WO2006035082A1 - Genes g mutantes del virus de la septicemia hemorrágica de la trucha (vhsv) y aplicaciones - Google Patents

Genes g mutantes del virus de la septicemia hemorrágica de la trucha (vhsv) y aplicaciones Download PDF

Info

Publication number
WO2006035082A1
WO2006035082A1 PCT/ES2005/000459 ES2005000459W WO2006035082A1 WO 2006035082 A1 WO2006035082 A1 WO 2006035082A1 ES 2005000459 W ES2005000459 W ES 2005000459W WO 2006035082 A1 WO2006035082 A1 WO 2006035082A1
Authority
WO
WIPO (PCT)
Prior art keywords
mutant
mutation
hsv
gene
hsvv
Prior art date
Application number
PCT/ES2005/000459
Other languages
English (en)
French (fr)
Inventor
Julio Coll Morales
Original Assignee
Instituto Nacional De Investigación Y Tecnologia Agraria Y Alimentaria (Inia)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Nacional De Investigación Y Tecnologia Agraria Y Alimentaria (Inia) filed Critical Instituto Nacional De Investigación Y Tecnologia Agraria Y Alimentaria (Inia)
Priority to EP05857623A priority Critical patent/EP1818403A1/en
Priority to US11/574,369 priority patent/US20070269459A1/en
Publication of WO2006035082A1 publication Critical patent/WO2006035082A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/205Rhabdoviridae, e.g. rabies virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • C12N7/04Inactivation or attenuation; Producing viral sub-units
    • C12N7/045Pseudoviral particles; Non infectious pseudovirions, e.g. genetically engineered
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5254Virus avirulent or attenuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/13Tumour cells, irrespective of tissue of origin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes

Definitions

  • the invention relates, in general, to mimicking G genes of trout hemorrhagic septicemia virus (HSVV), which encode HSV mutant G proteins capable of binding to cells susceptible to being infected by defective HSV or void
  • HSV mutant G genes can be used, among other applications, in the preparation of vaccines to prevent HSV disease caused in animals susceptible to being infected by HSV.
  • Rhabdoviruses are one of the major causes of mortality in fish farms, causing major losses in the salmon farming industry.
  • the hemorrhagic septicemia virus (HSVV) originated in Europe but recently extended to America, is one of the most dangerous since it not only affects salmonids but also cod, turbot, sea bass, eels, roosters and prawns.
  • HSVV hemorrhagic septicemia virus
  • HSVV is a rhabdovirus whose viral particle, approximately 170 x 80 nm, is composed of an inner nucleocapsid, which encloses a single-stranded RNA molecule of negative polarity [ssRNA (-)] with 11,000 bases and a molecular weight of 5-6 , 4 x 10 kDa, and a bullet-shaped outer shell, composed of a lipoprotein membrane and trimeric protein spicules that project outward from it.
  • the complete HSV genome has already been sequenced (Heike et al., 1999).
  • the virus is composed of L, G, N, Ml and M2 proteins. Protein L (190 IcDa), associated with viral RNA, has transcriptase and replicase activity.
  • the G or pG protein (65 IcDa) is a glycoprotein that forms the trimeric spicules, responsible for the production of neutralizing (Ac) antibodies.
  • Nucleoprotein N (40 kDa) of the nucleocapsid is the major protein. In VHSV an Nx protein antigenically related to the N protein has also been described, whose function is unknown.
  • the phosphoprotein Ml or P (19 IcDa) is associated with polymerase L.
  • the M2 or M protein (25 kDa) can be located either around the lipid membrane or inside the nucleocapsid.
  • the infection caused by rhabdovirus is initiated by the union of the latter, through the pG, to specific receptors in the outer membrane of the host and continues with a membrane fusion dependent on a drop in pH after the virus has been introduced into The cytoplasm of the cell by endocytosis. Once inside the cells, the rhabdovirus replicates in the cytoplasm, the virions mature and, finally, sprout by budding on the cell surface reaching lyse the cell.
  • VSV vesicular stomatitis virus
  • HSV vesicular stomatitis virus
  • HSV pG (118-161)
  • AcM ClO monoclonal antibody
  • the AcM ClO or anti-frgl 1, anti-p2 (82-109) and anti-p4 (123-144) (Fredericksen et al, 1999) antibodies inhibit viral fusion, suggesting that these regions might be involved in the fusion viral to the host animal cell.
  • mutant G genes are potentially useful for designing vaccines intended to confer protection to animals against HSV infection.
  • vaccines may, by way of illustration, be DNA vaccines or live attenuated vaccines.
  • the invention relates to a mutant G gene of
  • HSV encoding a mutant HSV pG that comprises at least one mutation and has the ability to fuse cells susceptible to being infected by defective or null VHSV.
  • the invention relates to a vector comprising said mutant G gene of the invention, as well as its use in the preparation of a vaccine intended to confer protection to. animals susceptible to being infected by HSV.
  • Host cells comprising said vector constitute a further aspect of this invention.
  • the invention in another aspect, relates to a mutant HSVV whose genome comprises said mutated G gene of the invention, June with the HSV gene gene.
  • the use of said HSVV was muted in the elaboration of a vaccine destined to confer protection to animals susceptible to being infected by HSV by means of an additional aspect of this invention.
  • host cells transfected or infected with said mutant HSVV constitute an additional aspect of this invention.
  • the invention relates to a vaccine comprising a mu Gianie gene of the invention, June with, optionally, one or more adjuvants and / or pharmaceutically acceptable carriers.
  • Said G-muieie gene may be incorporated into said neighbor or said HSV.
  • said vaccine is selected from a DNA vaccine and a lively live vaccine.
  • the invention relates to a transgenic non-human animal whose cells contain, integrated in its genome, a mutated G gene of the invention.
  • the invention relates to a mutated HSV pG encoded by said mutated G gene of the invention.
  • the process for obtaining said mutant pG constitutes an additional aspect of this invention.
  • Figure 1 shows the location, the number of amino acids changed in the 22 isolated HSVV and the percentage of nuclei in mutant syncytia in the corresponding region from amino acid 56 to 159 of the VHSV G protein.
  • the cisterns are in bold.
  • the disulfide bridges between CI 10 and Cl 52 are represented as a horizontal line connecting both cysteines (Einer-Jensen et al., 1998).
  • FIG. 2 shows the representative FACS profiles obtained by staining the EPC cells transfected with the different mutated HSV pGs and EPC cells not transfected with anti-pG polyclonal antibodies (AcPs).
  • EPC cell monolayers were transfected with plasmids pMCVl .4 encoding each of the HSV mutant pGs (pMCVl .4-pG mutants).
  • Monolayers of untransfected EPC cells were prepared in parallel. Two days later, both transfected and non-transfected EPC cells were stained with anti-pG AcPs and FITC-GAR. The cells were separated from the monolayers and analyzed by FACS. Experiments were repeated 2-6 times for each mutant.
  • FIG 3 shows the occurrence of syncytia (A) and the percentage of nuclei in syncytia induced by low pHs in EPC cells transfected with plasmids pMCV1.4 encoding for the HSV mutant pG (pMCV1.4-pG mutants) (B).
  • the invention relates, in general, to imitators of the G gene that encode mucosal G-HSV proteins, which comprise at least one mutation, wherein said mutation (or mutation) affecting (n) said pG mutants produce a defect, io ⁇ al or partial, in its ability to merge into cells susceptible to being infected by HSV.
  • the invention relates to a mutant G gene of VHSV encoding a mutant pG of VHSV, hereinafter a mutant G gene of the invention, wherein said mutant pG of HSV comprises at least one mutation and has a ability to merge into cells susceptible to being infected by defective or null VHSV.
  • the expression "ability to fuse to susceptible cells to be infected by defective HSVV” means that the mutation of HSV encoded by said gene of the invention is less capable of fusing to susceptible cells. HSV infected than the naive HSV pG taken as a reference.
  • the expression "ability to merge into susceptible cells to be infected by null HSVV" means that the mutated HSV pG encoded by said mutant G gene of the invention is in addition incapable of fusing to susceptible cells of be infected by HSV.
  • the fusion capacity of a VHSV G mutanie G protein can be determined by a transfected EPC cell-cell fusion assay. with a vector comprising the mutant G gene to be studied (encoding the HSV mutant G protein to be tested), as described in Example 1, in the section corresponding to the Materials and Methods.
  • the amino acid sequence of the wild-type VHSV naive pG (wt) taken here as a reference is that described by Thiry in VHSV Gepa 07.71 (Thiry, 1991).
  • the mutant G gene of the invention is based on said VHSV G gene nucleotide sequence (wt) and includes one or more mutations in different regions of said nucleotide sequence such that it encodes a mutant HSV pG comprising at least one mutation in its amino acid sequence with respect to the native pG and has the ability to fuse cells susceptible to being infected by defective or null VHSV.
  • mutation refers to the alienation of one or more nucleotides in the G gene of VHSV wt that will result in the change of at least one amino acid in the native pG of VHSV as a result of the expression of the nucleotide sequence where said alteration has occurred.
  • said HSV mutated pG comprises a single mutation, while, in another particular embodiment, said HSV mutant pG comprises two or more mutations.
  • the mutant G gene of the invention encodes a mutant HSV pG that comprises at least one mutation in its amino acid sequence with respect to the native pG and has an ability to fuse cells susceptible to being infected by HSV.
  • the mutant G gene of the invention encodes a mutant pG of HSVV that comprises at least one mutation in its amino acid sequence with respect to the naive pG and has an ability to fuse cells susceptible to being infected by HSV.
  • the mutant G gene of the invention comprises one or more mutations in the nucleotide sequence of the VHSV wt G gene that result in one or more mutations (amino acid changes or substitutions) in the amino acid sequence of the native pG giving rise, by ian ⁇ o, to a mugious pG that has the particularity that it is defective or void in terms of its fusion capacity, that is, it lacks partial or fully capable of binding to the HSV native pG receptors in cells susceptible to being infected with HSVV.
  • Such mutations encompass different domains of the HSV pG, such as the upstream domain of the p2 region, the phospholipid binding domain (p2), the downstream domain of the p2 region and in the p2 region. fusion peptide domain.
  • the mutant G gene of the invention encodes a mutant HSV pG whose mutation is located in the upstream domain p2, that is, from amino acid 58 to 80 of the amino acid sequence of the native HSV pG.
  • this type of mutations include the mutations: P65A and P79A.
  • the imitating G gene of the invention encodes a mutant pG of HSVV whose mutation is located in the phospholipid binding domain (p2) of the HSV pG, that is, from amino acid 82 to 109 of the sequence of amino acids from the native HSV pG.
  • this type of mutations include the mutations: I82S, L85S, P86A, P86AG98A, A96E, G98A, G98AH99S, Rl 03 A and R107A.
  • the mutant G gene of the invention encodes a mutant HSV pG whose mutation is located in the downstream p2 domain, that is, from amino acid 110 to 144 of the amino acid sequence of the native HSV pG.
  • the mutant G gene of the invention encodes a mutant HSV pG whose mutation is located in the fusion peptide domain of the HSV pG, that is, from amino acid 142 to 159 of the amino acid sequence of the native HSV pG.
  • Illustrative examples of this type of mutations include the mutations: F147K, P148K and Wl 54K.
  • mutant HSV pGs with the ability to fuse cells susceptible to being infected by defective or null HSVV are obtained, that is, they have partially lost or fully the ability to fuse cells susceptible to being infected by HSVV.
  • HSV pG is the viral protein responsible for the fusion of the virus to the cell susceptible to being infected by HSV as well as the viral protein responsible for the immune response of potential hosts of HSVV (susceptible animals if infected by HSVV), whereby the mutant G gene of the invention can be used to immunize animals susceptible to being infected by HSVV using a single gene of said virus as immunogen, such as the mutant G gene of the invention.
  • HSVV hosts or “animals susceptible to being infected with HSVV” refers to any animal that can be infected with HSVV and includes aquatic animals, for example, salmonids, such as urs, different species of salmon, etc., as well as other aquatic animals susceptible to being infected by HSV, such as cod, turbot, sea bass, eels, flatfish, and prawns.
  • aquatic animals for example, salmonids, such as urs, different species of salmon, etc.
  • other aquatic animals susceptible to being infected by HSV such as cod, turbot, sea bass, eels, flatfish, and prawns.
  • the mutant G gene of the invention has numerous applications.
  • the mutant G gene of the invention in the absence of all or part of the other HSV genome genes, and, optionally incorporated into appropriate vectors, is itself susceptible to several possible applications, as, for example, (i) in the elaboration of DNA vaccines, (ii) in the elaboration of live live vaccines constituted by complete Muhian VHSVs that contain a mutant G gene of the invention in June with the VHSV gene genes, (iii) in the generation of transgenic non-human animals, (iv) in the elaboration of reagents for the diagnosis of HSVV infection, etc.
  • the invention relates to a vector, hereinafter vector of the invention, comprising a mutant G gene of the invention.
  • said vector of the invention is a DNA plasmid or an expression vector capable of being expressed in eukaryotic cells, for example, in animal cells, comprising said mutant G gene of the invention.
  • the vector of the invention may also contain the elements necessary for the expression and translation of the mutant G gene of the invention as well as the regulatory elements of its transcription and / or translation.
  • the cells into which said vector of the invention has been expressed express a mutant HSV pG capable of fusing cells susceptible to being infected by defective or null HSVV, preferably null, but capable of immunizing the host against HSVV since said mutant pG is directed to the cell membrane, triggering response reactions Immune in the animal very similar to those caused by an infection with complete HSV.
  • the invention relates to the use of a vector of the invention in the elaboration of a vaccine intended to confer protection to animals susceptible to being infected by HSV.
  • said vaccine is a DNA vaccine.
  • mutant G gene of the invention can be used to obtain a complete mutant HSVV, that is, a HSVV containing a mutant G gene of the invention together with the remaining HSVV genes, which can be, independently of one another, native or mutant.
  • the invention is related to a possible mutant HSVV, hereinafter muted HSVV of the invention, whose genome comprises a muted G gene of the invention together with the rest of HSV genes, wherein said G mutated gene. encodes a mutant HSV pG, said mutant HSV pG comprising at least one mutation and said mutant pG of HSVV being able to fuse cells susceptible to being infected by defective HSV.
  • the genes of genes, different from the G muieie gene of the invention, that make up the VHSV muaniae of the invention can be, independently of one another, native or mutani.
  • the VHSV of the invention has the ability to fuse cells susceptible to being infected by defective VHSV and, by ianium, is capable of carrying out the function involved in the process of viral fusion to the cell membrane to only partially infect , so it would be dimmed.
  • the HSVV muiele of the invention after experimentally infecting cells susceptible to being infected by HSVV, expresses a mutant pG of HSVV with partial ability to fuse cells susceptible to being infected by HSVV, that is, with a reduced ability to infect new cells host unable to fuse 100% its membrane with the membrane of the host cell to be infected.
  • a mutant pG of HSVV with partial ability to fuse cells susceptible to being infected by HSVV, that is, with a reduced ability to infect new cells host unable to fuse 100% its membrane with the membrane of the host cell to be infected.
  • Muiah VHSVs would leave the host immunized.
  • said muted VHSV of the invention can be used for therapeutic purposes, for example, in the prevention of infection caused by HSV.
  • the invention relates to the use of said mutant HSVs in the production of vaccines intended to confer projection to animals susceptible to being infected by HSV.
  • said vaccines are live attenuated vaccines.
  • the mutant VHSVs of the invention can be obtained by conventional methods known to those skilled in the art. However, in a particular embodiment, said mutani HSVV of the invention can be obtained by reverse genetics techniques known to those skilled in the art.
  • the invention also relates, in another aspect, to a vaccine comprising a therapeutically effective amount of a mutant G gene of the invention and, optionally, one or more pharmaceutically acceptable adjuvants and / or vehicles.
  • said mutant G gene of the invention is incorporated into a vector of the invention while in another particular embodiment, said imitating G gene is incorporated into a mutant HSVV of the invention.
  • the vaccine provided by this invention is useful for protecting animals susceptible to being infected by HSV.
  • the term "therapeutically effective amount” refers to the amount of mutant G gene of the invention calculated to produce the desired effect and, in general, will be determined, among other causes, by the characteristics of the Mutant G gene of the invention used and the immunization effect to be achieved.
  • Pharmaceutically acceptable carriers that can be used to formulate a vaccine according to the present invention have to be sterile and physiologically compatible such as, for example, sterile water, saline, aqueous buffers such as PBS, alcohols, polyols and the like.
  • said vaccine may contain other additives, such as adjuvants, stabilizers, antioxidants, preservatives and the like.
  • Available adjuvants include but are not limited to aluminum salts or gels, carbomers, non-ionic block copolymers, tocopherols, muramyl dipeptide, oily emulsions, cytokines, etc. The amount of adjuvant to be added depends on the nature of the adjuvant itself.
  • the stabilizers available for use in vaccines according to the invention are, for example, carbohydrates, including sorbitol, mannitol, destrin, glucose and proteins such as albumin and casein, and buffers such as alkaline phosphates.
  • Available preservatives include, among others, thimerosal, mertiolate and gentamicin.
  • the vaccine provided by this invention may be administered by any appropriate route of administration that results in a protective immune response against HSVV, for which said vaccine will be formulated in a manner appropriate to the route of administration chosen.
  • the vaccine is formulated to be introduced into the animal when it is immersed in a bath that it contains said vaccine;
  • the vaccine is prepared for administration as an injectable.
  • said vaccine can be prepared in the form of an aqueous solution or suspension, in a pharmaceutically acceptable carrier, such as saline, phosphate buffered saline (PBS), or any other pharmaceutically acceptable carrier.
  • the vaccine provided by this invention can be a DNA vaccine (using a vector of the invention comprising a mutant G gene of the invention) or a live attenuated vaccine (based on a mutant HSVV of the invention whose genome comprises a mutant G gene of the invention).
