CN100563033C - 具有低阻抗欧姆接触的ⅲa族氮化物半导体器件 - Google Patents

具有低阻抗欧姆接触的ⅲa族氮化物半导体器件 Download PDF

Info

Publication number
CN100563033C
CN100563033C CNB200580030403XA CN200580030403A CN100563033C CN 100563033 C CN100563033 C CN 100563033C CN B200580030403X A CNB200580030403X A CN B200580030403XA CN 200580030403 A CN200580030403 A CN 200580030403A CN 100563033 C CN100563033 C CN 100563033C
Authority
CN
China
Prior art keywords
gallium nitride
island
gan
semiconductor device
based semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB200580030403XA
Other languages
English (en)
Other versions
CN101044629A (zh
Inventor
李允立
刘恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Bridgelux Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgelux Inc filed Critical Bridgelux Inc
Publication of CN101044629A publication Critical patent/CN101044629A/zh
Application granted granted Critical
Publication of CN100563033C publication Critical patent/CN100563033C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/04MOCVD or MOVPE
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明利用P型氮化镓基层顶部形成的高铟含量岛状氮化镓铟(InxGa1-xN islands;0<x≤1),以降低电极与P型氮化镓基层间的接触电阻。这些岛状氮化镓铟系用做电流流过的通道,可大大降低电极与P型氮化镓基层间的接触电阻,以提高组件性能。前述岛状氮化镓铟结构可应用于需要良好P型欧姆接触的所有第IIIA氮化物基的电子组件及光电组件,以提高组件性能。

