WO2006033335A1 - フェライト磁性材料の製造方法 - Google Patents

フェライト磁性材料の製造方法 Download PDF

Info

Publication number
WO2006033335A1
WO2006033335A1 PCT/JP2005/017345 JP2005017345W WO2006033335A1 WO 2006033335 A1 WO2006033335 A1 WO 2006033335A1 JP 2005017345 W JP2005017345 W JP 2005017345W WO 2006033335 A1 WO2006033335 A1 WO 2006033335A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
magnetic material
producing
ferrite magnetic
ferrite
Prior art date
Application number
PCT/JP2005/017345
Other languages
English (en)
French (fr)
Inventor
Shigeki Yanagida
Yoshihiko Minachi
Junichi Nagaoka
Kunio Ohno
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Publication of WO2006033335A1 publication Critical patent/WO2006033335A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • the present invention relates to a method for manufacturing a ferrite magnetic material, and more particularly to a method for manufacturing an M-type flight containing La and Co.
  • hexagonal magnetoplumbite type (M type) Sr flite or Ba frite is mainly used as an oxide permanent magnet material. These M-type flights are relatively inexpensive and expensive! ⁇ With magnetic properties! Because of its characteristics, it is used as a sintered magnet or a bonded magnet, and is applied to, for example, motors installed in home appliances and automobiles. In recent years, there is an increasing demand for downsizing and high performance of electronic components. Accordingly, there is a strong demand for downsizing and high performance of sintered ferrite magnets.
  • JP-A-11 15 4604 Patent Document 1
  • JP-A-11-195516 Patent Document 2
  • JP-A 2000-195715 Patent Document 3
  • Ferrite sintered magnets have been proposed that have a high residual magnetic flux density and a high coercivity that could not be achieved with magnets.
  • This sintered ferrite magnet contains at least Sr, La and Co, and has the main component of hexagonal M-type ferrite.
  • Patent Document 1 Japanese Patent Laid-Open No. 11 154604
  • Patent Document 2 JP-A-11 195516
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-195715
  • the sintered ferrite magnet has magnetic properties that surpass conventional M-type sintered ferrite magnets! However, there is always a demand for further improvements in magnetic properties.
  • Ferrite sintered magnets are manufactured by forming ferrite magnetic particles and then firing them.
  • the particle size of the ferrite magnetic particles is reduced, the crystal particle size of the obtained sintered body can be reduced, and the coercive force HcJ is improved.
  • the particle size of ferrite magnetic particles If the value is made small, the degree of orientation of the particles during molding in a magnetic field is lowered, so that there is a problem that the residual magnetic flux density Br is lowered.
  • the present invention has been made on the basis of such a technical problem.
  • the magnetic properties of hexagonal M-type ferrite containing at least La and Co (hereinafter referred to as La-Co-containing M-type ferrite) are as follows. It is an object of the present invention to provide a manufacturing method that can be improved without causing an increase in cost.
  • the raw material powder constituting the main component of the ferrite is mixed and calcined by calcining, or added to the pulverized powder obtained by crushing the calcined body.
  • Patent Documents 1 to 3 adding SiO and CaCO during pulverization after calcination,
  • the inventors of the present invention examined the timing of adding SiO, and found that a predetermined amount or more of SiO was added.
  • the magnetic properties can be improved by adding 2 2 before calcination.
  • the present invention provides a method for producing a ferrite magnetic material containing hexagonal M-type ferrite containing Fe, element A, element R, and element M as main components and at least S content as a subcomponent.
  • the element A is at least one element selected from Sr, Ba and Pb.
  • the element R is at least one selected from rare earth elements and and necessarily contains La.
  • the element M is at least one selected from Co, Mn, Mg, Ni, Cu and Zn, and must contain Co.
  • the raw material composition preferably contains 50% or more of the total amount of Si components, and more preferably 80% or more of the total amount of Si components.
  • the pulverized powder obtained in step b can be used as a magnet powder for a bonded magnet. Moreover, this pulverized powder can be used for the production of sintered magnets.
  • Step d to obtain a sintered body may be performed.
  • the total amount of Si components added is preferably 0.15 to L 35 wt% in terms of SiO.
  • the present invention uses Ca as an accessory component.
  • the Ca component such that the ratio CaZSi of the molar amount of the Ca component to the molar amount of the Si component is 0.35-2.10.
  • these subcomponents are present at the grain boundaries, but in some cases, they dissolve in the grains.
  • the present invention does not exclude the form in which the subcomponent is dissolved in the grains.
  • step a It is preferable to add a part or all of the Ca component before step a to step c before improving the magnetic properties.
  • the amount added after step a and before step c is preferably 50% or more of the total amount of the Ca component.
  • the process after step a does not include the process a
  • the process before the process c does not include the process c.
  • the ferrite magnetic material targeted by the present invention contains the element R and the element M. It is preferable for improving the magnetic properties that the element R is partially or wholly contained in the raw yarn and the composition, and that the element M is partially or entirely added before step a and after step c.
  • ferrite magnetic material As the main component of ferrite magnetic material, it has a composition of A R (Fe M) O
  • composition formula A R (Fe M) O, x, y and z are 0.04
  • the magnetic characteristics can be improved by a method that does not accompany.
  • the cost can be reduced by reducing the content of Co, which is an expensive element, but the reduction of Co leads to a decrease in magnetic properties, particularly the coercive force HcJ.
  • the Co content has never been reduced except in cases where the deterioration of magnetic properties is allowed.
  • the present invention even if the Co content is reduced, it is possible to obtain the same magnetic characteristics as in the case where the Co content is not reduced. Therefore, it is possible to realize cost reduction without causing deterioration of the magnetic characteristics. Can do.
  • a predetermined amount of S content is added before calcination, thereby improving magnetic characteristics. be able to. Therefore, according to the present invention, there is provided a manufacturing method capable of improving the magnetic properties of La—Co-containing M-type ferrite without causing an increase in cost. Specifically, according to the present invention, a coercive force HcJ of 4000 Oe or more and a residual magnetic flux density Br of 4000 G or more can be combined.
  • the ferrite magnetic material obtained in the present invention can be put to practical use in various forms.
  • Ferrite magnet powder can be used for bonded magnets. That is, the ferrite magnetic material obtained by the present invention can constitute a bonded magnet as a ferrite magnet powder dispersed in a resin. In addition, the magnetic material can form a magnetic recording medium as a film-like magnetic phase.
  • the present invention is characterized in that S content is added at the time of blending the raw material powder of hexagonal M-type ferrite, but first, the composition, magnetic properties and applications of the ferrite magnetic material of the present invention are sequentially introduced. explain.
  • the bright magnetic material of the present invention is composed mainly of hexagonal M-type ferrite containing Fe, element A, element R, and element M, and has a main component represented by the following composition formula I.
  • the element A is at least one element selected from Sr, Ba and Pb.
  • the element R is at least one selected from the rare earth elements and B, and must contain La.
  • the element M is at least one selected from Co, Mn, Mg, Ni, Cu and Zn, and necessarily contains Co.
  • the proportion of Sr + Ba in element A is preferably 51 atomic percent or more, more preferably 70 atomic percent or more, and even more preferably 100 atomic percent. If the ratio of Sr in element A is too low, it is difficult to increase both the saturation magnetization and the coercivity.
  • composition formula I if X indicating the amount of element R is too small, that is, the amount of element R is too small.
  • X in the present invention is preferably 0.04 ⁇ x ⁇ 0.60.
  • a preferable range of X is ⁇ 0. 04 ⁇ ⁇ ⁇ 0.30, and more preferably ⁇ 0. 04 ⁇ ⁇ ⁇ 0.25. In the range of 0.004 ⁇ 0.25, the effect of improving the residual magnetic flux density Br by the SiO pre-added key becomes remarkable.
  • the rare earth elements used as the element R are Y, Sc and lanthanoids.
  • element R Always use La. If other elements are used, preferably at least one lanthanoid is used.
  • the proportion of La in R is preferably 40 atomic% or more, more preferably 70 atomic% or more. Comparing the solid solution limit for hexagonal M-type fl, La is the most. Therefore, if the ratio of La in R is too low, the solid solution amount of R cannot be increased, and as a result, the solid solution amount of element M cannot be increased, and the effect of improving magnetic properties is reduced. End up. If Bi is used in combination, the calcination temperature and the sintering temperature can be lowered, which is advantageous in production.
  • composition formula I if y indicating the amount of element M is too small, the saturation magnetization improving effect and Z or
  • y is preferably set to 0.02 ⁇ y ⁇ 0.40.
  • a preferred y range is 0.02 ⁇ y ⁇ 0.20, more preferably 0.02 ⁇ y ⁇ 0.15. In the range of 0.0.02 ⁇ y ⁇ 0.20, the effect of improving the residual magnetic flux density Br by the SiO precursor is remarkable. 0. 02 ⁇ y
  • the proportion of Co in the element M is preferably 20 atomic% or more, more preferably 5%.
  • composition formula I if z is too small, the number of heterogeneous phases containing Sr and element R increases, and if z is too large, heterogeneous phases such as spinel ferrite phase containing ⁇ -FeO and element M increase.
  • z in the present invention is preferably 0.9 ⁇ ⁇ 1.1.
  • composition formula I even if xZy is too small or too large, the valence balance between element R and element M Force S cannot be removed, and foreign phases such as W-type ferrite are easily generated.
  • the reason why the allowable range is large in the region of xZy> l is that the valence is balanced by the reduction of Fe 3+ ⁇ Fe 2+ even if y is small.
  • the number of oxygen atoms varies depending on the types of M and R and the values of x, y, and z. For example, when the firing atmosphere is a reducing atmosphere, oxygen deficiency (payness) may occur.
  • Fe is usually trivalent in M-type ferrite 1S, which may change to divalent.
  • the valence of the element M such as Co may also change, which changes the ratio of oxygen to the metal element.
  • composition of the ferrite magnetic material according to the present invention does not exclude the inclusion of components other than the main component and subcomponent that can be measured by fluorescent X-ray quantitative analysis or the like.
  • the presence of the main phase can be confirmed by X-ray diffraction or electron diffraction.
  • the ferrite magnetic material according to the present invention contains a Si component and further a Ca component.
  • the Si component and the Ca component are added for the purpose of improving the sinterability of hexagonal M-type ferrite, controlling the magnetic properties, and adjusting the crystal grain size of the sintered body.
  • Si component is SiO
  • At least 40% or more of the total amount of Si component is preferably added before calcination (pre-addition), more preferably 50% or more, more preferably 80% or more, and most preferably 100%.
  • % Is pre-added As for the Ca component, it is preferable to add 50% or more of the total amount after calcination and before molding (post-addition), more preferably 80% or more, and most preferably 100%.
  • the amount of Si component is preferably 0.15-
  • the ferrite magnetic material may contain some impurities. Regardless of the amount of this impurity, if the amount of Si component and the amount of Ca component in the ferrite magnetic material are within the above ranges, they are included in the scope of the present invention.
