WO2006025356A1 - ガスバリア積層体及びその製造方法 - Google Patents

ガスバリア積層体及びその製造方法 Download PDF

Info

Publication number
WO2006025356A1
WO2006025356A1 PCT/JP2005/015710 JP2005015710W WO2006025356A1 WO 2006025356 A1 WO2006025356 A1 WO 2006025356A1 JP 2005015710 W JP2005015710 W JP 2005015710W WO 2006025356 A1 WO2006025356 A1 WO 2006025356A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
layer
polymer layer
gas barrier
polymer
Prior art date
Application number
PCT/JP2005/015710
Other languages
English (en)
French (fr)
Inventor
Hiroaki Arita
Kazuhiro Fukuda
Toshio Tsuji
Chikao Mamiya
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to US11/574,048 priority Critical patent/US8748003B2/en
Priority to EP05781275A priority patent/EP1785266A4/en
Priority to JP2006532698A priority patent/JP5157169B2/ja
Publication of WO2006025356A1 publication Critical patent/WO2006025356A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • B05D2201/02Polymeric substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/02Sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2701/00Coatings being able to withstand changes in the shape of the substrate or to withstand welding
    • B05D2701/30Coatings being able to withstand changes in the shape of the substrate or to withstand welding withstanding bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • B05D7/58No clear coat specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31667Next to addition polymer from unsaturated monomers, or aldehyde or ketone condensation product