Description

具有低阻抗欧姆接触的ⅢA族氮化物半导体器件
技术领域
本发明是涉及IIIA族氮化物半导体器件,特别涉及一种具有改善的P型接触结构的IIIA族氮化物半导体器件。
背景技术
IIIA族氮化物族是由IIIA族元素及氮组成的直接能带跃迁化合物(direct-bandgapcompound)半导体群。前述半导体群包含:二元化合物(binary compound),例如氮化铝、氮化镓、氮化铟;三元化合物(ternary compound),例如氮化镓铝、氮化镓铟、氮化铝铟;及四元化合物(quaternary compound)氮化镓铟铝(AlxInyGa1-yN)。由于IIIA族氮化物具有宽的能带涵盖范围,从0.8电子伏特(eV)(氮化铟)至6.2电子伏特(eV),近来它们受到相当的注意。因此,IIIA族氮化物制造的发光二极管组件的发光波长系涵盖整个可见光范围。绿光、蓝光及紫外光(UV)的氮化物发光二极管组件可从市面上购得,并且已应用于显示器、指示灯、交通号志灯及各种发光源。氮化物激光二极管亦已商品化,并用于新开发的高储存容量的数字视频光盘系统(digital video disk;DVD)。除此之外,由于其机械及温度稳定性高,IIIA族氮化物材料非常适合制造高功率电子组件。这些优异的材料特性,使得这种材料系统成为未来光电组件最具吸引力的候选对象。
几乎所有的半导体器件都需要低阻抗的欧姆接触,以使组件特性最佳化。高阻抗接触由于在组件工作期间会在其与半导体材料的接触接面处产生过热,而使组件特性劣化。IIIA族氮化物具有较宽的能带,使得它与具有较小能带的第III-V族化合物,如砷化镓及磷化镓相比,较难获得良好的欧姆接触。因此,前述问题对于IIIA族氮化物材料更显重要。低阻抗欧姆接触已成为IIIA族氮化物电子组件及光电组件主要研究课题之一。在过去几年中,已成功获得良好欧姆接触的N型及P型氮化镓及氮化镓铝材料。对于N型第IIIA氮化物的欧姆金属接触可以通过使用钛/铝(Ti/Al)等获得。然而,由于受主激活能(主要为镁)大以及缺少具有足够大的功函数的金属等因素,仅有少数几个P型IIIA族氮化物成功的例子。截至目前为止,已证实镍/金、钯/金及银对于掺杂镁的P型IIIA族氮化物材料具有可以被接受的欧姆接触。然而,为获得较高的组件性能,仍需要进一步改良的P型接触。
公知IIIA族氮化物表现出强的极化效应。强的压电极化现象(piezoelectricpolarization)经常存在于层状结构中。利用这一优点,可实现良好的金属-半导体欧姆接触。随着适当的极化,可使金属-半导体接面的肖特基壁垒(Schottky barrier)厚度得以被减小,进而增大载流子的穿透机率。这种对P型IIIA族氮化物的强极化(polarization-enhanced)欧姆接触可由沉积一压应变覆盖层(compressively strainedcapping layer)在一弛豫缓冲层(relaxed buffer layer)而达到。前述结构的例子有将应变(strained)氮化镓薄层沉积在弛豫(relaxed)氮化镓铝厚层上或者将应变氮化镓铟薄层沉积在弛豫氮化镓厚层上。
然而,制造前述结构并非易事,尤其是把氮化镓铟层沉积在氮化镓层上,这是由于氮化镓铟与氮化镓之间具有很大的晶格不匹配的缘故。
另一方面,如果氮化镓铟层的能带窄于发光二极管组件发光层的能带,氮化镓铟层会吸收光,而降低组件的光输出效率。以在400纳米波长范围的短波长发光二极管为例,氮化镓铟材料在这一波长下的大吸收系数会导致使用氮化镓铟覆盖层的发光二极管组件非常缺乏效率。
据此,亟待提供一种具有良好P型接触结构的IIIA族氮化物半导体器件,其可克服公知IIIA族氮化物半导体器件所面临的缺点。
发明内容
本发明的目的在于提供一种可提高组件性能的具有低阻抗欧姆接触的IIIA族氮化物半导体器件。
本发明的另一目的在于提供一种具有良好P型欧姆接触的IIIA族氮化物半导体器件,以提高组件性能。
本发明的又一目的在于提供一种高铟含量岛状氮化镓铟(high-indium-contentInXGa1-xN islands;0<x≤1)结构,形成于P型IIIA族氮化物半导体层顶部,以降低电极与P型IIIA族氮化物半导体层之间的接触电阻,进而提高半导体器件的性能。
本发明的再一目的在于提供一种制备上述半导体器件的方法。