  • Al 2 O and Cr 2 O improve coercivity but reduce residual magnetic flux density
  • the content is preferably 3 wt% or less.
  • the total content of Al 2 O and O should be 0.1 lwt% or more.
  • the ferrite magnetic material of the present invention may contain B 2 O as a subcomponent.
  • B O B O
  • the content of B 2 O is preferably 0.5 wt% or less of the entire ferrite magnetic material.
  • the ferrite magnetic material of the present invention preferably does not contain an alkali metal element such as Na, K, or Rb, but may contain it as an impurity. These are Na 0, K 0, Rb O
  • the total of these contents is preferably 3 wt% or less of the entire ferrite magnetic material. If the content is too large, the saturation magnetic field will be lowered.
  • Ga, In, Li, Ti, Zr, Ge, Sn, V, Nb, Ta, Sb, As, W, and Mo are oxides. It may be contained as. These contents in terms of oxides of stoichiometric composition are 5% by weight or less of gallium oxide, 3% by weight or less of indium oxide, 1% or less of lithium oxide, 3% by weight or less of titanium oxide, Zirconium 3 wt% or less, germanium oxide 3 wt% or less, tin oxide 3 wt% or less, vanadium oxide 3 wt% or less, niobium oxide 3 wt% or less, tantalum oxide 3 wt% or less, antimony oxide 3 wt% or less, oxyarsenic oxide It is preferably 3 wt% or less, tungsten oxide 3 wt% or less, and molybdenum oxide 3 wt% or less.
  • the crystal grain size can be measured with a scanning electron microscope.
  • the sintered ferrite magnet of the present invention contains hexagonal M-type ferrite as a magnetic phase.
  • a ferrite sintered magnet having a residual magnetic flux density Br of 4000 G or more can be obtained.
  • the ferrite magnetic material of the present invention constitutes a sintered ferrite magnet, a ferrite magnet powder, a bonded magnet as a ferrite magnet powder dispersed in a resin, and a magnetic recording medium as a film-like magnetic phase. be able to.
  • the sintered ferrite magnet and bonded magnet according to the present invention are processed into a predetermined shape and used in a wide range of applications as described below.
  • automotive motors for fuel pumps, power windows, ABS (anti-lock 'brake' systems), fans, wipers, power steering, active suspension, starters, door locks, electric mirrors, etc. Can be used as Also for FDD spindle, VTR capstan, VTR rotary head, VTR reel, VTR loading, VTR camera capstan, VTR camera rotary head, VTR camera zoom, VTR camera focus, radio cassette etc. It can be used as a motor for OAZAV equipment such as CDZLDZMD spindle, CDZLDZMD loading, and CDZLD optical pickup.
  • motor for home appliances such as an air conditioner compressor, a freezer compressor, an electric tool drive, a dryer fan, a shaver drive, and an electric toothbrush.
  • motor for FA equipment such as a robot axis, joint drive, robot main drive, machine tool table drive, machine tool belt drive, and the like.
  • Other applications include motorcycle generators, speaker force headphones magnets, magnetron tubes, magnetic field generators for MRI, CD-ROM clampers, distributor sensors, ABS sensors, fuel oil level sensors, magnet latches. It is preferably used for an isolator or the like.
  • the ferrite magnet powder of the present invention When the ferrite magnet powder of the present invention is used for a bonded magnet, its average particle size It is desirable that the force be 0.1 to 5.0 m. The more desirable average particle size of the bonded magnet powder is 0.1 to 2.O ⁇ m, and the more desirable average particle size is 0.1 to 1. O / zm.
  • ferrite magnet powder When manufacturing a bonded magnet, ferrite magnet powder is kneaded with various binders such as resin, metal, rubber, etc. and molded in a magnetic field or in the absence of a magnetic field.
  • Preferred examples of the noda include NBR (Atari mouth-tolyl butadiene rubber), chlorinated polyethylene, and polyamide resin. After molding, it is hardened to form a bonded magnet.
  • a magnetic recording medium having a magnetic layer can be produced.
  • This magnetic layer includes the aforementioned M-type ferrite phase.
  • vapor deposition or sputtering can be used to form the magnetic layer.
  • the sintered ferrite magnet according to the present invention can also be used as a target.
  • magnetic recording media include hard disks, flexible disks, and magnetic tapes.
  • the method for producing a sintered ferrite magnet of the present invention includes a blending step, a calcining step, a crushing step, a crushing step, a forming step in a magnetic field, and a firing step.
  • the grinding process is divided into a coarse grinding process and a fine grinding process.
  • the raw material powder is weighed to a predetermined ratio and then mixed and pulverized for about 1 to 20 hours with a wet attritor or ball mill.
  • a compound containing one of ferrite constituent elements Fe, element A, element R, element M, etc.
  • a compound containing two or more of these may be used.
  • an oxide or a compound that becomes an oxide by firing for example, carbonate, hydroxide, nitrate or the like is used.
  • the average particle diameter of the starting material is not particularly limited, but it is usually preferably about 0.1 to 2.0 m.
  • the starting material may be configured such that a part or all of each compound that is not required to be mixed in the present step before calcination is added later.
  • part or all of the element M component such as Co after the addition.
  • the act of adding before the calcination step is referred to as pre-addition
  • the act of adding after the calcination step is referred to as post-addition.
  • the present invention is characterized in that a predetermined amount of Si component as an additive is added in the blending step.
  • the Si component can be added as SiO powder. Save when compounding
  • the amount of Si component added (pre-added) should be 40% or more of the total amount in terms of SiO with respect to the main composition consisting of the constituent components of hexagonal M-type ferrite.
  • the amount of pre-loading force of Si component is 50% or more.
  • the whole amount that is preferably 80%.
  • a Ca component may be added (pre-added) in the blending step.
  • the Ca component like the Si component, is added for the purpose of improving the sinterability of hexagonal M-type ferrite, controlling the magnetic properties, and adjusting the crystal grain size of the sintered body.
  • Examples of the Ca component include CaCO and CaO.
  • the addition amount of the Ca component is not required to be mixed in this step, and preferably, the entire amount is added later as described later.
  • the raw material composition obtained in the blending step is calcined. Calcination is usually performed in an oxidizing atmosphere such as air.
  • the calcining conditions are not particularly limited. Usually, the stable temperature may be 1000 to 1350 ° C., and the stable time may be 1 second to 10 hours.
  • the calcined body substantially has a magnetoplanoite (M) type ferrite structure, and its primary particle diameter is preferably 2 m or less, more preferably 1 ⁇ m or less.
  • the power at which a predetermined amount of Si component is added in the blending step can be lowered at a lower temperature than before without adding Si component. Manufacturing costs can be reduced by lowering the calcining temperature.
  • the calcined body is generally in the form of granules, lumps, etc., and cannot be molded into the desired shape as it is, so it is pulverized.
  • a pulverization step is required to mix the raw material powder for adjusting to a desired final composition, additives, and the like.
  • the addition of raw material powder and the like in this step is post-addition.
  • the pulverization process is divided into a coarse pulverization process and a fine pulverization process.
  • the calcined body is pulverized to a predetermined particle size to obtain a ferrite magnet powder for a bonded magnet.
  • the pulverization step it is preferable to add a Ca component.
  • the Ca component is added as described above. Power that can be added in advance It is more preferable for the magnetic properties to add in this step. Further, in the present invention, the amount of the pre-added Si component added to the Si component is converted to SiO.
  • the remaining Si component is preferably added in this step.
  • the total amount of Si component and Ca component is preferably 0.1 for the Si component in terms of SiO.
  • the ratio of the molar amount of the Ca component to the molar amount of the Si component CaZSi is 0.35 to 2.10. More preferably, it is 0.30 to 0.90 wt% in terms of SiO, CaZSi force ⁇ ).
  • the calcined body is generally in the form of granules, lumps, etc., it is preferable to roughly pulverize it.
  • a vibration mill or the like is used, and processing is performed until the average particle size becomes 0.5 to 10 / ⁇ ⁇ .
  • the powder obtained here will be referred to as coarsely pulverized powder.
  • the coarsely pulverized powder is pulverized with a wet attritor, ball mill, jet mill, etc., and the average particle size is 0.02 to 111, preferably [0. 1 to 1 111, more preferably [0. 2 to 0.8. Grind to about m.
  • the fine pulverization step is performed for the purpose of eliminating coarsely pulverized powder, thoroughly mixing post-additives, and refining the crystal grains of the sintered body to improve magnetic properties.
  • the specific surface area (obtained by the BET method) of the finely pulverized powder obtained is preferably about 7 to 12 m 2 Zg.
  • the pulverization time may be, for example, 30 minutes to 10 hours for a wet agitator and 10 to 40 hours for a wet pulverization with a ball mill.
  • the post-additive is preferably added in the pulverization step.
  • a polyhydric alcohol represented by the general formula Cn (OH) nHn + 2 in the fine pulverization step in order to increase the degree of magnetic orientation of the sintered body.
  • n representing the number of carbon atoms
  • sorbitol is desirable as the polyhydric alcohol, but two or more polyhydric alcohols may be used in combination.
  • other known dispersants may be used in addition to the polyhydric alcohol used in the present invention.
  • the skeleton is all a chain type and includes an unsaturated bond! /! This is a general formula for /.
  • the number of hydroxyl groups and the number of hydrogen in the polyhydric alcohol may be slightly smaller than the number represented by the general formula. That is, not only a saturated bond but also an unsaturated bond may be included.
  • the basic skeleton may be a chain or a ring, but is preferably a chain. Further, when the number of hydroxyl groups is 50% or more of the carbon number n, the effect of the present invention is realized. However, it is most preferable that the number of hydroxyl groups is the same as the number of hydroxyl groups that is preferred when the number of hydroxyl groups is large.
  • the amount of polyhydric alcohol added is 0.05-5. Owt%, preferably 0.1-3. Owt%, more preferably 0.3-2. It may be about%.
  • the added polyhydric alcohol is thermally decomposed and removed in the baking step after the molding step in a magnetic field.
  • the molding step in a magnetic field can be performed by either dry molding or wet molding, but is preferably performed by wet molding in order to increase the degree of magnetic orientation. Therefore, in the following, after explaining the preparation of the slurry for wet forming, the forming step in a magnetic field will be explained.
  • the pulverization step is performed wet, and the resulting slurry is concentrated to a predetermined concentration to obtain a wet molding slurry. Concentration may be performed by centrifugation or a filter press. In this case, it is preferable that the finely pulverized powder accounts for about 30 to 80 wt% in the slurry for wet molding. Further, water is preferable as the dispersion medium, and it is preferable to add a surfactant such as darconic acid and Z or dalconate, sorbitol. Next, molding is performed in a magnetic field using a slurry for wet molding. The molding pressure may be about 0.1 to 0.5 ton Zcm 2 and the applied magnetic field may be about 5 to 15 kOe.
  • the dispersion medium is not limited to water.
  • a non-aqueous solvent may be used.
  • organic solvents such as toluene and xylene can be used.
  • a surfactant such as oleic acid.
  • the obtained molded body is fired to obtain a sintered body. Firing is usually performed in an oxidizing atmosphere such as air.
  • the firing conditions are not particularly limited, but usually the temperature is raised, for example, at about 5 ° CZ, the stable temperature is 1100-1300 ° C, more preferably 1150-1250 ° C, and the stabilization time is 0. It should be about 5 to 3 hours.
