WO2006035910A1 - スローアウェイインサートおよびそれを装着した転削工具 - Google Patents

スローアウェイインサートおよびそれを装着した転削工具 Download PDF

Info

Publication number
WO2006035910A1
WO2006035910A1 PCT/JP2005/018033 JP2005018033W WO2006035910A1 WO 2006035910 A1 WO2006035910 A1 WO 2006035910A1 JP 2005018033 W JP2005018033 W JP 2005018033W WO 2006035910 A1 WO2006035910 A1 WO 2006035910A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting edge
main cutting
insert
corner
divided
Prior art date
Application number
PCT/JP2005/018033
Other languages
English (en)
French (fr)
Inventor
Takuya Ishida
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005216862A external-priority patent/JP4364173B2/ja
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to CN2005800330405A priority Critical patent/CN101031378B/zh
Priority to US11/576,337 priority patent/US7802946B2/en
Priority to EP05788219.3A priority patent/EP1808248B1/en
Publication of WO2006035910A1 publication Critical patent/WO2006035910A1/ja
Priority to US12/860,724 priority patent/US8142113B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/06Face-milling cutters, i.e. having only or primarily a substantially flat cutting surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • B23C5/20Milling-cutters characterised by physical features other than shape with removable cutter bits or teeth or cutting inserts
    • B23C5/202Plate-like cutting inserts with special form
    • B23C5/205Plate-like cutting inserts with special form characterised by chip-breakers of special form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • B23C5/20Milling-cutters characterised by physical features other than shape with removable cutter bits or teeth or cutting inserts
    • B23C5/202Plate-like cutting inserts with special form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/08Rake or top surfaces
    • B23C2200/085Rake or top surfaces discontinuous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/12Side or flank surfaces
    • B23C2200/125Side or flank surfaces discontinuous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/12Side or flank surfaces
    • B23C2200/128Side or flank surfaces with one or more grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/20Top or side views of the cutting edge
    • B23C2200/205Discontinuous cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/32Chip breaking or chip evacuation
    • B23C2200/323Chip breaking or chip evacuation by chip-breaking projections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0407Cutting angles
    • B23C2210/0442Cutting angles positive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/32Details of teeth
    • B23C2210/325Different teeth, i.e. one tooth having a different configuration to a tooth on the opposite side of the flute
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/66Markings, i.e. symbols or indicating marks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/19Rotary cutting tool
    • Y10T407/1906Rotary cutting tool including holder [i.e., head] having seat for inserted tool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/19Rotary cutting tool
    • Y10T407/1906Rotary cutting tool including holder [i.e., head] having seat for inserted tool
    • Y10T407/1908Face or end mill
    • Y10T407/191Plural simultaneously usable separable tools in common seat or common clamp actuator for plural simultaneously usable tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/22Cutters, for shaping including holder having seat for inserted tool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/23Cutters, for shaping including tool having plural alternatively usable cutting edges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/23Cutters, for shaping including tool having plural alternatively usable cutting edges
    • Y10T407/235Cutters, for shaping including tool having plural alternatively usable cutting edges with integral chip breaker, guide or deflector

