WO2006026932A1 - Semi-conducteur au nitrure du groupe iiia dote d'un contact ohmique de faible impedance - Google Patents

Semi-conducteur au nitrure du groupe iiia dote d'un contact ohmique de faible impedance Download PDF

Info

Publication number
WO2006026932A1
WO2006026932A1 PCT/CN2005/001449 CN2005001449W WO2006026932A1 WO 2006026932 A1 WO2006026932 A1 WO 2006026932A1 CN 2005001449 W CN2005001449 W CN 2005001449W WO 2006026932 A1 WO2006026932 A1 WO 2006026932A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium
nitride
gallium nitride
semiconductor device
indium
Prior art date
Application number
PCT/CN2005/001449
Other languages
English (en)
French (fr)
Inventor
Yun-Li Li
Heng Liu
Original Assignee
Bridgelux, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgelux, Inc. filed Critical Bridgelux, Inc.
Publication of WO2006026932A1 publication Critical patent/WO2006026932A1/zh
Priority to HK08103284.1A priority Critical patent/HK1109242A1/xx

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/04MOCVD or MOVPE
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Definitions

  • Group III nitride semiconductor device with low impedance ohmic contact Group III nitride semiconductor device with low impedance ohmic contact
  • the present invention relates to a bismuth nitride semiconductor device, and more particularly to a bismuth nitride semiconductor device having an improved ⁇ -type contact structure. Background technique
  • the steroid family of nitrides is a direct-bandgap compound semiconductor group composed of lanthanum elements and nitrogen.
  • the semiconductor group includes: a binary compound such as aluminum nitride, gallium nitride, or indium nitride; a ternary compound such as aluminum gallium nitride, indium gallium nitride, or aluminum indium nitride; And a quaternary compound of gallium indium aluminum nitride (Al x In y G ai _ y N;).
  • lanthanum nitrides have a wide band of energy ranging from 0.8 electron volts (eV) (indium nitride) to 6.2 electron volts (eV), they have received considerable attention recently. Therefore, the light-emitting wavelength of the light-emitting diode assembly manufactured by the lanthanum nitride covers the entire visible light range. Green, blue and ultraviolet (UV) nitride light-emitting diode assemblies are commercially available and have been used in displays, indicator lights, traffic lights, and various sources of illumination. Nitride laser diodes have also been commercialized and used in newly developed high-capacity digital video discs (DVDs). In addition, due to its high mechanical and temperature stability, bismuth nitride materials are well suited for the manufacture of high power electronic components. These excellent material properties make this material system the most attractive candidate for future optoelectronic components.
  • Low-impedance ohmic contact has become one of the main research topics of bismuth nitride electronic components and optoelectronic components.
  • ytterbium and yttrium-type gallium nitride and gallium nitride aluminum materials have been successfully obtained with good ohmic contact.
  • the ohmic metal contact for the bismuth-type niobium nitride can be obtained by using titanium/aluminum (Ti/Al) or the like.
  • Ti/Al titanium/aluminum
  • P-type lanthanide nitrides due to factors such as large acceptor activation energy (mainly magnesium) and lack of metals with sufficiently large work functions, there are only a few successful examples of P-type lanthanide nitrides.
  • nickel/gold, palladium/gold and silver have been shown to have acceptable ohmic contact for doped magnesium P-type! IIA nitride materials.
  • An example of the foregoing structure is to deposit a strained strain of gallium nitride on a thick layer of relaxed gallium nitride or deposit a thin layer of strained gallium indium nitride on a thick layer of relaxed gallium nitride.
  • a gallium indium nitride layer is deposited on the gallium nitride layer because of a large lattice mismatch between gallium indium nitride and gallium nitride.
  • the gallium indium nitride layer absorbs light and reduces the light output efficiency of the module.
  • the large absorption coefficient of the gallium indium nitride material at this wavelength causes a very inefficient LED module using a gallium indium nitride cap layer.
  • An object of the present invention is to provide a bismuth nitride semiconductor device having low-impedance ohmic contact which can improve the performance of a device.
  • Another object of the present invention is to provide a bismuth nitride semiconductor device having a good erbium-type ohmic contact to improve module performance.
  • the top of the semiconductor layer is used to reduce the contact resistance between the electrode and the germanium-type bismuth nitride semiconductor layer, thereby improving the performance of the semiconductor device.
  • the present invention reduces the contact resistance between the electrode and the erbium-type lanthanide semiconductor layer by forming a high indium content island-shaped gallium indium nitride on top of the bismuth-based lanthanide semiconductor layer.
  • the island-shaped gallium indium nitride structure can be applied to all bismuth nitride electronic components and photovoltaic elements that require good germanium ohmic contact to improve component performance.
  • the aforementioned high indium content island-shaped gallium indium nitride is pseudomorphically grown on P-type III The top of the Group A semiconductor layer, and a compressively strained island-shaped gallium indium nitride is formed.
  • the probability of carriers passing through the carrier tunneling between the contact electrode and the strained island gallium indium nitride can be enhanced.
  • the aforementioned island-shaped gallium indium nitride is used as a current flow path, and the contact resistance between the electrode and the P-type lanthanide semiconductor layer can be greatly reduced.
  • indium gallium nitride (InGaN) materials tend to grow away from lattice defects of dislocation, the aforementioned island-shaped gallium indium nitride will be far from the lattice dislocations, so that current does not flow through these defects. The area, while avoiding the loss.
  • the aforementioned island-shaped gallium indium nitride can be used as a scattering center to cause a diffraction effect on light passing through the top of the bismuth nitride semiconductor element, thereby promoting light from The component is taken out.
  • the present invention provides a gallium nitride based semiconductor device comprising:
  • Ga based layer Based-type gallium nitride based layer (Ga based layer);
  • An electrode is formed on the compressively strained island-shaped gallium indium nitride.
  • the gallium nitride-based semiconductor device wherein the compressively strained island-shaped gallium indium nitride comprises nano-sized island-shaped gallium indium nitride (In x Ga 1 ⁇ c N islands).
  • the gallium nitride based semiconductor device wherein the coverage of the island-shaped gallium indium nitride on the P-type gallium nitride layer is
  • the gallium nitride based semiconductor device wherein the island-shaped gallium indium nitride has a lateral dimension of between 1 nm and 200 nm.
  • the gallium nitride based semiconductor device wherein the island-shaped gallium indium nitride has a longitudinal dimension of between 0.5 nm and 10 nm.
  • the gallium nitride based semiconductor device wherein the island-shaped gallium indium nitride and the P-type gallium nitride based layer are in physical contact.
  • the gallium nitride based semiconductor device wherein the gallium nitride semiconductor device comprises a light emitting diode, a laser diode, and a transistor.
  • the gallium nitride based semiconductor device wherein the P-type gallium nitride layer comprises gallium nitride, aluminum nitride, aluminum gallium nitride, gallium indium nitride, and indium aluminum gallium nitride.
  • the gallium nitride based semiconductor device wherein the electrode is composed of at least one metal selected from the group consisting of nickel, gold, aluminum, titanium, platinum, palladium, silver, rhodium, and copper.
  • the gallium chloride semiconductor device wherein the electrode is composed of at least one transparent conductive oxide layer,
  • the oxide contains at least one of indium, tin, cadmium, and zinc.
  • the invention provides a method for preparing a gallium nitride based semiconductor device, comprising:
  • An electrode is formed on the compressively strained island gallium indium nitride.
  • the gallium nitride half-base conductor assembly preparation method is characterized in that the above-mentioned compressive strain island-shaped gallium indium nitride is grown on the P-type gallium nitride layer in a pseudomorphically grown manner.
  • the gallium nitride-based semiconductor device manufacturing method wherein the above-mentioned compressive strain island-shaped gallium indium nitride is formed by a metal-organic chemical vapor deposition method (Metal-Organic Chemical Vapor Deposition).
  • the coverage of the island-shaped gallium indium nitride in the P-type gallium nitride layer is 10% to 100%.
  • the method for fabricating a gallium nitride-based semiconductor device wherein the P-type gallium nitride layer comprises gallium nitride, aluminum nitride, aluminum gallium nitride, gallium indium nitride, and indium aluminum gallium nitride.
  • the gallium nitride based semiconductor device manufacturing method wherein the substrate comprises sapphire, silicon carbide
  • FIGS. 1A to 1C are schematic diagrams showing polarization field, electric field and junction charge caused by spontaneous polarization and piezoelectric polarization in a steroidal electron heterostructure
  • 2A is a schematic view showing an energy band of a gallium indium nitride/gallium nitride structure having a polarization effect
  • 2B is a schematic view showing an energy band of a gallium indium nitride/gallium nitride structure having no polarization effect
  • 3(A) and 3(B) are perspective views showing the corresponding structures of the steps of the method for fabricating a gallium nitride semiconductor device according to a preferred embodiment of the present invention
  • FIG. 4 is a schematic cross-sectional view showing a light emitting diode assembly in which a strain-strained high indium content island indium gallium nitride (In x Ga 1 ⁇ £ N islands) is formed on a P-type gallium nitride layer.
  • the strain phenomenon of the wurtzite crystal also induces piezoelectric polarization in the helium nitride electron heterostructure (heterostracture).
  • the epitaxial layer can be crystallized (i) spent on the substrate with a slightly different lattice constant. If the semiconductor layer is crystallized on a substrate having a slight difference in lattice constant, the semiconductor layer is strained. Therefore, as shown in FIG. 1B and FIG. 1C, when a gallium nitride (GaN) electronic heterostructure having aluminum and an indium alloy is grown in a crystal-like manner, for example, an AlGaN capping layer is grown in one. When a GaN buffer layer or an InGaN capping layer is grown on a gallium nitride buffer layer, a large piezoelectricity is induced in the structure due to strain of the cover layer. Piezoelectric polarization field
  • the material system Based on the large spontaneous polarization field and piezoelectric polarization field in the steroidal electron heterostructure, the material system exhibits a very large internal electric field.
  • AlGaN/GaN strained aluminum gallium nitride/gallium nitride
  • GaInN/GaN gallium nitride indium/gallium nitride
  • Figs. 1A to 1C The polarization directions of the polarization field, the internal electric field, and the induced boundary charge are shown in Figs. 1A to 1C. Referring to these drawings, it can be seen that the desired structural parameters (strain, thickness, composition, etc.) and material parameters (growth surface, substrate selection, substrate orientation), etc., can be selected as appropriate.
  • the direction of polarization is designed in the component structure.
  • an internal polarization field generated by a thin layer of gallium indium nitride grown on top of a P-type gallium nitride layer causes bending of the energy band.
  • Figure 2B shows the energy band diagram for the same structure but without considering the polarization effect.
  • quantum mechanical tunneling can become the main mechanism for carrier transport at the contact junction.
  • the thickness t of the aforementioned inGaN capping layer can be regarded as the tunnel length of the carrier penetrating from the electrode to the semiconductor layer (tunneling) Length).
  • the thickness t of the aforementioned inGaN capping layer can be regarded as the tunnel length of the carrier penetrating from the electrode to the semiconductor layer (tunneling) Length).
  • the tunneling thickness is much larger than t.
  • quantum mechanics carriers The tomeling probability increases as the tunneling thickness decreases. Therefore, a cover layer having a strong internal polarization effect has a large probability of penetration, which in turn reduces contact resistance.