  • a molded body is obtained by wet molding, do not dry the molded body sufficiently! / Cracks may occur in the molded product when heated rapidly with glazing.
  • it is preferable to sufficiently dry the molded body and suppress the generation of cracks by setting the temperature rising rate from room temperature to about 100 ° C, for example, about 10 ° CZ time.
  • the degreasing treatment is performed by setting the temperature rising rate within a range of about 100 to 500 ° C, for example, about 2.5 ° CZ. It is preferable to remove enough.
  • a hexagonal M-type ferrite sintered magnet according to the present invention can be obtained.
  • This ferrite sintered magnet has a coercive force HcJ of 4000 Oe or more and a residual magnetic flux density Br of 4000 G or more.
  • the sintered ferrite magnet obtained in the present invention can be pulverized and used as a ferrite magnet powder. This ferrite magnet powder can be used for bonded magnets.
  • SiO is pre-added, but the ferrite magnet powder is produced from the calcined body.
  • the calcined body thus obtained is coarsely pulverized and finely pulverized to become a ferrite magnet powder.
  • This ferrite magnet powder can be put to practical use, for example, as a bonded magnet.
  • This ferrite magnet powder can be used not only for bonded magnets but also for producing ferrite sintered magnets, for example. That is, it can be said that the ferrite magnet powder is manufactured during the manufacturing process of the ferrite sintered magnet.
  • the particle size may differ between when used for bonded magnets and when used for sintered ferrite magnets.
  • the bright magnet powder includes calcined powder, powder pulverized after calcination, powder pulverized after calcination and firing, V, and misalignment.
  • iron oxide Fe 2 O 3
  • strontium carbonate SrCO 3
  • hydroxide lanthanum As starting materials, iron oxide (Fe 2 O 3), strontium carbonate (SrCO 3), and hydroxide lanthanum
  • the slurry was mixed and pulverized to obtain a slurry-like raw material composition.
  • the slurry was dried and calcined by being kept at 1100 to 1150 ° C in the atmosphere for 2.5 hours.
  • the obtained calcined powder was coarsely pulverized with a small rod vibration mill for 10 minutes.
  • acid-aluminate (Co 2 O 3) having the main composition after firing was weighed and added.
  • the density of the obtained sintered body was measured. After processing the upper and lower surfaces of the sintered body, the magnetic properties were measured using a B—H tracer with a maximum applied magnetic field of 25 kOe.
  • FIGs 1 to 5 show the sintered body density and magnetic property evaluation results. Add silicon oxide (SiO 2)
  • the calcining temperature at the time of SiO post-addition is 1100 ⁇ 115 compared to 1200 ° C.
  • the pre-addition amount of silicon oxide (SiO 2) is 0.3 wt%
  • the post-addition amount is 0.3 wt%
  • a sintered body was produced in the same manner as in Example 1 except that the temperature was changed to 1150 to 1200 ° C., and the same evaluation as in Example 1 was performed.
  • a sintered body was prepared in the same manner as in Example 1 (however, SiO was added before the entire amount), and the same evaluation as in Example 1 was performed.
  • the coercive force HcJ and the residual magnetic flux density Br were measured.
  • Figure 10 shows the timing of SiO addition while keeping the total amount of silicon oxide (SiO 2) at 0.6 wt%.
  • Example 2 a sintered body was produced in the same manner as in Example 1 except that the calcination temperature and the firing temperature were set as shown in FIG.
  • the residual magnetic flux density Br was improved by about 100G compared to the case where it was added afterwards.
  • the proportion of the pre-added amount of SiO exceeds 30%, it is more than that when SiO is added after 100%.
  • the coercive force HcJ was improved.
  • the residual magnetic density Br is more than the coercivity HcJ.
  • SiO is added 80% or more in advance, and the coercive force HcJ is applied more than the residual magnetic density Br.
  • SiO should be pre-added at a rate of 40-80%, or even 45-70%
  • Figures 13 to 15 show the timing of SiO addition by adjusting the addition amount of SiO and CaCO.
  • the SiO addition amount is 0 regardless of the value of CaZSi.
  • SiO More than 15wt% 1. Within the range of less than 35wt%, SiO can be added by pre-adding SiO.
  • the residual magnetic flux density Br could be improved without lowering the coercive force HcJ compared to the addition after 2 2.
  • the additive amount of SiO is 0.3 to 0.9 wt%, the residual magnetism of 4100G or more
  • the bundle density Br and coercive force HcJ of 4000 Oe or more could be combined.
  • a sintered body was produced in the same manner as in Example 1 except that the addition time was as shown in FIGS. 22 to 24, and the same evaluation as in Example 1 was performed. The results are shown in FIGS.
  • SiO can be added after by adding SiO before
  • the residual magnetic flux density Br could be improved without reducing the coercive force HcJ.
  • Example 8 whether or not the effect of improving the magnetic properties due to the pre-addition amount of S is changed depending on the addition timing of the Co component, which is the M component, and the ratio of pre-addition and post-addition.
  • a sintered body was prepared in the same manner as in Example 1 (however, SiO was added before the entire amount) except that the Co component addition timing and Si component addition timing were as shown in Fig. 31. Same evaluation as 1
  • the residual magnetic flux density B r could be improved.
  • Example 9 an examination was made as to whether the effect of improving the magnetic properties due to the Si component pre-addition depends on the timing of addition and pre-addition and post-addition of the La component as the R component. Went.
  • a sintered body was prepared in the same manner as in Example 1 (however, SiO was added before the entire amount) except that the La component was added and the Si component was added as shown in Fig. 34. Same evaluation as 1
  • the Si component is added to the pre-added calorie regardless of the La component's calorific time.
  • the coercive force HcJ greatly increases as the proportion of the pre-added amount of the La component increases, and the residual magnetic flux density Br slightly increases as shown in FIG. Therefore, it was confirmed that the larger the ratio of the pre-added amount of the La component, the more advantageous in obtaining high magnetic properties.
  • the ratio of the pre-added amount of La component is preferably 50% or more, more preferably 70% or more. Most preferably, it was confirmed that the ratio of the pre-added amount of the La component was 100%.
  • a sintered body was prepared in the same manner as in Example 1 (however, SiO was added before the entire amount) except that the Ca component and Si component were added as shown in Fig. 37. Same evaluation as 1
  • the coercivity HcJ is higher than the post-addition of the Si component by pre-adding the Si component when the proportion of the post-addition amount of the Ca component is 50% or more. It was possible to improve the residual magnetic flux density Br without lowering. Moreover, it was confirmed that 80% or more of the total amount of the Ca component was preferably added afterwards.
  • Example 11 As Example 11, a study was conducted to confirm the range of X and y in the composition formula I in which the effect of improving the magnetic properties by the Si component pre-addition was produced.
  • Example 1 (however, except that the starting materials were weighed so that the amounts of La and Co in the main composition after firing were the values shown in Fig. 40.
  • Example 12 examination was performed to confirm the range of xZy in the composition formula I in which the effect of improving the magnetic properties by the Si component pre-addition was produced.
  • Example 1 (however, except that the starting materials were weighed so that the amounts of La and Co in the main composition after firing would be the values shown in Fig. 45)
  • the range of xZy is preferably 0.8 ⁇ x / y ⁇ 2.5, and the more preferable range is 1.0 ⁇ x / y ⁇ 2.3, and the more preferred range is 1. 2 ⁇ x / y ⁇ l.
  • Example 13 a study was conducted to confirm the range of z in the composition formula I in which the effect of improving the magnetic characteristics by the Si component pre-addition was produced.
  • a sintered body was prepared and coercive force was obtained in the same manner as in Example 1 (however, SiO was added before the total amount) except that the starting materials were weighed so that the value of z in composition formula I would be the value shown in FIG. He
  • the range force of z ⁇ In the case of 9 ⁇ ⁇ 1.1, pre-addition of the Si component is more effective than post-addition of the Si component.
  • the residual magnetic flux density Br could be improved without reducing the magnetic force HcJ. From this result, it is preferable that the range of z is 0.9 ⁇ ⁇ 1.1.
  • the more preferable range is 0.92 ⁇ z ⁇ l. 05, and the more preferable range is 0.9.97 ⁇ z.
  • the power S was confirmed to be ⁇ l. 03.
  • FIG. 1 is a chart showing the magnetic properties of the sintered bodies produced in Examples 1 to 4 and Comparative Example 1.
  • FIG. 2 is a graph showing the relationship between the firing temperature and the sintered density ps in Example 1, Example 2, and Comparative Example 1.
  • FIG. 3 is a graph showing the relationship between the firing temperature and the saturation magnetization ⁇ s in Example 1, Example 2, and Comparative Example 1.
  • FIG. 5 is a graph showing the relationship between the firing temperature and the degree of magnetic orientation BrZ47u Imax in Example 1, Example 2, and Comparative Example 1.
  • FIG. 9 is a graph showing the relationship between coercivity HcJ and residual magnetic flux density Br in Example 3, Example 4, and Comparative Example 1.
  • FIG. 11 is a graph showing the relationship between the ratio of the pre-SiO addition amount and the residual magnetic flux density Br in Example 5.
  • FIG. 12 is a graph showing the relationship between the ratio of the pre-SiO addition amount and the coercive force HcJ in Example 5.
  • FIG. 26 is a graph showing the relationship between CaZSi and coercive force HcJ at SiO 0 ⁇ 30 wt%.
  • FIG. 28 is a graph showing the relationship between CaZSi and coercivity HcJ at SiO 0 ⁇ 60 wt%.
  • FIG. 30 is a graph showing the relationship between CaZSi and coercive force HcJ at SiO 0 ⁇ 90 wt%.
  • FIG. 31 is a chart showing the magnetic properties of the sintered body produced in Example 8.
  • FIG. 32 is a graph showing the relationship between the proportion of the post-addition amount of the Co component and the residual magnetic flux density Br in Example 8.
  • FIG. 33 is a graph showing the relationship between the proportion of the Co component after addition and the coercive force HcJ in Example 8. It is rough.
  • FIG. 35 is a graph showing the relationship between the ratio of the pre-added amount of La component and the residual magnetic flux density Br in Example 9.
  • FIG. 36 is a graph showing the relationship between the ratio of the pre-added amount of the La component and the coercive force HcJ in Example 9.
  • FIG. 38 is a graph showing the relationship between the proportion of post-addition amount of Ca component and residual magnetic flux density Br in Example 10.
  • FIG. 39 is a graph showing the relationship between the proportion of post-addition amount of Ca component and coercive force HcJ in Example 10.
  • FIG. 41 is a graph showing the relationship between X and residual magnetic flux density Br in Example 11.
  • FIG. 42 is a graph showing the relationship between X and coercive force HcJ in Example 11.
  • FIG. 43 is a graph showing the relationship between y and residual magnetic flux density Br in Example 11.
  • FIG. 44 is a graph showing the relationship between y and coercive force HcJ in Example 11.
  • ⁇ 45] is a chart showing the magnetic properties of the sintered body produced in Example 12.
  • FIG. 46 is a graph showing the relationship between xZy and residual magnetic flux density Br in Example 12.
  • FIG. 47 is a graph showing the relationship between xZy and coercive force HcJ in Example 12.
  • FIG. 49 is a graph showing the relationship between z and residual magnetic flux density Br in Example 13.
  • FIG. 50 is a graph showing the relationship between z and coercive force HcJ in Example 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)