Definitions

  • the present invention relates to a throw-away insert used for a turning tool such as a face mill or an end mill.
  • FIG. 28 is a perspective view showing a conventional throw-away insert 101 (hereinafter abbreviated as insert 101), and FIG. 29 is a side view showing the insert 101 of the prior art.
  • the insert 101 is configured to be attachable to a substantially cylindrical holder.
  • the holder equipped with the insert 101 is used as a rolling tool for rolling a work material.
  • the turning tool to which the insert 101 is mounted is a face milling tool, an end mill tool, or the like, and is particularly used as a turning tool having a long cutting edge length and a large number of cutting blades attached thereto.
  • an insert 101 in which a rake face 104 continuous from a main cutting edge 103 has a positive rake angle and a flank 105 including the main cutting edge 103 is divided by a groove 106 is known.
  • Such an insert 101 is mainly used for a heavy cutting milling tool in which a large amount of chips are discharged by a single cutting operation. In the case of this heavy cutting operation, since cutting is performed under severe cutting conditions in which both the depth of cut and the amount of feed are large, the cutting force given to the workpiece force rolling tool increases.
  • the main cutting edge 103 is divided into a plurality of divided main cutting edges 103a by the groove portion 106, whereby chips generated during the cutting operation are divided into small pieces.
  • the cutting resistance is reduced and the picking property to the work material is improved, so that the chatter vibration during machining is also suppressed.
  • FIG. 30 is a perspective view showing a rolling tool 112 having the prior art insert 101 shown in FIG.
  • FIG. 31 is a schematic diagram showing a section of the insert mounting portion of the cutting tool 112 and a state in which chips 116 are generated.
  • the chips 116 generated by the work force during heavy cutting have a large thickness, in other words, a large cross-sectional area, and are highly rigid and difficult to deform. Therefore, the chips 116 generated by the main cutting edge 103 of the turning tool 112 are squeezed! It flows in the direction toward the center of the die 111 and hits the holder wall surface 114 of the chip pocket 113. Next, the chips 116 are discharged out of the chip pocket 113 using the holder wall surface 114 as a guide.
  • the present invention has been made to solve such problems of the prior art, and can improve the chip discharging performance and prevent the chip pocket from clogging chips.
  • the purpose is to provide a way insert and a turning tool fitted with it.
  • the present invention is substantially plate-shaped, has a rake face on one surface in the thickness direction and a flank face on the side face, and a main cutting edge is formed at a cross ridge line portion between the rake face and the flank face, and A throw-away insert comprising a plurality of divided main cutting blades divided from the main cutting blade,
  • a throwaway insert characterized in that a protrusion is formed at a position corresponding to each of the divided main cutting edges, protruding from the rake face.
  • the present invention is characterized in that the main cutting edge side portion of the protrusion is formed in a shape that gradually decreases in height as it approaches the corresponding divided main cutting edge.
  • the present invention is characterized in that the main cutting edge side portion of the protrusion is formed in a shape that gradually decreases in width as it approaches the corresponding divided main cutting edge.
  • the present invention is characterized in that the main cutting edge side portion of the protrusion is formed in a tapered shape so that the width and height gradually decrease as approaching the corresponding divided main cutting edge. To do.
  • the main cutting edge side portion of the protrusions has two protrusion side surfaces in which the distance between them gradually decreases toward the upper side, and the intersecting ridge line portion formed by the two protrusion side surfaces is: The distance from the rake face gradually decreases as the divided main cutting edge is approached.
  • the present invention is characterized in that at least one of the protrusions is disposed so as to extend in a direction substantially perpendicular to the divided main cutting edge.
  • the invention is characterized in that at least one of the protrusions is arranged in the middle of the divided main cutting edge.
  • the present invention is characterized in that the protrusion is disposed on a substantially vertical bisector of the divided main cutting edge.
  • the present invention is characterized in that a through-hole penetrating in the thickness direction is provided at the approximate center of the rake face, and an annular raised portion is provided around the through-hole.
  • the invention is characterized in that the protrusion is formed so as to be paired with each of the divided main cutting edges.
  • a corner R cutting edge connected to a split main cutting edge near the corner adjacent to the corner is formed at one corner of the rake face, and the divided main edge near the corner R cutting edge is formed.
  • Each protrusion paired with the divided main cutting edge other than the cutting edge extends in a direction substantially orthogonal to the divided main cutting edge.
  • a corner R cutting edge connected to a split main cutting edge near the corner adjacent to the corner is formed at one corner of the rake face, and the divided main edge near the corner R cutting edge is formed.
  • the protrusions that make a pair with the cutting edge are characterized in that the width and height are gradually reduced by applying force to the corner R cutting edge.
  • the present invention provides a projection, which forms a pair with the divided main cutting edge near the corner R cutting edge, along an imaginary straight line in which an angle formed with the divided main cutting edge near the corner is 60 ° or more and 85 ° or less. It is characterized by being extended and arranged.
  • the invention is characterized in that one or more of the protrusions are formed corresponding to each of the divided main cutting edges.
  • a corner R cutting edge connected to a split main cutting edge near the corner adjacent to the corner is formed at one corner of the rake face, and the divided main edge near the corner R cutting edge is formed.
  • the protrusions corresponding to the divided main cutting blades other than the cutting blade are arranged so as to extend in a direction substantially orthogonal to the divided main cutting blade.
  • a corner R cutting edge connected to a split main cutting edge near the corner adjacent to the corner is formed at one corner of the rake face, and the divided main edge near the corner R cutting edge is formed.
  • Protrusions are provided corresponding to the cutting edges, and among these corresponding protrusions, the protrusions disposed closest to the corner R cutting edge have a width and height that are directed toward the corner R cutting edge. It is formed so as to gradually decrease.
  • the protrusion disposed closest to the corner R cutting edge extends along an imaginary straight line in which an angle formed with the divided main cutting edge near the corner is 60 ° or more and 85 ° or less. It is characterized by being arranged.
  • a corner R cutting edge connected to a split main cutting edge near the corner adjacent to the corner is formed at one corner of the rake face, and the divided main edge near the corner R cutting edge is formed.
  • Protrusions are provided corresponding to the cutting edges, and of these protrusions, protrusions other than those arranged closest to the corner R cutting edge extend in a direction substantially perpendicular to the divided main cutting edge. It is characterized by being.
  • the present invention provides a rake face formed on one surface in the thickness direction of the substantially plate-shaped main body portion, a bottom surface formed on the other surface in the thickness direction of the main body portion,
  • a main cutting edge formed at an intersection ridge line portion between the rake face and the flank face;
  • a throwaway insert that is formed on the flank and has a main groove that reaches both sides of the cup surface and the bottom surface
  • the main cutting edge and the flank face are each composed of a plurality of first divided main cutting edges and a divided flank face divided by the main groove, and one end of the first divided main cutting edge is formed on the rake face.
  • a throw-away insert comprising a plurality of second divided main cutting edges divided by sub-groove portions arranged on the divided flank side by side so as to reach the main groove portions.
  • the width of the sub-groove portion is smaller than the width of the main groove portion.
  • the length of the sub-groove portion is shorter than the thickness of the main body portion.
  • the present invention is characterized in that the depth of the sub-groove portion is smaller than the depth of the main groove portion.
  • the sub-groove portion is disposed so as to divide the first divided main cutting edge substantially equally. It is characterized by that.
  • the present invention is characterized in that at least one protrusion is disposed on the rake face at a position corresponding to the second divided main cutting edge.
  • the present invention is characterized in that a through hole penetrating in the thickness direction is provided at the center of the surface, and an annular raised portion is provided around the through hole.
  • a corner R cutting edge connected to a split main cutting edge close to the corner adjacent to the corner is formed at one corner of the rake face, and contacts the holder on the opposite side of the rake face.
  • Each of the divided main cutting edges is inclined in a direction away from the bottom as it approaches the corner R cutting edge.
  • the present invention also provides a turning tool comprising the above throwaway insert and a holder for mounting a plurality of the throwaway inserts.
  • FIG. 1 is an overall perspective view showing a throwaway insert 1 according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing the insert 1.
  • FIG. 3 is a long side view showing the insert 1.
  • FIG. 4 is a short side view showing the insert 1.
  • FIG. 5 is an overall perspective view of the rolling tool 12 using the inserts 1 and 21 of the present invention.
  • FIG. 6 is an enlarged perspective view showing an insert mounting state of the rolling tool 12 of the present invention.
  • FIG. 7 is an SS cross-sectional view of the turning tool of FIG.
  • FIG. 8 is an overall perspective view showing the insert 21 according to the second embodiment of the present invention.
  • FIG. 9 is a plan view showing the insert 21.
  • FIG. 10 is an overall perspective view showing the insert 31 according to the third embodiment of the present invention.
  • FIG. 11 is a long side view showing the insert 31 in a simplified manner.
  • FIG. 12 is a long-side side view showing a simplified insert 31a of a modification of the insert 31 according to the third embodiment of the present invention.
  • FIG. 13 is a side view of the long side showing, in a simplified manner, an insert 31b of another modification of the insert 31 of the third embodiment of the present invention.
  • FIG. 14 is an overall perspective view showing the insert 41 according to the fourth embodiment of the present invention.
  • FIG. 15 is a side view of the long side of the insert 41.
  • FIG. 16 is an overall perspective view showing an insert 51 according to a fifth embodiment of the present invention.
  • FIG. 17 is a plan view showing the insert 51.
  • FIG. 18 is a side view of the long side showing the insert 51.
  • FIG. 19 is a short side view showing the insert 51.
  • 20A to 20D are plan views showing the cutting edge shapes of the insert 51 of the fifth embodiment and the inserts 151A, 15IB, 151C of the comparative example in a simplified manner.
  • FIG. 21 is a plan view showing an insert 61 according to a sixth embodiment of the present invention.
  • FIG. 22 is a side view of the long side showing the insert 61.
  • FIG. 23 is a short side view showing the insert 61.
  • FIG. 24 is a perspective view showing the rolling tool 12 equipped with the inserts 51 and 61 of the present invention.
  • FIG. 25 is an overall perspective view showing the insert 71 according to the seventh embodiment of the present invention.
  • FIG. 26 is an enlarged perspective view showing an insert mounting state of the rolling tool 12 of the present invention.
  • FIG. 27 is an overall perspective view showing an insert 71a according to a modification of the seventh embodiment.
  • FIG. 28 is a perspective view showing a prior art insert 101.
  • FIG. 29 is a side view of the long side showing the insert 101 of the prior art.
  • FIG. 30 is a perspective view showing a rolling tool 112 having the prior art insert 101 shown in FIG.
  • Fig. 31 shows the cross section of the insert mounting part of the turning tool 112 and the generation of chips 16 It is a schematic diagram which shows a state.
  • FIG. 1 is an overall perspective view showing a throwaway insert 1 (hereinafter abbreviated as insert 1) according to a first embodiment of the present invention.
  • insert 1 hereinafter abbreviated as insert 1
  • 2 is a plan view showing the insert 1
  • FIG. 3 is a long side view showing the insert 1
  • FIG. 4 is a short side view showing the insert 1.
  • the insert 1 has a substantially polygonal plate shape, specifically a substantially parallelogram plate shape, and has a rake face 2 on its upper surface and a relief surface 3 on its side surface.
  • a main cutting edge 4 is formed at the intersecting ridge line portion between the rake face 2 and the flank 3, and the main cutting edge 4 is divided into a plurality of grooves 5 formed on the flank 3. It consists of a split main cutting edge 4a.
  • a corner R cutting edge 7 is formed at one intersecting ridge line between the side surface and the rake face 2 at one acute corner of the insert 1, and the main cutting edge 4 is closest to the corner R cutting edge 7 side. It is connected to the divided main cutting edge 4a.
  • a projection 6 is formed corresponding to each divided main cutting edge 4a.
  • protrusions 6 are formed on the rake face 2 so as to make a pair with each divided main cutting edge 4a.
  • the insert 1 is formed with a cylindrical through hole 16 penetrating in the thickness direction A.
  • the through hole 16 is a hole for fixing the insert 1 to the holder.
  • the through hole 16 is formed at the center position in the longitudinal direction B and the width direction C of the insert 1.
  • the insert 1 is formed in a 180-degree rotationally symmetric shape with respect to the axis of the through-hole 16, in other words, a 2-fold rotationally symmetric shape. Therefore, when the insert 1 is projected onto the virtual plane from any direction, the insert 1 projected onto the virtual plane is rotated 180 degrees around the axis of the through-hole 16 and before it is rotated.
  • the shape is the same.
  • the insert 1 since the insert 1 is formed to be 180-degree rotationally symmetric, one of the symmetric shapes will be described, and the description of the other shape symmetric to one shape may be omitted.
  • the edge of the top surface which is one side in the thickness direction of the insert 1, is An extended main cutting edge 4 is formed, and a corner R cutting edge 7 that is connected to one end of the main cutting edge 4 and extends in an arc shape is formed.
  • the main cutting edge 4 With the insert 1 mounted in the holder, the main cutting edge 4 extends substantially parallel to the holder axis and protrudes in the holder radial direction from the outer peripheral surface of the holder, and the corner R cutting edge 7 connected to the main cutting edge 4 is the insert.
  • the insert 1 is formed in a substantially parallelogram plate shape, and the projected shape projected onto a plane perpendicular to the thickness direction A is approximately It is formed in a parallelogram.
  • Insert 1 has a rake face 2 formed on one side A1 in the thickness direction and a bottom face formed on the other side A2 in the thickness direction.
  • the insert 1 has a flank 3 on the end face in the insert width direction C.
  • the intersecting ridge line between the rake face 2 and the flank face 3 extends in the longitudinal direction B of the insert 1. Therefore, the main cutting edge 4 formed in the intersecting ridge line portion extends in the insert longitudinal direction B.
  • the insert 1 extends along a plane perpendicular to the insert thickness direction A.
  • the insert 1 is configured to be detachable from the holder, and is mounted on the holder with the bottom surface of the insert 1 in contact with a seating surface provided on the holder.
  • the end portion in the width direction C of the insert 1 has a groove portion 5 that is formed so as to be immersed in the width direction end surface force insert width direction C and extend in the insert thickness direction A.
  • a plurality of groove portions 5 are provided at intervals in the insert longitudinal direction B.
  • Each groove portion 5 is formed from the rake face 2 to the bottom face of the insert 1, and the width dimension, which is the B dimension of the insert longitudinal direction, increases as it approaches the bottom face.
  • the depth dimension in the insert width direction C of the groove 5 is set to be larger than the maximum feed amount per tooth of the cutting tool in the conditions generally used in heavy cutting.
  • the main cutting edge 4 and the flank 3 are divided in the insert longitudinal direction B by the groove 5. Therefore, the main cutting edge 4 is divided into a plurality of parts arranged in the longitudinal direction B of the insert at intervals. It has a main cutting edge 4a.
  • the flank 3 has a plurality of divided flank faces that are spaced apart from each other and are aligned in the longitudinal direction B of the insert.
  • the insert 1 is formed with four grooves 5 aligned in the insert longitudinal direction B
  • the main cutting edge 4 has five divided main cutting edges 4a
  • the flank 3 has five Has a split flank.
  • the grooves 5 are formed in substantially the same shape, and are arranged at substantially equal intervals in the insert longitudinal direction B.
  • a plurality of protrusions 6 protruding from the rake face 2 in the insert thickness direction A are formed.
  • Each protrusion 6 is formed in a pair with the corresponding divided main cutting edge 4a, and is arranged to face the divided main cutting edge 4a.
  • the split main cutting edge side portion of the protrusion 6 is formed in a tapered shape so that the width and height gradually decrease as it approaches the corresponding split main cutting edge 4a in the insert width direction C.
  • the height of the protrusion 6 is a dimension in the insert thickness direction A of the protrusion 6 with respect to the rake face 2.
  • the width of the protrusion 6 is a dimension of the protrusion 6 in the insert longitudinal direction B.
  • the divided main cutting edge side portion of the protrusion 6 has one protruding side surface exposed in the insert longitudinal direction B-direction and the other protruding side surface exposed in the insert longitudinal direction B other side.
  • the distance between the two protruding side surfaces in the insert longitudinal direction B gradually decreases as the two projecting side faces one side in the insert thickness direction A1.
  • the two projecting side surfaces intersect each other at the end in the insert thickness direction on the one A1 side to form an intersecting ridge line portion.
  • the distance between the rake face 2 and the insert thickness direction A gradually decreases as the intersecting ridge line portion of the protrusion 6 formed by the two protrusion side faces approaches the corresponding divided main cutting edge 4a.
  • the distance t in the insert width direction C between the divided main cutting edge 4a and the protrusion 6 is configured to be the shortest in the center portion B of the insert main cutting direction 4a of the divided main cutting edge 4a. .
  • the shortest distance t between the protrusion 6 and the divided main cutting edge 4a corresponding to the protrusion 6 is 0.5 mm or more and 5. Omm or less.
  • the length X of the divided main cutting edge 4a is 5.2 mm, and the shortest distance The separation t is 2.3 mm.
  • the projection angle ⁇ formed by the rake face 2 and the ridge line of the projection 6 is preferably 90 ° or more and 170 ° or less
  • the projection angle ⁇ is about 165 °. Selected. If the projection angle ex is set to be smaller than 90 °, chips are easily clogged, and if the projection angle ⁇ is greater than 170 °, the chips are stretched without being curved. In the present embodiment, the projection angle ex is selected to be about 165 °, so that it can be smoothly curved and deformed without clogging with chips.
  • the angle ⁇ formed between the ridge line of the protrusion 6 and the bottom surface is selected to be about 150 °.
  • the distance u from the divided main cutting edge 4a to the apex of the protrusion 6 is selected to be 3. Omm.
  • the height, width, and distance from the divided main cutting edge to the tip of the protrusion are important as the constituent elements of the protrusion 6. For example, the maximum width of each protrusion 6 is formed smaller than the length X of the divided main cutting edge 4a.
  • the protrusion 6 corresponding to the divided main cutting edge 4a connected to the corner R cutting edge 7 is referred to as a corner R protrusion 6a
  • the protrusions 6 other than the corner R protrusion 6a are referred to as orthogonal protrusions 6b.
  • the orthogonal projections 6b are arranged on substantially vertical bisectors of the corresponding divided main cutting edges 4a. That is, each of the orthogonal protrusions 6b is disposed toward a substantially central portion in the longitudinal direction of the corresponding divided main cutting edge 4a and extends along a virtual straight line orthogonal to the divided main cutting edge 4a.
  • each orthogonal protrusion 6b extends on the vertical bisector of the corresponding divided main cutting edge 4a.
  • the divided main cutting edge side tip portion of each orthogonal projection 6b is formed in substantially the same shape.
  • the perpendicular bisector of the divided main cutting edge 4a is a straight line that bisects the divided main cutting edge 4a in the insert longitudinal direction B and extends perpendicularly to the divided main cutting edge 4a.
  • the corner R protrusion 6 a is formed such that the width and height gradually decrease as the corner R cutting edge 7 is approached.
  • the corner R protrusion 6a has an inclination angle ⁇ force of less than 90 ° formed by the ridgeline of the intersecting ridgeline portion and the divided main cutting edge in the top view of the insert.
  • the ridgeline of the corner R projection 6a is preferably arranged so as to extend along an imaginary straight line set at an inclination angle of 0 force 60 ° or more and 85 ° or less with the divided main cutting edge 4a in the top view of the insert.
  • the inclination angle ⁇ is set to 65 °.
  • an island-shaped portion specifically, an annular raised portion 15 is formed around the through hole 16 in the center of the rake face 2.
  • the raised portion 15 protrudes from the rake face 2 in one of the insert thickness directions A1, and is formed in a shape in which the width and height gradually decrease toward the main cutting edge 4.
  • the height of the raised portion 15 is a dimension in the insert thickness direction A of the raised portion 15 with respect to the rake face 2.
  • the width of the raised portion 15 is the dimension of the raised portion 15 in the insert longitudinal direction B.
  • the raised portion 15 is formed closer to the center in the insert width direction C than the divided main cutting edge side portion of each projection 6.
  • the protruding portion 15 protrudes in the insert thickness direction A from the head of the screw member 17 in a state where the insert 1 is mounted on the mounting portion of the holder by the screw member 17. Further, in the present embodiment, among the protrusions 6 formed on the insert 1, the protrusion disposed at the middle portion in the insert longitudinal direction is formed integrally with the raised portion 15. The intersecting ridge line portion of the protrusion 6 formed integrally with the raised portion 15 is smoothly connected to one end portion in the thickness direction of the raised portion. Since the raised portion 15 and the protrusion 6 are integrally formed, the loss of the protrusion 6 can be prevented.
  • the insert member 1 can be fastened to the mounting portion of the holder by inserting the screw member 17 on which the external screw is formed into the through hole 16 of the insert 1 and screwing it into the mounting hole of the holder. As a result, the insert 1 is mounted on the mounting portion of the holder.
  • the outer peripheral surface of the holder and a recess into which the axial end surface force is immersed are formed.
  • an insert housing space in which the insert 1 to be mounted is housed and a chip pocket in which the chip to be cut by the work material is temporarily stored are formed.
  • the insert accommodating space and the chip pocket are provided adjacent to each other in the holder circumferential direction.
  • FIG. 5 is an overall perspective view of the rolling tool 12 using the inserts 1 and 21 of the present invention
  • FIG. 6 is an enlarged perspective view showing an insert mounting state of the rolling tool 12 of the present invention
  • FIG. 7 is a sectional view taken along the line S1-S1 of the cutting tool 12 of FIG.
  • the rolling tool 12 includes an insert 1 and a substantially cylindrical holder 11 on which the insert 1 is detachably mounted.
  • the holder 11 is mounted with a plurality of, for example, six inserts 1 on the outer peripheral portion at intervals in the holder circumferential direction.
  • the holders 11 are arranged in a plurality of rows, for example, two rows in the holder axial direction in combination force of the inserts 1 arranged in the circumferential direction.
  • the simple turning tool 12 is used for heavy cutting with a large amount of cutting with one insert 1 at a time, in other words, rough cutting.
  • a held portion is formed that is held by the milling machine via an arper that is a connecting member.
  • a mounting portion for mounting the insert 1 is formed at the tip in the axial direction with the main cutting edge of the insert 1 protruding from the outer peripheral surface.
  • the milling machine includes a moving drive means for relatively moving the clamped workpiece and the held cutting tool 12, and a rotary drive means for driving the held turning tool 12 around the axis of the holder 11. Including.
  • the rolling tool 12 rotates about the axis of the holder 11 and contacts the work material, so that the main cutting edge 4 of the insert 1 cuts the work material intermittently.
  • the work material can be cut into a predetermined shape.
  • the work material can be shouldered, grooved or stepped.
  • the rolling tool 12 can be installed by rotating the insert 1 by 180 degrees around the axis of the mounting hole formed in the holder 11, or by inserting the new U, insert 1 The cutting ability can be recovered by replacing it with.
  • a plurality of chip pockets 13 are formed at the outer peripheral tip of the holder 11, and the insert 1 is attached to the insert accommodation space adjacent to the chip pocket 13.
  • the insert 1 is mounted such that the main cutting edge 4 is positioned on the outermost periphery with the rake face 2 facing in the rotation direction, and the main cutting edge 4 rotates together with the holder 11 to cut. Is done.
  • the chips 16 formed by the main cutting edge 4 strictly speaking, the divided main cutting edge 4 a, on the rake face 2 of the insert 1, the outer peripheral force is also the center side of the holder 11, that is, the cutting edge It flows toward the holder wall surface 14 in the waste pocket 13.
  • the generated chip 116 proceeds in the generation direction as it is and curls by hitting the holder wall surface 114 in front of the generation direction. 114 is gradually worn away by friction with the chip 116.
  • the protrusion 6 is formed on the rake face 2 adjacent to each divided main cutting edge 4a.
  • Min Chip 8 formed narrow by split main cutting edge 4a hits projection 6 and curls small.
  • the chips 8 are discharged to the outside without hitting the holder wall surface 14.
  • each chip 8 is reduced as the curl diameter of the chip 8 is reduced, the chip discharge from the chip pocket 13 to the outside is smooth, and the cutting of the main cutting edge 4 Defects such as defects due to indentation are suppressed, and the insert 1 can also have a long life.
  • the width and height of the main cutting edge side portion of the protrusion 6 are gradually reduced as they approach the paired divided main cutting edges 4a. Is formed.
  • the height of the ridge line portion of the projection 6 that contacts the chip 8 decreases as it approaches the divided main cutting edge 4a, in other words, the ridge line portion of the protrusion 6 increases as the distance from the divided main cutting edge 4a increases. Since the height of the steel gradually increases, the contact between the protrusion 6 and the chip 8 is smooth, and the increase in cutting resistance is suppressed. Further, the protrusion 6 becomes wider as the distance from the divided main cutting edge 4a increases.
  • the protrusion 6 becomes wider in this way, the strength of the protrusion 6 increases, and the protrusion 6 can be prevented from being lost at the time of chip collision, and the insert 1 can be used for a longer period of time. Further, since the projections 6 are arranged at intervals in the longitudinal direction B of the insert, the chips 8 formed by the divided main cutting edge 4a collide with only one projection 6 and are guided. As compared with the case where the chips 8 collide with the plurality of protrusions 6 and are planned, the cutting resistance caused by the protrusions 6 can be reduced. Further, even if the protrusion 6 is worn by the chip 8 or the generation direction of the chip 8 is slightly shifted, the chip 8 can be brought into contact with the corresponding ridge line portion of the protrusion 6.
  • the distance t between the divided main cutting edge 4a and the projection 6 is configured to be the shortest at a substantially central portion of the length X of each divided main cutting edge 4a.
  • the protrusions 6, specifically, the ridge line in the main cutting edge side portion of the orthogonal protrusion 6b other than the corner R protrusion 6a, and the divided main cutting edge 4a paired with each other, are inserted. 1 is substantially perpendicular to the top view.
  • the chips 8 formed from the divided main cutting edge 4a on which the orthogonal protrusions 6b other than the corner R protrusion 6a are disposed flow in a direction substantially orthogonal to the divided main cutting edge 4a.
  • the orthogonal projection 6b extends in a direction substantially orthogonal to the divided main cutting edge 4a, the cutting resistance generated by the chip 8 moving on the surface 2 and the orthogonal projection 6b is obtained. Can be reduced.
  • orthogonal projections 6b are disposed in the middle portions of the divided main cutting edges 4a, respectively, in opposite directions.
  • the orthogonal projection 6b is disposed in the middle of the longitudinal direction of the divided main cutting edge 4a.
  • the chips 8 formed by the divided main cutting edge 4a are formed to have substantially the same width as the divided main cutting edge 4a. In this case, the orthogonal projection 6b comes into contact with the central portion of the chip 8 in the width direction.
  • the orthogonal protrusion 6b prevents the chips 8 from swinging left and right, and can guide the chips 8 in a direction substantially orthogonal to the divided main cutting edge 4a. Further, it is possible to prevent a plurality of chips 8 generated by each divided main cutting edge 4a from coming into contact with each other and prevent the chips 8 from being clogged in the chip pocket 13. Also, as will be described later, when two types of inserts with different arrangement positions of the divided main cutting edge 4a are mounted on the holder 11 for cutting, the chip corresponding to the central portion of the divided main cutting edge 4a The cross-sectional area of 8 becomes larger.
  • the projection 6 is disposed in the central portion of the divided main cutting edge 4a with a direct force, the portion of the chip 8 having a larger cross-sectional area can be brought into contact with the projection 6.
  • the chips 8 can be more smoothly guided more reliably, the cutting resistance caused by the protrusions 6 can be reduced, and the chips 8 can be curved and deformed.
  • the protrusion 6 is formed so as to make a pair with each divided main cutting edge 4a. That is, one projection 6 is formed for each divided main cutting edge 4a.
  • the chip 8 formed by the divided main cutting edge 4a is guided by colliding with only one projection 6, and compared with the case where the chip 8 collides with and is guided by a plurality of projections 6. The cutting resistance generated by 6 can be reduced.
  • the split main cutting edge 4a near the corner R cutting edge is connected to the corner R cutting edge 7. Therefore, the chips 8 formed by the split main cutting edge 4a near the corner R cutting edge are the corner R cutting edge 7. It is formed in an arc shape connected to the chips 8 formed by divide the rake face 2 It is generated inclined with respect to the main cutting edge 4a.
  • the corner R protrusion 6a is formed so that the width and height are gradually reduced by the force applied to the corner R cutting edge 7. This makes it possible to curl the chips 8 whose section is formed in an arc shape by the corner R cutting blade 7 in the most efficient and constant direction.
  • the chips 8 formed by the corner R cutting edge 7 and the divided main cutting edge 4a connected to the corner R cutting edge 7 can smoothly collide with the corner R protrusion 6a, and the cutting resistance generated by the corner R protrusion 6a can be reduced. You can.
  • the inclination angle formed by the ridgeline of the corner R protrusion 6a and the divided main cutting edge 4a is 0 force 1 ⁇ 20 ° or more and 85 ° or less. This is preferable in that 8 can be curled more reliably. Tilt angle ⁇ force If the force is less than 0 °, the chips 8 tend to clog, and the cutting resistance generated by the protrusions may increase. In addition, if the inclination angle ⁇ force exceeds 3 ⁇ 45 °, the chips 8 are less likely to curl. If the wear of the holder wall surface 14 is not improved, the size of the chips 8 to be dragged by the force increases and the chip discharge performance decreases. There is a risk of problems such as chipping of the cutting edge caused by biting of chips 8.
  • the inclination angle ⁇ formed by the ridgeline of the corner R protrusion 6a and the divided main cutting edge is set to 60 ° or more and 85 ° or less, specifically 65 °, and thus the above-described problems occur. There is nothing. Accordingly, the cutting resistance generated by the corner R protrusion 6a can be reduced, and the chip 8 formed by the corner R cutting edge 7 and the divided main cutting edge 4a connected thereto can be more reliably curved and deformed.
  • the island-shaped portion specifically, the annular ridge 15 is formed around the through-hole 16 in the center of the rake face 2, so that the curling action of the chips 8 by the protrusion 6 is insufficient. Even under the conditions, the chips 8 are surely curled.
  • the head of the screw member 17 for clamping is hidden in the annular ridge 15, that is, the screw from the annular ridge 15. Since the head of the member 17 is in a low state, wear of the head of the screw member 17 due to the collision of the chips 8 can be prevented.
  • the groove portion 5 becomes wider as it goes to the other side A2 in the insert thickness direction, it is possible to prevent the uncut portion generated in the work material from coming into contact with the wall surface of the groove portion 5. And the cutting resistance caused by the groove 5 can be reduced.
  • the chips 8 formed narrow by the respective divided main cutting edges 4a come into contact with the projections 6a and 6b formed on the rake face 2, thereby 8 is curved and the radius of curvature becomes small, and the chip 8 breaks before contacting the holder wall surface 14 formed on the holder 11 and moves to the outside of the chip pocket 13.
  • the rigidity of the holder 11 can be prevented from being lowered, and the processing accuracy of the work material can be prevented from being deteriorated.
  • the holder 11 can be extended in life and can be used for a long period of time, so that it is possible to realize the insert 1 having a high cost performance and the turning tool 12 to which the insert 1 is mounted.
  • the chip 8 comes into contact with the protrusion 6 and the radius of curvature thereof is reduced, so that the size of the chip 8 is reduced.
  • the chips 8 move smoothly from the chip pocket 13 to the outside of the holder, and the chip discharge performance can be improved. Accordingly, problems such as chip clogging in the chip pocket 13 and biting of the chip 8 are suppressed.
  • the chip 8 that collides with the protrusion 6 is already formed with a narrow width by the divided main cutting edge 4a, the cutting resistance generated by the protrusion 6 when the protrusion 6 and the chip 8 collide increases. It is possible to prevent the projection 6 from being lost even when heavy cutting is performed.
  • lOOOccZmin can be realized as a chip discharge amount, that is, a volume of a workable material that can be cut per minute.
  • FIG. 8 is an overall perspective view showing the insert 21 according to the second embodiment of the present invention
  • FIG. 9 is a plan view showing the insert 21.
  • the main cutting edge 4 is divided by four grooves 5 to illustrate the insert 1 constituted by five divided main cutting edges 4a.
  • the main cutting edge 4 is divided by three groove portions 5, and is composed of four divided main cutting edges 4a.
  • the insert of the present invention naturally includes an insert in which the number of the groove portions 5 and the arrangement of the groove portions 5 are different from those of the first embodiment.
  • the inserts 1 and 21 having the groove 5 in the main cutting edge 4 as in the first and second embodiments of the present invention since the groove 5 is not cut, only a single type of insert is used. When multiple holders are mounted on the holder 11, a strip-like uncut portion is generated on the processing wall surface of the work material.