  • the vaccine provided by the present invention can be prepared using conventional methods known to those skilled in the art. In a particular embodiment, said vaccine is prepared by mixing, if appropriate, a vector of the invention or a mutant HSVV of the invention, with, optionally, one or more adjuvants and / or pharmaceutically acceptable carriers. Additionally, the mutant G gene of the invention can be used in the generation of a transgenic non-human animal whose cells contain, integrated in its genome, a mutant G gene of the invention.
  • Said non-human animal can be any animal, such as an aquatic animal, for example, a fish.
  • said fish could be a salmonid, such as a trout.
  • the transgenic non-human animal provided by this invention expresses a mutant HSV pG that comprises at least one mutation and has the ability to fuse cells susceptible to being infected by defective or null VHSV.
  • Said transgenic non-human animals can be obtained by conventional methods, known to those skilled in the art, from, for example, a mutant G gene of the invention or a vector containing it, such as a vector of the invention.
  • the G gene mutant of the invention can be used in the preparation of reagents for the diagnosis of infection caused by HSVV, by for example, in obtaining probes for genetic tests, antibodies obtained in fish, etc. Obtaining antibodies against HSVV for diagnosis is problematic since its obtaining in mammals is not very efficient. At 37 0 C of the body of rabbits or mice, virus and proteins, especially pG, denatured and make it difficult to obtain high titers of anti-protein of VHSV in mammals.
  • the mutant G gene of the invention can be obtained by conventional methods known to those skilled in the art. However, in a particular embodiment, said mutant G gene of the invention can be obtained by inroducing the desired mutation by directed mutagenesis. To do this, briefly, as described in the section on Materials and Methods (Example), the plasmid vector pGEMTeasy-G, which contains the native HSV pG under the control of the T7 promoter, was subjected to a chain reaction of Polymerase (PCR) using 2 primers of 15 nucleotides each that provided the desired mutation for each mutation to be tested.
  • PCR Polymerase
  • the invention relates to a mutant pG of HSV encoded by a mutant G gene of the invention, hereinafter referred to as a muted pG of the invention, selected from a mutant pG that comprises the P65A mutation; a mugian pG that has the P79A mutation; a mutant pG that has the I82S mutation; a mugian pG that contains the L85S mutation; a mugian pG that has the P86A mutation; a mutant pG that has the P86AG98A mutation; a mugian pG that contains the A96E mutation; a mutant pG having the G98A mutation; a mugian pG that contains the G98AH99S mutation; a muGal pG that contains the mutation Rl 03 A; a mugian
  • Said mutant pGs of the invention contain one or two mutations and have the ability to fuse to susceptible cells to be infected by defensive or null HSVV.
  • the mutated G protein of the invention (resulting from the expression of the muted G gene of the invention) may be completely unable to fuse cells susceptible to being infected with HSVV (i.e., cell receptors or membranes of the invention).
  • VHSV native G-protein IaI as the identified VHSV mu-gian G proteins such as P65A, P86A, P86AG98A, A96E, G98A, G98AH99S, R107A, F115K, F147K, P148K and W154K (see Table 1) or capable of fusing to cells susceptible to being infected with HSVV although with less fusion capacity (i.e., with a binding capacity of the mutant G proteins to the cell membranes of the HSV native G protein less than the binding capacity of the G protein native to HSVV), such as the HSV mutant G proteins identified as P79A, L85S, R103A and T135E, which show an ability to fuse receptors between 9.2 ⁇ 3.5% at pH 5.0 (L85S ) and 27.7 ⁇ 4.1% at pH 5.0 (R103A) or 23.5 ⁇ 2.4% at pH 5.3 (P79A) [Table I].
  • the vector comprising the mutant G gene of the invention can also be used to transform or transfect an appropriate host cell, such as a eukaryotic cell, for example, a cell of a higher animal (mammal, fish, etc.), capable of expressing said mutant G gene and producing the corresponding mutant HSV pG.
  • an appropriate host cell such as a eukaryotic cell, for example, a cell of a higher animal (mammal, fish, etc.), capable of expressing said mutant G gene and producing the corresponding mutant HSV pG.
  • Said mutant G gene of the invention can be integrated into a chromosome of said cell or it can be present in said cell in the form of an episomal plasmid.
  • the transformation and transfection of said host cells can be carried out by conventional methods known to those skilled in the art.
  • the mutant G gene of the invention is incorporated into a vector, such as a vector of the invention, while, in another particular embodiment, said mutant G gene of the invention is incorporated into a mutant VHSV of the invention.
  • a host cell susceptible to being transformed, transfected or infected by HSV and capable of allowing virus growth can be used.
  • said host cell is the EPC cell line (Epithelioma Papullosum cyprisi), that is, a carp-derived epithelioma cell line.
  • Said host cells containing a mutant G gene of the invention either integrated into a chromosome or as an episomal plasmid, constitute a further aspect of this invention.
  • the invention in another aspect, relates to a method for producing a mutant pG of the invention comprising culturing a cell comprising a mutant G gene of the invention under conditions that allow the expression of said gene and, if desired, removing the mutant pG produced from the culture medium.
  • Culture conditions will depend, among other factors, on the cell used.
  • said host cell useful for the production of the mutant G protein of the invention is the EPC cell line. The following examples illustrate the invention and should not be considered as limiting its scope.
  • the pGEMTeasy-G carrier carrying the VHSV native pG gene was based on the pcDNAI construction [donated by Dr. Michel Brémont, INRA (Institute National Recherche Agronomique), Jouy in Josas, Paris, France] that It contains the HSV pG gene (isolated French 07.71) cloned into the pcDNAI vector (4.0 kbp) (Invitrogen), and subcloned into the commercial pcDNAI / Amp vector (4.8 kbp) (Invitrogen) [Fernández- Alonso, 1999] and subsequently in the commercial vector pGEMTeasy (Stratagene) under the control of the T7 promoter.
  • the pG mutant collection obtained in pGEMTeasy was subcloned into plasmid pMCV1.4 (Ready Vector, Madrid, Spain).
  • the HSV native pG gene was obtained by preparative digestion from 2 ⁇ g of the pGEMTeasy-G construct with EcoRI (10 U / ⁇ l) (GibcoBRL, Postfach, Germany) for 2 h at 37 0 C in a Techne dri-block device.
  • the vector pMCV1.4 was linearized.
  • the EcoRI was inactivated at 65 0 C for 15 minutes and then phosphatase SAP (shrimp alkaline phosphatase) (Roche, Barcelona, Spain) was added alkali.
  • the mixture was incubated at 37 0 C for 60 minutes and then alkaline phosphatase was inactivated at 65 0 C for 15 minutes.
  • the digestion products were separated on a 1% low melting point agarose gel (LMP), recovering and purifying the bands obtained with columns of the SNAP commercial kit (Invitrogen, Barcelona, Spain).
  • LMP low melting point agarose gel
  • Targeted mutagenesis was based on the Quick-Change method (Stratagene, La Jolla, Ca, USA) to generate the mutated G genes in plasmid pGEMTeasy-G (containing the native HSV pG gene) [Carneiro et al, 2001].
  • plasmid pGEMTeasy-G containing the native HSV pG gene
  • two 15-nucleotide oligos were designed, containing the desired mutations.
  • the oligos were extended by means of the polymerase chain reaction (PCR) using turbocharged Pfu DNA polymerase (Stratagene), generating mutant plasmids with unmethylated open chains containing the mutation introduced into the oligos.
  • the mixture was then treated with the specific Dpnl restriction endonuclease of methylated DNA, which digests only the chains of the initial parental DNA, the amplified plasmid remaining intact.
  • Said plasmid which contains the desired mutation, was subsequently used to transform competent XLl-blue cells (Stratagene).
  • the mutants of the mutated pG gene were subcloned into the EcoRI site of plasmid pMCV1.4 (Rocha et al, 2004a, Rocha et al., 2004b) following conventional methods for E.
  • coli ToplO (Fernández-Alonso et al., 1999) to give rise to the corresponding plasmids pMCV1.4-G (each carrying a mutant G gene with the desired mutation.
  • Large quantities of plasmid were prepared using the Megaprep Wizard DNA purification system (Promega, Madison, USA ) Plasmid solutions were adjusted to 0.5-1 mg / ml of total DNA (absorbance at 260 nm). Confirmation of the mutated sequences was carried out by sequencing the plasmids through the mutated region in both addresses.
  • EPC plámidos cell epithelioma tent Papulosum cyprini
  • the cells were transfected (approximately 100,000 cells / well) with 0.3 ⁇ g of the different pMCV1.4-G mutants previously complexed with 0.5 ml of Fugene 6 (Roche, Barcelona, Spain) (López et al., 2001; Rocha et al, 2004a; Rocha et al., 2004b) and incubated at 2O 0 C in 5% CO 2 for two days. Staining of transfected EPC cell monolayers
  • EPC cell monolayers were stained with anti-pG polyclonal antibodies (AcP) obtained in rabbits (provided by Dr. Lorenzen, Denmark) [Lorenzen & LaPatra, 1999], in culture medium containing 2% of rabbit serum, 2% goat serum and 2% E. coli extract, for 1 hour after permeabilization with 2-perm (BD-Biosciences, Becton-Dickinson, Spain) (to estimate cytoplasmic expression) or without permeabilization (to estimate membrane expression). The cells were then incubated with the fluorescent goat anti-rabbit Fab'2 fragment (FITC-GAR) (Caltag, S.
  • FITC-GAR fluorescent goat anti-rabbit Fab'2 fragment
  • EPC cells plated on 24-well plates were transfected with 0.6 mg of different pMCV1.4 mutants complexed with 2 ⁇ l of Fugene 6 (Fernández-Alonso et al, 1999; López et al, 2001; Rocha et al, 2002) and incubated at 2O 0 C. Two days later, the monolayers of transfected cells were incubated for 15 minutes in RPMI Dutch culture medium containing 20 mM HEPES / 20 mM MONTH (Sigma, Chem.
  • the labeled PS was added in a volume of 100 ⁇ l per well to the solid phase peptides (200 pmoles per well). After 4 hours of incubation at 2 ° C, the plates were washed and extracted with 100 ml / well of 2% sodium dodecyl sulfate (SDS) in 50 ⁇ M ethylenediamine, pH 11.5 at 6 ° C for 30 minutes. The supernatants were pipetted into 96-well plates of polyethylene tere ⁇ alate containing 100 ⁇ l per well of Hiload scintillation liquid (LKB, Loughtorough, R. Kingdom) and counted in a 1450-Microbeta scintillation counter (Wallac, Turku, Finland). The background binding obtained in the absence of peptides (1.25 pmoles per well) was subtracted from all data and the accounts were transformed into pmoles of PS.
  • LLB Hiload scintillation liquid
  • the translated amino acid sequences were highly conserved among the isolates.
  • the amino acid variations between HSVV isolates were mainly concentrated in two locations around positions 80 and 140 ( Figure 1). Thus, most of the changes were found in the R81 (arginine) position that changed to Q (glutamine) or K (Usina) [16 isolates], and in the D136 (aspartic) position that changed to N (asparagine) [14 isolated]. Less abundant amino acid variations were found in 2-4 isolates at positions 71, 80, 97, 112, 118, 138 and 139. The positions where amino acid variations were detected were excluded from the design of the mutant because it had not been described an altered fusion activity in any of those isolates.
  • the positions selected for the mutation were changed to A (alanine) when possible, or to an amino acid of physicochemical properties different from those of the mutated position, depending on the possibilities for each nucleotide changed.
  • Selected positions in the hypothetical phospholipid-binding peptide (p2 + frgl l) included the highly conserved P (proline) and G (glycine) destabilizing helices (P65, P79, P86 and G98) and the charged arginines located in the part terminal carboxyl (Rl 03 and Rl 07). All these amino acids were changed to A (alanine).
  • hydrophobic amino acids F 147, P 148 and Wl 54 located in the motif of the hypothetical fusion peptide (F 5 Y) PXPXXCX (WF), were conserved among 14 animal rhabdoviruses (walter & Kongsuwan, 1999), said amino acids were also mutated in HSVV to a charged amino acid (E or K).
  • Table 1 shows that the estimated percentage of transfected EPC cells expressing pG in their membranes, after averaging the results of 2-6 replicates per mutant, varied from 42.4 to 77.2% (except for I82S, that had not been expressed). 53.5 ⁇ 11% of EPC cells transfected with the native pG gene expressed pG in their membranes. Similarly, pG was expressed in 50.2-77.2% of EPC cells transfected with mimics P65A, L85S, P86A, P86AG98A, G98A, G98AH99S, R103A, R107A, F115A, P148K and W154K.
  • the P79A and A96E mimics were not transfected as efficiently as the rest of the mutants (42.5% and 44.5%, respectively) and the expression of the I82S mutant in the membrane of the transfected EPC cells was very low or not significantly different. of the basal levels (l, 3 ⁇ 0.3% of the transfected cells).
  • Figure 3 shows the typical appearance of syncytia and fusion kinetics obtained in EPC cell-cell fusion assays transfected with the G gene for the native G gene and its mutants.
  • the fusion for cells transfected with the native G gene was maximal at pH 5.6 and decreased to approximately 70% at pH 6.0 and up to 0% at pH 6.6.
  • Only EPC cells transfected with mutants P79A, L85S, Rl 03 A and T135E showed fusion activity.
  • the mutants Rl 03 A and T135E showed a maximum fusion at pH 5.0 and the percentage of nuclei in syncytia was reduced to 27.7 ⁇ 4.1% and 13.7 ⁇ 4.5%, respectively.
  • P79A and L85S mutants showed a maximum fusion at pH 5.3-5.6 and the percentage of nuclei in syncytia was also reduced to 23.5 ⁇ 2.4% and 9.2 ⁇ 3.5%, respectively.
  • the mutants P79A and L85S (ammo-terminal) and R103A (carboxy-terminal) flank the innermost sequences of the ⁇ 2 phospholipid binding domain.
  • mutants P86A, P86AG98A, A96E, G98A, G98AH99S and R107A were completely defective in fusion for all pH studied.
  • the I82S mutant although expressed in the cytoplasm, was not detected in the membranes of the transfected cells and, therefore, no conclusions could be drawn about its possible defective fusion properties (Table 1).
  • PS binding activity of the native sequence was 2.47 ⁇ 0.34 pmoles of PS per ⁇ g of peptide (Table 2).
  • PS binding activity only varied from 2, l ⁇ 0.46 to 4, l ⁇ 0.53 pmoles of PS per ⁇ g of peptide among the 15 synthetic peptides with changes in a single amino acid.
  • HSV mutant pGs have been obtained with conformational changes and defective fusion, reduced or altered to pH, in the ⁇ 2 phospholipid binding region and in peptides bound to the fusion region. Because the existence of VSV mutants defective in the fusion or with reduced fusion with a shift towards more acidic values of the optimum pH, has previously been interpreted as an indication of the role of these mutated positions in the fusion, it can be concluded that the The aforementioned regions also participate in the VHSV merger processes.
  • the mutants P79A, L85S, R103A and T135E were able to undergo the conformational changes at low pH that must precede the fusion, although P79A only fused 50% at a pH 0.3 units lower than the native pG, while the other mutants needed a pH of 5.0 (or lower) to reach 25-50% fusion.
  • the VHSV mutants resistant to neutralization by the AcM ClO that have lost their binding capacity to the ClM AcMs were still capable of carrying out the fusion and its mapped epitopes were related to the fusion of HSVV.
  • the HSVV mutants in which some fusion activity was maintained had mutations either flanking the innermost core of p2 (P79A, L85S and R103A) or in the hydrophilic loop (p4) between the peptides p2 and the fusion (T) 135E).
  • the change in physiological pH conformation at positions 140 or 433 (as estimated by the binding of the AcM ClO) and 235 (as estimated by the binding of the AcM 2Fl Al 2) did not prevent fusion.
  • the increase in the binding of AcMs ClO and 2F1A12 to the native pG at low pH could indicate that the low pH conformation required for the infection would be less affected by these mutations.
  • Figure 1 shows that mutants with fusion activity at positions P79 or L85 (ie, around position 80) and T135 (ie, around position 140) and mutants resistant to neutralization by the AcM ClO , mapped at positions either around amino acid 80 or around amino acid 140, the two locations around which the number of amino acid changes in the 22 isolates of VHSV was the highest.
  • the locations around amino acid variations in natural isolates of specific mutants and resistant to monoclonal antibodies that retained fusion activity suggest that, in order to preserve fusion activity, most changes of amino acids allowed in region 56-159 are those around positions 80 and 140.
  • the pG with mutations within the hypothetical fusion peptide (F147A, P 148 A and Wl 54A), were completely defective in fusion for all the pHs studied, despite being expressed in the membrane of transfected EPC cells at a level similar to that of the wild strain or mimics with some activity in the fusion (Table 1).
  • the F125Y and P126L mutants of VSV showed respectively a 34% and 48% fusion reduction compared to that obtained with the native pG (Shokralla et al., 1999), while in the equivalent mutants F147K and P148K of VHSV, the fusion reduction was 100%.
  • the lower fusion activity observed in VHSV could be due to the more drastic amino acid changes introduced into the HSV mutants. Alternatively, it could be due to differences in the conditions of cell-cell fusion assays (exposure to low pH for 2 or 15 minutes in VSV or VHSV, respectively).
  • mutations described in the present invention could be used to design attenuated vaccines against HSVV, including DNA vaccines with the mutant G gene (Anderson, 1996a; Anderson, 1996b; Fernández-Alonso, 2001) or mutant HSVV obtained by genetic methods reverse (Biacchesi et al, 2002; Biacchesi et al., 2000).
  • Radioactively labeled PS was estimated by solid phase binding coated with synthetic mutant peptides derived from the partial sequence of p2 ( 93 SAVASGYLHRVTYRio 7 ). The counts above the background value were converted to pmoles of PS per ⁇ g of peptide and the averages from two different experiments were performed in triplicate and their standard deviations represented. The amino acid sequences are shown in one letter code. The mutated amino acids are in bold type.
  • VHSV viral hemorrhagic septicemia virus
  • EPC epithelioma papulosum cyprinid