Abstract

 La及びCoを含有する六方晶M型フェライト(以下、La-Co含有M型フェライト)の磁気特性を、コスト上昇を招くことなく向上することができる製造方法を提供する。  Fe、元素A(ただしAは、Sr、BaおよびPbから選択される、少なくとも1種の元素)、元素R(ただしRは、希土類元素およびBiから選択される少なくとも1種で、Laを必ず含む)、元素M(ただしMは、Co、Mn、Mg、Ni、CuおよびZnから選択される、少なくとも1種で、Coを必ず含む)を主成分とする六方晶M型フェライトと、副成分として少なくともSi成分とを含むフェライト磁性材料の製造方法であって、六方晶M型フェライトの原料粉末の全部または一部と、Si成分の総量の40%以上を含む原料組成物を所定温度で加熱保持して仮焼体を得る工程(a)と、工程(a)で得られた仮焼体を粉砕する工程(b)とを備えるようにした。                                                                             

Description

明 細 書
フェライト磁性材料の製造方法
技術分野
[0001] 本発明は、フェライト磁性材料の製造方法に関し、特に Laおよび Coを含有する M 型フ ライトの製造方法に関するものである。
背景技術
[0002] 酸ィ匕物永久磁石材料としては、一般に六方晶系のマグネトプランバイト型 (M型) Sr フ ライトまたは Baフ ライトが主に用いられている。これらの M型フ ライトは、比較 的安価で高!ヽ磁気特性を有すると!ヽぅ特徴から、焼結磁石やボンディッド磁石として 利用され、例えば家電製品や自動車等に搭載されるモータなどに応用されている。 近年、電子部品の小型化、高性能化への要求が高まっており、それに伴ってフェラ イト焼結磁石への小型化、高性能化が強く要求されている。例えば、特開平 11 15 4604号公報 (特許文献 1)、特開平 11— 195516号公報 (特許文献 2)、特開 2000 — 195715号公報 (特許文献 3)には、従来の M型フェライト焼結磁石では達成不可 能であった高い残留磁束密度と高い保磁力とを有する、フェライト焼結磁石が提案さ れている。このフェライト焼結磁石は、少なくとも Sr、 Laおよび Coを含有し、六方晶 M 型フェライトの主成分を有するものである。
[0003] 特許文献 1 :特開平 11 154604号公報
特許文献 2 :特開平 11 195516号公報
特許文献 3 :特開 2000— 195715号公報
発明の開示
発明が解決しょうとする課題
[0004] 上記フェライト焼結磁石は、従来の M型フェライト焼結磁石を凌駕する磁気特性を 有して!/、るが、さらなる磁気特性の向上が常に要求されて 、る。
フェライト焼結磁石は、フェライト磁性粒子を成形した後に焼成することにより製造さ れる。このフェライト磁性粒子の粒径を小さくすると、得られる焼結体の結晶粒径を小 さくすることができるため、保磁力 HcJが向上する。しかし、フェライト磁性粒子の粒径 を小さくすると、磁場中成形の際の粒子の配向度が低下するため、残留磁束密度 Br が低下するという問題がある。
磁気特性向上の要求がある一方で、電子部品の低コストィ匕の要求も後を絶たない 。したがって、フェライト焼結磁石においても、コスト低減が常に要求される。
[0005] 本発明は、このような技術的課題に基づいてなされたもので、少なくとも Laおよび C oを含有する六方晶 M型フェライト(以下、 La— Co含有 M型フェライト)の磁気特性を 、コスト上昇を招くことなく向上させることができる製造方法を提供することを目的とす る。
課題を解決するための手段
[0006] フェライト焼結磁石の製造にお!、て、焼結性の改善、磁気特性の制御および焼結 体の結晶粒径の調整等を目的に、添加物として例えば Si成分としての SiO、 Ca
2 成 分としての CaCO等が一般的に使用される。これらの添加物は、通常、六方晶 M型
3
フェライトの主成分を構成する原料粉末を混合し、仮焼して得られた仮焼体、もしくは 仮焼体を粉砕して得られた粉砕粉末に添加されて使用される。
特許文献 1〜3においても、仮焼後の粉砕時に SiOおよび CaCOを添加すること、
2 3
さらにその一部を仮焼前に添加してもよ 、ことを開示して 、る。
本発明者らは、 SiOの添カ卩時期について検討を行ったところ、所定量以上の SiO
2 2 を仮焼前に添加することにより磁気特性を向上できること、さらに CaCO
3については 所定量以上を仮焼後に添加することが磁気特性にとって有利であることを知見した。
[0007] 以上の知見に基づく本発明は、 Fe、元素 A、元素 R、元素 Mを主成分とする六方晶 M型フェライトと、副成分として少なくとも S诚分とを含むフェライト磁性材料の製造方 法であって、六方晶 M型フェライトの原料粉末の全部または一部と、 Si成分の総量の 40%以上を含む原料組成物を所定温度で加熱保持して仮焼体を得る工程 aと、ェ 程 aで得られた仮焼体を粉砕する工程 bと、を備えることを特徴とするフ ライト磁性材 料の製造方法である。ここで、元素 Aは、 Sr、 Baおよび Pbから選択される、少なくとも 1種の元素である。元素 Rは、希土類元素および から選択される、少なくとも 1種で 、 Laを必ず含むものである。元素 Mは、 Co、 Mn、 Mg、 Ni、 Cuおよび Znから選択さ れる、少なくとも 1種で、 Coを必ず含むものである。 本発明において、原料組成物は、 Si成分の総量の 50%以上、さらには Si成分の総 量の 80%以上を含むことが好まし 、。
[0008] 以上のフェライト磁性材料の製造方法において、工程 bで得られた粉砕粉末を、ボ ンディッド磁石の磁石粉末として用いることができる。また、この粉砕粉末を焼結磁石 製造に供することができる。焼結磁石を得る場合、工程 bで得られた粉砕粉末を磁場 中で成形する工程 cと、工程 cで得られた成形体を所定温度で焼成して六方晶 M型 フェライトを磁性相とする焼結体を得る工程 dとを実行すればよい。
[0009] 本発明のフェライト磁性材料の製造方法において、添加される Si成分の総量を SiO 換算で 0. 15〜: L 35wt%とすることが好ましい。一方で、本発明は副成分として Ca
2
成分を含むことが好ましい。この場合、 Ca成分は、 Ca成分のモル量と Si成分のモル 量の比率 CaZSiが 0. 35-2. 10となるように添加することが好ましい。通常、これら の副成分は粒界に存在するが、場合によっては粒内に固溶する。副成分が粒内に 固溶する形態を本発明は排除するものではない。
Ca成分は、その一部または全部を、工程 a以降工程 c以前に添加することが磁気特 性向上にとって好ましい。そして、工程 a以降工程 c以前に添加する量は、 Ca成分の 総量の 50%以上であることが好ましい。なお、本発明において、工程 a以降とは工程 aを含まず、また工程 c以前とは工程 cを含まな ヽこととする。
[0010] 本発明が対象とするフェライト磁性材料は、元素 Rおよび元素 Mを含む。この元素 Rは原料糸且成物においてその一部または全部含むことが、また元素 Mはその一部ま たは全部が工程 a以降工程 c以前に添加されることが磁気特性向上にとって好ましい
[0011] 本発明のフェライト磁性材料の製造方法において、元素 Rとして La、元素 Mとして C o、元素 Aとして Srを選択した場合に、高い磁気特性を得る上で好ましい。
また、フェライト磁性材料の主成分としては、 A R (Fe M ) O の組成を有する
1-x X 12-y y z 19
ことが好ましい。なお、組成式 A R (Fe M ) O において、 x、 yおよび zは 0. 04
1-x x 12-y y z 19
≤x< 0. 60、 0. 02≤y< 0. 40、 0. 8<x/y< 2. 5、 0. 9< z< l. 1である。
[0012] すなわち本発明によれば、 Si成分 (SiO )の添加時期を調整するというコスト上昇を
2
伴わない手法により磁気特性の向上を図ることができる。このことは、 La— Co含有 M 型フェライトのコスト低減を実現できることを示唆している。つまり、 La— Co含有 M型 フェライトにおいて、高価な元素である Coの含有量を低減することによりコストを低減 することができるが、 Coの低減は磁気特性、特に保磁力 HcJの低下を招く。そのため 、これまで磁気特性の低下を許容する場合以外に Co含有量を低減することはなかつ た。しかし、本発明によれば、 Co含有量を低減しても、 Co含有量を低減しない場合と 同等の磁気特性を得ることができるので、磁気特性の低下を招くことなくコスト低減を 実現することができる。
発明の効果
[0013] 本発明によれば、 La— Co含有 M型フェライトを磁性相とするフェライト磁性材料を 製造するに際し、所定量の S诚分を仮焼前に添加することで、磁気特性を向上する ことができる。したがって、本発明によれば、コスト上昇を招くことなく La— Co含有 M 型フェライトの磁気特性を向上させることができる製造方法が提供される。具体的に は、本発明によれば、 4000Oe以上の保磁力 HcJおよび 4000G以上の残留磁束密 度 Brを兼備することができる。
[0014] 本発明で得られたフェライト磁性材料は、種々の形態で実用に供することができる。
具体的には、フェライト磁石粉末やフェライト焼結磁石に適用することができる。フェラ イト磁石粉末は、ボンディッド磁石に使用することができる。すなわち、本発明で得ら れるフェライト磁性材料は、榭脂中に分散されるフェライト磁石粉末として、ボンディッ ド磁石を構成することができる。また、フ ライト磁性材料は、膜状の磁性相として、磁 気記録媒体を構成することができる。
発明を実施するための最良の形態
[0015] 以下、実施の形態に基づいて本発明を詳細に説明する。
上述の通り、本発明は六方晶 M型フェライトの原料粉末の配合時に S诚分を添カロ することを特徴とするが、はじめに本発明のフェライト磁性材料の組成、磁気特性なら びに用途について、順次説明する。
<材料組成および磁気特性 >
本発明のフ ライト磁性材料は、 Fe、元素 A、元素 R、元素 Mを含有する六方晶 M 型フェライトを主成分とし、下記の組成式 Iで表される主成分を有することが磁気特性 にと
つて好ましい。ただし元素 Aは、 Sr、 Baおよび Pbから選択される少なくとも 1種の元素 である。元素 Rは、希土類元素および B 選択される少なくとも 1種で、 Laを必ず含 む。元素 Mは、 Co、 Mn、 Mg、 Ni、 Cuおよび Znから選択される少なくとも 1種で、 Co を必ず含む。
A R (Fe M ) O …組成式 I
l-x x 12- y y z 19
0. 04≤x< 0. 60、
0. 02≤y< 0. 40、
0. 8<x/y< 2. 5、
0. 9< z< l. 1
[0016] 元素 A:
本発明によるフェライト焼結磁石の飽和磁ィ匕および保磁力を高くするためには、元 素 Aとして Srおよび Baの少なくとも 1種を用いることが好ましぐ特に Srを用いることが 好ましい。元素 A中において Sr+Baの占める割合、特に Srの占める割合は、好まし くは 51原子%以上、より好ましくは 70原子%以上、さらに好ましくは 100原子%であ る。元素 A中の Srの比率が低すぎると、飽和磁化と保磁力とを共に高くすることが難 しくなる。
[0017] 元素 R:
組成式 Iにおいて、元素 Rの量を示す Xが小さすぎると、つまり元素 Rの量が少なす ぎ
ると、六方晶 M型フ ライトに対する元素 Mの固溶量を多くできなくなつてきて、飽和 磁ィ匕向上効果および Zまたは異方性磁場向上効果が不充分となってくる。 Xが大き すぎると、六方晶 M型フ ライト中に元素 Rが置換固溶できなくなつてきて、例えば元 素 Rを含むオルソフェライト等の異相が生成するため、磁気特性が低下する。したが つて本発明における Xは、 0. 04≤x< 0. 60とすることが好ましい。好ましい Xの範囲 ίま 0. 04≤χ≤0. 30であり、より好ましく ίま 0. 04≤χ≤0. 25である。 0. 04≤χ≤0. 25の範囲では、 SiO前添カ卩による残留磁束密度 Brの向上効果が顕著となる。
2
[0018] 元素 Rとして用いる希土類元素は、 Y、 Scおよびランタノイドである。元素 Rとしては 、 Laを必ず用いる。そのほかの元素を用いる場合には、好ましくはランタノイドの少な くとも 1種を用いる。 R中において Laの占める割合は、好ましくは 40原子%以上、よ り好ましくは 70原子%以上である。六方晶 M型フ ライトに対する固溶限界量を比較 すると、 Laが最も多い。したがって、 R中の Laの割合が低すぎると Rの固溶量を多く することができず、その結果、元素 Mの固溶量も多くすることができなくなり、磁気特 性向上効果が小さくなつてしまう。なお、 Biを併用すれば、仮焼温度および焼結温度 を低くすることができるので、生産上有利である。
[0019] 元素 M :
組成式 Iにおいて、元素 Mの量を示す yが小さすぎると飽和磁化向上効果および Z また