  • the inserts 1 and 21 having the groove portions 5 arranged differently from each other between the first insert 1 shown in the first embodiment and the second insert 21 shown in the second embodiment have the same circumference of the holder 11. By alternately arranging the upper parts, the uncut portion due to the groove portion 5 of the first insert 1 is cut by the split main cutting edge 4a of the second insert 21, so that the uncut portion due to the groove portion 5 is prevented as a result.
  • the rolling tool 12 shown in FIG. 5 shows a state in which the insert 1 of the first embodiment and the insert 21 of the second embodiment are alternately mounted in the circumferential direction.
  • the insert 21 of the second embodiment differs from the insert 1 of the first embodiment shown in FIG. 1 in that the first embodiment is used to scrape off the uncut material generated in the groove portion 5 of the insert 1 of the first embodiment.
  • the groove portion 5 is arranged at a position different from the insert 1 of FIG.
  • the lengths of the divided main cutting edges 4a, 4b, and 4c are formed differently, and the projections 6 corresponding to the divided main cutting edges 4a to 4c are formed according to the lengths of the divided main cutting edges 4a to 4c. Protrusions 6 are arranged so that the number increases. With such a configuration, even if wide chips are formed by the long divided main cutting edges 4b and 4c formed to cut the uncut residue generated in the insert 1 of the first embodiment, it is possible to reliably curl. it can.
  • the insert 21 of the second embodiment includes divided main cutting edges 4b and 4c having a long length and divided main cutting edges 4a having a short length among the plurality of divided main cutting edges 4a to 4c. .
  • the number of projections 6c, 6d; 6e, 6f corresponding to the long divided main cutting edges 4b, 4c is larger than the number of protrusions 6b corresponding to the short divided main cutting edges 4a. It is done.
  • the number of protrusions corresponding to the divided main cutting edges 4a to 4c may be increased according to the length of the divided main cutting edges 4a to 4c.
  • the wide-cut chips 8 formed by the long divided main cutting edges 4b, 4c can be curved and deformed more reliably, and the long divided main cutting edges 4b, 4c Corresponding protrusions 6c, 6d; 6e, 6f can be prevented from being lost due to the collision of the wide chip 8.
  • a plurality of protrusions 6 b to 6 f protruding from the surface 2 in the insert thickness direction A are formed.
  • One or more protrusions 6b to 6f are formed corresponding to the corresponding divided main cutting edges 4a to 4c, and are respectively disposed toward the corresponding divided main cutting edges 4a to 4c.
  • the split main cutting edge side portion of the protrusion 6 is formed in a tapered shape so that the width and height gradually decrease as it approaches the corresponding split main cutting edges 4a to 4c in the insert width direction B. Is done.
  • the divided main cutting edge side portion of the protrusion 6 has one protruding side surface exposed in the insert longitudinal direction B-direction and the other protruding side surface exposed in the insert longitudinal direction B other side.
  • the two projecting side surfaces oppose each other, and the distance in the insert longitudinal direction B gradually decreases as it is directed toward one of the insert thickness directions A1.
  • the two projecting side surfaces intersect at one end in the insert thickness direction to form an intersecting ridge line portion.
  • the distance between the rake face 2 and the insert thickness direction A gradually decreases as the intersecting ridge line portion of the protrusion 6 formed by the two protrusion side faces approaches the corresponding divided main cutting edges 4a to 4c. Also, as shown in FIGS.
  • the distance t in the insert width direction between the divided main cutting edges 4a to 4c and the protrusion 6 is the shortest at the center part of the substantially inserted longitudinal direction of the divided main cutting edge 4a. Configured as follows. Further, the maximum width of each of the protrusions 6b to 6f is formed smaller than the dimension B in the insert longitudinal direction of the corresponding divided main cutting edge 4a to 4c.
  • the split main cutting edge 4b near the first corner connected to the corner R cutting edge 7 and the split main cutting edge 4c near the second corner opposite to the corner R cutting edge 7 are divided into the remaining parts.
  • the insert longitudinal dimension is longer than the main cutting edge 4a.
  • two projections 6c, 6d; 6e, 6f are respectively provided corresponding to the divided main cutting edges 4b, 4c near the first and second corners. Therefore, two projections 6c, 6d; 6e, 6f are respectively arranged on the divided main cutting edges 4b, 4c near the corners.
  • the protrusion disposed closest to the corner R cutting edge 7 is referred to as the first protrusion 6d
  • the protrusions other than 1 protrusion 6d are referred to as second protrusion 6c.
  • the width and height are formed so as to gradually decrease.
  • the first protrusion 6d has an inclination angle ⁇ formed by the ridgeline of the intersecting ridgeline portion and the divided main cutting edge 4b of less than 90 degrees. This inclination angle ⁇ is preferably set to 60 ° or more and 85 ° or less.
  • the inclination angle ⁇ is set to 65 °.
  • the ridge line of the second protrusion 6c is disposed so as to extend substantially at right angles to the divided main cutting edge 4b near the first corner.
  • the tip of the plurality of projections 6c, 6d provided in correspondence with the divided main cutting edge 4b near the first corner is perpendicular to the vertical main part of the divided main cutting edge 4b near the first corner. It is placed at a position that is approximately symmetrical with respect to the segment.
  • the plurality of protrusions 6 provided corresponding to the divided main cutting edge 4c near the second corner are referred to as third protrusions 6f and 6e.
  • the third protrusions 6f and 6e are respectively disposed toward the divided main cutting edge 4c near the second corner, and the ridge line of the third projections 6f and 6e is located with respect to the divided main cutting edge 4c near the second corner. Extending substantially at a right angle.
  • the tips in the insert width direction C of the plurality of protrusions 6e and 6f provided corresponding to the divided main cutting edge 4c near the second corner are perpendicular to the divided main cutting edge 4c near the second corner. It arrange
  • the protrusion 6 corresponding to the divided main cutting edge 4a other than the divided main cutting edges 4b, 4c near each corner is referred to as a fourth protrusion 6b.
  • the fourth protrusions 6b are respectively arranged toward the central portion in the longitudinal direction of the insert of the corresponding divided main cutting edge 4a, and the ridge line extends substantially at right angles to the corresponding divided main cutting edge 4a.
  • the fourth protrusions 6b are arranged so as to extend along the vertical bisectors of the corresponding divided main cutting edges 4a.
  • the first protrusion 6d closest to the corner R cutting edge is inclined with respect to the divided main cutting edge 4b near the first corner.
  • a wide chip with a cross-section with straight and arcuate parts and a force generated by the divided main cutting edge 4b and the corner R cutting edge 7 near the first corner continuous to the corner R cutting edge 7. 8 can be most efficiently bent and deformed by the first protrusion 6d in the arc-shaped portion and the second protrusion 6c other than the first protrusion 6d in the linear portion.
  • two projections 6e and 6f corresponding to the divided main cutting edge 4c near the second corner on the opposite side of the corner R cutting edge 7 are disposed at both ends of the main cutting edge 4. .
  • the chip cross section formed by the divided main cutting edge 4c near the second corner is substantially straight and every part is arcuate. It will not be. So Therefore, the third protrusions 6e and 6f formed corresponding to the second corners are such that the ridge line on the divided main cutting edge side portion and the divided main cutting edge 4c near the second corner are positioned substantially at right angles. Therefore, the generated wide chips 8 can be reliably curled in a certain direction without swinging left and right.
  • one or more protrusions 6 are formed corresponding to the divided main cutting edge. Accordingly, the chip 8 can be bent and deformed by bringing the chip 8 into contact with the one or the plurality of protrusions 6b to 6f. Even if the cross-sectional area of the chip 8 is large and the rigidity of the chip 8 is high, the chip 8 is brought into contact with the plurality of protrusions 6 to deform the chip 8 into a curved shape. The impact force applied from the scrap 8 can be shared by the plurality of protrusions 6, and the protrusion 8 can be prevented from being lost and the chips 8 can be sufficiently curved and deformed.
  • the number of protrusions 6b corresponding to the short divided main cutting edge 4a By increasing the number of protrusions 6c, 6d; 6e, 6f corresponding to the long divided main cutting edges 4b, 4c, the wide chips formed by the long divided main cutting edges 4b, 4c can be more reliably curved and deformed.
  • the projections 6c, 6d; 6e, 6f corresponding to the long divided main cutting edges 4b, 4c can be prevented from being lost due to the collision of the wide chip 8.
  • the number of projections 6 formed corresponding to the short divided main cutting edge 4a can be prevented from increasing undesirably, and the cutting resistance caused by the projections can be reduced.
  • the chips formed by the divided main cutting edges 4a and 4c other than the divided main cutting edge 4b near the corner R cutting edge 7 move in a direction substantially perpendicular to the corresponding divided main cutting edges 4a and 4c.
  • the projections 6b, 6e, 6f corresponding to the divided main cutting edges 4a, 4c other than the divided main cutting edge 4b near the corner R cutting edge 7 are substantially the same as the corresponding divided main cutting edges 4a, 4c.
  • the cutting resistance generated by the protrusions 6b, 6e, 6f against the chips moving in the direction substantially orthogonal to the divided main cutting edges 4a, 4c by being arranged extending in the orthogonal directions. Can be reduced.
  • each protrusion 6b, 6e, 6f is arranged to be directed to the middle portion in the insert longitudinal direction of the corresponding divided main cutting edge 4a, 4c, so that the left and right runout of the chips can be prevented.
  • the chips can be moved in a direction substantially perpendicular to the divided main cutting edge, and the plurality of chips can be prevented from coming into contact with each other, and the chips can be prevented from clogging in the pocket. Since the divided main cutting edge 4b near the corner R cutting edge 7 is connected to the corner R cutting edge 7, the chips formed by the divided main cutting edge 4b near the corner R cutting edge 7 are the corner R cutting edge.
  • the first protrusion 6d disposed closest to the corner R cutting edge 7 is the corner R. Since the width and height are gradually reduced toward the cutting edge 7, the chips formed by the corner R cutting edge 7 and the divided main cutting edge 4b connected thereto smoothly collide with the first protrusion 6d. The cutting resistance generated by the first protrusion 6d can be reduced. Further, the chips formed by the corner R cutting edge 7 and the divided main cutting edge 4b connected thereto can be smoothly curved and deformed.
  • the first protrusion 6d extends along the imaginary straight line with the inclination angle ⁇ force 60 ° or more and 85 ° or less formed with the divided main cutting edge 4b near the corner R cutting edge 7.
  • the cutting resistance generated by the protrusion 6d can be reduced, and the chips formed by the corner R cutting edge 7 can be more reliably curved and deformed. For example, if the inclination angle ⁇ force is less than 60 °, chips are likely to be clogged, and the cutting resistance generated by the first protrusion 6d may increase.
  • the cutting resistance generated when the chip portion formed by the divided main cutting edge 4b connected to the corner R cutting edge 7 collides with the first protrusion 6d becomes excessive.
  • the inclination angle exceeds 85 °, the cutting resistance generated when the chip portion formed by the corner R cutting edge 7 collides with the first protrusion 6d becomes excessive.
  • the inclination angle ⁇ force is set to 0 ° or more and 85 ° or less, the chips formed by the corner R cutting edge 7 without causing the above-described problems can be deformed into a bend more reliably. .
  • segmentation main cutting edges 4a-4c may increase. For example, split main cutting edges with different lengths are formed.
  • the number of protrusions 6 provided corresponding to the long divided main cutting edges 4b and 4c is larger than the number of protrusions 6 provided corresponding to the short main cutting edges 4a. Is set.
  • the highly rigid chips formed by the long divided main cutting edges 4b and 4c collide with the plurality of protrusions 6c, 6d; 6e, 6f.
  • the one or a plurality of protrusions 6 can share the force given to the chip force, and can prevent each protrusion from being lost.
  • the number of the corresponding protrusions 6 may be increased. However, if the number of protrusions 6 corresponding to the divided main cutting edges 4a to 4c is excessive, cutting resistance generated by the protrusions may increase, or chips may be stuck in the protrusions. Further, if the number of projections 6 corresponding to the divided main cutting edges 4a to 4c is insufficient, the projections 6 may be lost depending on the size.
  • the number of the projections 6c, 6d; 6e, 6f corresponding to the divided main cutting edges 4b, 4c near the corners, each having both ends of the main cutting edge 4, is a force having a configuration in which there are a plurality of forces.
  • the number of protrusions corresponding to the divided main cutting edge at any position of the insert may be plural depending on the length of the divided main cutting edge.
  • FIG. 10 is an overall perspective view showing the insert 31 according to the third embodiment of the present invention
  • FIG. 11 is a long side view showing the insert 31 in a simplified manner.
  • each divided main cutting edge 4a extends with an inclination with respect to a plane perpendicular to the insert thickness direction A.
  • Other configurations are the same as those in the first embodiment, and thus the description thereof is omitted, and the same reference numerals as those in the first embodiment are given.
  • Each divided main cutting edge 4a is inclined in a direction in which the bottom surface force is moved away with respect to the insert thickness direction A as it advances in the longitudinal direction approaching the corner R cutting edge 7.
  • each divided main cutting edge 4a extends along a predetermined virtual straight line.
  • the main cutting edge 4 is constituted by a plurality of divided main cutting edges 4a divided in the insert longitudinal direction B, the width direction dimension of the formed chips is divided small.
  • the length of the main cutting edge can be shortened compared to the longitudinal dimension of the cutting tool, and the cutting resistance during cutting can be reduced.
  • each split against the bottom of insert 1 Since the main cutting edge 4a is formed to be inclined, an axial rake in the positive direction can be formed on the rolling tool 12 to which the insert 1 is mounted.
  • the adhesion to the work material can be further improved, and the cutting resistance applied from the work material can be reduced. Therefore, even when heavy cutting is performed, an increase in cutting resistance can be suppressed, and chatter vibration during processing can be more reliably suppressed.
  • the projections 6 are formed in the same manner as in each of the above-described embodiments. Therefore, when the chips come into contact with the projections 6, the projections 6 can be curved and deformed to have a small size. As a result, it is possible to prevent the chips from colliding with the holder wall surface 14 and to make it easier for the chips to escape from the chip pocket 13, thereby improving the chip discharge performance.
  • the divided main cutting edge 4a when the divided main cutting edge 4a is inclined, the chips discharged from the divided main cutting edge 4a move toward the holder base end in the direction of force, and the chips escape from the chip pocket. It can be made easier, and the chip discharge property can be further improved. In this case, it is preferable that the ridge line of the protrusion 6 extends in the chip discharging direction. As a result, the chips can be smoothly bent.
  • the split main cutting edge 4a is inclined with respect to the bottom surface of the insert 1 to provide axial rake.
  • the split main cutting edge 4a is inclined with respect to the bottom surface of the insert 1 to provide axial rake.
  • each divided main cutting edge 4a is arranged on one predetermined virtual straight line L3.
  • chips scraped by one of the divided main cutting edges in the longitudinal direction may collide with the other divided main cutting edge in the longitudinal direction. It is prevented.
  • the chip power discharged is vigorously moved toward the base end of the holder, and the chip discharge performance can be further improved.
  • FIG. 12 is a simplified illustration of an insert 31a according to a modification of the insert 31 of the third embodiment of the present invention.
  • FIG. The insert 3 la is similar to the insert 31 of the third embodiment shown in FIGS. 10 and 11, and the description of the same configuration is omitted, and the same reference numerals are given.
  • the divided main cutting edge forming portion 8 that forms each divided main cutting edge 4a, and the divided main cutting edge A portion 9 between the cutting edges between 4 a is formed.
  • One of the divided main cutting edge forming portions 8 in the insert thickness direction One of the divided main cutting edges 4a serving as the edge of A1 extends in parallel.
  • the thickness direction dimension T1 between the one end in the longitudinal direction and the bottom surface of the divided main cutting edge 4a is uniformly formed.
  • the edge of one side A1 in the insert thickness direction 9 between the cutting edges is inclined in the insert thickness direction A in the direction closer to the bottom surface as it goes in the insert longitudinal direction B away from the corner R cutting edge 7.
  • the insert 31a of such a modification can obtain the same effect as the insert 1 described above.
  • the thickness in the thickness direction of each divided main cutting edge forming portion 8 can be increased, and the main cutting edge can be prevented from being broken.
  • the step between the cutting edge portion 9 and the cutting edge forming portion on the longitudinal direction away from the corner R cutting edge 7 can be made larger than the portion 9 between the cutting edges. It works as a chip breaker that subdivides, can divide the chips, and can further improve the chip discharge performance.
  • FIG. 13 is a side view of the long side showing, in a simplified manner, an insert 31b of another modification of the insert 31 of the third embodiment of the present invention.
  • the insert 31b is similar to the insert 31 of the third embodiment shown in FIGS. 10 and 11, and the description of the same configuration is omitted, and the same reference numerals are given.
  • the insert 31b of another modified example includes a split main cutting edge forming portion 8 that forms each split main cutting edge 4a and a split main cutting edge 8a when the end surface in the insert width direction C force is seen.
  • a portion 9 between the cutting edges between the cutting edges 4a is formed.
  • Each divided main cutting edge 4a which is the edge of one side A1 in the insert thickness direction of the divided main cutting edge forming portion 8, extends in parallel.
  • the insert thickness direction A dimension T1 between the end portion on one side in the longitudinal direction and the bottom surface of the divided main cutting edge 4a is formed uniformly.
  • the edge A1 of the part 9 between the cutting edges in the insert thickness direction is closer to the bottom as it advances in the insert longitudinal direction B away from the corner R cutting edge 7.
  • the insert 31b of such a modification can obtain the same effect as the insert 1 described above. Further, the thickness in the thickness direction of each divided main cutting edge forming portion 8 can be increased, and the main cutting edge can be prevented from being broken. In addition, the gap between the cutting edge part 9 and the cutting edge forming part 8 on the longitudinal direction that is farther from the corner R cutting edge 7 than the part 9 between the cutting edges can be reduced, and the main cutting edge is lost. Can be more reliably prevented. In addition, when the chips get over the step, they can be bent and deformed to reduce the size of the chips, thereby further improving the chip discharging performance of the chips that escape from the chip pocket 13.
  • FIG. 14 is an overall perspective view showing the insert 41 according to the fourth embodiment of the present invention
  • FIG. 15 is a side view of the long side of the insert 41.
  • the insert 41 is similar to the insert 1 of the first embodiment described above, and the description of the same configuration is omitted and the same reference numeral is assigned.
  • the main cutting edge 4 is constituted by a plurality of divided main cutting edges 4a arranged in the insert longitudinal direction B, and each divided main cutting edge 4a is inserted in the insert thickness direction A. It is formed at a position shifted to By forming a step in the thickness direction A in each divided main cutting edge 4a in this way, chips are generated for each divided main cutting edge 4a where the plurality of divided main cutting edges 4a are not connected. Accordingly, narrow chips are generated, and cutting resistance can be reduced.
  • protrusions 6 that protrude from the rake face 2 and correspond to the respective divided main cutting edges 4a are formed. Since the shape and arrangement of the protrusions 6 are the same as those in the above-described embodiment, the description thereof is omitted.
  • the protrusions 6 by forming the protrusions 6 corresponding to the divided main cutting edges 4a, the narrow chips generated by the divided main cutting edges 4a can be curved and deformed by the protrusions 6, respectively. As a result, it is possible to prevent chips from coming into contact with the holder wall surface 13.
  • the chips can be discharged smoothly from the chip pocket 13, and the chips can be discharged smoothly.
  • each divided main cutting edge 4a is formed to be inclined so that the distance from the bottom surface increases as the corner R cutting edge 7 is approached.
  • the present invention is not limited to this, and includes cases where each divided main cutting edge 4a and the bottom surface are parallel. Moreover, the case where some inclinations differ among the some division
  • the insert 31 of the third embodiment and the insert 41 of the fourth embodiment as described above, when the holder 11 is mounted, it is mounted such that the position of the divided main cutting edge is different. As a result, the uncut residue due to the groove 5 can be reduced.
  • the number of protrusions 6 and the arrangement of protrusions 6 may be selected.
  • FIG. 16 is an overall perspective view showing an insert 51 according to a fifth embodiment of the present invention.
  • 17 is a plan view showing the insert 51
  • FIG. 18 is a long side view showing the insert 51
  • FIG. 19 is a short side view showing the insert 51. As shown in FIG.
  • the insert 51 according to the fifth embodiment of the present invention shown in FIG. 16 has a main body portion formed in a substantially polygonal plate shape, and has a bottom surface 52 on the lower surface of the main body portion, a rake face 53 on the upper surface, and a relief surface on the side surface. 5 4 is provided.
  • a main cutting edge 55 is formed at the intersection ridgeline between the rake face 53 and the flank face 54.
  • the flank 54 is formed with a main groove 56 whose both ends reach the rake face 53 and the bottom face 52.
  • the main cutting edge 55 is composed of a plurality of first divided main cutting edges 55A each divided by a main groove 56.
  • the flank 54 is constituted by a plurality of divided flank 54A divided by the main groove 56.
  • a sub-groove portion 57 is arranged side by side with the main groove portion 56 so that one end thereof reaches the rake face 53.
  • the first divided main cutting edge 55A is constituted by a plurality of second divided main cutting edges 55a divided by one end of the sub-groove portion 57.
  • the insert 51 of the fifth embodiment has a configuration similar to the insert 21 of the second embodiment, and the insert 51 of the fifth embodiment has a protrusion formed on the insert 21 of the second embodiment! /, N! /, And the point, the insert 21 of the second embodiment is formed on the sub groove 57. It is different in that it has The main groove 56 of the insert 51 of the fifth embodiment corresponds to the groove 5 formed in the insert 21 of the second embodiment shown in FIG. 8, and has the same configuration.
  • the description of the configuration corresponding to the insert 21 of the second embodiment V is omitted, and the sub-groove portion 57 is formed on the insert 21 of the second embodiment. A description will be given in relation to the configuration.
  • the insert 51 of the fifth embodiment of the present invention has a main groove portion 56 and a sub groove portion 57 formed smaller than the main groove portion 56.
  • the main groove portion 56 is formed at the end portion in the width direction of the insert 51, and is formed to extend in the insert thickness direction A by immersing in the width direction end surface force in the insert width direction C.
  • the main groove portion 56 is formed from the rake face 53 of the insert 51 to the bottom surface 52 and extends in both the insert longitudinal directions B as the bottom surface 52 is approached. In other words, the main groove 56 reaches from the rake face 53 to the bottom face 52.
  • the main cutting edge 55 and the flank 54 are divided in the insert longitudinal direction B by the main groove 56. Therefore, the main cutting edge 55 has a plurality of first divided main cutting edges 55A arranged in the insert longitudinal direction B with a space therebetween. Further, the flank 54 has a plurality of divided flank surfaces 54A arranged in the insert longitudinal direction B at intervals.
  • the insert 51 is formed with three main groove portions 56 arranged in the insert longitudinal direction B. Therefore, the main cutting edge 55 has four first divided main cutting edges 55A and a flank face 54. Has four split flank surfaces 54A.
  • the main groove portions 56 are formed in substantially the same shape, and are arranged at approximately equal intervals in the insert longitudinal direction B. The shape, arrangement, and number of main grooves 56 are selected within a range in which the cutting edge strength can be maintained.
  • the sub-groove portion 57 is formed at the end portion in the width direction of the insert 51, and is formed so as to be immersed in the insert width direction C from the end surface in the width direction and extend in the insert thickness direction A.
  • the secondary groove 57 extends in the insert thickness direction A from the rake face 53 of the insert 51.
  • the sub-groove portion 57 is formed to have a smaller depth of immersion into the insert 51 than the main groove portion 56, that is, the depth is smaller.
  • the dimensions of the main groove portion 56 and the sub-groove portion 57 in the insert width direction C are set at least in advance It is set to be larger than the maximum feed amount per blade of the rolling tool 12 to be used.
  • the dimension of the main groove 56 in the insert width direction C is a dimension in which a decrease in cutting resistance is critical.
  • the dimension in the insert width direction C of the sub-groove 57 is set to the maximum expected feed amount.
  • the insert longitudinal direction, insert width direction, and insert thickness direction dimensions of the main groove 56 are set to dimensions necessary to maintain the strength of the insert 1.
  • a clearance angle is set for the insert 51.
  • the flank 54 immerses in the insert width direction C with an inward force as it advances in the insert thickness direction A due to the rake face 53 force also acting on the bottom face 52.
  • the bottom portion of the sub-groove portion 57 is disposed at a position protruding in the insert width direction C from the portion of the flank 54 that intersects the bottom surface 52. Accordingly, the sub-groove portion 57 is formed in a portion near the rake face 53 excluding a portion near the bottom surface 52 in the width direction end portion of the insert 51.
  • the wall surface in the insert width direction of the sub-groove portion 57 extends substantially parallel to the insert thickness direction A.
  • Each sub-groove portion 57 is formed to have at least one of depth, width and length smaller than that of the main groove portion 56. That is, the depth and width of each sub-groove portion 57 may be small, or only the depth and width may be smaller than that of the main groove portion 56.
  • each sub-groove portion 57 is formed smaller in depth, width, and length than each main groove portion 56.
  • the sub-groove portion 57 is formed between two main groove portions 56 adjacent to each other in the insert longitudinal direction B and between the main groove portion 56 and the insert longitudinal direction end surface portion. That is, each sub-groove 57 is arranged at a position where the first divided main cutting edge 55A divided by the main groove 56 is divided into a plurality of parts.
  • the main cutting edge 55 has a first divided main cutting edge with a long insert longitudinal dimension and a first divided main cutting edge with a short insert longitudinal dimension.
  • the long first divided main cutting edge is divided into three second divided main cutting edges by two minor grooves 57.
  • the short first divided main cutting edge is divided into two divided main cutting edges by one sub-groove portion 57. Accordingly, the second divided main cutting edge can be shortened regardless of the length of the first divided main cutting edge.
  • each sub-groove 57 is disposed at a position where the first divided main cutting edge is divided into two equal parts or three equal parts.
  • the main groove portion 56 that divides the flank 54 including the main cutting edge 55 is formed within a range in which the cutting edge strength can be maintained, thereby further reducing the cutting resistance. Therefore, the first split main cutting edge 55A is duplicated by the sub-groove 57 that is smaller than the main groove 56. The number of second divided main cutting edges 55a is further divided.
  • the sub-groove portion 57 and the main groove portion 56 newly disposed in the present embodiment have three dimensions of width W, depth D, and length L as the constituent elements of the groove portion.
  • the widths Wl and W2 of the grooves 56 and 57 are the dimensions in the insert longitudinal direction B.
  • the width of the intersection ridgeline between the rake face 53 and the walls of the grooves 56 and 57, and the main This is the distance between the two intersections of the cutting edge 5 with the virtual straight line. In other words, it is the dimension in the insert longitudinal direction between both wall surfaces in the insert longitudinal direction in the grooves 56 and 57.
  • the depths Dl and D2 of the grooves 56 and 57 are the dimensions in the insert width direction C.
  • the imaginary linear force of the main cutting edge 55 The longest distance in the insert width direction C to the intersecting ridgeline of each groove It is. In other words, it is the dimension C in the insert width direction from the flank 54 near the rake face 53 to the wall surface in the insert width direction in the grooves 56 and 57.
  • the lengths LI and L2 of the grooves 56 and 57 are the dimensions in the insert thickness direction A, and the rake face 53 when the bottom face 52 of the insert 51 is placed on a flat surface.
  • the width W2 of the sub-groove portion 57 is preferably 1Z6 or more and 5Z6 or less of the width W1 of the main groove portion 56, from the viewpoint that a reduction in cutting resistance and a maintenance of the cutting edge strength can be achieved in a balanced manner. If the width W2 of the minor groove 57 is smaller than 1Z6 of the width W1 of the main groove 56, the cutting resistance reduction effect is insufficient, and if it is larger than 5Z6 of the width W1 of the main groove 56, the strength of the cutting edge is insufficient. Because it becomes. That is, such a configuration can effectively maintain the cutting edge length of the second divided main cutting edge 55a, and is effective in preventing chipping, chipping, breakage, and the like of the cutting edge.
  • the depth D1 of the main groove portion 56 is preferably 1Z6 or more and 5Z6 or less. If the depth D2 of the minor groove 57 is smaller than 1Z6 of the depth D1 of the main groove 56, the depth D2 of the minor groove 57 tends to be smaller than the feed amount during heavy cutting. The cutting resistance is not sufficiently reduced. If the chips are not divided, the chips come into contact with the groove wall surface of the sub-groove portion 57, resulting in a cutting resistance. Tends to increase.
  • the length L 1 of the main groove 56 is substantially the same as the thickness dimension of the insert 1, but the length L 2 of the sub-groove 57 is formed shorter than the thickness dimension of the insert 51.
  • the other end of the sub-groove 57 is positioned on the split flank 54A, so the number of main grooves 56 that reach the bottom 52 is simply increased! As compared with the case of the above, it is possible to suppress a decrease in cutting edge strength and further a decrease in strength of the insert main body.
  • the width W1 of the main groove 56 is 1.6 mm
  • the depth D1 of the main groove 56 is 1.2 mm
  • the length L1 of the main groove 56 is 6.
  • ⁇ IJ groove 57 has a width W2 of 0.6 mm
  • ⁇ ij groove 57 has a depth D2 of 0.4 mm
  • ⁇ ij groove 57 has a length L2 of 2.4 mm.
  • 20A to 20D show the cutting edge shapes of various inserts used in this experiment in a simplified manner, and are plan views of the insert 51 of the fifth embodiment and the inserts 151A, 151B, 151C of the comparative example.
  • the insert 51 of the fifth embodiment has three main groove portions 56 and four sub groove portions 57.
  • the insert 151A of the first comparative example has three main grooves 56 as shown in FIG.
  • the insert 151B of the second comparative example has seven main groove portions 56 as shown in FIG. 20 (C).
  • the insert 151C of the third comparative example has seven sub-grooves 57 as shown in FIG. 20 (D).
  • the sizes of the main groove 56 and the sub-groove 57 in the insert 51 of the fifth embodiment and the inserts 151A, 151B, 151C of the first to third comparative examples are respectively formed to be the same.
  • the insert 151A of the first comparative example has a divided main cutting edge that is divided into approximately four by three main grooves 56. Further, the insert 51 of the fifth embodiment is such that the auxiliary groove portion 57 is further formed on the insert 151A of the first comparative example, and the divided main cutting blades divided by the main groove portion 56 are further divided by the respective auxiliary groove portions 57, respectively. Divided into two. Further, the insert 151B of the second comparative example has a divided main cutting edge divided into approximately eight equal parts by seven main groove parts 56, and the insert 151C of the third comparative example is divided into approximately eight equal parts by seven sub groove parts 57. It has a split main cutting edge. [table 1]
  • the cutting speed V was set to 200 mZmin, and SS400 specified by JIS as the work material was used for dry processing.
  • a cutting test was conducted.
  • the depth of cut in the holder axial direction was 15 mm
  • the depth of cut in the holder radial direction was 5 mm
  • the feed rate per insert blade was 0.2 mm / tooth when measuring cutting resistance and finished surface.
  • the results are shown in Table 1.
  • the cutting resistance was measured using a cutting resistance measuring instrument manufactured by Kistler under the above-mentioned cutting conditions, and the main component force was expressed as the cutting resistance.
  • the feed amount was increased so that the load applied to the insert gradually increased, and the test was conducted until the insert was finally missing, and the limit feed at which the insert was missing was indicated. Specifically, the feed amount per insert blade was increased and expressed as the feed amount when the main cutting edge of the insert was missing.
  • the cutting resistance increases in proportion to the total contact length between the insert and the work material, that is, the length of each divided main cutting edge provided in the insert. Therefore, the more grooves 56, 57, the lower the cutting resistance.
  • the cutting resistance of the insert 51 of the fifth embodiment having a larger number of groove portions as much as the sub-groove portions 57 are formed is low.
  • the insert 151C of the third comparative example even if only the sub-groove portion 57 is increased, the reduction rate of the cutting resistance is smaller than when the main groove portion 56 is increased.
  • the sub-groove portion 57 which is not only due to the total length of the divided main cutting edges provided in the insert, is small in depth D and width W, so the remaining portion of the minor groove portion 57 As soon as it touches the wall, the cutting force cannot be reduced effectively. If neither the main groove 56 nor the sub-groove 57 is formed, the cutting resistance is about 5000N. Further, the cutting edge strength increases in proportion to the length of the divided main cutting edge. In other words, the cutting edge strength decreases as each divided main cutting edge becomes shorter. Therefore, the cutting edge strength of the insert 151B of the second comparative example in which the main groove 56 is increased compared to the insert 151A of the first comparative example is lower.