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Los genes G mutantes del virus de la septicemia hemorrágica de la trucha (VHSV) codifican proteínas G mutantes de VHSV con capacidad de unión a células susceptibles de ser infectadas por VHSV defectiva o nula. Dichos genes G mutantes de VHSV pueden ser utilizados, entre otras aplicaciones, en la elaboración de vacunas (vacunas ADN o vacunas vivas atenuadas) para prevenir la enfermedad causada por VHSV en animales susceptibles de ser infectados por VHSV, en la generación de animales no humanos transgénicos y en la elaboración de reactivos para el diagnóstico de la infección causada por VHSV.

Description

GENES G MUTANTES DEL VIRUS DE LA SEPTICEMIA HEMORRÁGICA DE LA TRUCHA (VHSV) Y APLICACIONES
CAMPO DE LA INVENCIÓN La invención se relaciona, en general, con genes G imitantes del virus de la septicemia hemorrágica de la trucha (VHSV), que codifican proteínas G mutantes de VHSV con capacidad de unión a células susceptibles de ser infectadas por VHSV defectiva o nula. Dichos genes G mutantes de VHSV pueden ser utilizados, entre otras aplicaciones, en la elaboración de vacunas para prevenir la enfermedad causada por VHSV en animales susceptibles de ser infectados por VHSV.
ANTECEDENTES DE LA INVENCIÓN
Los rabdovirus son una de las mayores causas de mortalidad en los criaderos de peces, provocando grandes pérdidas en la industria de la cría del salmón. Entre los rabdovirus que afectan a peces (novirabdovirus), el virus de la septicemia hemorrágica (VHSV), originado en Europa pero recientemente extendido a América, es uno de los más peligrosos ya que no sólo afecta a salmónidos sino también al bacalao, rodaballos, corvinas, anguilas, gallos y gambas. A pesar de los esfuerzos, incluyendo existosas vacunas ADN a nivel de laboratorio, ninguna vacuna comercial contra el VHSV está todavía disponible.
El VHSV es un rabdovirus cuya partícula viral, de 170 x 80 nm aproximadamente, se compone de una nucleocápsida interior, que encierra una molécula de RNA monocatenario de polaridad negativa [ssRNA(-)] con 11.000 bases y un peso molecular de 5-6,4 x 10 kDa, y una envoltura exterior en forma de bala, compuesta por una membrana lipoproteica y por unas espículas tríméricas de proteína que se proyectan hacia el exterior de ésta. El genoma completo de VHSV ya ha sido secuenciado (Heike et al., 1999). Componen el virus las proteínas L, G, N, Ml y M2. La proteína L (190 IcDa), asociada al RNA vírico, tiene actividad transcriptasa y replicasa. La proteína G o pG (65 IcDa) es una glicoproteína que forma las espículas triméricas, responsables de la producción de anticuerpos (Ac) neutralizantes. La nucleoproteína N (40 kDa) de la nucleocápsida es la proteína mayoritaria. En VHSV se ha descrito además una proteína Nx relacionada antigénicamente con la proteína N, cuya función se desconoce. La fosfoproteína Ml o P (19 IcDa) está asociada a la polimerasa L. La proteína M2 o M (25 kDa) puede estar situada o alrededor de la membrana lipídica o en el interior de la nucleocápsida. La infección causada por rabdovirus se inicia por la unión de éste, a través de la pG, a receptores específicos en la membrana externa del huésped y continúa con una fusión de membranas dependiente de una bajada de pH después de que el virus haya sido introducido en el citoplasma de la célula por endocitosis. Una vez en el interior de las células, el rabdovirus se replica en el citoplasma, los viriones maduran y, finalmente, brotan por gemación en la superficie celular llegando a lisar la célula.
Se han descrito pG mutantes del virus de la estomatitis vesicular (VSV), un rabdovirus de mamífero muy bien estudiado, con mutaciones localizadas tanto en el péptido de fusión como en las regiones carboxi terminales que afectan a los cambios conformacionales a pHs bajos requeridos para la fusión viral. El alineamiento de la pG del VSV con las pG de otros 14 rabdovirus animales ha permitido predecir las localizaciones de los hipotéticos péptidos de fusión en otros rabdovirus, incluido el VHSV (Walter & Kongsuwan, 1999). Según ese modelo, el péptido de fusión del VHSV podría estar localizado entre las posiciones 142-159 de la pG de VHSV.
Evidencias indirectas obtenidas utilizando péptidos recombinantes y sintéticos de la pG del VHSV parecen sugerir que la secuencia comprendida entre los aminoácidos 56 y 110 (frgl 1) que contiene las repeticiones de heptadas no canónicas y la región del péptido de unión al fosfolípido (p2), pudiera estar involucrada en la fusión. Cuando se añadía frgl l recombinante a una monocapa de células se observaron cambios dramáticos en dicho frgl 1 recombinante tanto en su solubilidad como en la conformación de la lámina beta a pH bajo así como la inducción de la fusión célula-célula dependiente de pH bajo. Algunas formas mutantes de la pG del VHSV (118-161) obtenidas por resistencia a la neutralización por el anticuerpo monoclonal (AcM) ClO, a pesar de tener alteraciones en su conformación, mantenían la capacidad de fusión viral (Gaudin et al, 1999). El AcM ClO o los anticuerpos anti-frgl 1, anti-p2 (82-109) y anti-p4 (123-144) (Fredericksen et al, 1999) inhiben la fusión viral, lo que sugiere que esas regiones podrían estar implicadas en la fusión viral a la célula animal huésped. Debido a la presencia de un puente disulfuro entre las posiciones 110 y 152 (Einer-Jensen et al, 1998), se cree que las regiones p2 y del péptido de fusión deben ocupar posiciones cercanas en la pG nativa del VHSV. Sin embargo, no existen, hasta la fecha, evidencias directas sobre la participación de esas regiones en la fusión viral a la célula animal huésped.
Debido a la importancia de la incidencia causada por las infecciones de rabdovirus sobre peces, en particular, VHSV, y a la escasez de vacunas comerciales disponibles, existe la necesidad de desarrollar vacunas efectivas contra VHSV y otros rabdovirus.
COMPENDIO DE LA INVENCIÓN
Ahora se ha conseguido expresar genes G mutantes de VHSV con mutaciones en las regiones p2 y del supuesto péptido de fusión, así como en las regiones entre ellos, en la membrana de una línea celular de pez, y se han realizado ensayos de reactividad con anticuerpos monoclonales (AcMs) dependientes de conformación, entre ellos, el anticuerpo monoclonal (AcM) ClO y ensayos de fusión célula-célula a diferentes pHs. Ese estudio ha permitido identificar cuatro mutaciones (P79A, L85S, R103A y T135E) que, aunque no reaccionan con dichos AcMs, mantienen algo de la actividad de fusión similar a la de los mutantes resistentes al AcM ClO. Tres de esas mutaciones (P79A, L85S y T135E), mapeadas alrededor de dos localizaciones concretas de la pG (80 y 140), muestran variaciones en los aminoácidos entre distintos aislados de VHSV. Debido a que el 40% de las truchas inmunizadas por VHSV reconocieron fuertemente epítopos lineales en esas regiones, los genes G mutantes proporcionados por esta invención son potencialmente útiles para diseñar vacunas destinadas a conferir protección a animales frente a la infección causada por VHSV. Dichas vacunas pueden ser, a modo ilustrativo, vacunas ADN o vacunas vivas atenuadas.
La obtención de mutantes que afecten a las fases tempranas de la infección de VHSV ofrece posibilidades de desarrollo de métodos terapéuticos y/o de vacunas tanto para VHSV como para otros rabdovirus. El conocimiento del mecanismo de procesos tales como la fusión, permite desarrollar productos químicos que se podrían utilizar para interferir en el proceso, llegando a ser productos terapéuticos, es decir, que se pudieran utilizar para atajar la enfermedad una vez desarrollada la epizotía. Por otra parte, el mayor conocimiento de las secuencias del VHSV implicadas en procesos como la fusión, permite diseñar imitantes múltiples que resulten en la atenuación del virus y que se puedan utilizar para el desarrollo de vacunas vivas atenuadas o vacuna ADN. Por tanto, en un aspecto, la invención se relaciona con un gen G muíante de
VHSV que codifica una pG muíante de VHSV que comprende al menos una mutación y tiene una capacidad de fusionarse a células susceptibles de ser infectadas por VHSV defectiva o nula.
En otro aspecto, la invención se relaciona con un vector que comprende dicho gen G muíante de la invención, así como su empleo en la elaboración de una vacuna destinada a conferir protección a. animales susceptibles de ser infectados por VHSV. Células huésped que comprenden dicho vector constituyen un aspecto adicional de esta invención.
En otro aspecto, la invención se relaciona con un VHSV muíante cuyo genoma comprende dicho gen G mutaníe de la invención, junio con el resío de genes de VHSV. El empleo de dicho VHSV muíaníe en la elaboración de una vacuna destinada a conferir protección a animales susceptibles de ser infectados por VHSV ccnstiíuye un aspecío adicional de esía invención. Asimismo, células huésped transfectadas o infecíadas con dicho VHSV mutante consíiíuyen un aspecío adicional de esta invención.
En oíro aspecío, la invención se relaciona con una vacuna que comprende un gen G muíaníe de la invención, junio con, opcionalmente, uno o más adyuvantes y/o vehículos farmacéuticamente acepíables. Dicho gen G muíaníe puede esíar incorporado en dicho vecíor o bien en dicho VHSV. En una realización particular, dicha vacuna se selecciona eníre una vacuna ADN y una vacuna viva aíenuada.
En oíro aspecío, la invención se relaciona con un animal no humano transgénico cuyas células contienen, integrado en su genoma, un gen G mutaníe de la invención.
En otro aspecto, la invención se relaciona con una pG mutaníe de VHSV codificada por dicho gen G mutaníe de la invención. El procedimiento para obtener dicha pG mutante constituye un aspecto adicional de esta invención. BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 muestra la localización, el número de aminoácidos cambiados en los 22 aislados de VHSV y el porcentaje de núcleos en sincitios de mutantes en la región correspondiente desde el aminoácido 56 al 159 de la proteína G de VHSV. Las cisternas están en negrita. Los puentes disulfuro entre CI lO y Cl 52 son representados como una línea horizontal conectando ambas cisteínas (Einer-Jensen et al., 1998). Las posiciones y localizaciones de p9, p2 (dominio de unión a fosfolípido), p3 (secuencia conservada de rabdo virus de pez de agua fría), p4 (lazo hidrófilo) y las secuencias frgl l (p9+p2) en pG [definidas según un trabajo anterior (Estepa et al., 2001)] y el supuesto péptido de fusión (Walter & Kongsuwan, 1999) están indicadas por lineas horizontales anchas. Las flechas verticales indican las localizaciones de los mutantes resistentes al AcM ClO en las posiciones 139 y 140 que no perdieron la fusión (Gaudin et al, 1999). Los aminoácidos de las heptadas hidrofóbicas repetidas están subrayados (CoIl, 1995).
La Figura 2 muestra los perfiles FACS representativos obtenidos por tinción de las células EPC transfectadas con las distintas pG de VHSV mutadas y células EPC no transfectadas con anticuerpos policlonales (AcPs) anti-pG. Las monocapas celulares de EPC fueron transfectadas con los plásmidos pMCVl .4 que codificaban para cada una de las pG mutantes de VHSV (pMCVl .4-pG mutantes). Las monocapas de células EPC no transfectadas fueron preparadas en paralelo. Dos días después, tanto las células EPC transfectadas como las no transfectadas fueron teñidas con AcPs anti-pG y FITC-GAR. Las células fueron separadas de las monocapas y analizadas por FACS. Los experimentos se repitieron 2-6 veces para cada muíante. Se muestra un experimento representativo en la figura mientras que la media y la desviación estándar se muestran en la Tabla 1. El imitante P148K fue eliminado de la figura para una mejor representación. Las fluorescencias relativas están en unidades logarítmicas. En gris se muestran las células EPC no transfectadas y en negro las células EPC transfectadas.
La Figura 3 muestra la aparición de sincitios (A) y el porcentaje de núcleos en sincitios inducido por bajos pHs en células EPC transfectadas con plásmidos pMCV1.4 que codificaban para las pG mutantes de VHSV (pMCV1.4-pG mutantes) (B). Las monocapas de células EPC fueron transfectadas con los plásmidos pMCV1.4 que codificaban para cada una de las pG imitantes de VHSV. Dos días después, el medio de cultivo celular fue reemplazado por medio a diferentes pHs durante 15 minutos y, posteriormente, con medio fresco a pH 7,4 durante 2 horas. Las monocapas fueron fijadas, teñidas y los núcleos en sincitios contabilizados (n=1.300). En la Figura 3B se representan los valores medios procedentes de 2-3 experimentos por muíante. • tipo salvaje; D, muíante P79A; o mutaníe R103A; Δ, muíaníe L85S; * muíaníe T135E; m muíante P86A, P65A, P86AG98A, R107A, F115K, F147K, W154K, P148K, A96E.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La invención se relaciona, en general, con unos imitantes del gen G que codifican unas proteínas G muíanles de VHSV, que comprenden, al menos, una muíación, en donde dicha muíación (o muíaciones) que afecía(n) a dichas pG muíantes producen un defecto, íoíal o parcial, en su capacidad de fusionarse a células suscepíibles de ser infecíadas por VHSV.
Por íanlo, en un aspecto, la invención se relaciona con un gen G muíante de VHSV que codifica una pG mutaníe de VHSV, en adelante gen G muíante de la invención, en donde dicha pG muíante de VHSV comprende al menos una mutación y tiene una capacidad de fusionarse a células susceptibles de ser infecíadas por VHSV defectiva o nula.
Tal como se uíiliza en esía descripción, la expresión "capacidad de fusionarse a células suscepíibles de ser infectadas por VHSV defectiva" significa que la pG muíaníe de VHSV codificada por dicho gen G muíaníe de la invención íiene menor capacidad de fusionarse a células susceptibles de ser infecíadas por VHSV que la pG naíiva de VHSV tomada como referencia. Asimismo, la expresión "capacidad de fusionarse a células suscepíibles de ser infecíadas por VHSV nula", íal como aquí se utiliza, significa que la pG mutaníe de VHSV codificada por dicho gen G muíaníe de la invención es compleíameníe incapaz de fusionarse a células suscepíibles de ser infecíadas por VHSV. La capacidad de fusión de una proíeína G mutaníe de VHSV puede ser deíerminada mediante un ensayo de fusión célula-célula EPC transfecíada con un vector que comprende el gen G muíante a estudiar (que codifica la proteína G muíante de VHSV a ensayar), tal como se describe en el Ejemplo 1, en el apartado correspondiente a los Materiales y Métodos.
La secuencia de aminoácidos de la pG naíiva de VHSV íipo salvaje (wt) tomada aquí como referencia es la descrita por Thiry en la Gepa 07.71 de VHSV (Thiry, 1991). El gen G muíante de la invención se basa en dicha secuencia de nucleótidos del gen G de VHSV (wt) e incluye una o más mutaciones en distintas regiones de dicha secuencia de nucleótidos de manera que codifica una pG mutante de VHSV que comprende al menos una mutación en su secuencia de aminoácidos respecto a la pG nativa y tiene una capacidad de fusionarse a células susceptibles de ser infecíadas por VHSV defectiva o nula.
En el sentido utilizado en esta descripción, el íérmino "mutación" se refiere a la alíeración de uno o más nucleótidos en el gen G de VHSV wt que va a dar lugar al cambio de, al menos, un aminoácido en la pG nativa de VHSV como resultado de la expresión de la secuencia de nucleótidos donde se ha producido dicha alteración. En una realización particular, dicha pG mutaníe de VHSV comprende una única mutación, mientras que, en otra realización particular, dicha pG mutante de VHSV comprende dos o más mutaciones.
Asimismo, en una realización particular, el gen G mutante de la invención codifica una pG mutante de VHSV que comprende al menos una mutación en su secuencia de aminoácidos respecto a la pG nativa y íiene una capacidad de fusionarse a células susceptibles de ser infecíadas por VHSV defectiva. En oíra realización particular, preferida, el gen G mutante de la invención codifica una pG mutaníe de VHSV que comprende al menos una muíación en su secuencia de aminoácidos respecío a la pG naíiva y íiene una capacidad de fusionarse a células susceptibles de ser infectadas por VHSV nula.
El gen G muíante de la invención comprende una o más muíaciones en la secuencia de nucleóíidos del gen G de VHSV wt que dan como resultado una o más muíaciones (cambios o susíiíuciones de aminoácidos) en la secuencia de aminoácidos de la pG nativa dando lugar, por íanío, a una pG muíaníe que íiene la particularidad de que es defectiva o nula en cuanto a su capacidad de fusión, es decir, carece parcial o totalmente de la capacidad de unirse a los receptores de la pG nativa de VHSV en células susceptibles de ser infectadas por VHSV. Dichas mutaciones abarcan diferentes dominios de la pG de VHSV, tales como, el dominio corriente arriba (upstream) de la región p2, el dominio de unión al fosfolípido (p2), el dominio corriente abajo (downstream) de la región p2 y en el dominio del péptido de fusión.
Por simplicidad, los distintos genes G imitantes de VHSV ejemplificados en esta descripción se identificarán indicando la mutación resultante a nivel de aminoácido. Para la nomenclatura de las mutaciones en los aminoácidos se han seguido las recomendaciones contenidas en las siguientes referencias: (i) den Dunnen JT, Antonarakis SE. 2000. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat. 15(1):7-12; y (ii) Antonarakis SE. Recommendations for a nomenclature system for human gene mutations. Nomenclature Working Group. Hum Mutat. 11(1): 1-3. A modo ilustrativo, una mutación identificada como "P65A" indica que la prolina situada en la posición 65 de la secuencia de aminoácidos de la pG de VHSV nativa ha sido sustituida por una alanina.
En una realización particular, el gen G muíante de la invención codifica una pG muíante de VHSV cuya mutación se localiza en el dominio upstream p2, es decir, desde el aminoácido 58 al 80 de la secuencia de aminoácidos de la pG nativa de VHSV. Ejemplos ilustrativos de este tipo de mutaciones incluyen las mutaciones: P65A y P79A.
