WO2006075490A1 - 透明ガスバリアフィルム - Google Patents

透明ガスバリアフィルム Download PDF

Info

Publication number
WO2006075490A1
WO2006075490A1 PCT/JP2005/023456 JP2005023456W WO2006075490A1 WO 2006075490 A1 WO2006075490 A1 WO 2006075490A1 JP 2005023456 W JP2005023456 W JP 2005023456W WO 2006075490 A1 WO2006075490 A1 WO 2006075490A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
film
layer
electrode
ceramic
Prior art date
Application number
PCT/JP2005/023456
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Fukuda
Hiroaki Arita
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2006552871A priority Critical patent/JPWO2006075490A1/ja
Publication of WO2006075490A1 publication Critical patent/WO2006075490A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for

Definitions

  • the present invention relates to a transparent gas barrier film used mainly for packaging materials such as foods and pharmaceuticals, packages for electronic devices, or display materials connected to plastic substrates such as organic-electric-luminescence elements and liquid crystals. .
  • a gas barrier film in which a metal oxide thin film such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film needs to block various gases such as water vapor and oxygen. It is widely used for packaging of products to prevent deterioration of food, industrial products and pharmaceuticals. In addition to packaging applications, it is used in liquid crystal display elements, solar cells, organic-electric-luminescence (EL) substrates, etc.
  • EL organic-electric-luminescence
  • Aluminum foil, etc. is widely used as a packaging material in such fields.
  • waste disposal after use is a problem, and it is basically opaque.
  • transparency is required for display materials, and it cannot be applied at all.
  • polysalt vinylidene resin or a copolymer resin of salt vinylidene and other polymers, or these salt vinyl-redene type resins are converted into polypropylene resin,
  • a material that has been coated with polyester resin or polyamide resin to impart gas-nore properties is a widely used force especially as a packaging material. Chlorine gas is generated during the incineration process. At present, it is a problem, and the gas nooriety is not always sufficient, and it cannot be applied to fields that require high barrier properties.
  • transparent substrates that have been applied to liquid crystal display elements, organic EL elements, etc. have high long-term reliability and high degree of freedom in addition to the demands for weight reduction and size increase in recent years.
  • film base materials such as transparent plastics have begun to be used in place of glass substrates that are heavy and easily broken.
  • JP-A-2-251429 and JP-A-6-124785 disclose an example in which a polymer film is used as a substrate of an organic electoluminescence device.
  • a film substrate such as a transparent plastic is inferior in gas barrier property to glass.
  • a substrate with poor gas barrier properties when used as a substrate for an organic electoluminescence device, the organic film deteriorates due to the penetration of water vapor or air, leading to a loss of light emission characteristics or durability.
  • a high molecular substrate when used as a substrate for an electronic device, oxygen permeates the polymer substrate and permeates and diffuses into the electronic device, which deteriorates the device or is required in the electronic device. This causes problems such as inability to maintain the degree of vacuum.
  • Patent Document 3 Japanese Patent Publication No. 53-12953
  • Patent Document 2 JP-A-58-217344
  • Patent Document 3 U.S. Pat.No. 6,268,695
  • the present invention has been made in view of the above problems, its object is a water vapor transmission rate 10- 7 g / m 2 / day order, also in oxygen permeability 10- 5 cm 3 / m 2 / day The object is to provide a transparent gas noria film having an orderly barrier property.
  • a layer having a lower elastic modulus than the ceramic layer is LGPa ⁇ 10GPa, and, transparency Gasuno rear film, wherein the water vapor permeability coefficient is 1 X 10- 4 g'mZm 2 Zday ⁇ l X 10- 3 g'mZm 2 Zday.
  • the oxygen permeability coefficient of the layer with lower elastic modulus than the ceramic layer is 1 X 10 " 2 cm 3 -m / m 2 Zday ⁇ l X
  • FIG. 1 is a schematic view showing the concept of the layer structure of a transparent gas barrier film of the present invention.
  • FIG. 2 is a schematic view showing an example of a jet-type atmospheric pressure plasma discharge treatment apparatus useful for the present invention.
  • FIG. 3 is a schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus of a method for treating a substrate between counter electrodes useful for the present invention.
  • FIG. 4 is a perspective view showing an example of a structure of a conductive metallic base material of the roll rotating electrode shown in FIG. 3 and a dielectric material coated thereon.