  • the insert 51 of the fifth embodiment forms a sub-groove 57 that is smaller than the main groove 56, so that the cutting edge for the insert 151A of the first comparative example is smaller than the insert 151B of the second comparative example. A decrease in strength can be suppressed.
  • the insert 51 of the fifth embodiment is formed such that the depth D2 of the sub-groove portion 57 is larger than the maximum value fmax of the expected feed amount per insert blade.
  • the maximum value fmax of the expected feed amount is set to 0.3 mm / tooth.
  • the insert 51 of the fifth embodiment has a lower cutting resistance than the insert 151A of the first comparative example. Therefore, the insert 51 of the fifth embodiment has a finished surface compared to the insert 151A of the first comparative example.
  • the finished surface can be smoothed by reducing the unevenness of the surface.
  • the cutting force decreases when the number of main grooves 56 is increased compared to the insert 151A of the first comparative example. Therefore, it becomes difficult to use in heavy cutting.
  • the insert 151C of the third comparative example when only a plurality of sub-grooves 57 are arranged like the insert 151C of the third comparative example, it is possible to suppress the reduction of the cutting edge strength, but the cutting resistance is not sufficiently reduced. Eventually it becomes difficult to use in heavy cutting.
  • the auxiliary groove portion 57 smaller than the main groove portion 56 is attached to the insert 151A of the first comparative example to reduce the cutting resistance.
  • a reduction in the cutting edge strength can be suppressed. This makes it possible to perform heavy cutting with severe cutting conditions using the insert 51 of the fifth embodiment.
  • the other groove 57 has the other end not reaching the bottom surface 52.
  • the present invention is not limited to this, and the clearance angle of the flank 54 and the insert body portion are not limited thereto. If the strength of the insert main body can be maintained sufficiently due to the thickness of the sub-groove 57, the width W2 and the depth D2, the other end of the sub-groove 57 may be formed to reach the bottom surface 52. Needless to say, it can be effective.
  • the sub-groove portion 57 is disposed so as to divide the first divided main cutting edge 55A substantially equally, and forms the second divided main cutting edge 55a.
  • the cutting resistance applied to each of the second divided main cutting edges 55a is equally distributed, so that the cutting resistance is reduced and the reduction in cutting edge strength can be suppressed to the maximum.
  • the force illustrated when the first divided main cutting edge 55A is divided into two and three equal parts by the sub-groove part 57 is not limited to this. Even if the first divided main cutting edge 55A is divided into a plurality of second divided main cutting edges 55a of approximately the same length, the same effect can be obtained. Needless to say.
  • the first divided main cutting edge 55A divided by the main groove portion 56A is further divided into a plurality of second divided main cutting edges 55a by the auxiliary groove portion 57. Since the width of the generated chips 8 substantially matches the length of the second divided main cutting edge 55a, the chips 8 become smaller and lighter. As a result, the chips 8 can be easily discharged from the chip pockets 13 formed in the holder 11, and the chip discharge performance can be improved. Accordingly, problems such as clogging of the chips 8 in the chip pocket 13 and biting of the chips 8 are suppressed, and the insert 51 and the holder 11 can be used for a long period of time.
  • the chips 8 discharged outward from the chip pocket 13 are lightweight, they can move without being deposited around the work material and prevent the work material from being damaged by the chips. In addition, by preventing chips from accumulating around the work material, it is possible to reduce chip entrapment in the cutting edge as a result. In this way, the chip discharge performance during heavy cutting can be improved.
  • the first divided main cutting edge 55A is further divided by the sub-groove portion 57, the cutting resistance acting on the main cutting edge portion can be reduced, and the sub-groove portion 57 is smaller than the main groove portion 56.
  • the coexistence of the main groove portion 56 and the sub-groove portion 57 makes it possible to reduce the cutting resistance accompanying the reduction of the contact surface between the insert 51 and the work material while suppressing the reduction of the cutting edge strength. As a result, chatter vibration during machining can be suppressed, and heavy cutting with severe cutting conditions can be performed.
  • the width of the sub-groove portion 57 is formed smaller than that of the main groove portion 56, two groove portions 56, 57 having different widths can be formed. Since the main groove 56 is formed to have a large width, the ratio of the first divided main cutting edge 55A to the entire insert can be reduced, cutting resistance can be reduced, and chatter vibration generated during cutting can be prevented. be able to. Further, since the width of the sub-groove portion 57 is formed to be small, it is possible to prevent the strength of the first divided main cutting edge 55A from being lowered while achieving the function of further dividing the chips. This prevents the main cutting edge from being lost and extends the life of the insert 51. As described above, by using the insert 51 of the present embodiment, it is possible to reduce the cutting resistance while suppressing a decrease in the cutting edge strength, and it can be suitably used for heavy cutting.
  • the length of the sub-groove portion 57 is shorter than the thickness of the main body portion.
  • the flank 54A formed between the two main grooves 56 is divided into a plurality by the sub-grooves 57, and the plurality of divided flank 54A are continuous on the bottom side. This prevents the flank portion sandwiched between the two main groove portions 56 or the flank portion sandwiched between the sub groove portion 57 and the main groove portion 56 from being lost, and improves the cutting edge strength. Can do.
  • the depth of the sub-groove portion 57 is formed smaller than the depth of the main groove portion 56.
  • the cutting force can be made as small as possible by setting the critical groove 56 to a critical value at which the cutting force cannot be expected to decrease even if the depth of the main groove 56 is deeper than that. it can. Further, by setting the depth of the sub-groove portion 57 to be equal to or greater than the depth corresponding to the maximum feed amount, the width of the chip can be reliably divided by the sub-groove portion 57. Further, the depth of the sub-groove portion 57 is set to be equal to or less than the depth of the main groove portion 56, so that a reduction in cutting edge strength can be suppressed. .
  • each second divided main cutting edge 55a divided by the sub-groove portion 57 is equally distributed by arranging the sub-groove portion 57 so as to divide the first divided main cutting edge 55A substantially equally. It is possible to reduce the cutting resistance and reduce the cutting strength.
  • the raised portion 15 is formed around the through-hole 16 as in the first embodiment, so that curling of chips can be promoted.
  • the head of the screw member screwed into the through hole 16 is hidden by the raised portion 15, it is possible to prevent the chips from coming into contact with the screw head of the screw member and to prevent wear of the head of the screw member.
  • FIG. 16 to 19 exemplify the insert 51 formed by dividing the main cutting edge 5 by the three main grooves 56.
  • the main cutting edge 55 is divided by the four main grooves 56.
  • the insert 61 is shown in Figs. 21 is a plan view showing an insert 61 according to a sixth embodiment of the present invention, FIG. 22 is a long side view showing the insert 61, and FIG. 23 is a short side view showing the insert 61. It is.
  • the insert 61 of the sixth embodiment has a configuration similar to the insert 1 of the first embodiment, and the insert 61 of the sixth embodiment has a protrusion formed on the insert 1 of the first embodiment. However, the point differs from the point that it is formed in the insert 1 of the first embodiment and has the minor groove 57.
  • the main groove 56 of the insert 61 of the sixth embodiment corresponds to the groove 5 formed in the insert 1 of the first embodiment shown in FIG. 1 and has the same configuration. Further, the configurations of the main groove 56 and the sub-groove 57 of the insert 61 of the sixth embodiment are the same as those of the insert 51 of the fifth embodiment.
  • the insert 61 of the sixth embodiment differs from the insert 51 of the fifth embodiment in the arrangement of the main groove 56 and the first divided main cutting edge 55A.
  • the insert 61 of the sixth embodiment four main grooves 56 are formed. Accordingly, the main cutting edge 55 is divided into five first divided main cutting edges 55A.
  • the sub-groove portion 57 divides each first divided main cutting edge 55A into two equal parts to form second divided main cutting edges 55a, respectively. Accordingly, five sub-grooves 57 are formed.
  • the main groove 56 of the insert 51 of the fifth embodiment is The region through which the first divided main cutting edge 55A of the insert 61 of the sixth embodiment passes is included in the region through which the main groove 56 of the insert 61 of the sixth embodiment passes.
  • the arrangement of the main groove portions 56 of the inserts 51 and 61 is selected so as to be included in the region through which the first divided main cutting edge 55A of the insert 51 of the fifth embodiment passes.
  • FIG. 24 is a perspective view showing the rolling tool 12 equipped with the inserts 51 and 61 of the present invention.
  • a plurality of chip pockets 13 are formed at the outer peripheral tip of the holder 11, and inserts 51 and 61 are attached to the respective outer peripheral positions in the chip pocket 13.
  • the inserts 51 and 61 are mounted so that the main cutting edge 55 is positioned on the outermost periphery with the rake face 53 facing the rotation direction, and cutting is performed by the main cutting edge 55 rotating together with the holder 11. Is called.
  • bending stress is applied to the holder 11, but the holder 11 is fixed so that a large deflection does not occur due to such bending stress. It has rigidity.
  • the main groove 56 is formed in the main cutting edge 55, so that it is inevitably left on the wall surface of the work material after processing. Will occur. Therefore, in order not to cause uncut portions due to the main groove 56, inserts 51 and 61 having different main groove portions 56, for example, the insert 51 of the fifth embodiment and the insert 61 of the sixth embodiment are shown in FIG. Thus, the holders 11 are alternately arranged on the same circumference so as to perform cutting. This allows the main cutting edge 55 of the other insert 61 to cut the residual IJ residue due to the grooves 56 and 57 of the one insert 51, reducing the unevenness generated on the processing wall surface of the work material. It can be processed.
  • the width of the main groove portion 56 and the dimension between the main groove portions are set to be approximately the same for the two types of inserts 51 and 61.
  • the inserts 51 and 61 of the fifth and sixth embodiments are inclined so as to approach the bottom surface as the split main cutting edge advances from the corner R cutting edge in the insert longitudinal direction. Moyo.
  • FIG. 25 is an overall perspective view showing the insert 71 of the seventh embodiment of the present invention
  • FIG. 26 is an enlarged perspective view showing the insert mounting state of the rolling tool 12 of the present invention.
  • the insert 71 of the seventh embodiment has a configuration corresponding to that of the insert 51 of the fifth embodiment, the description of the corresponding configuration is omitted, and the same reference numerals as those of the fifth embodiment are given.
  • the insert 71 of the seventh embodiment includes the first divided main cutting edge 55A on the rake face 53 adjacent to the first divided main cutting edge 55A.
  • at least one protrusion 58 is formed. The protrusion 58 protrudes from the rake face 53 in the thickness direction.
  • the protrusion 58 is formed so as to be paired with the first divided main cutting edge 55A.
  • the main cutting edge side portion of the protrusion 58 has a branched shape so as to correspond to the second divided main cutting edge 55a further divided by the sub-groove portion 57.
  • the branched portion of the divided main cutting edge side portion is tapered so that the width and height gradually decrease toward the corresponding second divided main cutting edge 55a in the insert width direction C. It is formed in the shape.
  • the height of the protrusion 58 is a height dimension of the protrusion 58 in the insert thickness direction A with respect to the rake face 53.
  • the width of the protrusion 58 is the dimension of the protrusion 58 in the insert longitudinal direction B.
  • the distance in the insert width direction C is configured to be the shortest at the center in the insert longitudinal direction of the second divided main cutting edge 55a. That is, the branched tip end portion is arranged to be directed to the central portion in the insert longitudinal direction of the second divided main cutting edge 55a.
  • the chips formed narrowly by the second divided main cutting edges 55a come into contact with the protrusions 58 formed on the rake face 53, and are curved and deformed to a small extent. It is possible to prevent the holder wall surface 14 in the waste pocket from being damaged. Furthermore, each chip formed in a narrow width comes into contact with the protrusion 58 formed on the rake face 53, so that the radius of curvature is reduced and the size of the chip is reduced. As a result, the chips move smoothly from the chip pocket 13 to the outside of the holder 11, and the chip discharge performance can be improved.
  • main groove 56 and the auxiliary groove 57 are mounted on the holder 11, they extend along a plane perpendicular to the holder axis and extend in the holder circumferential direction.
  • each insert 71 mounted on the holder 11 has the protrusion 58, so that the protrusion 58 comes into contact with the thickest portion of the chip cross section described above, and the generated chips are selectively selected. In addition, it can be efficiently curved and deformed, that is, curled.
  • the insert 71 of the seventh embodiment shows the case where the protrusion 58 is formed on the insert 51 of the fifth embodiment, but the protrusion 58 may be formed similarly for the insert 61 of the sixth embodiment. Therefore, it is preferable that protrusions are formed on all of the inserts attached to the holder 11. As for the protrusion, it is sufficient if one or more protrusions are formed on each divided main cutting edge 55a, and the protrusions similar to those of the inserts 1 and 21 of the first embodiment or the second embodiment are formed. Also good. As shown in FIG. 26, an annular raised portion 15 is formed around the through hole 16 at the center of the rake face 53. As a result, the same effect as that of the insert 1 of the first embodiment can be obtained with respect to the formation of the raised portion 15.
  • FIG. 27 is an overall perspective view showing an insert 71a according to a modification of the seventh embodiment.
  • the insert 71 of the seventh embodiment at least one protrusion is formed on the rake face 53 adjacent to the first divided main cutting edge 55A corresponding to each of the first divided main cutting edges 55A.
  • the second split main cutting edge 55a has a branched shape on the side of the main cutting edge.
  • the modified insert 71a has a plurality of independent protrusions 68 corresponding to each of the second divided main cutting edges 55a. Even with the insert 71a having such a protrusion 68, the same effect as the insert 71 of the seventh embodiment can be obtained.
  • the protrusions are arranged such that the chips generated by the corresponding second divided main cutting edges 55a collide and curl, so that the protrusions are related to the shape of the center side of the rake face of the protrusions. The same effect can be obtained.
  • the protrusion 68 preferably corresponds to the protrusion 6 shown in the insert 1 of the first embodiment.
  • the protrusion 6 of the first embodiment is arranged toward the divided main cutting edge
  • the protrusion 68 of the insert 71a of the modified example of the seventh embodiment is directed to the second divided main cutting edge 55a.
  • the same effects as those of the insert 1 of the first embodiment can be obtained with respect to the formation of the protrusions 68.
  • 1 to 27 exemplify inserts in which the main body portion has a substantially rectangular plate shape or a substantially parallelogram plate shape, but as another embodiment of the present invention, the main body portion corresponds to the holder shape.
  • the insert has a 180-degree rotational symmetry shape, but the main cutting edge may be formed only on one edge in the width direction of the insert. Further, the inclination of the divided main cutting edge, the shape of the groove, the shape of the protrusion, and the like are not limited to the configuration of the present embodiment as long as they are appropriately selected. It is also possible to use this embodiment in combination as appropriate. Also, the insert of the present invention can be used for applications other than heavy cutting. wear.
  • the chips formed narrow by the respective divided main cutting blades come into contact with the protrusions, so that they are curved and deformed to reduce the radius of curvature.
  • the chip breaks before it contacts the holder wall surface formed on the holder, and moves to the outside of the chip pocket. This prevents the chip force from colliding with the holder wall surface and damaging the holder wall surface.
  • the chip comes into contact with the protrusion, and the radius of curvature is reduced, so that the size of the chip is reduced.
  • the chips smoothly move from the chip pocket to the outside of the holder, and the chip discharge performance can be improved. Force S Suppression of defects such as chip clogging and chip entrapment in the chip pocket makes it possible to use the insert and holder for a long time.
  • the height of the protrusion from the rake face increases as it moves away from the divided main cutting edge. Therefore, the chips are guided by the protrusions in the direction away from the rake face force, and are bent and deformed to reduce the radius of curvature.
  • the height of the protrusion gradually decreases as it approaches the divided main cutting edge, so that the chips can smoothly contact the protrusion and the impact at the time of contact can be suppressed, thereby suppressing an increase in cutting resistance.
  • the protrusion becomes wider as the distance from the divided main cutting edge increases.
  • the strength of the protrusions can be improved, and loss of the protrusion force S insert body force at the time of chip collision can be prevented. This makes it possible to use the insert for a long time.
  • the chips move along the rake face, move away from the divided main cutting edge, and the chips come into contact with the protrusions.
  • the chips are guided in a direction away from the rake face in the thickness direction, and are curved and deformed so that the radius of curvature is small.
  • the main cutting edge side portion of the protrusion is formed in a tapered shape such that the width and height gradually decrease as it approaches the corresponding divided main cutting edge. Accordingly, the height of the projection increases as the distance from the divided main cutting edge increases.
  • the contact between the chip and the protrusion becomes smooth, in other words, the impact when the chip contacts the protrusion is reduced, and the impact at the time of contact is suppressed, thereby suppressing an increase in cutting resistance. it can.
  • the height of the protrusion increases and the width of the protrusion increases, so that the strength of the protrusion can be prevented, and the protrusion force when the chips are guided to be bent and deformed. be able to. This makes it possible to use the insert for a long time.
  • the distance in the thickness direction between the intersecting ridge line portion of the protrusion and the rake face increases with distance from the divided main cutting edge.
  • Chips collide with the intersection ridge line portion of the protrusion, and the chips move along the intersection ridge line portion of the protrusion to bend and deform.
  • the intersection ridge line part is formed on the protrusion, and the chip collides with the intersection ridge line part of the protrusion, so that the portion where the chip and the protrusion are in contact with each other can be made extremely small, making the chip even smoother.
  • the cutting resistance due to the curved deformation of the chips can be further reduced.
  • the intersection ridges of the protrusions extend along the perpendicular bisector of the corresponding split main cutting edge, and the height gradually decreases as the split main cutting edge is approached. Preferred.
  • the chips move in a direction substantially orthogonal to the divided main cutting edge.
  • the protrusions are arranged so as to extend in a direction substantially perpendicular to the divided main cutting edge, the cutting resistance caused by the protrusions when cutting on the rake face is reduced. Can do.
  • the protrusion is disposed and arranged toward the intermediate portion in the longitudinal direction of the divided main cutting edge. Chips formed by the divided main cutting edge are formed to have substantially the same width as the divided main cutting edge. In this case, the protrusion comes into contact with the central portion of the chip in the width direction. Accordingly, the protrusion can prevent the chips from swinging from side to side and guide the chips in a direction substantially orthogonal to the divided main cutting edge.
  • the protrusion is disposed on a substantially vertical bisector of the divided main cutting edge.
  • the protrusion extends in a direction substantially perpendicular to the divided main cutting edge and is arranged.
  • it is disposed in the middle of the longitudinal direction of the divided main cutting edge.
  • the raised portion is formed around the through-hole, so that the chip is raised even under the condition that the bending deformation action of the chip by the protrusion is insufficient.
  • the curved deformation of the chips can be promoted by contacting with.
  • the head of the screw member screwed into the through hole is hidden by the raised portion, so that it is possible to prevent the chips and the screw head of the screw member from contacting each other, and to prevent wear of the head of the screw member.
  • the screw head can be prevented from adversely affecting chip discharge.
  • the protrusion is formed so as to make a pair with each divided main cutting edge. That is, one projection is formed for each divided main cutting edge.
  • the chip formed by the divided main cutting blade collides with only one protrusion and is guided, so that the cutting resistance is smaller than when the chip collides with a plurality of protrusions and is guided. Can be further reduced.
  • the chips can be brought into contact with the ridge line portion of the corresponding one projection.
  • the chips formed by the divided main cutting blades other than the divided main cutting blade near the corner R cutting blade move in a direction substantially orthogonal to the divided main cutting blade.
  • the projections paired with the split main cutting blades other than the split main cutting blade near the corner R cutting edge are arranged so as to extend in a direction substantially orthogonal to the split main cutting blade, respectively.
  • the cutting resistance generated by the protrusions can be reduced for chips that move in a direction substantially perpendicular to the cutting edge.
  • each protrusion is arranged toward the middle part in the longitudinal direction of the paired split main cutting edge, so that the left and right runout of the chip is prevented and the chip is separated from the divided main cutting edge. It can be moved in a substantially orthogonal direction, preventing a plurality of chips from coming into contact with each other and preventing the chips from clogging in the pocket.
  • the split main cutting edge near the corner of the rake face is a corner. Since it is connected to the R cutting edge, the chips formed by the divided main cutting edge near the corner R cutting edge are formed in an arc shape connected to the chips formed by the corner R cutting edge, and the rake face It moves at an angle inclined in advance with respect to the divided main cutting edge.
  • the protrusions that form a pair with the divided main cutting edge near the corner R cutting edge are formed so that the width and height gradually decrease toward the corner R cutting edge. Chips formed by the main cutting edge can be made to smoothly collide with the protrusions, and the cutting resistance can be further reduced.
  • the chips formed by the corner R cutting edge and the divided main cutting edge connected thereto can be smoothly curved and deformed.
  • the angle between the protrusion paired with the divided main cutting edge near the corner R cutting edge and the divided main cutting edge near the corner is 60 ° or more and 85 °.
  • cutting resistance generated by the protrusions can be reduced, and the chips formed by the corner R cutting blade can be more reliably curved and deformed. For example, if the inclination angle is less than 60 °, chips are likely to be clogged and cutting resistance may increase. If the angle of inclination is less than 60 °, the cutting resistance caused by the chip portion formed by the divided main cutting edge connected to the corner R cutting edge becomes excessive.
  • the inclination angle exceeds 85 °, the chips become curved. If the wear on the wall of the holder is not improved, the size of the chips to be crushed by the force will increase and the chip discharge performance will decrease. There is a risk of problems such as chipping of the cutting edge due to chip biting. If the inclination angle exceeds 85 °, the cutting resistance due to the chip formed by the corner R cutting edge becomes excessive.
  • the inclination angle is set to 60 ° or more and 85 ° or less, the above-described problems do not occur. Accordingly, the cutting resistance can be suppressed, and the chips formed by the corner R cutting edge and the divided main cutting edge connected to the corner R cutting edge can be bent and deformed more reliably.
  • one or more protrusions are formed corresponding to the divided main cutting edge. Accordingly, the chip can be bent and deformed by bringing the chip into contact with one or a plurality of protrusions. Even if the cross-sectional area of the chip is large or the rigidity of the chip is high, the chip is brought into contact with a plurality of protrusions and curved and deformed. Thus, the impact force applied from the plurality of protrusions can be shared by the plurality of protrusions, and the chips can be sufficiently curved and deformed by preventing the protrusions from being lost.
  • the split main cutting edge has a short length.
  • the length is increased! It is possible to more reliably bend and deform the scrap, and to prevent the projection corresponding to the long divided main cutting edge from being lost due to the collision of the wide chip.
  • the chips formed by the divided main cutting blades other than the divided main cutting blade near the corner R cutting edge move in a direction substantially orthogonal to the corresponding divided main cutting blade.
  • each of the projections corresponding to the divided main cutting blades other than the divided main cutting blade near the corner R cutting edge extends in a direction substantially orthogonal to the divided main cutting edge, thereby being arranged.
  • the cutting resistance generated by the protrusions can be reduced against chips moving in a direction substantially perpendicular to the blade.
  • each protrusion is arranged toward the longitudinal middle portion of the corresponding split main cutting edge, so that the left and right runout of the chip is prevented and the chip is substantially separated from the divided main cutting edge. It can be moved in the orthogonal direction, preventing a plurality of chips from coming into contact with each other and preventing the chips from clogging in the pocket.
  • the divided main cutting edge near the corner R cutting edge is connected to the corner R cutting edge, chips formed by the divided main cutting edge near the corner R cutting edge. Is formed in an arc shape connected to the chips formed by the corner R cutting edge, and moves on the rake face with a predetermined angle with respect to the divided main cutting edge.
  • the protrusion disposed closest to the corner R cutting edge is directed toward the corner R cutting edge so that the width and height are Since it is formed so as to be gradually reduced, the chips formed by the corner R cutting edge and the divided main cutting edge connected to it can smoothly collide with the protrusion arranged closest to the corner R cutting edge.
  • the cutting resistance can be further reduced. Further, the chips formed by the corner R cutting edge and the divided main cutting edge connected to the corner R cutting edge can be smoothly curved and deformed. here If there is one protrusion corresponding to the divided main cutting edge near the corner R cutting edge, that one protrusion is the protrusion that is disposed closest to the corner R cutting edge. If there are multiple protrusions corresponding to the divided main cutting edge near the corner R cutting edge, the protrusion closest to the corner R cutting edge is arranged closest to the corner R cutting edge. It becomes an overhang.
  • the inclination angle formed between the projection disposed closest to the corner R cutting edge and the divided main cutting edge closer to the corner is 60 ° or more and 85 ° or less.
  • cutting resistance generated by the protrusions can be reduced, and chips formed by the corner R cutting blade can be more reliably curved and deformed. For example, if the inclination angle is less than 60 °, chips are likely to be clogged, and cutting resistance may increase. If the angle of inclination is less than 60 °, the cutting resistance due to the chips formed by the divided main cutting edge connected to the corner R cutting edge becomes excessive.
  • the inclination angle exceeds 85 °, the chips will be bent and deformed.If the wear on the wall of the holder is not improved, the size of the chips will be increased by force and the chip discharge performance will decrease. In addition, there is a risk of problems such as chipping of the cutting edge due to chip biting. If the inclination angle exceeds 85 °, the cutting resistance due to the chips formed by the corner R cutting edge becomes excessive. In the present invention, since the inclination angle is set to 60 ° or more and 85 ° or less, the chips formed by the corner R cutting blade that does not cause the above-described problems can be more reliably curved and deformed.
  • the chips formed by the divided main cutting blades other than the divided main cutting blade near the corner R cutting edge move in a direction substantially orthogonal to the corresponding divided main cutting edge.
  • protrusions other than the protrusion closest to the corner R cutting edge extend in a direction substantially perpendicular to the divided main cutting edge. Accordingly, the chips that move in the directions substantially orthogonal to the divided main cutting blades smoothly contact the protrusions, and the cutting resistance generated by the protrusions can be reduced.
  • the first divided main cutting edge divided by the main groove is further divided into a plurality of second divided main cutting edges by the sub groove.
  • the width of the chips becomes smaller corresponding to the length of the second divided main cutting edge, the weight of the chips is reduced.
  • the chips can be easily discharged from the chip pocket formed in the holder, and the chip discharge performance can be improved. Therefore, problems such as chip clogging and chip biting in the chip pocket are suppressed, and the insert and holder can be used for a long time.
  • the chips discharged outward from the chip pocket are lightweight, they can move without being deposited around the work material and prevent the work material from being damaged by the chips.
  • the first divided main cutting edge is further divided by the sub-groove portion, it is possible to reduce cutting resistance acting on the main cutting edge portion, and the sub-groove portion is formed to be smaller than the main groove portion. As a result, it is possible to suppress a significant decrease in strength of the cutting edge portion seen when the main groove portion is formed.
  • the coexistence of the main groove portion and the sub-groove portion makes it possible to reduce the cutting resistance due to the reduction in the contact surface between the insert and the work material while suppressing the reduction in the cutting edge strength. As a result, chatter vibration during machining can be suppressed, chip discharge performance can be improved, and heavy cutting with severe cutting conditions can be performed.
  • the width of the sub-groove portion is smaller than that of the main groove portion, two groove portions having different widths can be formed.
  • the ratio of the first divided main cutting edge to the entire insert can be reduced, cutting resistance can be reduced, and chatter vibration generated during cutting can be prevented.
  • the small width of the sub-groove part reduces the strength of the cutting edge and the chipping, chipping, and breakage of the cutting edge that can be seen in inserts with multiple main grooves. Is done. Therefore, it is possible to prevent the strength of the first divided main cutting edge from being lowered while achieving the function of further dividing the chips. This prevents the main cutting edge from being damaged and extends the insert life.
  • the insert of the present invention it is possible to reduce the cutting resistance while suppressing the reduction of the cutting edge strength, improve the chip discharging performance, and be suitably used for heavy cutting. Can do.
  • the length of the sub-groove portion is shorter than the thickness of the main body portion.
  • the flank formed between the two main grooves is divided into multiple parts by the sub-grooves.
  • the plurality of split flank faces are continuous on the bottom surface side.
  • the depth of the sub-groove portion is smaller than the depth of the main groove portion. This is desirable because it is possible to balance the maintenance of the cutting edge strength and the reduction of cutting resistance in a balanced manner, and as a result, it is possible to perform heavy cutting such as increasing the amount of cutting during cutting. As a result, the rake face portion sandwiched between the two main groove portions or the rake face portion sandwiched between the sub-groove portion and the main groove portion is prevented from being lost, and the cutting edge strength can be improved.
  • the sub-groove portion is arranged so as to divide the first divided main cutting edge into approximately equal parts, whereby the processing applied to each second divided main cutting edge divided by the sub-groove portion.
  • the load can be evenly distributed, cutting resistance can be reduced, and reduction in cutting edge strength can be suppressed.
  • the chips formed narrow by each of the second divided main cutting blades contact the projections formed on the rake face, and are curved and deformed to a small extent. Can prevent the holder wall in the chip pocket from being damaged. Furthermore, each of the chips formed in a narrow width comes into contact with the protrusion formed on the rake face, so that the radius of curvature is reduced and the size of the chips is reduced. As a result, the chips move smoothly from the chip pocket to the outside of the holder, and the chip discharge performance can be improved. As a result, problems such as chip clogging and chip biting in the chip pocket are suppressed, and the throwaway insert and the holder can be used for a long period of time.
  • the raised portion is formed around the through-hole, so that even if the curling action of the chip by the protrusion is insufficient, the chip force rule is reduced. Can be promoted. Further, since the head portion of the screw screwed into the through hole is hidden by the raised portion, it is possible to prevent the chips and the screw head from coming into contact with each other, and to prevent wear of the screw head.
  • a turning tool having an axial rake in the positive direction can be realized by mounting the throwaway insert on the holder.
  • the sharpness to the work material can be improved, and the cutting resistance applied from the work material can be reduced. Therefore, even when heavy cutting, that is, rough cutting, in which the amount of cutting performed at one time is further increased, the increase in cutting resistance can be suppressed and chatter vibration during processing can be more reliably suppressed.
  • the bottom surface of the insert formed on the holder is arranged in the holder circumferential direction with respect to the rotation axis of the holder. There is no need for a large inclination. As a result, it is possible to suppress a decrease in the thickness of the holder, suppress a decrease in the rigidity of the holder, extend the life of the rolling tool, and increase the amount of cutting that can be performed at one time.
  • the throwing away insert that can sever the chips as described above is attached to a plurality of holders, thereby improving the chip discharging performance.
  • chips generated during cutting can be smoothly discharged from the chip pocket to the outside of the holder, and cut into the chip pocket. It is possible to prevent debris from accumulating. This reduces insert and holder breakage and wear, prolongs the service life, reduces the number of replacements, and improves production efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Abstract