  • the tunneling thickness becomes shorter due to a stronger electric field, thereby increasing the penetration probability. Therefore, in order to optimize the contact resistance by the polarization effect, it is necessary to provide a compressively strained thin InGaN layer having a high indium content.
  • indium gallium nitride (InGaN) material due to the poor thermal stability of the indium gallium nitride (InGaN) material, a gallium indium nitride layer having a small thickness and a high indium content is formed on the gallium nitride layer as a capping layer. challenge. It is known that indium gallium nitride tends to aggregate during growth of indium gallium nitride. Therefore, under specific growth conditions, nano-sized high-indium-doped island-shaped indium gallium nitride (InGaN islands) can be formed during the growth of gallium indium nitride. It is also observed that these island-shaped gallium indium nitrides which are Pseudomorphically grown on the gallium nitride layer tend to be far from dislocation sites.
  • InGaN islands nano-sized high-indium-doped island-shaped indium gallium nitride
  • the invention has the advantages of a large internal polarization field and a nano-particle size high indium content island-shaped gallium indium nitride, which is favorable for ohmic contact with a P-type GaN based material (ohmic) Contact).
  • 3A to 3B are schematic perspective views showing the steps of the steps of the method for fabricating a gallium nitride semiconductor device according to a preferred embodiment of the present invention. Referring to FIG. 3A, a compressively strained gallium indium nitride layer (In x Ga 1-x N; 0 ⁇ 1) is crystallographically grown on a P-type GaN based layer (P-type GaN based layer).
  • the top of 30 is formed to form nano-sized island-shaped gallium indium nitride (In x G ai _ x N) 32.
  • the nano-sized island-shaped gallium indium nitride (I3 ⁇ 4Ga 1 ⁇ f N) 32 is directly grown on top of the P-type gallium nitride based layer 30, that is, nano-sized island-shaped gallium indium nitride (In x G ai . x
  • nano-sized island-like indium gallium nitride ( ⁇ ⁇ ⁇ ⁇ ⁇ .) 32 can be formed by metal organic chemical vapor deposition (organometallic chemical vapor deposition; OMCVD) is formed on top of the P-type GaN layer 30.
  • OMCVD organometallic chemical vapor deposition
  • Island-like indium gallium nitride nanoparticle size ( ⁇ ⁇ ⁇ & 1. ⁇ ⁇ ) 32 coverage on ⁇ type gallium nitride based layer 30 from 10 to 100%, and the island-like gallium indium nitride ( ⁇ ⁇
  • the lateral dimension of ⁇ ⁇ ⁇ ⁇ 32 is between 1 nm and 200 nm, and the vertical size is between 0.5 nm and 10 nm.
  • the gallium nitride based layer 30 is formed on a substrate (not shown), such as sapphire (A1 2 0 3 ), silicon carbide (SiC), zinc oxide (ZnO), silicon, gallium phosphide (GaP). ), gallium arsenide (GaAs) or other suitable material.
  • the GaN based layer 30 includes gallium nitride (GaN), aluminum nitride (A1N;), aluminum gallium nitride (AlGaN), gallium indium nitride (InGaN), and gallium nitride. Indium aluminum (AlInGaN). Referring to FIG.
  • Electrode 34 is deposited on the aforementioned island-shaped gallium indium nitride ( ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 3 ⁇ ( ⁇ 3) 32 at the top for ohmic contact.
  • Electrode 34 may be a metal layer comprising at least one metal selected from the group consisting of nickel (i), gold (Au), aluminum (Al), and titanium (Ti). Platinum A group consisting of (Pt), palladium (Pd), silver (Ag), tantalum (Tl), and copper (Cu).
  • the electrode 34 may also comprise at least one alloy selected from the group consisting of nickel/gold (Ni/Au), palladium/gold (Pd/Au), lanthanum/gold (Tl/Au) and copper/gold (Cu/Au). group.
  • the electrode 34 may include at least one layer of a conductive transparent oxide layer including at least one of indium, tin, cadmium, and zinc.
  • Each island-shaped gallium indium nitride (InxGa ⁇ N islandspS can be regarded as a conductive channel between the electrode 34 and the P-type gallium nitride base layer 30 due to the island-shaped gallium indium nitride (In x Ga 1-x)
  • the interface between the N islands 32 and the P-type gallium nitride base layer 30 has a low contact resistance, and a high-quality ohmic contact can be realized.
  • the aforementioned island-shaped gallium nitride indium The islands 32 tend to be far from the dislocation sites, thus reducing the leakage current through these dislocations and avoiding excessive carrier losses.
  • the above-mentioned high indium content island-shaped gallium indium nitride (InxGa ⁇ N islands; 0 ⁇ 1) can be applied to electronic components and optoelectronic components of all steroidal nitrides requiring good P-type ohmic contact, such as light-emitting diodes. , laser diodes and transistors.
  • 4 is a cross-sectional view showing an application example of the light emitting diode assembly 40 of the present invention.
  • the light emitting diode assembly 40 is formed on the substrate 400, such as a sapphire (A1 2 0 3 ) substrate.
  • a nucleation layer 401 and an N-type buffer layer 402 are sequentially formed on the substrate 400.
  • the buffer layer 402 includes gallium nitride doped with N-type doping to facilitate subsequent crystal growth processes to facilitate crystal growth.
  • a light-emitting active layer 404 is formed on the buffer layer 402.
  • the active layer 404 are confinement layer (confinement layers) under Gen Jie cover layer (lower cladding layer) 403 and the upper cover layer (higher cladding la y er) 405 is limited.
  • the lower cap layer 403 and the upper cap layer 405 doped with opposite conductivity types. For example, it is assumed that the cover layer 403 is doped with an N-type doped gallium nitride layer, and the upper cap layer 20 is a P-type doped gallium nitride layer.
  • a P-type contact layer 406 is formed on the upper cladding layer 405.
  • the P-type contact layer 406 is a P-type gallium nitride based layer.
  • island-shaped gallium indium nitride (In x G ai _ x N islands; 0 ⁇ x ⁇ 1) 407 is formed on the P-type gallium nitride base layer 406.
  • the island-shaped gallium indium nitride (In x G ai _ x N islands; 0 ⁇ ⁇ ⁇ 1) 407 is in a compressively strained state with respect to the P-type gallium nitride base layer 406.
  • Islands; 0 ⁇ ⁇ 1) 407 used as the anode of the diode.
  • an electrode layer 409 serving as a diode cathode is formed on the buffer layer 402, but spaced apart from the lower cladding layer 403 and the upper cladding layer 406 and the active layer 404.

