WO2006035686A1 - 小型モータの光学式エンコーダ装置及びその製造方法 - Google Patents

小型モータの光学式エンコーダ装置及びその製造方法 Download PDF

Info

Publication number
WO2006035686A1
WO2006035686A1 PCT/JP2005/017576 JP2005017576W WO2006035686A1 WO 2006035686 A1 WO2006035686 A1 WO 2006035686A1 JP 2005017576 W JP2005017576 W JP 2005017576W WO 2006035686 A1 WO2006035686 A1 WO 2006035686A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
spacer
board
substrate
optical encoder
Prior art date
Application number
PCT/JP2005/017576
Other languages
English (en)
French (fr)
Inventor
Kouhei Igarashi
Toshihiro Kamiyoshihara
Original Assignee
Mabuchi Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mabuchi Motor Co., Ltd. filed Critical Mabuchi Motor Co., Ltd.
Priority to CN2005800328068A priority Critical patent/CN101032065B/zh
Priority to US11/575,337 priority patent/US7414238B2/en
Publication of WO2006035686A1 publication Critical patent/WO2006035686A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/30Supports specially adapted for an instrument; Supports specially adapted for a set of instruments
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/10Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using light effect devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3405Edge mounted components, e.g. terminals

Definitions

  • the present invention relates to an optical encoder device for a small motor that is positioned and arranged in a gap between code wheel force photosensor modules attached to a motor shaft and optically detects the rotation of the motor shaft, and a method for manufacturing the same. .
  • a small motor is required to be integrally assembled with a device for detecting the rotational speed and position of the motor.
  • detection devices include those that are magnetically detected using magnets and Hall elements, those that mechanically turn on and off the electrical conduction between a pair of brushes, or photodiodes (light emitting elements).
  • an optical device that detects light using a phototransistor (light receiving element) is known. The present invention relates to this optical encoder device.
  • a small motor incorporating such an optical encoder device can be used in office automation equipment such as a printer that requires rotational control.
  • FIG. 18 is a diagram showing a first prior art illustrating the mounting of an optical encoder to a motor (see Patent Document 1).
  • Fig. 18 (A) shows a small motor with a code wheel attached to the motor shaft, (B) shows a base member with a photosensor module attached, and (C) shows a state in which these two are assembled together. Show. In the assembled state shown in (C), a code wheel having an optical modulation track is arranged in the gap of the photo sensor module configured by facing the light emitting element and the light receiving element to obtain a signal accompanying the rotation of the motor shaft. It is like this.
  • the code wheel Since it is necessary to dispose the code wheel in the gap between the photo sensor modules, as shown in (A), the code wheel is first attached to the tip of the motor shaft. After that, the base member to which the photosensor module shown in (B) is attached is inserted, positioned, and fixed from the direction perpendicular to the motor shaft so that the fixed portion is inserted into the notch provided in the base member.
  • a fixed portion fixed to the motor case is provided so that the motor shaft penetrates, and fixed portions are provided on both sides of the notch portion of the base member, and both of them are fixed. Use fixed mounting screws to fix the positioning.
  • the configuration shown in the figure can insert, fix, and fix the directional force perpendicular to the motor shaft. Therefore, the photosensor module that touches the code wheel and damages the code wheel during installation can be removed. There is an effect that it can be attached and fixed at a predetermined position.
  • the motor case end surface force to which the fixed part is attached must be of a special shape such as flat, and is standard. It cannot be attached to a typical motor. In this way, the motor case end surface of a standard motor is not flat, and of course, the normal motor case end surface has irregularities and parts such as bearing holding parts and motor terminals. Installation to a standard motor is not considered and is not realistic. In addition, there is a problem in that it is necessary to use screws or the like to secure the reliability of fixing to the motor, which is costly.
  • FIG. 19 is a diagram showing a second prior art illustrating the attachment of the optical encoder to the motor.
  • A is a perspective view of a small motor with an optical encoder attached
  • B is a diagram showing a sensor unit in which a connector and a photosensor module are arranged on a substrate.
  • the substrate of the example sensor unit is fixed by soldering the substrate surface force after inserting the motor terminal into the motor terminal insertion slit formed there. "The opposite side is represented as” substrate surface ").
  • FIG. 17 is a diagram for explaining this state.
  • the substrate force S may be damaged, and as a countermeasure, the strength of the substrate itself is large! / It is necessary to use a glass epoxy substrate, It became expensive.
  • connection must be made on the substrate surface side.
  • the terminals of the photo sensor unit and the connector are soldered and fixed to the back side of the board through the terminal holes provided in the board, as with normal electronic components.
  • the motor terminal part must be fixed by soldering on the board surface side as described above. Therefore, it is necessary to use a double-sided printed wiring board in which printed wiring parts are formed on both sides of the board, which is expensive. become.
  • the connection between the motor terminal and the substrate is soldered on the photo sensor module side on the substrate surface side, there is a concern that the photo sensor may malfunction due to scattering or adhesion of solder particles or flux.
  • FIG. 20 is a perspective view showing a third prior art illustrating the attachment of the optical encoder to the motor.
  • (A) and (B) show the same motor with different viewing directions only.
  • the photo sensor module and motor terminals are connected to the printed circuit board, integrated into one place by wiring on the circuit board, and input / output is performed via the connector.
  • the printed circuit board has a semicircular shape as shown in FIG. 19 above, the motor endbell side force also rises against the external force in the direction of the arrow shown in FIG. The part is extended as much as possible to prevent the base plate from being separated from the motor end face force.
  • the cost of a printed circuit board is greatly affected by the number of base materials that can be cut out of a specified size. Therefore, if the surface area is increased in this way, the cost increases accordingly.
  • the soldered surface of the element such as the photo sensor module and the soldered surface of the motor terminal are opposite to each other. It is. It is possible to use a surface-mountable element to make a single-sided printed wiring board, but the surface-mountable element must have heat resistance to withstand reflow soldering. Therefore, it is very expensive.
  • the terminals of the elements such as the photo sensor module cannot be arranged between the motor end bell and the substrate, they are arranged outside the outer diameter of the motor as shown in FIG. 20 (B).
  • the substrate becomes large and expensive, and the motor outer diameter force also protrudes greatly, so that a large space is required inside the application equipment such as a printer.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-357457
  • the present invention solves such problems, makes it possible to fix the substrate of the sensor unit to the motor only at the motor terminal portion, and eliminates the need to attach a fixed portion with a special configuration to the motor. It is intended to be attachable to a standard motor.
  • Another object of the present invention is to eliminate the need for using expensive parts by making the substrate itself or the motor terminal itself do not concentrate stress due to external force.
  • the present invention secures a sufficient gap between the sensor unit substrate and the motor end bell side, and enables soldering to the motor terminal portion on the back surface side of the substrate.
  • the purpose of this is to make it possible to use a single-sided printed wiring board, and to prevent the solder particles and flux during soldering from scattering and adhering to the photosensor to cause malfunction.
  • the present invention aims to ensure the positioning of the photo sensor module with respect to the code wheel so that the photo sensor output does not become unstable.
  • An optical encoder device for a small motor of the present invention includes a code wheel attached to a motor shaft that extends to the outside of the motor through a bearing housed in a bearing holding portion provided in the motor end bell, and the code wheel.
  • the substrate to which the photosensor module is attached is mounted so that the optical modulation track portion is positioned and arranged in the gap of the photosensor module.
  • the motor, the spacer, and the board are integrated by soldering a pair of motor terminals to the printed wiring section of the board with the spacer held between the photo sensor module and the endbell.