 本発明の目的は、ホルダを長期にわたって使用可能とするとともに、切り屑排出性に優れたスローアウェイインサートを提供することにある。略多角形板状をなし、上面にすくい面2を、側面に逃げ面3を具備するとともに、すくい面2と逃げ面3との交差稜線部に主切刃4が形成され、かつ主切刃4が逃げ面3上に形成された少なくとも1つの溝部5によって分断された複数の分割主切刃4aからなるスローアウェイインサート1であって、各分割主切刃4aと対応するように、すくい面2上に突起6が形成されている。

Description

スローァウェイインサートおよびそれを装着した転削工具
技術分野
[0001] 本発明は、正面フライスやエンドミル等の転削工具に用いられるスローアウエィイン サートに関する。 背景技術
[0002] 図 28は、従来技術のスローアウエィインサート 101 (以下、インサート 101と略する) を示す斜視図であり、図 29は、従来技術のインサート 101を示す側面図である。イン サート 101は、略円筒状のホルダに装着可能に構成される。インサート 101を装着し たホルダは、被削材を転削する転削工具として用いられる。たとえばインサート 101 が装着される転削工具は、正面フライス用工具やエンドミル用工具等であり、特に切 刃長が長く多数の切刃を取り付けて使用される転削工具として用いられる。
従来技術として、図 28に示すように、主切刃 103から連続するすくい面 104が正の すくい角を備えるとともに、主切刃 103を含む逃げ面 105を溝部 106によって分断し たインサート 101が知られている(たとえば、特開平 7— 299636号公報参照)。この ようなインサート 101は主として一度の切削動作で、大量の切り屑が排出される重切 削用転削工具に用いられる。この重切削動作の場合、切込み量および送り量がとも に大きぐ厳しい切削条件下での加工となることから、被削材力 転削工具に与えら れる切削抵抗が大きくなる。インサート 101は、主切刃 103が溝部 106によって複数 の分割主切刃 103aに分断されることで、切削動作時に生成される切り屑が小さく分 割される。これによつて、切削抵抗が減少し、被削材へのくいっき性もよくなることから 加工中におけるびびり振動も抑制されるという効果が得られる。
図 30は、図 28に示す従来技術のインサート 101を有する転削工具 112を示す斜 視図である。また図 31は、転削工具 112のインサート装着部の断面を示すとともに切 り屑 116の生成状態を示す概略模式図である。重切削時に、被削材力 生成される 切り屑 116は、厚み、言い換えると断面積が大きぐ剛性が高く変形しづらい。したが つて転削工具 112の主切刃 103で生成された切り屑 116は、すく!/、面 104上をホル ダ 111の中心側に向力つて流れて、切り屑ポケット 113のホルダ壁面 114に突き当た る。次に、切り屑 116は、ホルダ壁面 114をガイドとして切り屑ポケット 113の外方へ 排出される。この場合、ホルダ壁面 114に切り屑 116が衝突し、ホルダ壁面 114と切 り屑 116とが互いに摩擦するという問題がある。この場合、被削材に対する切削加工 を繰り返して、被削材を転削すると、切り屑ポケット 113のホルダ壁面 114が次第に 摩耗してゆき、ついには削り取られた状態となり、この削り取られた壁面に切り屑 116 が詰まって、切り屑排出性能が低下するという問題がある。
この場合、インサート 101が欠損する原因となったり、ホルダ 111の剛性が低下して 加工精度が悪ィ匕したりするという問題がある。特に、重切削加工に起因して、生成さ れる切り屑 116が厚くなつてゆくと摩耗が著しぐ損傷したホルダ 111を早期に交換し なければならな!/ヽと 、うことが大きな問題となる。
発明の開示
本発明は、このような従来技術の課題を解決するためになされたものであり、切り屑 排出性を向上させることができ、切り屑ポケットに切り屑が詰まることを防ぐことができ るスローァウェイインサートおよびそれを装着した転削工具を提供することを目的とす る。
本発明は、略板状をなし、厚み方向一方の面にすくい面を、側面に逃げ面を具備 するとともに、前記すくい面と前記逃げ面との交差稜線部に主切刃が形成され、かつ 前記主切刃が分断された複数の分割主切刃からなるスローァウェイインサートであつ て、
前記すくい面から突出して、前記各分割主切刃に対応する位置に突起が形成され て 、ることを特徴とするスローァウェイインサートである。
また本発明は、前記突起のうち主切刃側部分は、各々対応する分割主切刃に近づ くにつれて高さが漸減する形状に形成されて!ヽることを特徴とする。
また本発明は、前記突起のうち主切刃側部分は、各々対応する分割主切刃に近づ くにつれて幅が漸減する形状に形成されて!ヽることを特徴とする。
また本発明は、前記突起のうち主切刃側部分は、各々対応する分割主切刃に近づ くにつれて幅と高さとが漸減するように先細りした形状に形成されていることを特徴と する。
また本発明は、前記突起のうち主切刃側部分は、上方に向かうにつれて互いの間 の距離が漸減する 2つの突起側面を有し、前記 2つの突起側面によって形成される 交差稜線部は、前記分割主切刃に近づくにつれて、前記すくい面との間の距離が漸 減することを特徴とする。
また本発明は、前記各突起のうち少なくとも 1つの突起は、分割主切刃に対して略 直交する方向に延びて配設されることを特徴とする。
また本発明は、前記各突起のうち少なくとも 1つの突起は、分割主切刃の中間部分 に向カゝつて配設されることを特徴とする。
また本発明は、前記分割主切刃の略垂直二等分線上に、前記突起が配設されて いることを特徴とする。
また本発明は、前記すくい面の略中央に、厚み方向に貫通した貫通孔を具備する とともに、貫通孔周りに環状の隆起部を具備していることを特徴とする。
また本発明は、前記突起は、前記各分割主切刃と対をなすように、それぞれ形成さ れることを特徴とする。
また本発明は、前記すくい面の 1つの角部には、その角部に近接する角部寄りの分 割主切刃に連なるコーナー R切刃が形成され、前記コーナー R切刃寄りの分割主切 刃以外の分割主切刃と対をなす各突起が、前記分割主切刃と略直交する方向にそ れぞれ延びて配設されることを特徴とする。
また本発明は、前記すくい面の 1つの角部には、その角部に近接する角部寄りの分 割主切刃に連なるコーナー R切刃が形成され、前記コーナー R切刃寄りの分割主切 刃と対をなす突起は、前記コーナー R切刃に向力つて幅と高さが漸減するように形成 されていることを特徴とする。
また本発明は、前記コーナー R切刃寄りの分割主切刃と対をなす突起は、前記角 部寄りの分割主切刃とのなす角度が、 60° 以上 85° 以下となる仮想直線に沿って 延びて配設されることを特徴とする。
また本発明は、前記突起は、前記各分割主切刃に対応して 1つ以上、それぞれ形 成されることを特徴とする。 また本発明は、前記すくい面の 1つの角部には、その角部に近接する角部寄りの分 割主切刃に連なるコーナー R切刃が形成され、前記コーナー R切刃寄りの分割主切 刃以外の分割主切刃に対応する各突起が、前記分割主切刃と略直交する方向にそ れぞれ延びて配設されることを特徴とする。
また本発明は、前記すくい面の 1つの角部には、その角部に近接する角部寄りの分 割主切刃に連なるコーナー R切刃が形成され、前記コーナー R切刃寄りの分割主切 刃に対応して突起が設けられ、この対応する突起のうち、前記コーナー R切刃に最 近接して配設される突起は、前記コーナー R切刃に向カゝつて幅と高さが漸減するよう に形成されて ヽることを特徴とする。
また本発明は、前記コーナー R切刃に最近接して配設される突起は、前記角部寄り の分割主切刃とのなす角度が、 60° 以上 85° 以下となる仮想直線に沿って延びて 配設されることを特徴とする。
また本発明は、前記すくい面の 1つの角部には、その角部に近接する角部寄りの分 割主切刃に連なるコーナー R切刃が形成され、前記コーナー R切刃寄りの分割主切 刃に対応して突起が設けられ、この突起のうち、前記コーナー R切刃に最近接して配 設される突起以外の突起が、前記分割主切刃と略直交する方向に延びて配設され ることを特徴とする。
また本発明は、略板状の本体部の厚み方向一方の面に形成されたすくい面と、 前記本体部の厚み方向他方の面に形成された底面と、
前記本体部側面に形成された逃げ面と、
前記すくい面と前記逃げ面との交差稜線部に形成された主切刃と、
前記逃げ面上に形成され、両端が前記すく ヽ面および前記底面に達する主溝部と を備えたスローァウェイインサートであって、
前記主切刃および前記逃げ面は、各々前記主溝部によって分断された複数の第 1 分割主切刃および分割逃げ面からなるとともに、さらに前記第 1分割主切刃は、一端 が前記すくい面に達するようにして前記主溝部と並んで前記分割逃げ面上に配され る副溝部によって分断された複数の第 2分割主切刃からなるスローァウェイインサート である。 また本発明は、前記副溝部の幅が前記主溝部の幅より小さいことを特徴とする。 また本発明は、前記副溝部の長さが前記本体部の厚みより短いことを特徴とする。 また本発明は、前記副溝部の深さが前記主溝部の深さより小さいことを特徴とする また本発明は、前記副溝部が前記第 1分割主切刃を略等分するように配設されるこ とを特徴とする。
また本発明は、前記すくい面上に、前記第 2分割主切刃に対応する位置に、少なく とも 1つ以上の突起が配設されて 、ることを特徴とする。
また本発明は、前記すく!、面の中央に厚み方向に貫通した貫通孔を具備するとと もに、貫通孔周りに環状の隆起部を具備していることを特徴とする。
また本発明は、前記すくい面の 1つの角部には、その角部に近接する角部寄りの分 割主切刃に連なるコーナー R切刃が形成され、すくい面と反対側にホルダに当接す る底面が形成され、
前記各分割主切刃は、コーナー R切刃に近づくにつれて、前記底面から離反する 方向に傾斜することを特徴とする。
また本発明は、前述のスローァウェイインサートと、前記スローァウェイインサートを 複数装着するホルダとを具備することを特徴とする転削工具である。
図面の簡単な説明
本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確にな るであろう。
図 1は、本発明の第 1実施形態によるスローァウェイインサート 1を示す全体斜視図 である。
図 2は、インサート 1を示す平面図である。
図 3は、インサート 1を示す長辺側側面図である。
図 4は、インサート 1を示す短辺側側面図である。
図 5は、本発明のインサート 1, 21を用いた転削工具 12の全体斜視図である。 図 6は、本発明の転削工具 12のインサート装着状態を示す拡大斜視図である。 図 7は、図 6の転削工具の S— S断面図である。 図 8は、本発明の第 2実施形態によるインサート 21を示す全体斜視図である。 図 9は、インサート 21を示す平面図である。
図 10は、本発明の第 3実施形態によるインサート 31を示す全体斜視図である。 図 11は、インサート 31を簡略ィ匕して示す長辺側側面図である。
図 12は、本発明の第 3実施形態のインサート 31の変形例のインサート 31aを簡略 化して示す長辺側側面図である。
図 13は、本発明の第 3実施形態のインサート 31の他の変形例のインサート 31bを 簡略化して示す長辺側側面図である。
図 14は、本発明の第 4実施形態によるインサート 41を示す全体斜視図である。 図 15は、インサート 41の長辺側側面図である。
図 16は、本発明の第 5実施形態によるインサート 51を示す全体斜視図である。 図 17は、インサート 51を示す平面図である。
図 18は、インサート 51を示す長辺側側面図である。
図 19は、インサート 51を示す短辺側側面図である。
図 20A〜20Dは、第 5実施形態のインサート 51と、比較例のインサート 151A, 15 IB, 151Cの切れ刃形状を簡略ィ匕して示す平面図である。
図 21は、本発明の第 6実施形態によるインサート 61を示す平面図である。
図 22は、インサート 61を示す長辺側側面図である。
図 23は、インサート 61を示す短辺側側面図である。
図 24は、本発明のインサート 51, 61を装着した転削工具 12を示す斜視図である。 図 25は、本発明の第 7実施形態のインサート 71を示す全体斜視図である。
図 26は、本発明の転削工具 12のインサート装着状態を示す拡大斜視図である。 図 27は、第 7実施形態の変形例のインサート 71aを示す全体斜視図である。
図 28は、従来技術のインサート 101を示す斜視図である。
図 29は、従来技術のインサート 101を示す長辺側側面図である。
図 30は、図 28に示す従来技術のインサート 101を有する転削工具 112を示す斜 視図である。
図 31は、転削工具 112のインサート装着部の断面を示すとともに切り屑 16の生成 状態を示す概略模式図である。
発明を実施するための最良の形態
以下図面を参考にして本発明の好適な実施例を詳細に説明する。
(第 1実施形態)
図 1は、本発明の第 1実施形態によるスローァウェイインサート 1 (以下、インサート 1 と略する)を示す全体斜視図である。図 2は、インサート 1を示す平面図であり、図 3は 、インサート 1を示す長辺側側面図であり、図 4は、インサート 1を示す短辺側側面図 である。
本実施例によるインサート 1は、略多角形板状、具体的には略平行四辺形板状を なしており、その上面にすくい面 2を、側面に逃げ面 3を具備している。前記すくい面 2と前記逃げ面 3との交差稜線部には主切刃 4が形成され、主切刃 4は前記逃げ面 3 上に形成された 1つ以上の溝部 5によって分断された複数の分割主切刃 4aから構成 されている。また、インサート 1の 1つの鋭角の角部には、側面とすくい面 2との交差稜 線部にコーナー R切刃 7が形成されており、主切刃 4の最もコーナー R切刃 7側に位 置する分割主切刃 4aと連なっている。また各分割主切刃 4aに隣接するすくい面 2上 には、前記各分割主切刃 4aに対応して突起 6がそれぞれ形成されている。本実施の 形態では、各分割主切刃 4aと対をなすように、すくい面 2上に突起 6がそれぞれ形成 されている。
インサート 1には、厚み方向 Aに貫通する円筒状の貫通孔 16が形成される。貫通孔 16は、インサート 1をホルダに固定するための穴となる。貫通孔 16は、インサート 1の 長手方向 Bおよび幅方向 Cにおける中央位置に形成される。インサート 1は、貫通孔 16の軸線に関して、 180度回転対称形状、言い換えると 2回回転対称形状に形成さ れる。したがって任意の方向からインサート 1を仮想平面に投影したときに、貫通孔 1 6の軸線まわりに 180度回転させた状態と、回転させる前の状態とで、仮想平面に投 影されるインサート 1の形状は同一となる。このようにインサート 1は、 180度回転対称 に形成されるので、対称な形状のうち一方の形状について説明し、一方の形状に対 称な他方の形状についての説明を省略する場合がある。
インサート 1のうちで厚み方向一方側部分となる上面部の縁辺には、長手方向 Bに 延びる主切刃 4が形成されるとともに、主切刃 4の一端部に連なり円弧状に延びるコ ーナー R切刃 7が形成される。インサート 1がホルダに装着された状態で、主切刃 4は ホルダ軸線と略平行に延びてホルダの外周面カゝらホルダ半径方向に突出し、主切刃 4に連なるコーナー R切刃 7はインサート 1のうちでホルダ先端部側部分に形成される このように本実施の形態ではインサート 1は、略平行四辺形板状に形成され、厚み 方向 Aに垂直な平面に投影した投影形状が、略平行四辺形に形成される。以下、こ の略平行四辺形板状の厚み方向をインサート厚み方向 Aと称し、この略平行四辺形 の長手方向をインサート長手方向 Bと称し、インサート厚み方向 Aとインサート長手方 向 Bとに互いに垂直に延びる方向をインサート幅方向 Cと称する場合がある。インサ ート 1は、厚み方向一方 A1の面にすくい面 2が形成され、厚み方向他方 A2に底面 が形成される。またインサート 1は、インサート幅方向 Cの端面に逃げ面 3が形成され る。すくい面 2と逃げ面 3との交差稜線部は、インサート 1の長手方向 Bに延びる。した がって交差稜線部に形成される主切刃 4は、インサート長手方向 Bに延びる。本実施 の形態では、インサート厚み方向 Aに垂直な平面に沿って延びる。またインサート 1 は、ホルダに対して着脱可能に構成され、インサート 1の底面がホルダに設けられる 着座面に当接した状態で、ホルダに装着される。
インサート 1の幅方向 Cの端部には、幅方向端面力 インサート幅方向 Cに没入し て、インサート厚み方向 Aに延びるように形成される溝部 5を有する。本実施の形態 では、溝部 5はインサート長手方向 Bに間隔をあけて複数設けられる。各溝部 5は、ィ ンサート 1のすくい面 2から底面にわたって形成され、底面に近づくにつれてインサー ト長手方向 B寸法である幅寸法が大きくなる。また溝部 5のインサート幅方向 Cである 深さ寸法は、重切削加工において一般的に用いられる条件の中での、転削工具の 一刃あたりの最大送り量よりも大きく設定される。インサート 1がホルダに装着された状 態では、各溝部 5は、ホルダの回転軸線に垂直な平面上を、ホルダ 11の周方向に沿 つて延びる。
主切刃 4および逃げ面 3は、溝部 5によってインサート長手方向 Bに分断される。し たがって主切刃 4は、互いに間隔をあけてインサート長手方向 Bに並ぶ複数の分割 主切刃 4aを有する。また逃げ面 3は、互いに間隔をあけてインサート長手方向 Bに並 ぶ複数の分割逃げ面を有する。本実施の形態では、インサート 1には、インサート長 手方向 Bに並ぶ 4つの溝部 5が形成されるので、主切刃 4は 5つの分割主切刃 4aを 有し、逃げ面 3は 5つの分割逃げ面を有する。各溝部 5は、略同形状に形成され、ィ ンサート長手方向 Bに略等間隔に並ぶ。
また本実施の形態では、すくい面 2からインサート厚み方向 Aに突出する複数の突 起 6が形成される。各突起 6は、対応する分割主切刃 4aに対をなしてそれぞれ形成さ れ、各々対をなす分割主切刃 4aに向カゝつて配設される。また突起 6のうち分割主切 刃側部分は、インサート幅方向 Cに向力つて、各々対応する分割主切刃 4aに近づく につれて、幅と高さが漸減するように先細りした形状に形成される。ここで、突起 6の 高さとは、すくい面 2に対する突起 6のインサート厚み方向 Aの寸法である。また突起 6の幅とは、突起 6のインサート長手方向 Bの寸法である。
突起 6のうち分割主切刃側部分は、インサート長手方向 B—方に露出する一方突 起側面と、インサート長手方向 B他方に露出する他方突起側面とを有する。 2つの突 起側面は、インサート厚み方向一方 A1に向力うにつれて、インサート長手方向 Bの 間隔が漸減する。また 2つの突起側面は、インサート厚み方向一方 A1側端部で交差 して、交差稜線部が形成される。 2つの突起側面によって形成される突起 6の交差稜 線部は、対応する分割主切刃 4aに近づくにつれて、すくい面 2とのインサート厚み方 向 Aの距離が漸減する。
また図 2に示すように、分割主切刃 4aと突起 6との間のインサート幅方向 Cの距離 t は、分割主切刃 4aのインサート長手方向 B中央部で最短となるように構成される。ま た突起 6と、前記突起 6に対応する分割主切刃 4aとの間の最短距離 tは、 0. 5mm以 上 5. Omm以下に形成される。最短距離 tが、 0. 5mm以上に設定されることで、イン サート 1が重切削に用いられる場合であっても、切り屑が突起 6に衝突するときの衝撃 が過剰となることを防ぐことができる。また最短距離 tが、 5. Omm以下に設定されるこ とで、切り屑を十分に湾曲させることができ、切り屑排出性能を向上させることができ る。
本実施の形態では、分割主切刃 4aの長さ Xが 5. 2ミリメートルであり、前記最短距 離 tは、 2. 3mmとなる。また後述する図 7に示すように、すくい面 2と突起 6の稜線と の成す突起角度 αは、 90° 以上 170° 以下が好ましぐ本実施の形態では、突起 角度 αは、約 165° に選択される。突起角度 exが 90° より小さく設定されると、切り 屑がつまりやすくなり、突起角度 αが 170° より大きいと、切り屑が湾曲変形されずに 伸びた状態となってしまう。本実施の形態では、突起角度 exが約 165° に選択され ることで、切り屑が詰まることなく円滑に湾曲変形させることができる。
また突起 6の稜線と底面との成す角度 βは、約 150° に選択される。また分割主切 刃 4aから突起 6の頂点までの距離 uは、 3. Ommに選択される。このように突起 6の形 状の構成要素として、高さ、幅および分割主切れ刃から突起先端までの距離の要素 が重要となる。たとえば各突起 6の最大幅は、分割主切刃 4aの長さ Xよりも小さく形成 される。
また各突起 6のうちで、コーナー R切刃 7に連なる分割主切刃 4aに対応する突起 6 をコーナー R突起 6aと称し、コーナー R突起 6a以外の突起 6を直交突起 6bと称する o各突起 6のうちで直交突起 6bは、各々対応する分割主切刃 4aの略垂直二等分線 上に配設される。すなわち直交突起 6bは、各々対応する分割主切刃 4aの長手方向 略中央部分に向かって配設され、分割主切刃 4aに直交する仮想直線に沿ってそれ ぞれ延びて配設される。言い換えると、各直交突起 6bの稜線が、各々対応する分割 主切刃 4aの垂直二等分線上に延びる。また各直交突起 6bの分割主切刃側先端部 分は、形状が略同一形状に形成される。ここで分割主切刃 4aの垂直二等分線とは、 分割主切刃 4aをインサート長手方向 Bに二等分するとともに、分割主切刃 4aに対し て垂直に延びる直線である。
各突起 6のうちでコーナー R突起 6aは、コーナー R切刃 7に近づくにつれて、幅と高 さとが漸減するように形成される。言い換えると、コーナー R突起 6aは、インサート上 面視において、その交差稜線部の稜線と分割主切刃との成す傾斜角度 Θ力 90° 未満となる。またコーナー R突起 6aの稜線は、インサート上面視における分割主切刃 4aとの成す傾斜角度 0力 60° 以上 85° 以下に設定される仮想直線に沿って延 びて配設されることが好ましい。本実施の形態では傾斜角度 Θは、 65° に設定され る。 またすくい面 2の中央部の貫通孔 16周りに島状部、具体的には環状の隆起部 15 が形成されている。隆起部 15は、すくい面 2からインサート厚み方向一方 A1に突出 し、主切刃 4に向かうにつれて、幅および高さが漸減する形状に形成される。隆起部 15の高さとは、すくい面 2に対する隆起部 15のインサート厚み方向 Aの寸法である。 また隆起部 15の幅とは、隆起部 15のインサート長手方向 Bの寸法である。隆起部 15 は、各突起 6の分割主切刃側部分よりも、インサート幅方向 C中央寄りに形成される。 また隆起部 15は、ねじ部材 17によってインサート 1がホルダの装着部に装着された 状態で、ねじ部材 17の頭部よりもインサート厚み方向 Aに突出する。また本実施の形 態では、インサート 1に形成される突起 6のうちで、インサート長手方向中間部に配置 される突起は、隆起部 15と一体に形成される。隆起部 15と一体に形成される突起 6 の交差稜線部は、隆起部の厚み方向一方端部と滑らかに連なる。隆起部 15と突起 6 とが一体に形成されることで、突起 6の欠損を防止することができる。
インサート 1の底面がホルダに形成される着座面に当接した状態で、インサート 1に 形成される貫通孔 16と、ホルダの装着部に形成される円筒状の装着孔とが略同軸と なる。この状態で、外ねじが形成されるねじ部材 17をインサート 1の貫通孔 16に挿入 し、ホルダの装着孔に螺進させることによって、インサート 1をホルダの装着部に締結 することができる。これによつて、インサート 1がホルダの装着部に装着される。
ホルダの先端部には、ホルダの外周面および軸線方向端面力 没入する凹所が形 成される。この凹所は、装着されるインサート 1が収容されるインサート収容空間と、被 削材カも切削される切り屑が一時的に収容される切り屑ポケットとが形成される。イン サート収容空間と切り屑ポケットとはホルダ周方向に隣接して設けられる。
図 5は、本発明のインサート 1, 21を用いた転削工具 12の全体斜視図であり、図 6 は、本発明の転削工具 12のインサート装着状態を示す拡大斜視図である。図 7は、 図 6の転削工具 12の S1— S1断面図である。転削工具 12は、インサート 1と、インサ 一ト 1を着脱可能に装着する略円筒状のホルダ 11とを含んで構成される。本実施の 形態では、ホルダ 11は、ホルダ周方向に間隔をあけて、複数、たとえば 6つのインサ ート 1を外周部に装着する。また本実施の形態では、ホルダ 11は、周方向に複数並 んだインサート 1の組合せ力 ホルダ軸線方向に複数列、たとえば 2列並ぶ。このよう な転削工具 12は、 1つのインサート 1で一度に切削する切削量が大きい重切削加工 、言い換えると荒削り加工に用いられる。
ホルダ 11の軸線方向基端部には、連結用部材であるアーパーを介してフライス盤 に保持される被保持部が形成される。また軸線方向先端部には、インサート 1の主切 刃が外周面から突出した状態で、インサート 1を装着する装着部が形成される。フライ ス盤は、クランプした被削材と、保持した転削工具 12とを相対移動する移動駆動手 段と、保持した転削工具 12をホルダ 11の軸線まわりに回転駆動する回転駆動手段 とを含む。転削工具 12は、ホルダ 11の軸線まわりに回転しながら被削材に接触する ことで、インサート 1の主切刃 4が被削材を断続切削する。これによつて被削材を予め 定める形状に切削することができる。たとえば転削工具 12を用いて、被削材に肩カロ ェ、溝カ卩ェまたは段つきカ卩ェなどを施すことができる。転削工具 12は、インサート 1 の主切刃 4が摩耗または欠損した場合に、そのインサート 1をホルダ 11に形成される 装着孔の軸線まわりに 180度回転させて取り付けたり、新 U、インサート 1に取り替え たりすることで、切削能力を回復することができる。
上述したように、ホルダ 11の外周先端部に複数の切り屑ポケット 13が形成されてお り、切り屑ポケット 13に隣接するインサート収容空間に前記インサート 1が取り付けら れる。詳細には、前記インサート 1は、回転方向にすくい面 2を向けて最外周に前記 主切刃 4が位置するように装着され、主切刃 4がホルダ 11とともに回転することによつ て切削が行われる。
このような転削工具 12において、主切刃 4、厳密には分割主切刃 4aによって形成 された切り屑 16は前記インサート 1のすくい面 2上を外周側力もホルダ 11の中心側、 すなわち切り屑ポケット 13内のホルダ壁面 14に向かって流れてくる。
図 31に示すように、従来のインサート 101を用いた構成によれば、生成された切り 屑 116が生成方向にそのままに進み、生成方向前方のホルダ壁面 114に突き当たる ことでカールするため、ホルダ壁面 114が切り屑 116との摩擦によって徐々に摩滅し てくる。
これに対して、図 7に示すように、本発明の第 1実施形態のインサート 1においては 、各分割主切刃 4aに隣接するすくい面 2上に突起 6が形成されていることから、各分 割主切刃 4aによって幅狭に形成された切り屑 8が突起 6に当たって小さくカールする 。その結果、切り屑 8がホルダ壁面 14に突き当たることなく外部へ排出される。このよ うな構成とすることにより、切り屑ポケット 13内のホルダ壁面 14の摩滅が防止でき、そ の結果としてホルダ 11を長寿命のものとすることができる。さらには、切り屑 8のカー ル径が小さくなることで各切り屑 8のサイズが小さくなるので、切り屑ポケット 13から外 部への切り屑排出がスムーズとなり、主切刃 4の切り屑かみこみによる欠損等の不具 合が抑制され、インサート 1をも長寿命とすることができる。
また本実施の形態では、図 1および図 2に示すように、前記突起 6の前記主切刃側 部分は、各々対をなす前記分割主切刃 4aに近づくにつれて幅と高さが漸減するよう に形成されている。これにより、切り屑 8と接触する前記突起 6の稜線部分が、前記分 割主切刃 4aに近づくにつれて高さが低くなる、言い換えると分割主切刃 4aから離れ るにつれて前記突起 6の稜線部分の高さが徐々に高くなるので、突起 6と切り屑 8との 接触がスムーズとなり切削抵抗の増加が抑制される。また突起 6は、分割主切刃 4aか ら離反するにつれて幅広となる。このように突起 6が幅広となることで突起 6の強度が 増し、切り屑衝突時に突起 6が欠損することを防ぐことができ、インサート 1をさらに長 期にわたって使用することが可能となる。また突起 6は、インサート長手方向 Bにそれ ぞれ間隔をあけて配置されるので、分割主切刃 4aによって形成された切り屑 8が 1つ の突起 6だけに衝突して案内されることとなり、切り屑 8が複数の突起 6に衝突して案 内される場合に比べて、突起 6によって生じる切削抵抗を低減させることができる。ま た突起 6が切り屑 8によって摩耗したり、切り屑 8の生成方向が少々ずれたりしても、 対応する 1つの突起 6の稜線部分に切り屑 8を接触させるこができる。
さらに図 2に示すように、前記分割主切刃 4aと前記突起 6との距離 tが、前記分割主 切刃 4a各々の長さ Xの略中央部分で最短となるよう構成されて 、る。これにより前記 分割主切刃 4aで生成された各切り屑 8のインサート長手方向 Bにおける略中央部分 で、切り屑 8と突起 6とが接触することとなり、切り屑 8が左右に振れずに一定の方向 にカールされるため、良好な切り屑排出性が得られる。
また突起 6のうち少なくとも 1つ、具体的にはコーナー R突起 6a以外の直交突起 6b の主切刃側部分における稜線と、各々対をなす前記分割主切刃 4aとが、インサート 1の上面視において略直角な関係にある。コーナー R突起 6a以外の直交突起 6bが 向かって配設される分割主切刃 4aから形成される切り屑 8は、各々分割主切刃 4aに 対して略直交する方向に流れる。この場合、直交突起 6bが分割主切刃 4aに対して 略直交する方向に延びて配設されることによって、すく 、面 2上を移動する切り屑 8と 、直交突起 6bとによって生じる切削抵抗を低減させることができる。また切り屑 8の移 動の勢 、を保って、切り屑 8を一定の方向に最も効率よくカールさせることができる。 またインサート長手方向 Bに関して、各々分割主切刃 4aの中間部分に、直交突起 6 bがそれぞれ向カゝつて配設される。言い換えると、直交突起 6bは、分割主切刃 4aの 長手方向中間部分に向カゝつて配設される。分割主切刃 4aによって形成される切り屑 8は、分割主切刃 4aとほぼ同じ幅に形成される。この場合、切り屑 8の幅方向中央部 分に直交突起 6bが接触することとなる。これによつて直交突起 6bは、切り屑 8の左右 の振れを防いで、分割主切刃 4aに対して略直交する方向に切り屑 8を案内させるこ とができる。また各分割主切刃 4aによってそれぞれ生じた複数の切り屑 8が互いに接 触することを防いで、切り屑ポケット 13内で切り屑 8が詰まることを防ぐことができる。 また後述するように、分割主切刃 4aの配置位置が異なる 2種類のインサートをホル ダ 11に装着して切削加工を行う場合には、分割主切刃 4aの中央部分に対応する切 り屑 8の断面積が大きくなる。本実施の形態では、分割主切刃 4aの中央部分に突起 6が向力つて配設されるので、切り屑 8のうちで断面積が大きくなる部分を、突起 6に 当接させることができ、より確実に切り屑 8をスムーズに案内することができ、突起 6に よって生じる切削抵抗を低減させ切り屑 8を湾曲変形させることができる。
また本実施形態によれば、突起 6が各分割主切刃 4aと対をなすように形成される。 すなわち分割主切刃 4aごとに 1つの突起 6がそれぞれ形成される。分割主切刃 4aに よって形成された切り屑 8が 1つの突起 6だけに衝突して案内されることで、切り屑 8が 複数の突起 6に衝突して案内される場合に比べて、突起 6によって生じる切削抵抗を 低減させることができる。
またコーナー R切刃寄りの分割主切刃 4aは、コーナー R切刃 7と連なっているので 、コーナー R切刃寄りの分割主切刃 4aによって形成される切り屑 8は、コーナー R切 刃 7によって形成される切り屑 8と連なった円弧状に形成されて、すくい面 2上を分割 主切刃 4aに対して傾斜して生成される。前述したように、コーナー R突起 6aは、コー ナー R切刃 7に向力つて幅と高さが漸減するように形成されている。これによつて、前 記コーナー R切刃 7によって断面の一部分が円弧状に形成された切り屑 8を最も効 率よくかつ一定の方向にカールさせることができる。またコーナー R切刃 7とそれに連 なる分割主切刃 4aとによって形成される切り屑 8を、コーナー R突起 6aに円滑に衝突 させることができ、コーナー R突起 6aによって生じる切削抵抗を低減させることができ る。
またインサート上面視おいて、コーナー R突起 6aの稜線と、前記分割主切刃 4aとの なす傾斜角度 0力 ½0° 以上 85° 以下であることが、コーナー R切刃 7によって形成 された切り屑 8をより確実に小さくカールさせることができるという点で好適である。傾 斜角度 Θ力 0° 未満であると切り屑 8が詰まりやすくなり、突起によって生じる切削 抵抗が増加するおそれがある。また傾斜角度 Θ力 ¾5° を超えると切り屑 8がカールし にくくなるため、ホルダ壁面 14の摩滅が改善されないば力りでなぐ切り屑 8のサイズ が大きくなつて切り屑排出性が低下するとともに切り屑 8のかみこみによる切刃の欠損 等の不具合を生じるおそれがある。
本実施の形態では、コーナー R突起 6aの稜線と、分割主切刃との成す傾斜角度 Θ が 60° 以上 85° 以下、具体的には 65° に設定されるので、上述した不具合が生じ ることはない。したがってコーナー R突起 6aによって生じる切削抵抗を低減させて、コ ーナー R切刃 7およびそれに連なる分割主切刃 4aによって形成された切り屑 8をより 確実に湾曲変形させることができる。
さらにまた、すくい面 2の中央部の貫通孔 16周りに島状部、具体的には環状の隆 起部 15が形成されていることにより、突起 6による切り屑 8のカール作用が不十分な 条件下においても切り屑 8が確実にカールされるようになる。そして、図 6および図 7 に示すように、インサート 1をホルダ 11に装着した状態では、クランプ用のねじ部材 1 7の頭部が環状の隆起部 15に隠れる、すなわち環状の隆起部 15よりねじ部材 17の 頭部が低い状態となるため、切り屑 8の衝突によるねじ部材 17の頭部の摩滅を防止 することができる。また溝部 5は、インサート厚み方向他方 A2に進むにつれて、幅広 になるので、被削材に生じる削り残し部分が、溝部 5の壁面に当接することを防ぐこと ができ、溝部 5によって生じる切削抵抗を低減させることができる。
以上のように、本実施の形態によれば、各分割主切刃 4aによって幅狭に形成され た切り屑 8がすくい面 2上に形成される突起 6a, 6bに接触することで、切り屑 8は湾曲 変形して曲率半径が小さくなり、切り屑 8は、ホルダ 11に形成されるホルダ壁面 14〖こ 接触する前に破断し、切り屑ポケット 13の外方に移動する。これによつて切り屑 8が、 ホルダ壁面 14に衝突してホルダ壁面 14を傷つけることを防ぐことができる。またホル ダ 11の剛性が低下することを防いで、被削材の加工精度の悪ィ匕を防ぐことができる。 またホルダ 11を延命して長期にわたって使用可能とすることができ、コストパフォーマ ンスの高いインサート 1およびインサート 1が装着される転削工具 12を実現することが できる。
さらに切り屑 8が突起 6に接触して、その曲率半径が小さくなることで、切り屑 8のサ ィズが小さくなる。これによつて切り屑ポケット 13からホルダ外方へ、切り屑 8が円滑に 移動し、切り屑排出性を向上させることができる。したがって切り屑ポケット 13におけ る切り屑の詰まり、切り屑 8のかみこみ等の不具合が抑制される。また突起 6に衝突す る切り屑 8は、分割主切刃 4aによって既に幅狭に形成されているので、突起 6と切り 屑 8が衝突した場合に突起 6によって生じる切削抵抗が大きくなることを防ぐことがで き、切削加工を円滑に行うことができるとともに、重切削を行っても突起 6が欠損する ことを防ぐことができる。たとえば本実施の形態のインサートを用いることによって、切 り屑排出量、すなわち一分間に切削可能な被削材の体積として lOOOccZminを実 現することができる。
(第 2実施形態)
図 8は、本発明の第 2実施形態によるインサート 21を示す全体斜視図であり、図 9 は、インサート 21を示す平面図である。図 1に示す本発明の第 1実施形態では、主切 刃 4を 4つの溝部 5で分断して 5つの分割主切刃 4aから構成されたインサート 1を例 示した。本発明の第 2実施形態のインサート 21は、図 8に示すように、主切刃 4が、 3 つの溝部 5で分断されて 4つの分割主切刃 4aから構成される。このように本発明のィ ンサートは、溝部 5の数および各溝部 5の配置が第 1実施形態と異なるインサートも当 然含まれる。 本発明の第 1実施形態および第 2実施形態のような主切刃 4に溝部 5を具備したィ ンサート 1, 21では、溝部 5では切削が行われないために、単一種類のインサートだ けをホルダ 11に複数装着した場合には、被削材の加工壁面には帯状の削り残し部 が発生してしまう。これに対して、第 1実施形態で示す第 1のインサート 1と、第 2実施 形態で示す第 2のインサート 21との、溝部 5の配置が互いに異なるインサート 1, 21を ホルダ 11の同一円周上に交互に配置することで、第 1のインサート 1の溝部 5による 削り残しを、第 2のインサート 21の分割主切刃 4aが切削するので、結果的に溝部 5に よる削り残しが防がれ、切削後の被削材の加工壁面に生じる段差を抑えることができ る。図 5に示す転削工具 12は、第 1実施形態のインサート 1と、第 2実施形態のインサ ート 21とが、周方向に交互に装着される状態を示す。