Description

具有低阻抗欧姆接触的 IIIA族氮化物半导体器件
技术领域
本发明是涉及 ΙΠΑ族氮化物半导体器件,特别涉及一种具有改善的 Ρ型接触结构 的 ΙΠΑ族氮化物半导体器件。 背景技术
ΠΙΑ族氮化物族是由 ΠΙΑ族元素及氮组成的直接能带跃迁化合物 (direct-bandgap compound)半导体群。前述半导体群包含:二元化合物 (binary compound),例如氮化铝、 氮化镓、 氮化铟; 三元化合物 (ternary compound), 例如氮化镓铝、 氮化镓铟、 氮化铝 铟;及四元化合物 (quaternary compound)氮化镓铟铝 (AlxInyGai_yN;)。 由于 ΠΙΑ族氮化物 具有宽的能带涵盖范围, 从 0.8电子伏特 (eV) (氮化铟)至 6.2电子伏特 (eV), 近来它们 受到相当的注意。 因此, ΠΙΑ族氮化物制造的发光二极管组件的发光波长系涵盖整个 可见光范围。 绿光、 蓝光及紫外光 (UV)的氮化物发光二极管组件可从市面上购得, 并 且已应用于显示器、 指示灯、 交通号志灯及各种发光源。 氮化物激光二极管亦已商品 化,并用于新开发的高储存容量的数字视频光盘系统 (digital video disk; DVD)。除此之 外, 由于其机械及温度稳定性高, ΓΠΑ族氮化物材料非常适合制造高功率电子组件。 这些优异的材料特性, 使得这种材料系统成为未来光电组件最具吸引力的候选对象。
几乎所有的半导体器件都需要低阻抗的欧姆接触, 以使组件特性最佳化。 高阻 抗接触由于在组件工作期间会在其与半导体材料的接触接面处产生过热, 而使组件特 性劣化。 ΠΙΑ族氮化物具有较宽的能带,使得它与具有较小能带的第 ΙΠ-V 族化合物, 如砷化镓及磷化镓相比, 较难获得良好的欧姆接触。 因此, 前述问题对于 ΙΠΑ族氮化 物材料更显重要。低阻抗欧姆接触已成为 ΠΙΑ族氮化物电子组件及光电组件主要研究 课题之一。在过去几年中, 已成功获得良好欧姆接触的 Ν型及 Ρ型氮化镓及氮化镓铝 材料。对于 Ν型第 ΙΠΑ氮化物的欧姆金属接触可以通过使用钛 /铝 (Ti/Al)等获得。然而, 由于受主激活能 (主要为镁)大以及缺少具有足够大的功函数的金属等因素, 仅有少数 几个 P型 ΠΙΑ族氮化物成功的例子。 截至目前为止, 已证实镍 /金、 钯 /金及银对于揍 杂镁的 P型! IIA族氮化物材料具有可以被接受的欧姆接触。 然而, 为获得较高的组件 性能, 仍需要进一步改良的 P型接触。 公知 ΙΠΑ 族氮化物表现出强的极化效应。 强的压电极化现象 (piezoelectric polarization)经常存在于层状结构中。 利用这一优点, 可实现良好的金属 -半导体欧姆 接触。 随着适当的极化, 可使金属 -半导体接面的肖特基壁垒 (Schottky barrier)厚度得 以被减小, 进而增大载流子的穿透机率。 这种对 P 型 ΠΙΑ 族氮化物的强极化 (polarization-enhanced)欧姆接触可由沉积一压应变覆盖层 (compressively strained capping layer)在一弛豫缓冲层 (relaxed buffer layer)而达到。 前述结构的例子有将应变 (strained)氮化镓薄层沉积在弛豫 (relaxed)氮化镓铝厚层上或者将应变氮化镓铟薄层沉 积在弛豫氮化镓厚层上。
然而, 制造前述结构并非易事, 尤其是把氮化镓铟层沉积在氮化镓层上, 这是 于氮化镓铟与氮化镓之间具有很大的晶格不匹配的缘故。
另一方面, 如果氮化镓铟层的能带窄于发光二极管组件发光层的能带, 氮化镓 铟层会吸收光, 而降低组件的光输出效率。 以在 400纳米波长范围的短波长发光二极 管为例, 氮化镓铟材料在这一波长下的大吸收系数会导致使用氮化镓铟覆盖层的发光 二极管组件非常缺乏效率。
据此, 亟待提供一种具有良好 Ρ型接触结构的 ΙΠΑ族氮化物半导体器件, 其可 克服公知 ΠΙΑ族氮化物半导体器件所面临的缺点。 发明内容
本发明的目的在于提供一种可提高组件性能的具有低阻抗欧姆接触的 ΠΙΑ 族氮 化物半导体器件。
本发明的另一目的在于提供一种具有良好 Ρ型欧姆接触的 ΙΠΑ族氮化物半导体 器件, 以提高组件性能。
本发明的又一目的在于提供一种高铟含量岛状氮化镓铟 (high-indimn-content InxGai.xN islands; 0<χ≤1)结构, 形成于 P型 ΠΙΑ族氮化物半导体层顶部, 以降低电极 与 Ρ型 ΠΙΑ族氮化物半导体层之间的接触电阻, 进而提高半导体器件的性能。
本发明的再一目的在于提供一种制备上述半导体器件的方法。
为达到上述目的, 本发明通过将高铟含量岛状氮化镓铟形成於 Ρ型 ΙΠΑ族半导体 层的顶部, 以降低电极与 Ρ型 ΠΙΑ族半导体层之间的接触电阻。 所述岛状氮化镓铟结 构可应用於需要良好 Ρ型欧姆接触的所有 ΙΠΑ族氮化物电子元件及光电元件, 以提高 元件性能。前述高铟含量岛状氮化镓铟系以仿晶方式 (pseudomorphically)生长於 P型 III A族半导体层的顶部, 并且形成压应变 (compressively strained)的岛状氮化镓铟。 由於 强大的内部极化场, 可加强接触电极与所述应变岛状氮化镓铟之间的载流子穿过势垒 (carrier tunneling)的机率。前述岛状氮化镓铟系用作电流的流道, 可大大降低电极与 P 型 ΠΙΑ族半导体层之间的接触电阻。再者, 由於氮化镓铟 (InGaN)材料倾向以远离位错 (dislocation)的晶格缺陷的方式生长, 前述岛状氮化镓铟将远离晶格位错处, 致使电流 不会流过这些缺陷区域, 而避免载乎流失。 另一方面, 对於发光二极体元件而言, 前 述岛状氮化镓铟可以用作散射中心 (scattering center),使经过 ΙΠΑ族氮化物半导体元件 顶部的光产生衍射效应, 进而促进光从元件中被取出。
具体地说, 本发明提供一种氮化镓基半导体器件, 包括:
Ρ型氮化镓基层 (Ga based layer);
于所述 P 型氮化镓层上直接形成多个压应变的岛状氮化镓铟 (InxGa1-xN) (compressively strained InxGa1-xN islands), 其中 0<x≤l ; 禾口
电极, 形成于所述压应变的岛状氮化镓铟上。所述氮化镓基半导体器件,其中上 述压应变的岛状氮化镓铟包含纳米颗粒大小的岛状氮化镓铟 (InxGa1→cN islands)。
所述氮化镓基半导体器件,其中上述岛状氮化镓铟在 P型氮化镓层上的覆盖率为