En oíra realización particular, el gen G imitante de la invención codifica una pG mutaníe de VHSV cuya muíación se localiza en el dominio de unión al fosfolípido (p2) de la pG de VHSV, es decir, desde el aminoácido 82 al 109 de la secuencia de aminoácidos de la pG nativa de VHSV. Ejemplos ilustrativos de este tipo de mutaciones incluyen las mutaciones: I82S, L85S, P86A, P86AG98A, A96E, G98A, G98AH99S, Rl 03 A y R107A. En otra realización particular, el gen G muíante de la invención codifica una pG muíante de VHSV cuya mutación se localiza en el dominio downstream p2, es decir, desde el aminoácido 110 al 144 de la secuencia de aminoácidos de la pG nativa de VHSV. Ejemplos ilustrativos de este tipo de muíaciones incluyen las muíaciones: Fl 15K y T135E. En otra realización particular, el gen G muíante de la invención codifica una pG muíante de VHSV cuya mutación se localiza en el dominio del péptido de fusión de la pG de VHSV, es decir, desde el aminoácido 142 al 159 de la secuencia de aminoácidos de la pG nativa de VHSV. Ejemplos ilustraíivos de esíe tipo de mutaciones incluyen las mutaciones: F147K, P148K y Wl 54K.
Sorprendentemente, cuando dichas sustituciones se introducen en los dominios señalados dentro de la pG nativa de VHSV, se obtienen unas pG mutantes de VHSV con capacidad de fusionarse a células susceptibles de ser infectadas por VHSV defectiva o nula, es decir, que han perdido parcial o totalmente la capacidad de fusionarse a células susceptibles de ser infectadas por VHSV.
La pG de VHSV, tal como se ha mencionado previamente, es la proteína viral responsable de la fusión del virus a la célula susceptible de ser infectada por VHSV así como la proteína viral responsable de la respuesta inmunológica de los posibles huéspedes de VHSV (animales susceptibles de ser infectados por VHSV), por lo que el gen G muíante de la invención puede ser utilizado para inmunizar animales susceptibles de ser infecíados por VHSV utilizando como inmunógeno un único gen de dicho virus, íal como el gen G muíante de la invención.
Tal como se utiliza en esla invención, la expresión "huéspedes de VHSV" o "animales susceptibles de ser infecíados por VHSV" se refiere a cualquier animal que puede ser infecíado por VHSV e incluye animales acuáticos, por ejemplo, salmónidos, tales como íruchas, disíinías especies de salmón etc., así como otros animales acuáíicos susceptibles de ser infecíados por VHSV íales como bacalao, rodaballos, lubinas, anguilas, peces planos, y langostinos.
El gen G muíante de la invención presenta numerosas aplicaciones. A modo ilustraíivo, el gen G muíante de la invención, en ausencia de la toíalidad o parte de los oíros genes consíiíuíivos del genoma de VHSV, y, opcionalmenle incorporado en vectores apropiados, es, por sí mismo, suscepíible de varias posibles aplicaciones, íales como, por ejemplo, (i) en la elaboración de vacunas ADN, (ii) en la elaboración de vacunas vivas aíenuadas constituidas por VHSV completos muíaníes que contienen un gen G muíante de la invención junio con los resíaníes genes de VHSV, (iii) en la generación de animales no humanos transgénicos, (iv) en la elaboración de reactivos para el diagnóstico de la infección causada por VHSV, etc.
Por tanto, en otro aspecto, la invención se relaciona con un vector, en adelante vector de la invención, que comprende un gen G muíante de la invención. En una realización particular, dicho vector de la invención es un plásmido de ADN o un vector de expresión capaz de ser expresado en células eucariotas, por ejemplo, en células animales, que comprende dicho gen G mutante de la invención. El vector de la invención puede contener, además, los elementos necesarios para la expresión y traducción del gen G mutante de la invención así como los elementos reguladores de su transcripción y/o traducción. Cuando el vector de la invención se introduce, por cualquier método convencional, por ejemplo, por inyección, transfección o transformación, en células de un huésped susceptible de ser infectado por VHSV, las células en las que se ha introducido dicho vector de la invención expresan una pG mutante de VHSV con capacidad de fusionarse a células susceptibles de ser infectadas por VHSV defectiva o nula, preferentemente, nula, pero capaz de inmunizar al huésped frente a VHSV ya que dicha pG mutante se dirige a la membrana celular, desencadenando reacciones de respuesta inmune en el animal muy semejantes a las que produce una infección con el VHSV completo. De esta manera se puede vacunar contra el VHSV sin utilizar el virus completo, sino simplemente utilizando el gen G mutante de la invención incorporado en un vector adecuado (Fernández- Alonso et al., 1999; Fernández- Alonso et al., 2000). El vector de la invención, que comprende un gen G mutante de la invención, constituye, por tanto, la base de una vacuna ADN y puede ser utilizado, en ausencia del virus completo, para inmunizar animales susceptibles de ser infectados por VHSV. Por tanto, en otro aspecto, la invención se relaciona con el empleo de un vector de la invención en la elaboración de una vacuna destinada a conferir protección a animales susceptibles de ser infectados por VHSV. En una realización particular, dicha vacuna es una vacuna ADN.
Asimismo, el gen G mutante de la invención puede ser utilizado para obtener un VHSV completo mutante, es decir, un VHSV que contiene un gen G mutante de la invención junto con los restantes genes de VHSV, los cuales pueden ser, independientemente entre sí, nativos o mutantes.
Por tanto, en otro aspecto, la invención se relaciona con un posible VHSV muíante, en adelante VHSV muíante de la invención, cuyo genoma comprende un gen G muíaníe de la invención junto con el resto de genes de VHSV, en donde dicho gen G mutaníe codifica una pG muíante de VHSV, comprendiendo dicha pG muíante de VHSV al menos una mutación y íeniendo dicha pG muíaníe de VHSV una capacidad de fusionarse a células susceptibles de ser infecíadas por VHSV defectiva. Los resíaníes genes, disíiníos al gen G muíaníe de la invención, que componen el VHSV muíaníe de la invención pueden ser, independientemente entre sí, nativos o mutaníes.
El VHSV muíaníe de la invención tiene la capacidad de fusionarse a células susceptibles de ser infecíadas por VHSV defectiva y, por íanío, es capaz de llevar a cabo la función implicada en el proceso de fusión viral a la membrana de la célula a infectar solo parcialmente, por lo que estaría atenuado.
El VHSV muíanle de la invención, después de infectar experimentalmente células susceptibles de ser infecíadas por VHSV, expresa una pG muíante de VHSV con capacidad parcial de fusionarse a células susceptibles de ser infectadas por VHSV, es decir, con una capacidad reducida para infectar nuevas células huésped al no poder fusionar al 100% su membrana con la membrana de la célula huésped a infecíar. Sin embargo, dichos VHSV muíaníes dejarían inmunizado al huésped. Por íanío, dicho VHSV muíaníe de la invención puede ser utilizado con fines terapéuticos, por ejemplo, en la prevención de la infección causada por VHSV.
Por íanío, en oíro aspecío, la invención se relaciona con el empleo de dichos VHSV mutantes en la elaboración de vacunas destinadas a conferir proíección a animales susceptibles de ser infecíados por VHSV. En una realización particular, dichas vacunas son vacunas vivas atenuadas.
Los VHSV mutantes de la invención pueden ser obtenidos por métodos convencionales conocidos por los expertos en la maíeria. No obstante, en una realización particular, dichos VHSV mutaníes de la invención pueden ser obtenidos mediante técnicas de genética reversa conocidas por los expertos en la materia. La invención también se relaciona, en otro aspecto, con una vacuna que comprende una cantidad terapéuticamente efectiva de un gen G muíante de la invención y, opcionalmente, uno o más adyuvantes y/o vehículos farmacéuticamente aceptables. En una realización particular, dicho gen G muíante de la invención está incorporado en un vector de la invención mientras que en otra realización particular, dicho gen G imitantes está incorporado en un VHSV muíante de la invención.
La vacuna proporcionada por esta invención es útil para proteger animales susceptibles de ser infectados por VHSV.
En el sentido utilizado en esta descripción, la expresión "cantidad terapéuticamente efectiva" se refiere a la cantidad de gen G muíante de la invención calculada para producir el efecto deseado y, en general, vendrá determinada, entre otras causas, por las características propias del gen G muíante de la invención utilizado y el efecto de inmunización a conseguir.
Los vehículos farmacéuticamente aceptables que pueden utilizarse para formular una vacuna de acuerdo a la presente invención, tienen que ser estériles y fisiológicamente compatibles tales como, por ejemplo, agua estéril, solución salina, tampones acuosos tales como PBS, alcoholes, polioles y similares. Además, dicha vacuna puede contener otros aditivos, tales como adyuvantes, estabilizadores, antioxidaníes, conservaníes y similares. Los adyuvantes disponibles incluyen pero no limitan a sales o geles de aluminio, carbómeros, copolímeros en bloque no iónicos, tocoferoles, dipéptido muramil, emulsiones aceitosas, citoquinas, etc. La cantidad de adyuvante a añadir depende de la naturaleza propia del adyuvante. Los estabilizadores disponibles para su uso en vacunas de acuerdo con la invención son, por ejemplo, carbohidratos, incluyendo sorbitol, manitol, destrina, glucosa y proteínas tales como albúmina y caseina, y tampones como fosfatos alcalinos. Los conservantes disponibles incluyen, entre otros, timerosal, mertiolato y gentamicina.
La vacuna proporcionada por esta invención puede ser administrada por cualquier vía de administración apropiada que dé como resultado una respuesta inmune protectora freníe a VHSV, para lo cual dicha vacuna se formulará en la forma adecuada a la vía de administración elegida. En una realización particular, la vacuna se formula para ser introducida en el animal cuando éste se sumerge en un baño que contiene dicha vacuna; en otra realización particular, la vacuna se prepara para su administración como un inyectable. A modo ilustrativo, dicha vacuna puede prepararse en forma de una solución o suspensión acuosa, en un vehículo farmacéuticamente aceptable, tal como solución salina, solución salina tamponada con fosfato (PBS), o cualquier otro vehículo farmacéuticamente aceptable.
La vacuna proporcionada por esta invención pueden ser una vacuna ADN (utilizando un vector de la invención que comprende un gen G muíante de la invención) o bien una vacuna viva atenuada (basada en un VHSV mutante de la invención cuyo genoma comprende un gen G mutante de la invención). La vacuna proporcionada por la presente invención puede ser preparada empleando métodos convencionales conocidos por los expertos en la materia. En una realización particular, dicha vacuna es preparada mediante la mezcla, en su caso, de un vector de la invención o de un VHSV mutante de la invención, con, opcionalmente, uno o más adyuvantes y/o vehículos farmacéuticamente aceptables. Adicionalmente, el gen G mutante de la invención puede ser utilizado en la generación de un animal no humano transgénico cuyas células contienen, integrado en su genoma, un gen G mutante de la invención. Dicho animal no humano puede ser cualquier animal, tal como un animal acuático, por ejemplo, un pez. A modo ilustrativo, dicho pez podría ser un salmónido, tal como una trucha. El animal no humano transgénico proporcionado por esta invención expresa una pG mutante de VHSV que comprende al menos una mutación y tiene una capacidad de fusionarse a células susceptibles de ser infectadas por VHSV defectiva o nula. Dichos animales no humanos transgénicos pueden ser obtenidos por métodos convencionales, conocidos por los expertos en la materia, a partir, por ejemplo, de un gen G mutante de la invención o de un vector que lo contiene, tal como un vector de la invención. Información sobre transferencia génica a células eucariotas y organismos enteros puede encontrarse en, por ejemplo, el libro titulado "Ingeniería genética y transferencia génica", de Marta Izquierdo, Ed. Pirámide (1999), especialmente en el Capítulo 8. Asimismo, el gen G mutante de la invención puede ser utilizado en la elaboración de reactivos para el diagnóstico de la infección causada por VHSV, por ejemplo, en la obtención de sondas para ensayos genéticos, anticuerpos obtenidos en peces, etc. La obtención de anticuerpos contra el VHSV para diagnóstico es problemática ya que su obtención en mamíferos es poco eficiente. A los 370C del cuerpo de conejos o ratones, el virus y sus proteinas, especialmente la pG, se desnaturalizan y hacen difícil la obtención de altos títulos de anticuerpos anti-proteinas de VHSV en mamíferos. Por otra parte, la obtención de anticuerpos neutralizantes, por ejemplo, en salmón o trucha, aunque sería óptima a los 2O0C no es posible con virus completo ya que el VHSV mata a dichas especies antes de que se produzcan anticuerpos. El uso de virus atenuados permitiria, por tanto, obtener anticuerpos anti-proteinas de VHSV en peces a baj as temperaturas .
El gen G muíante de la invención puede ser obtenido por métodos convencionales conocidos por los expertos en la materia. No obstante, en una realización particular, dicho gen G muíante de la invención puede ser obtenido iníroduciendo la mutación deseada mediante mutagénesis dirigida. Para ello, brevemente, tal como se describe en el apartado relativo a los Materiales y Métodos (Ejemplo) se sometió al vector plasmídico pGEMTeasy-G, que contiene la pG nativa de VHSV bajo el control del promotor T7, a una reacción en cadena de la polimerasa (PCR) utilizando 2 iniciadores de 15 nucleótidos cada uno que proporcionaban la muíación deseada por cada muíación a ensayar. A continuación, se subclonaron los genes G muíaníes en plásmidos pMCV1.4 para dar lugar a los correspondientes plásmidos pMCV1.4-G (portando cada uno de ellos un gen G muíaníe con la muíación deseada) con el fin de llevar a cabo los ensayos de la expresión de la pG muíaníe (mediante citometría de flujo) en la membrana superficial de células EPC (línea celular de epitelioma derivado de carpa) íransfecíadas con dichos pMCV1.4-G. Aunque en la realización práctica ilustrada en la presente invención, el método empleado para generar las secuencias de los genes G mutaníes ha sido la mutagénesis dirigida, se podría emplear cualquier oíro método conocido en el estado de la técnica que diera lugar a los mismos resultados. Asimismo, aunque en la presente invención, la forma de conseguir mutaciones en el genoma es medianíe la sustitución de nucleótidos, sería igualmente válido cualquier otro procedimiento, que diese lugar a un resulíado análogo al obíenido por susíiíución. En otro aspecto, la invención se relaciona con una pG muíante de VHSV codificada por un gen G muíante de la invención, en adelante pG muíaníe de la invención, seleccionada entre una pG muíante que íiene la muíación P65A; una pG muíaníe que tiene la muíación P79A; una pG muíante que tiene la mutación I82S; una pG muíaníe que íiene la muíación L85S; una pG muíaníe que tiene la mutación P86A; una pG muíante que tiene la mutación P86AG98A; una pG muíaníe que íiene la mutación A96E; una pG muíante que tiene la muíación G98A; una pG muíaníe que íiene la muíación G98AH99S; una pG muíanle que íiene la muíación Rl 03 A; una pG muíaníe que íiene la muíación R107A; una pG muíaníe que tiene la mutación FI lK; una pG muíante que íiene la muíación T135E; una pG muíaníe que íiene la muíación F147K; una pG mutante que íiene la muíación P148K; y una pG muíaníe que íiene la muíación W 154K.
Dichas pG mutantes de la invención contienen una o dos mutaciones y tienen una capacidad de fusionarse a células suscepíibles de ser infecíadas por VHSV defecíiva o nula. A modo ilustrativo, la proteína G mutaníe de la invención (resulíaníe de la expresión del gen G muíaníe de la invención) puede ser completamente incapaz de fusionarse a células susceptibles de ser infecíadas por VHSV (es decir, a los receptores o membranas celulares de la proíeína G nativa de VHSV), IaI como las proteínas G muíaníes de VHSV ideníificadas como P65A, P86A, P86AG98A, A96E, G98A, G98AH99S, R107A, F115K, F147K, P148K y W154K (véase la Tabla 1) o bien capaz de fusionarse a células suscepíibles de ser infecíadas por VHSV aunque con menor capacidad de fusión (es decir, con una capacidad de unión de las proteínas G mutantes a los receptores o membranas celulares de la proteína G nativa de VHSV menor que la capacidad de unión de la proteína G nativa de VHSV), tal como las proteínas G mutantes de VHSV identificadas como P79A, L85S, R103A y T135E, las cuales muestran una capacidad de fusionarse a los receptores comprendida entre 9,2±3,5% a pH 5,0 (L85S) y 27,7±4,1% a pH 5,0 (R103A) o bien de 23,5±2,4% a pH 5,3 (P79A) [Tabla I]. No se han podido sacar conclusiones sobre las posibles propiedades de fusión defectuosas de la proíeína G muíaníe de la invención con la muíación I82S ya que, aunque se ha expresado en el ciíoplasma, no se ha podido deíecíar en las membranas de las células transfectadas. El mutante I82S, aunque se expresó en el citoplasma, no se detectó en las membranas de las células transfectadas y, por tanto, no se pudieron sacar conclusiones sobre sus posibles propiedades de fusión defectuosas (Tabla 1).
El vector que comprende el gen G mutante de la invención puede utilizarse, además, para transformar o transfectar una célula huésped apropiada, tal como una célula eucariota, por ejemplo, una célula de un animal superior (mamífero, pez, etc.), capaz de expresar dicho gen G mutante y producir la correspondiente pG mutante de VHSV. Dicho gen G mutante de la invención puede integrarse en un cromosoma de dicha célula o bien puede estar presente en dicha célula en la forma de un plásmido episomal. La transformación y la transfección de dichas células huésped puede realizarse por métodos convencionales conocidos por los expertos en la materia. En una realización particular, el gen G mutante de la invención está incorporado en un vector, tal como un vector de la invención, mientras que, en otra realización particular, dicho gen G mutante de la invención está incorporado en un VHSV mutante de la invención. Prácticamente, cualquier célula huésped susceptible de ser transformada, transfectada o infectada por VHSV y capaz de permitir el crecimiento del virus puede ser utilizada. No obstante, en una realización particular, dicha célula huésped es la línea celular EPC (Epithelioma Papullosum cyprisi), es decir, una línea celular de epitelioma derivada de carpa. Dichas células huésped que contienen un gen G mutante de la invención bien integrado en un cromosoma o bien como un plásmido episomal, constituyen un aspecto adicional de esta invención.