  • the spacer has a center hole for positioning the bearing holding portion and an introduction path continuous to the center hole. It is configured in a U shape as a whole so that it can also insert and position the force orthogonal to the motor shaft.
  • the method for manufacturing an optical encoder device for a small motor of the present invention has a central hole for positioning the bearing holding portion and an introduction path continuous to the central hole, and passes through the introduction path.
  • a sensor unit is configured by assembling a spacer, which is configured in a U-shape so that it can also insert and position a force perpendicular to the motor shaft, on the substrate on which the photosensor module is mounted. This sensor unit is inserted and positioned in a direction perpendicular to the motor shaft with respect to the motor to which the code wheel is attached, and a pair of motor terminals are soldered to the printed wiring section of the board, so that the motor and the spacer are connected. And the board are fixed together.
  • the sensor unit is rigidly formed by the U-shaped spacer, there is no concern about strength due to external force, and the substrate strength is supplemented by the spacer.
  • the substrate can be used.
  • the sensor unit that does not depend on the terminal strength can be fixed to the motor by using a spacer, the space between the board and the motor can be widened, and soldering is possible in this space, making it possible to print at low cost on one side.
  • the wiring board can be used.
  • a sensor unit when fixed to a motor by using a U-shaped spacer, additional parts such as screws are not required, and a standard motor is not required. It can be mounted by inserting and positioning from the direction orthogonal to the motor shaft.
  • FIG. 1 is a perspective view showing the overall configuration of a motor to which a sensor unit is attached. (A) and (B) show the same small motor that differs only in the viewing direction. Yes.
  • FIG. 2 is a diagram illustrating a code wheel.
  • FIG. 3 is a diagram illustrating the appearance of a photo sensor module.
  • FIG. 4 is a diagram illustrating the appearance of the connector.
  • FIG. 5 is a diagram illustrating a printed wiring portion on the back surface of the substrate.
  • FIG. 6 is a perspective view illustrating the same spacer viewed from different directional forces.
  • FIG. 7 is a diagram showing a state where the printed wiring connection terminals of the connector are inserted from the front side of the board.
  • FIG. 8 is a view showing a state where a spacer is inserted from the back side of the substrate.
  • FIG. 9 is a view showing a state where the assembly is completed as a sensor unit.
  • FIG. 10 is an enlarged view showing a photo sensor module engaging portion.
  • Fig. 11 is a diagram showing the motor in a state where the code wheel is positioned and fixed to the motor shaft.
  • FIG. 12 is a perspective view showing the entire configuration of a motor to which another example sensor unit different from FIG. 1 is attached, and (A) and (B) differ only in the viewing direction. The same small motor is shown.
  • FIG. 13 is a diagram illustrating the appearance of another example of the photo sensor module different from FIG. 3.
  • FIG. 14 is a diagram illustrating another example substrate different from FIG.
  • FIG. 15 is a diagram illustrating another example of a U-shaped spacer different from FIG.
  • FIG. 16 is a diagram for explaining the operation of the spacer.
  • FIG. 17 is a diagram for explaining the problem of the conventional technique shown in FIG.
  • FIG. 18 is a diagram showing a first prior art illustrating the attachment of an optical encoder to a motor.
  • FIG. 19 is a diagram showing a second prior art illustrating the attachment of the optical encoder to the motor.
  • FIG. 20 is a diagram showing a third prior art illustrating the mounting of the optical encoder to the motor.
  • FIG. 1 is a perspective view showing the overall configuration of a motor with a sensor unit attached, and (A) and (B) show the same small motor that differs only in the viewing direction.
  • a magnet serving as a stator side magnetic pole is attached, while a rotor magnetic pole composed of a laminated core and a winding wire and a commutator are integrally assembled on the motor shaft.
  • the rotor configured as above is rotatably mounted. After inserting the rotor integrally assembled on the motor shaft from the opening of the bottomed hollow cylindrical motor case, the end bell is fitted so as to close the opening of the motor case.
  • the pair of brushes that come into contact with the commutator is connected to a pair of motor terminals led out of the end bell.
  • the electric power supplied via the external power supply brush and the commutator flows in the winding wound around the rotor magnetic pole, and thus the motor can rotate.
  • Such a small motor itself is of a normal configuration.
  • the motor shaft is supported by bearings located at the center of the bottom of the motor case and the center of the end bell, respectively.
  • the bearing on the end bell side is housed in a bearing holding portion formed integrally with the end bell. It is positioned and fixed to the motor shaft extension that extends to the outside of the end bell through the end bell side bearing by means of code wheel force press-fitting.
  • code wheel force press-fitting it is desirable to use resin for the flange located at the center of the code wheel.
  • iron, brass, or aluminum for the flange.
  • the code wheel itself is a normal one, and as illustrated in FIG.
  • the rotation speed and position can be detected by turning on and off the light by the slit part and the non-slit part of the rotating code wheel. it can.
  • the photo sensor module has the appearance illustrated in FIG. 3, and is configured by arranging the light emitting element and the light receiving element to face each other.
  • the photo sensor module is arranged so that the optical modulation track portion of the code wheel is positioned in the gap of the photo sensor module.
  • the power of the board to which the cable is fixed With the spacer sandwiched between the end bell and the motor terminal, a pair of motor terminals are soldered to the printed wiring on the back side of the board (the side facing the end bell). The spacer and the substrate are fixed together.
  • FIG. 4 is a diagram illustrating the appearance of the connector. External force The motor is supplied with power to the photo sensor module, and the external connection terminal for taking out the encoder output signal and the printed wiring connection terminal that is electrically connected to the printed wiring section of the board are provided. .
  • FIG. 5 is a diagram illustrating a printed wiring portion on the back side of the substrate. The motor terminal and photosensor module force can also be wired to the connector by the printed wiring section on the back side of the board.
  • the connector terminals are a pair of terminals that supply power to a pair of motor terminals, a pair of terminals that supply power to the light emitting element, and a pair of terminals that extract signals from the light receiving element (however, one terminal is a light emitting element). It can be shared with the slave terminal).
  • the U-shape is a ring shape that is generally circular when viewed in the motor shaft axial direction (from the front or back side) and continues to the central hole. This means a shape with an introduction path, and as shown in FIG. 6 (A), both sides of this introduction path are called legs.
  • FIGS. 6 (A) to (D) are perspective views of the same spacer in which different directional forces are also seen.
  • the outer shape of the spacer as viewed in the motor shaft axial direction (from the front or back side) has a shape that avoids the terminal soldering part of the element attached to the substrate and the soldering part of the pair of motor terminals.
  • the three engaging parts for positioning the photosensor module are the corresponding holes provided in the board (photosensor module positioning shown in Fig. 7). Through the hole) and engage with the photo sensor module mounted on the substrate surface side.
  • the spacer is provided with a central hole for lightly fitting and positioning in the bearing holding portion of the motor, and an introduction path continuous therewith and leg portions located on both sides thereof.
  • the entrance to the center hole of this introduction path is slightly narrower than the outer diameter of the bearing holder.
  • the motor assembly operator inserts an orthogonal force by using the elasticity of the U-shaped spacer as a whole, the space is heard with a clicking sound and touch to the hand. It can be recognized that the bearing holder is completely within the bore.
  • the substrate end abutting wall portion provided on the surface side of the spacer is useful for positioning the substrate end portion.
  • the two bosses have a length that penetrates a corresponding hole (the boss hole illustrated in FIG. 7) provided in the substrate.
  • the U-shaped spacer bosses (two examples) and the photo sensor module engaging parts (three units) are respectively provided in correspondence with the boss holes and the photo sensor module. As shown in Fig. 8, insert into the hole from the back side of the substrate. At this time, the substrate end comes into contact with the substrate end contact wall portion of the spacer. After that, crush the tip of the boss to secure the spacer against the substrate.