10%至 100%。
所述氮化镓基半导体器件, 其中上述岛状氮化镓铟的横向尺寸在 lnm至 200nm 之间。
所述氮化镓基半导体器件,其中上述岛状氮化镓铟的纵向尺寸在 0.5nm至 10nm 之间。
所述氮化镓基半导体器件, 其中上述岛状氮化镓铟与 P型氮化镓基层之间为物 理接触。
所述氮化镓基半导体器件, 其中上述氮化镓半导体器件包括发光二极管、 激光 二极管及晶体管。
所述氮化镓基半导体器件, 其中上述 P型氮化镓层包括氮化镓、 氮化铝、 氮化 镓铝、 氮化镓铟及氮化镓铟铝。
所述氮化镓基半导体器件, 其中上述电极由选自镍、 金、 铝、 钛、 铂、 钯、 银、 铊及铜的至少一种金属组成。 所述氮化镓基半导体器件, 其中上述电极由选自镍 / 金、 钯 /金、 铊 /金及铜 /金的至少一种合金组成。
所述氯化镓半导体器件, 其中上述电极由至少一种透明的导电氧化物层组成, 所述氧化物至少含有铟、 锡、 镉及锌之一。
本发明提供一种氮化镓基半导体器件制备方法, 包括:
于基板上形成 P型氮化镓基层;
于所述 P型氮化镓层上直接形成多个压应变 (compressively strained)的岛状氮化 镓铟 (ΙηχΟ .χΝ islands), 其中 0<χ≤1 ; 及
于所述压缩应变的岛状氮化镓铟上形成电极。 所述氮化镓半基导体组件制备方 法, 其中于该 P型氮化镓层上以仿晶方式生长 (pseudomorphically growing)上述压应变 的岛状氮化镓铟系生长。
所述氮化镓基半导体器件制备方法, 其中以有机金属化学气相沉积方法 (Metal-Organic Chemical Vapor Deposition)形成上述压应变的岛状氮化镓铟。
所述氮化镓基半导体器件制备方法, 其中上述岛状氮化镓铟在 P型氮化镓层的 覆盖率为 10%至 100%。
所述氮化镓基半导体器件制备方法, 其中上述 P型氮化镓层包括氮化镓、 氮化 铝、 氮化镓铝、 氮化镓铟及氮化镓铟铝。
所述氮化镓基半导体器件制造方法,其中上述基板包括蓝宝石 (sapphire)、碳化硅
(SiC)、 氧化锌、 硅、 磷化镓及砷化镓任一种。 附图说明
图 1A至图 1C表示 ΠΙΑ族氮化物电子异质结构中自发性极化及压电极化效应引 起的极化场、 电场及接面电荷示意图;
图 2A表示具有极化效应的氮化镓铟 /氮化镓结构的能带示意图;
图 2B表示无极化效应的氮化镓铟 /氮化镓结构的能带示意图;
图 3(A)和 3(B)表示本发明优选实施例氮化镓半导体器件制备方法各步骤对应结 构的立体示意图;
图 4表示发光二极管组件的截面示意图, 其中于 P型氮化镓层上形成压应变的 高铟含量岛状氮化镓铟 (InxGa1→£N islands)。 具体实施方式
本发明的前述目的或特征, 将依据附图加以详细说明, 惟需明了的是, 附图及所 举各例, 只是做为说明而非限制或縮限本发明。 近期研究显示具有 [0001]生长方向(镓晶面) (Ga-face)或 [000JJ生长方向(氮晶 面) (N-face)的 ΠΙΑ族氮化物半导体材料系统的维锌矿结构 (wurtzite structure)会产生很 强的自发极化 (spontaneous polarization), 并且, 这种自发极化会感应很强的内部电场。 前述非零自发极化 (nonzero spontaneous polarization)由于维锌矿晶格结构中沿 [0001]方 向 (c-轴)缺乏对称中心。这种强自发极化与 ΙΠΑ族氮化物维锌矿结构共生,并且极化方 向与 ΙΠΑ族氮化物材料生长方向有关。
另一方面, 维锌矿晶体 (wurtzite crystal)的应变 (strain)现象亦会在 ΙΠΑ族氮化物电 子电子异质质结构 (heterostracture)中感应强压电极化 (piezoelectric polarization)。 若外 延层 (epitaxial layer)的生长厚度在临界厚度 (critical thickness)范围内, 则外延层可以仿 晶方式 (i)seudoniorphically)生长于晶格常数具有微小差异(slightly different lattice constant)的基板上。若半导体层是以仿晶方式生长于晶格常数具有微小差异的基板上, 则此半导体层会发生应变。 因此, 如图 1B及图 1C所示, 当具有铝及铟合金的氮化镓 (GaN)电子异质结构以仿晶方式生长时, 例如氮化镓铝覆盖层 (AlGaN capping layer)生 长于一氮化镓缓冲层 (GaN buffer layer), 或者氮化镓铟覆盖层 (InGaN capping layer)生 长于一氮化镓缓冲层时, 由于前述覆盖层发生应变, 而会在结构中感应大的压电极化 场 (piezoelectric polarization field)
基于 ΠΙΑ族氮化物电子异质结构中具有大的自发性极化场及压电极化场,此种材 料系统会表现出非常大的内部电场。在应变的氮化镓铝 /氮化镓 (AlGaN/GaN)(或氮化镓 铟 /氮化镓 )(GaInN/GaN)电子异质结构中, 自发极化场感应的电场强度接近于压电极化 场的强度。
极化场、 内部电场及感应的边界电荷的极性方向示意于图 1A至图 1C中。 参照 这些附图, 可以看出, 由适当选择组件结构参数 (应变、 薄层厚度、 组分等)及材料参 数 (生长面、 基板选择、 基板晶向 (substrate orientation))等, 可将所要的极化方向设计 于组件结构中。
参照图 2A, 氮化镓铟薄层生长于 P型氮化镓层顶部所产生的内部极化场会导致 能带的弯曲。 图 2B显示出相同结构但未考虑极化效应时的能带图。 在特殊情况下, 量子力学隧道效应会成为在接触接面载流子传输的主要机制。 参照图 2A所示, 当结 构中具有强大的极化效应时, 前述氮化镓铟覆盖层 (InGaN capping layer)的厚度 t可视 为载流子从电极穿透至半导体层的隧道长度 (tunneling length)。 然而, 如图 2B所示, 相同结构但不具有极化效应时, 其穿隧厚度系会大于 t许多。 根据量子力学, 载流子 穿透机率 (tomeling probability)随着穿隧厚度的减少而增加。 因此, 具有强大内部极化 效应的覆盖层会有较大的穿透机率, 进而可降低接触电阻。
另一方面,氮化镓铟层内含较高铟含量时,由于较强电场使得穿隧厚度变得较短, 进而提高穿透机率。 因此, 为了利用极化效应最佳化接触电阻, 需要提供一种压应变 具有高铟含量的氮化镓铟层 (compressively strained thin InGaN layer)。