次に、本発明の第 2実施形態のインサート 21について、図 8および図 9を用いて説 明する。なお、図 1で示した第 1実施形態のインサート 1と同様の構成については同 一の符号を付し、重複する説明を省略するものとする。第 2実施形態のインサート 21 において、図 1に示す第 1実施形態のインサート 1と異なる点は、第 1実施形態のイン サート 1の溝部 5で生じた削り残しを削り取るために、第 1実施形態のインサート 1とは 異なる位置に溝部 5が配置される。
また分割主切刃 4a, 4b, 4cの長さが異なって形成されており、各分割主切刃 4a〜 4cの長さに応じて、各分割主切刃 4a〜4cに対応する突起 6の数が増加するよう、突 起 6が配設される。このような構成によって、第 1実施形態のインサート 1で生じた削り 残しを削るために形成される長い分割主切刃 4b、 4cによって幅広の切り屑が形成さ れても確実にカールさせることができる。
言い換えると、第 2実施形態のインサート 21は、複数の分割主切刃 4a〜4cのうち、 長さが長い分割主切刃 4b, 4cと、長さが短い分割主切刃 4aとが存在する。長さの短 い分割主切刃 4aに対応する突起 6bの数に比べて、長さの長い分割主切刃 4b, 4c に対応する突起 6c, 6d ; 6e, 6fの数が増えるように設けられる。このように、分割主切 刃 4a〜4cに対応する突起の数は、分割主切刃 4a〜4cの長さに応じて増加させても よい。これによつて、長さの長い分割主切刃 4b, 4cによって形成される幅広の切り屑 8をより確実に湾曲変形させることができるとともに、長さの長い分割主切刃 4b, 4cに 対応する突起 6c, 6d ; 6e, 6fが、幅広の切り屑 8の衝突によって欠損することを防ぐ ことができる。
本実施の形態では、すく 、面 2からインサート厚み方向 Aに突出する複数の突起 6 b〜6fが形成される。各突起 6b〜6fは、対応する分割主切刃 4a〜4cに対応して 1つ 以上形成され、各々対応する分割主切刃 4a〜4cにそれぞれ向かって配設される。 また突起 6のうち分割主切刃側部分は、インサート幅方向 Bに向かって、各々対応す る分割主切刃 4a〜4cに近づくにつれて、幅と高さが漸減するように先細りした形状 に形成される。
突起 6のうち分割主切刃側部分は、インサート長手方向 B—方に露出する一方突 起側面と、インサート長手方向 B他方に露出する他方突起側面とを有する。 2つの突 起側面は、互いに対向し、インサート厚み方向一方 A1に向力うにつれて、インサート 長手方向 Bの間隔が漸減する。また 2つの突起側面は、インサート厚み方向一方側 端部で交差して、交差稜線部が形成される。 2つの突起側面によって形成される突 起 6の交差稜線部は、対応する分割主切刃 4a〜4cに近づくにつれて、すくい面 2と のインサート厚み方向 Aの距離が漸減する。また図 8および図 9に示すように、分割 主切刃 4a〜4cと突起 6との間のインサート幅方向の距離 tは、分割主切刃 4aの略ィ ンサート長手方向中央部で最短となるように構成される。また各突起 6b〜6fの最大 幅は、各々対応する分割主切刃 4a〜4cのインサート長手方向 B寸法よりも小さく形 成される。
コーナー R切刃 7に連なる第 1の角部寄りの分割主切刃 4bと、コーナー R切刃 7と反 対側となる第 2の角部寄りの分割主切刃 4cとが、残余の分割主切刃 4aに比べてイン サート長手方向寸法が長く形成される。また第 1および第 2の角部寄りの分割主切刃 4b, 4c〖こ対応して、突起 6c, 6d; 6e, 6fがそれぞれ 2っ配設される。したがって各角 部寄りの分割主切刃 4b, 4cには、 2つの突起 6c, 6d ; 6e, 6fがそれぞれ向かって配 設される。
第 1の角部寄りの分割主切刃 4bに対応して設けられる複数の突起 6c, 6dのうち、 コーナー R切刃 7に最近接して配設される突起を第 1突起 6dと称し、第 1突起 6d以外 の突起を第 2突起 6cと称する。第 1突起 6dは、コーナー R切刃 7に近づくにつれて、 幅と高さとが漸減するように形成される。言い換えると、インサート上面視において、 第 1突起 6dは、その交差稜線部の稜線と分割主切刃 4bとの成す傾斜角度 Θが、 90 度未満となる。この傾斜角度 Θは、 60° 以上 85° 以下に設定されることが好ましぐ 本実施の形態では傾斜角度 Θは、 65° に設定される。また第 2突起 6cの稜線は、第 1の角部寄りの分割主切刃 4bに対して略直角に延びて配設される。第 1の角部寄り の分割主切刃 4bに対応して設けられる複数の突起 6c, 6dのインサート幅方向じの 先端部は、第 1の角部寄りの分割主切刃 4bの垂直二等分線に関して略対称となる位 置に配置される。
また第 2の角部寄りの分割主切刃 4cに対応して設けられる複数の突起 6を第 3突起 6f, 6eと称する。第 3突起 6f, 6eは、それぞれ第 2の角部寄りの分割主切刃 4cにそ れぞれ向かって配設され、その稜線は、第 2の角部寄りの分割主切刃 4cに対して略 直角に延びて配設される。また第 2の角部寄りの分割主切刃 4cに対応して設けられ る複数の突起 6e, 6fのインサート幅方向 Cの先端部は、第 2の角部寄りの分割主切 刃 4cの垂直二等分線に関して略対称となる位置に配置される。
また各角部寄りの分割主切刃 4b, 4c以外の分割主切刃 4aに対応する突起 6を第 4 突起 6bと称する。第 4突起 6bは、それぞれ各々対応する分割主切刃 4aのインサート 長手方向中央部にそれぞれ向かって配設され、その稜線は、対応する分割主切刃 4 aに対して略直角に延びる。すなわち第 4突起 6bは、各々対応する分割主切刃 4aの 垂直二等分線に沿ってそれぞれ延びて配設される。
コーナー R切刃に最近接する第 1突起 6dが、第 1の角部寄りの分割主切刃 4bに対 して傾斜する。これにより、コーナー R切刃 7に連続する第 1の角部寄りの分割主切刃 4bおよびコーナー R切刃 7によって生成される、断面が直線状部分と円弧状部分と 力もなる幅広の切り屑 8を、円弧状部分を前記第 1突起 6dによって、直線状部分を第 1突起 6d以外の第 2突起 6cによって、最も効率よく湾曲変形させることができる。 さらにまた、前記主切刃 4の両端のうち、コーナー R切刃 7とは反対側の第 2の角部 寄りの分割主切刃 4cに対応する突起 6e, 6fも 2っ配設されている。しかし、コーナー R切刃 7と反対側の角部は切削に寄与しないため、第 2の角部寄りの分割主切刃 4c によって形成される切り屑断面は、略直線状となりどの部分も円弧状とはならない。そ のため第 2の角部に対応して形成される第 3突起 6e, 6fは、分割主切刃側部分の稜 線と第 2の角部寄りの分割主切刃 4cとが略直角に位置するよう配設されるため、生成 する幅広の切り屑 8を左右に振れることなく一定方向により確実にカールさせることが できる。
以上のように本実施の形態では、分割主切刃に対応して 1つ以上の突起 6が形成 される。これによつて、 1または複数の突起 6b〜6fに切り屑 8を当接させて、切り屑 8 を湾曲変形させることができる。複数の突起 6に切り屑 8を当接させて、切り屑 8を湾 曲変形させることで、切り屑 8の断面積が大きい場合および切り屑 8の剛性が高い場 合であっても、切り屑 8から与えられる衝撃力を複数の突起 6で分担することができ、 突起 8が欠損することを防いで、切り屑 8を十分に湾曲変形させることができる。 本実施の形態のように、複数の分割主切刃のうち、長い分割主切刃と、短い分割主 切刃とが存在する場合、短い分割主切刃 4aに対応する突起 6bの数に比べて、長い 分割主切刃 4b, 4cに対応する突起 6c, 6d ; 6e, 6fの数を増やすことで、長い分割主 切刃 4b, 4cによって形成される幅広の切り屑をより確実に湾曲変形させることができ るとともに、長い分割主切刃 4b, 4cに対応する突起 6c, 6d ; 6e, 6fが、幅広の切り屑 8の衝突によって欠損することを防ぐことができる。また短い分割主切刃 4aに対応し て形成される突起 6の数が不所望に増えることが防がれ、突起によって生じる切削抵 抗を低減させることができる。
コーナー R切刃 7寄りの分割主切刃 4b以外の分割主切刃 4a, 4cによって形成され る切り屑は、それぞれ対応する分割主切刃 4a, 4cに略直交する方向に移動する。本 実施の形態では、コーナー R切刃 7寄りの分割主切刃 4b以外の分割主切刃 4a, 4c と対応する各突起 6b, 6e, 6fが、対応する分割主切刃 4a, 4cと略直交する方向にそ れぞれ延びて配設されることで、分割主切刃 4a, 4cに対して略直交する方向に移動 する切り屑に対して、突起 6b, 6e, 6fによって生じる切削抵抗を低減させることがで きる。また、たとえば各突起 6b, 6e, 6fが、各々対応する分割主切刃 4a, 4cのインサ 一ト長手方向中間部に向力つて配設されることで、切り屑の左右の振れを防いで、切 り屑を分割主切刃に対して略直交する方向に移動させることができ、複数の切り屑が 互いに接触することを防いで、ポケット内で切り屑が詰まることを防ぐことができる。 コーナー R切刃 7寄りの分割主切刃 4bは、コーナー R切刃 7と連なっているので、コ ーナー R切刃 7寄りの分割主切刃 4bによって形成される切り屑は、コーナー R切刃 7 によって形成される切り屑と連なった円弧状に形成されて、すくい面 2上を分割主切 刃 4aに対して傾斜して移動する。本実施形態では、コーナー R切刃 7寄りの分割主 切刃 4bに対応する複数の突起 6c, 6dのうちで、コーナー R切刃 7に最近接して配設 される第 1突起 6dがコーナー R切刃 7に向かって幅と高さが漸減するように形成され るので、コーナー R切刃 7とそれに連なる分割主切刃 4bとによって形成される切り屑 を、第 1突起 6dに円滑に衝突させることができ、第 1突起 6dによって生じる切削抵抗 を低減させることができる。またコーナー R切刃 7とそれに連なる分割主切刃 4bとによ つて形成される切り屑につ 、て、円滑に湾曲変形させることができる。
またコーナー R切刃 7寄りの分割主切刃 4bとのなす傾斜角度 Θ力 60° 以上 85° 以下である仮想直線に沿って、第 1突起 6dが延びて配設されることによって、第 1突 起 6dによって生じる切削抵抗を低減するるとともに、コーナー R切刃 7によって形成さ れた切り屑をより確実に湾曲変形させることができる。たとえば前記傾斜角度 Θ力 6 0° 未満であると切り屑が詰まりやすくなり、第 1突起 6dによって生じる切削抵抗が増 加するおそれがある。また傾斜角度 Θ力 ¾5° を超えると切り屑が湾曲変形しに《な るので、ホルダ壁面 14の摩滅が改善されないば力りでなぐ切り屑のサイズが大きく なって切り屑排出性が低下するとともに、切り屑のかみこみによる切刃の欠損等の不 具合を生じるおそれがある。
また傾斜角度 Θ力 0° 未満であると、コーナー R切刃 7に連なる分割主切刃 4bで 形成される切り屑部分が第 1突起 6dに衝突した場合に生じる切削抵抗が過剰となる 。また傾斜角度が 85° を超えると、コーナー R切刃 7で形成される切り屑部分が第 1 突起 6dに衝突した場合に生じる切削抵抗が過剰となる。
本実施形態では、傾斜角度 Θ力 0° 以上 85° 以下に設定されるので、上述した 不具合が生じることなぐコーナー R切刃 7によって形成された切り屑をより確実に湾 曲変形させることができる。
また、本実施形態のように分割主切刃 4a〜4cの長さに応じて、分割主切刃 4a〜4c に対応する突起 6の数が増加してもよい。たとえば長さの異なる分割主切刃が形成さ れる場合、長さの長い分割主切刃 4b, 4cに対応して設けられる突起 6の数は、長さ の短 、分割主切刃 4aに対応して設けられる突起 6の数に比べて多く設定される。長 さが長い分割主切刃 4b, 4cによって形成される剛性が高い切り屑は、複数の突起 6 c, 6d ; 6e, 6fに衝突する。これによつて形成される切り屑の剛性に応じて、 1または 複数の突起 6は、切り屑力 与えられる力を分担することができ、各突起が欠損するこ とを防ぐことができる。
分割主切刃 4a〜4cの長さが予め定める設定範囲を超える毎に、対応する突起 6の 数が増加させてもよい。ただし、分割主切刃 4a〜4cに対応する突起 6の数が過剰と なると、突起によって生じる切削抵抗が増えたり、切り屑が突起につまったりするおそ れがある。また分割主切刃 4a〜4cに対応する突起 6の数が不足すると、突起 6の大 きさによっては欠損するおそれがある。
また図 8では、前記主切刃 4の両端を各々有する 2つの角部寄りの分割主切刃 4b, 4cに対応する突起 6c, 6d ; 6e, 6fの数のみ力 複数である構成をとる力 同様の効 果を得るために前記分割主切刃の長さに応じて、インサートのいずれの位置の分割 主切刃に対応する突起の数が複数であってもかまわな 、。
(第 3実施形態)
図 10は、本発明の第 3実施形態によるインサート 31を示す全体斜視図であり、図 1 1は、インサート 31を簡略化して示す長辺側側面図である。第 3実施形態では、各分 割主切刃 4aは、インサート厚み方向 Aに垂直な平面に対して傾斜して延びる。その 他の構成については、第 1実施形態と同様であるので説明を省略し、第 1実施形態と 同様の参照符号を付する。各分割主切刃 4aは、コーナー R切刃 7に近づく長手方向 一方に進むにつれて、インサート厚み方向 Aに関して底面力 遠ざ力る方向に傾斜 する。本実施の形態では、各分割主切刃 4aは、予め定める一仮想直線状に沿って それぞれ延びる。
本実施の形態では、主切刃 4がインサート長手方向 Bに分断された複数の分割主 切刃 4aによって構成されるので、形成される切り屑の幅方向寸法が小さく分断される oまたインサート全体の長手方向寸法に比べて、主切刃の長さを短くすることでき、切 削時の切削抵抗を減少させることができる。さらにインサート 1の底面に対して各分割 主切刃 4aが傾斜して形成されるので、インサート 1が装着される転削工具 12にポジ ティブ方向のアキシャルレーキを形成することができる。これによつて被削材へのくい つき性をさらに向上して、被削材から与えられる切削抵抗を低減させることができる。 したがって重切削加工を行っても、切削抵抗の増加を抑えて、加工中におけるびび り振動をより確実に抑制することができる。
また本実施の形態でも、上述した各実施の形態と同様に突起 6が形成されるので、 突起 6に切り屑が接触することで、突起 6を湾曲変形させて小さいサイズにすることが できる。これによつて切り屑がホルダ壁面 14に衝突することを防ぐとともに、切り屑ポ ケット 13から切り屑が脱出しやすくすることができ、切り屑排出性を向上させることが できる。また本実施の形態では分割主切刃 4aが傾斜することで、分割主切刃 4aから 排出される切り屑がホルダ基端部に向力 方向に移動し、切り屑が切り屑ポケットから 脱出しやすくすることができ、切り屑排出性をさらに向上させることができる。この場合 、突起 6の稜線は、切り屑の排出方向に延びるほうが好ましい。これによつて切り屑を 円滑に湾曲させることができる。
また本実施形態では、インサート 1の底面に対して分割主切刃 4aを傾斜させて、ァ キシャルレーキを付与する。これによつて、ホルダ 11に形成される着座面を、ホルダ 軸線に対してホルダ周方向に大きく傾斜させる必要がなぐホルダ 11の肉厚の減少 を抑えることができ、ホルダ 11の剛性低下を抑えることができ、ホルダ 11の寿命を長 くすることができる。また、被削材へのくいっき性を向上させることができ、被削材から 与えられる切削抵抗を低減させることができる。したがって一度に切削する切削量が さらに大きくなる重切削加工を行っても、切削抵抗の増加を抑えて、加工中における びびり振動をより確実に抑制することができる。
また本実施の形態では、各分割主切刃 4aは、予め定める一仮想直線 L3上にそれ ぞれ配置される。これによつてインサート長手方向 Bに並ぶ 2つの分割主切刃 4aのう ち、長手方向一方の分割主切刃によって削られた切り屑が、長手方向他方の分割主 切刃に衝突することが防がれる。これによつて排出される切り屑力 ホルダ基端部に 向かって勢いよく移動しやすぐ切り屑排出性をさらに向上させることができる。
図 12は、本発明の第 3実施形態のインサート 31の変形例のインサート 31aを簡略 化して示す長辺側側面図である。このインサート 3 laは、図 10および図 11に示す第 3実施形態のインサート 31と類似しており、同様の構成については説明を省略し、同 様の参照符号を付する。
図 12に示すように、変形例のインサート 31aは、インサート幅方向 C力も側面端面を 見た場合には、各分割主切刃 4aを形成する分割主切刃形成部分 8と、分割主切刃 4 aの間となる切刃間部分 9とが形成される。分割主切刃形成部分 8のインサート厚み 方向一方 A1の縁辺となる各分割主切刃 4aは、それぞれ平行に延びる。また分割主 切刃 4aの長手方向一方側端部と底面との厚み方向寸法 T1は、それぞれ一様に形 成される。また切刃間部分 9のインサート厚み方向一方 A1の縁辺は、コーナー R切 刃 7から離反するインサート長手方向 Bに進むにつれて、底面に近接する方向にイン サート厚み方向 Aに傾斜する。このような変形例のインサート 31aは、上述したインサ ート 1と同様の効果を得ることができる。また各分割主切刃形成部分 8の厚み方向肉 厚を大きくすることができ、主切刃の欠損を防ぐことができる。また切刃間部分 9と、そ の切刃間部分 9よりもコーナー R切刃 7から離反する長手方向側の切刃形成部分と の段差を大きくすることができ、この段差部分が切り屑を細分ィ匕するチップブレーカと して働き、切り屑を細分ィ匕することができ、切り屑排出性をさらに向上させることができ る。
図 13は、本発明の第 3実施形態のインサート 31の他の変形例のインサート 31bを 簡略化して示す長辺側側面図である。このインサート 31bは、図 10および図 11に示 す第 3実施形態のインサート 31と類似しており、同様の構成については説明を省略 し、同様の参照符号を付する。
図 13に示すように、他の変形例のインサート 31bは、インサート幅方向 C力 側面 端面を見た場合には、各分割主切刃 4aを形成する分割主切刃形成部分 8と、分割 主切刃 4aの間となる切刃間部分 9とが形成される。分割主切刃形成部分 8のインサ ート厚み方向一方 A1の縁辺となる各分割主切刃 4aは、それぞれ平行に延びる。ま た分割主切刃 4aの長手方向一方側端部と底面とのインサート厚み方向 A寸法 T1は 、それぞれ一様に形成される。また切刃間部分 9のインサート厚み方向一方 A1の縁 辺は、コーナー R切刃 7から離反するインサート長手方向 Bに進むにつれて、底面か ら離反する方向に厚み方向に傾斜する。このような変形例のインサート 31bは、上述 したインサート 1と同様の効果を得ることができる。また各分割主切刃形成部分 8の厚 み方向肉厚を大きくすることができ、主切刃の欠損を防ぐことができる。また切刃間部 分 9と、その切刃間部分 9よりもコーナー R切刃 7から離反する長手方向側の切刃形 成部分 8との段差を小さくすることができ、主切刃の欠損をさらに確実に防ぐことがで きる。また切り屑が段差を乗り越えることによって、小さく湾曲変形し、切り屑のサイズ を小さくして、切り屑ポケット 13から脱出する切り屑の切り屑排出性をさらに向上させ ることがでさる。
(第 4実施形態)
図 14は、本発明の第 4実施形態によるインサート 41を示す全体斜視図であり、図 1 5は、インサート 41の長辺側側面図である。このインサート 41は、上述した第 1実施 形態のインサート 1と類似しており、同様の構成については説明を省略し、同様の参 照符号を付する。
上述した第 1実施形態のインサート 1は、 1または複数の溝部 5によってすくい面 2の 一部が切除されることで、複数の分割主切刃 4aが形成される。これに対して、第 4実 施形態のインサート 41では、主切刃 4は、インサート長手方向 Bに並ぶ複数の分割 主切刃 4aによって構成され、各分割主切刃 4aは、インサート厚み方向 Aにずれた位 置に形成される。このように各分割主切刃 4aに厚み方向 Aに段差が形成されることに よって、複数の分割主切刃 4aの連なることがなぐ分割主切刃 4aごとに切り屑が生成 される。したがって幅狭の切り屑が発生することになり、切削抵抗を低減させることが できる。
また本実施の形態では、上述した本実施の形態のインサート 1と同様に、すくい面 2 から突出し、各分割主切刃 4aにそれぞれ対応する突起 6が形成される。突起 6の形 状および配置については、上述する実施の形態と同様であるので省略する。このよう に各分割主切刃 4aに対応して、突起 6が形成されることで、分割主切刃 4aによって 発生した幅狭の切り屑を突起 6によってそれぞれ湾曲変形させることができる。これに よって切り屑がホルダ壁面 13に接触することを防ぐことができる。また切り屑の曲率半 径を小さくすることで、切り屑ポケット 13から切り屑を円滑に排出させることができ、切 り屑排出性を向上させることができる。また本実施の形態では、各分割主切刃 4aは、 コーナー R切刃 7に近づくにつれて底面との距離が離れるように傾斜して形成される 。本実施の形態では、これに限定されず、各分割主切刃 4aと底面とが平行な場合も 含む。また複数の分割主切刃 4aのうち、一部の傾斜が異なる場合も含む。また底面 に対して分割主切刃 4aが傾斜する場合には、分割主切刃 4aから移動する切り屑の 生成方向に沿って突起 6の稜線が形成されることが好ま 、。
以上のような、第 3実施形態のインサート 31および第 4実施形態のインサート 41で あっても、ホルダ 11に装着される場合には、分割主切刃の位置が異なるように装着さ れる。これによつて、溝部 5による削り残しを少なくすることができる。また分割切刃の 長さに応じて、突起 6の数および突起 6の配置がそれぞれ選択されてもょ 、。
(第 5実施形態)
図 16は、本発明の第 5実施形態によるインサート 51を示す全体斜視図である。図 1 7は、インサート 51を示す平面図であり、図 18は、インサート 51を示す長辺側側面図 であり、図 19は、インサート 51を示す短辺側側面図である。
図 16に示す本発明の第 5実施形態によるインサート 51は、略多角形板状に形成さ れる本体部を有し、本体部下面に底面 52を、上面にすくい面 53を、側面に逃げ面 5 4を具備している。そして、すくい面 53と逃げ面 54との交差稜線部に主切刃 55が形 成されている。
ここで、逃げ面 54には、その両端がすくい面 53および底面 52に達する主溝部 56 が形成されている。主切刃 55は、各々主溝部 56で分断された複数の第 1分割主切 刃 55Aによって構成されている。また逃げ面 54は、各々主溝部 56で分断された複 数の分割逃げ面 54Aによって構成されている。そして、さらに、分割逃げ面 54A上に は、副溝部 57が、その一端がすくい面 53に達するようにして前記主溝部 56と並んで 配設されている。また、第 1分割主切刃 55Aは、副溝部 57のその一端によって分断 された複数の第 2分割主切刃 55aによって構成される。
第 5実施形態のインサート 51は、第 2実施形態のインサート 21と類似した構成を有 し、第 5実施形態のインサート 51は、第 2実施形態のインサート 21に形成される突起 を有して!/、な!/、点と、第 2実施形態のインサート 21には形成されて 、な 、副溝部 57 を有する点とで異なる。また第 5実施形態のインサート 51の主溝部 56は、図 8に示す 第 2実施形態のインサート 21に形成される溝部 5に対応し、同様の構成を有する。第 5実施形態のインサート 51のうち、第 2実施形態のインサート 21に対応する構成につ V、ては説明を省略し、第 2実施形態のインサート 21には形成されて 、な 、副溝部 57 の構成に関連して説明する。
図 16〜図 19に示すように本発明の第 5実施形態のインサート 51は、主溝部 56と、 主溝部 56よりも小さく形成される副溝部 57とを有する。主溝部 56は、インサート 51の 幅方向端部に形成され、幅方向端面力 インサート幅方向 Cに没入して、インサート 厚み方向 Aに延びて形成される。主溝部 56は、インサート 51のすくい面 53から底面 52にわたつて形成され、底面 52に近づくにつれてインサート長手方向 B両方に広が る。言い換えると、主溝部 56は、すくい面 53から底面 52まで達する。
主切刃 55および逃げ面 54は、主溝部 56によってインサート長手方向 Bに分断され る。したがって主切刃 55は、互いに間隔を開けてインサート長手方向 Bに並ぶ複数 の第 1分割主切刃 55Aを有する。また、逃げ面 54は、互いに間隔をあけてインサート 長手方向 Bに並ぶ複数の分割逃げ面 54Aを有する。本実施の形態では、インサート 51には、インサート長手方向 Bに並ぶ 3つの主溝部 56が形成されるので、主切刃 55 は、 4つの第 1分割主切刃 55Aを有し、逃げ面 54は、 4つの分割逃げ面 54Aを有す る。各主溝部 56の形状はそれぞれ略同形状に形成され、インサート長手方向 Bに略 等間隔に並ぶ。主溝部 56は、切れ刃強度が維持できる範囲内で、形状、配置およ び個数が選択される。
また副溝部 57は、インサート 51の幅方向端部に形成され、幅方向端面からインサ ート幅方向 Cに没入して、インサート厚み方向 Aに延びて形成される。副溝部 57は、 インサート 51のすくい面 53からインサート厚み方向 Aに延びる。また副溝部 57は、主 溝部 56に比べてインサート 51に没入する没入量、すなわち深さが小さく形成される また主溝部 56および副溝部 57のインサート幅方向 Cの寸法は、少なくとも、予め設 定される転削工具 12の一刃あたりの最大送り量よりも大きく設定される。本実施の形 態では、主溝部 56のインサート幅方向 Cの寸法は、切削抵抗の低下が臨界となる寸 法に設定され、副溝部 57のインサート幅方向 Cの寸法は、予想される送り量の最大 値に設定される。また主溝部 56のインサート長手方向、インサート幅方向およびイン サート厚み方向寸法は、インサート 1の強度を維持するのに必要な寸法にそれぞれ 設定される。
本実施の形態では、インサート 51には、逃げ角が設定される。逃げ面 54は、すくい 面 53力も底面 52に向力つてインサート厚み方向 Aに進むにつれて、内方に向力つて インサート幅方向 Cに没入する。副溝部 57の底部分は、逃げ面 54のうちで底面 52 に交差する部分よりも、インサート幅方向 Cに突出した位置に配置される。これによつ て副溝部 57は、インサート 51の幅方向端部のうち、底面 52寄りの部分を除いたすく い面 53寄りの部分に形成される。また副溝部 57のインサート幅方向壁面は、インサ ート厚み方向 Aに略平行に延びる。
なお、各副溝部 57は、主溝部 56に比べて、深さ、幅および長さの少なくとも 1つが 小さく形成される。すなわち、各副溝部 57の深さおよび幅が小さくても、深さのみ、幅 のみが主溝部 56のそれよりも小さくても良い。ちなみに本実施の形態では、各副溝 部 57は、各主溝部 56に比べて、深さ、幅および長さがそれぞれ小さく形成される。 副溝部 57は、インサート長手方向 Bに隣接する 2つの主溝部 56の間と、主溝部 56と インサート長手方向端面部との間とにそれぞれ形成される。すなわち各副溝部 57は 、主溝部 56によって分割された第 1分割主切刃 55Aを複数に分割する位置にそれ ぞれ配置される。
本実施の形態では、主切刃 55は、インサート長手方向寸法が長い第 1分割主切刃 と、インサート長手方向寸法が短い第 1分割主切刃とを有する。長い第 1分割主切刃 は、 2つの副溝部 57によって 3つの第 2分割主切刃に分割される。また短い第 1分割 主切刃は、 1つの副溝部 57によって 2つの分割主切刃に分割される。これによつて第 2分割主切刃は、第 1分割主切刃の長さに拘わらず、短くすることができる。このよう に各副溝部 57は、第 1分割主切刃を 2等分または 3等分する位置に配置される。 このように本実施の形態においては、主切刃 55を含む逃げ面 54を分断する主溝 部 56は、切刃強度が維持できる数の範囲内で形成され、更なる切削抵抗の低減を 図るために、主溝部 56に比べて小さな副溝部 57によって第 1分割主切刃 55Aを複 数の第 2分割主切刃 55aにさらに分割する構成としている。このような構成とすること で、主切刃が形成される切刃部の強度低下を抑えて、切削抵抗を低減させることが できる。その結果、特に切込み量が大きな重切削加工等においても、インサート 51に 欠損を生じることなくびびり振動を抑制することが可能となる。
本実施形態において新たに配設した副溝部 57と主溝部 56とは、以下に示すように 溝部の構成要素として幅 W、深さ D、長さ Lの 3つの寸法が重要となる。図 17に示す ように、各溝部 56, 57の幅 Wl, W2とは、インサート長手方向 Bの寸法のことで、すく い面 53と各溝部 56, 57の壁面との交差稜線部と、主切刃 5の仮想直線との 2つの交 点間の距離である。言い換えると、溝部 56, 57におけるインサート長手方向両壁面 の間のインサート長手方向寸法である。
また各溝部 56, 57の深さ Dl, D2とは、インサート幅方向 Cの寸法のことで、主切 刃 55の仮想直線力 各溝部の前記交差稜線部までのインサート幅方向 Cに最長の 距離である。言い換えると、すくい面 53近傍の逃げ面 54から、溝部 56, 57における インサート幅方向壁面までのインサート幅方向 C寸法である。
さらに図 18に示すように、各溝部 56, 57の長さ LI, L2とは、インサート厚み方向 A の寸法のことで、インサート 51の底面 52を平坦面に静置した時の、すくい面 53に達 する各溝部の一端力 他端までのインサート厚み方向 Aの最短の距離である。
ここで、特に副溝部 57の幅 W2において、主溝部 56の幅 W1の 1Z6以上 5Z6以 下であることが、切削抵抗の低減と切刃強度の維持とをバランスよく両立できる点で 好ましい。副溝部 57の幅 W2が、主溝部 56の幅 W1の 1Z6より小さいと切削抵抗の 低減効果が不十分であり、主溝部 56の幅 W1の 5Z6より大きいと切刃部の強度が不 十分となるからである。すなわち、このような構成が、第 2分割主切刃 55aの切刃長が 適度に保持できるため、切刃のチッビング、欠損、破損等の防止に効果的である。 また、特に副溝部 57の深さ D2において、主溝部 56の深さ D1の 1Z6以上 5Z6以 下であることが好ましい。副溝部 57の深さ D2が、主溝部 56の深さ D1の 1Z6より小 さいと、重切削加工時の送り量より副溝部 57の深さ D2が小さくなる傾向にあるため、 切り屑が分割されず切削抵抗の低減が十分になされない。また、切り屑が分割されな い場合には、切り屑が副溝部 57の溝壁面に接触してしまうため、結果的に切削抵抗 が増大しやすくなる。副溝部 57の深さ D2が、主溝部 56の深さ D1の 5Z6より大きい と、切刃部の強度が不十分になるとともに、インサート本体部の強度も低下してしまう さらに、本実施形態では、主溝部 56の長さ L1はインサート 1の厚み寸法と略同じと なるが、副溝部 57の長さ L2は、そのインサート 51の厚み寸法よりも短く形成される。 このような構成により、副溝部 57の他端は分割逃げ面 54A上に位置するため、他端 が底面 52まで達する主溝部 56の数を単純に増力!]させた場合に比べて、切刃強度の 低下、さらには、インサート本体部の強度の低下を抑えることができる。
具体的には、本実施の形態では、主溝部 56の幅 W1は、 1. 6mmであり、主溝部 5 6の深さ D1は、 1. 2mmであり、主溝部 56の長さ L1は、 6. 4mmに設定される。また 畐 IJ溝部 57の幅 W2は、 0. 6mmであり、畐 ij溝部 57の深さ D2は、 0. 4mmであり、畐 ij 溝部 57の長さ L2は、 2. 4mmに設定される。
ここで、本実施形態のインサートの切削性能を調べるために行なった実験にっ ヽて 説明する。図 20A〜20Dは、本実験に用いた各種インサートの切れ刃形状を簡略 化して示し、第 5実施形態のインサート 51と、比較例のインサート 151A, 151B, 15 1Cの各々の平面図である。第 5実施形態のインサート 51は、図 20 (B)に示すように 、 3つの主溝部 56と 4つの副溝部 57とを有する。これに対して第 1比較例のインサー ト 151Aは、図 20 (A)に示すように、 3つの主溝部 56を有する。また第 2比較例のィ ンサート 151Bは、図 20 (C)に示すように、 7つの主溝部 56を有する。また第 3比較 例のインサート 151Cは、図 20 (D)に示すように、 7つの副溝部 57を有する。それぞ れ第 5実施形態のインサート 51、第 1〜第 3比較例のインサート 151A, 151B, 151 Cにおける、主溝部 56と副溝部 57の大きさは、それぞれ同じに形成される。
第 1比較例のインサート 151Aは、 3つの主溝部 56によって略 4分割された分割主 切刃を有する。また第 5実施形態のインサート 51は、第 1比較例のインサート 151A にさらに副溝部 57が形成されたものであり、主溝部 56によって分割された分割主切 刃が、各副溝部 57によってさらにそれぞれ 2分割される。また第 2比較例のインサート 151Bは、 7つの主溝部 56によって略 8等分された分割主切刃を有し、第 3比較例の インサート 151Cは、 7つの副溝部 57によって略 8等分された分割主切刃を有する。 [表 1]
Figure imgf000033_0001
そして、各インサートの切削抵抗と、切刃強度と、仕上げ面の状態とをそれぞれ比 較するために、切削速度 Vを 200mZminとし、被削材として JISに規定される SS40 0を用いて、乾式にて切削試験を行った。またホルダ軸線方向の切込み量を 15mm 、ホルダ半径方向の切込み量を 5mmとし、切削抵抗および仕上げ面測定時には、ィ ンサートー刃あたりの送り量 fを 0. 2mm/刃とした。その結果を表 1に示す。また切削 抵抗は、上述の切削条件下において、キスラー社製、切削抵抗測定器を用いて測定 し、主分力を切削抵抗として表記した。また切れ刃強度は、インサートにかかる負荷 が徐々に大きくなるように送り量を上げていき、最終的にインサートが欠損するまで試 験を行い、インサートが欠損した限界送りを表記した。具体的には、インサート一刃あ たりの送り量を増加させていき、インサートの主切刃が欠損したときの送り量で表わし た。
切削抵抗は、インサートと被削材との接触面、すなわちインサートに設けられる各分 割主切刃の長さの合計に比例して増加する。したがって各溝部 56, 57が多いほど、 切削抵抗が低減される。第 1比較例のインサート 151Aに比べて、副溝部 57が形成 される分だけ溝部が多い第 5実施形態のインサート 51の切削抵抗が低い。また第 3 比較例のインサート 151Cのように、副溝部 57だけを増やしても、主溝部 56を増やす 場合に比べて切削抵抗の低下割合が小さい。これは、インサートに設けられる各分 割主切刃の長さの合計が長いことによるだけでなぐ副溝部 57は、深さ Dおよび幅 W が小さいので、肖 ijり残し部分が副溝部 57の壁面に接触しやすぐこれによつて切削 抵抗を効果的に低減させることができない。また主溝部 56も副溝部 57も形成されな い場合には、切削抵抗は、約 5000Nとなる。 また切れ刃強度は、分割主切刃の長さに比例して高くなる。言い換えると、各分割 主切刃が短くなるにつれて切刃強度が低下する。したがって第 1比較例のインサート 151Aに比べて主溝部 56を増やした第 2比較例のインサート 151Bのほうが、切れ刃 強度が低くなる。これに対して、第 5実施例のインサート 51は、主溝部 56よりも小さい 副溝部 57を形成することで、第 2比較例のインサート 151Bに比べて、第 1比較例の インサート 151Aに対する切れ刃強度の低下を抑えることができる。
また副溝部 57の深さ D2が、一刃あたりのホルダ切込み量 fよりも小さい (f >D2)場 合には、副溝部 57のインサート長手方向両壁面のほか、インサート幅方向壁面とも、 削り残し部分とが接触しやすい。この場合、被削材とインサートの接触面がさらに増 加して、その分切削抵抗が増大し、切れ刃の欠損が生じやすくなる。これによつて切 れ刃強度が、低下してしまう。したがって、第 5実施形態のインサート 51は、副溝部 5 7の深さ D2が、インサート一刃あたりの予想される送り量の最大値 fmaxよりも大きく 形成される。これによつて副溝部 57に起因する切削抵抗の増加を抑え、切れ刃強度 の低下を防ぐとともに、切削抵抗を低減させることができる。たとえば本実施の形態で は、予想される送り量の最大値 fmaxは、 0. 3mm/刃に設定される。
また切削後の被削材の仕上げ面に生じる凹部と凸部との差は、切削抵抗に大きく 影響される。第 5実施形態のインサート 51は、上述したように第 1比較例のインサート 151Aよりも切削抵抗が低いので、第 5実施形態のインサート 51のほうが、第 1比較 例のインサート 151Aに比べて仕上げ面の凹凸差を少なくして、仕上げ面を滑らかに することができる。