Definitions

  • the present invention relates to a gas barrier laminate having a novel laminate structure and a method for producing the same.
  • a gas barrier film in which a thin film of metal oxide such as aluminum oxide, magnesium oxide, silicon oxide or the like is formed on the surface of a resin base material blocks various gases such as water vapor and oxygen.
  • metal oxide such as aluminum oxide, magnesium oxide, silicon oxide or the like
  • liquid crystal display elements In addition to packaging applications, they are used in liquid crystal display elements, solar cells, electret luminescence (EL) substrates, and the like.
  • transparent substrates which are being applied to liquid crystal display devices and organic EL devices, have recently been required to be lighter and larger, have long-term reliability and a high degree of freedom in shape, and have curved display.
  • High demands such as being possible have been added, and film base materials such as transparent plastics have begun to be used instead of glass substrates that are heavy and easily broken.
  • a film base material such as a transparent plastic is inferior in gas normality to glass. If a base material with inferior gas barrier properties is used, water vapor or air will permeate, for example, the liquid crystal in the liquid crystal cell will deteriorate, resulting in display defects and display quality.
  • Patent Document 1 Japanese Patent Publication No. 53-12953
  • Patent Document 2 JP-A-58-217344
  • Patent Document 3 International Publication No. 00Z026973 Pamphlet
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-9395
  • An object of the present invention is to provide a gas barrier laminate having a high gas noria property, improved adhesion between a base material, a polymer layer and a gas barrier layer, and excellent in bending resistance and environmental resistance, and a method for producing the same. is there.
  • One of the embodiments for achieving the above object of the present invention is that at least a gas barrier layer and a polymer layer are provided on a substrate, and at least one of the polymer layers is a small amount of the gas barrier layer.
  • the gas noria laminate is characterized in that the average carbon content at the contact interface between the polymer layer and the gas barrier layer is smaller than the average carbon content of the polymer layer.
  • FIG. 1 is a schematic diagram showing an example of a configuration and a carbon content pattern of a gas nolia laminate according to the present invention.
  • FIG. 2 is a schematic view showing an example of a jet-type atmospheric pressure plasma discharge treatment apparatus useful for the present invention.
  • FIG. 3 is a schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus of a method for treating a substrate between counter electrodes useful for the present invention.
  • FIG. 4 is a perspective view showing an example of a roll rotating electrode having a conductive metallic base material and a dielectric material coated thereon.
  • FIG. 5 is a perspective view showing an example of the structure of a conductive metallic base material of a rectangular tube electrode and a dielectric material coated thereon.
  • the substrate has at least a gas noria layer and a polymer layer, and at least one of the polymer layers is adjacent to at least one layer of the gas noria layer, and the polymer layer is in contact with the gas noria layer.
  • the substrate has at least a gas nolia layer and a polymer layer, and at least one of the polymer layers is adjacent to the substrate, and the average of the polymer layer at the contact interface with the substrate A gas barrier laminate, wherein a carbon content is larger than an average carbon content in a region other than the contact interface of the polymer layer.
  • the substrate has at least a gas nolia layer and a polymer layer, and at least one of the polymer layers is adjacent to at least one layer of the gas noria layer, and the polymer layer is in contact with the gas noria layer.
  • the average carbon content at the interface is smaller than the average carbon content of the polymer layer, at least one of the polymer layers is adjacent to the substrate, and the average carbon at the interface between the polymer layer and the substrate is in contact.
  • a gas noria laminate wherein the content is larger than the average carbon content in a region other than the contact interface of the polymer layer.
  • the carbon-containing layer of the polymer layer adjacent to the gas barrier layer is continuously changing in the thickness direction, described in (1), (3) or (4) Gas barrier stack.
  • Any one of the above (1) to (6) is a gas barrier laminate production method for producing the gas barrier laminate according to 1, wherein at least one of the polymer layers is formed by a plasma CVD method.
  • a method for producing a gas barrier laminate comprising:
  • Any one of the above (1) to (6) is a gas barrier laminate production method for producing the gas barrier laminate according to item 1, wherein all polymer layers are formed by a plasma CVD method.
  • a method for producing a gas barrier laminate is a gas barrier laminate production method for producing the gas barrier laminate according to item 1, wherein all polymer layers are formed by a plasma CVD method.
  • the present inventors have found that in a gas nolia laminate having at least a gas barrier layer and a polymer layer on a substrate, 1) at least one of the polymer layers is a gas noria layer. 2) the gas barrier laminate, wherein the polymer layer is adjacent to at least one layer, and the polymer layer has an average carbon content at a contact interface with the gas noria layer that is smaller than the average carbon content of the polymer layer; At least one layer and a substrate are adjacent to each other, and an average carbon content at a contact interface of the polymer layer with the substrate is larger than an average carbon content of a region other than the contact interface of the polymer layer.
  • the gas barrier laminate is characterized in that it has a higher gas norecity and has improved adhesion between the substrate, the polymer layer and the gas norea layer, by being larger than the average carbon content of the region other than the contact interface of the polymer layer.
  • the contact interface between the polymer layer and the base material or the contact interface between the polymer layer and the gas noria layer means that each surface force is up to 10% when the thickness of the polymer layer is 100%.
  • the film thickness region is defined as each contact interface.
  • At least a gas noble layer and a polymer layer are formed on the substrate.
  • the carbon content at the contact interface of the polymer layer arranged adjacent to the substrate with the substrate is set to the highest condition, and the gas nore layer arranged on the polymer layer is set.
  • the average carbon content in the polymer layer at the contact interface between the two layers is set to the minimum condition, and the center region of the polymer layer is set.
  • increasing the average content improves the adhesion between the polymer layer and the gas barrier layer, and also has the effect of pinhole failure due to the bending of the polymer layer and the occurrence of cracks when stored for a long period of time. Can be suppressed.
  • the carbon content in the polymer layer is set to a specific content pattern according to the positions where the polymer layers are respectively arranged.
  • a preferable method for forming the polymer layer by changing the content is to form the carbon content pattern defined by using the plasma CVD method.
  • the plasma CVD method the atmospheric pressure or near atmospheric pressure is used.
  • the carbon content pattern defined in the present invention can be realized under conditions that are precisely controlled by using the plasma CVD method according to the present invention, which is preferably performed under pressure.
  • the gas nolia laminate of the present invention has at least a gas nolia layer and a polymer layer.
  • the gas noria layer according to the present invention is a layer having an effect of blocking gas such as water vapor and oxygen, and mainly contains ceramic components such as metal oxide, metal nitride oxide, metal nitride and the like. It is a thin film with a film thickness of approximately 5 to: LOOnm. It is defined as a layer that has a relatively high hardness relative to the polymer layer described later and that the average carbon content in the layer is less than 1%.
  • the gas nolia layer according to the present invention is prepared by using a raw material described later under a sputtering method, a coating method, an ion assist method, a plasma CVD method described later, an atmospheric pressure or a pressure near atmospheric pressure described later. More preferably, it is formed by applying a plasma CVD method or the like in the plasma CVD method, or a plasma CVD method under a pressure at or near atmospheric pressure, particularly preferably atmospheric pressure. Alternatively, it is formed using a plasma CVD method under a pressure near atmospheric pressure. Details of the layer formation conditions of the plasma CVD method will be described later.
  • the gas noble layer obtained by the plasma CVD method, or the plasma CVD method at or near atmospheric pressure is composed of organometallic compounds, decomposition gases, decomposition temperature, input power, etc. that are raw materials (also called raw materials) Metal carbide, metal nitride, metal oxide, metal sulfide, metal halide, and mixtures thereof (metal oxynitride, metal oxide halide, metal nitride carbide, etc.) It is preferable because it can be made separately.
  • silicon oxide is generated.
  • zinc compound is used as a raw material compound and -sulfur carbon is used as the cracking gas, zinc sulfate is produced. This is because highly active charged particles and active radicals exist in the plasma space at a high density, so that multistage chemical reactions are accelerated very rapidly in the plasma space, and the elements present in the plasma space are heated. This is because it is converted into a mechanically stable compound in a very short time.
  • the inorganic material may be in any state of gas, liquid, and solid at normal temperature and pressure as long as it contains a typical or transition metal element.
  • gas it can be introduced into the discharge space as it is, but in the case of liquid or solid, it is vaporized by means such as heating, publishing, decompression, or ultrasonic irradiation.
  • organic solvents such as methanol, ethanol, and n-xan, and mixed solvents thereof can be used as solvents that can be diluted with a solvent. These diluted solvents are decomposed into molecular and atomic forms during the plasma discharge treatment, so the influence can be almost ignored.
  • silicon compound examples include silane, tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetra-butoxysilane, dimethylenoresimethoxysilane, dimethylenolegetoxysilane, Tinoresimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, phenyltriethoxysilane, (3, 3, 3-trifluoropropyl) trimethoxysilane, hex Samethyldisiloxane, bis (dimethylamino) dimethylsilane, bis (dimethylamino) methylvinylsilane, bis (ethylamino) dimethylsilane, N, O bis (trimethylsilyl) acetamide, bis (
  • titanium compounds include titanium methoxide, titanium ethoxide, titanium isopropoxide, titanium tetraisopoloxide, titanium n-butoxide, titanium diisopropoxide (bis 2, 4 pentanedionate). ), Titanium diisopropoxide (bis 2,4 ethyl acetoacetate), titanium di-n-butoxide (bis 1,2,4 pentanedionate), titanium acetyl cetate, butyl titanate dimer, etc. .
  • zirconium compound zirconium n- propoxide, zirconium n- butoxy Sid, zirconium t- butoxide, zirconium tri - n- butoxide acetyl ⁇ Seto Natick DOO, zirconium di n - butoxide bis ⁇ cetyl ⁇ Seto sulfonates, zirconium Acetylacetonate, zirconium acetate, zirconium hexafluoropentanedionate and the like.
  • Aluminum compounds include aluminum ethoxide, aluminum triisopropoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum s butoxide, aluminum t-butoxide, aluminum acetyl cetate, and triethyl dial. Miniumutori s - butoxide and the like.
  • Boron compounds include diborane, tetraborane, boron fluoride, boron chloride, boron bromide, borane-jetyl ether complex, borane-THF complex, borane-dimethylsulfide complex, boron trifluoride jetyl.
  • Examples include ether complexes, triethylborane, trimethoxyborane, triethoxyborane, tri (isopropoxy) borane, borazole, trimethylborazole, triethylborazole, triisopropylborazole, and the like.
  • tin compounds include tetraethyltin, tetramethyltin, dibutyltin diacetate, tetrabutyltin, tetraoctyltin, tetraethoxytin, methyltriethoxytin, jetinolegoxytin, triisopropylethoxytin, and jetyltin.
  • tin halides such as diacetate toner, tin hydride compounds, etc. include tin dichloride and tetrasalt ditin.
  • organometallic compounds for example, antimony ethoxide, arsenic triethoxide, norlium 2, 2, 6, 6-tetramethylheptanedionate, beryllium acetylacetate, bismuth hexaful.
  • Olopentanedionate dimethylcadmium, calcium 2, 2, 6, 6-tetramethylheptanedionate, chromium trifluoropentanedioate, cobalt acetylacetonate, copper hexafluoropentane Zionate, Magnesium Hexafluoropentanedionate-dimethyl ether complex, Gallium ethoxide, Tetraethoxygermane, Tetramethoxygermane, Hafnium t-Budoxide, Hafnium ethoxide, Indium acetylethylacetonate, Indium 2, 6 Dimethylamino heptane dionate, Hue mouth Lanthanum isopropoxide, lead acetate, tetraethyl lead, neodymium acetyl cetate, platinum hexafluoropentane dionate, trimethyl cyclopentagel platinum, rhodium dicarboxy
  • a decomposition gas for decomposing a raw material gas containing these metals to obtain an inorganic compound hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia Gas, nitrous oxide gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, water vapor, fluorine gas, hydrogen fluoride, trifluoroalcohol, trifluorotoluene
  • metal carbides, metal nitrides, metal oxides, metal halides, and metal sulfides can be obtained by appropriately selecting a source gas containing a metal element and a decomposition gas.
  • a discharge gas that tends to be in a plasma state is mainly mixed with these reactive gases, and the gas is sent to the plasma discharge generator.
  • a discharge gas nitrogen gas and Z or an 18th group atom of the periodic table, specifically helium, neon, argon, thalibutone, xenon, radon, etc. are used. Of these, nitrogen, helium, and argon are preferably used.
  • the discharge gas and the reactive gas are mixed and supplied to a plasma discharge generator (plasma generator) as a mixed gas to form a film.
  • a plasma discharge generator plasma generator
  • the ratio of the discharge gas and the reactive gas varies depending on the properties of the film to be obtained.
  • the reactive gas is supplied with the ratio of the discharge gas to 50% or more of the entire mixed gas.
  • the polymer layer according to the present invention is a thin film mainly composed of an inorganic polymer, an organic polymer, an organic-inorganic hybrid polymer, etc., and has a film thickness of about 5 to 500 nm, relative to the gas barrier layer. It is a layer with a low general hardness and has an average carbon content of 5% or more, and is also called a stress relaxation layer.
  • the inorganic polymer applicable in the present invention is a film having an inorganic skeleton as a main structure and containing an organic component, and includes those obtained by polymerizing an organometallic compound.
  • the inorganic polymer is not particularly limited.
  • a key compound such as silicone or polysilazane, a titanium compound, an aluminum compound, a boron compound, a phosphorus compound, or a tin compound can be used.
  • the key compound that can be used in the present invention is not particularly limited.
  • tetramethylsilane trimethylmethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, trimethylethoxysilane, dimethyljetoxysilane, methyltriethoxysilane, tetramethoxysilane, tetramethoxysilane, hexamethinoresisiloxane, hexamethyldi Silazane, 1,1-dimethyl-1-1-silacyclobutane, trimethylvinylsilane, methoxydimethylvinylsilane, trimethoxybutylsilane, etyltrimethoxysilane, dimethinoresininoresilane, dimethylenoethoxyethoxytinolesilane, dia Cetoxydimethinosilane, dimethoxymethyl— 3, 3, 3-trifluorofluorosilane, 3,
  • a polymerizable ethylenically unsaturated bond-containing compound having an ethylenically unsaturated bond in the molecule is preferred among known forces capable of using a known polymerizable organic compound.
  • polyfunctional oligomers can be used.
  • These polymerizable ethylenic double bond-containing compounds are not particularly limited, but preferred examples include 2-ethylhexyl acrylate, 2-hydroxypropyl acrylate, glycerol acrylate. Rate, Tetrahydrofurfuryl Atylate, Phenoxychetyl Atylate, Nourphenoxychetyl Atylate, Tetrahydrofurfuryloxychetyl Atalylate, Tetrahydrofurfuryloxyhexanolid Atalylate, 1,3 Dioxane Alcohol ⁇ Monofunctional acrylates such as catecholate, 1,3 dixolane atrelate, etc.
  • Prebolimers can also be used in the same manner as described above.
  • One or two or more kinds of prepolymers may be used in combination, or may be used in admixture with the above-mentioned monomer and soot or oligomer.
  • Examples of the prepolymer include adipic acid, trimellitic acid, maleic acid, phthalic acid, terephthalic acid, hymic acid, malonic acid, succinic acid, glutaric acid, itaconic acid, pyromellitic acid, fumaric acid, and glutaric acid.
  • Polyesteratalylates in which (meth) acrylic acid is introduced into polyester obtained by the combination of alcohols of, for example, bisphenol A ⁇ epichlorohydrin '(meth) acrylic acid, phenol novolac ⁇ epichlorohydrin ⁇ Epoxy acrylates in which (meth) acrylic acid is introduced into epoxy resin such as (meth) acrylic acid, such as ethylene glycol 'adipic acid' tolylene diisocyanate ⁇ 2-hydroxy
  • the organic polymer applicable to the polymer layer according to the present invention can also be easily formed by using an organic substance capable of plasma polymerization as a thin film forming gas.
  • organic substances that can be plasma-polymerized include hydrocarbons, vinyl compounds, halogen-containing compounds, and nitrogen-containing compounds.
  • hydrocarbons examples include ethane, ethylene, methane, acetylene, cyclohexane, benzene, xylene, phenol acetylene, naphthalene, propylene, camphor, menthol, toluene, isobutylene, and the like.
  • Examples of the bur compound include acrylic acid, methyl acrylate, and ethyl acrylate.
  • halogen-containing compound examples include tetrafluoromethane, tetrafluoroethylene, and hexafluoropropylene. And fluoroalkyl metatalylate.
  • nitrogen-containing compound examples include pyridine, arylamine, butylamine, attarylonitrile, acetonitrile, benzo-tolyl, meta-tallow-tolyl, aminobenzene, and the like.
  • Examples of the organic-inorganic hybrid polymer according to the present invention include a film in which an inorganic (organic) substance is dispersed in an organic (inorganic) polymer, and a film having both an inorganic skeleton and an organic skeleton as a main structure.
  • the organic-inorganic hybrid polymer that can be applied to the present invention is not particularly limited. Preferably, the above-mentioned inorganic polymer and organic polymer are appropriately combined.
  • the carbon content at the contact interface with the base material of the polymer layer arranged adjacent to the base material is set to the highest condition, and the polymer layer and the gas nolia layer are set. Are arranged adjacent to each other, the average carbon content in the polymer layer at the contact interface between the two layers is set to the minimum condition.
  • the contact interface referred to in the present invention includes a region where each surface force is up to 10% in the thickness direction when the total thickness of the polymer layer is 100%. This is the average value of carbon content. Further, the average carbon content of the polymer layer in the present invention is an average value of the carbon content in the entire region (total film thickness) of one polymer layer. The average carbon content is the atomic concentration% obtained by XPS measurement described later.
  • the difference between the average carbon content of the polymer layer and the average carbon content of the contact interface of the polymer layer is preferably 2% or more, more preferably 6% or more.
  • FIG. 1 is a schematic diagram showing an example of the configuration and carbon content pattern of the gas-nozzle laminate of the present invention.
  • Fig. 1 shows two layers of gas barrier layers G-l, G-2 and three polymer layers P-1, P on substrate F
  • a polymer layer P-1 is provided on a substrate F, a gas barrier layer G-1 is provided thereon, and then a polymer layer P-2 and a gas barrier layer G-2 are sequentially laminated to form a polymer as the outermost layer.
  • Layer P-3 is provided.
  • the carbon content is set to the highest condition.
  • the interfacial area C-1 of the polymer layer P-1 adjacent to the base material F total film thickness of the polymer layer P-1
  • the average carbon content in the interface region represented by 0. It is higher than the average carbon content in other regions except for the interface region C1 of the polymer layer P-1. To do. In other words, it consists of the average carbon content profile shown on the right side of the cross-sectional view.
  • the profile of the carbon content in the outermost polymer layer P-3 is, for example, as shown in a) if the interface region with the gas barrier layer G-2 has the lowest average carbon content. As shown in b), the interface region G-5 has the lowest average carbon content and the average carbon content according to the surface! / It may be a pattern that increases.
  • the atomic number concentration indicating the carbon content is calculated by the following XPS method and is defined as follows.
  • Atomic concentration number of carbon atoms Z number of total atoms X 1 00
  • the elemental analysis of the polymer layer according to the present invention can be measured using an XPS (X-ray photoelectron spectroscopy) surface analyzer.
  • the XPS surface analyzer is an ESCALAB-200R manufactured by VG Scientific V.
  • Mg was used for the X-ray anode, and measurement was performed at an output of 600 W (acceleration voltage 15 kV, emission current 40 mA). The energy resolution was set to be 1.5 eV to L 7 eV when defined by the half width of the clean Ag3d5Z2 peak.
  • the measurement was performed by first analyzing the composition of the surface of the polymer layer and then sequentially removing the layer corresponding to 10% of the thickness of the polymer layer by etching. He, Ne, Ar, Xe, Kr, etc. can be used as ion species for which it is preferable to use an ion gun that can use rare gas ions to remove the polymer layer. In this measurement, the sequential polymer layer was removed using Ar ion etching.
  • the range of binding energy OeV to: LlOOeV was measured at the data acquisition interval 1. OeV to determine what elements were detected.
  • the data acquisition interval is set to 0.2 eV, and the photoelectron peak giving the maximum intensity is narrow-scanned, and the spectrum of each element is obtained. It was measured.
  • the COMM ON DATA PROCESSING SYSTEM (Ver. 2. 3 or later is preferable) and then processed with the same software, and the content rate of each analysis target element (carbon, oxygen, silicon, titanium, etc.) is changed to atomic concentration (at%). ).
  • the polymer layer according to the present invention may be formed by dry deposition such as vapor deposition, sputtering, CVD (chemical vapor deposition), plasma CVD, or plasma CVD performed under atmospheric pressure or pressure near atmospheric pressure.
  • the force that can be formed by the process in order to form a polymer layer having the specific carbon content profile defined above, at least one of the polymer layers Layer, preferably all polymer layers are formed by plasma CVD, and further, plasma CVD method (hereinafter referred to as atmospheric pressure plasma) is carried out under atmospheric pressure or atmospheric pressure. It is preferable to use a CVD method. For details of atmospheric pressure plasma CVD method This will be described later.
  • a gas as a raw material to be mixed can be mixed at an arbitrary ratio, so that a composite thin film can be formed. Further, in the CVD method, a supply ratio of a plurality of source gases can be formed. It is preferable that the carbon ratio of the polymer layer can be continuously changed by continuously changing the inside of the polymer layer.
  • the polymer layer according to the present invention obtained by the plasma CVD method or the atmospheric pressure plasma CVD method is a raw material (also referred to as a raw material) of an inorganic polymer (including an organometallic compound), an organic polymer, or an inorganic-organic hybrid polymer.
  • the carbon content can be controlled with extremely high accuracy by appropriately selecting conditions such as the ratio, cracked gas, cracking temperature, input power, and power source frequency.
  • These reactive gases are mixed mainly with a discharge gas that is likely to be in a plasma state, and the gas is sent to a plasma discharge generator.
  • discharge gases include nitrogen gas and Z or group 18 atoms of the periodic table, specifically helium, neon, argon
  • Krypton, xenon, radon, etc. are used. Of these, nitrogen, helium, and argon are preferably used.
  • the discharge gas and the reactive gas are mixed and supplied to a plasma discharge generator (plasma generator) as a mixed gas to form a film.
  • a plasma discharge generator plasma generator
  • the ratio of the discharge gas and the reactive gas varies depending on the properties of the film to be obtained.
  • the reactive gas is supplied with the ratio of the discharge gas to 50% or more of the entire mixed gas.
  • the method for controlling the carbon content of the polymer layer is not particularly limited, but in the case of forming by plasma CVD, it is possible by appropriately changing the input power, the supply amount of reactive gas, the power supply frequency, etc. It is.
  • the substrate according to the present invention will be described.
  • a cellulose triacetate, cellulose diacetate, cell mouth acetate propio which is preferably a transparent resin base material is preferred.
  • Cellulose esters such as nitrates or cellulose acetate butyrate, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polyethylene and polypropylene, polyvinylidene chloride, polysalt polybutene, polybutal alcohol, ethylene butyl Alcohol copolymer, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyetherketone, polyimide, polyethersulfone, polysulfone, polyetherimide, polyamide De, fluorine ⁇ , polymethyl Atari rate, and the like Atari rate copolymer and the like can.
  • ZEONEX ZEONOR manufactured by Nippon Zeon Co., Ltd.
  • amorphous cyclopolyolefin resin film ARTON manufactured by GSJ
  • polycarbonate film pure ace manufactured by Teijin Limited
  • cellulose triacetate film Commercially available products such as K-KATAK KC4UX and KC8UX (manufactured by Koryo Minoltaput Co., Ltd.) can be preferably used.
  • the substrate used in the present invention is not limited to the above description.
  • the film thickness of the film is 10 to: LOOO ⁇ m, more preferably 40 to 500 ⁇ m.
  • the water vapor permeability of the gas-nozzle laminate of the present invention is measured according to the JIS K7129 B method when used in applications requiring high water vapor barrier properties such as organic EL displays and high-definition color liquid crystal displays.