は異方性磁場向上効果が不充分となってくる。 yが大きすぎると、六方晶 M型フェライ ト中に元素 Mが置換固溶できなくなってくる。また、元素 Mが置換固溶できる範囲で あっても、異方性定数 (K1)や異方性磁場 (Ha)の劣化が大きくなつてくる。したがつ て本発明における yは、 0. 02≤y< 0. 40とすること力 S好ましい。好ましい yの範囲は 0. 02≤y≤0. 20であり、より好ましくは 0. 02≤y≤0. 15である。 0. 02≤y≤0. 20 の範囲では SiO前添カ卩による残留磁束密度 Brの向上効果が顕著となる。 0. 02≤y
2
≤0. 15の範囲では、高価な Coの量を低減しつつ、 4300G以上の残留磁束密度 Br 及び 4500Oe以上の保磁力 HcJを兼備しうる。
[0020] 元素 M中において Coの占める割合は、好ましくは 20原子%以上、より好ましくは 5
0原子%以上、さらに好ましくは 100原子%である。 M中における Coの割合が低すぎ ると、保磁力向上が不充分となる。
[0021] z :
z :組成式 Iにおいて、 zが小さすぎると Srや元素 Rを含む異相が増加するため、また zが大きすぎると α— Fe Oや元素 Mを含むスピネルフェライト相等の異相が増加す
2 3
るため、磁気特性が低下する。したがって本発明における zは、 0. 9< ζ< 1. 1とする ことが好ましい。
[0022] 組成式 Iにおいて、 xZyが小さすぎても大きすぎても元素 Rと元素 Mとの価数の平 衡 力 Sとれなくなり、 W型フェライト等の異相が生成しやすくなる。元素 Mが 2価イオンであ つて、かつ元素 Rが 3価イオンである場合、価数平衡の点で xZy= lとすることが一 般的であるが、 Rを過剰にすることが好ましい。なお、 xZy> lの領域で許容範囲が 大きい理由は、 yが小さくても Fe3+→Fe2+の還元によって価数の平衡がとれるためで ある。
[0023] 組成式 Iにおいて、酸素 Oの原子数は 19となっている力 これは、 Mがすべて 2価、 Rがすべて 3価であって、力つ x=y、 z= lのときの、酸素の化学量論組成比を示した ものである。 Mおよび Rの種類や x、 y、 zの値によって、酸素の原子数は異なってくる 。また、例えば焼成雰囲気が還元性雰囲気の場合は、酸素の欠損 (ペイカンシー)が できる可能性がある。さらに、 Feは M型フェライト中においては通常 3価で存在する 1S これが 2価などに変化する可能性もある。また、 Co等の元素 Mも価数が変化する 可能性があり、これらにより金属元素に対する酸素の比率は変化する。本発明では、 Rの種類や x、 y、 zの値によらず酸素の原子数を 19と表示してある力 実際の酸素の 原子数は、これから多少偏倚した値であってよい。
[0024] 本発明によるフェライト磁性材料の組成は、蛍光 X線定量分析などにより測定するこ とができる力 主成分および副成分以外の成分の含有を排除するものではない。ま た、上記主相の存在は、 X線回折や電子線回折などにより確認できる。
[0025] 本発明によるフェライト磁性材料には、 Si成分、さらには Ca成分を含有する。 Si成 分および Ca成分は、六方晶 M型フェライトの焼結性の改善、磁気特性の制御、およ び焼結体の結晶粒径の調整等を目的として添加される。 Si成分としては SiO
2を、 Ca 成分としては CaCOを、それぞれを使用するのが好ましいが、この例に限定されるも
3
のではなぐ本発明の効果を達成しうる化合物を適宜使用することができる。添加す る時期については、 Si成分は少なくとも総量の 40%以上を仮焼前に添加(前添加) するのが好ましぐより好ましくは 50%以上、さらに好ましくは 80%以上、最も好ましく は 100%を前添加することである。また、 Ca成分については、総量の 50%以上を仮 焼後であって成形の前に添加(後添加)するのが好ましぐより好ましくは 80%以上、 最も好ましくは 100%を後添加する。 Si成分の量は、好ましくは SiO換算で 0. 15〜
2
1. 35wt%で、かつ Ca成分のモル量と Si成分のモル量の比 CaZSiが 0. 35〜2. 1 0である。より好ましくは SiO換算で 0. 30〜0. 90wt%で、 CaZSi力 . 70〜: L 75
2
、さらに好ましく ίま 0. 45〜0. 90wt0/0で、 Ca/Si力 S1. 05~1. 75である。
なお、 Si成分、 Ca成分は意図的に添加せずとも、フェライト磁性材料に不純物とし て若干含まれうる。この不純物の量に拘わらず、フェライト磁性材料中の Si成分の量 、ならびに Ca成分の量が上記範囲内であれば、本発明の範囲内に含まれる。
[0026] 本発明のフェライト磁性材料には、副成分として Al Oおよび
2 3 Zまたは Cr Oが含有
2 3 されていてもよい。 Al Oおよび Cr Oは、保磁力を向上させるが残留磁束密度を低
2 3 2 3
下させる。したがって、 Al Oと Oとの合計含有量は、残留磁束密度の低下を抑
2 3 2 3
えるために好ましくは 3wt%以下とする。なお、 Al Oおよび/または Cr O添加の効
2 3 2 3 果を充分に発揮させるためには、 Al Oと Oとの合計含有量を 0. lwt%以上とす
2 3 2 3
ることが好ましい。
[0027] 本発明のフェライト磁性材料には、副成分として B Oが含まれていてもよい。 B O
2 3 2 3 を含むことにより仮焼温度および焼結温度を低くすることができるので、生産上有利 である。 B Oの含有量は、フェライト磁性材料全体の 0. 5wt%以下であることが好ま
2 3
しい。 B O
2 3含有量が多すぎると、飽和磁ィ匕が低くなつてしまう。
[0028] 本発明のフェライト磁性材料には、 Na、 K、 Rb等のアルカリ金属元素は含まれない ことが好ましいが、不純物として含有されていてもよい。これらを Na 0、 K 0、 Rb O
2 2 2 等の酸ィ匕物に換算して含有量を求めたとき、これらの含有量の合計は、フェライト磁 性材料全体の 3wt%以下であることが好ましい。これらの含有量が多すぎると、飽和 磁ィ匕が低くなつてしまう。
[0029] また、これらのほ力 本発明のフェライト磁性材料には、例えば Ga、 In、 Li、 Ti、 Zr、 Ge、 Sn、 V、 Nb、 Ta、 Sb、 As、 W、 Mo等が酸化物として含有されていてもよい。こ れらの含有量は、化学量論組成の酸ィ匕物に換算して、それぞれ酸化ガリウム 5wt% 以下、酸化インジウム 3wt%以下、酸化リチウム 1 %以下、酸ィ匕チタン 3wt%以下 、酸化ジルコニウム 3wt%以下、酸化ゲルマニウム 3wt%以下、酸化スズ 3wt%以下 、酸化バナジウム 3wt%以下、酸ィ匕ニオブ 3wt%以下、酸ィ匕タンタル 3wt%以下、酸 化アンチモン 3wt%以下、酸ィ匕砒素 3wt%以下、酸ィ匕タングステン 3wt%以下、酸 化モリブデン 3wt%以下であることが好ましい。 [0030] 本発明をフェライト焼結磁石に適用する場合、その平均結晶粒径は、好ましくは 1.
5 /z m以下、より好ましくは 1. O /z m以下、さらに好ましくは 0. 5〜1. 0 mである。結 晶粒径は走査型電子顕微鏡によって測定することができる。
本発明のフェライト焼結磁石は、六方晶 M型フェライトを磁性相として含む。そして
、後述する本発明の製造方法を適用することで、 4000Oe以上の保磁力 HcJおよび
4000G以上の残留磁束密度 Brを兼備するフェライト焼結磁石を得ることができる。
[0031] <用途 >
本発明のフェライト磁性材料は、前述のように、フェライト焼結磁石、フェライト磁石 粉末、榭脂中に分散されるフェライト磁石粉末としてボンディッド磁石、および膜状の 磁性相として磁気記録媒体などを構成することができる。
本発明によるフェライト焼結磁石、およびボンディッド磁石は所定の形状に加工され 、以下に示すような幅広い用途に使用される。例えば、フューエルポンプ用、パワー ウィンドウ用、 ABS (アンチロック 'ブレーキ'システム)用、ファン用、ワイパ用、パワー ステアリング用、アクティブサスペンション用、スタータ用、ドアロック用、電動ミラー用 等の自動車用モータとして使用することができる。また、 FDDスピンドル用、 VTRキヤ プスタン用、 VTR回転ヘッド用、 VTRリール用、 VTRローデイング用、 VTRカメラキ ャプスタン用、 VTRカメラ回転ヘッド用、 VTRカメラズーム用、 VTRカメラフォーカス 用、ラジカセ等キヤプスタン用、 CDZLDZMDスピンドル用、 CDZLDZMDロー デイング用、 CDZLD光ピックアップ用等の OAZAV機器用モータとして使用するこ とができる。さらに、エアコンコンプレッサー用、冷凍庫コンプレッサー用、電動工具 駆動用、ドライヤーファン用、シェーバー駆動用、電動歯ブラシ用等の家電機器用モ ータとしても使用することができる。さらにまた、ロボット軸、関節駆動用、ロボット主駆 動用、工作機器テーブル駆動用、工作機器ベルト駆動用等の FA機器用モータとし ても使用することが可能である。その他の用途としては、オートバイ用発電器、スピー 力'ヘッドホン用マグネット、マグネトロン管、 MRI用磁場発生装置、 CD— ROM用ク ランパ、ディストリビュータ用センサ、 ABS用センサ、燃料'オイルレベルセンサ、マグ ネトラッチ、アイソレータ等に、好適に使用される。
[0032] 本発明のフェライト磁石粉末をボンディッド磁石に用いる場合には、その平均粒径 を 0. 1〜5. 0 mとすること力望ましい。ボンディッド磁石用粉末のより望ましい平均 粒径は 0. 1〜2. O ^ m,さらに望ましい平均粒径は 0. 1〜1. O /z mである。ボンディ ッド磁石を製造する際には、フェライト磁石粉末を榭脂、金属、ゴム等の各種バインダ と混練し、磁場中または無磁場中で成形する。ノインダとしては、 NBR (アタリ口-トリ ルブタジエンゴム)、塩素化ポリエチレン、ポリアミド榭脂などが好ましい。成形後、硬 化を行ってボンディッド磁石とする。
本発明のフェライト磁性材料を用いて、磁性層を有する磁気記録媒体を作製するこ とができる。この磁性層は、前述した M型フェライト相を含む。磁性層の形成には、例 えば蒸着法、スパッタ法などを用いることができる。スパッタ法で磁性層を形成する場 合には、本発明によるフェライト焼結磁石をターゲットとして使用することもできる。な お、磁気記録媒体としては、ハードディスク、フレキシブルディスク、磁気テープ等が 挙げられる。
<製造方法 >
次に、本発明のフェライト焼結磁石の好適な製造方法について説明する。本発明 のフェライト焼結磁石の製造方法は、配合工程、仮焼工程、粉砕工程、粉砕工程、 磁場中成形工程、および焼成工程を含む。なお、粉砕工程は、粗粉砕工程と微粉砕 工程に分かれる。
<配合工程 >
配合工程は、原料粉末を所定の割合となるように秤量後、湿式アトライタ、ボールミ ル等で 1〜20時間程度混合、粉砕処理する。出発原料としては、フェライト構成元素 (Fe、元素 A、元素 R、元素 M等)の 1種を含有する化合物、またはこれらの 2種以上 を含有する化合物を用いればよい。化合物としては酸化物、または焼成により酸化物 となる化合物、例えば炭酸塩、水酸化物、硝酸塩等を用いる。出発原料の平均粒径 は特に限定されないが、通常、 0. 1〜2. 0 m程度とすることが好ましい。出発原料 は、仮焼前の本工程ですベてを混合する必要はなぐ各化合物の一部または全部を 後添加とする構成にしても良い。例えば、 Co等の元素 M成分は、一部または全部を 後添加とする方が好ましい。なお、本願明細書において、仮焼工程の前に添加する 行為を前添加と 、 、、仮焼工程の後に添加する行為を後添加と 、うことにする。 [0034] 本発明では、配合工程において、添加物としての Si成分を所定量添加することを 特徴とする。 Si成分は、例えば SiO粉末として添加することができる。配合時におけ
2
る Si成分の添カ卩(前添加)量は、六方晶 M型フェライトの構成成分カゝらなる主組成に 対して、 SiO換算で総量の 40%以上とする。 Si成分の前添力卩の量は 50%以上、さ
2
らには 80%とするのが好ましぐ全量を前添加とすることが最も好ましい。 Si成分の前 添加量をこの範囲とすることで、磁気特性向上が図られる。
この他、配合工程において、 Ca成分を添加(前添加)してもよい。 Ca成分は Si成分 と同様、六方晶 M型フェライトの焼結性の改善、磁気特性の制御、および焼結体の 結晶粒径の調整等を目的として添加される。 Ca成分としては、例えば CaCO、 CaO
3 等を使用することができる。 Ca成分の添加量は、本工程ですベてを混合する必要は なぐ一部、好ましくは全部を後述する後添加とすることが好ましい。
[0035] <仮焼工程 >
配合工程で得られた原料組成物を仮焼する。仮焼は、通常、空気中等の酸化性雰 囲気中で行われる。仮焼条件は特に限定されないが、通常、安定温度は 1000〜13 50°C、安定時間は 1秒間〜 10時間とすればよい。仮焼体は、実質的にマグネトプラ ンノイト(M)型のフェライト構造を有し、その一次粒子径は、好ましくは 2 m以下、よ り好ましくは 1 μ m以下である。
本発明では、配合工程において、 Si成分を所定量添加している力 このこと〖こより、 Si成分を前添加しな 、場合と比較して仮焼温度を低温ィ匕することができる。仮焼温 度の低下により、製造コストの削減を図ることができる。
[0036] く粉砕工程〉
仮焼体は、一般に顆粒状、塊状等になっており、そのままでは所望の形状に成形 ができないため、粉砕する。また、所望の最終組成に調整するための原料粉末、およ び添加物等を混合するために、粉砕工程が必要である。本工程で原料粉末等を添 加することが後添加である。粉砕工程は、粗粉砕工程と微粉砕工程に分かれる。な お、仮焼体を所定の粒度に粉砕することにより、ボンディッド磁石用のフェライト磁石 粉末とすることちでさる。
