランス比にずれが生じる。この第3の実施形態によれば、インダクタL3がインダクタ(L1,L2)と弱く結合することで、インダクタL1,L2によるトランスのトランス比を修正することができる。
 したがって、第1コイル導体パターン11a~11dおよび第2コイル導体パターン12a~12cの層間距離を近づけても、所望の弱い結合を生じさせることができるので、限られたスペースに複数のコイルを備えた整合回路を構成できる。また、層間距離が短くても、インダクタL3とインダクタ(L1,L2)との結合度を精度良く定めることができる。
《第4の実施形態》
 図14は第4の実施形態に係る整合回路203の各絶縁層の平面図である。この整合回路203において、絶縁層10d,10e,10fに第1コイル導体パターン11a,11b,11cが形成されていて、絶縁層10c,10gに第2コイル導体パターン12,13が形成されている。また、絶縁層10a,10bにキャパシタ電極21,22、絶縁層10h,10iにキャパシタ電極23およびグランド電極24がそれぞれ形成されている。
 第1コイル導体パターン11aの第1端はキャパシタ電極22に接続されていて、第1コイル導体パターン11aの第2端は第1コイル導体パターン11bの第1端に接続されている。第1コイル導体パターン11bの第2端は第1コイル導体パターン11cの第1端に接続されている。そして、第1コイル導体パターン11cの第2端はグランド電極24に接続されている。第2コイル導体パターン12の第1端はキャパシタ電極22に接続されていて、第2コイル導体パターン13の第1端はキャパシタ電極23に接続されている。また、第2コイル導体パターン12,13の第1端はグランド電極24にそれぞれ接続されている。
 図15は整合回路203の回路図である。インダクタL1はコイル導体パターン11a,11bで構成されていて、インダクタL2はコイル導体パターン11b,11cで構成されている。インダクタL3はコイル導体パターン12で構成されていて、インダクタL4はコイル導体パターン13で構成されている。キャパシタC1はキャパシタ電極21,22で構成されていて、キャパシタC2はキャパシタ電極23およびグランド電極24で構成されている。
 図15において、インダクタL1とインダクタL2とで、オートトランス(単巻トランス)構造のインピーダンス変換回路が構成されている。キャパシタC2およびインダクタL4による並列共振回路と、キャパシタC1およびインダクタL3による並列共振回路とは、インダクタL3とインダクタL4とのトランス結合で結合している。これらのキャパシタC1,C2、インダクタL3,L4によって帯域通過フィルタが構成されている。
 第1コイル導体パターン11a,11b,11cは、第1方向に磁束を生じさせるコイル開口を形成し、第2コイル導体パターン12,13は、第1方向に磁束を生じさせる第1コイル開口と第2方向に磁束を生じさせる第2コイル開口とを形成する。そして、第1コイル導体パターンのコイル開口は、平面視状態で、第2コイル導体パターンの第1コイル開口および第2コイル開口を含む複数のコイル開口と重なる。これらの関係は第1~第3の実施形態で示した関係と同じである。そのため、フィルタのインダクタ(L3,L4)とインピーダンス変換用トランスのインダクタ(L1,L2)とは実質的に結合せず、フィルタとトランスは干渉することなく独立して作用する。
 この第4の実施形態では、第2コイル導体パターン12,13は接続されておらず直流的には分離されている。また、第2コイル導体パターン12,13が第1コイル導体パターンを層方向に挟むように配置されている。
 この構成により、第1コイル導体と第2コイル導体とが層方向に隣接しているにも拘わらず、第1コイル導体によるインダクタ(L1,L2)と第2コイル導体によるインダクタ(L3,L4)とは殆ど結合せず、しかも層間が離れている第2コイル導体パターン12,13によるインダクタL3,L4は結合する。