为达到上述目的,本发明通过将高铟含量岛状氮化镓铟形成於P型IIIA族半导体层的顶部,以降低电极与P型IIIA族半导体层之间的接触电阻。所述岛状氮化镓铟结构可应用於需要良好P型欧姆接触的所有IIIA族氮化物电子元件及光电元件,以提高元件性能。前述高铟含量岛状氮化镓铟系以仿晶方式(pseudomorphically)生长於P型IIIA族半导体层的顶部,并且形成压应变(compressively strained)的岛状氮化镓铟。由於强大的内部极化场,可加强接触电极与所述应变岛状氮化镓铟之间的载流子穿过势垒(carrier tunneling)的机率。前述岛状氮化镓铟系用作电流的流道,可大大降低电极与P型IIIA族半导体层之间的接触电阻。再者,由於氮化镓铟(InGaN)材料倾向以远离位错(dislocation)的晶格缺陷的方式生长,前述岛状氮化镓铟将远离晶格位错处,致使电流不会流过这些缺陷区域,而避免载子流失。另一方面,对於发光二极体元件而言,前述岛状氮化镓铟可以用作散射中心(scattering center),使经过IIIA族氮化物半导体元件顶部的光产生衍射效应,进而促进光从元件中被取出。
具体地说,本发明提供一种氮化镓基半导体器件,包括:
P型氮化镓基层(GaN based layer);
于所述P型氮化镓基层上直接形成多个压应变的岛状氮化镓铟(InxGa1-xN)(compressively strained InxGa1-xN islands),通过利用该岛状氮化镓铟的内部极化效应来减小接触电阻,其中0<x≤1;和
电极,形成于所述压应变的岛状氮化镓铟上。所述氮化镓基半导体器件,其中上述压应变的岛状氮化镓铟包含纳米颗粒大小的岛状氮化镓铟(InxGa1-xN islands)。
所述氮化镓基半导体器件,其中上述岛状氮化镓铟在P型氮化镓基层上的覆盖率为10%至100%。
所述氮化镓基半导体器件,其中上述岛状氮化镓铟的横向尺寸在1nm至200nm之间。
所述氮化镓基半导体器件,其中上述岛状氮化镓铟的纵向尺寸在0.5nm至10nm之间。
所述氮化镓基半导体器件,其中上述岛状氮化镓铟与P型氮化镓基层之间为物理接触。
所述氮化镓基半导体器件,其中上述氮化镓半导体器件包括发光二极管、激光二极管及晶体管。
所述氮化镓基半导体器件,其中上述P型氮化镓基层包括氮化镓、氮化铝、氮化镓铝、氮化镓铟或氮化镓铟铝。
所述氮化镓基半导体器件,其中上述电极由选自镍、金、铝、钛、铂、钯、银、铊及铜的至少一种金属组成。所述氮化镓基半导体器件,其中上述电极由选自镍/金、钯/金、铊/金及铜/金的至少一种合金组成。
所述氮化镓半导体器件,其中上述电极由至少一种透明的导电氧化物层组成,所述氧化物至少含有铟、锡、镉及锌之一。
本发明提供一种氮化镓基半导体器件制备方法,包括:
于基板上形成P型氮化镓基层:
于所述P型氮化镓基层上直接形成多个压应变(compressively strained)的岛状氮化镓铟(InxGa1-xN islands),通过利用该岛状氮化镓铟的内部极化效应来减小接触电阻,其中0<x≤1;及
于所述压应变的岛状氮化镓铟上形成电极。所述氮化镓半基导体器件制备方法,其中于该P型氮化镓基层上以仿晶方式生长(pseudomorphically growing)上述压应变的岛状氮化镓铟。
所述氮化镓基半导体器件制备方法,其中以有机金属化学气相沉积方法(Metal-Organic Chemical Vapor Deposition)形成上述压应变的岛状氮化镓铟。
所述氮化镓基半导体器件制备方法,其中上述岛状氮化镓铟在P型氮化镓基层的覆盖率为10%至100%。
所述氮化镓基半导体器件制备方法,其中上述P型氮化镓基层包括氮化镓、氮化铝、氮化镓铝、氮化镓铟或氮化镓铟铝。
所述氮化镓基半导体器件制造方法,其中上述基板包括蓝宝石(sapphire)、碳化硅(SiC)、氧化锌、硅、磷化镓及砷化镓任一种。
附图说明
图1A至图1C表示IIIA族氮化物电子异质结构中自发性极化及压电极化效应引起的极化场、电场及接面电荷示意图:
图2A表示具有极化效应的氮化镓铟/氮化镓结构的能带示意图:
图2B表示无极化效应的氮化镓铟/氮化镓结构的能带示意图:
图3(A)和3(B)表示本发明优选实施例氮化镓半导体器件制备方法各步骤对应结构的立体示意图:
图4表示发光二极管组件的截面示意图,其中于P型氮化镓层上形成压应变的高铟含量岛状氮化镓铟(InxGa1-xN islands)。
具体实施方式
本发明的前述目的或特征,将依据附图加以详细说明,惟需明了的是,附图及所举各例,只是做为说明而非限制或缩限本发明。