  • the water vapor permeability is preferably less than 0.1 lgZm 2 Zday.
  • the plasma CVD method is also referred to as a plasma-assisted chemical vapor deposition method or PECVD method.
  • Various inorganic substances can be coated and adhered even in a three-dimensional form, and the substrate temperature is too high. This is a technique that can form a film without damaging it.
  • the plasma CVD method an electric field is applied to the space in the vicinity of the substrate to generate a space (plasma space) in which a gas in a plasma exists, and the volatilized 'sublimated organometallic compound becomes Inorganic thin films are formed by spraying on the substrate after the decomposition reaction has been introduced into the substrate.
  • a high percentage of gas is ionized into ions and electrons, and although the temperature of the gas is kept low, the electron temperature is very high, so this high temperature electron or low temperature Since it is in contact with an excited state gas such as ionic radical, the organometallic compound that is the raw material of the inorganic film can be decomposed even at a low temperature. Therefore, it is a film-forming method that can be performed at a low temperature on a substrate on which an inorganic material is formed, and can be sufficiently formed on a plastic substrate.
  • the plasma CVD method near atmospheric pressure compared with the plasma CVD method in a vacuum, the plasma density is high because it is not necessary to reduce the pressure and the productivity is high.
  • the mean free path of gas is very short, so an extremely flat film can be obtained.
  • Such a flat film has good optical properties and gas noria properties.
  • symbol F is a long film as an example of a substrate.
  • FIG. 2 is a schematic view showing an example of a jet-type atmospheric pressure plasma discharge treatment apparatus useful for the present invention.
  • the jet type atmospheric pressure plasma discharge processing apparatus is not shown in FIG. 2 (shown in FIG. 3 to be described later). Is an apparatus having gas supply means and electrode temperature adjustment means.
  • the plasma discharge treatment apparatus 10 has a counter electrode composed of a first electrode 11 and a second electrode 12, and the first electrode 11 is connected to the first power source 21 between the counter electrodes.
  • the first high-frequency electric field of electric field strength V and current I is applied, and the second electrode 12
  • the first power supply 21 applies a higher frequency electric field strength (V> V) than the second power supply 22.
  • a first filter 23 is installed between the first electrode 11 and the first power source 21, and the first power source 21 makes it easy to pass the current to the first electrode 11, and the second power source It is designed so that the current from the second power source 22 to the first power source 21 passes through the current from the ground 22.
  • a second filter 24 is installed between the second electrode 12 and the second power source 22, which facilitates the passage of current from the second power source 22 to the second electrode. Designed to ground the current from 21 and make it difficult to pass the current from the first power supply 21 to the second power supply!
  • Gas G is introduced into the gap between the first electrode 11 and the second electrode 12 (discharge space) 13 as shown in FIG.
  • a high-frequency electric field is applied from 11 and the second electrode 12 to generate a discharge, and while the gas G is in a plasma state, the gas G is blown out in the form of a jet to the lower side of the counter electrode (the lower side of the paper).
  • a thin film is formed on the substrate F in the vicinity of the processing position 14.
  • a medium from the temperature control means passes through the pipe to heat or cool the electrode.
  • the physical properties, composition, etc. of the resulting thin film may change, and it is desirable to appropriately control this.
  • the temperature control medium an insulating material such as distilled water or oil is preferably used.
  • plasma discharge treatment it is desirable to uniformly adjust the temperature inside the electrode so that the temperature unevenness of the substrate in the width direction or the longitudinal direction does not occur as much as possible.
  • FIG. 3 is a schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus of a method for treating a substrate between counter electrodes useful for the present invention.
  • the atmospheric pressure plasma discharge treatment apparatus according to the present invention is at least a plasma discharge treatment apparatus.
  • electric field applying means 40 having two power sources, gas supplying means 50, electrode temperature adjusting means 6
  • FIG. 3 shows a plasma discharge treatment of the substrate F between the opposed electrodes (discharge space) 32 between the roll rotating electrode (first electrode) 35 and the square tube fixed electrode group (second electrode) 36. It forms a thin film
  • a first filter 43 is installed between the roll rotating electrode (first electrode) 35 and the first power supply 41, and the first filter 43 generates a current from the first power supply 41 to the first electrode. It is designed to facilitate passage, ground the current from the second power source 42, and pass the current from the second power source 42 to the first power source.
  • a second filter 44 is installed between the square tube-type fixed electrode group (second electrode) 36 and the second power source 42, and the second filter 44 is connected to the second electrode from the second power source 42. It is designed to facilitate the passage of current to the first power supply 41, ground the current from the first power supply 41, and pass the current from the first power supply 41 to the second power supply!
  • the roll rotating electrode 35 may be the second electrode, and the rectangular tube-shaped fixed electrode group 36 may be the first electrode.
  • the first power source is connected to the first electrode, and the second power source is connected to the second electrode.
  • the first power supply applies higher frequency field strength (V> V) than the second power supply
  • the frequency has the ability to satisfy ⁇ ⁇ .
  • the current is preferably I and I.
  • the current I of the first high frequency electric field is preferably
  • the current I of the second high-frequency electric field is preferably 10 mAZcm 2 to 100 mAZcm 2
  • it is 20 mAZcm 2 to 1 OOmAZcm 2 .
  • the gas G generated by the gas generator 51 of the gas supply means 50 is introduced into the plasma discharge treatment container 31 from the air supply port 52 while controlling the flow rate.
  • FIG. 4 is a perspective view showing an example of the structure of the conductive metallic base material of the roll rotating electrode shown in FIG. 3 and the dielectric material coated thereon.
  • the roll electrode 35a includes a conductive metallic base material 35A and a dielectric 35B thereon. Is coated.
  • the temperature adjustment medium water or silicon oil
  • FIG. 5 is a perspective view showing an example of the structure of a conductive metallic base material of a rectangular tube type electrode and a dielectric material coated thereon.
  • a rectangular tube electrode 36a has a coating of a dielectric 36B similar to Fig. 4 on a conductive metallic base material 36A, and the structure of the electrode is a metallic pipe. It becomes a jacket that allows temperature adjustment during discharge.
  • a plurality of square tube fixed electrodes are provided along a circumference larger than the circumference of the roll electrode, and the discharge area of the electrodes faces the roll rotating electrode 35. It is represented by the sum of the areas of the full-width cylindrical fixed electrode surface.
  • the rectangular tube electrode 36a shown in Fig. 5 may be a cylindrical electrode. However, the rectangular tube electrode has an effect of expanding the discharge range (discharge area) as compared with the cylindrical electrode. Is preferably used.
  • the roll electrode 35a and the rectangular tube electrode 36a are formed by spraying ceramics as dielectrics 35B and 36B on conductive metallic base materials 35A and 36A, respectively. Sealing treatment is performed using a sealing material.
  • the ceramic dielectric is only required to cover about 1 mm in one piece.
  • a ceramic material used for thermal spraying alumina or silicon nitride is preferably used. Of these, alumina is particularly preferred because it is easy to process.
  • the dielectric layer may be a lining treatment dielectric provided with an inorganic material by lining.
  • the conductive metallic base materials 35A and 36A include titanium metal or titanium alloy, silver, platinum, stainless steel, aluminum, iron, or other metals, a composite material of iron and ceramics, or aluminum and ceramics.
  • titanium metal or a titanium alloy is particularly preferable for the reasons described later.
  • the distance between the electrodes of the first electrode and the second electrode facing each other is such that when a dielectric is provided on one of the electrodes, the surface of the dielectric and the surface of the conductive metallic base material of the other electrode Say the shortest distance. When dielectrics are provided on both electrodes, this is the shortest distance between the dielectric surfaces.
  • the distance between the electrodes is the thickness of the dielectric provided on the conductive metallic base material. It is determined in consideration of the magnitude of the electric field intensity, the purpose of using plasma, etc., but in any case, the viewpoint power to perform uniform discharge 0.1 to 20 mm is preferred, particularly preferably 0.2 to 2 m. m.
  • the plasma discharge treatment vessel 31 may be made of metal as long as it can be insulated from the force electrode in which a treatment vessel made of Pyrex (registered trademark) glass is preferably used.
  • a treatment vessel made of Pyrex (registered trademark) glass is preferably used.
  • polyimide resin or the like may be attached to the inner surface of an aluminum or stainless steel frame, and the metal frame may be ceramic sprayed to achieve insulation.
  • the applied power source symbol Manufacturer Frequency Product name
  • A7 NOL INDUSTRIES 400kHz CF-2000-400k and other commercially available products can be listed and any of them can be used.
  • an electrode capable of maintaining a uniform and stable discharge state by applying such an electric field in an atmospheric pressure plasma discharge treatment apparatus.
  • the power applied between the electrodes facing each other is such that a power (power density) of lWZcm 2 or more is supplied to the second electrode (second high-frequency electric field) to excite the discharge gas to generate plasma. It is generated and energy is given to the film forming gas to form a thin film.
  • the upper limit value of the power supplied to the second electrode is preferably 50 WZcm 2 , more preferably 20 W / cm 2 .
  • the lower limit is preferably 1.2 WZcm 2 .
  • the discharge area (cm 2 ) refers to the area in the range where discharge occurs in the electrode.
  • the output density is improved while maintaining the uniformity of the second high-frequency electric field. You can make it happen. As a result, a further uniform high-density plasma can be generated, and a further improvement in film formation speed and improvement in film quality can be achieved.
  • it is 5 WZcm 2 or more.
  • the upper limit value of the power supplied to the first electrode is preferably 50 WZcm 2 .
  • the waveform of the high-frequency electric field is not particularly limited.
  • a continuous sine wave continuous oscillation mode called continuous mode
  • an intermittent oscillation mode called ON / OFF that is intermittently called pulse mode. Either of them can be used, but at least the second electrode side (second high frequency)
  • continuous sine waves are preferred because they provide a finer and better quality film.
  • the electrode used in such a method for forming a thin film by atmospheric pressure plasma must be able to withstand severe conditions in terms of structure and performance.
  • Such an electrode is preferably a metal base material coated with a dielectric.
  • the difference in linear thermal expansion coefficient between the metallic base material and the dielectric is 10 X 10 — Combinations with a temperature of 6 Z ° C or less.
  • the linear thermal expansion coefficient is a well-known physical property value of a material.
  • a combination of a conductive metallic base material and a dielectric whose difference in linear thermal expansion coefficient is within this range is as follows:
  • Metallic base material is pure titanium or titanium alloy, and dielectric is ceramic sprayed coating
  • Metal base material is pure titanium or titanium alloy, dielectric is glass lining
  • Metal base material is stainless steel, dielectric is glass lining
  • Metal base material is a composite material of ceramics and iron, and dielectric is ceramic sprayed coating
  • Metallic base material is a composite material of ceramics and iron, and dielectric is glass lining
  • Metal base material is a composite material of ceramic and aluminum, and dielectric is ceramic sprayed coating
  • the metal base material is a composite material of ceramics and aluminum, and the dielectric is glass lining. From the viewpoint of the difference in linear thermal expansion coefficient, the above-mentioned items 1 or 2 and items 5 to 8 are preferred, and the term 1 is particularly preferred.
  • titanium or a titanium alloy is particularly useful as the metallic base material from the above characteristics.
  • titanium or titanium alloy as the metal base material, by using the above dielectric material, it can withstand long-term use under harsh conditions where there is no deterioration of the electrode in use, especially cracking, peeling, or falling off. I can do it.
  • the atmospheric pressure plasma discharge treatment apparatus applicable to the present invention is described in, for example, JP-A-2004-68143, 2003-49272, International Patent No. 02Z4 8428, etc. And an atmospheric pressure plasma discharge treatment apparatus.
  • PEN polyethylene naphthalate film
  • a set of a roll electrode covered with a dielectric and a plurality of rectangular tube electrodes was prepared as follows.
  • the roll electrode which is the first electrode, is coated with a high-density, high-adhesion alumina sprayed film by an atmospheric plasma method on a titanium alloy T64 jacket roll metal base material that has cooling means using cooling water.
  • the roll diameter was 1000 mm.
  • the square electrode of the second electrode was formed by coating a hollow rectangular tube type titanium alloy T64 with the same dielectric material as described above under the same conditions, thereby forming an opposing rectangular tube type fixed electrode group.
  • the first electrode (roll rotating electrode) and the second electrode (square tube fixed electrode group) are adjusted and maintained at 80 ° C, and the roll rotating electrode is rotated by a drive to form a thin film. Went.
  • Plasma discharge was performed under the following conditions to form a polymer layer P-1 with a thickness of 200 nm
  • Discharge gas helium 98.9 volume 0/0
  • TEOS tetraethoxysilane
  • Output density Output conditions at the time of gas supply were appropriately controlled between 1.5 W / cm2 and 3.5 WZcm2 so as to achieve the average carbon content described in Table 2.
  • Plasma discharge was performed under the following conditions to form a 60 nm thick gas barrier layer G-1.
  • Additive gas 1% by volume of oxygen gas
  • Plasma discharge was performed under the following conditions to form a polymer layer P-2 with a thickness of 200 nm ⁇ Gas conditions>
  • Discharge gas Argon 98.9 volume 0/0
  • TEOS tetraethoxysilane
  • the type of thin film forming gas used in the base material, each gas barrier layer, and the polymer layer was changed as shown in Table 1, and the average carbon content of each polymer layer was changed to Table 2.
  • the tetramethylsilane partial pressure is continuously reduced, and instead nitrogen gas is continuously introduced so that the total pressure is maintained at lOPa.
  • Gas nolia laminates 2 to 4 were produced by the atmospheric pressure plasma CVD method in the same manner except that was appropriately adjusted.
  • Thin film-forming gas The feed rate of raw materials was adjusted as appropriate so as to satisfy the conditions shown in Table 2 (mixed with nitrogen gas and vaporized with a Lintec vaporizer)
  • Sample 2 with the raw material concentration changed in the direction of thin film deposition as follows: Sample 2;?-1; 0.3 ⁇ 0.1 vol%
  • a gas noria laminate 5 was produced by a vacuum plasma method.
  • the vacuum chamber of the vacuum evaporation apparatus a polyethylene terephthalate film to have a clear hard coat layer with a thickness of 125 / zm as a substrate (manufactured by Lintec Corporation, PET abbreviated hereinafter) and set, vacuum until 10- 4 Pa
  • TEOS tetraethoxysilane
  • RF power applied voltage
  • the vacuum chamber of the vacuum evaporation apparatus was set to the sample having a polymer layer P- 1 on a substrate and then vacuum degassed to 10- 4 Pa, hexamethyldisiloxane (hereinafter to be abbreviated as HMDSO ), Hydrogen gas, helium gas, applied voltage (RF power) 300W, substrate temperature 18
  • HMDSO hexamethyldisiloxane
  • Hydrogen gas Hydrogen gas
  • helium gas helium gas
  • RF power applied voltage
  • the vacuum chamber of the vacuum evaporation apparatus, the polymer layer P- 1 on a substrate, and set the sample was only set the Gasuno rear layer G-1, was deaerated under vacuum to 10- 4 Pa, as a thin film forming gas Using tetraethyoxysilane (TEOS), hydrogen as the discharge gas, applied voltage (RF power) 100 W, substrate temperature 180 ° C, the feed rate of raw materials was adjusted to the average carbon content shown in Table 2. While appropriately preparing, a polymer layer P-2 having a thickness of 200 nm was formed.
  • TEOS tetraethyoxysilane
  • RF power applied voltage
  • the gas noble layer G-2 was formed on the polymer layer P-2 of the sample.
  • the polymer layer P-3 was formed on the gas noble layer G-2 of the sample.
  • a polycarbonate film having a thickness of 100 m (manufactured by Teijin Kasei Co., Ltd., hereinafter abbreviated as “PC”) was used as a substrate, and the gas noria was produced according to the following method.
  • a laminate 6 was produced.
  • the Si target as raw material 1 was placed in the evaporation source, and the substrate was set. Then, after vacuum degassing of the vacuum chamber up to 10 4 Pa, to begin resistive heating of the deposition source, as raw material 2 where the impurity evaporation was completed 1, supplies a 10-decanediol Atari rate to the vacuum chamber Then, the vapor deposition shutter was opened, and a polymer layer having a thickness of 200 nm was vapor-deposited while appropriately adjusting the supply amount of 1,10-decandiol diolate so that the average carbon content shown in Table 2 was obtained. Thereafter, ultraviolet rays with an integrated light amount of 500 mj / cm 2 were irradiated.
  • the vacuum chamber of the vacuum evaporation apparatus a Si target was mounted on a vapor deposition source, sets the sample in which a polymer further P-1 on a substrate and then vacuum degassed to 10- 4 Pa, electron beam evaporation Law As a result, a 60 nm noria film was formed.
  • the supply amount of 1,10-decandiol diolate is adjusted on the gas barrier layer G-1 of the sample so that the average carbon content shown in Table 2 is obtained.
  • a polymer layer P-2 having a thickness of 200 nm was deposited while adjusting appropriately.
  • the gas noble layer G-2 was formed on the polymer layer P-2 of the sample.
  • the polymer layer P-3 was formed on the gas noble layer G-2 of the sample.
  • a gas no laminated body 7 was produced according to the following method using a polyethylene naphthalate film (PEN) having a thickness of 100 m as a base material.
  • PEN polyethylene naphthalate film
  • the film-forming gas was changed to TEOS and methyl methacrylate.
  • Polymer layers Pl, P-2, and P-3 were formed in the same manner except that the output conditions were appropriately adjusted so that the average carbon content was as shown in Table 2.
  • a vacuum chamber for each given sample sputtering device was set so as to deposit on the side of the formation of the polymer layer, and deaerated under vacuum to 10- 4 Pa base was in the vacuum chamber temperature of 0.99 ° C Thereafter, argon was introduced at a partial pressure of 0.001 Pa as the discharge gas, and oxygen was introduced at a partial pressure of 0.008 Pa as the reaction gas.
  • discharge was started at a sputtering power of 2 WZcm 2 , plasma was generated on the Si target, and the sputtering process was started.
  • the shutter was opened and the formation of a gas barrier layer on the polymer layer was started.
  • the shutter was closed to complete the film formation.
  • a gas-nozzle laminate 8 was produced in the same manner except that the formation of each polymer layer was changed to the following vacuum plasma method.
  • the thin film forming gas was changed to HMDSO, and the thin film formation conditions until the end of the film formation start force were fixed.
  • Each polymer layer was formed in the same manner as described above.
  • a gas nolia laminate 9 was produced in the same manner except that the formation of each polymer layer was changed to the following coating method.
  • Tripropylene glycol ditalylate and hexamethyldisiloxane were mixed so that the average carbon content was 72% (first layer) or 71% (third layer, fifth layer), and this was mixed with ethyl acetate.
  • Prepare a diluted coating solution apply this coating solution on the base material or gas noble layer using a fiber bar under the condition that the dry film thickness is 0.2 m, and then heat at 80 ° C for 10 minutes. After drying, the ethyl acetate was removed, followed by irradiation with UV light having an accumulated light amount of 500 mjZcm 2 .
  • the substrate was changed to a polyether sulfone film (Sumitite Bakelite Co., Ltd. Sumitrite FS-1300, hereinafter abbreviated as PES) with a thickness of 100 ⁇ m, and each polymer In the layer formation (evaporation method), the thin film forming material was changed to neopentyl alcohol modified modified trimethylolpropane diatalylate (KAYARAD R-604, manufactured by Nippon Kayaku Co., Ltd.) Each polymer layer was formed in the same manner except that the formation conditions were kept constant.
  • Table 1 shows the configurations of the respective gas-nozzle laminates produced as described above.
  • PEN Polyethylene naphthalate film (manufactured by Teijin DuPont)
  • PC Copolymer polycarbonate film
  • Zeonor Zeonor Z1420R, manufactured by Nippon Zeon Co., Ltd.
  • PES Polyethersulfone film (Sumilite FS-1300 manufactured by Sumitomo Bakelite Co., Ltd.)
  • PET Polyethylene terephthalate film with clear hard coat layer (manufactured by Lintec)
  • PC Polycarbonate film
  • HMDSO Hexamethinoresinsiloxane
  • HMDSN Hexamethyldisilazane
  • Polymer 1 Tripropylene glycol ditalylate
  • Polymer 3 Neopentylglycol-modified trimethylolpropane ditalylate * A: 1,10-decandiol diolate
  • AGP Atmospheric pressure plasma CVD
  • AGP Atmospheric pressure plasma method
  • the average carbon content in each polymer layer (thickness: 200 nm) of the produced gas barrier laminate was measured using an ESCALAB-200R manufactured by VG Scientific as an XPS surface analyzer in accordance with the method described above.
  • the measured area is the area where the lowest area is 20 nm from the surface (area 1), and then the total area is 10 areas from the outermost part (180 to the surface) for each 20 nm thick area.
  • the results obtained are shown in Table 2.
  • Gas barrier 1st layer Average carbon content of polymer layer P-1
  • the oxygen transmission rate was measured according to the method specified in JIS K 7126B.
  • a cross-cut test based on JIS K 5400 was performed. On the surface of the formed thin film, using a single-blade force razor, eleven notches were made vertically and horizontally at intervals of lmm at 90 degrees to the surface to make 100 lmm square grids. A commercially available cellophane tape is affixed to this, and one end of the tape is peeled off vertically by hand, and the ratio of the peeled area of the thin film to the affixed tape area from the score line is measured. Adhesion was evaluated.
  • the peeled area ratio was 0.1% or more and less than 5%
  • the peeled area ratio was 5% or more and less than 10%
  • the peeled area ratio was 10% or more
  • Each of the gas barrier laminates prepared above was wrapped around a 300 mm ⁇ metal rod so that the surface of each component layer would be on the outside, then released after 5 seconds, and this operation was repeated 10 times. In the same way, water vapor transmission rate and oxygen transmission rate were measured and adhesion was evaluated.
  • Each gas barrier laminate produced above was stored in an environment of 80 ° C and 90% RH for 1000 hours, and then the water vapor transmission rate and oxygen transmission rate were measured and the adhesion was evaluated in the same manner as in Evaluation 1. Went.
  • Each gas barrier laminate produced above was stored in an environment of 90 ° C and 0% RH for 1000 hours, and then measured for water vapor transmission rate and oxygen transmission rate and evaluated adhesion in the same manner as in Evaluation 1. Went.
  • the gas barrier laminate of the present invention having a polymer layer and a gas barrier layer laminated and having an average carbon content profile defined in the present invention is bent relative to the comparative example. It can be seen that the performance excellent in the water vapor blocking effect, the oxygen blocking effect and the adhesion is maintained even after the test or after being stored for a long time in a harsh environment. Among these, it can be seen that the gas noria laminate strength in which the polymer layer and the gas noria layer are formed by the atmospheric pressure plasma CVD method has a particularly excellent effect.
  • Example 1 Using each gas nolia laminate produced in Example 1 as a display substrate for organic EL, a transparent electrode constituting the anode electrode, a hole transport layer having hole transport properties, a light emitting layer, an electron injection layer, And a back electrode to be the cathode are laminated, and an OLED sealed with a glass can bonded with an epoxy-based sealing material (Epoxy adhesive 3124C manufactured by ThreeBond Co., Ltd.) on each of these layers is fabricated (glass The inside of the can was filled with a desiccant manufactured by Japan Gore-Tex Co., Ltd.), taken at 50 ° C, 90% RH, 1000 hours and magnified 50 times, and the occurrence of dark spots was evaluated.
  • an epoxy-based sealing material Epoxy adhesive 3124C manufactured by ThreeBond Co., Ltd.
  • the gas barrier laminate of the present invention maintains the performance excellent in the water vapor blocking effect and the oxygen blocking effect.
  • the substrate, the polymer layer, and the gas noria layer are provided. It is possible to provide a gas barrier laminate having improved adhesion and excellent bending resistance and environmental resistance, and a method for producing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 基材上に、少なくともガスバリア層とポリマー層とを有し、該ポリマー層の少なくとも1層が該ガスバリア層の少なくとも1層に隣接し、該ポリマー層の該ガスバリア層との接触界面における平均炭素含有量が該ポリマー層の平均炭素含有量より小さく、かつ該ポリマー層の少なくとも1層と該基材とが隣接し、該ポリマー層の該基材との接触界面における平均炭素含有量が、該ポリマー層の該接触界面以外の領域の平均炭素含有量より大きいことを特徴とするガスバリア積層体。