En otro aspecto, la invención se relaciona con un método para producir una pG mutante de la invención que comprende cultivar una célula que comprende un gen G mutante de la invención bajo condiciones que permiten la expresión de dicho gen y, si se desea, retirar la pG mutante producida del medio de cultivo. Las condiciones de cultivo dependerán, entre otros factores, de la célula utilizada. Aunque prácticamente cualquier célula huésped susceptible de ser transformada, transfectada o infectada por VHSV y capaz de permitir el crecimiento de VHSV puede ser utilizada, en una realización particular, dicha célula huésped útil para la producción de la proteína G mutante de la invención, es la línea celular EPC. Los siguientes ejemplos ilustran la invención y no deben ser considerados limitativos del alcance de la misma.
EJEMPLO 1 Genes G mutantes de VHSV
I. MATERIALES Y MÉTODOS Plásmidos utilizados
Para la generación de la construcción pGEMTeasy-G portadora del gen de la pG nativa de VHSV se partió de la construcción pcDNAI [donada por el Dr. Michel Brémont, INRA (Institute National Recherche Agronomique), Jouy en Josas, París, Francia] que contiene el gen de la pG de VHSV (aislado francés 07.71) clonado en el vector pcDNAI (4,0 kpb) (Invitrogen), y se subclonó en el vector comercial pcDNAI/Amp (4,8 kpb) (Invitrogen) [Fernández- Alonso, 1999] y posteriormente en el vector comercial pGEMTeasy (Stratagene) bajo el control del promotor de T7. Para llevar a cabo los ensayos de fusión basados en fluorescencia o en formación de sincitios, la colección de mutantes de pG obtenida en pGEMTeasy, se subclonó en el plásmido pMCV1.4 (Ready Vector, Madrid, España). Para ello, se obtuvo el gen de la pG nativa de VHSV mediante una digestión preparativa a partir de 2 μg de la construcción pGEMTeasy-G con EcoRI (10 U/μl) (GibcoBRL, Postfach, Germany) durante 2 h a 370C en un aparato Techne dri-block. De igual manera, se linearizó el vector pMCV1.4. La EcoRI se inactivo a 650C durante 15 minutos y, a continuación, se añadió fosfatasa alcalina SAP (shrimp alkaline phosphatase) (Roche, Barcelona, España). La mezcla se incubó a 370C durante 60 minutos y después se inactivo la fosfatasa alcalina a 650C durante 15 minutos. Los productos de las digestiones se separaron en un gel de agarosa de bajo punto de fusióin (LMP, low melting point) al 1%, recuperando y purificando las bandas obtenidas con columnas del kit comercial SNAP (Invitrogen, Barcelona, España). Se realizó la ligación del plásmido y del inserto que contenía la secuencia codificante de la pG (razón plásmido: inserto 1:3, incluyendo controles sin inserto), a temperatura ambiente durante 2 h utilizando la DNA ligasa de T4 (Roche) en un volumen final de 20 μl por mezcla de ligación por muíante. Mutagénesis dirigida
La mutagénesis dirigida se basó en el método Quick-Change (Stratagene, La Jolla, Ca, USA) para generar los genes G mutados en el plásmido pGEMTeasy-G (que contiene el gen de la pG de VHSV nativo) [Carneiro et al, 2001]. Para cada muíante se diseñaron dos oligos de 15 nucleótidos, que contenían las mutaciones deseadas. En todos los casos, los oligos se extendieron por medio de la reacción en cadena de la polimerasa (PCR) utilizando la ADN polimerasa Pfu turbo (Stratagene), generando plásmidos mutantes con cadenas abiertas sin metilar que contenían la mutación introducida en los oligos. Después se trató la mezcla con la endonucleasa de restricción Dpnl específica de ADN metilado, que digiere solo las cadenas del ADN parental inicial, quedando intacto el plásmido amplificado. Dicho plásmido, que contiene la mutación deseada, se utilizó posteriormente para transformar células XLl- blue competentes (Stratagene). Los mutantes del gen de la pG mutada se subclonaron en el sitio EcoRI del plásmido pMCV1.4 (Rocha et al, 2004a, Rocha et al., 2004b) siguiendo los métodos convencionales para E. coli ToplO (Fernández-Alonso et al., 1999) para dar lugar a los correspondientes plásmidos pMCV1.4-G (portando cada uno de ellos un gen G mutante con la mutación deseada. Se prepararon grandes cantidades de plásmido utilizando el sistema de purificación de ADN Megaprep Wizard (Promega, Madison, USA). Las soluciones plasmídicas fueron ajustadas a 0,5-1 mg/ml del ADN total (absorbencia a 260 nm). La confirmación de las secuencias mutadas se llevó a cabo mediante la secuenciación de los plásmidos a través de la región mutada en ambas direcciones.
Transfección de las células EPC con los plámidos mutados Se cultivaron células de epitelioma de carpa Papulosum cyprini (EPC) [Fijan et al, 1983] en placas de 96 pocilios a 280C con medio RPMI Dutch, tampón HEPES 20 mM y 10% de suero de ternera fetal (100 μl por pocilio). Las células fueron transfectadas (aproximadamente 100.000 células/pocilio) con 0,3 μg de los diferentes mutantes pMCV1.4-G previamente acomplejados con 0,5 mi de Fugene 6 (Roche, Barcelona, España) (López et al., 2001; Rocha et al, 2004a; Rocha et al., 2004b) e incubadas a 2O0C en 5% de CO2 durante dos días. Tinción de las monocapas de células EPC transfectadas
Después de la transfección, se tiñeron las monocapas de células EPC con anticuerpos policlonales (AcP) anti-pG obtenidos en conejos (proporcionados por el Dr. Lorenzen, Dinamarca) [Lorenzen & LaPatra, 1999], en medio de cultivo que contenía 2% de suero de conejo, 2% de suero de cabra y 2% de extracto de E. coli, durante 1 hora tras permeabilización con 2-perm (BD-Biosciences, Becton- Dickinson, España) (para estimar la expresión citoplasmática) o sin permeabilización (para estimar la expresión en membrana). A continuación, las células se incubaron con el fragmento Fab'2 anti-conejo de cabra fluorescente (FITC-GAR) (Caltag, S.Francisco, CA, EEUU), se lavaron y se observaron con un microscopio invertido de fluorescencia (expresión citoplasmática) o separadas con tampón FACS (Becton- Dickinson) y analizadas por citometría de flujo (región FLl 514-545 nm, verde) en un aparato FACScan (Becton-Dickinson) usando el programa LYSYS II (expresión de membrana). Se obtuvieron registros de fluorescencia de fondo usando células EPC no transfectadas observándose que variaban ligeramente de experimento a experimento. Para calcular el porcentaje de células fluorescentes por cada experimento se utilizó la siguiente fórmula: área bajo la curva obtenida con células transfectadas — área bajo la curva obtenida con células transfectadas solapando con la curva de fondo / área total bajo la curva obtenida con células EPC transfectadas x 100. Para calcular las intensidades de fluorescencia para cada experimento, se restó el valor del pico de fluorescencia de fondo del valor del pico obtenido con células EPC transfectadas. La intensidad de fluorescencia fue expresada en unidades relativas de fluorescencia (urf).
Ensayos de fusión célula-célula EPC transfectada
Para llevar a cabo los ensayos de fusión, las células EPC plaqueadas en placas de 24 pocilios (aproximadamente 500.000 células/pocilio) fueron transfectadas con 0,6 mg de diferentes mutantes pMCV1.4 acomplejados con 2 μl de Fugene 6 (Fernández-Alonso et al, 1999; López et al, 2001; Rocha et al, 2002) e incubadas a 2O0C. Dos días después, las monocapas de células transfectadas fueron incubadas durante 15 minutos en medio de cultivo RPMI Dutch que contenía HEPES 20 mM / MES 20 mM (Sigma, Chem. Co., St.Louis, Missouri, EEUU) a diferentes pHs (5,0, 5,3, 5,6, 6,0, 6,3, 7,0 y 7,3) a 2O0C. Los ensayos de formación de sincitios no pudieron ser llevados a cabo a un pH más bajo de 5,0 debido al desprendimiento de las monocapas de células EPC. A continuación, las monocapas se incubaron durante 2 h a pH 7,6, se fijaron con metanol frío, se lavaron, secaron y se tiñeron con Giemsa (Rocha et al, 2004a; Rocha et al., 2004b). Los resultados se expresaron como el porcentaje de núcleos en sincitios calculados por la siguiente fórmula: número de núcleos en sincitios de tres o más células por sincitios/número de núcleos x 100.
Ensayos de unión a fosfolípido
Para ensayar la unión a fosfolípido, se secaron 100 μl/pocillo de 0,1 mg/ml (1 μg por pocilio) de péptidos sintéticos (Chiron-Mimotopes, Victoria, Australia) en placas de 96 pocilios tal como se describió previamente (Estepa et al, 1996a; Estepa et al., 1996b). L-3-fosfatidil-[L-C3-14C]Serina (PS) marcada, de 55 mCi/mmol (Amersham, Bucldnghamshire, Reino Unido) fue secada a vacío en tubos de cristal y sometida a sonicación en tampón de citrato-fosfato 0,1 M a pH 7,7 (Gaudin et al., 1993). La PS marcada fue añadida en un volumen de 100 μl por pocilio a los péptidos en fase sólida (200 pmoles por pocilio). Después de 4 horas de incubación a 2O0C, se lavaron las placas y se extrajeron con 100 ml/pocillo de 2% de dodecilsulfato sódico (SDS) en etilendiamina 50 μM, pH 11,5 a 6O0C durante 30 minutos. Los sobrenadantes fueron pipeteados en placas de 96 pocilios de polietilen tereñalato que contenían 100 μl por pocilio de líquido de centelleo Hiload (LKB, Loughtorough, R. Unido) y contados en un contador de centelleo 1450-Microbeta (Wallac, Turku, Finlandia). La unión de fondo obtenida en ausencia de péptidos (1,25 pmoles por pocilio) fue substraída de todos los datos y las cuentas fueron transformadas en pmoles de PS.
II. RESULTADOS Selección de mutaciones puntuales Se llevó a cabo una comparación entre las secuencias de las pG de 22 aislados de VHSV para seleccionar las mutaciones a introducir en la pG. Las secuencias de aminoácidos correspondientes a las regiones hipotéticas de unión al fosfolípido y de los péptidos de fusión (posiciones 56 a 159) de los 22 aislados se obtuvieron del GenBank (números de acceso: A10182, AB069725, AB060727, AF143862, AF345857, AF345858, AF345859, AJ233396, NC000855, U28799-2, U28747, U88056, U28800, U88050, U88051, U88052, U88053, U88054, U88055, X73873 y X66134). Las secuencias de aminoácidos traducidas estaban altamente conservadas entre los aislados. Las variaciones de aminoácidos entre los aislados de VHSV estaban principalmente concentradas en dos localizaciones alrededor de las posiciones 80 y 140 (Figura 1). De este modo, la mayoría de los cambios se encontraron en la posición R81 (arginina) que cambiaba a Q (glutamina) o K (Usina) [16 aislados], y en la posición D136 (aspártico) que cambiaba a N (asparagina) [14 aislados]. Se encontraron variaciones menos abundantes de aminoácidos en 2-4 aislados en las posiciones 71, 80, 97, 112, 118, 138 y 139. Las posiciones en las que se detectaron variaciones de aminoácidos fueron excluidas del diseño del muíante porque no se había descrito una actividad de fusión alterada en ninguno de esos aislados.
Las posiciones seleccionadas para la mutación se cambiaron a A (alanina) cuando fue posible, o a un aminoácido de propiedades físico-químicas diferentes a las de la posición mutada, dependiendo de las posibilidades para cada nucleótido cambiado. Las posiciones seleccionadas en el péptido hipotético de unión a fosfolípido (p2+frgl l) incluían las altamente conservadas P (prolina) y G (glicina) desestabilizadoras de hélices (P65, P79, P86 y G98) y las argininas cargadas localizadas en la parte carboxilo terminal (Rl 03 y Rl 07). Todos estos aminoácidos fueron cambiados a A (alanina). Otras posiciones seleccionadas en los aminoácidos pertenecientes a algunos de las repeticiones de heptadas hidrofóbicas no canónicas (182, L85, A96) se cambiaron a aminoácidos hidrófilos (S, serina) o cargados (E, glutámico). Las posiciones Fl 15 y T135 localizadas entre el péptido hipotético de unión al fosfolípido y el péptido de fusión se mutaron a un aminoácido cargado (K y E respectivamente). Debido a que los aminoácidos hidrófobos F 147, P 148 y Wl 54, localizados en el motivo del péptido de fusión hipotético (F5Y)PXPXXCX(WF), estaban conservados entre 14 rabdovirus animales (walter & Kongsuwan, 1999), dichos aminoácidos también fueron mutados en VHSV a un aminoácido cargado (E o K).
Expresión de Ia pG muíante en células EPC transfectadas Todos los plásmidos que contenían pG imitantes obtenidos para VHSV se expresaban en el citoplasma de las células EPC transfectadas permeabilizadas, tal como se verificó por inmunofluorescencia directa con anticuerpos policlonales anti-G (Tabla 1).
La Tabla 1 muestra que el porcentaje estimado de células EPC transfectadas que expresan pG en sus membranas, después de hacer el promedio entre los resultados de 2-6 réplicas por muíante, variaba de 42,4 a 77,2% (excepto para I82S, que no se había expresado). El 53,5±11% de las células EPC transfectadas con el gen de la pG nativa expresaban pG en sus membranas. De manera análoga, la pG se expresó en el 50,2-77,2% de las células EPC transfectadas con los imitantes P65A, L85S, P86A, P86AG98A, G98A, G98AH99S, R103A, R107A, F115A, P148K y W154K. Los imitantes P79A y A96E no se transfectaron tan eficientemente como el resto de los mutantes (42,5% y 44,5%, respectivamente) y la expresión del mutante I82S en la membrana de las células EPC transfectadas fue muy baja o no significativamente diferente de los niveles básales (l,3±0,3% de las células transfectadas).
La Figura 2 muestra, para cada mutante, un perfil de células teñidas con FACS no transfectadas/transfectadas representativo de las 2-6 réplicas indicadas en la Tabla 1. Debido a que la eficacia de la fusión depende altamente de la densidad de la pG en la superficie de la célula, se estimó el nivel relativo de expresión por célula procedente de los perfiles FACS asumiendo que el anticuerpo reconoce a todos los mutantes por igual. Dado que el fondo obtenido con células EPC no transfectadas (curvas grises en los gráficos) variaba ligeramente de un experimento a otro, para comparar la expresión de la pG entre los mutantes, se eliminó el área solapante con el fondo de la fluorescencia para cada experimento. Los valores medios de la intensidad de la fluorescencia FACS se calcularon a partir de las réplicas. La intensidad estimada obtenida de la cepa salvaje de pG fue de 18,7±4,1 urf (n=6) y sólo variaba respecto al resto de los mutantes entre 10,8 y 22,5 urf, excepto para el muíante I82S (Tabla 1).
Debido a que, al contrario de lo que ocurre en VSV, no se dispone de un ensayo proteolítico para estudiar los cambios conformacionales en la pG de VHSV inducidos a bajo pH, se usó un ensayo de unión a anticuerpos neutralizantes dependientes de conformación como una estimación de los posibles cambios conformacionales inducidos por mutación. El correcto plegamiento de la pG fue, asimismo, analizado con anticuerpos monoclonales (AcMs) dependientes de conformación, tal como el AcM ClO que reconoce simultáneamente las posiciones 140 y 433 (Bearzotti et al., 1995; Gaudin et al, 1999) y 2F1A12 que mapea en la posición 253 (Lorenzen, comunicación personal). Aproximadamente, el 21,6±9% de las células EPC transfectadas con la forma nativa del gen de la pG han expresado el epítopo ClO en sus membranas. En contraste, sólo el 0,3-1,6% de las células EPC transfectadas con cualquiera de los mutantes expresó el epítopo ClO (Tabla 1). Se obtuvieron resultados similares con los anticuerpos monoclonales 2Fl A12 (datos no mostrados).
Ensayos de fusión célula-célula EPC transfectada
La Figura 3 muestra la apariencia típica de sincitios y las cinéticas de fusión obtenidas en ensayos de fusión célula-célula EPC transfectada con el gen G para el gen G nativo y sus mutantes. Bajo las condiciones experimentales ensayadas, la fusión para las células transfectadas con el gen G nativo fue máxima a pH 5,6 y decreció hasta el 70% aproximadamente a pH 6,0 y hasta 0% a pH 6,6. Sólo las células EPC transfectadas con los mutantes P79A, L85S, Rl 03 A y T135E mostraron actividad de fusión. Los mutantes Rl 03 A y T135E mostraron una fusión máxima a pH 5,0 y el porcentaje de núcleos en sincitios se redujo a 27,7±4,1% y 13,7±4,5%, respectivamente. Los mutantes P79A y L85S mostraron una fusión máxima a pH 5,3- 5,6 y el porcentaje de núcleos en sincitios también se redujo a 23,5±2,4% y 9,2±3,5%, respectivamente. Los mutantes P79A y L85S (ammo-terminal) y R103A (carboxi- terminal) flanquean las secuencias más internas del dominio de unión al fosfolípido ρ2. Por otro lado, los mutantes P86A, P86AG98A, A96E, G98A, G98AH99S y R107A (la mayoría de las mutaciones localizadas en el interior del péptido hipotético de unión a fosfolípido) y P65A y F115K (mutaciones alrededor del péptido de unión a fosfolípido), fueron completamente defectivos en la fusión para todos los pH estudiados. Los mutantes F147A, P148A y W154A, localizados en las posiciones altamente conservadas del péptido hipotético de fusión, fueron también defectivos en la fusión para todos los pH estudiados (pH igual o mayor de 5,0).
El muíante I82S, aunque se expresó en el citoplasma, no se detectó en las membranas de las células transfectadas y, por tanto, no se pudieron sacar conclusiones sobre sus posibles propiedades de fusión defectuosas (Tabla 1).
Unión al fosfolípido de los péptidos sintéticos correspondientes a la región p2
Debido a que p2 (82-109) era la región principal de un análisis pepscan de la pG que mostraba la unión a PS (Estepa et al., 1996a; Estepa et al., 2001), se introdujeron cambios en un único aminoácido en péptidos sintéticos derivados de la secuencia de p2, para estudiar si las mutaciones en esa región podían afectar a la unión a PS. Para sintetizar los péptidos se seleccionó la secuencia de aminoácidos que contenía del aminoácido 93 al 107 (que incluye los dos aminoácidos cargados positivamente Rl 03 y 107) debido a que mostraba la máxima actividad de unión a PS de p2 (Estepa et al., 1996a). Cada aminoácido de esta secuencia fue cambiado por una A y se midió el efecto de este cambio en la unión a PS en fase sólida. La actividad de unión a PS de la secuencia nativa fue de 2,47±0,34 pmoles de PS por μg de péptido (Tabla 2). La actividad de unión a PS sólo varió de 2,l±0,46 a 4,l±0,53 pmoles de PS por μg de péptido entre los 15 péptidos sintéticos con cambios en un único aminoácido.