然而, 由于氮化镓铟 (InGaN)材料的热稳定性不佳, 在氮化镓层上制造厚度薄且 均勾的高铟含量的氮化镓铟层做为覆盖层 (capping layer)极具挑战性。 已知氮化镓铟生 长期间, 铟易于集聚。 因此在特定生长条件下, 在氮化镓铟的生长期间, 可以形成纳 米颗粒大小的 (nano-sized)高铟含量的岛状氮化镓铟 (InGaN islands)。同时观察到这些以 仿晶方式 (Pseudomorphically)生长于氮化镓层的岛状氮化镓铟倾向于远离错位处 (dislocation sites)。
本发明具有巨大的内部极化场及纳米颗粒大小的高铟含量的岛状氮化镓铟等优 点, 有利于与 P型氮化镓基材 (P-type GaN based material)的欧姆接触 (ohmic contact)。 图 3A至图 3B对应本发明一种优选实施例的氮化镓半导体器件制造方法各步骤的结构 立体示意图。参照图 3A,压应变 (compressively strained)的氮化镓铟层 (InxGa1-xN; 0<χ≤1) 以仿晶方式生长在 P型氮化镓层 (P-type GaN based layer)30的顶部, 以形成纳米尺寸 的岛状氮化镓铟 (InxGai_xN)32。 换言之, 纳米尺寸的岛状氮化镓铟 (I¾Ga1→fN)32是直 接生长于 P型氮化镓基层 30的顶部, 即纳米尺寸的岛状氮化镓铟 (InxGai.x )32与 P 型氮化镓层 30之间具有物理接触 (physical contact)。 在本发明中, 纳米尺寸的岛状氮 化镓铟 (Ιηχσ .χΝ)32 可以通过有机金属化学气相沉积方法 (organometallic chemical vapor deposition; OMCVD)形成于 P型氮化镓层 30顶部。 纳米颗粒大小的岛状氮化镓 铟 (ΙηχΟ&1.χΝ)32在 Ρ型氮化镓基层 30上的覆盖率从 10%至 100%, 并且前述岛状氮 化镓铟 (ΙηχΟ _χΝ)32的横向尺寸 (lateral size)在 lnm与 200nm之间,而纵向尺寸 (vertical size)在 0.5nm与 10nm之间。 前述氮化镓基层 30形成于一基板 (substrate)上 (未示出), 例如蓝宝石 (sapphire; A1203)、 碳化硅 (SiC)、 氧化锌 (ZnO)、 硅、 磷化镓 (GaP)、 砷化镓 (GaAs)或其它适合的材料。 在本发明中, 氮化镓基层 (GaN based layer)30包括氮化镓 (GaN), 氮化铝 (A1N;)、 氮化镓铝 (AlGaN)、 氮化镓铟 (InGaN)及氮化镓铟铝 (AlInGaN)。 参照图 3B, 在纳米颗粒大小的岛状氮化镓铟 (I¾Gai.xN islands)32长成后, 将电极 34 沉积于前述岛状氮化镓铟 (Ιηχσ ·χΝ ίδΐ3η(ΐ3)32顶部, 以供欧姆接触 (ohmic contact)。 电 极 34可以是一金属层, 包括至少一种金属, 选自镍 ( i)、 金 (Au)、 铝 (Al)、 钛 (Ti)、 铂 (Pt)、 钯 (Pd)、 银 (Ag)、 铊 (Tl)及铜 (Cu)所组成的一组。 电极 34亦可以包含至少一种合 金, 选自镍 /金 (Ni/Au)、钯 /金 (Pd/Au)、铊 /金 (Tl/Au)及铜 /金 (Cu/Au)组成的一组。此外, 电极 34可以包含至少一层导电的透明氧化层 (conductive transparent oxide layer), 包括 铟、 锡、 镉及锌中至少一种。 每一个岛状氮化镓铟 (InxGa^N islandspS可以视为电极 34与 P型氮化镓基层 30之间的一个导电通道 (conductive channel) 由于岛状氮化镓铟 (InxGa1-xN islands)32 与 P 型氮化镓基层 30 的界面具有低接触电阻 (low contact resistance) , 而可以实现高质量的欧姆接触。 再者, 前述岛状氮化镓铟
Figure imgf000009_0001
islands)32倾向于远离位错处 (dislocation site), 因而可降低经由这些位错处的漏电流, 而避免载流子过度流失。
本发明前述高铟含量的岛状氮化镓铟 (InxGa^N islands; 0<χ≤1)可以应用在要求 良好 P型欧姆接触的所有 ΠΙΑ族氮化物的电子组件及光电组件, 例如发光二极管、 激 光二极管及晶体管等。 图 4为本发明的一种应用举例, 示出发光二极管组件 40的截 面示意图。 发光二极管组件 40系形成于基板 400上, 例如是蓝宝石 (A1203)基板。 核 化层 (nucleation layer)401及 N型缓冲层 (buffer layer)402依序形成于基板 400上。缓冲 层 402包括搀有 N型掺杂的氮化镓, 以利于后续晶体生长制程易于晶体生长。发光主 动层 (light-emitting active layer)404 形成于缓冲层 402 上。 主动层 404 被限制层 (confinement layers)艮卩下覆盖层 (lower cladding layer) 403及上覆盖层 (higher cladding layer)405所限制。 下覆盖层 403及上覆盖层 405搀有相反导电类型的掺杂。 例如, 假 如下覆盖层 403系搀有 N型掺杂的氮化镓层, 上覆盖层 20则为搀有 P型掺杂的氮化 镓层。 之后, P型接触层 406形成于上覆盖层 405上。 P型接触层 406为一 P型氮化 镓基层。 接下来, 岛状氮化镓铟 (InxGai_xN islands; 0<x≤l)407形成于 P型氮化镓基层 406上。岛状氮化镓铟 (InxGai_xN islands; 0<χ<1)407相对于 P型氮化镓基层 406呈压应 变 (compressively strain)状态。 接着, 透明电极层 408
Figure imgf000009_0002
islands; 0<χ≤1)407上, 用作二极管的阳极。 再者, 用作二极管阴极的电极层 409形成 于缓冲层 402上, 但与下覆盖层 403及上覆盖层 406以及主动层 404隔开。
以上所述仅为本发明的具体实施例而已, 并非用以限定本发明的申请专利范围; 凡其它未脱离本发明所揭示的精神下完成的等效改型或修改, 均应包含在本发明申请 专利范围内。