 また、第2コイル導体パターン12,13の層間隔は比較的大きく配置されているので、インダクタL3-L4間の結合係数を小さめに設定できる。これにより帯域通過フィルタの通過帯域幅を所望の狭い帯域に設定できる。
《第5の実施形態》
 第5の実施形態では、第1コイル導体パターンおよび第2コイル導体パターンの幾つかの例を、図16(A)、図16(B)、図16(C)、図17(A)、図17(B)、図18(A)、図18(B)、図19を参照して示す。いずれの例でも、第1コイル導体パターン11は第1方向に磁束を生じさせる1つのコイル開口を形成し、第2コイル導体パターン12は、第1方向に磁束を生じさせる第1コイル開口と第2方向に磁束を生じさせる第2コイル開口とを形成する。
 図16(A)の例では、第2コイル導体パターン12は、第1方向に磁束を生じさせる1つの第1コイル開口と第2方向に磁束を生じさせる2つの第2コイル開口とを形成する。図16(B)の例では、第2コイル導体パターン12は、第1方向に磁束を生じさせる2つの第1コイル開口と第2方向に磁束を生じさせる2つの第2コイル開口とを形成する。図16(C)の例では、第2コイル導体パターン12は、第1方向に磁束を生じさせる2つの第1コイル開口と第2方向に磁束を生じさせる3つの第2コイル開口とを形成する。これらの例に示すように、第2コイル導体パターンは3つ以上のコイル開口を形成するように形成されていてもよい。
 図17(A)、図17(B)の例では、第2コイル導体パターン12は、第1方向に磁束を生じさせる第1コイル開口と第2方向に磁束を生じさせる第2コイル開口とを形成する。第2コイル導体パターンが形成するコイル開口は三角形や台形に限らず、図17(A)の例のように、第2コイル導体パターンによる2つのコイル開口は矩形の巴状であってもよい。また、図17(B)の例のように、始点・終点の端部がパターン形成領域の中央寄りの位置にあってもよい。
 図18(A)、図18(B)の例でも、第2コイル導体パターン12は、第1方向に磁束を生じさせる第1コイル開口と第2方向に磁束を生じさせる第2コイル開口とを形成する。この例では、第2コイル導体パターン12は縦横に配列されている。
 図19の例では、2つの第2コイル導体パターン12A,12Bを備えている。第2コイル導体パターン12A,12Bは、第1方向に磁束を生じさせる第1コイル開口と第2方向に磁束を生じさせる第2コイル開口とを形成する。そのため、第2コイル導体パターン12Aと第1コイル導体パターン11とは実質的に結合せず、第2コイル導体パターン12Bと第1コイル導体パターン11とは実質的に結合しない。
《他の実施形態》
 以上に示した各実施形態では、平面視状態で、第1コイル導体パターンのコイル開口が第2コイル導体パターンの第1コイル開口および第2コイル開口の全体に重なった例を示したが、第1コイル導体パターンのコイル開口は、平面視状態で、第2コイル導体パターンの第1コイル開口および第2コイル開口の全体に重なっていなくてもよく、第2コイル導体パターンの第1コイル開口および第2コイル開口を含む複数のコイル開口と重なっていればよい。
 また、第1コイル導体パターンは単一のコイル開口を形成するものに限らず、複数のコイル開口を形成してもよい。その場合には、第1コイル導体パターンの各コイル開口または一つのコイル開口が第2コイル導体パターンの第1コイル開口および第2コイル開口の全体に重なっていればよい。
CA1…コイル開口
CA21…第1コイル開口
CA22…第2コイル開口
L1,L2…インダクタ
L21,L22…インダクタ
L3,L4…インダクタ
M…相互インダクタンス
P1~P4…端子
10a~10l…絶縁層
11…第1コイル導体パターン
11a~11d…コイル導体パターン
12,13…第2コイル導体パターン
12a~12c…コイル導体パターン
12A,12B…コイル導体パターン
21,22,23…キャパシタ電極
24…グランド電極
31,32…入出力端子
33,34…グランド端子
101…積層型コイル部品
201,202,203…整合回路