Description

明 細 書
ガスバリア積層体及びその製造方法
技術分野
[0001] 本発明は、新規の積層構造を有するガスバリア積層体とその製造方法に関する。
背景技術
[0002] 従来より、榭脂基材の表面に酸ィ匕アルミニウム、酸化マグネシウム、酸化珪素等の 金属酸ィ匕物の薄膜を形成したガスバリア性フィルムは、水蒸気や酸素等の各種ガス の遮断を必要とする物品の包装、食品や工業製品及び医薬品等の変質を防止する 目的の包装用途に広く用いられている。
[0003] また、包装用途以外にも液晶表示素子、太陽電池、エレクト口ルミネッセンス (EL) 基板等で使用されている。特に、液晶表示素子や有機 EL素子などへの適用が進ん でいる透明基材には、近年、軽量化、大型化という要求に加え、長期信頼性や形状 の自由度が高いこと、曲面表示が可能であること等の高度な要求が加わり、重く割れ やすく大面積ィ匕が困難なガラス基板に代わって透明プラスチック等のフィルム基材が 採用され始めている。
[0004] し力しながら、透明プラスチック等のフィルム基材は、ガラスに対しガスノ リア性が劣 るという問題がある。ガスバリア性が劣る基材を用いると、水蒸気や空気が浸透し、例 えば液晶セル内の液晶を劣化させ、表示欠陥となって表示品位を劣化させてしまう。
[0005] この様な問題を解決するために、フィルム基板上に金属酸化物薄膜を形成してガ スノ リア性フィルム基材とすることが知られている。包装材ゃ液晶表示素子に使用さ れるガスノ リア性フィルムとしてはプラスチックフィルム上に酸ィ匕珪素を蒸着したもの( 特許文献 1)や酸化アルミニウムを蒸着したもの(特許文献 2)が知られており、 V、ずれ も lgZm2Zday程度の水蒸気バリア性を有する。
[0006] 近年では、さらなるガスノ リア性が要求される有機 ELディスプレイや、液晶ディスプ レイの大型化、高精細ディスプレイ等の開発によりフィルム基板へのガスノ リア性能 につ 、て水蒸気ノ リアで 0. lgZm2Zday程度まで要求が高まってきて 、る。
[0007] 更に、近年において、更に高度のガスノ リア性が要求される有機 ELディスプレイや 高精彩カラー液晶ディスプレイなどの開発が急速に進み、これらの分野に適用可能 な透明性を維持しつつも、更なる高ガスノリア性、特に 0. lgZm2Zday未満の水蒸 気ノリア性を備えた積層体の開発が求められてきた。
[0008] 上記のような要求に対し、ポリマー層とガスノリア層を交互に積層した構造を有する ノリア性榭脂基材を作製する薄膜形成方法が提案されて ヽる (例えば、特許文献 3、 4参照。;)。しカゝしながら、これら提案されている薄膜形成方法は、均一組成のポリマ 一層とガスノリア層とを交互に積層した構造であるため、基材及びポリマー層、ある いはポリマー層とガスバリア層間での密着性、屈曲性、あるいは過酷な環境下で長時 間にわたり保存した際の環境耐性に問題を抱えており、早急な改良が求められてい る。
特許文献 1:特公昭 53— 12953号公報
特許文献 2:特開昭 58— 217344号公報
特許文献 3:国際公開第 00Z026973号パンフレット
特許文献 4:特開 2004— 9395号公報
発明の開示
[0009] 本発明の目的は、高いガスノリア性を備え、基材、ポリマー層及びガスバリア層間 の密着性が向上し、屈曲耐性及び環境耐性に優れたガスバリア積層体とその製造 方法を提供することにある。
[0010] 本発明の上記目的を達成するための態様の一つは、基材上に、少なくともガスバリ ァ層とポリマー層とを有し、該ポリマー層の少なくとも 1層が該ガスノ リア層の少なくと も 1層に隣接し、該ポリマー層の該ガスバリア層との接触界面における平均炭素含有 量が、該ポリマー層の平均炭素含有量より小さいことを特徴とするガスノリア積層体 にある。
図面の簡単な説明
[0011] [図 1]本発明のガスノリア積層体の構成及び炭素含有率のパターンの一例を示す模 式図である。
[図 2]本発明に有用なジェット方式の大気圧プラズマ放電処理装置の一例を示した 概略図である。 [図 3]本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処 理装置の一例を示す概略図である。
[図 4]導電性の金属質母材とその上に被覆されている誘電体を有するロール回転電 極の一例を示す斜視図である。
[図 5]角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構造の 一例を示す斜視図である。
発明を実施するための最良の形態
本発明の上記目的は、以下の構成により達成される。
(1) 基材上に、少なくともガスノリア層とポリマー層とを有し、該ポリマー層の少なくと も 1層が該ガスノリア層の少なくとも 1層に隣接し、該ポリマー層の該ガスノリア層との 接触界面における平均炭素含有量が、該ポリマー層の平均炭素含有量より小さいこ とを特徴とするガスノリア積層体。
(2) 基材上に、少なくともガスノリア層とポリマー層とを有し、該ポリマー層の少なくと も 1層と該基材とが隣接し、該ポリマー層の該基材との接触界面における平均炭素含 有量が、該ポリマー層の該接触界面以外の領域の平均炭素含有量より大きいことを 特徴とするガスバリア積層体。
(3) 基材上に、少なくともガスノリア層とポリマー層とを有し、該ポリマー層の少なくと も 1層が該ガスノリア層の少なくとも 1層に隣接し、該ポリマー層の該ガスノリア層との 接触界面における平均炭素含有量が該ポリマー層の平均炭素含有量より小さぐか っ該ポリマー層の少なくとも 1層と該基材とが隣接し、該ポリマー層の該基材との接触 界面における平均炭素含有量が、該ポリマー層の該接触界面以外の領域の平均炭 素含有量より大きいことを特徴とするガスノリア積層体。
(4) 前記ガスノリア層と前記ポリマー層とが交互に積層されていることを特徴とする 前記(1)〜(3)の 、ずれか 1項に記載のガスバリア積層体。
(5) 前記ガスバリア層に隣接する前記ポリマー層の炭素含有層が、厚さ方向で連 続的に変化していることを特徴とする前記(1)、 (3)または (4)に記載のガスバリア積 層体。
(6) 前記基材に隣接する前記ポリマー層の炭素含有層が、厚さ方向で連続的に変 化して 、ることを特徴とする前記(2)または(3)に記載のガスノリア積層体。
(7) 前記(1)〜(6)の ヽずれか 1項に記載のガスバリア積層体を製造するガスバリ ァ積層体の製造方法であって、ポリマー層の少なくとも 1層をプラズマ CVD法で形成 することを特徴とするガスバリア積層体の製造方法。
(8) 前記(1)〜(6)の ヽずれか 1項に記載のガスバリア積層体を製造するガスバリ ァ積層体の製造方法であって、全てのポリマー層をプラズマ CVD法で形成すること を特徴とするガスバリア積層体の製造方法。
(9) 前記プラズマ CVD法が、大気圧または大気圧近傍の圧力下において実施さ れることを特徴とする前記(7)または(8)に記載のガスバリア積層体の製造方法。
[0013] 以下、本発明を実施するための最良の形態について詳細に説明する。
[0014] 本発明者は、上記課題に鑑み鋭意検討を行った結果、基材上に、少なくともガスバ リア層とポリマー層とを有するガスノリア積層体において、 1)ポリマー層の少なくとも 1 層がガスノリア層の少なくとも 1層に隣接し、該ポリマー層の該ガスノリア層との接触 界面における平均炭素含有量が、該ポリマー層の平均炭素含有量より小さいことを 特徴とするガスバリア積層体、 2)ポリマー層の少なくとも 1層と基材とが隣接し、該ポリ マー層の該基材との接触界面における平均炭素含有量が、該ポリマー層の該接触 界面以外の領域の平均炭素含有量より大きいことを特徴とするガスノリア積層体、あ るいは 3)ポリマー層の少なくとも 1層がガスノリア層の少なくとも 1層に隣接し、該ポリ マー層の該ガスバリア層との接触界面における平均炭素含有量が該ポリマー層の平 均炭素含有量より小さぐかつ該ポリマー層の少なくとも 1層と該基材とが隣接し、該 ポリマー層の該基材との接触界面における平均炭素含有量力 S、該ポリマー層の該接 触界面以外の領域の平均炭素含有量より大きいことを特徴とするガスバリア積層体 により、高いガスノリア性を備え、基材、ポリマー層及びガスノリア層間の密着性が向 上し、屈曲耐性及び環境耐性に優れたガスノリア積層体を実現できることを見出し、 本発明に至った次第である。なお、本発明でいうポリマー層の基材との接触界面、あ るいはポリマー層のガスノリア層との接触界面とは、ポリマー層の膜厚を 100%とした 時、各表面力も 10%までの膜厚領域をそれぞれの接触界面と定義する。
[0015] 本発明の好ましい態様においては、基材上に、少なくともガスノ リア層とポリマー層 とを有するガスノリア積層体において、基材に隣接して配置されたポリマー層の基材 との接触界面における炭素含有量を最も多い条件に設定し、そのポリマー層上に配 置されているガスノリア層に向かって、炭素含有量を減少させ、逆に金属酸化物の 含有量を高くする構成とすることにより、基材とポリマー層の密着性及びポリマー層と ガスノリア層との密着性を飛躍的に高めることができた。
[0016] また、ポリマー層とガスノリア層とが隣接して配置した際、該両層の接触界面におけ るポリマー層における平均炭素含有量を最も少ない条件に設定し、ポリマー層の中 心部領域では、平均含有量を増加させることにより、ポリマー層とガスバリア層との密 着性が向上し、更にはポリマー層の折り曲げや長期間保存した際のクラック (亀裂)の 発生によるピンホール故障を効果的に抑制することができる。
[0017] 本発明のガスバリア積層体において、ポリマー層をそれぞれ配置される位置に従つ て、ポリマー層内の炭素含有量を特定の含有率パターンとすることを特徴とするが、 この様な炭素含有量を変化させてポリマー層を形成する好ましい方法としては、ブラ ズマ CVD法を用いて規定した炭素含有量パターンで形成することであり、更にブラ ズマ CVD法として、大気圧または大気圧近傍の圧力下にお 、て実施することが好ま しぐ本発明に係るプラズマ CVD法を用いることにより精緻に制御された条件で、本 発明で規定する炭素含有量パターンを実現することができる。
[0018] 以下、本発明の詳細について説明する。
[0019] 本発明のガスノリア積層体は、少なくともガスノリア層とポリマー層とを有する。
[0020] 《ガスバリア層》
はじめに、本発明に係るガスノリア層につ 、て説明する。
[0021] 本発明に係るガスノリア層とは、水蒸気、酸素等のガスを遮断する効果を具備した 層であり、金属酸化物、金属窒化酸化物、金属窒化物等のセラミック成分を主成分と する薄膜で、その膜厚は、概ね 5〜: LOOnmで、後述するポリマー層に対し相対的な 硬度が高い層であり、層中の平均炭素含有量が 1%未満のそうであるものと定義する
[0022] 本発明に係るガスノリア層は、後述する原材料をスパッタリング法、塗布法、イオン アシスト法、後述するプラズマ CVD法、後述する大気圧または大気圧近傍の圧力下 でのプラズマ CVD法等を適用して形成されることが好ましぐ更に好ましくは、プラズ マ CVD法、大気圧または大気圧近傍の圧力下でのプラズマ CVD法である力 特に 好ましくは、大気圧または大気圧近傍の圧力下でのプラズマ CVD法を用いて形成さ れる。尚、プラズマ CVD法の層形成条件の詳細については、後述する。
[0023] プラズマ CVD法、大気圧または大気圧近傍の圧力下でのプラズマ CVD法により 得られるガスノ リア層は、原材料 (原料ともいう)である有機金属化合物、分解ガス、 分解温度、投入電力などの条件を選ぶことで、金属炭化物、金属窒化物、金属酸ィ匕 物、金属硫化物、金属ハロゲン化物、またこれらの混合物 (金属酸窒化物、金属酸化 ハロゲンィ匕物、金属窒化炭化物など)も作り分けることができるため好ましい。
[0024] たとえば、珪素化合物を原料化合物として用い、分解ガスに酸素を用いれば、珪素 酸化物が生成する。また、亜鉛化合物を原料化合物として用い、分解ガスに-硫ィ匕 炭素を用いれば、硫ィ匕亜鉛が生成する。これはプラズマ空間内では非常に活性な荷 電粒子 ·活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学 反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定 な化合物へと非常な短時間で変換されるためである。
[0025] このような無機物の原料としては、典型または遷移金属元素を有していれば、常温 常圧下で気体、液体、固体いずれの状態であっても構わない。気体の場合にはその まま放電空間に導入できるが、液体、固体の場合は、加熱、パブリング、減圧、超音 波照射等の手段により気化させて使用する。又、溶媒によって希釈して使用してもよ ぐ溶媒は、メタノール,エタノール, n キサンなどの有機溶媒及びこれらの混合 溶媒が使用出来る。尚、これらの希釈溶媒は、プラズマ放電処理中において、分子 状、原子状に分解されるため、影響は殆ど無視することができる。
[0026] このような有機金属化合物としては、
ケィ素化合物として、シラン、テトラメトキシシラン、テトラエトキシシラン、テトラ n—プ ロボキシシラン、テトライソプロボキシシラン、テトラ n—ブトキシシラン、テトラ tーブトキ シシラン、ジメチノレジメトキシシラン、ジメチノレジェトキシシラン、ジェチノレジメトキシシ ラン、ジフエ二ルジメトキシシラン、メチルトリエトキシシラン、ェチルトリメトキシシラン、 フエニルトリエトキシシラン、(3, 3, 3—トリフルォロプロピル)トリメトキシシラン、へキ サメチルジシロキサン、ビス(ジメチルァミノ)ジメチルシラン、ビス(ジメチルァミノ)メチ ルビ-ルシラン、ビス(ェチルァミノ)ジメチルシラン、 N, O ビス(トリメチルシリル)ァ セトアミド、ビス(トリメチルシリル)カルポジイミド、ジェチルアミノトリメチルシラン、ジメ チルアミノジメチルシラン、へキサメチルジシラザン、へキサメチルシクロトリシラザン、 ヘプタメチルジシラザン、ノナメチルトリシラザン、オタタメチルシクロテトラシラザン、テ トラキスジメチルアミノシラン、テトライソシアナ一トシラン、テトラメチルジシラザン、トリ ス(ジメチルァミノ)シラン、トリエトキシフルォロシラン、ァリルジメチルシラン、ァリルトリ メチルシラン、ベンジルトリメチルシラン、ビス(トリメチルシリル)アセチレン、 1, 4 ビ ストリメチルシリル 1, 3 ブタジイン、ジ tーブチルシラン、 1, 3 ジシラブタン、ビ ス(トリメチルシリル)メタン、シクロペンタジェニルトリメチルシラン、フエ二ルジメチルシ ラン、フエニルトリメチルシラン、プロパルギルトリメチルシラン、テトラメチルシラン、トリ メチルシリルアセチレン、 1 (トリメチルシリル) 1 プロピン、トリス(トリメチルシリル )メタン、トリス(トリメチルシリル)シラン、ビュルトリメチルシラン、へキサメチルジシラン 、オタタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、へキサメチ ルシクロテトラシロキサン、 Mシリケート 51等が挙げられる。
[0027] チタンィ匕合物としては、例えば、チタンメトキシド、チタンエトキシド、チタンイソプロ ポキシド、チタンテトライソポロポキシド、チタン n—ブトキシド、チタンジイソプロポキシ ド(ビス 2, 4 ペンタンジォネート)、チタンジイソプロボキシド(ビス 2, 4 ェチ ルァセトアセテート)、チタンジ一 n—ブトキシド(ビス一 2, 4 ペンタンジォネート)、 チタンァセチルァセトネート、ブチルチタネートダイマー等が挙げられる。
[0028] ジルコニウム化合物としては、ジルコニウム n—プロポキシド、ジルコニウム n—ブトキ シド、ジルコニウム t—ブトキシド、ジルコニウムトリ— n—ブトキシドアセチルァセトネー ト、ジルコニウムジー n—ブトキシドビスァセチルァセトネート、ジルコニウムァセチルァ セトネート、ジルコニウムアセテート、ジルコニウムへキサフルォロペンタンジォネート 等が挙げられる。
[0029] アルミニウム化合物としては、アルミニウムエトキシド、アルミニウムトリイソプロポキシ ド、アルミニウムイソプロポキシド、アルミニウム n—ブトキシド、アルミニウム s ブトキ シド、アルミニウム t—ブトキシド、アルミニウムァセチルァセトナート、トリェチルジアル ミニゥムトリー s—ブトキシド等が挙げられる。
[0030] 硼素化合物としては、ジボラン、テトラボラン、フッ化硼素、塩化硼素、臭化硼素、ボ ラン—ジェチルエーテル錯体、ボラン— THF錯体、ボラン—ジメチルスルフイド錯体 、三フッ化硼素ジェチルエーテル錯体、トリェチルボラン、トリメトキシボラン、トリェトキ シボラン、トリ(イソプロポキシ)ボラン、ボラゾール、トリメチルボラゾール、トリェチルボ ラゾール、トリイソプロピルボラゾール、等が挙げられる。
[0031] 錫化合物としては、テトラエチル錫、テトラメチル錫、二酢酸ジー n ブチル錫、テト ラブチル錫、テトラオクチル錫、テトラエトキシ錫、メチルトリエトキシ錫、ジェチノレジェ トキシ錫、トリイソプロピルエトキシ錫、ジェチル錫、ジメチル錫、ジイソプロピル錫、ジ ブチル錫、ジェトキシ錫、ジメトキシ錫、ジイソプロポキシ錫、ジブトキシ錫、錫ジブチ ラート、錫ジァセトァセトナート、ェチル錫ァセトァセトナート、エトキシ錫ァセトァセト ナート、ジメチル錫ジァセトァセトナート等、錫水素化合物等、ハロゲン化錫としては、 二塩化錫、四塩ィヒ錫等が挙げられる。
[0032] また、その他の有機金属化合物としては、例えば、アンチモンエトキシド、ヒ素トリエ トキシド、ノ リウム 2, 2, 6, 6—テトラメチルヘプタンジォネート、ベリリウムァセチルァ セトナート、ビスマスへキサフルォロペンタンジォネート、ジメチルカドミウム、カルシゥ ム 2, 2, 6, 6—テトラメチルヘプタンジォネート、クロムトリフルォロペンタンジォネート 、コバルトァセチルァセトナート、銅へキサフルォロペンタンジォネート、マグネシウム へキサフルォロペンタンジォネートージメチルエーテル錯体、ガリウムエトキシド、テト ラエトキシゲルマン、テトラメトキシゲルマン、ハフニウム t ブドキシド、ハフニウムエト キシド、インジウムァセチルァセトナート、インジウム 2, 6 ジメチルァミノヘプタンジ ォネート、フエ口セン、ランタンイソプロポキシド、酢酸鉛、テトラエチル鉛、ネオジゥム ァセチルァセトナート、白金へキサフルォロペンタンジォネート、トリメチルシクロペン タジェ-ル白金、ロジウムジカルボ-ルァセチルァセトナート、ストロンチウム 2, 2, 6 , 6—テトラメチルヘプタンジォネート、タンタルメトキシド、タンタルトリフルォロェトキ シド、テルルエトキシド、タングステンエトキシド、バナジウムトリイソプロポキシドォキシ ド、マグネシウムへキサフルォロアセチルァセトナート、亜鉛ァセチルァセトナート、ジ ェチル亜鉛、などが挙げられる。 [0033] また、これらの金属を含む原料ガスを分解して無機化合物を得るための分解ガスと しては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、 窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素 ガス、水蒸気、フッ素ガス、フッ化水素、トリフルォロアルコール、トリフルォロトルエン
、硫化水素、二酸化硫黄、二硫化炭素、塩素ガス、などが挙げられる。
[0034] 金属元素を含む原料ガスと、分解ガスを適宜選択することで、各種の金属炭化物、 金属窒化物、金属酸化物、金属ハロゲン化物、金属硫ィ匕物を得ることができる。
[0035] これらの反応性ガスに対して、主にプラズマ状態になりやすい放電ガスを混合し、 プラズマ放電発生装置にガスを送りこむ。このような放電ガスとしては、窒素ガスおよ び Zまたは周期表の第 18属原子、具体的には、ヘリウム、ネオン、アルゴン、タリブト ン、キセノン、ラドン等が用いられる。これらの中でも特に、窒素、ヘリウム、アルゴンが 好ましく用いられる。
[0036] 上記放電ガスと反応性ガスを混合し、混合ガスとしてプラズマ放電発生装置 (ブラズ マ発生装置)に供給することで膜形成を行う。放電ガスと反応性ガスの割合は、得よう とする膜の性質によって異なる力 混合ガス全体に対し、放電ガスの割合を 50%以 上として反応性ガスを供給する。
[0037] 《ポリマー層》
次 、で、本発明に係るポリマー層につ 、て説明する。
[0038] 本発明に係るポリマー層とは、無機ポリマー、有機ポリマー、有機無機ハイブリッド ポリマー等を主成分とする薄膜で、その膜厚は、概ね 5〜500nmで、前述のガスバリ ァ層に対し相対的な硬度が低い層で、層中の平均炭素含有量が 5%以上のもので あり、応力緩和層とも呼ばれる。