  • Such spacers and substrates are preferably fixed in terms of strength and work man-hours, but they can also be fixed by bonding or press-fitting. Depending on the thickness of the spacer, a predetermined distance can be maintained between the motor end bell surface and the back surface of the substrate.
  • the shape of the spacer is such that the spacer does not come into contact with the terminal part of the element attached to the board, such as a connector or photo sensor module, and the motor terminal part when the spacer is combined with the board. The outer shape is formed.
  • FIG. 9 is a view showing a state where the sensor unit is assembled
  • FIG. 10 is an enlarged view showing a photo sensor module engaging portion.
  • the photo sensor module is attached with the photo sensor module engaging portion of the spacer positioned.
  • the photo sensor module and the substrate contact surface can be fixed using an adhesive.
  • the photosensor module is lightly press-fitted into the engaging portion and reinforced by bonding in order to secure the mounting accuracy and the fixing strength.
  • a protrusion can be provided on the press-fitting contact surface side of the engaging portion (see FIG. 6).
  • the photo sensor module can be fixed by the elastic force of a locking claw (not shown) such as a hook provided integrally with the spacer. In this case, no bonding is necessary.
  • FIG. 11 shows a state where the cord wheel force is positioned and fixed to the motor shaft.
  • a sensor unit as illustrated in FIG. 9 inserts and positions a directional force perpendicular to the motor shaft so that the code wheel is positioned in the gap of the photosensor module.
  • the motor bearing holding part is fitted into the center hole of the spacer of the sensor unit, and the pair of motor terminals are fitted in corresponding slits (motor terminal insertion slits) provided on the board. Appropriately done by being inserted.
  • Bearing holding part Since the positioning part (center hole) and the photosensor positioning part (engaging part) are formed in the spacer, which is a single component, the photosensor can be positioned accurately with respect to the code wheel.
  • the motor terminal and the printed wiring part of the board are soldered from the back side of the board (on the side facing the end bell), so that the motor and the sensor unit are fixed together by simply making an electrical connection.
  • the spacer and the substrate can be fixed by boss caulking, the sensor unit can be produced off-line and the sensor unit can be mounted on the side of the motor with a single touch. Since the substrate strength can be complemented by the use of a spacer, a standard motor can be used without changing the motor terminals related to the size, position and strength of the motor terminals.
  • a code wheel and a photo sensor constituting an optical encoder can be attached to the outside of a standard motor using a U-shaped spacer.
  • a spacer that will be located between the motor end bell and the substrate as a base for the substrate, the substrate strength is complemented, thereby improving the reliability against external force and reducing the thickness.
  • An inexpensive substrate for example, a single-sided copper-clad phenol substrate can be used.
  • the mounting parallelism of the board can be stabilized by using the spacer as a base for the board.
  • the spacer closes the brush opening hole on the motor end bell surface (the hole for inserting a jig to open the brush so that the brush is positioned on the commutator during motor assembly), and the brush wear powder is scattered and adhered. It is possible to prevent the malfunction of the photo sensor due to.
  • a certain space is formed between the motor end plate and the board, and motor terminal soldering is possible in a closed space. Noh. In this way, by soldering the motor terminal and the board on the same side as the mounting solder of the connector and the photosensor, it is possible to use an inexpensive single-sided printed wiring board, and soldering is performed in the blocking space formed by the spacer. As a result, solder scattering and adhesion to the photo sensor and cord wheel can be prevented.
  • FIG. 12 is a perspective view showing the entire configuration of a motor to which another example sensor unit different from FIG. 1 is attached.
  • (A) and (B) are the same except that only the viewing direction is different.
  • a small motor is shown.
  • the illustrated photo sensor module itself is provided with a boss for mounting and positioning, as will be described later. Therefore, the motor illustrated in FIG. 1 is the same in the configuration of the substrate on which the photo sensor module is fixed and the force that makes the shape of the U-shaped spacer located on the back surface different.
  • the photo sensor module has an appearance as illustrated in FIG.
  • the same light-emitting element and light-receiving element as the photo sensor module described with reference to FIG. 3 are arranged so as to face each other, and the optical modulation track portion of the code wheel is positioned and arranged in the gap between the brackets of the photo sensor module.
  • printed wiring connection terminals are led out on the back surface.
  • the photosensor module shown in FIG. 13 has a positioning boss (two examples) projecting on the back surface.
  • the photo sensor module illustrated in FIG. 3 is an analog type that processes a signal in an analog manner with a low resolution of 50 pulses Z rotation, for example, whereas the photo sensor module illustrated in FIG. It is a digital system that digitally processes signals with a high resolution of 448 pulses Z rotation. Since the digital type has the feature that the read signal can be corrected, the accuracy of the mounting position of the photo sensor module is not required to be as precise as the analog type. For this reason, a photo sensor module such as a digital type that does not require strict mounting position accuracy can be positioned and arranged using a positioning boss provided in the photo sensor module itself, as illustrated. It becomes possible.
  • FIG. 14 is a diagram illustrating a substrate of an example different from FIG.
  • the board shown in Fig. 14 has a printed wiring part (not shown) on the back side of the board that is the same as the board shown in Fig. 5, and also has a motor terminal insertion slit, a connector terminal hole, and a photo sensor module terminal. Has holes for spacers and spacers.
  • the substrate of FIG. Photo sensor module positioning holes (2) are provided at the positions corresponding to the bosses for positioning.
  • FIG. 15 is a diagram illustrating an example of a U-shaped spacer different from FIG.
  • the spacer shown in FIG. 15 has a central hole for positioning lightly fitted to the bearing holding portion of the motor, a continuous introduction path, legs located on both sides thereof, and a spacer.
  • a board end abutting wall provided on the front surface side and a boss (three examples) having a length penetrating through a corresponding spacer boss hole provided in the board (FIG. 14) are provided. ing.
  • the entrance to the center hole of this introduction path is slightly narrower than the outer diameter of the bearing holder.
  • the U-shaped spacer illustrated in FIG. 6 was provided with three engaging portions for positioning the photosensor module, whereas the spacer illustrated in FIG. Such an engaging portion is not provided.
  • the assembly of the sensor unit using the photosensor module having the positioning boss as shown in FIG. 13 and the attachment of the sensor unit to the motor will be described.
  • the front-side force connector terminal of the board and the terminals and bosses of the photosensor module are inserted.
  • positioning bosses provided on the back surface of the photo sensor module and corresponding photo sensor module positioning holes provided on the substrate are used.
  • the terminals are soldered to the printed wiring part on the back side of the board.
  • attaching the photosensor module having the boss to the substrate it can be fixed using an adhesive.
  • a spacer is attached from the back side of the substrate.
  • the tip of the boss is crushed and the spacer is fixed to the substrate by caulking, etc., and the sensor unit assembly is completed.
  • the motor terminal insertion slits and the element terminal holes of the substrate are provided at positions protruding outside the spacer outer shape.
  • the completed sensor unit is assembled to the motor with the code wheel positioned and fixed to the motor shaft, and then the motor terminal is attached to the substrate. Soldering and fixing together, this assembly and fixing can be done in the same way as described with reference to FIG. As shown in Fig. 12 (B), the motor with an encoder assembled in this way has a spacer that is partially cut away so as to avoid the element terminal soldering part and the motor terminal soldering part. By doing so, it is possible to dispose the element terminal soldering portion in this space which allows the space between the substrate and the motor to be widened by the spacer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