Claims (8)

  1.  導体パターンが形成された複数の絶縁層が積層されて、前記導体パターンにより複数のコイルが構成された積層型コイル部品において、
     前記導体パターンは第1コイル導体パターンおよび第2コイル導体パターンを含み、
     前記第1コイル導体パターンは、第1方向に磁束を生じさせるコイル開口を形成し、
     前記第2コイル導体パターンは、前記第1方向に磁束を生じさせる第1コイル開口と、前記第1方向とは逆方向の第2方向に磁束を生じさせる第2コイル開口とを形成し、
     前記第1コイル導体パターンのコイル開口は、平面視状態で、前記第2コイル導体パターンの第1コイル開口および第2コイル開口を含む複数のコイル開口と重なることを特徴とする、積層型コイル部品。
  2.  前記第1コイル導体パターンおよび第2コイル導体パターンの外形は、平面視状態で重なっている、請求項1に記載の積層型コイル部品。
  3.  前記第1コイル開口および第2コイル開口のうち、平面視状態で前記第1コイル導体パターンのコイル開口が重なる領域内の前記第1コイル開口の総面積と前記第2コイル開口の総面積とは等しい、請求項1または2に記載の積層型コイル部品。
  4.  前記第1コイル開口および第2コイル開口のうち、平面視状態で前記第1コイル導体パターンのコイル開口が重なる領域内の前記第1コイル開口の総面積と前記第2コイル開口の総面積とは異なる、請求項1または2に記載の積層型コイル部品。
  5.  前記第1コイル導体パターンまたは前記第2コイル導体パターンの少なくとも一方は、複数の絶縁層に亘って形成されている、請求項1~4のいずれかに記載の積層型コイル部品。
  6.  前記第1コイル導体パターンまたは前記第2コイル導体パターンのうちの一方は、互いに結合する2つのコイルによるトランスを構成し、他方は、前記トランスの1次側または2次側に接続されるインダクタを構成する、請求項1~5のいずれかに記載の積層型コイル部品。
  7.  前記第1コイル導体パターンまたは前記第2コイル導体パターンのうち一方は、互いに結合する複数のコイルを構成し、これらの複数のコイルは他方のコイル導体パターンを層方向に挟む位置に形成されている外側コイル導体パターンである、請求項1~6のいずれかに記載の積層型コイル部品。
  8.  請求項7に記載の積層型コイル部品を備えた整合回路であって、
     インダクタ同士が結合する2つのLC並列共振回路を含む帯域通過フィルタと、互いに結合する2つのインダクタで構成されるトランス型インピーダンス変換回路とを備え、
     前記2つのLC並列共振回路のインダクタは前記外側コイル導体パターンで構成され、前記トランス型インピーダンス変換回路のインダクタは前記外側コイル導体パターンで挟まれるコイル導体パターンで構成された、整合回路。
PCT/JP2013/084194 2013-03-29 2013-12-20 積層型コイル部品および整合回路 WO2014155873A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014532747A JP5979233B2 (ja) 2013-03-29 2013-12-20 積層型コイル部品および整合回路
CN201390001152.2U CN205092107U (zh) 2013-03-29 2013-12-20 层叠型线圈元器件及匹配电路
US14/841,795 US9812245B2 (en) 2013-03-29 2015-09-01 Laminated coil component and matching circuit
US15/722,010 US10049807B2 (en) 2013-03-29 2017-10-02 Laminated coil component and matching circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013072875 2013-03-29
JP2013-072875 2013-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/841,795 Continuation US9812245B2 (en) 2013-03-29 2015-09-01 Laminated coil component and matching circuit

Publications (1)

Publication Number Publication Date
WO2014155873A1 true WO2014155873A1 (ja) 2014-10-02

Family

ID=51622904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084194 WO2014155873A1 (ja) 2013-03-29 2013-12-20 積層型コイル部品および整合回路

Country Status (4)

Country Link
US (2) US9812245B2 (ja)
JP (1) JP5979233B2 (ja)
CN (1) CN205092107U (ja)
WO (1) WO2014155873A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016340A1 (ja) * 2016-07-20 2018-01-25 株式会社村田製作所 移相器モジュール、合分波器および通信装置
WO2018101284A1 (ja) * 2016-11-29 2018-06-07 株式会社村田製作所 アンテナ装置および電子機器
CN111247739A (zh) * 2017-10-24 2020-06-05 株式会社村田制作所 匹配电路以及通信装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115831569A (zh) * 2014-09-11 2023-03-21 奥克兰联合服务有限公司 具有受控磁通抵消的磁通耦合结构
JP6760544B2 (ja) * 2018-04-25 2020-09-23 株式会社村田製作所 アンテナ装置及び通信端末装置
US11764747B2 (en) * 2021-11-29 2023-09-19 Qorvo Us, Inc. Transformer balun for high rejection unbalanced lattice filters