[0039] 本発明で適用できる無機ポリマーは、無機骨格を主構造とし、かつ有機成分を含 有する膜であり、有機金属化合物を重合したものも含む。
[0040] これら無機ポリマーとしては、特に限定は無いが、例えば、シリコーンやポリシラザン などのケィ素化合物や、チタン化合物、アルミニウム化合物、硼素化合物、燐化合物 、錫化合物を用いることができる。
[0041] 本発明で用いることのできるケィ素化合物としては、特に限定はないが、好ましいも のとして、テトラメチルシラン、トリメチルメトキシシラン、ジメチルジメトキシシラン、メチ ルトリメトキシシラン、トリメチルエトキシシラン、ジメチルジェトキシシラン、メチルトリエ トキシシラン、テトラメトキシシラン、テトラメトキシシラン、へキサメチノレジシロキサン、 へキサメチルジシラザン、 1, 1—ジメチル一 1—シラシクロブタン、トリメチルビニルシ ラン、メトキシジメチルビニルシラン、トリメトキシビュルシラン、ェチルトリメトキシシラン 、ジメチノレジビニノレシラン、ジメチノレエトキシェチニノレシラン、ジァセトキシジメチノレシ ラン、ジメトキシメチル— 3, 3, 3—トリフルォロプロビルシラン、 3, 3, 3—トリフルォロ プロピルトリメトキシシラン、ァリールトリメトキシシラン、エトキシジメチルビニルシラン、 ァリールアミノトリメトキシシラン、 N—メチル N トリメチルシリルァセトアミド、 3—ァ ミノプロピルトリメトキシシラン、メチルトリビニルシラン、ジァセトキシメチルビ二ルシラ ン、メチルトリァセトキシシラン、ァリールォキシジメチルビ-ルシラン、ジェチルビ-ル シラン、ブチルトリメトキシシラン、 3—ァミノプロピルジメチルエトキシシラン、テトラビ二 ルシラン、トリァセトキシビニルシラン、テトラァセトキシシラン、 3—トリフルォロアセトキ シプロピノレトリメトキシシラン、ジァリーノレジメトキシシラン、ブチノレジメトキシビニノレシラ ン、トリメチル 3—ビニルチオプロビルシラン、フエニルトリメチルシラン、ジメトキシメ チルフエニルシラン、フエニルトリメトキシシラン、 3—アタリロキシプロピルジメトキシメ チルシラン、 3—アタリロキシプロピルトリメトキシシラン、ジメチルイソペンチ口キシビ二 ルシラン、 2 ァリールォキシェチルチオメトキシトリメチルシラン、 3 グリシドキシプ 口ピルトリメトキシシラン、 3—ァリールァミノプロピルトリメトキシシラン、へキシルトリメト キシシラン、ヘプタデカフルォロデシルトリメトキシシラン、ジメチルェチキシフエ-ル シラン、ベンゾイロキシトリメチルシラン、 3—メタクリロキシプロピルジメトキシメチルシ ラン、 3—メタクリロキシプロピルトリメトキシシラン、 3—イソシァネートプロピルトリェトキ シシラン、ジメチノレエトキシー 3—グリシドキシプロピノレシラン、ジブトキシジメチノレシラ ン、 3—ブチルァミノプロピルトリメチルシラン、 3—ジメチルァミノプロピルジェトキシメ チルシラン、 2— (2—アミノエチルチオェチル)トリエトキシシラン、ビス(ブチルァミノ) ジメチルシラン、ジビニルメチルフエニルシラン、ジァセトキシメチルフエニルシラン、 ジメチル一 p トリルビニルシラン、 p—スチリルトリメトキシシラン、ジェチルメチルフエ ニルシラン、ベンジルジメチルエトキシシラン、ジエトキシメチルフエニルシラン、デシ ルメチルジメトキシシラン、ジェトキシー 3—グリシドキシプロピルメチルシラン、ォクチ 口キシトリメチルシラン、フエニルトリビニルシラン、テトラァリールォキシシラン、ドデシ ルトリメチルシラン、ジァリールメチルフエニルシラン、ジフエ二ルメチルビニルシラン、 ジフエニルエトキシメチルシラン、ジァセトキシジフエニルシラン、ジベンジルジメチル シラン、ジァリールジフエ-ルシラン、ォクタデシルトリメチルシラン、メチルォクタデシ ルジメチルシラン、ドコシルメチルジメチルシラン、 1, 3 ジビニルー 1, 1, 3, 3—テト ラメチルジシロキサン、 1, 3 ジビュル 1, 1, 3, 3—テトラメチルジシラザン、 1, 4 —ビス(ジメチルビ-ルシリル)ベンゼン、 1, 3 ビス(3 ァセトキシプロピル)テトラメ チルジシロキサン、 1, 3, 5 トリメチル—1, 3, 5 トリビュルシクロトリシロキサン、 1 , 3, 5 トリス(3, 3, 3 トリフルォロプロピル)— 1, 3, 5 トリメチルシクロトリシロキ サン、オタタメチルシクロテトラシロキサン、 1, 3, 5, 7—テトラエトキシー 1, 3, 5, 7— テトラメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等を挙げるこが できる。
[0042] また、有機ポリマーとしては、公知の重合性有機化合物を用いることができる力 そ の中でも、分子内にエチレン性不飽和結合を有する重合可能なエチレン性不飽和 結合含有化合物が好ましぐまた、一般的なラジカル重合性のモノマー類、光、熱、 紫外線等により硬化する榭脂に一般的に用いられる分子内に付加重合可能なェチ レン性二重結合を複数有する多官能モノマー類や多官能オリゴマー類を用いること ができる。
[0043] これらの重合可能なエチレン性二重結合含有ィ匕合物に特に限定は無いが、好まし いものとして、例えば、 2—ェチルへキシルアタリレート、 2—ヒドロキシプロピルアタリ レート、グリセロールアタリレート、テトラヒドロフルフリルアタリレート、フエノキシェチル アタリレート、ノユルフェノキシェチルアタリレート、テトラヒドロフルフリルォキシェチル アタリレート、テトラヒドロフルフリルォキシへキサノリドアタリレート、 1, 3 ジォキサン アルコールの ε一力プロラタトン付カ卩物のアタリレート、 1, 3 ジォキソランアタリレー ト等の単官能アクリル酸エステル類、或いはこれらのアタリレートをメタタリレート、イタ コネート、クロトネート、マレエートに代えたメタクリル酸、ィタコン酸、クロトン酸、マレイ ン酸エステル、例えば、エチレングリコールジアタリレート、トリエチレンダルコールジ アタリレート、ペンタエリスリトールジアタリレート、ハイド口キノンジアタリレート、レゾル シンジアタリレート、へキサンジオールジアタリレート、ネオペンチルグリコールジアタリ レート、トリプロピレングリコールジアタリレート、ヒドロキシピバリン酸ネオペンチルグリ コーノレのジアタリレート、ネオペンチルグリコーノレアジペートのジアタリレート、ヒドロキ シピバリン酸ネオペンチルグリコールの ε一力プロラタトン付カ卩物のジアタリレート、 2 - (2—ヒドロキシ一 1, 1—ジメチルェチル) 5 ヒドロキシメチル一 5 ェチル 1, 3—ジォキサンジアタリレート、トリシクロデカンジメチロールアタリレート、トリシクロデカ ンジメチロールアタリレートの ε—力プロラタトン付カ卩物、 1, 6 へキサンジオールの ジグリシジルエーテルのジアタリレート等の 2官能アクリル酸エステル類、或いはこれ らのアタリレートをメタタリレート、イタコネート、クロトネート、マレエートに代えたメタタリ ル酸、ィタコン酸、クロトン酸、マレイン酸エステル、例えばトリメチロールプロパントリ アタリレート、ジトリメチロールプロパンテトラアタリレート、トリメチロールェタントリアタリ レート、ペンタエリスリトールトリアタリレート、ペンタエリスリトールテトラアタリレート、ジ ペンタエリスリトールテトラアタリレート、ジペンタエリスリトールペンタアタリレート、ジぺ ンタエリスリトールへキサアタリレート、ジペンタエリスリトールへキサアタリレートの ε 力プロラタトン付加物、ピロガロールトリアタリレート、プロピオン酸 'ジペンタエリスリト ールトリアタリレート、プロピオン酸 'ジペンタエリスリトールテトラアタリレート、ヒドロキ シピバリルアルデヒド変性ジメチロールプロパントリアタリレート等の多官能アクリル酸 エステル酸、或いはこれらのアタリレートをメタタリレート、イタコネート、クロトネート、マ レエートに代えたメタクリル酸、ィタコン酸、クロトン酸、マレイン酸エステル等を挙げる ことができる。
[0044] また、プレボリマーも上記同様に使用することができる。プレボリマーは、 1種又は 2 種以上を併用してもよいし、上述の単量体及び Ζ又はオリゴマーと混合して用いても よい。
[0045] プレポリマーとしては、例えばアジピン酸、トリメリット酸、マレイン酸、フタル酸、テレ フタル酸、ハイミック酸、マロン酸、こはく酸、グルタール酸、ィタコン酸、ピロメリット酸 、フマル酸、グルタール酸、ピメリン酸、セバシン酸、ドデカン酸、テトラヒドロフタル酸 等の多塩基酸と、エチレングリコール、プロピレンダルコール、ジエチレングリコール、 プロピレンオキサイド、 1, 4 ブタンジオール、トリエチレングリコール、テトラエチレン グリコール、ポリエチレングリコール、グリセリン、トリメチロールプロパン、ペンタエリス リトール、ソルビトール、 1, 6 へキサンジオール、 1, 2, 6 へキサントリオール等の 多価のアルコールの結合で得られるポリエステルに (メタ)アクリル酸を導入したポリエ ステルアタリレート類、例えば、ビスフエノール A ·ェピクロルヒドリン'(メタ)アクリル酸、 フエノールノボラック ·ェピクロルヒドリン ·(メタ)アクリル酸のようにエポキシ榭脂に (メタ )アクリル酸を導入したエポキシアタリレート類、例えば、エチレングリコール 'アジピン 酸'トリレンジイソシァネート · 2—ヒドロキシェチルアタリレート、ポリエチレングリコール 'トリレンジイソシァネート · 2—ヒドロキシェチルアタリレート、ヒドロキシェチルフタリル メタタリレート ·キシレンジイソシァネート、 l t 2—ポリブタジエングリコール 'トリレンジィ ソシァネート · 2—ヒドロキシェチルアタリレート、トリメチロールプロパン 'プロピレングリ コール'トリレンジイソシァネート · 2—ヒドロキシェチルアタリレートのように、ウレタン榭 脂に (メタ)アクリル酸を導入したウレタンアタリレート、例えば、ポリシロキサンアタリレ ート、ポリシロキサン'ジイソシァネート · 2—ヒドロキシェチルアタリレート等のシリコー ン榭脂アタリレート類、その他、油変性アルキッド榭脂に (メタ)アタリロイル基を導入し たアルキッド変性アタリレート類、スピラン榭脂アタリレート類等のプレボリマーが挙げ られる。
[0046] また、本発明に係るポリマー層に適用可能な有機ポリマーとしては、薄膜形成性ガ スとしてプラズマ重合可能な有機物を用いることでも容易に形成できる。プラズマ重 合可能な有機物としては、炭化水素、ビニル化合物、含ハロゲンィ匕合物、含窒素化 合物を挙げることが出来る。
[0047] 炭化水素としては、例えば、ェタン、エチレン、メタン、アセチレン、シクロへキサン、 ベンゼン、キシレン、フエ-ルアセチレン、ナフタレン、プロピレン、カンフォー、メント ール、トルエン、イソブチレン等を挙げることができる。
[0048] ビュル化合物としては、例えば、アクリル酸、メチルアタリレート、ェチルアタリレート
、メチルメタタリレート、ァリルメタタリレート、アクリルアミド、スチレン、 (Xーメチルスチ レン、ビュルピリジン、酢酸ビュル、ビュルメチルエーテル等を挙げることが出来る。
[0049] 含ハロゲン化合物としては、四フッ化メタン、四フッ化工チレン、六フッ化プロピレン 、フロロアルキルメタタリレート等を挙げることが出来る。
[0050] 含窒素化合物としては、例えば、ピリジン、ァリルァミン、ブチルァミン、アタリロニトリ ル、ァセトニトリル、ベンゾ-トリル、メタタリ口-トリル、ァミノベンゼン等を挙げることが 出来る。
[0051] 本発明に係る有機無機ハイブリッドポリマーとしては、有機 (無機)ポリマーに無機 ( 有機)物を分散させた膜や、無機骨格と有機骨格をともに主構造とする膜を挙げるこ とができる。本発明に適用できる有機無機ハイブリッドポリマーは、特に限定は無い 力 好ましくは、前述した無機ポリマーと有機ポリマーを適宜組み合わせたものを用 いることがでさる。
[0052] 本発明に係るポリマー膜においては、基材に隣接して配置されたポリマー層の基 材との接触界面における炭素含有量を最も多い条件に設定し、また、ポリマー層とガ スノリア層とが隣接して配置した際、該両層の接触界面におけるポリマー層における 平均炭素含有量を最も少ない条件に設定することを特徴とする。
[0053] 前述のごとぐ本発明でいう接触界面とは、ポリマー層の総膜厚を 100%とした時の それぞれの表面力も厚さ方向に 10%までの領域を 、、この領域に含まれる炭素含 有量の平均値である。また、本発明でいうポリマー層の平均炭素含有量とは、ポリマ 一層の全域 (総膜厚)の炭素含有量の平均値のことである。平均炭素含有量とは、後 述の XPSによる測定で求めた原子数濃度%のことである。
[0054] ポリマー層の平均炭素含有量と、該ポリマー層の接触界面の平均炭素含有量との 差は、 2%以上が好ましぐ 6%以上であることがより好ましい。
[0055] 図 1は、本発明のガスノ リア積層体の構成及び炭素含有率のパターンの一例を示 す模式図である。
[0056] 図 1は、基材 F上に、 2層のガズバリア層 G—l、 G— 2と 3層のポリマー層 P— 1、 P
- 2、 P— 3が積層された構成力らなるガスノリア積層体を示してある。
[0057] すなわち、基材 F上にポリマー層 P— 1を設け、その上にガズバリア層 G— 1を設け、 更に順次ポリマー層 P— 2、ガズバリア層 G— 2を積層し、最表層としてポリマー層 P— 3を設けた構成である。
[0058] 本発明では、基材に隣接して配置されたポリマー層の基材との接触界面における 炭素含有量を最も多い条件に設定することを特徴の一つとするが、図 1において、基 材 Fに隣接するポリマー層 P— 1の界面領域 C— 1 (ポリマー層 P— 1の総膜厚を tとし た時、 0. Itで表される界面領域)における平均炭素含有量が、ポリマー層 P— 1の界 面領域 C 1を除くその他の領域の平均炭素含有量より高いことを特徴とする。すな わち、断面図の右側に示す平均炭素含有量プロファイルからなる。
[0059] 同様に、ポリマー層とガスノリア層とが隣接して配置した際、それぞれの接触界面 におけるポリマー層の平均炭素含有量を最も少な 、ことを特徴とする力 図 1にお ヽ ては、ポリマー層 P— 1における界面領域 C 2、両面をガスバリア層 G— 1、 G— 2で 狭持されたポリマー層 P— 2における界面領域 C 3、 C 4、あるいはポリマー層 P— 3における界面領域 C 5の平均炭素含有率力 それぞれのポリマー層における平 均炭素含有率よりも低いことを特徴としており、断面図の右側に示すそれぞれの平均 炭素含有量プロファイルをとることとなる。
[0060] なお、最表層であるポリマー層 P— 3における炭素含有率のプロファイルとしては、 ガスバリア層 G— 2との界面領域が最も低い平均炭素含有率であれば、例えば、 a)で 示すように両表面が最も炭素含有率が低 、パターンでも、ある 、は b)で示すように界 面領域 G— 5が最も低 、平均炭素含有率で、表面の!/、くに従って平均炭素含有率が 高くなるパターンでもよい。
[0061] 本発明において炭素含有率を示す原子数濃度とは、下記の XPS法によって算出さ れるもので、以下に定義される。
[0062] 原子数濃度% (atomic concentration) =炭素原子の個数 Z全原子の個数 X 1 00
(XPSによるポリマー層の組成分析)
本発明に係るポリマー層の元素分析には、 XPS (X線光電子分光)表面分析装置 を用いてその値を測定することができる。 XPS表面分析装置は、本発明では、 VGサ イエンティフィックス社製 ESCALAB - 200Rを用 V、た。
[0063] 具体的には、 X線アノードには Mgを用い、出力 600W (加速電圧 15kV、エミッショ ン電流 40mA)で測定した。エネルギー分解能は、清浄な Ag3d5Z2ピークの半値 幅で規定したとき、 1. 5eV〜: L 7eVとなるように設定した。 [0064] 測定は、はじめにポリマー層表面の組成分析を行った後、順次ポリマー層の膜厚 の 10%厚さに相当する層をエッチング除去しながら測定した。ポリマー層の除去に は、希ガスイオンが利用できるイオン銃を用いることが好ましぐイオン種としては、 He 、 Ne、 Ar、 Xe、 Krなどが利用できる。本測定では、 Arイオンエッチングを用いて、順 次ポリマー層を除去した。
[0065] 測定としては、先ず、結合エネルギ OeV〜: L lOOeVの範囲を、データ取り込み間隔 1. OeVで測定し、いかなる元素が検出されるかを求めた。
[0066] 次に、検出された、エッチングイオン種を除く全ての元素について、データの取り込 み間隔を 0. 2eVとして、その最大強度を与える光電子ピークについてナロースキヤ ンをおこない、各元素のスペクトルを測定した。
[0067] 得られたスペクトルは、測定装置、あるいは、コンピュータの違いによる含有率算出 結果の違 、を生じせしめなくするために、 VAMAS - SCA— JAPAN製の COMM ON DATA PROCESSING SYSTEM (Ver. 2. 3以降が好ましい)上に転送 した後、同ソフトで処理をおこない、各分析ターゲットの元素 (炭素、酸素、ケィ素、チ タン等)の含有率の値を原子数濃度 (atomic concentration: at%)として求めた。
[0068] 定量処理をおこなう前に、各元素について Count Scaleのキャリブレーションをお こない、 5ポイントのスムージング処理をおこなった。定量処理では、バックグラウンド を除去したピークエリア強度(cps * eV)を用いた。ノ ックグラウンド処理には、 Shirle yによる方法を用いた。また、 Shirley法については、 D. A. Shirley, Phys. Rev. , Β5, 4709 (1972)を参考にすること力 Sできる。
[0069] 一般に、本発明に係るポリマー層の形成としては、蒸着、スパッタリング, CVD法( 化学蒸着)、プラズマ CVD法、大気圧または大気圧近傍の圧力下において実施され るプラズマ CVD法等のドライプロセスで形成することができる力 本発明のガズバリア 榭脂基材の製造方法にぉ 、ては、上記で規定する特定の炭素含有率プロファイル を有するポリマー層を形成するには、ポリマー層の少なくとも 1層、好ましくは全ての ポリマー層をプラズマ CVD法で形成することを特徴とし、更には、大気圧または大気 圧近傍の圧力下にお!/ヽて実施されるプラズマ CVD法 (以下、大気圧プラズマ CVD 法ともいう)を用いることが好ましい。なお、大気圧プラズマ CVD法の詳細については 、後述する。
[0070] CVD法では、混合する原料となるガスを任意の割合で混合することができるため、 複合薄膜を形成することが出来、更に、 CVD法では、複数の原料ガスの供給比率を 製膜中に連続的に変化させることにより、ポリマー層の炭素比率を連続的に変化させ ることが可能であり、好ましい。
[0071] プラズマ CVD法、大気圧プラズマ CVD法により得られる本発明に係るポリマー層 は、原材料 (原料ともいう)である無機ポリマー (含む有機金属化合物)、有機ポリマー あるいは無機有機ハイブリッドポリマーの種類、比率や、分解ガス、分解温度、投入 電力、電源の周波数などの条件を適宜選択することにより、極めて高い精度で炭素 含有率を制御することができる。本発明では、原料としてノリア層と同じ金属元素を 有する有機金属化合物を使用することで、特に高!ヽ密着性 ·屈曲耐性 ·環境耐性を 得ることができるため、好ましい。
[0072] これらの反応性ガスには、主にプラズマ状態になりやすい放電ガスを混合し、ブラ ズマ放電発生装置にガスを送りこむ。このような放電ガス (不活性ガス)としては、窒素 ガスおよび Zまたは周期表の第 18属原子、具体的には、ヘリウム、ネオン、アルゴン
、クリプトン、キセノン、ラドン等が用いられる。これらの中でも特に、窒素、ヘリウム、ァ ルゴンが好ましく用 、られる。
[0073] 上記放電ガスと反応性ガスを混合し、混合ガスとしてプラズマ放電発生装置 (ブラズ マ発生装置)に供給することで膜形成を行う。放電ガスと反応性ガスの割合は、得よう とする膜の性質によって異なる力 混合ガス全体に対し、放電ガスの割合を 50%以 上として反応性ガスを供給する。
[0074] ポリマー層の炭素含有率をコントロールする方法は、特に限定されないが、プラズ マ CVDで形成する場合は、その投入電力、反応性ガスの供給量、電源周波数等を 適宜変化させることによって可能である。投入電力は、大きい程炭素含有量は少なく なり、小さい程多くなる。反応ガス供給量は、大きい程炭素含有量は多くなり、小さい 程少なくなる。電源周波数は、大きい程炭素含有量は少なくなり、小さい程多くなる。