 本発明は、モータエンドベルに備えた軸受保持部に収容される軸受を通ってモータ外部に延長するモータシャフトに取り付けられたコードホイールと、該コードホイールの光学変調トラック部がホトセンサモジュールの間隙に位置決め配置されるように、該ホトセンサモジュールを取り付けた基板を装着する。この基板が、エンドベルとの間にスペーサを挟んだ状態で、一対のモータ端子を基板のプリント配線部に半田付けすることにより、モータとスペーサと基板が一体に固定される。スペーサは、モータシャフトと直交方向から挿入、位置決めできるように全体的にはU字形状に構成される。  

Description

明 細 書
小型モータの光学式エンコーダ装置及びその製造方法
技術分野
[0001] 本発明は、モータシャフトに取り付けられたコードホイール力 ホトセンサモジュール の間隙に位置決め配置されて、モータシャフトの回転を光学的に検出する小型モー タの光学式エンコーダ装置及びその製造方法に関する。
背景技術
[0002] 小型モータには、モータの回転速度や位置を検知するための装置を一体に組み付 けることが求められている。このような検知装置には、磁石及びホール素子を用いて 磁気的に検出するもの、或いは 1対のブラシ間の電気的導電を機械的にオンオフす る機械式のもの、或いはホトダイオード (発光素子)及びホトトランジスタ(受光素子)を 用いて光を検出する光学式のものが知られている力 本発明は、この光学式ェンコ ーダ装置に関する。このような光学式エンコーダ装置を組み付けた小型モータは、回 転制御が必要な、例えばプリンタ一等の OA機器において用いることができる。
[0003] 図 18は、光学式エンコーダのモータへの取付を例示する第 1の従来技術を示す図 である(特許文献 1参照)。図 18 (A)は、モータシャフトにコードホイールが取り付けら れた小型モータを、(B)は、ホトセンサモジュールを取り付けたベース部材を、(C)は 、これら両者を一体に組み立てた状態を示している。(C)に示す組立完了状態で、 発光素子と受光素子を対向し構成したホトセンサモジュールの間隙に、光学変調トラ ックを持つコードホイールが配置されて、モータシャフトの回転に伴う信号を得るよう になっている。
[0004] ホトセンサモジュールの間隙に、コードホイールを配置する必要があるために、(A) に示すように、先に、モータシャフト先端部にコードホイールを取り付ける。その後、( B)に示すホトセンサモジュールを取付けたベース部材を、それに設けた切り欠き部 に被固定部が入るようにして、モータシャフトと直交する方向から挿入、位置決め、固 定する。このために、モータシャフトが貫通するようにモータケースに固定された被固 定部を設ける一方、ベース部材の切り欠き部両側に固定部を設け、これら両者を、固 定用の取付ネジを用いて、位置決め固定する。
[0005] このように、図示の構成は、モータシャフトと直交する方向力 挿入位置決め固定で きるので、取付け時に、ホトセンサモジュールがコードホイールに触れてコードホイ一 ルを損傷することなぐホトセンサモジュールを所定の位置に取付け、固定することが できるという効果がある。
[0006] しかし、モータケースには、被固定部を固定する必要があるので、被固定部を取り 付けるモータケース端面力 例えば平坦であるような特別の形状のものでなければな らず、標準的なモータに取り付けることはできない。このように、標準的なモータのモ ータケース端面が平坦でな 、ことはもちろん、通常のモータケース端面には軸受保 持部やモータ端子などの凹凸や部品などがあるのが一般的であり、標準モータへの 取り付けが考慮されておらず、現実的ではない。さらにカ卩えて、モータへの固定の信 頼性確保のためにネジ等を使用する必要があり、コストがかかるという問題もある。
[0007] 図 19は、光学式エンコーダのモータへの取付を例示する第 2の従来技術を示す図 である。 (A)は、光学式エンコーダを取り付けた小型モータの斜視図であり、(B)は、 基板上にコネクタ及びホトセンサモジュールを配置したセンサユニットを示す図である 。例示のセンサユニットの基板は、そこに形成されているモータ端子挿入用スリットに 、モータ端子を挿入した後に、基板表面力 半田付けすることにより固定される(モー タエンドベルに対向する面を「基板裏面」、その反対側面を「基板表面」と表す)。これ によって、図 18に示した従来技術が必要としたような特別の構成の被固定部を、モ ータに取り付ける必要は無く、標準モータに取り付けることが可能になる。
[0008] しかし、センサユニットの基板が、モータに対し、モータ端子部への半田付けのみで 固定されるので、基板は、モータエンドベルに対して浮いた状態になっている。図 17 は、この状態を説明する図である。この状態では、基板の端部に外力が掛カると基板 力 Sしなって破損してしまう恐れがあり、その対策として基板自体の強度が大き!/、ガラス エポキシ基板を用いる必要が生じ、高価になった。
[0009] また同様な外力が加わった際にモータ端子曲り(塑性変形)の懸念もある。モータ 端子が曲がってしまうとコードホイールとホトセンサの位置関係がずれてしまい正確な 信号を検知できなくなる。この不具合の改善策として、外力が加わった場合にモータ 端子が曲がり難くするため、モータ端子のモータエンドベル固定部 (支点)から基板 取付部 (作用点)までの距離を短くする必要があった。その結果、基板とモータエンド ベル間が狭くなつてしまうことから、基板の裏面側ではモータ端子部へ半田付けする ための作業空間が確保できず、モータ端子部と基板プリント配線部との半田付け接 続を、基板表面側で行わざるを得なくなる。ホトセンサユニットやコネクタの端子は、 通常の電子部品と同様に、基板に設けられた端子用穴を突き抜けて基板裏面側に て半田付け固定が行われる。それに対し、モータ端子部は前述のように基板表面側 で半田付け固定を行わなければならな 、ため、基板の両面側にプリント配線部を形 成した両面プリント配線基板を用いる必要があり、高価になる。また、モータ端子と基 板との接続を基板表面側のホトセンサモジュール側で半田付けするために、半田粒 やフラックスの飛散、付着によりホトセンサが誤動作する懸念があった。
[0010] ホトセンサモジュールのコードホイールに対する配置(相対位置)は、 目視で位置決 めしていたため、ホトセンサ位置決めが安定しない。また、モータエンドベル面に対 する基板平行度が出しにくいために、センサ出力が不安定になるという問題があった
[0011] 図 20は、光学式エンコーダのモータへの取付けを例示する第 3の従来技術を示す 斜視図である。 (A)と (B)は、見る方向のみを異にした同一モータを示している。ホト センサモジュール及びモータ端子はプリント基板へ接続され、基板上の配線により一 箇所にまとめられ、コネクタを介して入出力を行う。プリント基板は、上述の図 19に示 すような半円状であると、図 20 (B)に示す矢印方向の外力に対して基板がモータエ ンドベル側力も浮き上がってしまうため、 U字基板の両脚部をできる限り延ばして、基 板がモータ端面力 離れるのを防止している。しかし、プリント基板のコストは、規定サ ィズの一枚の母材力 何個切り取るかの取り数の影響が大きいため、このように表面 積を広くするとその分高価となる。
[0012] また、図示のプリント基板は、ホトセンサモジュール等の素子の半田付け面とモータ 端子の半田付け面が逆側になるため、両面プリント配線基板を使用せざるを得ず、コ スト高である。なお表面実装可能な素子を用いて、片面プリント配線基板にすることも 可能であるが、表面実装可能な素子はリフロー半田付けに耐える耐熱性が必要のた め、非常に高価である。
[0013] ホトセンサモジュール等の素子の端子を、モータエンドベルと基板の間には配置で きないため、図 20 (B)に示すように、モータ外径よりも外側に配置している。その分基 板が大きくなるため高価となり、また、モータ外径力も大きくはみ出すため、例えばプ リンター等の用途機器内部において大きなスペースが必要となる。
特許文献 1:特開 2002— 357457号公報
発明の開示
発明が解決しょうとする課題
[0014] 本発明は、係る問題点を解決して、センサユニットの基板をモータに対して、モータ 端子部でのみ固定可能にして、特別の構成の被固定部をモータに取り付ける必要を 無くし、標準モータに取り付け可能にすることを目的としている。
[0015] また、本発明は、基板自体或いはモータ端子自体には、外力による応力が集中し ない構成にして、高価な部品を使用する必要を無くすことを目的としている。
[0016] また、本発明は、センサユニットの基板と、モータエンドベル側との間に十分な隙間 を確保して、モータ端子部への半田付けを基板裏面側で行うことを可能にして、安価 な片面プリント配線基板の使用を可能にすると共に、半田付け時の半田粒やフラック スがホトセンサに飛散、付着して、誤動作することを防止することを目的としている。
[0017] さらに、本発明は、ホトセンサモジュールのコードホイールに対する位置決めを確実 にして、ホトセンサ出力が不安定にならな 、ようにすることを目的として!/、る。
課題を解決するための手段
[0018] 本発明の小型モータの光学式エンコーダ装置は、モータエンドベルに備えた軸受 保持部に収容される軸受を通ってモータ外部に延長するモータシャフトに取り付けら れたコードホイールと、該コードホイールの光学変調トラック部がホトセンサモジユー ルの間隙に位置決め配置されるように、該ホトセンサモジュールを取り付けた基板を 装着する。このホトセンサモジュールを固定した基板力 エンドベルとの間にスぺー サを挟んだ状態で、一対のモータ端子を基板のプリント配線部に半田付けすることに より、モータとスぺーサと基板が一体に固定される。スぺーサは、前記軸受保持部を 位置決めするための中央穴及び該中央穴に連続する導入路を有して、該導入路を 通してモータシャフトと直交方向力も挿入、位置決めできるように全体的には u字形 状に構成される。