粉砕工程では、 Ca成分を添加することが好ましい。 Ca成分の添カ卩は、前述のよう に前添加することも可能である力 本工程で添加することが磁気特性にとってより好 ましい。また本発明では、 Si成分を前添加している力 前添加量が Si成分を SiO換
2 算した総量の 100%未満である場合、残りの Si成分は本工程で添加することが好ま しい。 Si成分および Ca成分の総量は、 Si成分について好ましくは、 SiO換算で 0. 1
2
5〜1. 35wt%で、かつ Ca成分のモル量と Si成分のモル量の比 CaZSiが 0. 35〜2 . 10である。より好ましくは SiO換算で 0. 30〜0. 90wt%で、 CaZSi力^). 70〜: L .
2
75、さらに好ましく ίま 0. 45〜0. 90wt0/0で、 Ca/Si力 1. 05~1. 75である。
[0037] く粗粉碎工程〉
前述のように、仮焼体は一般に顆粒状、塊状等であるので、これを粗粉砕すること が好ましい。粗粉砕工程では、振動ミル等を使用し、平均粒径が 0. 5〜10 /ζ πιにな るまで処理される。なお、ここで得られた粉末を粗粉砕粉と呼ぶことにする。
く微粉砕工程〉
粗粉砕粉を湿式アトライタ、ボールミル、あるいはジェットミル等によって粉砕し、平 均粒径 0. 08〜2 111、好ましく【ま0. 1〜1 111、ょり好ましく【ま0. 2〜0. 8 m程度 に粉砕する。微粉砕工程は、粗粉砕粉をなくすこと、後添加物を充分に混合すること 、および磁気特性向上のために焼結体の結晶粒子を微細化すること等を目的として 行われる。得られた微粉砕粉の比表面積 (BET法により求められる)としては、 7〜12 m2Zg程度とすることが好ましい。粉砕時間は、粉砕方法にもよるが、例えば湿式アト ライタでは 30分間〜 10時間、ボールミルによる湿式粉砕では 10〜40時間程度、処 理すればよい。
[0038] なお、本発明においては前述のように、後添加物は微粉砕工程で添加されることが 好ましい。また、本発明においては、焼結体の磁気的配向度を高めるために、一般 式 Cn (OH) nHn+2で示される多価アルコールを微粉砕工程で添加することが好まし い。ここで、前記一般式において、炭素数を表す nの好ましい値は 4〜 100、より好ま しくは 4〜30、さらに好ましくは 4〜20、より一層好ましくは 4〜12である。多価アルコ ールとしては、例えばソルビトールが望ましいが、 2種類以上の多価アルコールを併 用しても良い。さらに、本発明で使用する多価アルコールにカ卩えて、他の公知の分散 剤を使用しても良い。 [0039] 前述の一般式は、骨格がすべて鎖式であって、かつ不飽和結合を含んで!/、な!/、場 合の一般式である。多価アルコール中の水酸基数、水素数は、一般式で表される数 よりも多少少なくても良い。すなわち、飽和結合に限らず、不飽和結合を含んでいて も良い。基本骨格は鎖式であっても環式であっても良いが、鎖式であることが好まし い。また、水酸基数が炭素数 nの 50%以上であれば、本発明の効果が実現するが、 水酸基数は多い方が好ましぐ水酸基数と炭素数が同程度であることが最も好ましい 。この多価アルコールの添カ卩量としては、添加対象物に対して 0. 05〜5. Owt%、好 ましくは 0. 1〜3. Owt%、より好ましくは 0. 3〜2. 0 %程度とすればよい。なお、 添加した多価アルコールは、磁場中成形工程後の焼成工程で熱分解除去される。
[0040] <磁場中成形工程 >
磁場中成形工程は、乾式成形、もしくは湿式成形のいずれの方法でも行うことがで きるが、磁気的配向度を高くするためには、湿式成形で行うことが好ましい。よって、 以下では、湿式成形用スラリーの調製について説明した上で、磁場中成形工程の説 明を行う。
湿式成形を行う場合、微粉砕工程を湿式で行い、得られたスラリーを所定の濃度に 濃縮し、湿式成形用スラリーとする。濃縮は、遠心分離やフィルタープレス等によって 行えば良い。この場合、微粉砕粉が、湿式成形用スラリー中の 30〜80wt%程度を 占めることが好ましい。また、分散媒としては水が好ましぐさらに、ダルコン酸および Zまたはダルコン酸塩、ソルビトール等の界面活性剤を添加することが好ましい。次 いで、湿式成形用スラリーを用いて磁場中成形を行う。成形圧力は 0. 1〜0. 5ton Zcm2程度、印加磁場は 5〜15kOe程度とすれば良い。なお、分散媒は水に限らず
、非水系溶媒を使用しても良い。非水系の分散媒を使用する場合には、トルエンや キシレン等の有機溶媒を使用することができる。この場合には、ォレイン酸等の界面 活性剤を添加することが好まし ヽ。
[0041] <焼成工程 >
得られた成形体を焼成し、焼結体とする。焼成は、通常、空気中等の酸化性雰囲 気中で行われる。焼成条件は特に限定されないが、通常、例えば 5°CZ分程度で昇 温し、安定温度は 1100〜1300°C、より好ましくは 1150〜1250°Cで、安定時間は 0 . 5〜3時間程度とすれば良い。
湿式成形で成形体を得た場合、成形体を充分に乾燥させな!/ヽまま急激に加熱する と、成形体にクラックが発生する可能性がある。その場合、室温から 100°C程度まで、 例えば 10°CZ時間程度のゆっくりとした昇温速度にすることで、成形体を充分に乾 燥し、クラック発生を抑制することが好ましい。また、界面活性剤 (分散剤)等を添加し た場合、 100〜500°C程度の範囲で、例えば 2. 5°CZ分程度の昇温速度とすること で脱脂処理を行 ヽ、分散剤を充分に除去することが好ま Uヽ。
[0042] 以上の工程を得ることにより、本発明による六方晶 M型フェライト焼結磁石を得るこ とができる。このフェライト焼結磁石は、 4000Oe以上の保磁力 HcJおよび 4000G以 上の残留磁束密度 Brを兼備する。また、本発明で得られたフェライト焼結磁石を粉 砕して、フェライト磁石粉末として使用することができる。このフェライト磁石粉末は、ボ ンディッド磁石に用いることができる。
以上、フェライト焼結磁石の製造方法について説明したが、フェライト磁石粉末を製 造する場合も、同様の工程の適宜採用することができる。本発明によるフェライト磁石 粉末は、仮焼体から作製する場合と、焼結体から作製する場合の 2つのプロセスが存 在する。
[0043] 本発明では、 SiOが前添加されているが、仮焼体からフェライト磁石粉末を作製す
2
る場合には、 Co成分および Ca成分も前添加することが望ましい。このようにして得ら れた仮焼体は、粗粉砕、微粉砕が施されてフェライト磁石粉末となる。このフェライト 磁石粉末を実用に供することができ、例えばボンディッド磁石として利用される。この フェライト磁石粉末は、ボンディッド磁石のみに供されるものではなぐ例えばフェライ ト焼結磁石作製に供することもできる。すなわち、フェライト焼結磁石の製造工程中に 、フェライト磁石粉末が製造されているということもできる。ただし、ボンディッド磁石に 使用する場合とフェライト焼結磁石に使用する場合とでは、その粒度等が異なる場合 がある。
一方、フェライト焼結磁石からフェライト磁石粉末を作製する場合には、 Ca成分を 後添加することが望ましい。前述の工程により得られたフェライト焼結磁石を適宜粉 砕することにより、フェライト磁石粉末を作製することができる。 以上、フ ライト磁石粉末としては、仮焼粉末、仮焼後に粉砕された粉末、仮焼およ び焼成を経た後に粉砕された粉末、 V、ずれの形態も包含して ヽる。
実施例 1
[0044] 出発原料として酸化鉄 (Fe O )、炭酸ストロンチウム(SrCO )、および水酸ィ匕ランタ
2 3 3
ン (La (OH) )を用意した。これらの主成分を構成する出発原料を、焼成後の主組成
3
力 r La Co Fe O となるように秤量した後、主組成に対して 0. 6wt%とな
0.88 0.12 0.08 11.92 19
るように酸ィ匕ケィ素(SiO )を添加した (前添加)。この混合原料を湿式アトライタで 2
2
時間混合、粉砕してスラリー状の原料組成物を得た。このスラリーを乾燥後、大気中 1 100〜1150°Cで 2. 5時間保持する仮焼を行った。
得られた仮焼粉を小型ロッド振動ミルで 10分間粗粉砕した。得られた粗粉砕粉に 対して、前述の焼成後の主組成になるような酸ィ匕コノ レト (Co O )を秤量して加えた
3 4
(後添加)後、前述の焼成後の主組成に対して 1. 4wt%の炭酸カルシウム (CaCO )
3
(後添加)および 0. 9wt%のソルビトールを添カ卩し、湿式ボールミルにて 30時間微粉 砕した。得られた微粉砕スラリーの固形分濃度を 70〜75%に調整し、湿式磁場成形 機を使用して、 12kOeの印加磁場中で直径 30mm X厚み 15mmの円柱状成形体 を得た。成形体は大気中室温にて充分に乾燥し、ついで大気中 1180〜1220°Cで 1時間保持する焼成を行った。
[0045] 得られた焼結体の密度を測定した。また、焼結体の上下面を加工した後、最大印 加磁場 25kOeの B— Hトレーサを使用して磁気特性を測定した。
比較例 1として、酸ィ匕ケィ素(SiO )の添加を前述の粗粉砕粉に対して行った場合(
2
後添加)の評価を行った。この場合は仮焼を 1200°Cで 2. 5時間保持する条件で行 つた以外は、上記と同一の条件とした。
焼結体密度及び磁気特性評価結果を図 1〜5に示す。酸化ケィ素(SiO )の添加を
2 後添加とするよりも、前添加とした方が、飽和磁化 σ sおよび磁気配向度 BrZ47u Im axが向上している。その結果、図 6に示す保磁力 HcJ—残留磁束密度 Brの関係およ び図 1に示す通り、磁気特性が明らかに向上している。また、図 7に示すように、 SiO
2 を前添カ卩した場合には、 SiO後添カ卩時の仮焼温度 1200°Cと比較して 1100〜115
2
0°Cと!、う低温でも、高 、磁気特性を得ることができる。 実施例 2
[0046] 酸化ケィ素(SiO )の前添加量を 0. 3wt%、後添加量を 0. 3wt%とし、仮焼温度
2
を 1150〜1200°Cとした以外は、実施例 1と同様に焼結体を作製し、実施例 1と同様 の評価を行った。
その結果を図 1〜図 7に示す。酸ィ匕ケィ素(SiO )の前添加量が 50%であっても磁
2
気特性が向上することがわかる。
実施例 3
[0047] Co成分としての酸ィ匕コバルト (Co O )の総量のすべてを前添加とした以外は、実
3 4
施例 1 (ただし、 SiOは全量前添加)と同様に焼結体を作製し、実施例 1と同様の評
2
価を行った。
その評価結果を図 1および図 8に示す。 Si成分を前添加することで磁気特性向上を 図ることができる力 Co成分を後添加した場合にこの効果をさらに向上できることが ゎカゝる。
実施例 4
[0048] Ca成分としての炭酸カルシウム(CaCO )の総量のうち、 50%を前添加、 50%を後
3
添加とした以外は、実施例 1 (ただし、 SiOは全量前添加)と同様に焼結体を作製し、
2
保磁力 HcJおよび残留磁束密度 Brを測定した。
その評価結果を図 1および図 9に示す。 Si成分を前添加することで磁気特性向上を 図ることができる力 Ca成分を後添加した場合にこの効果をさらに向上することがで さることがゎカゝる。
[0049] 以上の実施例 1〜4の結果から、 Si成分は前添加することが好ましいこと、 Co成分 および Ca成分を後添加することによって Si成分を前添加することによる磁気特性向 上という効果をより一層享受することができることが確認できた。なお、 Si成分の望ま し ヽ前添加割合は後述する実施例 5で、 Co成分の望ま ヽ後添加割合は実施例 8 で、 Ca成分の望ま ヽ後添加割合は実施例 11でそれぞれ検討した。
実施例 5
[0050] 実施例 5として、 Si成分の前添加、後添カ卩の比率によって、 Si成分の前添カ卩による 磁気特性向上効果が変化するかどうか、検討を行った。
酸化ケィ素(SiO )の総量を 0. 6wt%の一定としつつ、 SiOの添加時期を図 10に
2 2
示すものとした。また、仮焼温度および焼成温度を図 10に示すように設定した以外 は、実施例 1と同様に焼結体を作製し、実施例 1と同様の評価を行った。
その結果を図 10〜図 12に示す。図 11に示すように、 SiOの前添加量の割合が増
2
えるにつれて残留磁束密度 Brが向上し、 SiOを 100%前添カ卩した場合には 100%
2
後添加した場合に比べて残留磁束密度 Brが約 100G向上した。また図 12に示すよう に、 SiOの前添加量の割合が 30%を超えると、 SiOを 100%後添加した場合よりも
2 2
保磁力 HcJが向上した。高い残留磁密度 Brおよび高い保磁力 HcJを兼備する上で、 SiOを 40%以上前添加することが好ましい。また、保磁力 HcJよりも残留磁密度 Brを
2
重視する場合には SiOを 80%以上前添加し、残留磁密度 Brよりも保磁力 HcJを重
2
視する場合には SiOを 40〜80%、さらには 45〜70%の割合で前添加すればよい
2 実施例 6
[0051] 実施例 6として、 SiOの添加量によって、 Si成分の前添加による磁気特性向上効
2
果が変化するかどうか、検討を行った。
SiOおよび CaCOの添加量を調整しかつ SiOの添カ卩時期を図 13〜図 15に示す
2 3 2