Claims

权 利 要 求
1.一种氮化镓基半导体器件, 包括:
P型氮化镓基层;
于所述 P型氮化镓层上直接形成的个压应变的岛状氮化镓铟 (InxGai_xN), 其中 0<χ<1; 及
电极, 形成于所述压应变的岛状氮化镓铟上。
2.如权利要求 1所述的氮化镓基半导体器件, 其特征在于, 所述压应变的岛状氮化 镓铟包含纳米颗粒大小的岛状氮化镓铟。
3.如权利要求 1所述的氮化镓基半导体器件, 其特征在于, 所述岛状氮化镓铟在 P 型氮化镓层上的覆盖率为 10%至 100%。
4.如权利要求 2所述的氮化镓基半导体器件, 其特征在于, 所述岛状氮化镓铟的横 向尺寸在 lnm-200nm之间。
5.如权利要求 2所述的氮化镓基半导体器件, 其特征在于, 所述岛状氮化镓铟的纵 向尺寸在 0.5nm-10nm之间。
6.如权利要求 4所述的氮化镓基半导体器件, 其特征在于, 所述岛状氮化镓铟的纵 向尺寸在 0.5nm-10nm之间。
7.如权利要求 1所述的氮化镓基半导体器件, 其特征在于, 所述岛状氮化镓铟与 P 型氮化镓基层之间为物理接触。
8.如权利要求 1所述的氮化镓基半导体器件, '其特征在于, 所述氮化镓半导体器件 包括发光二极管、 激光二极管及晶体管。
9.如权利要求 1所述的氮化镓基半导体器件, 其特征在于, 所述 P型氮化镓基层包 括氮化镓、 氮化铝、 氮化镓铝、 氮化镓铟及氮化镓铟铝。
10.如权利要求 1所述的氮化镓基半导体器件,其特征在于,所述电极由选自镍、金、 铝、 钛、 铂、 钯、 银、 铊及铜的至少一种金属组成。
11.如权利要求 1所述的氮化镓基半导体器件, 其特征在于, 所述电极由选自镍 /金、 钯 /金、 铊 /金及铜 /金的至少一种合金组成。
12.如权利要求 1所述的氮化镓基半导体器件,其特征在于,所述电极由至少一种透 明的导电氧化物组成, 所述氧化物至少含有铟、 锡、 镉及锌之一。
13.—种氮化镓基半导体器件制造方法, 包括- 于基板上形成 P型氮化镓基层;
于所述 P型氮化镓基层上直接形成多个压应变的岛状氮化镓铟, 其中 0<χ≤1 ; 并且
于所述压应变的岛状氮化镓铟上形成电极。
14.如权利要求 13所述的氮化镓基半导体器件制造方法, 其特征在于, 所述压应变 的岛状氮化镓铟系以仿晶方式生长于该 P型氮化镓层上。
15.如权利要求 14所述的氮化镓基半导体器件制造方法, 其特征在于, 以有机金属 化学气相沉积法形成所述压应变的岛状氮化镓铟。
16.如权利要求 13所述的氮化镓基半导体器件制造方法, 其特征在于, 所述岛状氮 化镓铟在 P型氮化镓层的覆盖率为 10%至 100%。
17.如权利要求 13所述的氮化镓基半导体器件制造方法, 其特征在于, 所述 P型氮 化镓基层包括氮化镓、 氮化铝、 氮化镓铝、 氮化镓铟及氮化镓铟铝。
18.如权利要求 13所述的氮化镓基半导体器件制造方法, 其特征在于, 所述基板包 括蓝宝石、 碳化硅、 氧化锌、 硅、 磷化镓及砷化镓任一种。
PCT/CN2005/001449 2004-09-09 2005-09-09 Semi-conducteur au nitrure du groupe iiia dote d'un contact ohmique de faible impedance WO2006026932A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HK08103284.1A HK1109242A1 (en) 2004-09-09 2008-03-25 Iiia group nitride semiconductor with low-impedance ohmic contact

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/936,496 US7943949B2 (en) 2004-09-09 2004-09-09 III-nitride based on semiconductor device with low-resistance ohmic contacts
US10/936,496 2004-09-09

Publications (1)

Publication Number Publication Date
WO2006026932A1 true WO2006026932A1 (fr) 2006-03-16

Family

ID=35995307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/001449 WO2006026932A1 (fr) 2004-09-09 2005-09-09 Semi-conducteur au nitrure du groupe iiia dote d'un contact ohmique de faible impedance

Country Status (6)