[0019] また、本発明の小型モータの光学式エンコーダ装置の製造方法は、軸受保持部を 位置決めするための中央穴及び該中央穴に連続する導入路を有して、該導入路を 通してモータシャフトと直交方向力も挿入、位置決めできるように全体的には U字形 状に構成したスぺーサを、ホトセンサモジュールを取り付けた基板に対して一体に組 み立てることによりセンサユニットを構成する。このセンサユニットを、コードホイールを 取り付けたモータに対して、モータシャフトと直交する方向力も挿入、位置決めし、一 対のモータ端子を基板のプリント配線部に半田付けすることにより、モータとスぺーサ と基板を一体に固定する。
発明の効果
[0020] 本発明によれば、 U字形状スぺーサによりセンサユニットを剛体ィ匕したため、外力 による強度的な懸念がなくなると共に、スぺーサにより基板強度が補完されるため薄 厚の安価な基板の使用が可能となった。また、スぺーサを用いることで端子強度に依 存することなぐセンサユニットをモータに固定できるため、基板とモータ間のスぺー スを広くとれ、このスペースで半田付けが可能となり、安価な片面プリント配線基板の 使用が可能となった。
[0021] また、本発明によれば、 U字形状のスぺーサを使うことで、センサユニットをモータ へ固定する際に、ネジ等の追加部品を不要にして、標準的なモータに対して、モー タシャフトと直交方向から挿入、位置決めして取付けが可能となる。
[0022] また、本発明によれば、スぺーサにより端子への応力集中の心配がなくなり、基板と モータエンドベル間の遮蔽されたスペースで半田付けが可能となり、半田飛散による 不具合を防ぐことができる。
[0023] さらに、本発明によれば、スぺーサの一部品でモータに対する位置決め及びホトセ ンサの位置決めをして、センサ出力を安定ィ匕することが可能となる。
図面の簡単な説明
[0024] [図 1]図 1は、センサユニットを取り付けたモータの全体構成を示す斜視図であり、 (A )と(B)は、見る方向のみを異にする同一の小型モータを示している。 [図 2]図 2は、コードホイールを例示する図である。
[図 3]図 3は、ホトセンサモジュールの外観を例示する図である。
[図 4]図 4は、コネクタの外観を例示する図である。
[図 5]図 5は、基板裏面のプリント配線部を例示する図である。
[図 6]図 6は、それぞれ異なる方向力 見た同一のスぺーサを例示する斜視図である
[図 7]図 7は、基板の表側カゝらコネクタのプリント配線接続用端子を挿入した状態を示 す図である。
[図 8]図 8は、基板裏面側からスぺーサを挿入した状態を示す図である。
[図 9]図 9は、センサユニットとして、組立が完成した状態を示す図である。
[図 10]図 10は、ホトセンサモジュール係合部を拡大して示す図である。
[図 11]図 11は、コードホイールがモータシャフトに位置決め固定された状態のモータ を示す図である。
[図 12]図 12は、図 1とは異なる別の例のセンサユニットを取り付けたモータの全体構 成を示す斜視図であり、(A)と (B)は、見る方向のみを異にする同一の小型モータを 示している。
[図 13]図 13は、図 3とは異なる別の例のホトセンサモジュールの外観を例示する図で ある。
[図 14]図 14は、図 5とは異なる別の例の基板を例示する図である。
[図 15]図 15は、図 6とは異なる別の例の U字形状スぺーサを例示する図である。
[図 16]図 16は、スぺーサの作用を説明する図である。
[図 17]図 17は、図 19に示した従来技術の問題を説明する図である。
[図 18]図 18は、光学式エンコーダのモータへの取付けを例示する第 1の従来技術を 示す図である。
[図 19]図 19は、光学式エンコーダのモータへの取付けを例示する第 2の従来技術を 示す図である。
[図 20]図 20は、光学式エンコーダのモータへの取付けを例示する第 3の従来技術を 示す図である。 発明を実施するための最良の形態
[0025] 以下、例示に基づき本発明を説明する。図 1は、センサユニットを取り付けたモータ の全体構成を示す斜視図であり、(A)と(B)は、見る方向のみを異にする同一の小 型モータを示している。図示省略している力 モータケース内部には、固定子側磁極 となるマグネットが取り付けられる一方、モータシャフト上に積層コアと卷線によって構 成される回転子磁極と、整流子とを一体に組み付けて構成される回転子が回転可能 に取り付けられている。有底中空円筒状のモータケースの開口から、モータシャフト 上に一体に組み立てられた回転子を挿入した後、モータケースの開口を閉じるように 、エンドベルが嵌着される。整流子に接触する一対のブラシは、エンドベルの外部に 導出される一対のモータ端子にそれぞれ接続されている。外部電源力 ブラシ及び 整流子を介して供給された電流は、回転子磁極に巻かれた卷線に流れ、これによつ て、モータは回転することができる。このような小型モータ自体は、通常構成のもので ある。
[0026] モータシャフトは、モータケースの底部中央と、エンドベルの中央にそれぞれ位置 する軸受によって支持されている。エンドベル側の軸受は、エンドベルと一体に形成 された軸受保持部内に収容されて!ヽる。エンドベル側軸受を通してエンドベル外部 に伸びるモータシャフト延長部にコードホイール力 圧入等により位置決め、固定さ れている。なお圧入する場合はコードホイールの中央に位置するフランジ部に樹脂 を使うことが望ましい。他に強度を考慮して、フランジ部に鉄、真鍮、或いはアルミ- ゥムを使うことも考えられる。コードホイール自体は通常のものであり、図 2に例示した ように、円周上に等間隔に複数のスリットが設けられている光学変調トラックを有して、 モータシャフトの回転に伴ない、例えば 50パルス Z回転程度の信号を得るようになつ ている。コードホイールの一方の面側からの発光を、他方の側で受光する際、回転す るコードホイールのスリット部と非スリット部によって受光をオンオフすることにより、回 転速度及び位置を検出することができる。
[0027] ホトセンサモジュールは、図 3に例示したような外観を有しており、発光素子と受光 素子を対向するように配置し構成されている。このホトセンサモジュールの間隙に、コ ードホイールの光学変調トラック部が位置決め配置されるように、ホトセンサモジユー ルを固定した基板力 エンドベルとの間にスぺーサを挟んだ状態で、一対のモータ 端子を基板裏面側(エンドベルに面する側)のプリント配線部に半田付けすることによ り、モータとスぺーサと基板が一体に固定される。
[0028] 基板上には、 1つのコネクタが配置されている。図 4は、コネクタの外観を例示する 図である。外部力 モータゃホトセンサモジュールへ電源を供給し、また、エンコーダ 出力信号を取り出すための外部接続用端子、及び基板のプリント配線部に電気的に 接続されるプリント配線接続用端子が設けられている。図 5は、基板裏面のプリント配 線部を例示する図である。モータ端子及びホトセンサモジュール力もコネクタまでの 配線は、基板裏面側のプリント配線部によって行うことができる。コネクタ端子は、一 対のモータ端子に電源を供給する一対の端子と、発光素子に電源を供給する一対 の端子と、受光素子から信号を取り出す一対の端子 (但し、一方の端子は、発光素 子端子と共通にすることができる)とから成っている。
[0029] 次に、各部分の詳細を示す図及び組立工程図を参照して、センサユニットの組み 立て、さらには、センサユニットのモータへの取付について説明する。センサユニット の組立てに際しては、図 7に示すように、まず、基板の表側からコネクタ端子が挿入さ れて、基板裏面側でコネクタ端子はプリント配線部に半田付けされる。次に、基板裏 面側からスぺーサが取り付けられる。スぺーサは、安価な榭脂製にすることができ、 かつ、モータシャフトと直交方向力も挿入、位置決めできるように、全体的には U字状 の形状を有しており、例えば図 6に示すような外形を有している。なお、 U字状とは、 モータシャフト軸方向に (表面或!ヽは裏面側から)見たときに全体的には環状である 平面形状の一部を切り欠いて、その中央穴に連続する導入路を備えた形状を意味し 、図 6 (A)に表示したように、この導入路の両側部分を脚部と称している。
[0030] 図 6 (A)〜(D)は、それぞれ異なる方向力も見た同一のスぺーサの斜視図であり、
(A) (B)は表面側 (基板側)から、また (C) (D)は裏面側 (モータエンドベル側)から 見て 、る。モータシャフト軸方向に (表面或いは裏面側から)見たスぺーサの外形形 状は、基板に取り付けられる素子の端子半田付け部及び一対のモータ端子の半田 付け部を避ける形状を有して 、る。ホトセンサモジュールを位置決めするための 3個 の係合部は、基板に設けた対応する穴(図 7に例示のホトセンサモジュール位置決め 穴)を突き抜けて、基板表面側に装着されるホトセンサモジュールに係合する。スぺ ーサには、モータの軸受保持部に軽く嵌合されて位置決めするための中央穴、及び それに連続する導入路とその両側に位置する脚部が設けられている。この導入路の 中央穴への入り口部は、軸受保持部の外径より少し狭くしている。これによつて、モー タ組立て作業者が、全体的には U字形状にしたスぺーサによる弾性を利用して直交 方向力も挿入したときに、パチンという音と手への感触で、スぺーサ内径内に軸受保 持部が完全に収まったことを認識することができる。また、このスぺーサ表面側に設け られた基板端当接壁部は、基板端部を位置決めするのに役立つ。また、 2個のボス は、基板に設けた対応する穴(図 7に例示のボス穴)を突き抜ける長さを有している。