近期研究显示具有[0001]生长方向(镓晶面)(Ga-face)或[0001]生长方向(氮晶面)(N-face)的IIIA族氮化物半导体材料系统的维锌矿结构(wurtzite structure)会产生很强的自发极化(spontaneous polarization),并且,这种自发极化会感应很强的内部电场。前述非零自发极化(nonzero spontaneous polarization)由于维锌矿晶格结构中沿[0001]方向(c-轴)缺乏对称中心。这种强自发极化与IIIA族氮化物维锌矿结构共生,并且极化方向与IIIA族氮化物材料生长方向有关。
另一方面,维锌矿晶体(wurtzite crystal)的应变(strain)现象亦会在IIIA族氮化物电子电子异质质结构(heterostructure)中感应强压电极化(piezoelectric polarization)。若外延层(epitaxial layer)的生长厚度在临界厚度(critical thickness)范围内,则外延层可以仿晶方式(pseudomorphically)生长于晶格常数具有微小差异(slightly different latticeconstant)的基板上。若半导体层是以仿晶方式生长于晶格常数具有微小差异的基板上,则此半导体层会发生应变。因此,如图1B及图1C所示,当具有铝及铟合金的氮化镓(GaN)电子异质结构以仿晶方式生长时,例如氮化镓铝覆盖层(AlGaN capping layer)生长于一氮化镓缓冲层(GaN buffer layer),或者氮化镓铟覆盖层(InGaN capping layer)生长于一氮化镓缓冲层时,由于前述覆盖层发生应变,而会在结构中感应大的压电极化场(piezoelectric polarization field)。
基于IIIA族氮化物电子异质结构中具有大的自发性极化场及压电极化场,此种材料系统会表现出非常大的内部电场。在应变的氮化镓铝/氮化镓(AlGaN/GaN)(或氮化镓铟/氮化镓)(GaInN/GaN)电子异质结构中,自发极化场感应的电场强度接近于压电极化场的强度。
极化场、内部电场及感应的边界电荷的极性方向示意于图1A至图1C中。参照这些附图,可以看出,由适当选择组件结构参数(应变、薄层厚度、组分等)及材料参数(生长面、基板选择、基板晶向(substrate orientation))等,可将所要的极化方向设计于组件结构中。
参照图2A,氮化镓铟薄层生长于P型氮化镓层顶部所产生的内部极化场会导致能带的弯曲。图2B显示出相同结构但未考虑极化效应时的能带图。在特殊情况下,量子力学隧道效应会成为在接触接面载流子传输的主要机制。参照图2A所示,当结构中具有强大的极化效应时,前述氮化镓铟覆盖层(InGaN capping layer)的厚度t可视为载流子从电极穿透至半导体层的隧道长度(tunneling length)。然而,如图2B所示,相同结构但不具有极化效应时,其穿隧厚度系会大于t许多。根据量子力学,载流子穿透机率(tunneling probability)随着穿隧厚度的减少而增加。因此,具有强大内部极化效应的覆盖层会有较大的穿透机率,进而可降低接触电阻。
另一方面,氮化镓铟层内含较高铟含量时,由于较强电场使得穿隧厚度变得较短,进而提高穿透机率。因此,为了利用极化效应最佳化接触电阻,需要提供一种压应变具有高铟含量的氮化镓铟层(compressively strained thin InGaN layer)。
然而,由于氮化镓铟(InGaN)材料的热稳定性不佳,在氮化镓层上制造厚度薄且均匀的高铟含量的氮化镓铟层做为覆盖层(capping layer)极具挑战性。已知氮化镓铟生长期间,铟易于集聚。因此在特定生长条件下,在氮化镓铟的生长期间,可以形成纳米颗粒大小的(nano-sized)高铟含量的岛状氮化镓铟(InGaN islands)。同时观察到这些以仿晶方式(Pseudomorphically)生长于氮化镓层的岛状氮化镓铟倾向于远离错位处(dislocation sites)。