ようにして、 Ca/Si=0. 70、 Ca/Si= l. 40、 Ca/Si= l. 75である焼結体を作製 した。その点を除いては、実施例 1と同様に焼結体を作製し、実施例 1と同様の評価 を行った。その結果を図 13〜図 21に示す。
図 16、図 18、および図 20に示すように、 CaZSiの値に拘わらず、 SiO添加量が 0
2
. 15wt%より多く 1. 35wt%未満の範囲において、 SiOを前添カ卩することで SiOを
2 2 後添加するよりも、保磁力 HcJを低下することなく残留磁束密度 Brを向上することが できた。特に、 SiOの添加量が 0. 3〜0. 9wt%の場合には 4100G以上の残留磁
2
束密度 Brおよび 4000Oe以上の保磁力 HcJを兼備することができた。
実施例 7
[0052] 実勢例 7として、 CaZSiによって、 Si成分の前添カ卩による磁気特性向上効果が変 化するかどうか、検討を行った。 SiOおよび CaCOの添力卩量を調整することにより CaZSiを変動させ、かつ SiOの
2 3 2 添加時期を図 22〜図 24に示すようにした以外は、実施例 1と同様に焼結体を作製し 、実施例 1と同様の評価を行った。その結果を図 22〜図 30に示す。
図 25、図 27、および図 29に示すように、 SiO添加量に拘わらず、 CaZSiが 0. 35
2
より大きく 2. 10未満の範囲において、 SiOを前添加することで SiOを後添加するよ
2 2
りも、保磁力 HcJを低下することなく残留磁束密度 Brを向上することができた。
また、図 25〜図 30に示すように、 Ca/Si力 0. 7〜1. 8の場合に ίま 4100G以上の 残留磁束密度 Brおよび 4000Oe以上の保磁力 HcJを兼備することができた。 Ca/S iが 1. 05-1. 75の場合には 4100G以上の残留磁束密度 Brおよび 4200Oe以上 の保磁力 HcJを兼備することができた。
実施例 8
[0053] 実施例 8として、 M成分である Co成分の添加時期および前添加、後添加の比率に よって、 S诚分の前添カ卩による磁気特性向上効果が変化するかどうか、検討を行つ た。
Co成分の添カ卩時期と Si成分の添カ卩時期を図 31のようにした以外は、実施例 1 (た だし、 SiOは全量前添加)と同様に焼結体を作製し、実施例 1と同様の評価を行った
2
。その評価結果を図 31〜図 33に示す。
図 32および図 33〖こ示すよう〖こ、 Co成分の添カ卩時期に拘わらず、 Si成分を前添カロ することで S诚分を後添加するよりも、保磁力 HcJを低下することなく残留磁束密度 B rを向上することができた。このとき、 Co成分の添カ卩時期について、 Co成分の後添加 量の割合力 0%以上、さらには 70%以上とすることが好ましい。
実施例 9
[0054] 実施例 9として、 R成分である La成分の添カ卩時期および前添加、後添加の比率によ つて、 Si成分の前添カ卩による磁気特性向上効果が変化するかどうか、検討を行った。
La成分の添カ卩時期と Si成分の添カ卩時期を図 34のようにした以外は、実施例 1 (た だし、 SiOは全量前添加)と同様に焼結体を作製し、実施例 1と同様の評価を行った
2
。その評価結果を図 34〜36に示す。
図 35および図 36に示すように、 La成分の添カロ時期に拘わらず、 Si成分を前添カロ することで S诚分を後添加するよりも、保磁力 HcJを低下することなく残留磁束密度 B rを向上することができた。また、図 36に示すように La成分の前添加量の割合が増加 するにつれて保磁力 HcJは大きく向上し、図 35に示すように残留磁束密度 Brは微増 する。よって、 La成分の前添加量の割合が大きいほど、高磁気特性を得る上では有 利であることが確認できた。 La成分の前添加量の割合は 50%以上、さらには 70% 以上とすることが好ま 、。もっとも好まし 、La成分の前添加量の割合は 100%であ ることが確認できた。
実施例 10
[0055] 実施例 10として、 Ca成分の添カ卩時期および前添加、後添加の比率によって、 Si成 分の前添カ卩による磁気特性向上効果が変化するかどうか、検討を行った。
Ca成分の添カ卩時期と Si成分の添カ卩時期を図 37のようにした以外は、実施例 1 (た だし、 SiOは全量前添加)と同様に焼結体を作製し、実施例 1と同様の評価を行った
2
。その評価結果を図 37〜図 39に示す。
図 38および図 39に示すように、 Ca成分の後添カ卩量の割合を 50%以上の場合に おいて、 Si成分を前添加することで Si成分を後添加するよりも、保磁力 HcJを低下す ることなく残留磁束密度 Brを向上することができた。また、 Ca成分の総量のうち、 80 %以上を後添加することが好ましいことが確認できた。
実施例 11
[0056] 実施例 11として、 Si成分の前添カ卩による磁気特性向上効果が生じる、組成式 Iにお ける X, yの範囲を確認するため、検討を行った。
焼成後の主組成における Laおよび Coの量が図 40に示す値となるように出発原料 をそれぞれ秤量した以外は、実施例 1 (ただし、 SiO
2は全量前添加)と同様に焼結体 を作製し、実施例 1と同様の評価を行った。その評価結果を図 40〜図 44に示す。 図 41および図 42に示すように、 Xの範囲力^). 04≤x< 0. 60である場合にお!/、て 、 Si成分を前添加することで Si成分を後添加するよりも、保磁力 HcJを低下することな く残留磁束密度 Brを向上することができた。また、図 43および図 44に示すように、 y の範囲が 0. 02≤y< 0. 40である場合において、 Si成分を前添加することで Si成分 を後添加するよりも、保磁力 HcJを低下することなく残留磁束密度 Brを向上すること ができた。
実施例 12
[0057] 実施例 12として、 Si成分の前添カ卩による磁気特性向上効果が生じる、組成式 Iにお ける xZyの範囲を確認するため、検討を行った。
焼成後の主組成における Laおよび Coの量が図 45に示す値となるように出発原料 をそれぞれ秤量した以外は、実施例 1 (ただし、 SiO
2は全量前添加)と同様に焼結体 を作製し、保磁力 HcJおよび残留磁束密度 Brを測定した。その評価結果を図 45〜 図 47に示す。
図 46および図 47に示すように、 x/yの範囲力 SO. 8<x/y< 2. 5である場合にお いて、 Si成分を前添加することで Si成分を後添加するよりも、保磁力 HcJを低下する ことなく残留磁束密度 Brを向上することができた。この結果より、 xZyの範囲は 0. 8 <x/y< 2. 5とすることが好ましぐより好ましい範囲は 1. 0≤x/y≤2. 3であり、さ らに好ましい範囲は 1. 2≤x/y≤l. 9である。
実施例 13
[0058] 実施例 13として、 Si成分の前添カ卩による磁気特性向上効果が生じる、組成式 Iにお ける zの範囲を確認するため、検討を行った。
組成式 Iにおける zの値が図 48に示す値となるように出発原料をそれぞれ秤量した 以外は、実施例 1 (ただし、 SiOは全量前添加)と同様に焼結体を作製し、保磁力 He
2
Jおよび残留磁束密度 Brを測定した。その評価結果を図 48〜図 50に示す。
図 49および図 50に示すように、 zの範囲力^). 9< ζ< 1. 1である場合にお ヽて、 Si 成分を前添加することで Si成分を後添加するよりも、保磁力 HcJを低下することなく残 留磁束密度 Brを向上することができた。この結果より、 zの範囲は 0. 9< ζ< 1. 1とす ることが好ましぐより好ましい範囲は 0. 92≤z≤l. 05であり、さらに好ましい範囲は 0. 97≤z≤l. 03であること力 S確認できた。
図面の簡単な説明
[0059] [図 1]実施例 1〜4、比較例 1で作製した焼結体の磁気特性を示す図表である。
[図 2]実施例 1、実施例 2、比較例 1における焼成温度と焼結密度 p sの関係を示すグ ラフである。 [図 3]実施例 1、実施例 2、比較例 1における焼成温度と飽和磁化 σ sの関係を示すグ ラフである。
圆 4]実施例 1、実施例 2、比較例 1における焼成温度と残留磁束密度 Brの関係を示 すグラフである。
[図 5]実施例 1、実施例 2、比較例 1における焼成温度と磁気配向度 BrZ47u Imaxの 関係を示すグラフである。
圆 6]実施例 1、実施例 2、比較例 1における保磁力 HcJと残留磁束密度 Brとの関係 を示すグラフである。
圆 7]実施例 1、実施例 3、比較例 1における保磁力 HcJと残留磁束密度 Brとの関係 を示すグラフである。
圆 8]実施例 3、実施例 4、比較例 1における保磁力 HcJと残留磁束密度 Brとの関係 を示すグラフである。
[図 9]実施例 3、実施例 4、比較例 1における保磁力 HcJと残留磁束密度 Brとの関係 を示すグラフである。
圆 10]実施例 5で作製した焼結体の磁気特性を示す図表である。
[図 11]実施例 5における、 SiO前添加量の割合と残留磁束密度 Brとの関係を示すグ
2
ラフである。
[図 12]実施例 5における、 SiO前添加量の割合と保磁力 HcJとの関係を示すグラフ
2
である。
[図 13]実施例 6で作製した CaZSi=0. 70の焼結体の磁気特性を示す図表である。
[図 14]実施例 6で作製した CaZSi= 1. 40の焼結体の磁気特性を示す図表である。
[図 15]実施例 6で作製した CaZSi= 1. 75の焼結体の磁気特性を示す図表である。
[図 16]CaZSi=0. 70における、 SiO添加量と残留磁束密度 Brとの関係を示すダラ
2
フである。
[図 17]CaZSi=0. 70〖こおける、 SiO添加量と保磁力 HcJとの関係を示すグラフで
2
ある。
[図 18]CaZSi= l. 40における、 SiO添加量と残留磁束密度 Brとの関係を示すダラ
2
フである。 [図 19]CaZSi= l. 4における、 SiO添カ卩量と保磁力 HcJとの関係を示すグラフであ
2
る。
[図 20]CaZSi= l. 75における、 SiO添加量と残留磁束密度 Brとの関係を示すダラ
2
フである。
[図 21]CaZSi= l. 75〖こおける、 SiO添加量と保磁力 HcJとの関係を示すグラフで
2
ある。
[図 22]実施例 7で作製した SiO =0. 30wt%の焼結体の磁気特性を示す図表であ
2
る。
[図 23]実施例 7で作製した SiO =0. 60wt%の焼結体の磁気特性を示す図表であ
2
る。
[図 24]実施例 7で作製した SiO =0. 90wt%の焼結体の磁気特性を示す図表であ
2
る。
[図 25]SiO =0. 30wt%における、 CaZSiと残留磁束密度 Brとの関係を示すグラフ
2
である。
[図 26]SiO 0· 30wt%における、 CaZSiと保磁力 HcJとの関係を示すグラフであ
2
る。
[図 27]SiO =0. 60wt%における、 CaZSiと残留磁束密度 Brとの関係を示すグラフ
2
である。
[図 28]SiO 0· 60wt%における、 CaZSiと保磁力 HcJとの関係を示すグラフであ
2
る。
[図 29]SiO =0. 90wt%における、 CaZSiと残留磁束密度 Brとの関係を示すグラフ
2
である。
[図 30]SiO 0· 90wt%における、 CaZSiと保磁力 HcJとの関係を示すグラフであ
2
る。
[図 31]実施例 8で作製した焼結体の磁気特性を示す図表である。
[図 32]実施例 8における、 Co成分の後添加量の割合と残留磁束密度 Brとの関係を 示すグラフである。
[図 33]実施例 8における、 Co成分の後添加量の割合と保磁力 HcJとの関係を示すグ ラフである。
圆 34]実施例 9で作製した焼結体の磁気特性を示す図表である。
[図 35]実施例 9における、 La成分の前添加量の割合と残留磁束密度 Brとの関係を 示すグラフである。
[図 36]実施例 9における、 La成分の前添加量の割合と保磁力 HcJとの関係を示すグ ラフである。
圆 37]実施例 10で作製した焼結体の磁気特性を示す図表である。
[図 38]実施例 10における、 Ca成分の後添加量の割合と残留磁束密度 Brとの関係を 示すグラフである。
[図 39]実施例 10における、 Ca成分の後添加量の割合と保磁力 HcJとの関係を示す グラフである。
圆 40]実施例 11で作製した焼結体の磁気特性を示す図表である。
[図 41]実施例 11における、 Xと残留磁束密度 Brとの関係を示すグラフである。
[図 42]実施例 11における、 Xと保磁力 HcJとの関係を示すグラフである。
[図 43]実施例 11における、 yと残留磁束密度 Brとの関係を示すグラフである。
[図 44]実施例 11における、 yと保磁力 HcJとの関係を示すグラフである。
圆 45]実施例 12で作製した焼結体の磁気特性を示す図表である。
[図 46]実施例 12における、 xZyと残留磁束密度 Brとの関係を示すグラフである。
[図 47]実施例 12における、 xZyと保磁力 HcJとの関係を示すグラフである。
圆 48]実施例 13で作製した焼結体の磁気特性を示す図表である。
[図 49]実施例 13における、 zと残留磁束密度 Brとの関係を示すグラフである。
[図 50]実施例 13における、 zと保磁力 HcJとの関係を示すグラフである。