Country Link
US (1) US7943949B2 (zh)
KR (1) KR100879414B1 (zh)
CN (1) CN100563033C (zh)
HK (1) HK1109242A1 (zh)
TW (2) TWM274645U (zh)
WO (1) WO2006026932A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080283854A1 (en) * 2007-05-01 2008-11-20 The Regents Of The University Of California Light emitting diode device layer structure using an indium gallium nitride contact layer
TWI341600B (en) * 2007-08-31 2011-05-01 Huga Optotech Inc Light optoelectronic device and forming method thereof
US7791101B2 (en) * 2008-03-28 2010-09-07 Cree, Inc. Indium gallium nitride-based ohmic contact layers for gallium nitride-based devices
KR100954729B1 (ko) 2008-06-12 2010-04-23 주식회사 세미콘라이트 InN 양자섬 캡핑층을 구비한 질화물계 발광소자
DE102008052405A1 (de) * 2008-10-21 2010-04-22 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement
KR100992772B1 (ko) * 2008-11-20 2010-11-05 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
US9029866B2 (en) 2009-08-04 2015-05-12 Gan Systems Inc. Gallium nitride power devices using island topography
US9064947B2 (en) 2009-08-04 2015-06-23 Gan Systems Inc. Island matrixed gallium nitride microwave and power switching transistors
US9818857B2 (en) 2009-08-04 2017-11-14 Gan Systems Inc. Fault tolerant design for large area nitride semiconductor devices
US9437785B2 (en) * 2009-08-10 2016-09-06 Cree, Inc. Light emitting diodes including integrated backside reflector and die attach
DE102009060747A1 (de) 2009-12-30 2011-07-07 OSRAM Opto Semiconductors GmbH, 93055 Halbleiterchip
EP2559064A4 (en) 2010-04-13 2018-07-18 GaN Systems Inc. High density gallium nitride devices using island topology
KR101646664B1 (ko) * 2010-05-18 2016-08-08 엘지이노텍 주식회사 발광 소자, 발광 소자의 제조방법 및 발광 소자 패키지
US8242523B2 (en) * 2010-07-29 2012-08-14 National Tsing Hua University III-Nitride light-emitting diode and method of producing the same
CN102780156B (zh) * 2011-05-13 2014-05-07 中国科学院物理研究所 一种氮化铝固体激光器及其制备方法
CN102956781B (zh) * 2011-08-31 2015-03-11 新世纪光电股份有限公司 发光元件及其制作方法
KR102130488B1 (ko) 2012-02-23 2020-07-07 센서 일렉트로닉 테크놀로지, 인크 반도체에 대한 오믹 접촉부
TWI505500B (zh) * 2012-06-07 2015-10-21 Lextar Electronics Corp 發光二極體及其製造方法
KR20140086624A (ko) * 2012-12-28 2014-07-08 삼성전자주식회사 질화물 반도체 발광 소자
US20150255589A1 (en) * 2014-03-10 2015-09-10 Toshiba Corporation Indium-containing contact and barrier layer for iii-nitride high electron mobility transistor devices
KR102373677B1 (ko) * 2015-08-24 2022-03-14 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자
WO2019111161A1 (en) * 2017-12-05 2019-06-13 King Abdullah University Of Science And Technology Forming iii-nitride alloys
KR102544296B1 (ko) * 2018-09-13 2023-06-16 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 표면발광레이저 소자 및 이를 구비한 표면발광레이저 장치
CN112951955B (zh) * 2021-01-26 2023-03-14 华灿光电(浙江)有限公司 紫外发光二极管外延片及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4213781A (en) * 1978-11-20 1980-07-22 Westinghouse Electric Corp. Deposition of solid semiconductor compositions and novel semiconductor materials
WO1996011502A1 (en) * 1994-10-11 1996-04-18 International Business Machines Corporation WAVELENGTH TUNING OF GaN-BASED LIGHT EMITTING DIODES, LIGHT EMITTING DIODE ARRAYS AND DISPLAYS BY INTRODUCTION OF DEEP DONORS
US5905276A (en) * 1992-10-29 1999-05-18 Isamu Akasaki Light emitting semiconductor device using nitrogen-Group III compound

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3325479B2 (ja) * 1997-01-30 2002-09-17 株式会社東芝 化合物半導体素子及びその製造方法
US6369403B1 (en) * 1999-05-27 2002-04-09 The Board Of Trustees Of The University Of Illinois Semiconductor devices and methods with tunnel contact hole sources and non-continuous barrier layer
TW564584B (en) * 2001-06-25 2003-12-01 Toshiba Corp Semiconductor light emitting device
US6949395B2 (en) * 2001-10-22 2005-09-27 Oriol, Inc. Method of making diode having reflective layer
US6847057B1 (en) * 2003-08-01 2005-01-25 Lumileds Lighting U.S., Llc Semiconductor light emitting devices
US20050236636A1 (en) * 2004-04-23 2005-10-27 Supernova Optoelectronics Corp. GaN-based light-emitting diode structure
TWI239668B (en) * 2004-10-21 2005-09-11 Formosa Epitaxy Inc Structure of gallium-nitride based (GaN-based) light-emitting diode with high luminance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4213781A (en) * 1978-11-20 1980-07-22 Westinghouse Electric Corp. Deposition of solid semiconductor compositions and novel semiconductor materials
US5905276A (en) * 1992-10-29 1999-05-18 Isamu Akasaki Light emitting semiconductor device using nitrogen-Group III compound
WO1996011502A1 (en) * 1994-10-11 1996-04-18 International Business Machines Corporation WAVELENGTH TUNING OF GaN-BASED LIGHT EMITTING DIODES, LIGHT EMITTING DIODE ARRAYS AND DISPLAYS BY INTRODUCTION OF DEEP DONORS

Also Published As

Publication number Publication date
KR20070058499A (ko) 2007-06-08
TW200610187A (en) 2006-03-16
KR100879414B1 (ko) 2009-01-19
CN100563033C (zh) 2009-11-25
US20060049417A1 (en) 2006-03-09
HK1109242A1 (en) 2008-05-30
TWM274645U (en) 2005-09-01
CN101044629A (zh) 2007-09-26
US7943949B2 (en) 2011-05-17
TWI240442B (en) 2005-09-21

Similar Documents

Publication Publication Date Title
WO2006026932A1 (fr) Semi-conducteur au nitrure du groupe iiia dote d&#39;un contact ohmique de faible impedance
TWI283932B (en) Indium gallium nitride separate confinement heterostructure light emitting devices
CN104576861B (zh) 半导体缓冲结构、半导体器件以及制造半导体器件的方法
KR100706952B1 (ko) 수직 구조 질화갈륨계 발광다이오드 소자 및 그 제조방법
US7221000B2 (en) Reverse polarization light emitting region for a semiconductor light emitting device
JP4920298B2 (ja) 半導体発光デバイスおよび半導体デバイスの製造方法
US8519414B2 (en) III-nitride based semiconductor structure with multiple conductive tunneling layer
TW201135967A (en) Semiconductor device structures with modulated doping and related methods
WO2003100872A1 (fr) Dispositif electroluminescent a semi-conducteur
WO2006004271A1 (en) Iii-nitride compound emiconductor light emitting device
US7432534B2 (en) III-nitride semiconductor light emitting device
JP5384783B2 (ja) 半導体発光素子のための逆分極発光領域
US8431936B2 (en) Method for fabricating a p-type semiconductor structure
JP2010040692A (ja) 窒化物系半導体素子及びその製造方法
TW200414569A (en) Group-III nitride semiconductor device, production method thereof and light-emitting diode
US10714607B1 (en) High electron mobility transistor
US9315920B2 (en) Growth substrate and light emitting device comprising the same
KR100814920B1 (ko) 수직구조 질화물계 반도체 발광소자 및 그 제조방법
KR20090109598A (ko) 수직구조의 그룹 3족 질화물계 반도체 발광다이오드 소자및 제조방법
JP3659174B2 (ja) Iii族窒化物半導体発光素子およびその製造方法
KR100838756B1 (ko) 질화물계 반도체 발광소자의 제조방법
JP4058594B2 (ja) 半導体発光素子
US20240038844A1 (en) High electron mobility transistor and method for fabricating the same
JP2003060229A (ja) 半導体発光素子及びその製造方法
CN117096231A (zh) Led外延结构及其制备方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580030403.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077005788

Country of ref document: KR

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 05785137

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5785137

Country of ref document: EP