本发明具有巨大的内部极化场及纳米颗粒大小的高铟含量的岛状氮化镓铟等优点,有利于与P型氮化镓基材(P-type GaN based material)的欧姆接触(ohmic contact)。图3A至图3B对应本发明一种优选实施例的氮化镓半导体器件制造方法各步骤的结构立体示意图。参照图3A,压应变(compressively strained)的氮化镓铟层(InxGa1-xN;0<x≤1)以仿晶方式生长在P型氮化镓层(P-type GaN based layer)30的顶部,以形成纳米尺寸的岛状氮化镓铟InxGa1-xN)32。换言之,纳米尺寸的岛状氮化镓铟(InxGa1-xN)32是直接生长于P型氮化镓基层30的顶部,即纳米尺寸的岛状氮化镓铟(InxGa1-xN)32与P型氮化镓层30之间具有物理接触(physical contact)。在本发明中,纳米尺寸的岛状氮化镓铟(InxGa1-xN)32可以通过有机金属化学气相沉积方法(organometallic chemicalvapor deposition;OMCVD)形成于P型氮化镓层30顶部。纳米颗粒大小的岛状氮化镓铟(InxGa1-xN)32在P型氮化镓基层30上的覆盖率从10%至100%,并且前述岛状氮化镓铟(InxGa1-xN)32的横向尺寸(lateral size)在1nm与200nm之间,而纵向尺寸(verticalsize)在0.5nm与10nm之间。前述氮化镓基层30形成于一基板(substrate)上(未示出),例如蓝宝石(sapphire;Al2O3)、碳化硅(SiC)、氧化锌(ZnO)、硅、磷化镓(GaP)、砷化镓(GaAs)或其它适合的材料。在本发明中,氮化镓基层(GaN based layer)30包括氮化镓(GaN)、氮化铝(AlN)、氮化镓铝(AlGaN)、氮化镓铟(InGaN)及氮化镓铟铝(AlInGaN)。参照图3B,在纳米颗粒大小的岛状氮化镓铟(InxGa1-xN islands)32长成后,将电极34沉积于前述岛状氮化镓铟(InxGa1-xN islands)32顶部,以供欧姆接触(ohmic contact)。电极34可以是一金属层,包括至少一种金属,选自镍(Ni)、金(Au)、铝(Al)、钛(Ti)、铂(Pt)、钯(Pd)、银(Ag)、铊(Tl)及铜(Cu)所组成的一组。电极34亦可以包含至少一种合金,选自镍/金(Ni/Au)、钯/金(Pd/Au)、铊/金(Tl/Au)及铜/金(Cu/Au)组成的一组。此外,电极34可以包含至少一层导电的透明氧化层(conductive transparent oxide layer),包括铟、锡、镉及锌中至少一种。每一个岛状氮化镓铟(InxGa1-xN islands)32可以视为电极34与P型氮化镓基层30之间的一个导电通道(conductive channel)。由于岛状氮化镓铟(InxGa1-xN islands)32与P型氮化镓基层30的界面具有低接触电阻(low contactresistance),而可以实现高质量的欧姆接触。再者,前述岛状氮化镓铟(InxGa1-xNislands)32倾向于远离位错处(dislocation site),因而可降低经由这些位错处的漏电流,而避免载流子过度流失。
本发明前述高铟含量的岛状氮化镓铟(InxGa1-xN islands;0<x≤1)可以应用在要求良好P型欧姆接触的所有IIIA族氮化物的电子组件及光电组件,例如发光二极管、激光二极管及晶体管等。图4为本发明的一种应用举例,示出发光二极管组件40的截面示意图。发光二极管组件40系形成于基板400上,例如是蓝宝石(Al2O3)基板。核化层(nucleation layer)401及N型缓冲层(buffer layer)402依序形成于基板400上。缓冲层402包括搀有N型掺杂的氮化镓,以利于后续晶体生长制程易于晶体生长。发光主动层(light-emitting active layer)404形成于缓冲层402上。主动层404被限制层(confinement layers)即下覆盖层(lower cladding layer)403及上覆盖层(higher claddinglayer)405所限制。下覆盖层403及上覆盖层405搀有相反导电类型的掺杂。例如,假如下覆盖层403系搀有N型掺杂的氮化镓层,上覆盖层20则为搀有P型掺杂的氮化镓层。之后,P型接触层406形成于上覆盖层405上。P型接触层406为一P型氮化镓基层。接下来,岛状氮化镓铟(InxGa1-xN islands;0<x≤1)407形成于P型氮化镓基层406上。岛状氮化镓铟(InxGa1-xN islands;0<x≤1)407相对于P型氮化镓基层406呈压应变(compressively strain)状态。接着,透明电极层408形成于岛状氮化镓铟(InxGa1-xNislands;0<x≤1)407上,用作二极管的阳极。再者,用作二极管阴极的电极层409形成于缓冲层402上,但与下覆盖层403及上覆盖层406以及主动层404隔开。
以上所述仅为本发明的具体实施例而已,并非用以限定本发明的申请专利范围;凡其它未脱离本发明所揭示的精神下完成的等效改型或修改,均应包含在本发明申请专利范围内。