[0031] このような U字形状スぺーサのボス(2個を例示)及びホトセンサモジュール係合部( 3個)を、それらに対応してそれぞれ設けられているボス穴及びホトセンサモジュール 位置決め穴に対して、図 8に示すように、基板裏面側から挿入する。この際、スぺー サの基板端当接壁部に、基板端が当接する。その後、ボス先端を押しつぶすこと〖こ より、スぺーサを基板に対してカシメ止めする。スぺーサと基板の固着は、このような ボスカシメが、強度や作業工数面で望ましいが、他に接着や圧入などによっても固着 することはできる。このスぺーサの厚みによって、モータエンドベル面と基板裏面との 間に、所定の間隔を保持することができる。スぺーサ形状は、スぺーサを基板と組み 合わせた状態で、コネクタとかホトセンサモジュール等の基板に取り付けられる素子 の端子部、及びモータ端子部に、スぺーサが当接することの無いような外形に形成さ れている。
[0032] 図 9は、センサユニットとしては、組立が完成した状態を示す図であり、図 10は、ホト センサモジュール係合部を拡大して示す図である。図示したように、スぺーサのホト センサモジュール係合部を位置決めにして、ホトセンサモジュールが取り付けられる 。その際、ホトセンサモジュールと、基板接触面とは接着剤を用いて固定することもで きる。このように、スぺーサの位置決め部にホトセンサを固着する際は、取付精度と固 着強度確保のため、ホトセンサモジュールを係合部に軽く圧入し、接着により補強す る。この圧入の位置決め精度を良くするため、係合部の圧入接触面側には、突起を 設けることができる(図 6参照)。或いは、図示した 3個のホトセンサモジュール係合部 とは別にスぺーサと一体に設けたフックのような係止爪(図示省略)の弾性力により、 ホトセンサモジュールを固定するよう構成することも可能である。この場合、接着は不 要となる。
[0033] 図 11は、コードホイール力 モータシャフトに位置決め固定された状態を示してい る。このモータに対して、図 9に例示したようなセンサユニットが、ホトセンサモジユー ルの間隙に、コードホイールが位置するように、モータシャフトと直交する方向力 揷 入、位置決めする。この位置決めは、モータの軸受保持部が、センサユニットのスぺ ーサの中央穴に嵌合すると共に、一対のモータ端子が、基板に設けた対応するスリ ット (モータ端子挿入用スリット)に挿入されることにより適切に行われる。軸受保持部 位置決め部(中央穴)とホトセンサ位置決め部 (係合部)がーつの部品であるスぺー サに形成されているため、コードホイールに対するホトセンサの精度の良い位置決め が可能となる。その後、モータ端子と基板のプリント配線部を、基板の裏面側 (エンド ベル対向面側)から半田付けすることにより、電気的接続がなされるだけでなぐモー タとセンサユニットが一体に固定される。また、スぺーサと基板をボスカシメにより固着 可能としたことにより、センサユニットをオフラインで生産でき、モータ側面よりセンサ ユニットのワンタッチ取付が可能となる。スぺーサの使用により基板強度を補完できる ため、モータ端子のサイズ、位置、強度に関係なぐモータ端子を変更しないで標準 仕様のモータが使用可能となる。
[0034] このように、 U字形状のスぺーサを使い、標準モータの外部に光学式エンコーダを 構成するコードホイールとホトセンサを取付けることができる。図 16に示すように、モ ータエンドベルと基板の間に位置することになるスぺーサを、基板の台座として使用 して基板強度を補完することにより、外力に対する信頼性が向上し、かつ薄厚の安価 な基板、例えば片面銅張フエノール基板の使用が可能となる。また、スぺーサを、基 板の台座として使用することにより、基板の取付平行度を安定させることができる。ス ぺーサは、モータエンドベル面のブラシ開き穴(モータ組立時に整流子上にブラシが 位置するようにそれを開くための治具を挿入するための穴)を塞ぎ、ブラシ磨耗粉の 飛散、付着によるホトセンサの誤動作を防止することができる。また、モータエンドべ ルと基板の間に一定のスペースを形成し、閉じた空間でのモータ端子半田付けを可 能とする。このように、モータ端子と基板をコネクタとホトセンサの取付半田と同じ側で 半田付けすることにより、安価な片面プリント配線基板の使用が可能となり、またスぺ ーサによって形成された遮断スペースで半田付けを行うため、ホトセンサやコードホイ ールへの半田飛散及び付着を防止できる。
[0035] 図 12は、図 1とは異なる別の例のセンサユニットを取り付けたモータの全体構成を 示す斜視図であり、(A)と (B)は、見る方向のみを異にする同一の小型モータを示し ている。図示のホトセンサモジュールにはそれ自体に、後述するように、取り付け及び 位置決めのためのボスが備えられている。それ故に、図 1に例示したモータとは、ホト センサモジュールが固定される基板構成、及びその裏面に位置する U字形状スぺー サの形状を異にする力 それ以外の構成は同一である。
[0036] ホトセンサモジュールは、図 13に例示したような外観を有している。図 3を参照して 説明したホトセンサモジュールと同じぐ発光素子と受光素子を対向するように配置し 、かっこのホトセンサモジュールの間隙に、コードホイールの光学変調トラック部が位 置決め配置されると共に、裏面には、プリント配線接続用端子が導出されている。こ れにカ卩えて、図 13に示すホトセンサモジュールは、その裏面に、位置決め用のボス( 2個を例示)が突出している。
[0037] 図 3に例示のホトセンサモジュールは、例えば、 50パルス Z回転の低解像度でァ ナログ的に信号を処理するアナログ式であるのに対して、図 13に例示のホトセンサモ ジュールは、例えば、 448パルス Z回転の高解像度でディジタル的に信号を処理す るディジタル式である。ディジタル式は、読み取った信号の補正が可能であるという特 徴を有しているので、ホトセンサモジュールの取付位置精度において、アナログ式ほ どの厳密さが要求されない。このため、ディジタル式のような厳密な取付位置精度が 要求されないホトセンサモジュールは、例示したように、ホトセンサモジュール自体に 備わっている位置決め用のボスを利用して、位置決めし、配置することが可能となる。
[0038] 図 14は、図 5とは異なる例の基板を例示する図である。図 14に例示の基板は、図 5 に例示の基板と同じぐ基板裏面側にプリント配線部(図示省略)を有すると共に、モ ータ端子挿入用スリット、コネクタ端子用穴、ホトセンサモジュール端子用穴、スぺー サボス用穴を有している。これに加えて、図 14の基板は、上述のホトセンサモジユー ル位置決め用ボスに対応する位置に、ホトセンサモジュール位置決め用穴(2個)が 備えられている。
[0039] 図 15は、図 6とは異なる例の U字形状スぺーサを例示する図である。図 6と同様に 、図 15のスぺーサには、モータの軸受保持部に軽く嵌合されて位置決めするための 中央穴、それに連続する導入路とその両側に位置する脚部、スぺーサ表面側に設け られた基板端当接壁部、及び基板に設けた対応するスぺーサボス用穴(図 14)を突 き抜ける長さを有しているボス(3個を例示)が備えられている。同様に、この導入路の 中央穴への入り口部は、軸受保持部の外径より少し狭くしている。しかし、図 6に例示 の U字形状スぺーサには、ホトセンサモジュールを位置決めするための 3個の係合 部が備えられていたのに対して、図 15に例示のスぺーサには、このような係合部が 備えられていない。
[0040] 次に、図 13に示すような位置決め用ボスを有するホトセンサモジュールを用いたセ ンサユニットの組み立て、及びセンサユニットのモータへの取付につ 、て説明する。 センサユニットの組立てに際しては、まず、基板の表側力 コネクタ端子及びホトセン サモジュールの端子及びボスが挿入される。ホトセンサモジュールの取り付け及び位 置決めに際して、ホトセンサモジュール裏面に設けた位置決め用ボスと、それに対応 して基板に設けられたホトセンサモジュール位置決め用穴が利用される。コネクタ端 子及びホトセンサモジュールの端子及びボスをそれぞれ挿入した後に、それぞれの 端子は、基板裏面側でプリント配線部に半田付けされる。なお、ボスを有するホトセン サモジュールを基板に取り付ける際に、接着剤を用いて固定する事もできる。
[0041] 次に、基板裏面側からスぺーサが取り付けられる。この際、スぺーサのボス(3個)を 、それに対応して設けられている基板のスぺーサボス用穴に挿入し、スぺーサの基 板端当接壁部に基板端を当接させる。その後、ボス先端を押しつぶしてスぺーサを 基板に対してカシメ止めする等により固着して、センサユニットとしての組立を完成さ せる。この際、モータ端子挿入用スリット及び基板の各素子端子用穴は、スぺーサ外 形の外側にはみ出した位置に設けられている。
[0042] 次に、この完成したセンサユニットは、コードホイールがモータシャフトに位置決め 固定された状態のモータに対して組み付けられ、その後、モータ端子を基板に対し て半田付けし、一体に固定するが、この組み立て及び固定は、図 1を参照して説明し た例と同じように行うことができる。このようにして組み立てられたエンコーダ付モータ は、図 12 (B)に見られるように、スぺーサは、素子端子半田付け部及びモータ端子 半田付け部を避けるように、部分的に切除した形状とすることにより、スぺーサによつ て、基板とモータ間のスペースを広くとれるだけでなぐこのスペースに素子端子半田 付け部を配置することが可能となる。これによつて、基板をモータ外径よりも外側に大 きくはみ出させる必要はなぐその分基板を小さぐそれ故エンコーダ付モータの全 体構成を小さくすることが可能となる。また、スぺーサによって、基板とモータ間のス ペースを広くしたことにより、モータ端子を基板裏面で半田付けすることが可能となり 、これによつて、安価な片面配線基板の使用が可能となる。