Debido a que tanto las interacciones hidroϊóbicas como iónicas participan en la unión a PS por p2 (Gaudin et al, 1999), se obtuvieron péptidos sintéticos en los que se introdujeron cambios más drásticos en las posiciones de aminoácidos cargados. Una de las posiciones 103 ó 107 pudo ser cambiada a una K sin que variara significativamente la unión a PS (2,5±0,42 ó 2,6±0,33 pmoles de PS por μg de péptido respectivamente). La unión a PS únicamente podía reducirse cuando ambos aminoácidos eran cambiados simultáneamente a una K o una E (l,3±0,19 ó 0,75±0,36 pmoles de PS por μg de péptido, respectivamente).
La sustitución de varios aminoácidos por una serie de A en posiciones 104-106, 95+104-106 y 99-102+104-106 también redujo la unión a PS a 2,l±0,28, l,69±0,29 y 0,69±0,21 pmoles de PS por μg de péptido respectivamente.
III. DISCUSIÓN
Se han obtenido pG mutantes de VHSV con cambios conformacionales y fusión defectuosa, reducida o alterada al pH, en la región de unión al fosfolípido ρ2 y en los péptidos unidos a la región de fusión. Debido a que la existencia de mutantes de VSV defectivos en la fusión o con fusión reducida con un desplazamiento hacia valores más ácidos del pH óptimo, ha sido previamente interpretada como una indicación del papel de estas posiciones mutadas en la fusión, se puede concluir que las regiones antes mencionadas también participan en los procesos de fusión del VHSV. Resultados previos, tanto de penetración en modelos de membrana por p2 aislados en el pH de fusión, como de inhibición de la fusión obtenida con anticuerpos antipéptidos correspondientes a las diferentes partes (p2, frgl l, p4) de la región 56- 144 de la pG del VHSV (Estepa, 2001), están conformes con la participación de ambos péptidos (p2 y péptido de unión a la región de fusión) en alguno de los pasos de la fusión del VHSV. Sin embargo, puesto que en todos los mutantes de VSVH estudiados se han encontrado alteraciones en la reactividad de pG con anticuerpos monoclonales dependientes de conformación, también es posible que las mutaciones estén afectando a la conformación de pG y esa diferencia conformacional sea la responsable de las alteraciones observadas en la fusión. A pesar de su alteración en la unión al anticuerpo monoclonal ClO, los mutantes P79A, L85S, R103A y T135E eran capaces de sufrir los cambios conformacionales a bajo pH que deben preceder a la fusión, aunque P79A se fusionó solamente un 50% a un pH 0,3 unidades más bajas que la pG nativa, mientras que los otros mutantes necesitaron un pH de 5,0 (o más bajo) para alcanzar el 25-50% de fusión. De modo similar, los mutantes VHSV resistentes a la neutralización por el AcM ClO que han perdido su capacidad de unión a los AcMs ClO, eran todavía capaces de llevar a cabo la fusión y sus epítopos mapeados estaban relacionados con la fusión de VHSV. Los mutantes de VHSV en los que se mantenía alguna actividad de fusión, tenían mutaciones bien flanqueando el núcleo más interior de p2 (P79A, L85S y R103A) o bien en el lazo hidrófilo (p4) entre los péptidos p2 y el de fusión (T 135E). En todos estos casos, el cambio en la conformación a pH fisiológico en las posiciones 140 ó 433 (como se estimó por la unión del AcM ClO) y 235 (como se estimó por la unión del AcM 2Fl Al 2) no impidió la fusión. El incremento en la unión de AcMs ClO y 2F1A12 a la pG nativa a pH bajo, podría indicar que la conformación a pH bajo requerida para la ñisión, estaría menos afectada por estas mutaciones. La Figura 1 muestra que los mutantes con actividad de fusión en las posiciones P79 o L85 (es decir, alrededor de la posición 80) y T135 (es decir, alrededor de la posición 140) y los mutantes resistentes a la neutralización por el AcM ClO, mapeaban en posiciones bien alrededor del aminoácido 80 o bien alrededor del aminoácido 140, las dos localizaciones alrededor de las cuales el número de cambios de aminoácidos en los 22 aislados de VHSV era el más alto. Las localizaciones alrededor de las variaciones de aminoácidos en los aislados naturales de mutantes puntuales y resistentes a anticuerpos monoclonales que retenían actividad de fusión (excepto la posición 103), sugieren que, con el objetivo de preservar la actividad de fusión, la mayoría de los cambios de aminoácidos permitidos en la región 56-159 son aquéllos alrededor de las posiciones 80 y 140.
La reducción de la capacidad de unión de los AcMs dependientes de conformación a la pG muíante del VHSV, debería indicar que esos mutantes están mal plegados. Por tanto, esas mutaciones estarían afectando a la conformación de la pG, que sería la principal razón tras las alteraciones observadas en la actividad de fusión. En este momento no es posible determinar si las mutaciones estudiadas tienen un efecto directo en la fusión debido a cambios en la conformación de pG, un efecto directo en su capacidad de fusión, o a ambos, ya que ninguno de los mutantes VHSV fue reconocido por los AcMs ClO o 2Fl Al 2, y no hay todavía disponible ningún otro anticuerpo monoclonal neutralizante de VHSV (Fernández- Alonso et al., 1998) o ningún otro ensayo para estudiar la conformación de la pG. Además, no es posible todavía comparar directamente las propiedades de los mutantes defectivos en la fusión de VSV con los imitantes descritos antes para VHSV. Por tanto, las alteraciones en la unión de AcMs o dependientes de conformación por imitantes defectivos en la fusión de VSV, no se han descrito todavía. Por otro lado, no se encontraron diferencias entre la cepa salvaje de VSV y los imitantes defectivos en la fusión en cuanto al incremento de la resistencia de la pG a la digestión con tripsina a pH bajo (el ensayo bioquímico utilizado para cambios conformacionales). El reconocimiento por AcMs anti-VSV dependientes de conformación podría estar alterado en esos imitantes VSV, ya que es conocido que la conformación esta alterada extensivamente en la pG durante la fusión (Carneiro et al., 2001; Carneiro et al., 2003).
Para estudiar si las mutaciones en p2 podrían afectar la fusión reduciendo sus propiedades de unión a fosfolípido, se llevaron a cabo una serie de experimentos con péptidos sintéticos mutados correspondientes a las secuencias p2 que muestran la actividad de unión más alta de anclaje a PS, tal como se ha descrito previamente (Estepa et al, 1996a; Estepa et al., 1996b). Para disminuir la unión a PS en este modelo, tienen que introducirse simultánemente más de tres sustituciones de aminoácidos en la secuencia p2 nativa de acuerdo con las indicaciones previas, en las que tanto las interacciones hidrofóbicas como iónicas eran requeridas para la unión máxima a PS (Estepa et al., 1996b). Aunque no todas las posibles mutaciones en p2 han sido estudiadas, estos resultados hicieron improbable que los imitantes con una única mutación o los 2 dobles imitantes estudiados (P86AG98A ó G98AH99S) pudieran causar una reducción en el anclaje a PS.
La pG con mutaciones dentro del péptido de fusión hipotético (F147A, P 148 A y Wl 54A), fueron completamente defectuosas en fusión para todos los pHs estudiados, a pesar de expresarse en la membrana de las células EPC transfectadas en un nivel similar al de la cepa salvaje o imitantes con alguna actividad en la fusión (Tabla 1). Los mutantes F125Y y P126L de VSV mostraron respectivamente una reducción de la fusión del 34% y del 48% respecto a la obtenida con la pG nativa (Shokralla et al., 1999), mientras que en los mutantes equivalentes F147K y P148K de VHSV, la reducción de la fusión fue de un 100%. La actividad de fusión más baja observada en VHSV pudo deberse a los cambios de aminoácidos más drásticos introducidos en los mutantes de VHSV. Alternativamente, podría deberse a diferencias en las condiciones de los ensayos de fusión célula-célula (exposición a bajo pH durante 2 ó 15 minutos en VSV o VHSV, respectivamente).
Debido a que el suero procedente de las truchas inmunizadas con VHSV (aproximadamente un 40%) reaccionó fuertemente con el frgl l en fase sólida (Estepa et al, 2001; Rocha et al, 2002) mediante reconocimiento de sus epítopos lineales (Fernández- Alonso et al., 1998) y los mutantes en frgl l se expresaron en la membrana celular independientemente de su conformación, la mayoría de los mutantes de la pG defectuosos en la fusión aquí descritos, son viables y capaces de inducir respuestas inmunes en truchas. Algunas de las mutaciones descritas en la presente invención podrían utilizarse para diseñar vacunas atenuadas frente al VHSV, incluyendo vacunas ADN con el gen G muíante (Anderson, 1996a; Anderson, 1996b; Fernández- Alonso, 2001) o VHSV mutantes obtenidos mediante métodos de genética reversa (Biacchesi et al, 2002; Biacchesi et al., 2000).
Tabla 1 Expresión de pG en membrana (FACS) y citoplasma (EF) y núcleos inducidos en sincitios a pH óptimo en células transfectadas con pG muíante
FACS** AcP Anti-pG AcM ClO+ Fusión
Dominio Muíante % células teñidas Intensidad de fluorescencia (afir) n % células teñidas n pH % núcleos en sincitios *** n
Tipo salvaje + 53,5 ± 11 18,7 ±4,1 (6) 21,6 ±9 (6) 5,6 44,7 ± 8,1 (3)
Corriente P65A + 54,1 ± 8 13,3 ±3,1 (3) 0,9 ±0,1 (4) 1,8 ± 0,6 (3) arriba p2 P79A + 42,5 ± 10 13,1 ±3,6 (4) 0,3 ±0,1 (3) 5,3 23,5 ±2,4 (2)
Péptido de I82S + 1,3 ± 0,3 0 (3) 1,6 ±0,6 (4) ? 1,6 ± 0,2 (2) unión al + 51,6 ±29 13,6 ± 1,1 fosfolípido, L85S (2) 0,5 ±0,1 (3) 5,0 9,2 ±3,5 (2) p2 (82-110) P86A + . 56,8 ± 15 13,7 ±5,8 (4) 1,1 ±0,6 (3) 2,1 ±0,5 (3)
P86AG98A + 50,6 ± 13 12,2 ±3,5 . (4) 1,4 ±0,1 (4) - 1,4 ±0,3 (3)
A96E + 44,5 ± 19 13,3 ±3,3 (3) 1,2 ±0,6 (3) - 1,6 ± 0,4 (2)
G98A + 77,2 ±9 13,2 ±4,7 (2) 0,6 ±0,2 (3) - 1,6 ±0,2 (2)
G98AH99S + 71,5 ±4 22,5 ±2,5 (2) 0,5 ±0,3 (2) - 1,7 ± 0,3 (2)
R103A + 64,7 ± 14 11,7 ±3,2 (2) 1,6 ±0,8 (2) 5,0 27,7 ±4,1 (2)
R107A + 63,5 ±23 13,1 ±2,1 (2) 0,9 ±0,3 (2) _ 2,1 ± 0,5 (2)
Corriente F115K + 52,0 ±23 10,8 ± 3,4 (3) 0,4 ±0,2 (2) 1,6 ±0,5 (3) abajo p2 T135E + 55,6 ±20 11,6 ± 8,4 (3) 1,3 ±0,8 "(2) 5,0 13,7 ±4,5 (3)
Péptido de F147K + 69,0 ± 1 11,5 ±0,5 (2) 1,3 ±0,3 (3) 1,6 ± 0,2 (2) fusión
P148K + 50,2±2 22,5 ±2,5 (2) 1,5 ±0,3 (2) 2,8 ± 1,5
(142-159) (2)
W154K + 76,3 ± 13 13,1 ± 1,8 (2) 1,0 ±0,7 (3) 1,8 ±0,2 (2)
*, La expresión en el citoplasma de las células EPC transfectadas con los plásmidos que contenían pG mutantes se estimó por inmunofluorescencia con el AcP de conejo anti- pG. Los resultados se clasificaron en "+" cuando se detectó fluorescencia mayor que la del fondo; **, Los resultados se dan en medias ± la desviación estándar del porcentaje de células EPC teñidas con los anticuerpos indicados por comparación con el número de células tañidas con los mismos anticuerpos monoclonales en células EPC no transfectadas (Figura 2). La media ± la desviación estándar de la intensidad de fluorescencia del número de experimentos diferentes por muíante están entre paréntesis; ***, Los resultados de fusión al máximo pH (Figura 3) se proporcionan como porcentaje de núcleos en sincitios (sincitios de 3 o más de 3 células por sincitio, n = 1.300 aproximadamente, 4 campos de aumentos (xlOO)). El porcentaje de núcleos en sincitios en monocapas de células EPC sin transfectar tras pH 5,6 fue 1,3 % (n=1.300), aunque el 95% de ellos sólo tenía 3 núcleos por sincitio.; +, Anticuerpos monoclonales ClO mapean simultáneamente en las posiciones 139 y .140 (Bearzotti, 1995; Gaudin, 1999).
Tabla 2
Péptidos p2 mutantes de unión a PS en fase sólida marcados (posiciones de 93 a 107)
Figure imgf000032_0001
El PS marcado radiactivamente fue estimado por la unión a fase sólida revestida con péptidos mutantes sintéticos derivados de la secuencia parcial de p2 (93SAVASGYLHRVTYRio7). Las cuentas por encima del valor de fondo fueron convertidas a pmoles de PS por μg de péptido y los promedios procedentes de dos experimentos diferentes fueron realizados por triplicado y sus desviaciones estándar, representadas. Las secuencias de aminoácidos se muestran en código de una letra. Los aminoácidos mutados están en letra negrita.
BIBLIOGRAFÍA Anderson, E.D., Mourich, D. V., Fahrenkrug, S.C., LaPatra, S.C.,
Shepherd, J. y Leong, J.C. (1996a) Genetic immunization of rainbow trout (Oncorhynchus mykiss) against infectious hematopietic necrosis viras. Molecular Marine Biology Biotechnology, 5: 114-122.
Anderson, E.D., Mourich, D.V., y Leong, J.C. (1996b). Gene expression in rainbow trout (Oncorhynchus mykiss) following intramuscular injection of DNA. Molecular Marine Biology Biotechnology, 5: 105-113.
Bearzotti, M., Monnier, A.F., Vende, P., Grosclaude, J., DeKinkelin, P. and Benmansour, A. (1995). The glycoprotein of viral hemorrhagic septicemia virus (VHSV): antigenicity and role in virulence. Vet.Res. 26:413-422.
Biacchesi, S., Bearzotti, M., Bouguyon, E. and Bremont, M. (2002). Heterologous exchanges of the glycoprotein and the matrix protein in a
Novirhabdovirus. J.Virol. 76:2881-2889.
1. Biacchesi, S., Thoulouze, M.I., Bearzotti, M., Yu, Y.X. and Bremont, M.
(2000). Recovery of NV Knockout Infectious Hematopoietic Necrosis Virus Expressing Foreign Genes. J.Virol. 74:11247-11253. Carneiro, F.A., Ferradosa, A.S., y DaPoian, A.T. (2001) Low pH-induced conformational changes in vesicular stomatitis virus glycoprotein involve dramatic structure reorganization. Journal of Biological Chemistry, 276: 62-67.
Carneiro, F.A., Stauffer, F., Lima, C.S., Juliano, M.A., Juliano, L. y DaPoian, A.T. (2003). Membrana fusión induced by vesicular stomatitis virus depends on histidina protonation. Journal of Biological Chemistry, 278: 13789- 13794.
CoII, J.M. (1995). Heptad-repeat sequences in the glycoprotein of rhabdo virases. Virus Genes 10:107-114.
Einer-Jensen, K., Krogh, T.N., Roepstorff, P. and Lorenzen, N. (1998). Characterization of intramolecular disulphide bonds and secondary modifications of the glycoprotein from viral haemorrhagic septicaemia virus (VHSV), a fish rhabdovirus. J.Virol. 72:10189-10196.
Estepa, A. and CoIl, J.M. (1996a). Pepscan mapping and fusión related properties of the major phosphatidylserine-binding domain of the glycoprotein of viral hemorrhagic septicemia virus, a salmonid rhabdovirus. Virology 216:60-70. Estepa, A. and CoIl, J.M. (1996b). Phosphatidylserine binding to solid-phase peptides: a new method to study phospholipid/viral protein interactions. J.Virol.Methods 61 :37-45.
Estepa, A., Rocha, A., pérez, L., Encinar, J.A., Núñez, E., Fernández, A., González Ros, J.M., Gavilanes, F. and CoIl, J.M. 2001. A protein fragment from the salmonid VHS rabdovirus induces cell-to-cell fusión and membrana phosphatidylserine translocation al low pH. Journal Biological Chemistry, 276:
46268-46275.
Fernández-Alonso, M., Alvarez, F., Estepa, A., Blasco, R. and CoIl, J.M. (1999). A model to study fish DNA inmersión- vaccination by using the green fluorescent protein. J.Fish Dis. 22:237-241.
Fernández-Alonso, M., Lorenzo, G., Pérez, L., Bullido, R., Estepa, A., Lorenzen, N. y CoIl, J.M. (1998). Mapping of the lineal antibody epitopes of the glycoprotein of VHSV, a salmonid rabdovirus. Diseases Aquatic Organisms, 34: 167- 176
Fernández- Alonso, M., Rocha, A. and CoIl, J.M. (2001). DNA vaccination by immersion and ultrasound to trout viral haemorrhagic septicaemia virus. Vaccine, 19: 3067-3075.
Fijan, N.; Sulimanovic, D.; Bearzotti, M.; Muzinic, D.; Zwillenberg, L.O.Z.; Chümonczyk, S; Vautherot, J.F. y Kinkelin, P. (1983). Some properties of the epithelioma papulosum cyprinid (EPC) cell line from carp cyprinus carpió. Annals Virology (Institute Pasteur), 134: 207-220.
Fredericksen, B.L., and Whitt, M.A. (1996). Mutations al two conserved acidic amino acids in the glycoprotein of vesicular stomatitis virus affect pH- dependent conformational changes and reduce the pH threshold for membrane fusión. Virology, 217: 49-57.
Gaudin, Y., DeKinkelin, P. and Benmansour, A. (1999). Mutations in the glycoprotein of viral haemorrhagic septicaemia virus that affect virulence for fish and the pH threshold for membrane fusión. J.Gen.Virol. 80:1221-1229. Gaudin, Y., Ruigrok, R.W.H., Knowssow, M. y Flamand, A. (1993) Low-pH conformational changes of rabies virus glycoprotein and their role in membrane fusión. Journal Virology, 67: 1365-1372.
Heike, S., Egbert, M. and Mettenleiter, T.C. (1999). Complete genomic sequence of viral hemorrhagic septicemia virus, a fish rhabdovirus. Virus Genes 19:59-65.
López, A., Fernández-Alonso, M., Rocha, A., Estepa, A. and CoII, J.M. (2001). Transfection of epithelioma cyprini (EPC) carp cells. Biotechnology Letters 23:481-487 Lorenzen, N. y LaPatra, S.E. (1999) Immunity to rhabdoviruses in rainbow trout: the antibody response. Fish Shellfϊsh Immunology, 9: 345-360.
Rocha, A., Fernández-Alonso, M., Mas, V., Pérez, L., Estepa, A. and CoIl, J.M. (2002). Antibody response to a lineal- epitope of the protein G of a rhabdovirus in immunized trout. Vet.Immunol.Immunopathol. 86:89-99. Rocha, A., Ruiz, S., y CoIl, J.M. (2004a). Improvement of transfection efficiency of epithelioma papulosum cyprini carp cells by modification of their cell cycle and using an optimal promoter. Marine Biotechnology, in press
Rocha, A., Ruiz, S., Tafalla, C. y CoIl, J.M. (2004b). Characterisation of the syncyntia formed by VHS salmonid rabdovirus G-gene transfected cells. Veterinary Immunology Immunopathology, in press.
Shokralla, S., Chernish, R. and Ghosh, H.P. (1999). Effects of double-site mutations of vesicular stomatitis virus glycoprotein G on membrane fusión activity. Virology 256:119-129.
Thiry, M.; Lecoq-Xhonneux, F.; Dheur, L; Renard, A. and Kinkelin, D. (1991). Molecular cloning of the m_RNA coding for the G protein of the viral haemorrhagic septicaemia (VHS) of salmonids. Journal Veterinary Microbiology, 23: 221- 226.
Walker, P. J. and Kongsuwan, K. (1999). Deduced structural model for animal rhabdovirus glycoproteins. J.Gen.Virol. 80:1211-1220.