Claims (18)

1.一种氮化镓基半导体器件,包括:
P型氮化镓基层;
于所述P型氮化镓基层上直接形成的多个压应变的岛状InxGa1-xN,通过利用该岛状InxGa1-xN的内部极化效应来减小接触电阻,其中0<x≤1;及
电极,形成于所述压应变的岛状InxGa1-xN上。
2.如权利要求1所述的氮化镓基半导体器件,其特征在于,所述压应变的岛状InxGa1-xN包含纳米颗粒大小的岛状InxGa1-xN。
3.如权利要求1所述的氮化镓基半导体器件,其特征在于,所述岛状InxGa1-xN在P型氮化镓基层上的覆盖率为10%至100%。
4.如权利要求2所述的氮化镓基半导体器件,其特征在于,所述岛状InxGa1-xN的横向尺寸在1nm-200nm之间。
5.如权利要求2所述的氮化镓基半导体器件,其特征在于,所述岛状InxGa1-xN的纵向尺寸在0.5nm-10nm之间。
6.如权利要求4所述的氮化镓基半导体器件,其特征在于,所述岛状InxGa1-xN的纵向尺寸在0.5nm-10nm之间。
7.如权利要求1所述的氮化镓基半导体器件,其特征在于,所述岛状InxGa1-xN与P型氮化镓基层之间为物理接触。
8.如权利要求1所述的氮化镓基半导体器件,其特征在于,所述氮化镓基半导体器件包括发光二极管、激光二极管及晶体管。
9.如权利要求1所述的氮化镓基半导体器件,其特征在于,所述P型氮化镓基层包括氮化镓、氮化铝、氮化镓铝、氮化镓铟或氮化镓铟铝。
10.如权利要求1所述的氮化镓基半导体器件,其特征在于,所述电极由选自镍、金、铝、钛、铂、钯、银、铊及铜的至少一种金属组成。
11.如权利要求1所述的氮化镓基半导体器件,其特征在于,所述电极由选自镍/金、钯/金、铊/金及铜/金的至少一种合金组成。
12.如权利要求1所述的氮化镓基半导体器件,其特征在于,所述电极由至少一种透明的导电氧化物组成,所述氧化物至少含有铟、锡、镉及锌之一。
13.一种氮化镓基半导体器件制造方法,包括:
于基板上形成P型氮化镓基层;
于所述P型氮化镓基层上直接形成多个压应变的岛状InxGa1-xN,通过利用该岛状InxGa1-xN的内部极化效应来减小接触电阻,其中0<x≤1;并且
于所述压应变的岛状InxGa1-xN上形成电极。
14.如权利要求13所述的氮化镓基半导体器件制造方法,其特征在于,所述压应变的岛状InxGa1-xN系以仿晶方式生长于该P型氮化镓基层上。
15.如权利要求14所述的氮化镓基半导体器件制造方法,其特征在于,以有机金属化学气相沉积法形成所述压应变的岛状InxGa1-xN。
16.如权利要求13所述的氮化镓基半导体器件制造方法,其特征在于,所述岛状InxGa1-xN在P型氮化镓基层的覆盖率为10%至100%。
17.如权利要求13所述的氮化镓基半导体器件制造方法,其特征在于,所述P型氮化镓基层包括氮化镓、氮化铝、氮化镓铝、氮化镓铟或氮化镓铟铝。
18.如权利要求13所述的氮化镓基半导体器件制造方法,其特征在于,所述基板包括蓝宝石、碳化硅、氧化锌、硅、磷化镓及砷化镓任一种。
CNB200580030403XA 2004-09-09 2005-09-09 具有低阻抗欧姆接触的ⅲa族氮化物半导体器件 Expired - Fee Related CN100563033C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/936,496 US7943949B2 (en) 2004-09-09 2004-09-09 III-nitride based on semiconductor device with low-resistance ohmic contacts
US10/936,496 2004-09-09