Claims

請求の範囲
[1] モータエンドベルに備えた軸受保持部に収容される軸受を通ってモータ外部に延長 するモータシャフトに取り付けられたコードホイールと、該コードホイールの光学変調 トラック部がホトセンサモジュールの間隙に位置決め配置されるように、該ホトセンサ モジュールを取り付けた基板を装着する小型モータの光学式エンコーダ装置におい て、
前記ホトセンサモジュールを固定した基板力 エンドベルとの間にスぺーサを挟ん だ状態で、一対のモータ端子を基板のプリント配線部に半田付けすることにより、モ 一タとスぺーサと基板が一体に固定され、かつ、
前記スぺーサは、前記軸受保持部を位置決めするための中央穴及び該中央穴に 連続する導入路を有して、該導入路を通してモータシャフトと直交方向から挿入、位 置決めできるように全体的には U字形状に構成された小型モータの光学式ェンコ一 ダ装置。
[2] 前記基板を突き抜けてスぺーサと一体に形成された位置決め部を基準にして、前記 スぺーサに、前記ホトセンサモジュールが位置決めされて、固定される請求項 1に記 載の小型モータの光学式エンコーダ装置。
[3] 前記基板には、外部接続用のコネクタを装着し、かつ、前記一対のモータ端子及び 前記ホトセンサモジュールに接続するプリント配線部を全て基板裏面側に配置した 片面プリント配線基板が用いられる請求項 1に記載の小型モータの光学式ェンコ一 ダ装置。
[4] 前記スぺーサは、前記軸受保持部に軽く嵌合されると共に、該スぺーサと基板は力 シメにより固定される請求項 1に記載の小型モータの光学式エンコーダ装置。
[5] 前記スぺーサは、前記基板に取り付けられる素子の端子半田付け部及び前記一対 のモータ端子の半田付け部を避ける形状を有する請求項 1に記載の小型モータの光 学式エンコーダ装置。
[6] 前記ホトセンサモジュールの基板への固定は、接着剤を用いた接着により、或いは 前記スぺーサに一体に設けたフックにより行われる請求項 1に記載の小型モータの 光学式エンコーダ装置。 モータエンドベルに備えた軸受保持部に収容される軸受を通ってモータ外部に延長 するモータシャフトに取り付けられたコードホイールと、該コードホイールの光学変調 トラック部がホトセンサモジュールの間隙に位置決め配置されるように、該ホトセンサ モジュールを取り付けた基板を装着する小型モータの光学式エンコーダ装置の製造 方法において、
前記軸受保持部を位置決めするための中央穴及び該中央穴に連続する導入路を 有して、該導入路を通してモータシャフトと直交方向から挿入、位置決めできるように 全体的には U字形状に構成したスぺーサを、前記ホトセンサモジュールを取り付けた 基板に対して一体に組み立てることによりセンサユニットを構成し、
該センサユニットを、コードホイールを取り付けたモータに対して、モータシャフトと 直交する方向から挿入、位置決めし、
一対のモータ端子を基板のプリント配線部に半田付けすることにより、モータとスぺ ーサと基板を一体に固定する、
ことから成る小型モータの光学式エンコーダ装置の製造方法。
PCT/JP2005/017576 2004-09-28 2005-09-26 小型モータの光学式エンコーダ装置及びその製造方法 WO2006035686A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2005800328068A CN101032065B (zh) 2004-09-28 2005-09-26 小型马达的光学式编码器装置及其制造方法
US11/575,337 US7414238B2 (en) 2004-09-28 2005-09-26 Optical encoder device for small-sized motor and method of producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-281366 2004-09-28
JP2004281366 2004-09-28
JP2005275028A JP4542009B2 (ja) 2004-09-28 2005-09-22 小型モータの光学式エンコーダ装置及びその製造方法
JP2005-275028 2005-09-22

Publications (1)

Publication Number Publication Date
WO2006035686A1 true WO2006035686A1 (ja) 2006-04-06

Family

ID=36118832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017576 WO2006035686A1 (ja) 2004-09-28 2005-09-26 小型モータの光学式エンコーダ装置及びその製造方法

Country Status (4)