Claims

REIVINDICACIONES
1. Un gen G mutante del virus de la septicemia hemorrágica (VHSV) que codifica una proteína G (pG) mutante de VHSV, en donde dicha pG mutante de VHSV comprende al menos una mutación y tiene una capacidad de fusionarse a células susceptibles de ser infectadas por VHSV defectiva o nula.
2. Gen G mutante según la reivindicación 1, que codifica una pG mutante de VHSV cuya mutación se localiza en el dominio upstream p2 de la pG de VHSV.
3. Gen G mutante según la reivindicación 2, en el que dicha mutación en la pG de VHSV se selecciona entre las mutaciones P65A y P79A.
4. Gen G mutante según la reivindicación 1, que codifica una pG mutante de VHSV cuya mutación se localiza en el dominio de unión a fosfolípido (p2) de la pG de VHSV.
5. Gen G mutante según la reivindicación 4, en el que dicha mutación en la pG de VHSV se selecciona entre las mutaciones I82S, L85S, P86A, P86AG98A, A96E, G98A, G98AH99S, Rl 03 A y R107A.
6. Gen G mutante según la reivindicación 1, que codifica una pG mutante de VHSV cuya mutación se localiza en el dominio comente abajo (downstream) de la región p2 de la pG de VHSV.
7. Gen G mutante según la reivindicación 6, en el que dicha mutación en la pG de VHSV se selecciona entre las mutaciones Fl 15K y T135E.
8. Gen G mutante según la reivindicación 1, que codifica una pG mutante de VHSV cuya mutación se localiza en el dominio del péptido de fusión de la pG de
VHSV.
9. Gen G muíante según la reivindicación 8, en el que dicha mutación en la pG de VHSV se selecciona entre las mutaciones F147K, P148K y W154K.
10. Un vector que comprende un gen G imitante según cualquiera de las reivindicaciones 1 a 9.
11. Vector según la reivindicación 10, seleccionado entre un plásmido de ADN y un vector de expresión capaz de ser expresado en células eucariotas.
12. Vector según la reivindicación 10 ú 11, que comprende, además, los elementos necesarios para la expresión y traducción de dicho gen G muíante y/o elementos reguladores para su transcripción y/o traducción.
13. Empleo de un vector según cualquiera de las reivindicaciones 10 a 12, en la elaboración de una vacuna destinada a conferir proíección a animales suscepíibles de ser infecíados por VHSV.
14. Un virus de la septicemia hemorrágica (VHSV) muíaníe cuyo genoma comprende un gen G muíaníe según cualquiera de las reivindicaciones 1 a 9, junio con el resto de genes de VHSV.
15. Empleo de un virus de la septicemia hemorrágica (VHSV) muíaníe según la reivindicación 14 en la elaboración de una vacuna destinada a conferir proíección a animales suscepíibles de ser infecíados por VHSV.
16. Una vacuna que comprende un gen G muíante según cualquiera de las reivindicaciones 1 a 9, y, opcionalmente, uno o más adyuvantes y/o vehículos farmacéuticameníe acepíables.
17. Vacuna según la reivindicación 16, en la que dicho gen G muíante está incorporado en un vector según cualquiera de las reivindicaciones 10 a 12.
18. Vacuna según la reivindicación 16, en la que dicho gen G muíante está incorporado en un VHSV muíante según la reivindicación 14.
19. Vacuna según la reivindicación 16, seleccionada entre una vacuna ADN y una vacuna viva alenuada.
20. Vacuna según cualquiera de las reivindicaciones 16 a 19, para proteger animales susceptibles de ser infectados por VHSV.
21. Vacuna según la reivindicación 20, en el que dichos animales susceptibles de ser infectados por VHSV son animales acuáticos.
22. Vacuna según la reivindicación 21, en el que dichos animales acuáticos se seleccionan eníre salmónidos, bacalao, rodaballos, corvinas, anguilas, gallos y gambas.
23. Vacuna según la reivindicación 21 ó 22, en el que dichos animales acuáíicos son truchas.
24. Un animal no humano íransgénico cuyas células contienen, integrado en su genoma, un gen G muíante según cualquiera de las reivindicaciones 1 a 9.
25. Animal según la reivindicación 24, caracíerizado porque es un pez.
26. Una proíeína G muíante del virus de la septicemia hemorrágica (VHSV) codificada por un gen G mutaníe según cualquiera de las reivindicaciones 1 a 9.
27. Proteína G muíante según la reivindicación 26, seleccionada entre una pG muíante que tiene la mutación P65A; una pG muíante que tiene la mutación P79A; una pG mutaníe que tiene la muíación I82S; una pG mutaníe que íiene la mutación L85S; una pG muíante que tiene la mutación P86A; una pG mutaníe que íiene la muíación P86AG98A; una pG mutaníe que íiene la muíación A96E; una pG muíante que tiene la muíación G98A; una pG muíaníe que íiene la muíación G98AH99S; una pG muíaníe que tiene la mutación Rl 03 A; una pG mutaníe que íiene la muíación Rl 07 A; una pG muíaníe que íiene la muíación FIlK; una pG muíaníe que íiene la muíación T135E; una pG muíante que tiene la mutación F147K; una pG mutaníe que íiene la muíación P 148K; y una pG muíaníe que íiene la muíación W 154K.
28. Una célula huésped que comprende un gen G muíaníe según cualquiera de las reivindicaciones 1 a 9.
29. Célula huésped según la reivindicación 28, caracíerizada porque es una célula eucariola.
30. Célula huésped según la reivindicación 29, caracierizada porque es una célula perteneciente a la línea celular EPC (Epithelioma Papulϊosum cyprisϊ).
31. Un méíodo para producir una proíeína G muíanle del virus de la septicemia hemorrágica (VHSV) que comprende cultivar una célula huésped según cualquiera de las reivindicaciones 28 ó 29, que comprende un gen G muíante según cualquiera de las reivindicaciones 1 a 9, bajo condiciones que permiten la expresión de dicho gen.
32. Método según la reivindicación 31, que comprende, además, retirar la proíeína G muíaníe producida del medio de cultivo.
PCT/ES2005/000459 2004-08-27 2005-08-11 Genes g mutantes del virus de la septicemia hemorrágica de la trucha (vhsv) y aplicaciones WO2006035082A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05857623A EP1818403A1 (en) 2004-08-27 2005-08-11 Mutant g genes of the trout viral haemorrhagic septicaemia virus (vhsv) and applications thereof
US11/574,369 US20070269459A1 (en) 2004-08-27 2005-08-11 Mutant G Genes of the Trout Viral Haemorrhagic Septicaemia Virus (Vhsv) and Applications Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200402092A ES2255411B1 (es) 2004-08-27 2004-08-27 Genes g mutantes del virus de la septicemia hemorragica de la trucha (vhsv) y aplicaciones.
ESP200402092 2004-08-27

Publications (1)

Publication Number Publication Date
WO2006035082A1 true WO2006035082A1 (es) 2006-04-06

Family

ID=36118609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/000459 WO2006035082A1 (es) 2004-08-27 2005-08-11 Genes g mutantes del virus de la septicemia hemorrágica de la trucha (vhsv) y aplicaciones

Country Status (4)

Country Link
US (1) US20070269459A1 (es)
EP (1) EP1818403A1 (es)
ES (1) ES2255411B1 (es)
WO (1) WO2006035082A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025068A1 (es) * 2013-08-23 2015-02-26 Universidad Miguel Hernandez De Elche Vacuna recombinante frente al virus de la septicemia hemorrágica vírica

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829272B2 (en) 2007-05-24 2010-11-09 Nanotrope Inc. Viral detection liposomes and method
WO2010085259A1 (en) * 2009-01-26 2010-07-29 Nanotrope, Inc. Viral detection liposomes and method
CN105132438A (zh) * 2015-10-15 2015-12-09 山东出入境检验检疫局检验检疫技术中心 鱼类病毒性出血性败血症病毒g基因的真核表达方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BEARZOTTI M. ET AL.: "The glycoprotein of viral hemorrhagic septicemia virus (VHSV): antigenicity and role in virulence", VETERINARY RESEARCH, vol. 26, no. 5-6, 1995, pages 413 - 422, XP008087250 *
BENMANSOUR A. AND KINKELIN P.: "Live fish vaccines: history and perspectives", DEVELOPMENTS IN BIOLOGICAL STANDARDIZATION, vol. 90, 1997, pages 279 - 289, XP008087249 *
ENZMANN P.J. ET AL.: "Development of vaccines against VHS and IHN: oral application, molecular marker and discrimination of vaccinated fish from infected populations", JOURNAL OF APPLIED ICHTYOLOGY, vol. 14, no. 3-4, December 1998 (1998-12-01), pages 179 - 183, XP009044616 *
ESTEPA A.M. ET AL.: "A protein G fragment from the salmonid viral viral hemorrhagic septicemia rhabdovirus induces cell-to-cell fusion and membrane phosphatidylserine translocation at low pH", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, no. 49, December 2001 (2001-12-01), pages 46268 - 46275, XP008087247 *
GAUDIN Y. ET AL: "Mutations in the glycoprotein of viral haemorrhagic septicaemia virus that affect virulence for fish and the pH threshold for membrane fusion", JOURNAL OF GENERAL VIROLOGY, vol. 80, no. 5, May 1999 (1999-05-01), pages 1221 - 1229, XP002976936 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025068A1 (es) * 2013-08-23 2015-02-26 Universidad Miguel Hernandez De Elche Vacuna recombinante frente al virus de la septicemia hemorrágica vírica
ES2540596A1 (es) * 2013-08-23 2015-07-10 Universidad Miguel Hernández De Elche Vacuna recombinante frente al virus de la septicemia hemorrágica vírica

Also Published As

Publication number Publication date
ES2255411A1 (es) 2006-06-16
US20070269459A1 (en) 2007-11-22
EP1818403A1 (en) 2007-08-15
ES2255411B1 (es) 2007-03-16

Similar Documents

Publication Publication Date Title
CN111088283B (zh) mVSV病毒载体及其病毒载体疫苗、一种基于mVSV介导的新冠肺炎疫苗
ES2589057T3 (es) Proteína quimérica
ES2700243T3 (es) Construcciones del virus de la enfermedad de Marek recombinantes no patógenas que codifican antígenos del virus de la laringotraqueitis infecciosa y del virus de la enfermedad de Newcastle
US20160222066A1 (en) Norovirus derived immunogenic compositions and methods
ES2737852T3 (es) Un citomegalovirus de replicación condicional como vacuna para el CMV
ES2757927T3 (es) Virus de la peste porcina clásica (VPPC) recombinante que comprende sustituciones en el epítopo TAV de la proteína E2
ES2640961T3 (es) Virus de la estomatitis vesicular para vacunas de sensibilización y refuerzo
ES2278810T3 (es) Nucleoproteina recombinante mutante del virus de la enfermedad de newcastle (ndv) como marcador de vacuna.
ES2315306T3 (es) Vacunas contra el virus de la enfermedad de marek (mdv) y el virus varicella zoster (vzv).
ES2647073T3 (es) Vacuna contra la IPN
ES2714689T3 (es) Proteína de espina mutante que extiende el tropismo tisular del virus de bronquitis infecciosa (IBV)
ES2935643T3 (es) Construcciones de virus de la enfermedad de Marek no patógeno recombinante que codifican antígenos del virus de la laringotraqueítis infecciosa y del virus de la bursitis infecciosa
ES2210401T3 (es) Poxvirus recombinante-virus de la peritonitis infecciosa felina, sus composiciones y metodos para obtenerlos y usarlos.
WO2006035082A1 (es) Genes g mutantes del virus de la septicemia hemorrágica de la trucha (vhsv) y aplicaciones
WO2022261554A1 (en) Recombinant newcastle disease virus (rndv) vectors and methods of using the same
ES2313728T3 (es) Composiciones de poxvirus-calcivirus recombinantes y sus usos.
ES2573704T3 (es) Virus de la variolovacuna recombinante que tiene el gen del virus de la hepatitis C
ES2257505T3 (es) Mutantes de virus de la rabia atenuados y vacunas vivas correspondientes.
ES2257753T3 (es) Pseudo-particulas virales recombinantes y aplicaciones vacunales y antitumorales.
ES2283150T3 (es) Mutantes del virus de la rabia atenuados estables y vacunas vivas de los mismos.
Offit et al. Induction of rotavirus-specific cytotoxic T lymphocytes by vaccinia virus recombinants expressing individual rotavirus genes
WO2021211553A1 (en) Recombinant vaccine against marek's disease and newcastle disease
ES2324406T3 (es) Mutantes de herpesvirus equino (ehv) gm-negativos sin elementos heterologos.
ES2410593T3 (es) Ácidos nucleicos y polipéptidos de lisavirus quiméricos
PT2571519T (pt) Vacinas marcadas para a peste suína clássica

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11574369

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005857623

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005857623

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11574369

Country of ref document: US