Publications (2)

Publication Number Publication Date
CN101044629A CN101044629A (zh) 2007-09-26
CN100563033C true CN100563033C (zh) 2009-11-25

Family

ID=35995307

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200580030403XA Expired - Fee Related CN100563033C (zh) 2004-09-09 2005-09-09 具有低阻抗欧姆接触的ⅲa族氮化物半导体器件

Country Status (6)

Country Link
US (1) US7943949B2 (zh)
KR (1) KR100879414B1 (zh)
CN (1) CN100563033C (zh)
HK (1) HK1109242A1 (zh)
TW (2) TWM274645U (zh)
WO (1) WO2006026932A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526444A (ja) * 2007-05-01 2010-07-29 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 窒化インジウムガリウム接触層を使用する発光ダイオード素子層構造
TWI341600B (en) * 2007-08-31 2011-05-01 Huga Optotech Inc Light optoelectronic device and forming method thereof
US7791101B2 (en) * 2008-03-28 2010-09-07 Cree, Inc. Indium gallium nitride-based ohmic contact layers for gallium nitride-based devices
KR100954729B1 (ko) 2008-06-12 2010-04-23 주식회사 세미콘라이트 InN 양자섬 캡핑층을 구비한 질화물계 발광소자
DE102008052405A1 (de) * 2008-10-21 2010-04-22 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement
KR100992772B1 (ko) * 2008-11-20 2010-11-05 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
US9818857B2 (en) 2009-08-04 2017-11-14 Gan Systems Inc. Fault tolerant design for large area nitride semiconductor devices
US9029866B2 (en) * 2009-08-04 2015-05-12 Gan Systems Inc. Gallium nitride power devices using island topography
EP2465141B1 (en) 2009-08-04 2021-04-07 GaN Systems Inc. Gallium nitride microwave and power switching transistors with matrix layout
US9437785B2 (en) * 2009-08-10 2016-09-06 Cree, Inc. Light emitting diodes including integrated backside reflector and die attach
DE102009060747A1 (de) * 2009-12-30 2011-07-07 OSRAM Opto Semiconductors GmbH, 93055 Halbleiterchip
KR20130088743A (ko) 2010-04-13 2013-08-08 갠 시스템즈 인크. 아일랜드 토폴로지를 이용한 고밀도 질화 갈륨 디바이스
KR101646664B1 (ko) * 2010-05-18 2016-08-08 엘지이노텍 주식회사 발광 소자, 발광 소자의 제조방법 및 발광 소자 패키지
US8242523B2 (en) * 2010-07-29 2012-08-14 National Tsing Hua University III-Nitride light-emitting diode and method of producing the same
CN102780156B (zh) * 2011-05-13 2014-05-07 中国科学院物理研究所 一种氮化铝固体激光器及其制备方法
CN102956781B (zh) * 2011-08-31 2015-03-11 新世纪光电股份有限公司 发光元件及其制作方法
KR102288118B1 (ko) 2012-02-23 2021-08-11 센서 일렉트로닉 테크놀로지, 인크 반도체에 대한 오믹 접촉부
TWI505500B (zh) * 2012-06-07 2015-10-21 Lextar Electronics Corp 發光二極體及其製造方法
KR20140086624A (ko) * 2012-12-28 2014-07-08 삼성전자주식회사 질화물 반도체 발광 소자
US20150255589A1 (en) * 2014-03-10 2015-09-10 Toshiba Corporation Indium-containing contact and barrier layer for iii-nitride high electron mobility transistor devices
KR102373677B1 (ko) * 2015-08-24 2022-03-14 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자
US11264238B2 (en) 2017-12-05 2022-03-01 King Abdullah University Of Science And Technology Forming III nitride alloys
KR102544296B1 (ko) * 2018-09-13 2023-06-16 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 표면발광레이저 소자 및 이를 구비한 표면발광레이저 장치
CN112951955B (zh) * 2021-01-26 2023-03-14 华灿光电(浙江)有限公司 紫外发光二极管外延片及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4213781A (en) * 1978-11-20 1980-07-22 Westinghouse Electric Corp. Deposition of solid semiconductor compositions and novel semiconductor materials
JP2657743B2 (ja) * 1992-10-29 1997-09-24 豊田合成株式会社 窒素−3族元素化合物半導体発光素子
WO1996011502A1 (en) * 1994-10-11 1996-04-18 International Business Machines Corporation WAVELENGTH TUNING OF GaN-BASED LIGHT EMITTING DIODES, LIGHT EMITTING DIODE ARRAYS AND DISPLAYS BY INTRODUCTION OF DEEP DONORS
JP3325479B2 (ja) * 1997-01-30 2002-09-17 株式会社東芝 化合物半導体素子及びその製造方法
US6369403B1 (en) * 1999-05-27 2002-04-09 The Board Of Trustees Of The University Of Illinois Semiconductor devices and methods with tunnel contact hole sources and non-continuous barrier layer
TW564584B (en) * 2001-06-25 2003-12-01 Toshiba Corp Semiconductor light emitting device
US6949395B2 (en) * 2001-10-22 2005-09-27 Oriol, Inc. Method of making diode having reflective layer
US6847057B1 (en) * 2003-08-01 2005-01-25 Lumileds Lighting U.S., Llc Semiconductor light emitting devices
US20050236636A1 (en) * 2004-04-23 2005-10-27 Supernova Optoelectronics Corp. GaN-based light-emitting diode structure
TWI239668B (en) * 2004-10-21 2005-09-11 Formosa Epitaxy Inc Structure of gallium-nitride based (GaN-based) light-emitting diode with high luminance