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200873A (ja) * 1999-01-06 2000-07-18 Nippon Telegr & Teleph Corp <Ntt> 集積磁気素子
JP2005534184A (ja) * 2002-07-25 2005-11-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 平面インダクタンス
JP2010050160A (ja) * 2008-08-19 2010-03-04 Toyota Industries Corp インダクタンス装置
WO2010122930A1 (ja) * 2009-04-24 2010-10-28 株式会社村田製作所 電子部品
JP2013034041A (ja) * 2011-08-01 2013-02-14 Murata Mfg Co Ltd 不平衡−平衡変換回路素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116738A (ja) 1997-06-20 1999-01-22 Taiyo Yuden Co Ltd チップ型インダクタアレイ
WO2006040869A1 (ja) * 2004-10-14 2006-04-20 Matsushita Electric Industrial Co., Ltd. フィルタ回路、及びそれを搭載する差動伝送システムと電源装置
JP4674590B2 (ja) * 2007-02-15 2011-04-20 ソニー株式会社 バラントランス及びバラントランスの実装構造、並びに、この実装構造を内蔵した電子機器
JP4935956B2 (ja) * 2010-01-19 2012-05-23 株式会社村田製作所 アンテナ装置および通信端末装置
CN103518325B (zh) * 2011-05-09 2016-08-24 株式会社村田制作所 阻抗匹配切换电路、天线装置、高频功率放大装置及通信终端装置
EP2648193B1 (en) * 2012-04-03 2015-07-29 Telefonaktiebolaget L M Ericsson (publ) An inductor layout, and a voltage-controlled oscillator (VCO) system
US9312060B2 (en) * 2012-09-20 2016-04-12 Marvell World Trade Ltd. Transformer circuits having transformers with figure eight and double figure eight nested structures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200873A (ja) * 1999-01-06 2000-07-18 Nippon Telegr & Teleph Corp <Ntt> 集積磁気素子
JP2005534184A (ja) * 2002-07-25 2005-11-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 平面インダクタンス
JP2010050160A (ja) * 2008-08-19 2010-03-04 Toyota Industries Corp インダクタンス装置
WO2010122930A1 (ja) * 2009-04-24 2010-10-28 株式会社村田製作所 電子部品
JP2013034041A (ja) * 2011-08-01 2013-02-14 Murata Mfg Co Ltd 不平衡−平衡変換回路素子

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016340A1 (ja) * 2016-07-20 2018-01-25 株式会社村田製作所 移相器モジュール、合分波器および通信装置
JPWO2018016340A1 (ja) * 2016-07-20 2018-07-19 株式会社村田製作所 移相器モジュール、合分波器および通信装置
US10734970B2 (en) 2016-07-20 2020-08-04 Murata Manufacturing Co., Ltd. Phase shifter module, multiplexer/demultiplexer, and communication apparatus
WO2018101284A1 (ja) * 2016-11-29 2018-06-07 株式会社村田製作所 アンテナ装置および電子機器
JPWO2018101284A1 (ja) * 2016-11-29 2019-04-25 株式会社村田製作所 アンテナ装置および電子機器
CN112002992A (zh) * 2016-11-29 2020-11-27 株式会社村田制作所 天线装置以及电子设备
US11128046B2 (en) 2016-11-29 2021-09-21 Murata Manufacturing Co., Ltd. Antenna device and electronic equipment
CN112002992B (zh) * 2016-11-29 2024-03-08 株式会社村田制作所 天线装置以及电子设备
CN111247739A (zh) * 2017-10-24 2020-06-05 株式会社村田制作所 匹配电路以及通信装置
JPWO2019082551A1 (ja) * 2017-10-24 2020-07-02 株式会社村田製作所 整合回路および通信装置
US11095265B2 (en) 2017-10-24 2021-08-17 Murata Manufacturing Co., Ltd. Matching circuit and communication device
CN111247739B (zh) * 2017-10-24 2024-03-08 株式会社村田制作所 匹配电路以及通信装置

Also Published As

Publication number Publication date
US20150371762A1 (en) 2015-12-24
JP5979233B2 (ja) 2016-08-24
US9812245B2 (en) 2017-11-07
US10049807B2 (en) 2018-08-14
US20180025829A1 (en) 2018-01-25
CN205092107U (zh) 2016-03-16
JPWO2014155873A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP5979233B2 (ja) 積層型コイル部品および整合回路
TWI442624B (zh) Laminated bandpass filter
JP6801826B2 (ja) フィルタ素子
US8289104B2 (en) Electronic component
JP5660087B2 (ja) バラントランス
TW201524117A (zh) 高頻零件
JP6160638B2 (ja) 高周波トランス、高周波部品および通信端末装置
JP5540912B2 (ja) 積層型フィルタ
WO2018051798A1 (ja) コモンモードノイズフィルタ
WO2015037374A1 (ja) インダクタおよび帯域除去フィルタ
US20190260343A1 (en) Lc filter
JPWO2006022098A1 (ja) Lc複合部品
JP2012195332A (ja) コモンモードノイズフィルタ
JP2006049432A (ja) 積層型電子部品
JP2005150168A (ja) 積層コイル部品
JP2018078450A (ja) 積層型フィルタ
JP2006238310A (ja) Lc複合部品及びこれを用いたノイズ抑制回路
JP5601334B2 (ja) 電子部品
JP2011049622A (ja) フィルタ部品
JP2012182286A (ja) コイル部品
JP2013198134A (ja) フィルタ素子
TWI577131B (zh) filter
TWI502802B (zh) Electronic Parts
JP4992735B2 (ja) 電子部品
WO2016072403A1 (ja) コネクタモジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390001152.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014532747

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879804

Country of ref document: EP

Kind code of ref document: A1