このように、より切削条件の厳しい重切削加工を実現するために、第 1比較例のイン サート 151Aに比べて、主溝部 56の数を増やすと、切削抵抗は低下する力 切れ刃 強度が半分にまで低下するので、重切削加工での使用が困難となる。また上述した ように第 3比較例のインサート 151Cのように副溝部 57のみを複数配設した場合には 、切れ刃強度の低下を抑えることはできるが、切削抵抗が十分に低下せずに、最終 的に重切削加工での使用が困難となる。
これに対して、第 5実施例のインサート 51のように、第 1比較例のインサート 151A に、主溝部 56よりも小さな副溝部 57を付設することによって、切削抵抗を低下させつ つ、切れ刃強度の低下を抑えることができる。これによつて第 5実施例のインサート 51 を用いて、切削条件の厳 、重切削加工を行うことが可能となる。
なお、上述のとおり本実施形態においては、副溝部 57の他端は底面 52に達しない 形態を例示したが、本発明はこれに限定されるものではなぐ逃げ面 54の逃げ角や インサート本体部の厚み、副溝部 57の幅 W2、深さ D2との兼ね合いによりインサート 本体部の強度が十分に維持できる場合においては、副溝部 57の他端は底面 52に 達するように形成しても同様の効果が得られることは言うまでもな 、。
さらに、副溝部 57は、第 1分割主切刃 55Aを略等分するように配設され、第 2分割 主切刃 55aを形成する。これにより、各第 2分割主切刃 55aにかかる切削抵抗は等し く分散されるため、切削抵抗が低減され、切刃強度の低下を最大限に抑制できる。こ こで、本実施形態においては、副溝部 57によって第 1分割主切刃 55Aを 2等分およ び 3等分した場合について例示した力 本発明はこれに限定されるものではなぐ 2 等分、 3等分、 4等分 · · 'など第 1分割主切刃 55Aを、略等しい長さの複数の第 2分 割主切刃 55aに分割する場合でも同様の効果が得られることは言うまでもない。 本実施の形態によれば、主溝部 56によって分断された第 1分割主切刃 55A力 副 溝部 57によって、さらに複数の第 2分割主切刃 55aに分断される。生成される切り屑 8の幅は、第 2分割主切刃 55aの長さと略一致するので、切り屑 8が小さくなり軽量ィ匕 する。これによつて、ホルダ 11に形成される切り屑ポケット 13から切り屑 8が排出しや すくなり、切り屑排出性を向上させることができる。したがって切り屑ポケット 13におけ る切り屑 8の詰まり、切り屑 8のかみこみ等の不具合が抑制され、インサート 51および ホルダ 11を長期にわたって使用することが可能となる。また切り屑ポケット 13から外 方に排出された切り屑 8は、軽量であるので、被削材周辺に堆積せずに移動し、切り 屑によって被削材が傷つくことを防ぐことができる。また被削材周辺に切り屑が堆積 することが防がれることによって、結果的に切れ刃への切り屑のかみこみを低減させ ることができる。このように重切削加工時における切り屑の排出性能を向上させること ができる。
また副溝部 57によって第 1分割主切刃 55Aがさらに分断されるため、主切刃部に 力かる切削抵抗を低減させることができるとともに、副溝部 57は、主溝部 56より小さく 形成されることで、主溝部 56の形成の際にみられる切刃部の大きな強度低下は抑制 される。すなわち主溝部 56および副溝部 57を併存させることで、切刃強度の低下を 抑制しつつ、インサート 51と被削材との接触面の減少に伴う切削抵抗の低減も可能 となる。これによつて、加工中におけるびびり振動を抑制でき、切削条件の厳しい重 切削加工も可能となる。
また本実施の形態では、主溝部 56に比べて副溝部 57の幅が小さく形成されるの で、幅が異なる 2つの溝部 56, 57を形成することができる。主溝部 56の幅が大きく形 成されることで、インサート全体に占める第 1分割主切刃 55Aの割合を低くすることが でき、切削抵抗を小さくすることができ、切削時に生じるびびり振動を防ぐことができ る。また副溝部 57の幅が小さく形成されることで、切り屑をさらに細分ィ匕する機能を達 成しつつ、第 1分割主切刃 55Aの強度低下を防ぐことができる。これによつて主切刃 の欠損を防いで、インサート 51の寿命を延命することができる。このように本実施の 形態のインサート 51を用いることで、切刃強度の低下を抑えたうえで、切削抵抗を低 減させることができ、重切削加工に好適に用いることができる。
また本実施の形態によれば、副溝部 57の長さが本体部の厚みよりも短く形成される 。 2つの主溝部 56の間に形成される逃げ面 54Aは、副溝部 57によって複数に分割 され、分割された複数の逃げ面 54Aは、底面側でそれぞれ連なる。これによつて 2つ の主溝部 56に挟まれた逃げ面部分または、副溝部 57と主溝部 56とによって挟まれ た逃げ面部分が欠損することが防がれ、切刃強度を向上させることができる。
また本実施の形態によれば、副溝部 57の深さが主溝部 56の深さよりも小さく形成さ れる。これによつて 2つの主溝部 56に挟まれたすくい面部分または、副溝部 57と主 溝部 56によって挟まれたすくい面部分が欠損することが防がれ、切刃強度を向上さ せることができる。
また本実施の形態によれば、主溝部 56の深さが、それ以上深くしても切削抵抗の 低下が期待できない臨界値に設定されることで、切削抵抗を可及的に小さくすること ができる。また副溝部 57の深さが最大送り量に相当する深さ以上に設定されることで 、副溝部 57によって切り屑の幅を確実に分断することができる。また副溝部 57の深さ は、主溝部 56の深さ以下に設定されることで、切刃強度の低下を抑えることができる 。また副溝部 57が第 1分割主切刃 55Aを略等分するように配設されることで、副溝部 57によって分割される各第 2分割主切刃 55aにかかる切削抵抗を等しく分散すること ができ、切削抵抗を低減させるとともに切刃強度の低下を抑えることができる。
また本実施の形態によれば、第 1実施形態と同様に貫通孔 16のまわりに隆起部 15 が形成されていることによって、切り屑のカールを促進することができる。また貫通孔 16に螺合したねじ部材の頭部が隆起部 15によって隠れるので、切り屑とねじ部材の ねじ頭とが接触することを防ぐことができ、ねじ部材の頭部の摩耗を防ぐことができる
(第 6実施形態)
図 16〜図 19では、主切刃 5を 3つの主溝部 56で分断してなるインサート 51を例示 したが、本発明の第 6実施形態として、主切刃 55を 4つの主溝部 56で分断してなるィ ンサート 61を図 21〜図 23に示す。図 21は、本発明の第 6実施形態によるインサート 61を示す平面図であり、図 22は、インサート 61を示す長辺側側面図であり、図 23は 、インサート 61を示す短辺側側面図である。
第 6実施形態のインサート 61は、第 1実施形態のインサート 1と類似した構成を有し 、第 6実施形態のインサート 61は、第 1実施形態のインサート 1に形成される突起を 有して 、な 、点と、第 1実施形態のインサート 1には形成されて 、な 、副溝部 57を有 する点とで異なる。また第 6実施形態のインサート 61の主溝部 56は、図 1に示す第 1 実施形態のインサート 1に形成される溝部 5に対応し、同様の構成を有する。また第 6 実施形態のインサート 61の主溝部 56および副溝部 57の構成については、第 5実施 形態のインサート 51と同様である。
第 6実施形態のインサート 61は、第 5実施形態のインサート 51に比べて主溝部 56 および第 1分割主切刃 55Aの配置が異なる。第 6実施形態のインサート 61は、 4つの 主溝部 56が形成される。これによつて主切刃 55は、 5つの第 1分割主切刃 55Aに分 割される。また副溝部 57は、各第 1分割主切刃 55Aを 2等分して、それぞれ第 2分割 主切刃 55aを形成する。したがって副溝部 57は、 5つ形成される。
第 5実施形態のインサート 51と、第 6実施形態のインサート 61とをホルダ 11の外周 部に周方向に並べて装着した場合に、第 5実施形態のインサート 51の主溝部 56が 通過する領域が、第 6実施形態のインサート 61の第 1分割主切刃 55Aが通過する領 域に含まれるようにするとともに、第 6実施形態のインサート 61の主溝部 56が通過す る領域が、第 5実施形態のインサート 51の第 1分割主切刃 55Aが通過する領域に含 まれるように、各インサート 51, 61の主溝部 56の配置が選択される。
図 24は、本発明のインサート 51, 61を装着した転削工具 12を示す斜視図である。 ここで、ホルダ 11の外周先端部に複数の切り屑ポケット 13が形成されており、切り屑 ポケット 13内の各々外周位置にインサート 51, 61が取り付けられる。詳細には、イン サート 51, 61は、回転方向にすくい面 53を向けて最外周に主切刃 55が位置するよ うに装着され、主切刃 55がホルダ 11とともに回転することによって切削が行われる。 一般に、このような転削工具 12で切削加工をする場合には、ホルダ 11に曲げ応力 が働くが、このような曲げ応力によって大きなたわみが発生することのないように、ホ ルダ 11は一定の剛性を備えている。し力しながら、実際の切削加工においては、加 ェ条件等によってホルダ 11に働く曲げ応力の大きさが変化するので、加工負荷が大 きい場合には、ホルダ 11の剛性が不足することにより大きなたわみが発生し、その結 果として加工中のびびり振動を誘発することがある。特に、切込み量が大きな重切削 加工等においては、切削抵抗が著しく増大するためにびびり振動が発生しやすい。 そのため従来より、上記のような転削工具 12においては、切削抵抗を低減させるた めの手段として、主切刃を含む逃げ面を、両端がすくい面および底面に達する溝部 によって分断したインサートを複数組合せて用いることが広く行われてきた。すなわち 、このようなインサートにおいては、生成される切り屑の幅が小さく分割されるので、切 削抵抗が低減することにより加工中のびびり振動が抑制されるというものである。しか し、より厳しい切削条件下での重切削加工を可能にするために、従来のままの形状 の溝部を単純に数だけ増やすと、溝部によって分断された切刃部の強度が低下して チッビングや欠損等が生じやすくなるため、切削抵抗の低減には限界があった。 本実施の形態では、上述したように主溝部 56と副溝部 57とを形成することで、切刃 部の強度低下を抑えて、切削抵抗を低減させることができる。その結果、特に切込み 量が大きな重切削加工等においても、インサート 51, 61に欠損を生じることなくびび り振動を抑制することが可能となる。 図 16〜19に示した第 5実施形態のインサート 51のみを用いた切削加工は、主切 刃 55に主溝部 56が形成されているので、加工後の被削材壁面に必然的に削り残し が生じてしまう。そこで、主溝部 56による削り残しを生じさせないために、主溝部 56の 配置が互いに異なるインサート 51, 61、たとえば第 5実施形態のインサート 51と第 6 実施形態のインサート 61とを、図 24に示すようにホルダ 11の同一円周上に交互に 配置して、切削加工を行う。これによつて、一方のインサート 51の溝部 56, 57による 肖 IJり残しを他方のインサート 61の主切刃 55が切削することができ、被削材の加工壁 面に生じる凹凸を少なくして加工できるようになる。このように 2種類のインサート 51, 61が用いられる場合、主溝部 56の幅および主溝部間の寸法は、 2種類のインサート 51, 61でほぼ同じに設定される。第 3実施形態と同様に、第 5および第 6実施形態の インサート 51, 61は、分割主切刃がコーナー R切刃からインサート長手方向に進む につれて、底面に近接するように傾斜して 、てもよ 、。
(第 7実施形態)
図 25は、本発明の第 7実施形態のインサート 71を示す全体斜視図であり、図 26は 、本発明の転削工具 12のインサート装着状態を示す拡大斜視図である。第 7実施形 態のインサート 71は、第 5実施形態のインサート 51と対応した構成を有し、対応した 構成については説明を省略し、第 5実施形態と同様の参照符号を付する。第 7実施 形態のインサート 71は、上述した第 5実施形態のインサート 51の構成要素に加えて 、第 1分割主切刃 55Aに隣接するすくい面 53上に、前記各第 1分割主切刃 55Aに 対応して少なくとも 1つの突起 58がそれぞれ形成されている。突起 58は、すくい面 5 3から厚み方向に突出する。具体的には、前記第 1分割主切刃 55Aと対をなすように 突起 58が形成される。突起 58の主切刃側部分は、副溝部 57によってさらに分断さ れた第 2分割主切刃 55aに対応するように、枝分かれした形状となっている。
各突起 58のうち分割主切刃側部分のうち枝分かれした部分は、インサート幅方向 Cに向かって、各々対応する第 2分割主切刃 55aに近づくにつれて、幅と高さが漸減 するように先細りした形状に形成される。ここで、突起 58の高さとは、すくい面 53に対 する突起 58のインサート厚み方向 Aの高さ寸法である。また突起 58の幅とは、突起 5 8のインサート長手方向 Bの寸法である。また第 2分割主切刃 55aと突起 58との間の インサート幅方向 Cの距離は、第 2分割主切刃 55aのインサート長手方向中央部で 最短となるように構成される。すなわち枝分かれした先端部が、第 2分割主切刃 55a のインサート長手方向中央部に向力つて配設される。
本実施の形態では、各第 2分割主切刃 55aによって幅狭に形成された切り屑がすく い面 53上に形成された前記突起 58に接触して、小さく湾曲変形され、切り屑が切り 屑ポケット内のホルダ壁面 14を傷つけることを防ぐことができる。さらに、幅狭に形成 された各切り屑が、すくい面 53上に形成される突起 58に接触することで、その曲率 半径が小さくなり、切り屑のサイズが小さくなる。これによつて切り屑ポケット 13からホ ルダ 11外方へ切り屑がスムーズに移動し、切り屑排出性を向上させることができる。 したがって切り屑ポケット 13における切り屑の詰まり、切り屑のかみこみ等の不具合が 抑制され、インサート 71およびホルダ 11を長期にわたって使用することが可能となる 。また主溝部 56および副溝部 57は、ホルダ 11に装着された場合に、ホルダ軸線に 垂直な平面に沿って延びるとともに、ホルダ周方向に延びる。
図 24に示すように、第 1分割主切刃 55Aが形成される部分が異なる複数種類のィ ンサート 51, 61をホルダ 11に交互に装着して転削加工を行う場合、被削材の加工 壁面には、 2つのうち一方のインサートの分割主切刃 55Aによって切削される部分と 、両方のインサートの分割主切刃 55Aによって切削される部分とが存在する。このと き、生成する切り屑断面の中央部は、一方のインサートの分割主切刃のみによって 切削される部分に相当するため、最も厚くなる。第 7実施形態に示すようにホルダ 11 に装着される各インサート 71が、突起 58を有することで、前述した切り屑断面の最も 厚い部分に突起 58が接触し、生成した切り屑を選択的にかつ効率よく湾曲変形、す なわちカールさせることができる。
第 7実施形態のインサート 71は、第 5実施形態のインサート 51に突起 58が形成さ れた場合を示したが、第 6実施形態のインサート 61についても同様に突起 58が形成 されてもよい。したがって、ホルダ 11に装着されるインサートの全てに、突起が形成さ れることが好ましい。また突起については、各分割主切刃 55aに 1つ以上の突起が形 成されていればよぐ第 1実施形態または第 2実施形態のインサート 1, 21と同様の突 起が形成されていてもよい。 また図 26に示すように、すくい面 53の中央部の貫通孔 16周りに環状の隆起部 15 が形成されている。これによつて隆起部 15が形成されることに関して、第 1実施形態 のインサート 1と同様の効果を得ることができる。
図 27は、第 7実施形態の変形例のインサート 71aを示す全体斜視図である。第 7実 施形態のインサート 71は、第 1分割主切刃 55Aに隣接するすくい面 53上に、前記各 第 1分割主切刃 55Aに対応して少なくとも 1つの突起が形成され、突起は、第 2分割 主切刃 55aに対応するように主切刃側が枝分かれした形状をとる。
これに対して変形例のインサート 71aは、図 27に示すように、第 2分割主切刃 55a の各々に対応して独立した複数の突起 68を有する。このような突起 68を有するイン サート 71aであっても第 7実施形態のインサート 71と同様の効果を得ることができる。 すなわち、突起は、対応する各々の第 2分割主切刃 55aによって生成される切り屑が 衝突して、カールされるように配設されることで、突起のすくい面中央側の形状に拘 わらず同様の効果が得られる。この突起 68は、第 1実施形態のインサート 1に示す突 起 6と対応するものが好ましい。第 1実施形態の突起 6は、分割主切刃に向かって配 設されるとしたが、第 7実施形態の変形例のインサート 71aの突起 68は、第 2分割主 切刃 55aに向力つて配設される。突起 68についての他の特徴については、第 1実施 形態のインサート 1と同様の構成に形成されてもよい。これによつて突起 68が形成さ れることに関して、第 1実施形態のインサート 1と同様の効果を得ることができる。 また図 1〜図 27では、本体部が略長方形板状または略平行四辺形板状をなしてい るインサートを例示したが、本発明の他の実施形態として、ホルダ形状に対応して本 体部が略多角形板状および略円板状で形成されても、同様の効果が得られることは 言うまでもない。以上、本発明の実施形態を例示したが、本発明は実施形態に限定 されるものではなぐ発明の目的を逸脱しない限り任意のものとすることができることは 言うまでもない。たとえば本実施の形態では、インサートは、 180度回転対称形状で あるとしたが、主切刃がインサートの幅方向一方の縁辺だけに形成されていてもよい 。また分割主切刃の傾斜、溝部の形状および突起の形状などは、適宜選択されれば よぐ本実施の形態の構成に限定されない。また本実施の形態を適宜組合せて用い ることも可能である。また本発明のインサートは、重切削加工以外にも用いることがで きる。
本発明は、その精神または主要な特徴力 逸脱することなぐ他のいろいろな形態 で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本 発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束され ない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のもので ある。
産業上の利用可能性
請求項 1記載の本発明によれば、各分割主切刃によって幅狭に形成された切り屑 が突起に接触することで、湾曲変形して曲率半径が小さくなる。切り屑の曲率半径が 小さくなることで、切り屑は、ホルダに形成されるホルダ壁面に接触する前に破断し、 切り屑ポケットの外方に移動する。これによつて切り屑力 ホルダ壁面に衝突してホル ダ壁面を傷つけることを防ぐことができる。さらに切り屑が突起に接触して、その曲率 半径が小さくなることで、切り屑のサイズが小さくなる。これによつて切り屑ポケットから ホルダ外方へ、切り屑が円滑に移動し、切り屑排出性を向上させることができる。した 力 Sつて切り屑ポケットにおける切り屑の詰まり、切り屑のかみこみ等の不具合が抑制さ れ、インサートおよびホルダを長期にわたって使用することが可能となる。
請求項 2記載の本発明によれば、突起は、分割主切刃から離反するにつれてすく い面からの高さが高くなる。したがって切り屑は、突起によってすくい面力 離反する 方向に案内されて、湾曲変形して曲率半径が小さくなる。本発明では分割主切刃に 近づくにつれて突起の高さが漸減することで、切り屑が突起にスムーズに接触し、接 触時の衝撃を抑えて、切削抵抗の増加を抑制することができる。
請求項 3記載の本発明によれば、突起は、分割主切刃から離反するにつれて幅広 となる。このように突起が幅広となることで突起の強度が向上し、切り屑衝突時に突起 力 Sインサート本体力も欠損することを防ぐことができる。これによつてインサートを長期 にわたつて使用することが可能となる。
請求項 4記載の本発明によれば、切り屑は、すくい面に沿って移動して、分割主切 刃から遠ざかり、切り屑が突起に接触する。切り屑は、すくい面から厚み方向に離反 する方向に案内されて、曲率半径力 、さくなるように湾曲変形する。本発明では前記 突起の主切刃側部分は、各々対応する分割主切刃に近づくにつれて幅と高さが漸 減するように先細りした形状に形成される。したがって突起は、分割主切刃から離反 するにつれてすくい面力もの高さが高くなる。この場合、切り屑と突起との接触がスム ーズとなり、言い換えると切り屑が突起に接触する時の衝撃が小さくなり、接触時の衝 撃を抑えて、切削抵抗の増加を抑制することができる。また突起は、高さが高くなると ともに、その幅が広がることで突起の強度低下を防ぐことができ、湾曲変形するように 切り屑を案内する時に突起力 Sインサート本体力も欠損することを防ぐことができる。こ れによってインサートを長期にわたって使用することが可能となる。
請求項 5記載の本発明によれば、突起の交差稜線部は、分割主切刃から離反する につれて、すくい面との間の厚み方向の距離、すなわち突起の高さが大きくなる。切 り屑は、突起の交差稜線部に衝突し、切り屑は、突起の交差稜線部に沿って移動し て湾曲変形する。このように突起に交差稜線部が形成され、突起の交差稜線部に切 り屑が衝突することで、切り屑と突起とが接触する部分を、極めて小さくすることができ 、切り屑をさらに円滑に移動させることができ、切り屑を湾曲変形させるのに起因する 切削抵抗をさらに低減させることができる。また切削抵抗の低減のためには、突起の 交差稜線部は、突起が対応する分割主切刃の垂直二等分線に沿って延びて、分割 主切刃に近づくにつれて高さが漸減することが好ま 、。
請求項 6記載の本発明によれば、切り屑は、分割主切刃に対して略直交する方向 に移動する。本発明では、突起が分割主切刃に対して略直交する方向に延びて配 設されるので、すくい面上を移動する切り屑に対して、突起によって生じる切削時の 切削抵抗を低減させることができる。
請求項 7記載の本発明によれば、突起は、分割主切刃の長手方向中間部分に向 かって配設配置される。分割主切刃によって形成される切り屑は、分割主切刃とほぼ 同じ幅に形成される。この場合、切り屑の幅方向中央部分に突起が接触することとな る。これによつて突起は、切り屑の左右の振れを防いで、分割主切刃に対して略直交 する方向に切り屑を案内させることができる。
請求項 8記載の本発明によれば、分割主切刃の略垂直二等分線上に前記突起が 配設される。これによつて突起は、分割主切刃に対して略直交する方向に延びて配 設されるとともに、分割主切刃の長手方向中間部分に向カゝつて配設されることとなる。 これによつて分割主切刃に対して略直交する方向に移動する切り屑に対して、突起 によって生じる切削時の切削抵抗を低減させることができる。また突起は、切り屑の幅 方向中央部分に突起が接触することとなるので、切り屑の左右の振れを防いで、切り 屑を分割主切刃に対して略直交する方向に移動させることができる。
請求項 9記載の本発明によれば、貫通孔のまわりに隆起部が形成されて 、ることに よって、突起による切り屑の湾曲変形作用が不十分な条件下においても、切り屑が 隆起部に接触することで、切り屑の湾曲変形を促進することができる。また貫通孔に 螺合したねじ部材の頭部が隆起部によって隠れることで、切り屑とねじ部材のねじ頭 とが接触することを防ぐことができ、ねじ部材の頭部の摩耗を防ぐことができるとともに 、ねじ頭が切り屑の排出に悪影響を与えることを防ぐことができる。
請求項 10記載の本発明によれば、突起が各分割主切刃と対をなすように形成され る。すなわち分割主切刃ごとに 1つの突起がそれぞれ形成される。本発明では、分割 主切刃によって形成された切り屑が 1つの突起だけに衝突して案内されることで、切 り屑が複数の突起に衝突して案内される場合に比べて、切削抵抗をさらに低減させ ることができる。また突起が切り屑によって摩耗したり、切り屑の生成方向が少々ずれ たりしても、対応する 1つの突起の稜線部分に切り屑を接触させるこができる。
請求項 11記載の本発明によれば、コーナー R切刃寄りの分割主切刃以外の分割 主切刃によって形成される切り屑は、それぞれ分割主切刃に略直交する方向に移動 する。本発明では、コーナー R切刃寄りの分割主切刃以外の分割主切刃と対をなす 各突起が、分割主切刃と略直交する方向にそれぞれ延びて配設されることで、分割 主切刃に対して略直交する方向にそれぞれ移動する切り屑に対して、突起によって 生じる切削抵抗を低減させることができる。またたとえば各突起が、各々対をなす分 割主切刃の長手方向中間部に向かって配設されることで、切り屑の左右の振れを防 いで、切り屑を分割主切刃に対して略直交する方向に移動させることができ、複数の 切り屑が互いに接触することを防いで、ポケット内で切り屑が詰まることを防ぐことがで きる。
請求項 12記載の本発明によれば、すくい面の角部寄りの分割主切刃は、コーナー R切刃と連なっているので、コーナー R切刃寄りの分割主切刃によって形成される切 り屑は、コーナー R切刃によって形成される切り屑と連なった円弧状に形成されて、 すくい面上を分割主切刃に対して予め定められる角度傾斜して移動する。本発明で は、コーナー R切刃寄りの分割主切刃と対をなす突起がコーナー R切刃に向かって 幅と高さが漸減するように形成されるので、コーナー R切刃とそれに連なる分割主切 刃とによって形成される切り屑を、突起に円滑に衝突させることができ、切削抵抗をさ らに低減させることができる。またコーナー R切刃とそれに連なる分割主切刃とによつ て形成される切り屑につ 、て、円滑に湾曲変形させることができる。
請求項 13記載の本発明によれば、コーナー R切刃寄りの分割主切刃と対をなす突 起は、前記角部寄りの分割主切刃とのなす傾斜角度が、 60° 以上 85° 以下となる 仮想直線に沿って延びて配設されることによって、突起によって生じる切削抵抗を低 減させるとともに、コーナー R切刃によって形成された切り屑をより確実に湾曲変形さ せることができる。たとえば前記傾斜角度が、 60° 未満であると、切り屑が詰まりやす くなり、切削抵抗が増加するおそれがある。また傾斜角度が 60° 未満であると、コー ナー R切刃に連なる分割主切刃で形成される切り屑部分に起因する切削抵抗が過 剰となる。また傾斜角度が 85° を超えると、切り屑が湾曲しに《なるので、ホルダの 壁面の摩滅が改善されないば力りでなぐ切り屑のサイズが大きくなつて切り屑排出 性が低下するとともに、切り屑のかみこみによる切刃の欠損等の不具合を生じるおそ れがある。また傾斜角度が 85° を超えると、コーナー R切刃で形成される切り屑部分 に起因する切削抵抗が過剰となる。
これに対して本発明では、傾斜角度が 60° 以上 85° 以下に設定されるので、上 述した不具合が生じることはない。したがって切削抵抗を抑えて、コーナー R切刃お よびコーナー R切刃に連なる分割主切刃によって形成された切り屑をより確実に湾曲 変形させることができる。
請求項 14記載の本発明によれば、分割主切刃に対応して 1つ以上の突起が形成 される。これによつて、 1または複数の突起に切り屑を当接させて、切り屑を湾曲変形 させることができる。複数の突起に切り屑を当接させて、切り屑を湾曲変形させること で、切り屑の断面積が大きい場合および切り屑の剛性が高い場合であっても、切り屑 から与えられる衝撃力を複数の突起で分担することができ、突起が欠損することを防 いで、切り屑を十分に湾曲変形させることができる。たとえば複数の分割主切刃のう ち、分割主切刃の長さが長い分割主切刃と、分割主切刃の長さが短い分割主切刃と が存在する場合、長さの短い分割主切刃に対応する突起の数に比べて、長さの長い 分割主切刃に対応する突起の数を増やすことで、長さの長!ヽ分割主切刃によって形 成される幅広の切り屑をより確実に湾曲変形させることができるとともに、長さの長い 分割主切刃に対応する突起が、幅広の切り屑の衝突によって欠損することを防ぐこと ができる。
請求項 15記載の本発明によれば、コーナー R切刃寄りの分割主切刃以外の分割 主切刃によって形成される切り屑は、それぞれ対応する分割主切刃に略直交する方 向に移動する。本発明では、コーナー R切刃寄りの分割主切刃以外の分割主切刃と 対応する各突起が、分割主切刃と略直交する方向にそれぞれ延びて配設されること で、分割主切刃に対して略直交する方向に移動する切り屑に対して、突起によって 生じる切削抵抗を低減させることができる。またたとえば各突起が、各々対応する分 割主切刃の長手方向中間部に向かって配設されることで、切り屑の左右の振れを防 いで、切り屑を分割主切刃に対して略直交する方向に移動させることができ、複数の 切り屑が互いに接触することを防いで、ポケット内で切り屑が詰まることを防ぐことがで きる。
請求項 16記載の本発明によれば、コーナー R切刃寄りの分割主切刃は、コーナー R切刃と連なっているので、コーナー R切刃寄りの分割主切刃によって形成される切 り屑は、コーナー R切刃によって形成される切り屑と連なった円弧状に形成されて、 すくい面上を分割主切刃に対して予め定められる角度傾斜して移動する。本発明で は、コーナー R切刃寄りの分割主切刃に対応する突起のうちで、コーナー R切刃に 最近接して配設される突起がコーナー R切刃に向力つて幅と高さが漸減するように形 成されるので、コーナー R切刃とそれに連なる分割主切刃とによって形成される切り 屑を、コーナー R切刃に最近接して配置される突起に円滑に衝突させることができ、 切削抵抗をさらに低減させることができる。またコーナー R切刃とそれに連なる分割主 切刃とによって形成される切り屑について、円滑に湾曲変形させることができる。ここ で、コーナー R切刃寄りの分割主切刃に対応する突起が 1つの場合は、その 1つの 突起が、突起がコーナー R切刃に最近接して配設される突起となる。またコーナー R 切刃寄りの分割主切刃に対応する突起が複数の場合は、それらの複数の突起のうち のコーナー R切刃に最近接する突起が、コーナー R切刃に最近接して配設される突 起となる。
請求項 17記載の本発明によれば、コーナー R切刃に最近接して配設される突起は 、前記角部寄りの分割主切刃とのなす傾斜角度が、 60° 以上 85° 以下となる仮想 直線に沿って延びて配設されることによって、突起によって生じる切削抵抗を低減さ せるとともに、コーナー R切刃によって形成された切り屑をより確実に湾曲変形させる ことができる。たとえば前記傾斜角度が、 60° 未満であると切り屑が詰まりやすくなり 、切削抵抗が増加するおそれがある。また傾斜角度が 60° 未満であると、コーナー R切刃に連なる分割主切刃で形成される切り屑部分に起因する切削抵抗が過剰とな る。また傾斜角度が 85° を超えると切り屑が湾曲変形しに《なるので、ホルダの壁 面の摩滅が改善されないば力りでなぐ切り屑のサイズが大きくなつて切り屑排出性 が低下するとともに、切り屑のかみこみによる切刃の欠損等の不具合を生じるおそれ がある。また傾斜角度が 85° を超えると、コーナー R切刃で形成される切り屑部分に 起因する切削抵抗が過剰となる。本発明では、傾斜角度が 60° 以上 85° 以下に設 定されるので、上述した不具合が生じることなぐコーナー R切刃によって形成された 切り屑をより確実に湾曲変形させることができる。
請求項 18記載の本発明によれば、コーナー R切刃寄りの分割主切刃以外の分割 主切刃によって形成される切り屑は、それぞれ対応する分割主切刃に略直交する方 向に移動する。本発明では、コーナー R切刃寄りの分割主切刃に対応する複数の突 起のうちで、コーナー R切刃に最近接する突起以外の突起が、前記分割主切刃と略 直交する方向に延びて配設されることで、分割主切刃に対して略直交する方向にそ れぞれ移動する切り屑が突起にスムーズに当接して、突起によって生じる切削抵抗 を低減させることができる。
請求項 19記載の本発明によれば、主溝部によって分断された前記第 1分割主切 刃が、前記副溝部によって、さらに複数の第 2分割主切刃に分断される。生成される 切り屑の幅は、前記第 2分割主切刃の長さに対応してさらに小さくなるため、切り屑が 軽量化する。これによつて、ホルダに形成される切り屑ポケットから切り屑が排出しや すくなり、切り屑排出性を向上させることができる。したがって切り屑ポケットにおける 切り屑の詰まり、切り屑のかみこみ等の不具合が抑制され、インサートおよびホルダを 長期にわたって使用することが可能となる。また切り屑ポケットから外方に排出された 切り屑は、軽量であるので、被削材周辺に堆積せずに移動し、切り屑によって被削材 が傷つくことを防ぐことができる。
また前記副溝部によって前記第 1分割主切刃がさらに分断されるため、主切刃部に 力かる切削抵抗を低減させることができるとともに、前記副溝部は、前記主溝部より小 さく形成されることで、前記主溝部の形成の際にみられる切刃部の大きな強度低下を 抑制することができる。すなわち前記主溝部および前記副溝部を併存させることで、 切刃強度の低下を抑制しつつ、インサートと被削材との接触面の減少に伴う切削抵 抗の低減も可能となる。これによつて、加工中におけるびびり振動を抑制でき、切り屑 排出性能を向上させるとともに、切削条件の厳しい重切削加工も可能となる。
請求項 20記載の本発明によれば、主溝部に比べて副溝部の幅が小さく形成される ので、幅が異なる 2つの溝部を形成することができる。主溝部の幅が大きく形成される ことで、
インサート全体に占める第 1分割主切刃の割合を低くすることができ、切削抵抗を小 さくすることができ、切削時に生じるびびり振動を防ぐことができる。また副溝部の幅 が小さく形成されることで、幅の大きな主溝部が複数形成されるインサートで見られる 、切れ刃強度の大きな低下およびそれにより生じる切刃のチッビング、欠損、破損な どが抑制される。したがって切り屑をさらに細分ィ匕する機能を達成しつつ、第 1分割 主切刃の強度低下を防ぐことができる。これによつて主切刃の欠損を防いで、インサ ートの寿命を延命することができる。このように本発明のインサートを用いることで、切 刃強度の低下を抑えたうえで、切削抵抗を低下することができ、切り屑排出性能を向 上させるとともに、重切削加工に好適に用いることができる。
請求項 21記載の本発明によれば、副溝部の長さが本体部の厚みよりも短く形成さ れる。 2つの主溝部の間に形成される逃げ面は、副溝部によって複数に分割され、分 割された複数の逃げ面は、底面側でそれぞれ連なる。これによつて 2つの主溝部に 挟まれた逃げ面部分または、副溝部と主溝部とによって挟まれた逃げ面部分が欠損 することが防がれ、切刃強度を向上させることができる。
請求項 22記載の本発明によれば、副溝部の深さが主溝部の深さよりも小さく形成さ れる。これによつて切れ刃強度の維持と切削抵抗の低減とをバランスよく両立すること ができ、その結果、切削時の切込み量を増やすなどの重切削加工も可能になるため 、望ましい。これによつて 2つの主溝部に挟まれたすくい面部分または、副溝部と主 溝部によって挟まれたすくい面部分が欠損することが防がれ、切刃強度を向上させる ことができる。
請求項 23記載の本発明によれば、副溝部が第 1分割主切刃を略等分するように配 設されることで、副溝部によって分割される各第 2分割主切刃にかかる加工負荷を等 しく分散することができ、切削抵抗を低減させるとともに切刃強度の低下を抑えること ができる。
請求項 24記載の本発明によれば、各第 2分割主切刃によって幅狭に形成された切 り屑がすくい面上に形成された前記突起に接触して、小さく湾曲変形され、切り屑が 切り屑ポケット内のホルダ壁面を傷つけることを防ぐことができる。さらに、幅狭に形成 された各切り屑が、すくい面上に形成される突起に接触することで、その曲率半径が 小さくなり、切り屑のサイズが小さくなる。これによつて切り屑ポケットからホルダ外方 へ切り屑がスムーズに移動し、切り屑排出性を向上させることができる。これによつて 切り屑ポケットにおける切り屑の詰まり、切り屑のかみこみ等の不具合が抑制され、ス ローアウエィインサートおよびホルダを長期にわたって使用することが可能となる。 請求項 25記載の本発明によれば、貫通孔のまわりに隆起部が形成されて 、ること によって、突起による切り屑のカール作用が不十分な条件下においても、切り屑の力 ールを促進することができる。また貫通孔に螺合したねじの頭部が隆起部によって隠 れるので、切り屑とねじ頭とが接触することを防ぐことができ、ねじの頭部の摩耗を防 ぐことができる。
請求項 26記載の本発明によれば、スローァウェイインサートをホルダに装着するこ とで、ポジティブ方向のアキシャルレーキを有する転削工具を実現することができる。 これによつて被削材へのくいっき性を向上させることができ、被削材から与えられる切 削抵抗を低減させることができる。したがって一度に切削する切削量がさらに大きくな る重切削加工、いわゆる荒削り加工を行っても、切削抵抗の増加を抑えて、加工中 におけるびびり振動をより確実に抑制することができる。
また本発明では、インサートの底面に対して各分割主切刃を傾斜させることで、ァ キシャルレーキを付与するために、ホルダに形成されるインサート底面をホルダの回 転軸線に対してホルダ周方向に大きく傾斜させる必要がない。これによつてホルダの 肉厚の減少を抑えて、ホルダの剛性低下を抑えることができ、転削工具の寿命を長く して、一度に切削可能な切削量を大きくすることができる。
請求項 27記載の本発明によれば、上述するような、切り屑を細力べ分断することが 出来るスローァウェイインサートが複数ホルダに装着されることで、切り屑の排出性能 を向上させることができる。特に、一度の切削工程における切削量が大きい重切削加 ェであっても、切削時に発生した切り屑を、切り屑ポケットからホルダ外方に円滑に排 出することができ、切り屑ポケットに切り屑が堆積することを防ぐことができる。これによ つてインサートおよびホルダの欠損および摩耗を減らして、寿命を延命するとともに、 交換回数を減らすことができ、生産効率を向上させることができる。