Country Link
US (1) US7414238B2 (ja)
JP (1) JP4542009B2 (ja)
CN (1) CN101032065B (ja)
WO (1) WO2006035686A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007116801A1 (ja) * 2006-04-03 2009-08-20 三菱電機株式会社 電子機器筐体
US20100153981A1 (en) * 2008-12-15 2010-06-17 Samsung Electro-Mechanics Co., Ltd. Disk drive
JP2017150956A (ja) * 2016-02-25 2017-08-31 アルプス電気株式会社 位置検出装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4964612B2 (ja) 2007-02-19 2012-07-04 マブチモーター株式会社 小型モータの光学式エンコーダ装置
JP4901570B2 (ja) * 2007-04-26 2012-03-21 株式会社リコー センサ基板の取付構造、駆動ユニット、画像形成装置
JP4908329B2 (ja) * 2007-06-28 2012-04-04 株式会社リコー 被検知体の移動速度制御装置、光学式エンコーダの製造方法及び画像形成装置
JP2009017745A (ja) * 2007-07-09 2009-01-22 Sanyo Electric Co Ltd 光学式検出器を備えたギアードモータ
JP2009017744A (ja) * 2007-07-09 2009-01-22 Sanyo Electric Co Ltd 光学式検出器を備えたギアードモータ
KR100949540B1 (ko) 2008-01-18 2010-03-25 주식회사 유진로봇 조립과 구조가 간단한 인크리멘탈 타입의 광 엔코더
JP5281916B2 (ja) * 2009-02-10 2013-09-04 山洋電気株式会社 小型モータ
GB2468298B (en) * 2009-03-03 2014-05-28 Dyson Technology Ltd Holder for a position sensor
JP5249129B2 (ja) * 2009-05-25 2013-07-31 日立オートモティブシステムズ株式会社 モータ駆動装置
CN102118082A (zh) * 2011-03-16 2011-07-06 梁昌勇 一种指状传感器的固定装置
US8946955B2 (en) * 2012-01-04 2015-02-03 Watts C Cutter, III Drilling motor optical encoder mounting apparatus and method of installation
CN104054242A (zh) * 2012-01-20 2014-09-17 株式会社Tms 永磁型旋转电机
WO2013115031A1 (ja) * 2012-01-31 2013-08-08 コーデンシ株式会社 エンコーダ用センサ取り付け体、ドラムディスク型エンコーダ及びこれらを用いたエンコーダ付きモータ
JP6008231B2 (ja) * 2012-02-28 2016-10-19 株式会社リコー モーター、モーター駆動装置、シート搬送装置、及び画像形成装置。
JP6024631B2 (ja) * 2013-09-19 2016-11-16 株式会社デンソー 車両用回転電機
DE102014213324A1 (de) * 2014-07-09 2016-01-14 Zf Friedrichshafen Ag Elektromechanischer Stellantrieb
DE102015208121A1 (de) * 2015-04-30 2016-11-03 Prüftechnik Dieter Busch AG Verfahren zur Gewinnung von Informationen aus einem Kodierkörper, System mit einem Kodierkörper, Computerprogrammprodukt und Datenspeichermittel
WO2018003105A1 (ja) * 2016-06-30 2018-01-04 株式会社安川電機 回転電機及び回転電機の駆動システム
CN106026536B (zh) * 2016-08-08 2018-12-18 成都茂源科技有限公司 直驱式球磨机永磁同步电机转子位置采集方法及装置
JP6770033B2 (ja) * 2018-09-06 2020-10-14 ファナック株式会社 エンコーダの回転部材の取り付け構造およびエンコーダの回転部材の取り付け方法
CN109256908A (zh) * 2018-10-22 2019-01-22 湖北开特汽车电子电器系统股份有限公司 一种非接触式角度反馈直流风门执行器
CN110611403A (zh) * 2019-08-12 2019-12-24 珠海格力电器股份有限公司 光电编码器和伺服电机一体化装配结构及其装配方法
FR3108974B1 (fr) * 2020-04-06 2022-04-01 Valeo Equip Electr Moteur Dispositif de mesure de position de rotor pour unité de stator de machine électrique tournante
CN118525421A (zh) * 2022-04-13 2024-08-20 日立安斯泰莫株式会社 电动马达的驱动控制装置
US12054359B1 (en) * 2023-07-12 2024-08-06 Otis Elevator Company Roller guide mounted elevator monitoring systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143009U (ja) * 1977-04-15 1978-11-11
JPS63185523U (ja) * 1987-05-21 1988-11-29
JPH0716566U (ja) * 1993-08-11 1995-03-17 マブチモーター株式会社 小型モータ
JP2003014497A (ja) * 2001-06-27 2003-01-15 Samutaku Kk エンコーダ、およびエンコーダの取り付け方法
JP2003199297A (ja) * 2001-12-24 2003-07-11 Pwb Ruhlatec Industrieprodukte Gmbh モータ・センサシステム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3693023A (en) * 1970-12-29 1972-09-19 Dynamics Res Corp Electro-optical tachometer
US3894232A (en) * 1974-05-08 1975-07-08 Teletype Corp Rotationally adjustable support mechanism
JPS5810595B2 (ja) 1977-05-20 1983-02-26 株式会社日立製作所 タ−ボ圧縮機の自動運転制御装置
JPS63185523A (ja) 1987-01-28 1988-08-01 Mitsubishi Electric Corp 放電加工装置
JP3024693B2 (ja) 1993-06-30 2000-03-21 オルガノ株式会社 水処理用分離膜の洗浄方法
JP2002357457A (ja) 2001-06-01 2002-12-13 Canon Precision Inc 光学式エンコーダ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143009U (ja) * 1977-04-15 1978-11-11
JPS63185523U (ja) * 1987-05-21 1988-11-29
JPH0716566U (ja) * 1993-08-11 1995-03-17 マブチモーター株式会社 小型モータ
JP2003014497A (ja) * 2001-06-27 2003-01-15 Samutaku Kk エンコーダ、およびエンコーダの取り付け方法
JP2003199297A (ja) * 2001-12-24 2003-07-11 Pwb Ruhlatec Industrieprodukte Gmbh モータ・センサシステム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007116801A1 (ja) * 2006-04-03 2009-08-20 三菱電機株式会社 電子機器筐体
JP4656234B2 (ja) * 2006-04-03 2011-03-23 三菱電機株式会社 エンコーダ
US7939796B2 (en) 2006-04-03 2011-05-10 Mitsubishi Electric Corporation Electronic device housing
US20100153981A1 (en) * 2008-12-15 2010-06-17 Samsung Electro-Mechanics Co., Ltd. Disk drive
US8321883B2 (en) * 2008-12-15 2012-11-27 Samsung Electro-Mechanics Co., Ltd. Disk drive with encoder holder indentation
JP2017150956A (ja) * 2016-02-25 2017-08-31 アルプス電気株式会社 位置検出装置

Also Published As

Publication number Publication date
US7414238B2 (en) 2008-08-19
US20080001106A1 (en) 2008-01-03
CN101032065A (zh) 2007-09-05
JP2006129692A (ja) 2006-05-18
JP4542009B2 (ja) 2010-09-08
CN101032065B (zh) 2010-09-08

Similar Documents

Publication Publication Date Title
JP4542009B2 (ja) 小型モータの光学式エンコーダ装置及びその製造方法
JP4964612B2 (ja) 小型モータの光学式エンコーダ装置
US7362242B2 (en) Optical encoder device for small-sized motor and method of producing the same
JP5069210B2 (ja) 回転角度センサ
EP0793101B1 (en) Rotation detector
CN201133933Y (zh) 磁场测量设备和具有该磁场测量设备的电动机
US20080309204A1 (en) Circuit board and brushless motor using the same
CN112398286A (zh) 用于测量机轴的角位置的装置
CN113167602B (zh) 绝对编码器
US5319277A (en) Electro-dynamic machine with an integral electrical service circuit
JP2008011674A (ja) プリント回路基板固定モータ
CN114270144B (zh) 旋转角度测量装置、旋转角度测量系统和电机
JP2013042659A (ja) Dcブラシレスモータを有する電動工具
JP4857785B2 (ja) エンコーダ付モータ及びその組立方法
JP4967852B2 (ja) 磁気式エンコーダ及びモータ
JP2010166680A (ja) 制御回路部材及びモータ
CN210839241U (zh) 编码器和马达
CN111490644B (zh) 编码器及带编码器的电动机
JP3433120B2 (ja) センサー装置およびこれを用いたブラシレスモータ
JP7394570B2 (ja) ブラシレスモータ
CN220629109U (zh) 一种采用霍尔编码器控制运转角度的步进电机
JP7274294B2 (ja) エンコーダの製造方法、エンコーダおよびエンコーダ付きモータ
JPH06284641A (ja) エンコーダ
JPH10146023A (ja) 電動機
JP3456745B2 (ja) モ−ルドモ−タ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11575337

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580032806.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11575337

Country of ref document: US