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
InGaN量子点的诱导生长和发光特性研究. 李昱峰等.发光学报,第24卷第4期. 2003
InGaN量子点的诱导生长和发光特性研究. 李昱峰等.发光学报,第24卷第4期. 2003 *
Mapping In concentration, strain, and internal electric field in InGaN/GaN quantum well structure. M. Takeguchi等.Applied Physics Letters,Vol.84 No.12. 2004
Mapping In concentration, strain, and internal electric field in InGaN/GaN quantum well structure. M. Takeguchi等.Applied Physics Letters,Vol.84 No.12. 2004 *
Room-temperature blue-green emission from InGaN/GaNquantum dots made by strain-induced islanding growth. B. Damilano等.Applied Physics Letters,Vol.75 No.24. 1999

Also Published As

Publication number Publication date
TW200610187A (en) 2006-03-16
US20060049417A1 (en) 2006-03-09
CN101044629A (zh) 2007-09-26
KR20070058499A (ko) 2007-06-08
US7943949B2 (en) 2011-05-17
HK1109242A1 (en) 2008-05-30
WO2006026932A1 (fr) 2006-03-16
KR100879414B1 (ko) 2009-01-19
TWI240442B (en) 2005-09-21
TWM274645U (en) 2005-09-01

Similar Documents

Publication Publication Date Title
CN100563033C (zh) 具有低阻抗欧姆接触的ⅲa族氮化物半导体器件
US8324637B2 (en) High efficiency LEDs with tunnel junctions
US6515306B2 (en) Light emitting diode
US7221000B2 (en) Reverse polarization light emitting region for a semiconductor light emitting device
US6712478B2 (en) Light emitting diode
US20110121259A1 (en) Nitride semiconductor light emitting device
WO2006004271A1 (en) Iii-nitride compound emiconductor light emitting device
US7432534B2 (en) III-nitride semiconductor light emitting device
CN103022286A (zh) 一种级联GaN基LED外延片及其制备方法
KR101007078B1 (ko) 발광소자 및 그 제조방법
JP5384783B2 (ja) 半導体発光素子のための逆分極発光領域
KR101749154B1 (ko) 발광 다이오드 칩 및 이의 제조방법
US7737453B2 (en) Light emitting diode structure
KR20090109598A (ko) 수직구조의 그룹 3족 질화물계 반도체 발광다이오드 소자및 제조방법
TW200903839A (en) Optoelectronic device and the forming method thereof
CN1208846C (zh) Ⅲ族氮化物发光二极管及其制造方法
KR20090108675A (ko) 플립칩 구조의 그룹 3족 질화물계 반도체 발광다이오드소자 및 이의 제조 방법
KR101428069B1 (ko) 플립칩 구조의 그룹 3족 질화물계 반도체 발광다이오드소자 및 이의 제조 방법
KR100983830B1 (ko) 3족 질화물 반도체 발광소자
KR101335045B1 (ko) 발광 다이오드
KR101285527B1 (ko) 발광 다이오드
KR20090115830A (ko) 수직구조의 그룹 3족 질화물계 반도체 발광다이오드 소자및 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1109242

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1109242

Country of ref document: HK

ASS Succession or assignment of patent right

Owner name: TOSHIBA TECHNOLOGY CENTER CO., LTD.

Free format text: FORMER OWNER: BRIDGELUX INC.

Effective date: 20130710

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130710

Address after: Tokyo, Japan

Patentee after: Bridgelux Inc

Address before: American California

Patentee before: Bridgelux Inc.

C56 Change in the name or address of the patentee
CP02 Change in the address of a patent holder

Address after: Kanagawa, Japan

Patentee after: Bridgelux Inc

Address before: Tokyo, Japan

Patentee before: Bridgelux Inc

ASS Succession or assignment of patent right

Owner name: MATISSE IP CO., LTD.

Free format text: FORMER OWNER: TOSHIBA TECHNOLOGY CENTER CO., LTD.

Effective date: 20141211

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20141211

Address after: American California

Patentee after: MANUTIUS IP, INC.

Address before: Kanagawa, Japan

Patentee before: Bridgelux Inc

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160612

Address after: Tokyo, Japan, Japan

Patentee after: Toshiba Corp

Address before: American California

Patentee before: MANUTIUS IP, INC.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091125

Termination date: 20160909