[0075] 《基材》
次いで、本発明に係る基材について説明する。 [0076] 本発明のガスノ リア積層体で用いる基材としては、特に制限はないが、透明の榭脂 基材であることが好ましぐセルローストリアセテート、セルロースジアセテート、セル口 ースアセテートプロピオネートまたはセルロースアセテートブチレートのようなセルロー スエステル、ポリエチレンテレフタレートやポリエチレンナフタレートのようなポリエステ ル、ポリエチレンやポリプロピレンのようなポリオレフイン、ポリ塩化ビ-リデン、ポリ塩 ィ匕ビュル、ポリビュルアルコール、エチレンビュルアルコールコポリマー、シンジォタ タティックポリスチレン、ポリカーボネート、ノルボルネン榭脂、ポリメチルペンテン、ポ リエーテルケトン、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリエーテルィ ミド、ポリアミド、フッ素榭脂、ポリメチルアタリレート、アタリレートコポリマー等を挙げる ことが出来る。
[0077] これらの素材は単独であるいは適宜混合されて使用することも出来る。中でもゼォ ネックスゃゼォノア(日本ゼオン (株)製)、非晶質シクロポリオレフイン榭脂フィルムの ARTON (ジヱイエスアール (株)製)、ポリカーボネートフィルムのピュアエース(帝人 (株)製)、セルローストリアセテートフィルムのコ-カタック KC4UX、 KC8UX (コ-力 ミノルタォプト (株)製)などの市販品を好ましく使用することが出来る。
[0078] また、本発明に用いられる基材は、上記の記載に限定されな 、。フィルム形状のも のの膜厚としては 10〜: LOOO μ mが好ましぐより好ましくは 40〜500 μ mである。
[0079] 本発明のガスノ リア積層体の水蒸気透過度としては、有機 ELディスプレイや高精 彩カラー液晶ディスプレイ等の高度の水蒸気バリア性を必要とする用途に用いる場 合、 JIS K7129 B法に従って測定した水蒸気透過度が 0. lgZm2Zday未満であ ることが好ましい。
[0080] 《プラズマ CVD法》
次いで、本発明のガスノ リア積層体の製造方法において、本発明に係るポリマー 層あるいはガスノ リア層の形成に好適に用 、ることのできるプラズマ CVD法及び大 気圧プラズマ CVD法について、更に詳細に説明する。
[0081] 本発明に係るプラズマ CVD法にっ ヽて説明する。
[0082] プラズマ CVD法は、プラズマ助成式化学的気相成長法、 PECVD法とも称され、 各種の無機物を、立体的な形状でも被覆性 ·密着性良ぐ且つ、基材温度をあまり高 くすることなしに製膜することができる手法である。
[0083] 通常の CVD法 (ィ匕学的気相成長法)では、揮発 *昇華した有機金属化合物が高温 の基材表面に付着し、熱により分解反応が起き、熱的に安定な無機物の薄膜が生成 されるというものである。このような通常の CVD法 (熱 CVD法とも称する)では、通常 5 00°C以上の基板温度が必要であるため、プラスチック基材への製膜には使用するこ とができない。
[0084] 一方、プラズマ CVD法は、基材近傍の空間に電界を印加し、プラズマ状態となった 気体が存在する空間 (プラズマ空間)を発生させ、揮発 '昇華した有機金属化合物が このプラズマ空間に導入されて分解反応が起きた後に基材上に吹きつけられること により、無機物の薄膜を形成するというものである。プラズマ空間内では、数%の高い 割合の気体がイオンと電子に電離しており、ガスの温度は低く保たれるものの、電子 温度は非常な高温のため、この高温の電子、あるいは低温ではあるがイオン'ラジカ ルなどの励起状態のガスと接するために無機膜の原料である有機金属化合物は低 温でも分解することができる。したがって、無機物を製膜する基材についても低温ィ匕 することができ、プラスチック基材上へも十分製膜することが可能な製膜方法である。
[0085] しかしながら、プラズマ CVD法にお!、ては、ガスに電界を印加して電離させ、プラ ズマ状態とする必要があるため、通常は、 0. 101kPa〜10. lkPa程度の減圧空間 で製膜していたため、大面積のフィルムを製膜する際には設備が大きく操作が複雑 であり、生産性の課題を抱えている方法である。
[0086] これに対し、大気圧近傍でのプラズマ CVD法では、真空下のプラズマ CVD法に比 ベ、減圧にする必要がなく生産性が高いだけでなぐプラズマ密度が高密度であるた めに製膜速度が速ぐ更には CVD法の通常の条件に比較して、大気圧下という高圧 力条件では、ガスの平均自由工程が非常に短いため、極めて平坦な膜が得られ、そ のような平坦な膜は、光学特性、ガスノリア性共に良好である。以上のことから、本発 明においては、大気圧プラズマ CVD法を適用すること力 真空下のプラズマ CVD法 よりも好まし ヽ。
[0087] 以下、大気圧或!、は大気圧近傍でのプラズマ CVD法を用いたポリマー層あるいは ガスノリア層を形成する装置について詳述する。 [0088] 本発明のガスバリア積層体の製造方法において、ポリマー層あるいはガスバリア層 の形成に使用されるプラズマ製膜装置の一例について、図 2〜図 5に基づいて説明 する。図中、符号 Fは基材の一例としての長尺フィルムである。
[0089] 図 2は、本発明に有用なジェット方式の大気圧プラズマ放電処理装置の一例を示し た概略図である。
[0090] ジェット方式の大気圧プラズマ放電処理装置は、プラズマ放電処理装置、二つの 電源を有する電界印加手段の他に、図 2では図示してない (後述の図 3に図示してあ る)が、ガス供給手段、電極温度調節手段を有している装置である。
[0091] プラズマ放電処理装置 10は、第 1電極 11と第 2電極 12から構成されている対向電 極を有しており、該対向電極間に、第 1電極 11からは第 1電源 21からの周波数 ω 、
1 電界強度 V、電流 Iの第 1の高周波電界が印加され、また第 2電極 12からは第 2電
1 1
源 22からの周波数 ω、電界強度 V、電流 Iの第 2の高周波電界が印加されるように
2 2 2
なっている。第 1電源 21は第 2電源 22より高い高周波電界強度 (V >V )を印加出
1 2 来、また第 1電源 21の第 1の周波数 ωは第 2電源 22の第 2の周波数 ωより低い周
1 2 波数を印加出来る。
[0092] 第 1電極 11と第 1電源 21との間には、第 1フィルタ 23が設置されており、第 1電源 2 1力 第 1電極 11への電流を通過しやすくし、第 2電源 22からの電流をアースして、 第 2電源 22から第 1電源 21への電流が通過しに《なるように設計されている。
[0093] また、第 2電極 12と第 2電源 22との間には、第 2フィルター 24が設置されており、第 2電源 22から第 2電極への電流を通過しやすくし、第 1電源 21からの電流をアースし て、第 1電源 21から第 2電源への電流を通過しにくくするように設計されて!、る。
[0094] 第 1電極 11と第 2電極 12との対向電極間(放電空間) 13に、後述の図 3に図示して あるようなガス供給手段カゝらガス Gを導入し、第 1電極 11と第 2電極 12から高周波電 界を印加して放電を発生させ、ガス Gをプラズマ状態にしながら対向電極の下側 (紙 面下側)にジェット状に吹き出させて、対向電極下面と基材 Fとで作る処理空間をブラ ズマ状態のガス G° で満たし、図示してない基材の元巻き(アンワインダー)から巻き ほぐされて搬送して来る力、あるいは前工程力も搬送して来る基材 Fの上に、処理位 置 14付近で薄膜を形成させる。薄膜形成中、後述の図 3に図示してあるような電極 温度調節手段から媒体が配管を通って電極を加熱または冷却する。プラズマ放電処 理の際の基材の温度によっては、得られる薄膜の物性や組成等は変化することがあ り、これに対して適宜制御することが望ましい。温度調節の媒体としては、蒸留水、油 等の絶縁性材料が好ましく用いられる。プラズマ放電処理の際、幅手方向あるいは 長手方向での基材の温度ムラが出来るだけ生じないように電極の内部の温度を均等 に調節することが望まれる。
[0095] ジェット方式の大気圧プラズマ放電処理装置を複数基接して直列に並べて同時に 同じプラズマ状態のガスを放電させることが出来るので、何回も処理され高速で処理 することも出来る。また各装置が異なったプラズマ状態のガスをジェット噴射すれば、 異なった層の積層薄膜を形成することも出来る。
[0096] 図 3は、本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電 処理装置の一例を示す概略図である。
[0097] 本発明に係る大気圧プラズマ放電処理装置は、少なくとも、プラズマ放電処理装置
30、二つの電源を有する電界印加手段 40、ガス供給手段 50、電極温度調節手段 6
0を有して!/、る装置である。
[0098] 図 3は、ロール回転電極 (第 1電極) 35と角筒型固定電極群 (第 2電極) 36との対向 電極間 (放電空間) 32で、基材 Fをプラズマ放電処理して薄膜を形成するものである
[0099] ロール回転電極 (第 1電極) 35と角筒型固定電極群 (第 2電極) 36との間の放電空 間(対向電極間) 32に、ロール回転電極 (第 1電極) 35には第 1電源 41から周波数 ω、電界強度 V、電流 Iの第 1の高周波電界を、また角筒型固定電極群 (第 2電極)
1 1 1
36には第 2電源 42から周波数 ω、電界強度 V、電流 Iの第 2の高周波電界をかけ
2 2 2
るようになっている。
[0100] ロール回転電極 (第 1電極) 35と第 1電源 41との間には、第 1フィルタ 43が設置され ており、第 1フィルタ 43は第 1電源 41から第 1電極への電流を通過しやすくし、第 2電 源 42からの電流をアースして、第 2電源 42から第 1電源への電流を通過しに《する ように設計されている。また、角筒型固定電極群 (第 2電極) 36と第 2電源 42との間に は、第 2フィルタ 44が設置されており、第 2フィルター 44は、第 2電源 42から第 2電極 への電流を通過しやすくし、第 1電源 41からの電流をアースして、第 1電源 41から第 2電源への電流を通過しに《するように設計されて!、る。
[0101] なお、本発明においては、ロール回転電極 35を第 2電極、また角筒型固定電極群 36を第 1電極としてもよい。何れにしろ第 1電極には第 1電源力 また第 2電極には第 2電源が接続される。第 1電源は第 2電源より高い高周波電界強度 (V >V )を印加
1 2 することが好ましい。また、周波数は ω < ωとなる能力を有している。
1 2
[0102] また、電流は Iく Iとなることが好ましい。第 1の高周波電界の電流 Iは、好ましくは
1 2 1
0. 3mAZcm2〜20mAZcm2、さらに好ましくは 1. OmAZcm2〜20mAZcm2で ある。また、第 2の高周波電界の電流 Iは、好ましくは 10mAZcm2〜100mAZcm2
2
、さらに好ましくは 20mAZcm2〜 1 OOmAZcm2である。
[0103] ガス供給手段 50のガス発生装置 51で発生させたガス Gは、流量を制御して給気口 52よりプラズマ放電処理容器 31内に導入する。
[0104] 基材 Fを、図示されて ヽな ヽ元卷き力も巻きほぐして搬送されて来る力 または前ェ 程から搬送されて来て、ガイドロール 64を経て-ップロール 65で基材に同伴されて 来る空気等を遮断し、ロール回転電極 35に接触したまま巻き回しながら角筒型固定 電極群 36との間に移送し、ロール回転電極 (第 1電極) 35と角筒型固定電極群 (第 2 電極) 36との両方から電界をかけ、対向電極間(放電空間) 32で放電プラズマを発 生させる。基材 Fはロール回転電極 35に接触したまま巻き回されながらプラズマ状態 のガスにより薄膜を形成する。基材 Fは、 -ップロール 66、ガイドロール 67を経て、図 示してない巻き取り機で巻き取る力 次工程に移送する。
[0105] 放電処理済みの処理排ガス G' は排気口 53より排出する。
[0106] 薄膜形成中、ロール回転電極 (第 1電極) 35及び角筒型固定電極群 (第 2電極) 36 を加熱または冷却するために、電極温度調節手段 60で温度を調節した媒体を、送 液ポンプ Pで配管 61を経て両電極に送り、電極内側から温度を調節する。なお、 68 及び 69はプラズマ放電処理容器 31と外界とを仕切る仕切板である。
[0107] 図 4は、図 3に示したロール回転電極の導電性の金属質母材とその上に被覆され て 、る誘電体の構造の一例を示す斜視図である。
[0108] 図 4において、ロール電極 35aは導電性の金属質母材 35Aとその上に誘電体 35B が被覆されたものである。プラズマ放電処理中の電極表面温度を制御するため、温 度調節用の媒体 (水もしくはシリコンオイル等)が循環できる構造となっている。
[0109] 図 5は、角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構 造の一例を示す斜視図である。
[0110] 図 5において、角筒型電極 36aは、導電性の金属質母材 36Aに対し、図 4同様の 誘電体 36Bの被覆を有しており、該電極の構造は金属質のパイプになっていて、そ れがジャケットとなり、放電中の温度調節が行えるようになつている。
[0111] なお、角筒型固定電極の数は、上記ロール電極の円周より大きな円周上に沿って 複数本設置されていおり、該電極の放電面積はロール回転電極 35に対向している 全角筒型固定電極面の面積の和で表される。
[0112] 図 5に示した角筒型電極 36aは、円筒型電極でもよいが、角筒型電極は円筒型電 極に比べて、放電範囲 (放電面積)を広げる効果があるので、本発明に好ましく用い られる。
[0113] 図 4及び図 5において、ロール電極 35a及び角筒型電極 36aは、それぞれ導電性 の金属質母材 35A及び 36Aの上に誘電体 35B及び 36Bとしてのセラミックスを溶射 後、無機化合物の封孔材料を用いて封孔処理したものである。セラミックス誘電体は 片肉で lmm程度被覆あればよい。溶射に用いるセラミックス材としては、アルミナ '窒 化珪素等が好ましく用いられる力 この中でもアルミナが加工し易いので、特に好まし く用いられる。また、誘電体層が、ライニングにより無機材料を設けたライニング処理 誘電体であってもよい。
[0114] 導電性の金属質母材 35A及び 36Aとしては、チタン金属またはチタン合金、銀、 白金、ステンレススティール、アルミニウム、鉄等の金属等や、鉄とセラミックスとの複 合材料またはアルミニウムとセラミックスとの複合材料を挙げることが出来るが、後述 の理由からはチタン金属またはチタン合金が特に好ましい。
[0115] 対向する第 1電極および第 2の電極の電極間距離は、電極の一方に誘電体を設け た場合、該誘電体表面ともう一方の電極の導電性の金属質母材表面との最短距離 のことを言う。双方の電極に誘電体を設けた場合、誘電体表面同士の距離の最短距 離のことを言う。電極間距離は、導電性の金属質母材に設けた誘電体の厚さ、印加 電界強度の大きさ、プラズマを利用する目的等を考慮して決定されるが、いずれの場 合も均一な放電を行う観点力 0. l〜20mmが好ましぐ特に好ましくは 0. 2〜2m mである。
[0116] 本発明に有用な導電性の金属質母材及び誘電体につ!、ての詳細につ 、ては後 述する。
[0117] プラズマ放電処理容器 31はパイレックス (登録商標)ガラス製の処理容器等が好ま しく用いられる力 電極との絶縁がとれれば金属製を用いることも可能である。例えば 、アルミニウムまたは、ステンレススティールのフレームの内面にポリイミド榭脂等を張 り付けても良ぐ該金属フレームにセラミックス溶射を行い絶縁性をとつてもよい。図 2 にお 、て、平行した両電極の両側面 (基材面近くまで)を上記のような材質の物で覆 うことが好ましい。
[0118] 本発明の大気圧プラズマ放電処理装置に設置する第 1電源 (高周波電源)としては 印加電源記号 メーカー 周波数 製品名
A1 神鋼電機 3kHz SPG3 -4500
A2 神鋼電機 5kHz SPG5 -4500
A3 春日電機 15kHz AGI-023
A4 神鋼電機 50kHz SPG50— 4500
A5 ハイデン研究所 100kHz * PHF-6k
A6 ノ ール工業 200kHz CF- 2000 - 200k
A7 ノール工業 400kHz CF— 2000— 400k等の市販のものを挙 げることが出来、何れも使用することが出来る。
[0119] また、第 2電源(高周波電源)としては、
印加電源記号 メーカー 周波数 製品名
B1 ノ ール工業 800kHz CF- 2000 -800k
B2 パール工業 2MHz CF— 2000— 2M
B3 ノ ール工業 13. 56MHz CF— 5000— 13M
B4 ノ ール工業 27MHz CF- 2000- 27M B5 パール工業 150MHz CF—2000—150M等の市販のものを 挙げることが出来、何れも好ましく使用出来る。
[0120] なお、上記電源のうち、 *印はハイデン研究所インパルス高周波電源 (連続モード で 100kHz)である。それ以外は連続サイン波のみ印加可能な高周波電源である。
[0121] 本発明においては、このような電界を印加して、均一で安定な放電状態を保つこと が出来る電極を大気圧プラズマ放電処理装置に採用することが好ましい。
[0122] 本発明において、対向する電極間に印加する電力は、第 2電極 (第 2の高周波電 界)に lWZcm2以上の電力(出力密度)を供給し、放電ガスを励起してプラズマを発 生させ、エネルギーを薄膜形成ガスに与え、薄膜を形成する。第 2電極に供給する電 力の上限値としては、好ましくは 50WZcm2、より好ましくは 20W/cm2である。下限 値は、好ましくは 1. 2WZcm2である。なお、放電面積(cm2)は、電極において放電 が起こる範囲の面積のことを指す。
[0123] また、第 1電極 (第 1の高周波電界)にも、 lWZcm2以上の電力(出力密度)を供給 することにより、第 2の高周波電界の均一性を維持したまま、出力密度を向上させるこ とが出来る。これにより、更なる均一高密度プラズマを生成出来、更なる製膜速度の 向上と膜質の向上が両立出来る。好ましくは 5WZcm2以上である。第 1電極に供給 する電力の上限値は、好ましくは 50WZcm2である。
[0124] ここで高周波電界の波形としては、特に限定されない。連続モードと呼ばれる連続 サイン波状の連続発振モードと、パルスモードと呼ばれる ONZOFFを断続的に行う 断続発振モード等があり、そのどちらを採用してもよいが、少なくとも第 2電極側 (第 2 の高周波電界)は連続サイン波の方がより緻密で良質な膜が得られるので好まし 、。
[0125] このような大気圧プラズマによる薄膜形成法に使用する電極は、構造的にも、性能 的にも過酷な条件に耐えられるものでなければならない。このような電極としては、金 属質母材上に誘電体を被覆したものであることが好ましい。
[0126] 本発明に使用する誘電体被覆電極にお!ヽては、様々な金属質母材と誘電体との 間に特性が合うものが好ましぐその一つの特性として、金属質母材と誘電体との線 熱膨張係数の差が 10 X 10—6Z°C以下となる組み合わせのものである。好ましくは 8 X 10— 6Z°C以下、更に好ましくは 5 X 10— 6Z°C以下、更に好ましくは 2 X 10— 6Z°C以 下である。なお、線熱膨張係数とは、周知の材料特有の物性値である。
[0127] 線熱膨張係数の差が、この範囲にある導電性の金属質母材と誘電体との組み合わ せとしては、
1:金属質母材が純チタンまたはチタン合金で、誘電体がセラミックス溶射被膜
2:金属質母材が純チタンまたはチタン合金で、誘電体がガラスライニング
3:金属質母材力 Sステンレススティールで、誘電体がセラミックス溶射被膜
4:金属質母材がステンレススティールで、誘電体がガラスライニング
5:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がセラミックス溶射被 膜
6:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がガラスライニング
7:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がセラミックス溶射 皮膜
8:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がガラスライニング 等がある。線熱膨張係数の差という観点では、上記 1項または 2項および 5〜8項が 好ましぐ特に 1項が好ましい。
[0128] 本発明において、金属質母材は、上記の特性からはチタンまたはチタン合金が特 に有用である。金属質母材をチタンまたはチタン合金とすることにより、誘電体を上記 とすることにより、使用中の電極の劣化、特にひび割れ、剥がれ、脱落等がなぐ過酷 な条件での長時間の使用に耐えることが出来る。
[0129] 本発明に適用できる大気圧プラズマ放電処理装置としては、上記説明し以外に、 例えば、特開 2004— 68143号公報、同 2003— 49272号公報、国際特許第 02Z4 8428号パンフレット等に記載されている大気圧プラズマ放電処理装置を挙げること ができる。
実施例
[0130] (実施例 1)
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定され るものではない。
[0131] 《ガスバリア積層体の作製》 〔ガスバリア榭脂材料 1の作製〕
基材として、厚さ 100 μ mのポリエチレンナフタレートフィルム(帝人'デュポン社製 フィルム、以下、 PENと略記する)上に、下記の大気圧プラズマ放電処理装置及び 放電条件で、図 1に記載の構成である 2層のガスノリア層と 3層のポリマー層とをそれ ぞれ交互に積層したガスノリア榭脂材料 1を作製した。
[0132] (大気圧プラズマ放電処理装置)
図 3の大気圧プラズマ放電処理装置を用い、誘電体で被覆したロール電極及び複 数の角筒型電極のセットを以下のように作製した。
[0133] 第 1電極となるロール電極は、冷却水による冷却手段を有するチタン合金 T64製ジ ャケットロール金属質母材に対して、大気プラズマ法により高密度、高密着性のアル ミナ溶射膜を被覆し、ロール径 1000mm φとなるようにした。一方、第 2電極の角筒 型電極は、中空の角筒型のチタン合金 T64に対し、上記同様の誘電体を同条件に て被覆し、対向する角筒型固定電極群とした。
[0134] この角筒型電極をロール回転電極のまわりに、対向電極間隙を lmmとして 25本配 置した。角筒型固定電極群の放電総面積は、 150cm (幅手方向の長さ) X 4cm (搬 送方向の長さ) X 25本(電極の数) = 15000cm2であった。なお、何れもフィルター は適切なものを設置した。
[0135] プラズマ放電中、第 1電極 (ロール回転電極)及び第 2電極 (角筒型固定電極群)が 80°Cになるように調節保温し、ロール回転電極はドライブで回転させて薄膜形成を 行った。
[0136] (第 1層:ポリマー層 P— 1の形成:大気圧プラズマ CVD法)
下記の条件で、プラズマ放電を行って、厚さ 200nmのポリマー層 P— 1を形成した
[0137] 〈ガス条件〉
放電ガス:ヘリウム 98. 9体積0 /0
薄膜形成性ガス:テトラエトキシシラン (以下、 TEOSと略記) 0. 1体積0 /0
(リンテック社製気化器にてアルゴンガスに混合して気化)
添加ガス:水素ガス 1体積% 〈ポリマー層成膜条件:第 2電極側の電源のみを使用した〉
第 2電極側 電源種類 B3
周波数 13. 56MHz
出力密度 表 2に記載の平均炭素含有量となるように、 1. 5W/cm2 から 3. 5WZcm2の間で、ガス供給時の出力条件を適宜制御した
(第 2層:ガスノリア層 G—1の形成:大気圧プラズマ CVD法)
下記の条件で、プラズマ放電を行って、厚さ 60nmのガスバリア層 G— 1を形成した
〈ガス条件〉
放電ガス:窒素 98. 9体積%
薄膜形成性ガス:テトラエトキシシラン 0. 1体積0 /0
(リンテック社製気化器にてアルゴンガスに混合して気化)
添加ガス:酸素ガス 1体積%
〈ガスバリア層成膜条件〉
第 1電極側 電源種類 A5
電界強度 8kVZmm
周波数 100kHz
出力密度 lWZcm2
第 2電極側 電源種類 B3
電界強度 0. 8kV/mm
周波数 13. 56MHz
出力密度 3WZcm2
(第 3層:ポリマー層 P— 2の形成:大気圧プラズマ CVD法)
下記の条件で、プラズマ放電を行って、厚さ 200nmのポリマー層 P— 2を形成した 〈ガス条件〉
放電ガス:アルゴン 98. 9体積0 /0
薄膜形成性ガス:テトラエトキシシラン (以下、 TEOSと略記) 0. 1体積0 /0 (リンテック社製気化器にてアルゴンガスに混合して気化)
添加ガス:水素ガス 1体積%
〈ポリマー層成膜条件:第 2電極側の電源のみを使用した〉
第 2電極側 電源種類 B3
周波数 13. 56MHz
出力密度 表 2に記載の平均炭素含有量となるように、 2WZcm2から
4WZcm2の間で、ガス供給時の出力条件を適宜制御した
(第 4層:ガスノリア層 G— 2の形成:大気圧プラズマ CVD法)
上記第 2層(ガスノリア層 G—1)と同様にして、厚さ 60nmのガスノリア層 G— 2を形 成した。
[0140] (第 5層:ポリマー層 P— 3の形成:大気圧プラズマ CVD法)
上記第 3層(ポリマー層 P— 2)と同様にして、厚さ 200nmのポリマー層 P— 3を形成 した。
[0141] 〔ガスノリア積層体 2〜4の作製〕
上記ガスノリア積層体 1の作製において、使用基材、各ガズバリア層及びポリマー 層の薄膜形成性ガスの種類を表 1に記載のように変更し、また、各ポリマー層の平均 炭素含有量が表 2に記載の条件となるように、テトラメチルシラン分圧を連続的に減 少させ、かわりに全圧が lOPaを維持するように窒素ガスを連続的に導入し、薄膜形 成性ガスの供給量を適宜調整した以外は同様にして、大気圧プラズマ CVD法により ガスノリア積層体 2〜4を作製した。
[0142] なお、各ポリマー層成膜時の条件は、以下の通りである。
[0143] 〈ガス条件〉
放電ガス:窒素 全ガス量が 100体積%となる量
薄膜形成性ガス:表 2に記載の条件となるように原料の供給量を適宜調整した (リンテック社製気化器にて窒素ガスに混合して気化)
具体的には、以下のように薄膜の堆積方向に、原料濃度を変化させた 試料2 ;?—1 ;0. 3 → 0. 1体積%
P- 2 ;0. 05 → 0. 25 → 0. 05体積0 /0 試料 3 ;P— 1 ;0. 5 → 0. 12体積0 /0
P- 2 ;0. 12 → 0. 5 → 0. 13堆積0 /0
試料 4 ;P— 1 ;0. 35 → 0. 05体積0 /0
P- 2 ;0. 1 → 0. 35 → 0. 1体積%
添加ガス:水素ガス 1体積%
〈ポリマー層成膜条件〉
第 1電極側 電源種類 A5
電界強度 8kVZmm
周波数 100kHz
出力密度 lWZcm2
第 2電極側 電源種類 B3
電界強度 0. 8kV/mm
周波数 13. 56MHz
出力密度 3WZcm2
〔ガスノ リア積層体 5の作製:真空プラズマ法〕
上記ガスノ リア積層体 1の層構成と同様にして、真空プラズマ法よりガスノ リア積層 体 5を作製した。
[0144] (第 1層:ポリマー層 P—1の形成)
真空蒸着装置の真空槽内に、基材として厚さ 125 /z mのクリアハードコート層を有 するポリエチレンテレフタレートフィルム(リンテック社製、以下 PETと略記する)をセッ トし、 10— 4Paまで真空脱気した後、テトラエトキシシラン (TEOS)、水素ガス及びヘリ ゥムガスを用い、印加電圧 (RFパワー) 100W、基材温度 180°Cの条件で、表 2に記 載の平均炭素含有量となるように原料の供給量を適宜調製しながら、厚さ 200nmの ポリマー層 p— 1を形成した。
[0145] (第 2層:ガスバリア層 G—1の形成)
真空蒸着装置の真空槽内に、基材上にポリマー層 P— 1を設けた上記試料をセット し、 10—4Paまで真空脱気した後、へキサメチルジシロキサン(以下、 HMDSOと略記 する)、水素ガス、ヘリウムガスを用いて、印加電圧 (RFパワー) 300W、基材温度 18 0°Cの条件で、厚さ 60nmの各ガスバリア層を形成した。
[0146] (第 3層:ポリマー層 P— 2の形成)
真空蒸着装置の真空槽内に、基材上にポリマー層 P— 1、ガスノ リア層 G— 1を設 けた上記試料をセットし、 10— 4Paまで真空脱気した後、薄膜形成性ガスとしてテトラエ トキシシラン (TEOS)、放電ガスとして水素を用いて、印加電圧 (RFパワー) 100W、 基材温度 180°Cの条件で、表 2に記載の平均炭素含有量となるように原材料の供給 量を適宜調製しながら、厚さ 200nmのポリマー層 P— 2を形成した。
[0147] (第 4層:ガスバリア層 G— 2の形成)
上記ガスノ リア層 G— 1の形成条件と同様にして、上記試料のポリマー層 P— 2上に 、ガスノ リア層 G— 2を形成した。
[0148] (第 5層:ポリマー層 P— 3の形成)
上記ポリマー層 P— 2の形成条件と同様にして、上記試料のガスノ リア層 G— 2上に 、ポリマー層 P— 3を形成した。
[0149] 〔ガスバリア積層体 6の作製〕
上記ガスノ リア積層体 1の層構成と同様にして、基材として厚さ 100 mのポリカー ボネートフィルム (帝人化成社製、以下、 PCと略記する)を用いて、下記の方法に従 つてガスノ リア積層体 6を作製した。
[0150] (第 1層:ポリマー層 P— 1の形成:蒸着法)
真空蒸着装置の真空槽内に、原料 1として Siターゲットを蒸着源に入れ、上記基材 をセットした。次いで、真空槽内を 10— 4Paまで真空脱気した後、蒸着源の抵抗加熱を 開始し、不純物の蒸発が完了したところで原料 2として 1, 10—デカンジオールアタリ レートを真空槽に供給しながら、蒸着シャッターを開き、表 2に記載の平均炭素含有 量となるように 1, 10—デカンジオールアタリレートの供給量を適宜調整しながら、厚 さ 200nmのポリマー層を蒸着した。その後、 500mj/cm2の積算光量の紫外線を照 射した。
[0151] (第 2層:ガスバリア層 G— 1の形成:電子線蒸着法)
真空蒸着装置の真空槽内に、蒸着源として Siターゲットを装着し、基材上にポリマ 一層 P—1を設けた上記試料をセットし、 10— 4Paまで真空脱気した後、電子線蒸着法 により 60nmのノ リア膜を形成した。
[0152] (第 3層:ポリマー層 P— 2の形成)
上記ポリマー層 P—1の形成条件と同様にし、上記試料のガスバリア層 G— 1上に、 表 2に記載の平均炭素含有量となるように 1, 10—デカンジオールアタリレートの供 給量を適宜調整しながら、厚さ 200nmのポリマー層 P— 2を蒸着した。
[0153] (第 4層:ガスバリア層 G— 2の形成)
上記ガスノ リア層 G— 1の形成条件と同様にして、上記試料のポリマー層 P— 2上に 、ガスノ リア層 G— 2を形成した。
[0154] (第 5層:ポリマー層 P— 3の形成)
上記ポリマー層 P— 2の形成条件と同様にして、上記試料のガスノ リア層 G— 2上に 、ポリマー層 P— 3を形成した。
[0155] 〔ガスバリア積層体 7の作製〕
上記ガスノ リア積層体 1の層構成と同様にして、基材として厚さ 100 mのポリェチ レンナフタレートフィルム(PEN)を用いて、下記の方法に従ってガスノ リア積層体 7 を作製した。
[0156] (ポリマー層 P— 1、 P— 2、 P— 3の形成:真空プラズマ法)
ガスノ リア積層体 5の作製に用いたポリマー層 P—l、 P— 2、 P— 3の形成 (真空プ ラズマ法)において、薄膜形成性ガスとして TEOSとメタクリル酸メチルに変更し、更 に、平均炭素含有量が表 2に記載の条件となるように、出力条件を適宜調整した以 外は同様にして、ポリマー層 P—l、 P— 2、 P— 3を形成した。
[0157] (ガスバリア層 G—l、 G— 2の形成:スパッタ法)
各所定の試料をスパッタ装置の真空槽内に、上記ポリマー層を形成した側に成膜 するようにセットし、 10— 4Pa台まで真空脱気し、真空槽内温度を 150°Cにした後、放 電ガスとしてアルゴンを分圧で 0. IPa導入、反応ガスとして酸素を分圧で 0. 008Pa 導入した。雰囲気圧力、温度が安定したところでスパッタ電力 2WZcm2にて放電を 開始し、 Siターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プ 口セスが安定したところでシャッターを開き、ポリマー層上へのガスバリア層の形成を 開始した。 60nmの膜が堆積したところでシャッターを閉じて成膜を終了した。 [0158] 〔ガスバリア積層体 8の作製〕
上記ガスノ リア積層体 1の作製において、各ポリマー層の形成を下記の真空プラズ マ法に変更した以外同様にして、ガスノ リア積層体 8を作製した。
[0159] (第 1層、第 3層、第 5層の各ポリマー層の形成:真空プラズマ法)
前記ガスバリア積層体 5の第 1層(ポリマー層 P— 1)の形成で用いた真空プラズマ 法において、薄膜形成性ガスを、 HMDSOに変更し、更に成膜開始力 終了までの 薄膜形成条件を一定にして行った以外は同様にして、各ポリマー層を形成した。
[0160] 〔ガスバリア積層体 9の作製〕
上記ガスノ リア積層体 2の作製にぉ 、て、各ポリマー層の形成を下記の塗布方法 に変更した以外同様にして、ガスノ リア積層体 9を作製した。
[0161] (第 1層、第 3層、第 5層の各ポリマー層の形成:塗布方法)
トリプロピレングリコールジアタリレート、へキサメチルジシロキサンを平均炭素含有 率が 72% (第 1層)あるいは 71% (第 3層、第 5層)となるように混合し、これに酢酸ェ チルで希釈した塗布液を調製し、この塗布液を基材、あるいはガスノ リア層上に、ヮ ィヤーバーを用いて乾燥膜厚が 0. 2 mとなる条件で塗布した後、 80°Cで 10分間 加熱乾燥して酢酸ェチルを除去し、次 、で 500mjZcm2の積算光量の紫外線を照 射した。
[0162] 〔ガスバリア積層体 10の作製〕
上記ガスノ リア積層体 6の作製において、基材を厚さ 100 μ mのポリエーテルスル ホンフィルム (住友ベークライト (株)製スミライト FS— 1300、以下 PESと略記する)に 変更し、更に、各ポリマー層の形成 (蒸着法)において、薄膜形成性材料をネオペン チルダリコール変性トリメチロールプロパンジアタリレート(KAYARAD R— 604、 日 本化薬社製)に変更し、かつ成膜開始力 終了までの薄膜形成条件を一定にして行 つた以外は同様にして、各ポリマー層を形成した。
[0163] 以上のようにして作製した各ガスノ リア積層体の構成を、表 1に示す。
[0164] なお、表 1に略称で記載の基材、原料、薄膜形成性材料の詳細は、以下の通りで ある。
[0165] 〈基材〉 PEN:ポリエチレンナフタレートフィルム(帝人 ·デュポン社製) 共重合 PC:共重合ポリカーボネートフィルム
ゼォノア:ゼォノア Z1420R、 日本ゼオン (株)製
PES:ポリエーテルスルホンフィルム(住友ベークライト(株)製スミライト FS— 1300) PET:クリアハードコート層付きポリエチレンテレフタレートフィルム(リンテック社製) PC:ポリカーボネートフィルム
〈原料〉
TEOS:テトラエトキシシラン
HMDSO:へキサメチノレジシロキサン
HMDSN:へキサメチルジシラザン
ポリマー 1:トリプロピレングリコールジアタリレート
ポリマー 2 :メタクリル酸メチル
ポリマー 3 :ネオペンチルグリコール変性トリメチロールプロパンジアタリレート *A: 1, 10—デカンジオールアタリレート
〈成膜方法〉
AGP:大気圧プラズマ CVD
[表 1]
Figure imgf000036_0001
* 1 :平均炭素含有量の制御方法 [0167] AGP :大気圧プラズマ法
《ガスバリア積層体のポリマー層の平均炭素量の測定》
上記作製したガスバリア積層体の各ポリマー層(厚さ 200nm)における平均炭素含 有率を、前述の方法に従って XPS表面分析装置として VGサイエンティフィックス社 製 ESCALAB— 200Rを用いて測定した。測定した領域は、最下部領域が表面から 20nmまでの領域 (領域 1)とし、それから厚さ 20nmの領域毎に最表部(180〜表面 )までの計 10領域にっ 、て測定を行 、、得られた結果を表 2に示す。
[0168] また、各ポリマー層の全域の平均炭素含有量についても前述の XPS測定を行い、 得られた結果を同様に表に示す。
[0169] [表 2]
ガスバリア 第 1層 :ポリマー層 P - 1の平均炭素含有量
Figure imgf000037_0001
[0170] 《ガスバリア積層体の評価》
〔評価 1 :未処理試料の評価〕
上記作製した各ガスノリア積層体にっ 、て、下記の各評価を行った c
[0171] (水蒸気透過率の測定) 水蒸気透過率は、 JIS K 7129Bで規定の方法に準拠して測定を行った。
[0172] (酸素透過率の測定)
酸素透過率は、 JIS K 7126Bで規定の方法に準拠して測定を行った。
[0173] (密着性の評価)
JIS K 5400に準拠した碁盤目試験を行った。形成された薄膜の表面に、片刃の 力ミソリを用いて、面に対して 90度で lmm間隔で縦横に 11本ずつの切り込みを入 れ、 lmm角の碁盤目を 100個作成した。この上に市販のセロファンテープを貼り付 け、その一端を手でもって垂直にはがし、切り込み線からの貼られたテープ面積に対 する薄膜の剥がされた面積の割合を測定し、下記の基準に従って密着性の評価を 行った。
[0174] ◎:全く剥離の発生が認められない
〇:剥離された面積割合が 0. 1%以上、 5%未満であった
△:剥離された面積割合が 5%以上、 10%未満であった
X:剥離された面積割合が 10%以上であった
〔評価 2:折り曲げ後試料の評価〕
上記作製した各ガスバリア積層体を、 300mm φの金属棒に、各構成層面が外側 になるように巻き付けた後、 5秒後に開放し、この操作を 10回繰り返して行った後、評 価 1と同様の方法で、水蒸気透過率、酸素透過率の測定と、密着性の評価を行った
[0175] 〔評価 3:保存性の評価 A〕
上記作製した各ガスバリア積層体を、 80°C、 90%RHの環境下で 1000時間保存 した後、評価 1と同様の方法で、水蒸気透過率、酸素透過率の測定と、密着性の評 価を行った。
[0176] 〔評価 4 :保存性の評価 B〕
上記作製した各ガスバリア積層体を、 90°C、 0%RHの環境下で 1000時間保存し た後、評価 1と同様の方法で、水蒸気透過率、酸素透過率の測定と、密着性の評価 を行った。
[0177] 以上により得られた結果を、表 3に示す。 [0178] [表 3]
Figure imgf000039_0001
* A:水蒸気透過率(gノ m /day)
* B:酸素透過率(mlZm . 24h · 1 at m)
[0179] 表 3に記載の結果より明らかなように、ポリマー層及びガスバリア層が積層され、本 発明で規定する平均炭素含有率プロファイルを有する本発明のガスバリア積層体は 、比較例に対し、折り曲げ試験後、あるいは過酷な環境下で長期間保存された後で も、水蒸気遮断効果、酸素遮断効果及び密着性に優れた性能が維持されていること が分かる。その中でも、ポリマー層及びガスノリア層を大気圧プラズマ CVD法で形成 したガスノリア積層体力 特に優れた効果を有して 、ることが分かる。
(実施例 2)
実施例 1で作製した各ガスノリア積層体をそれぞれ有機 EL用ディスプレイ基板とし て用い、その上に陽極電極を構成する透明電極、正孔輸送性を有する正孔輸送層、 発光層、電子注入層、および陰極となる背面電極が積層し、さらにこれら各層の上に エポキシ系封止材料 (スリーボンド (株)製エポキシ接着剤 3124C)で接着されたガラ ス缶で封止された OLEDを作製し (ガラス缶の内部にはジャパンゴァテックス製の乾 燥剤を入れた)、 60°C、 90%RH、 1000時間保存後の 50倍の拡大写真を撮影しダ ークスポットの発生を評価した。その結果、本発明の試料では、ダークスポットの発生 は認められな力つた力 比較の試料では、多数のダークスポットの発生が観察された 。以上のように本発明のガスバリア積層体は、水蒸気遮断効果、酸素遮断効果に優 れた性能が維持されて 、ることが分かる。
産業上の利用可能性
[0180] 本発明によれば、高いガスノリア性を備え、基材、ポリマー層及びガスノリア層間の 密着性が向上し、屈曲耐性及び環境耐性に優れたガスバリア積層体とその製造方 法を提供することができる。