Claims

請求の範囲
[1] Fe、元素 A、元素 R、元素 Mを主成分とする六方晶 M型フェライトと、副成分として 少なくとも S诚分とを含むフェライト磁性材料の製造方法であって、
前記元素 Aは、 Sr、 Baおよび Pbから選択される、少なくとも 1種の元素であり、 前記元素 Rは、希土類元素および Biから選択される、少なくとも 1種で、 Laを必ず 含むものであり、かつ
前記元素 Mは、 Co、 Mn、 Mg、 Ni、 Cuおよび Znから選択される、少なくとも 1種で 、 Coを必ず含むものであり、
前記六方晶 M型フ ライトの原料粉末の全部または一部と、前記 Si成分の総量の 4 0%以上を含む原料組成物を所定温度で加熱保持して仮焼体を得る工程 aと、 前記工程 aで得られた仮焼体を粉砕する工程 bと、
を備えることを特徴とするフェライト磁性材料の製造方法。
[2] 前記原料組成物は、前記 Si成分の総量の 50%以上を含むことを特徴とする請求 項 1に記載のフェライト磁性材料の製造方法。
[3] 前記原料組成物は、前記 Si成分の総量の 80%以上を含むことを特徴とする請求 項 1に記載のフェライト磁性材料の製造方法。
[4] 前記工程 bで得られた粉砕粉末を磁場中で成形する工程 cと、
前記工程 cで得られた成形体を所定温度で焼成して六方晶 M型フヱライトを磁性相 とする焼結体を得る工程 dと、
を備えることを特徴とする請求項 1に記載のフェライト磁性材料の製造方法。
[5] 前記焼成体は、 4000Oe以上の保磁力 HcJおよび 4000G以上の残留磁束密度 B rを示すことを特徴とする請求項 4に記載のフェライト磁性材料の製造方法。
[6] 前記 A元素中の Srの占める割合は 51原子%以上であることを特徴とする請求項 1 に記載のフェライト磁性材料の製造方法。
[7] 前記 R元素中の Laの占める割合は 40原子%以上であることを特徴とする請求項 1 に記載のフェライト磁性材料の製造方法。
[8] 前記 M元素中の Coの占める割合は 20原子%以上であることを特徴とする請求項 1 に記載のフェライト磁性材料の製造方法。
[9] 前記フェライト磁性材料が副成分として Ca成分を含み、添加される前記 Si成分の 総量が SiO換算で 0. 15〜: L 35wt%であり、かつ、前記 Ca成分のモル量と前記 Si
2
成分のモル量の比率 CaZSiが 0. 35-2. 10となるように前記 Ca成分を添加するこ とを特徴とする請求項 1または 4に記載のフェライト磁性材料の製造方法。
[10] 前記 Ca成分の一部または全部を、前記工程 a以降前記工程 c以前に添加すること を特徴とする請求項 9に記載のフェライト磁性材料の製造方法。
[11] 前記 Ca成分の総量の 50%以上を、前記工程 a以降前記工程 c以前に添加すること を特徴とする請求項 10に記載のフェライト磁性材料の製造方法。
[12] 前記原料組成物は、前記元素 Rの一部または全部を含むことを特徴とする請求項 1 に記載のフェライト磁性材料の製造方法。
[13] 前記元素 Mの一部または全部を、前記工程 a以降前記工程 c以前に添加することを 特徴する請求項 1に記載のフェライト磁性材料の製造方法。
[14] 前記元素 Aが Srであることを特徴する請求項 1に記載のフェライト磁性材料の製造 方法。
[15] 前記フ ライト磁性材料の主成分力 A R (Fe M ) O の組成を有することを特
1-x X 12-y y z 19
徴とする請求項 1に記載のフ ライト磁性材料の製造方法。
ただし、前記組成式において、 x、 yおよび zは以下の通りである。
0. 04≤x< 0. 60
0. 02≤y< 0. 40
0. 8<x/y< 2. 5
0. 9< ζ< 1. 1
[16] 前記フェライト磁性材料が副成分として Ca成分を含み、添加される前記 Si成分の 総量が SiO換算で 0. 15〜: L 35wt%であり、かつ、前記 Ca成分のモル量と前記 Si
2
成分のモル量の比率 CaZSiが 0. 35-2. 10となるように前記 Ca成分を添加するこ とを特徴とする請求項 15に記載のフェライト磁性材料の製造方法。
[17] 0. 04≤x≤0. 30であることを特徴とする請求項 15に記載のフェライト磁性材料の 製造方法。
[18] 0. 02≤y≤0. 20であることを特徴とする請求項 15に記載のフェライト磁性材料の 製造方法。
[19] 1. 0≤x/y≤2. 3であることを特徴とする請求項 15に記載のフェライト磁性材料の 製造方法。
[20] 0. 92≤z≤l. 05であることを特徴とする請求項 15に記載のフェライト磁性材料の 製造方法。
PCT/JP2005/017345 2004-09-21 2005-09-21 フェライト磁性材料の製造方法 WO2006033335A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-273189 2004-09-21
JP2004273189 2004-09-21

Publications (1)

Publication Number Publication Date
WO2006033335A1 true WO2006033335A1 (ja) 2006-03-30

Family

ID=36090093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017345 WO2006033335A1 (ja) 2004-09-21 2005-09-21 フェライト磁性材料の製造方法

Country Status (1)

Country Link
WO (1) WO2006033335A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329128A (zh) * 2011-06-11 2012-01-25 宜宾职业技术学院 一种钙永磁铁氧体及其制造方法
CN102815933A (zh) * 2012-09-10 2012-12-12 浙江省东阳市中航磁性有限公司 一种永磁钡铁氧体材料及其制备方法
CN107557568A (zh) * 2017-09-11 2018-01-09 中南大学 一种高铅型锰资源脱铅的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197225A (ja) * 1997-09-19 1999-04-09 Tdk Corp 異方性焼結磁石、ボンディッド磁石および磁気記録媒体
JP2001068321A (ja) * 1997-02-25 2001-03-16 Tdk Corp 酸化物磁性材料、フェライト粒子、焼結磁石、ボンディッド磁石、磁気記録媒体およびモータ
JP2001076919A (ja) * 1999-07-07 2001-03-23 Tdk Corp フェライト磁石およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068321A (ja) * 1997-02-25 2001-03-16 Tdk Corp 酸化物磁性材料、フェライト粒子、焼結磁石、ボンディッド磁石、磁気記録媒体およびモータ
JPH1197225A (ja) * 1997-09-19 1999-04-09 Tdk Corp 異方性焼結磁石、ボンディッド磁石および磁気記録媒体
JP2001076919A (ja) * 1999-07-07 2001-03-23 Tdk Corp フェライト磁石およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329128A (zh) * 2011-06-11 2012-01-25 宜宾职业技术学院 一种钙永磁铁氧体及其制造方法
CN102815933A (zh) * 2012-09-10 2012-12-12 浙江省东阳市中航磁性有限公司 一种永磁钡铁氧体材料及其制备方法
CN102815933B (zh) * 2012-09-10 2014-06-04 浙江省东阳市中航磁性有限公司 一种永磁钡铁氧体材料及其制备方法
CN107557568A (zh) * 2017-09-11 2018-01-09 中南大学 一种高铅型锰资源脱铅的方法

Similar Documents

Publication Publication Date Title
JP5245249B2 (ja) フェライト磁性材料及びフェライト焼結磁石
JP4506989B2 (ja) フェライト磁性材料、フェライト焼結磁石及びその製造方法
JP4215261B2 (ja) フェライト磁性材料及びその製造方法
JP5212655B2 (ja) 六方晶w型焼結磁石
JP4640432B2 (ja) フェライト焼結磁石
JP6596828B2 (ja) フェライト焼結磁石及びそれを備えるモータ
KR101588580B1 (ko) 페라이트 소결 자석 및 그것을 구비한 모터
JP6596829B2 (ja) フェライト焼結磁石及びそれを備えるモータ
US20070023970A1 (en) Method for producing ferrite sintered magnet
JP4720994B2 (ja) フェライト磁性材料の製造方法
WO2014058067A1 (ja) Srフェライト粉末及びSrフェライト焼結磁石の製造方法、並びにモータ及び発電機
JP4657922B2 (ja) フェライト磁性材料
JP4788668B2 (ja) フェライト焼結磁石の製造方法及びフェライト焼結磁石
JP4591684B2 (ja) フェライト磁性材料及びその製造方法
WO2006033335A1 (ja) フェライト磁性材料の製造方法
JP3927401B2 (ja) フェライト焼結磁石の製造方法
JP6863374B2 (ja) フェライト磁石
JP2006327883A (ja) フェライト磁石及びフェライト焼結磁石の製造方法
JPH11195517A (ja) 六方晶フェライト磁石粉末と六方晶フェライト焼結磁石の製造方法
JP2006265044A (ja) 酸化物磁性体の製造方法
JP2001223104A (ja) 焼結磁石の製造方法
JP2002305106A (ja) 乾式成形焼結磁石の製造方法
JP2007031203A (ja) W型フェライト磁石の製造方法
JP2006165364A (ja) フェライト永久磁石及びその製造方法
JP2007191374A (ja) フェライト磁性材料の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05785919

Country of ref document: EP

Kind code of ref document: A1