Claims

請求の範囲
[1] 略板状をなし、厚み方向一方の面にすくい面を、側面に逃げ面を具備するとともに
、前記すくい面と前記逃げ面との交差稜線部に主切刃が形成され、かつ前記主切刃 が分断された複数の分割主切刃カゝらなるスローァウェイインサートであって、 前記すくい面から突出して、前記各分割主切刃に対応する位置に突起がそれぞれ 形成されて 、ることを特徴とするスローァウェイインサート。
[2] 前記突起のうち主切刃側部分は、各々対応する分割主切刃に近づくにつれて高さ が漸減する形状に形成されていることを特徴とする請求項 1記載のスローアウエイイ ンサート。
[3] 前記突起のうち主切刃側部分は、各々対応する分割主切刃に近づくにつれて幅が 漸減する形状に形成されていることを特徴とする請求項 1記載のスローァウェイイン サート。
[4] 前記突起のうち主切刃側部分は、各々対応する分割主切刃に近づくにつれて幅と 高さとが漸減するように先細りした形状に形成されていることを特徴とする請求項 1記 載のスローァウェイインサート。
[5] 前記突起のうち主切刃側部分は、上方に向かうにつれて互いの間の距離が漸減す る 2つの突起側面を有し、前記 2つの突起側面によって形成される交差稜線部は、前 記分割主切刃に近づくにつれて、前記すく 、面との間の距離が漸減することを特徴 とする請求項 1〜4のいずれか 1つに記載のスローアウエィインサート。
[6] 前記各突起のうち少なくとも 1つの突起は、分割主切刃に対して略直交する方向に 延びて配設されることを特徴とする請求項 1〜5のいずれか 1つに記載のスローアウエ ィインサート。
[7] 前記各突起のうち少なくとも 1つの突起は、分割主切刃の中間部分に向力つて配設 されることを特徴とする請求項 1〜6のいずれか 1つに記載のスローアウエイインサー
[8] 前記分割主切刃の略垂直二等分線上に、前記各突起のうち少なくとも 1つの突起 が配設されていることを特徴とする請求項 1〜7のいずれか 1つに記載のスローアウエ ィインサート。
[9] 前記すくい面の略中央に、厚み方向に貫通した貫通孔を具備するとともに、貫通孔 周りに環状の隆起部を具備して 、ることを特徴とする請求項 1〜8の 、ずれか 1つに 記載のスローァウェイインサート。
[10] 前記突起は、前記各分割主切刃と対をなすように、それぞれ形成されることを特徴 とする請求項 1〜9のいずれか 1つに記載のスローアウエィインサート。
[11] 前記すくい面の 1つの角部には、その角部に近接する角部寄りの分割主切刃に連 なるコーナー R切刃が形成され、前記コーナー R切刃寄りの分割主切刃以外の分割 主切刃と対をなす突起が、前記分割主切刃と略直交する方向にそれぞれ延びて配 設されることを特徴とする請求項 10記載のスローァウェイインサート。
[12] 前記すくい面の 1つの角部には、その角部に近接する角部寄りの分割主切刃に連 なるコーナー R切刃が形成され、前記コーナー R切刃寄りの分割主切刃と対をなす 突起は、前記コーナー R切刃に向力つて幅と高さが漸減するように形成されているこ とを特徴とする請求項 10または 11記載のスローァウェイインサート。
[13] 前記コーナー R切刃寄りの分割主切刃と対をなす突起は、前記角部寄りの分割主 切刃とのなす角度が、 60° 以上 85° 以下となる仮想直線に沿って延びて配設され ることを特徴とする請求項 12記載のスローァウェイインサート。
[14] 前記突起は、前記各分割主切刃に対応して 1つ以上、それぞれ形成されることを特 徴とする請求項 1〜9のいずれ力 1つに記載のスローァウェイインサート。
[15] 前記すくい面の 1つの角部には、その角部に近接する角部寄りの分割主切刃に連 なるコーナー R切刃が形成され、前記コーナー R切刃寄りの分割主切刃以外の分割 主切刃に対応する各突起が、前記分割主切刃と略直交する方向にそれぞれ延びて 配設されることを特徴とする請求項 14記載のスローアウエィインサート。
[16] 前記すくい面の 1つの角部には、その角部に近接する角部寄りの分割主切刃に連 なるコーナー R切刃が形成され、前記コーナー R切刃寄りの分割主切刃に対応して 突起が設けられ、この対応する突起のうち、前記コーナー R切刃に最近接して配設さ れる突起は、前記コーナー R切刃に向力つて幅と高さが漸減するように形成されて ヽ ることを特徴とする請求項 14または 15記載のスローァウェイインサート。
[17] 前記コーナー R切刃に最近接して配設される突起は、前記角部寄りの分割主切刃 とのなす角度が、 60° 以上 85° 以下となる仮想直線に沿って延びて配設されること を特徴とする請求項 16記載のスローアウエィインサート。
[18] 前記すくい面の 1つの角部には、その角部に近接する角部寄りの分割主切刃に連 なるコーナー R切刃が形成され、前記コーナー R切刃寄りの分割主切刃に対応して 複数の突起が設けられ、この複数の突起のうち、コーナー R切刃に最近接して配設さ れる突起以外の突起が、前記分割主切刃と略直交する方向に延びて配設されること を特徴とする請求項 16または 17記載のスローァウェイインサート。
[19] 略板状の本体部の厚み方向一方の面に形成されたすくい面と、
前記本体部の厚み方向他方の面に形成された底面と、
前記本体部側面に形成された逃げ面と、
前記すくい面と前記逃げ面との交差稜線部に形成された主切刃と、
前記逃げ面上に形成され、両端が前記すく ヽ面および前記底面に達する主溝部と を備えたスローァウェイインサートであって、
前記主切刃および前記逃げ面は、各々前記主溝部によって分断された複数の第 1 分割主切刃および分割逃げ面からなるとともに、さらに前記第 1分割主切刃は、一端 が前記すくい面に達するようにして前記主溝部と並んで前記分割逃げ面上に配され る副溝部によって分断された複数の第 2分割主切刃からなるスローァウェイインサート
[20] 前記副溝部の幅が前記主溝部の幅より小さいことを特徴とする請求項 19記載のス ローァウェイインサート。
[21] 前記副溝部の長さが前記本体部の厚みよりも短いことを特徴とする請求項 19また は 20記載のスローァウェイインサート。
[22] 前記副溝部の深さが前記主溝部の深さより小さいことを特徴とする請求項 19〜21 のいずれ力 1つに記載のスローァウェイインサート。
[23] 前記副溝部が前記第 1分割主切刃を略等分するように配設されることを特徴とする 請求項 19〜22のいずれ力 1つに記載のスローアウエィインサート。
[24] 前記すくい面上に、前記第 2分割主切刃に対応する位置に、少なくとも 1つ以上の 突起が配設されていることを特徴とする請求項 19〜23のいずれか 1つに記載のスロ 一ァウェイインサート。
[25] 前記すくい面の中央に厚み方向に貫通した貫通孔を具備するとともに、貫通孔周り に環状の隆起部を具備していることを特徴とする請求項 19〜24のいずれか 1つに記 載のスローァウェイインサート。
[26] 前記すくい面の 1つの角部には、その角部に近接する角部寄りの分割主切刃に連 なるコーナー R切刃が形成され、すくい面と反対側にホルダに当接する底面が形成 され、
前記各分割主切刃は、コーナー R切刃に近づくにつれて、前記底面から離反する 方向に傾斜することを特徴とする請求項 1〜25のいずれか 1つに記載のスローアウエ ィインサート。
[27] 請求項 1〜26のいずれ力 1つに記載のスローアウエィインサートと、前記スローァゥ イインサートを複数装着するホルダとを具備することを特徴とする転削工具。
PCT/JP2005/018033 2004-09-29 2005-09-29 スローアウェイインサートおよびそれを装着した転削工具 WO2006035910A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2005800330405A CN101031378B (zh) 2004-09-29 2005-09-29 不重磨插入物以及装有该不重磨插入物的旋削工具
US11/576,337 US7802946B2 (en) 2004-09-29 2005-09-29 Throwaway insert and milling tool equipped with the same
EP05788219.3A EP1808248B1 (en) 2004-09-29 2005-09-29 Throwaway insert and milling tool equipped with the same
US12/860,724 US8142113B2 (en) 2004-09-29 2010-08-20 Throwaway insert and milling tool equipped with the same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2004-283561 2004-09-29
JP2004283561 2004-09-29
JP2005-070423 2005-03-14
JP2005070423 2005-03-14
JP2005104789 2005-03-31
JP2005-104789 2005-03-31
JP2005216862A JP4364173B2 (ja) 2004-09-29 2005-07-27 スローアウェイインサートおよびそれを装着した転削工具
JP2005-216862 2005-07-27
JP2005-239689 2005-08-22
JP2005239689 2005-08-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/576,337 A-371-Of-International US7802946B2 (en) 2004-09-29 2005-09-29 Throwaway insert and milling tool equipped with the same
US12/860,724 Division US8142113B2 (en) 2004-09-29 2010-08-20 Throwaway insert and milling tool equipped with the same

Publications (1)

Publication Number Publication Date
WO2006035910A1 true WO2006035910A1 (ja) 2006-04-06

Family

ID=36119057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018033 WO2006035910A1 (ja) 2004-09-29 2005-09-29 スローアウェイインサートおよびそれを装着した転削工具

Country Status (4)

Country Link
US (2) US7802946B2 (ja)
EP (1) EP1808248B1 (ja)
KR (2) KR101067414B1 (ja)
WO (1) WO2006035910A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000840A (ja) * 2006-06-21 2008-01-10 Kyocera Corp 切削インサートおよび転削工具
JP2008055530A (ja) * 2006-08-30 2008-03-13 Kyocera Corp 切削工具
WO2008032776A1 (fr) 2006-09-13 2008-03-20 Mitsubishi Materials Corporation Fraise en bout de dégrossissage et plaquette pour cette fraise
EP2060353A1 (en) * 2006-09-13 2009-05-20 Mitsubishi Materials Corporation Roughing insert, and roughing end mill
JPWO2008038804A1 (ja) * 2006-09-29 2010-01-28 京セラ株式会社 切削インサートおよびこれを用いる切削工具、並びに切削方法
JPWO2008038805A1 (ja) * 2006-09-29 2010-01-28 京セラ株式会社 切削インサートおよびこれを用いる切削工具、並びに切削方法
JP2010149234A (ja) * 2008-12-25 2010-07-08 Kyocera Corp 切削インサートおよび切削工具ならびにそれらを用いた切削方法
US20110081210A1 (en) * 2008-09-29 2011-04-07 Takuya Ishida Cutting insert, cutting tool and cutting method using the same
CN102196876A (zh) * 2009-01-29 2011-09-21 京瓷株式会社 切削镶刀及切削工具、以及使用了该切削工具的被切屑件的切削方法
US20120039681A1 (en) * 2008-09-29 2012-02-16 Takuya Ishida Cutting insert, cutting tool and cutting method using the same
JP5016671B2 (ja) * 2007-04-26 2012-09-05 京セラ株式会社 切削インサートおよび切削工具並びにそれを用いた切削方法
JP2013517143A (ja) * 2010-01-13 2013-05-16 イスカーリミテッド 窪み部分のある切削エッジを有する切削インサート
US8905685B2 (en) 2006-09-13 2014-12-09 Mitsubishi Materials Corporation Roughing insert and roughing end mill
CN104395021A (zh) * 2012-06-29 2015-03-04 京瓷株式会社 切削镶刀、切削工具、以及使用其的切削加工物的制造方法
JP6004301B2 (ja) * 2014-03-18 2016-10-05 株式会社タンガロイ 切削インサート及び刃先交換式回転切削工具

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035910A1 (ja) * 2004-09-29 2006-04-06 Kyocera Corporation スローアウェイインサートおよびそれを装着した転削工具
US7837416B2 (en) * 2005-07-29 2010-11-23 Sumitomo Electric Hardmetal Corp. Indexable cutting insert and method for producing the same
WO2007039944A1 (ja) * 2005-10-06 2007-04-12 Sumitomo Electric Hardmetal Corp. 高品位高能率加工用切削工具およびそれを用いた切削加工方法
WO2007049617A1 (ja) * 2005-10-28 2007-05-03 Kyocera Corporation 切削インサート、ミーリング工具および切削方法
US8137035B2 (en) * 2006-10-31 2012-03-20 Kyocera Corporation Cutting insert
JP5159773B2 (ja) * 2007-05-28 2013-03-13 京セラ株式会社 切削インサートおよび切削工具並びにそれを用いた切削方法
IL192785A0 (en) * 2007-10-22 2009-02-11 Gershon Harif Cutting tool with protrusions, and methods of use thereof
US8393419B1 (en) * 2008-03-13 2013-03-12 Us Synthetic Corporation Superabrasive elements having indicia and related apparatus and methods
JP2009241212A (ja) * 2008-03-31 2009-10-22 Sumitomo Electric Hardmetal Corp ニック付き刃先交換式チップ
CN102119067B (zh) * 2008-08-29 2013-07-10 京瓷株式会社 切削镶刀、切削工具以及使用该切削工具的切削方法
KR101059031B1 (ko) * 2009-01-06 2011-08-24 한국야금 주식회사 절삭 인서트를 적용한 밀링 절삭공구
JP4763855B2 (ja) 2009-02-26 2011-08-31 京セラ株式会社 切削インサート及び切削工具、並びにそれを用いた被削材の切削方法
EP2412462B1 (en) * 2009-03-27 2015-05-13 Kyocera Corporation Cutting insert, cutting tool, and method of cutting material to be cut using the cutting tool
KR101145491B1 (ko) * 2009-05-13 2012-05-15 한국야금 주식회사 양면형 절삭 인서트 및 이를 채용한 커터바디
KR101154704B1 (ko) * 2010-02-19 2012-06-08 대구텍 유한회사 홈에 의해 분할된 절삭날을 갖는 절삭 인서트 및 이를 구비한 밀링 커터
CN101844238A (zh) * 2010-05-25 2010-09-29 李仕清 一种复合刀头
US8967920B2 (en) * 2011-09-13 2015-03-03 Iscar, Ltd. Cutting insert and chip-control arrangement therefor
US8746115B2 (en) * 2012-01-09 2014-06-10 Iscar, Ltd. Cutting insert having hole orientation indicia and method for making thereof
AT512452A1 (de) * 2012-02-01 2013-08-15 Boehlerit Gmbh & Co Kg Schneidplatte
US10201856B2 (en) 2012-05-24 2019-02-12 Gershon System Ltd. Method for designing a cutting edge of a cutting tool, cutting tools comprising the same, and cutting elements with multiple such cutting portions
KR101394631B1 (ko) * 2012-06-14 2014-05-13 한국야금 주식회사 절삭 인서트
EP3046708A1 (en) 2013-09-17 2016-07-27 Gershon System Ltd. Cutting element and a method of cutting using the same
KR101469135B1 (ko) * 2014-07-08 2014-12-04 한국야금 주식회사 절삭 인서트 및 이를 장착한 절삭 공구
US10155270B2 (en) * 2014-07-31 2018-12-18 Tungaloy Corporation Cutting insert having a variable-width land associated with grooves formed in the upper and side surfaces and indexable cutting tool
EP3034214A1 (en) * 2014-12-19 2016-06-22 Pramet Tools, S.R.O. Drill and drill insert with chipbreaker protrusions
US10675695B2 (en) * 2015-04-02 2020-06-09 Stephen MacLennan Saw tooth
CN107427938B (zh) * 2015-04-06 2019-04-19 株式会社泰珂洛 切削刀片以及刀刃更换式切削工具
DE102016216464A1 (de) * 2016-08-31 2018-03-01 Gühring KG Aufrauwerkzeug und verfahren zum aufrauen einer zylindrischen oberfläche
JP6744599B1 (ja) * 2019-03-01 2020-08-19 株式会社タンガロイ 切削インサート
EP3725444A1 (de) * 2019-04-18 2020-10-21 KOMET Deutschland GmbH Schneidelement für ein reibwerkzeug sowie ein reibwerkzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299636A (ja) * 1994-04-28 1995-11-14 Kyocera Corp フライス工具用スローアウェイチップ
JPH08257822A (ja) * 1995-03-20 1996-10-08 Toshiba Tungaloy Co Ltd スローアウェイチップ
JP2000280104A (ja) * 1999-03-26 2000-10-10 Ngk Spark Plug Co Ltd プランジ切削用総形チップ
JP2004148424A (ja) * 2002-10-29 2004-05-27 Kyocera Corp エンドミル用スローアウェイチップ
JP2004160620A (ja) * 2002-11-15 2004-06-10 Mitsubishi Materials Corp スローアウェイチップ及びスローアウェイ式切削工具

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138522U (ja) 1986-02-26 1987-09-01
JPH0253305A (ja) 1988-08-18 1990-02-22 Nippon Hoso Kyokai <Nhk> Fm復調装置
JPH0253305U (ja) 1988-10-11 1990-04-17
JP2501471Y2 (ja) * 1989-08-23 1996-06-19 三菱マテリアル株式会社 転削工具用スロ―アウェイチップ
US5232319A (en) 1990-10-25 1993-08-03 Iscar Ltd. Insert for a milling cutter
US5192171A (en) * 1991-01-07 1993-03-09 Gte Valenite Corporation Chip control insert
US5282703A (en) 1991-03-29 1994-02-01 Mitsubishi Materials Corporation Indexable cutter insert
US5221164A (en) * 1992-08-03 1993-06-22 Gte Valenite Corporation Positive rake insert having serrations for cutting
IL103115A (en) 1992-09-09 1996-09-12 Iscar Ltd Milling placement
IL104800A (en) 1993-02-19 1998-04-05 Iscar Ltd Milling cutter
US5725334A (en) * 1993-03-29 1998-03-10 Widia Gmbh Cutting insert
JPH07299633A (ja) * 1994-04-28 1995-11-14 Kyocera Corp エンドミル
DE4422312A1 (de) * 1994-06-17 1995-12-21 Krupp Widia Gmbh Schneideinsatz
JPH08108310A (ja) 1994-10-05 1996-04-30 Toshiba Tungaloy Co Ltd 正面フライス用のスロ−アウェイチップ
DE4437093A1 (de) * 1994-10-17 1996-04-18 Widia Gmbh Vieleckiger Schneideinsatz
JPH08118135A (ja) 1994-10-19 1996-05-14 Toshiba Tungaloy Co Ltd 回転切削工具用のスローアウェイチップ
JP3588170B2 (ja) 1995-08-10 2004-11-10 日立ツール株式会社 3次元加工用エンドミル
JP4315480B2 (ja) 1997-12-16 2009-08-19 大昭和精機株式会社 スローアウェイチップ
SE513610C2 (sv) 1998-02-03 2000-10-09 Sandvik Ab Skär för spånavskiljande bearbetning
JP4797292B2 (ja) 2001-07-17 2011-10-19 株式会社タンガロイ スローアウェイ式エンドミルおよび切刃チップ
JP3812473B2 (ja) * 2001-11-20 2006-08-23 三菱マテリアル株式会社 スローアウェイチップ
WO2006035910A1 (ja) * 2004-09-29 2006-04-06 Kyocera Corporation スローアウェイインサートおよびそれを装着した転削工具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299636A (ja) * 1994-04-28 1995-11-14 Kyocera Corp フライス工具用スローアウェイチップ
JPH08257822A (ja) * 1995-03-20 1996-10-08 Toshiba Tungaloy Co Ltd スローアウェイチップ
JP2000280104A (ja) * 1999-03-26 2000-10-10 Ngk Spark Plug Co Ltd プランジ切削用総形チップ
JP2004148424A (ja) * 2002-10-29 2004-05-27 Kyocera Corp エンドミル用スローアウェイチップ
JP2004160620A (ja) * 2002-11-15 2004-06-10 Mitsubishi Materials Corp スローアウェイチップ及びスローアウェイ式切削工具

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000840A (ja) * 2006-06-21 2008-01-10 Kyocera Corp 切削インサートおよび転削工具
JP2008055530A (ja) * 2006-08-30 2008-03-13 Kyocera Corp 切削工具
US7993082B2 (en) 2006-09-13 2011-08-09 Mitsubishi Materials Corporation Roughing insert and roughing end mill
WO2008032776A1 (fr) 2006-09-13 2008-03-20 Mitsubishi Materials Corporation Fraise en bout de dégrossissage et plaquette pour cette fraise
JP2008068345A (ja) * 2006-09-13 2008-03-27 Mitsubishi Materials Corp ラフィングエンドミルおよびラフィングエンドミル用インサート
EP2060351A1 (en) * 2006-09-13 2009-05-20 Mitsubishi Materials Corporation Roughing end mill and insert for roughing end mill
EP2060353A1 (en) * 2006-09-13 2009-05-20 Mitsubishi Materials Corporation Roughing insert, and roughing end mill
US9028177B2 (en) 2006-09-13 2015-05-12 Mitsubishi Materials Corporation Roughing end mill and insert for a roughing end mill
US8905685B2 (en) 2006-09-13 2014-12-09 Mitsubishi Materials Corporation Roughing insert and roughing end mill
US8246278B2 (en) 2006-09-13 2012-08-21 Mitsubishi Materials Corporation Roughing insert and roughing end mill
EP2060351A4 (en) * 2006-09-13 2010-12-22 Mitsubishi Materials Corp REJOICE MILLING AND OPERATING FOR CHILDREN MILLERS
EP2060353A4 (en) * 2006-09-13 2010-12-22 Mitsubishi Materials Corp DE-WRAPPING PLATE, AND STRAWBERRY AT THE END OF DETACHING
JP2012024924A (ja) * 2006-09-29 2012-02-09 Kyocera Corp 切削インサートおよびこれを用いる切削工具、並びに切削方法
US8419319B2 (en) 2006-09-29 2013-04-16 Kyocera Corporation Cutting insert, cutting tool using the same, and cutting method
EP2070620A4 (en) * 2006-09-29 2015-05-27 Kyocera Corp CUTTING INSERT, CUTTING TOOL USING THE SAME, AND CUTTING METHOD
JPWO2008038804A1 (ja) * 2006-09-29 2010-01-28 京セラ株式会社 切削インサートおよびこれを用いる切削工具、並びに切削方法
JPWO2008038805A1 (ja) * 2006-09-29 2010-01-28 京セラ株式会社 切削インサートおよびこれを用いる切削工具、並びに切削方法
US8579558B2 (en) 2006-09-29 2013-11-12 Kyocera Corporation Cutting insert, cutting tool using the same, and cutting method
US8740510B2 (en) 2007-04-26 2014-06-03 Kyocera Corporation Cutting insert and cutting tool, and cutting method using the same
JP5016671B2 (ja) * 2007-04-26 2012-09-05 京セラ株式会社 切削インサートおよび切削工具並びにそれを用いた切削方法
DE112008001089B4 (de) * 2007-04-26 2015-04-16 Kyocera Corporation Schneideinsatz und Schneidwerkzeug sowie Schneidverfahren, das diese verwendet
US20120039681A1 (en) * 2008-09-29 2012-02-16 Takuya Ishida Cutting insert, cutting tool and cutting method using the same
US20110081210A1 (en) * 2008-09-29 2011-04-07 Takuya Ishida Cutting insert, cutting tool and cutting method using the same
JP2010149234A (ja) * 2008-12-25 2010-07-08 Kyocera Corp 切削インサートおよび切削工具ならびにそれらを用いた切削方法
CN102196876A (zh) * 2009-01-29 2011-09-21 京瓷株式会社 切削镶刀及切削工具、以及使用了该切削工具的被切屑件的切削方法
US8757940B2 (en) 2009-01-29 2014-06-24 Kyocera Corporation Cutting insert, cutting tool and cutting method for workpiece using the same
CN102196876B (zh) * 2009-01-29 2014-08-13 京瓷株式会社 切削镶刀及切削工具、以及使用了该切削工具的被切屑件的切削方法
JP2013517143A (ja) * 2010-01-13 2013-05-16 イスカーリミテッド 窪み部分のある切削エッジを有する切削インサート
CN104395021A (zh) * 2012-06-29 2015-03-04 京瓷株式会社 切削镶刀、切削工具、以及使用其的切削加工物的制造方法
CN104395021B (zh) * 2012-06-29 2016-11-09 京瓷株式会社 切削镶刀、切削工具、以及使用其的切削加工物的制造方法
JP6004301B2 (ja) * 2014-03-18 2016-10-05 株式会社タンガロイ 切削インサート及び刃先交換式回転切削工具

Also Published As

Publication number Publication date
EP1808248A1 (en) 2007-07-18
US20080260476A1 (en) 2008-10-23
US20100316452A1 (en) 2010-12-16
KR101067414B1 (ko) 2011-09-27
KR100896002B1 (ko) 2009-05-07
EP1808248A4 (en) 2010-10-20
US7802946B2 (en) 2010-09-28
EP1808248B1 (en) 2015-03-11
KR20070069156A (ko) 2007-07-02
US8142113B2 (en) 2012-03-27
KR20080097492A (ko) 2008-11-05

Similar Documents

Publication Publication Date Title
WO2006035910A1 (ja) スローアウェイインサートおよびそれを装着した転削工具
KR101516826B1 (ko) 드릴용 인서트 및 인서트 드릴
CA2679762C (en) End mill
JP4990374B2 (ja) 両面使用可能な切削インサート及びこれを装着したミーリングカッタ
WO2010150907A1 (ja) 切削インサート及び切削工具、並びにそれを用いた切削加工物の製造方法
JP2850893B2 (ja) スローアウェイチップ及びスローアウェイ式ドリル
WO2010110110A1 (ja) 切削インサート及び切削工具、並びにそれを用いた被削材の切削方法
JPWO2009034633A1 (ja) ラジアスカッタ用スローアウェイチップ、およびこれを装着したスローアウェイ式ラジアスカッタ
JP4729894B2 (ja) インサートおよびスローアウェイ式切削工具
JP2016074061A (ja) ラジアスエンドミル
KR20160081917A (ko) 러핑 엔드밀
JP4804127B2 (ja) スローアウェイインサートおよびそれを装着した転削工具、並びに、それらを用いた被削材の切削方法
JPS62188616A (ja) フライス
KR20000023406A (ko) 드릴링 공구 및 드릴링 가공용 스로어웨이 팁
JP4677747B2 (ja) インサートおよびスローアウェイ式切削工具
CN109862983B (zh) 切削刀片及可转位刀片式旋转切削工具
JP5295271B2 (ja) 切削インサートおよび切削工具、並びにそれを用いた被削材の切削方法
JP4859494B2 (ja) スローアウェイチップおよびそれを備える転削用工具
JP4859815B2 (ja) スローアウェイインサートおよびそれを装着した転削工具
JP4449895B2 (ja) スローアウェイチップおよびスローアウェイ式切削工具
CN111745200A (zh) 铣削刀头及球头立铣刀
JP4364173B2 (ja) スローアウェイインサートおよびそれを装着した転削工具
JP5483872B2 (ja) 切削インサートおよび切削工具ならびにそれらを用いた切削方法
JP7242997B2 (ja) 刃先交換式エンドミルのエンドミル本体
JP6852439B2 (ja) 刃先交換式エンドミルのエンドミル本体および刃先交換式エンドミル

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580033040.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077007792

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005788219

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005788219

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11576337

Country of ref document: US