Claims

請求の範囲
[1] 基材上に、少なくともガスノリア層とポリマー層とを有し、該ポリマー層の少なくとも 1 層が該ガスノリア層の少なくとも 1層に隣接し、該ポリマー層の該ガスノリア層との接 触界面における平均炭素含有量が、該ポリマー層の平均炭素含有量より小さいこと を特徴とするガスバリア積層体。
[2] 基材上に、少なくともガスノリア層とポリマー層とを有し、該ポリマー層の少なくとも 1 層と該基材とが隣接し、該ポリマー層の該基材との接触界面における平均炭素含有 量が、該ポリマー層の該接触界面以外の領域の平均炭素含有量より大きいことを特 徴とするガスバリア積層体。
[3] 基材上に、少なくともガスノリア層とポリマー層とを有し、該ポリマー層の少なくとも 1 層が該ガスノリア層の少なくとも 1層に隣接し、該ポリマー層の該ガスノリア層との接 触界面における平均炭素含有量が該ポリマー層の平均炭素含有量より小さぐかつ 該ポリマー層の少なくとも 1層と該基材とが隣接し、該ポリマー層の該基材との接触界 面における平均炭素含有量が、該ポリマー層の該接触界面以外の領域の平均炭素 含有量より大きいことを特徴とするガスバリア積層体。
[4] 前記ガスバリア層と前記ポリマー層とが交互に積層されていることを特徴とする請求 の範囲第 1項に記載のガスバリア積層体。
[5] 前記ガスバリア層に隣接する前記ポリマー層の炭素含有量が、厚さ方向で連続的 に変化していることを特徴とする請求の範囲第 1項に記載のガスバリア積層体。
[6] 前記基材に隣接する前記ポリマー層の炭素含有量が、厚さ方向で連続的に変化し ていることを特徴とする請求の範囲第 2項に記載のガスバリア積層体。
[7] 基材上に、ポリマー層を形成する工程、ガスノリア層を形成する工程を有し、かつ ポリマー層の少なくとも 1層をプラズマ CVD法で形成することを特徴とする請求の範 囲第 1項に記載のガスバリア積層体の製造方法。
[8] 基材上に、ポリマー層を形成する工程、ガスノリア層を形成する工程を有し、かつ 全てのポリマー層をプラズマ CVD法で形成することを特徴とする請求の範囲第 1項 に記載のガスバリア積層体の製造方法。
[9] 前記プラズマ CVD法が、大気圧または大気圧近傍の圧力下において実施されるこ とを特徴とする請求の範囲第 7項に記載のガスバリア積層体の製造方法。
[10] 前記ガスバリア層と前記ポリマー層とが交互に積層されていることを特徴とする請求 の範囲第 2項に記載のガスバリア積層体。
[11] 前記ガスバリア層と前記ポリマー層とが交互に積層されていることを特徴とする請求 の範囲第 3項に記載のガスバリア積層体。
[12] 前記ガスバリア層に隣接する前記ポリマー層の炭素含有量が、厚さ方向で連続的 に変化していることを特徴とする請求の範囲第 3項に記載のガスバリア積層体。
[13] 前記基材に隣接する前記ポリマー層の炭素含有量が、厚さ方向で連続的に変化し ていることを特徴とする請求の範囲第 3項に記載のガスバリア積層体。
[14] 基材上に、ポリマー層を形成する工程、ガスノリア層を形成する工程を有し、かつ ポリマー層の少なくとも 1層をプラズマ CVD法で形成することを特徴とする請求の範 囲第 2項に記載のガスバリア積層体の製造方法。
[15] 基材上に、ポリマー層を形成する工程、ガスノリア層を形成する工程を有し、かつ ポリマー層の少なくとも 1層をプラズマ CVD法で形成することを特徴とする請求の範 囲第 3項に記載のガスバリア積層体の製造方法。
[16] 基材上に、ポリマー層を形成する工程、ガスノリア層を形成する工程を有し、かつ 全てのポリマー層をプラズマ CVD法で形成することを特徴とする請求の範囲第 2項 に記載のガスバリア積層体の製造方法。
[17] 基材上に、ポリマー層を形成する工程、ガスノリア層を形成する工程を有し、かつ 全てのポリマー層をプラズマ CVD法で形成することを特徴とする請求の範囲第 3項 に記載のガスバリア積層体の製造方法。
[18] 前記プラズマ CVD法が、大気圧または大気圧近傍の圧力下において実施されるこ とを特徴とする請求の範囲第 14項に記載のガスバリア積層体の製造方法。
[19] 前記プラズマ CVD法が、大気圧または大気圧近傍の圧力下において実施されるこ とを特徴とする請求の範囲第 15項に記載のガスバリア積層体の製造方法。
[20] 前記プラズマ CVD法が、大気圧または大気圧近傍の圧力下において実施されるこ とを特徴とする請求の範囲第 8項に記載のガスバリア積層体の製造方法。
[21] 前記プラズマ CVD法が、大気圧または大気圧近傍の圧力下において実施されるこ とを特徴とする請求の範囲第 16項に記載のガスバリア積層体の製造方法。
前記プラズマ CVD法が、大気圧または大気圧近傍の圧力下にお ヽて実施されるこ とを特徴とする請求の範囲第 17項に記載のガスバリア積層体の製造方法。
PCT/JP2005/015710 2004-09-01 2005-08-30 ガスバリア積層体及びその製造方法 WO2006025356A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/574,048 US8748003B2 (en) 2004-09-01 2005-08-30 Gas barrier laminate and production method of the same
EP05781275A EP1785266A4 (en) 2004-09-01 2005-08-30 GASSPERRENM MULTILAYER BODY AND METHOD OF MANUFACTURING THEREOF
JP2006532698A JP5157169B2 (ja) 2004-09-01 2005-08-30 ガスバリア積層体、有機エレクトロルミネッセンス素子及びガスバリア積層体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-254022 2004-09-01
JP2004254022 2004-09-01

Publications (1)

Publication Number Publication Date
WO2006025356A1 true WO2006025356A1 (ja) 2006-03-09

Family

ID=36000008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015710 WO2006025356A1 (ja) 2004-09-01 2005-08-30 ガスバリア積層体及びその製造方法

Country Status (4)

Country Link
US (1) US8748003B2 (ja)
EP (1) EP1785266A4 (ja)
JP (2) JP5157169B2 (ja)
WO (1) WO2006025356A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226707A (ja) * 2008-03-21 2009-10-08 Tdk Corp 電子部品
JP2015229317A (ja) * 2014-06-06 2015-12-21 コニカミノルタ株式会社 ガスバリアーフィルムの製造方法及び有機エレクトロルミネッセンス素子
JP2018065328A (ja) * 2016-10-21 2018-04-26 コニカミノルタ株式会社 水蒸気バリア積層体及び有機エレクトロルミネッセンス素子

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009046947B4 (de) * 2009-11-20 2015-04-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Substrat mit stickstoffhaltiger plasmapolymerer Beschichtung, dessen Verwendung und Verfahren zu dessen Herstellung
EP3929326A3 (en) 2011-06-03 2022-03-16 Versum Materials US, LLC Compositions and processes for depositing carbon-doped silicon-containing films
US9884341B2 (en) 2011-08-12 2018-02-06 Massachusetts Institute Of Technology Methods of coating surfaces using initiated plasma-enhanced chemical vapor deposition
US9460912B2 (en) * 2012-04-12 2016-10-04 Air Products And Chemicals, Inc. High temperature atomic layer deposition of silicon oxide thin films
US20150275355A1 (en) * 2014-03-26 2015-10-01 Air Products And Chemicals, Inc. Compositions and methods for the deposition of silicon oxide films
CN107922657B (zh) * 2015-08-19 2020-07-17 3M创新有限公司 包括多层阻隔组件的复合材料制品及其制造方法
WO2017130568A1 (ja) * 2016-01-29 2017-08-03 富士フイルム株式会社 ガスバリアフィルムおよびガスバリアフィルムの製造方法
JP2017136827A (ja) * 2016-01-29 2017-08-10 富士フイルム株式会社 ガスバリアフィルムおよびガスバリアフィルムの製造方法
EP3680098A1 (de) * 2019-01-11 2020-07-15 Carl Freudenberg KG Verbundmaterial mit haftvermittlerschicht auf basis von si, c und o

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234566A (ja) * 1988-03-15 1989-09-19 Nikon Corp 着色物品
JPH05194770A (ja) * 1992-01-17 1993-08-03 Mitsubishi Kasei Corp 表面被覆プラスチックス製品
JPH10249990A (ja) * 1997-03-14 1998-09-22 Kishimoto Akira ガス遮断性及びフレキシビリティーに優れた積層体
JPH11129382A (ja) * 1997-10-30 1999-05-18 Toppan Printing Co Ltd 防汚性反射防止積層体およびその製造方法
JPH11513713A (ja) * 1995-10-13 1999-11-24 ザ ダウ ケミカル カンパニー コートされたプラスチック基材
JP2003340971A (ja) * 2002-05-24 2003-12-02 Dainippon Printing Co Ltd ガスバリア性プラスチックフィルム
JP2004124203A (ja) * 2002-10-04 2004-04-22 Konica Minolta Holdings Inc 薄膜形成方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217344A (ja) 1983-06-01 1983-12-17 旭化成ポリフレックス株式会社 バリヤ−性プラスチツク積層シ−ト
JPH05312953A (ja) 1992-05-06 1993-11-26 Nec Corp 光波測距システム
DE4438359C2 (de) * 1994-10-27 2001-10-04 Schott Glas Behälter aus Kunststoff mit einer Sperrbeschichtung
DE19808180A1 (de) 1998-02-26 1999-09-09 Bosch Gmbh Robert Kombinierte Verschleißschutzschicht, Verfahren zur Erzeugung derselben, die damit beschichteten Objekte und deren Verwendung
JPH11309804A (ja) * 1998-04-28 1999-11-09 Toppan Printing Co Ltd ガスバリア性フィルムおよびそれを用いた包装体
JPH11309815A (ja) * 1998-04-28 1999-11-09 Toppan Printing Co Ltd 撥水性ガスバリアフィルムおよびその製造方法および包装体
JP2000192246A (ja) 1998-10-16 2000-07-11 Sekisui Chem Co Ltd 傾斜機能材料の製造方法
WO2000026973A1 (en) * 1998-11-02 2000-05-11 Presstek, Inc. Transparent conductive oxides for plastic flat panel displays
JP4158265B2 (ja) * 1999-03-10 2008-10-01 凸版印刷株式会社 プラスチック容器の製造方法及び容器
US20030215652A1 (en) * 2001-06-04 2003-11-20 O'connor Paul J. Transmission barrier layer for polymers and containers
US6533408B1 (en) * 2001-06-21 2003-03-18 Eastman Kodak Company Ink jet printing method
JP4172230B2 (ja) 2001-12-25 2008-10-29 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス表示装置等に用いる基板および有機エレクトロルミネッセンス表示装置
EP2249413A3 (en) * 2002-04-01 2011-02-02 Konica Corporation Support and organic electroluminescence element comprising the support
JP4104383B2 (ja) 2002-06-05 2008-06-18 住友ベークライト株式会社 透明水蒸気バリアフィルム及びその製造方法
JP2004010992A (ja) * 2002-06-10 2004-01-15 Toppan Printing Co Ltd 積層体の製造方法
DE10258678B4 (de) 2002-12-13 2004-12-30 Schott Ag Schnelles Verfahren zur Herstellung von Multilayer-Barriereschichten
US7288311B2 (en) * 2003-02-10 2007-10-30 Dai Nippon Printing Co., Ltd. Barrier film
JP2005206646A (ja) 2004-01-20 2005-08-04 Mitsubishi Chemicals Corp 脂肪族ポリエステルの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234566A (ja) * 1988-03-15 1989-09-19 Nikon Corp 着色物品
JPH05194770A (ja) * 1992-01-17 1993-08-03 Mitsubishi Kasei Corp 表面被覆プラスチックス製品
JPH11513713A (ja) * 1995-10-13 1999-11-24 ザ ダウ ケミカル カンパニー コートされたプラスチック基材
JPH10249990A (ja) * 1997-03-14 1998-09-22 Kishimoto Akira ガス遮断性及びフレキシビリティーに優れた積層体
JPH11129382A (ja) * 1997-10-30 1999-05-18 Toppan Printing Co Ltd 防汚性反射防止積層体およびその製造方法
JP2003340971A (ja) * 2002-05-24 2003-12-02 Dainippon Printing Co Ltd ガスバリア性プラスチックフィルム
JP2004124203A (ja) * 2002-10-04 2004-04-22 Konica Minolta Holdings Inc 薄膜形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1785266A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226707A (ja) * 2008-03-21 2009-10-08 Tdk Corp 電子部品
JP2015229317A (ja) * 2014-06-06 2015-12-21 コニカミノルタ株式会社 ガスバリアーフィルムの製造方法及び有機エレクトロルミネッセンス素子
JP2018065328A (ja) * 2016-10-21 2018-04-26 コニカミノルタ株式会社 水蒸気バリア積層体及び有機エレクトロルミネッセンス素子

Also Published As

Publication number Publication date
JP5626308B2 (ja) 2014-11-19
EP1785266A1 (en) 2007-05-16
US20090053526A1 (en) 2009-02-26
JP5157169B2 (ja) 2013-03-06
JP2013063658A (ja) 2013-04-11
US8748003B2 (en) 2014-06-10
EP1785266A4 (en) 2011-03-16
JPWO2006025356A1 (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
JP5626308B2 (ja) ガスバリア積層体の製造方法及びガスバリア積層体
JP5267714B2 (ja) 透明ガスバリア性フィルムの製造方法および有機エレクトロルミネッセンス素子
JP4876918B2 (ja) 透明導電膜
JPWO2008096616A1 (ja) 透明ガスバリア性フィルム及びその製造方法
JPWO2008096615A1 (ja) 透明ガスバリア性フィルム及びその製造方法
JPWO2008096617A1 (ja) 透明ガスバリア性フィルム及び透明ガスバリア性フィルムの製造方法
JP2010185144A (ja) 誘電体被覆電極及びそれを用いたプラズマ放電処理装置
WO2012081555A1 (ja) ガスバリア積層体及びガスバリア積層体の製造方法
WO2006067952A1 (ja) ガスバリア性薄膜積層体、ガスバリア性樹脂基材、有機elデバイス
JP2006068992A (ja) ガスバリア性フィルム
WO2006075490A1 (ja) 透明ガスバリアフィルム
JP2007038445A (ja) ガスバリア性薄膜積層体、ガスバリア性樹脂基材及び有機エレクトロルミネッセンスデバイス
JPWO2008047549A1 (ja) 透明導電膜基板及びこれに用いる酸化チタン系透明導電膜の形成方法
JP2011036778A (ja) バリアフィルムの製造方法
JP2005272957A (ja) 表面処理方法及び該表面処理方法により表面処理された基材
JP5012745B2 (ja) ハードコート層付積層体
JP2011036803A (ja) バリアフィルムの製造方法
JP2006219721A (ja) 機能性フィルムの製造方法と機能性フィルムと表示素子と表示装置
US20140255288A1 (en) Gas barrier laminate and production method of the same
JP5719106B2 (ja) 透明ガスバリア性フィルム及び透明ガスバリア性フィルムの製造方法
JP4797318B2 (ja) 透明導電膜積層体及びその形成方法
JP5663875B2 (ja) ハードコート層付積層体
JP5482651B2 (ja) ハードコート層付積層体
JP4821324B2 (ja) 透明でガスバリア性の高い基材及びその製造方法
JP2006264094A (ja) ガスバリア性フィルム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006532698

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11574048

Country of ref document: US

Ref document number: 2005781275

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005781275

Country of ref document: EP