  • FIG. 4 is a perspective view showing an example of a structure of a conductive metallic base material of the roll rotating electrode shown in FIG. 3 and a dielectric material coated thereon.
  • FIG. 5 is a perspective view showing an example of the structure of a conductive metallic base material of a rectangular tube electrode and a dielectric material coated thereon.
  • FIG. 6 is a conceptual diagram of a roll electrode type discharge treatment apparatus (atmospheric pressure plasma film forming apparatus) in which a sample of an example is prepared.
  • the present inventor has at least two ceramics layers (films) on a base material, and the ceramic layer is interposed between the ceramic layers (films).
  • LGPa the elastic modulus of the low elastic modulus than the ceramic layer layers: a log Pa
  • the ceramic layer according to the present invention is not particularly limited as long as it is a gas-noble layer that prevents permeation of oxygen and water vapor.
  • Specific examples of materials constituting the ceramic layer of the present invention include silicon oxide, aluminum oxide, silicon oxynitride, aluminum oxynitride, magnesium oxide, zinc oxide, and zinc indium, which are preferable inorganic oxides. And ceramic materials such as tin oxide.
  • the thickness of the ceramic layer in the present invention varies depending on the type and configuration of the ceramic material used, and is preferably in the range of 5 to 2000 nm force selected as appropriate. Thickness force of the ceramic layer If it is thinner than the above range, a uniform film can be obtained. This is because it is difficult to obtain a gas-relative nature. In addition, when the thickness of the ceramic layer is larger than the above range, it is difficult to maintain flexibility in the gas noor film, and the gas barrier film is cracked due to external factors such as bending and pulling after the film formation. It is also a force that may occur.
  • the range of the elastic modulus of the layer having a lower elastic modulus than the ceramic layer is preferably 1Z5 or less, more preferably 1Z10 or less with respect to the ceramic layer. If it is higher than this range, the flexibility is lowered, and when the substrate is bent, micro-cracks are formed in the NORA layer, and the barrier property is deteriorated.
  • the ceramic layer according to the present invention is prepared by spraying raw materials, which will be described later, a spray method, a spin coating method, a sputtering method, an ion assist method, a plasma CVD method, which will be described later, a plasma under atmospheric pressure or a pressure near atmospheric pressure, which will be described later. It can be formed by applying a CVD method or the like.
  • the film is formed by a plasma CVD method or the like.
  • the atmospheric pressure plasma CVD method does not require a decompression chamber and the like, and high-speed film formation can be achieved.
  • the point of film forming method is because it is possible to form a film having uniform and smooth surface relatively easily by forming the gas noble layer by the atmospheric pressure plasma CVD method.
  • the atmospheric pressure plasma CVD method is a plasma CDV method under atmospheric pressure or a pressure near atmospheric pressure, and details of the layer formation conditions using the atmospheric pressure plasma CVD method will be described later.
  • the ceramic layer (film) obtained by the plasma CVD method, or the plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure is a gas-nootropic layer and is an organic metal compound that is a raw material (also referred to as a raw material).
  • Metal carbide, metal nitride, metal oxide, metal sulfide, metal halide, and mixtures thereof metal oxynitride, metal Oxide halides, metal nitride carbides, etc.
  • silicon oxide is generated.
  • zinc sulfate is produced. This is because highly active charged particles and active radicals exist in the plasma space at a high density, so that multistage chemical reactions are accelerated very rapidly in the plasma space, and the elements present in the plasma space are heated. This is because it is converted into a mechanically stable compound in a very short time.
  • Examples of such inorganic raw materials include organometallic compounds. As long as they contain a typical or transition metal element, they may be in a gas, liquid, or solid state at normal temperature and pressure. In the case of gas, it can be introduced into the discharge space as it is, but in the case of liquid or solid, it is vaporized by means such as calorie heat, publishing, reduced pressure, or ultrasonic irradiation.
  • organic solvents such as methanol, ethanol, n-hexane, and mixed solvents thereof can be used as a solvent that can be diluted with a solvent. Since these diluted solvents are decomposed into molecular and atomic forms during the plasma discharge treatment, the influence can be almost ignored.
  • organometallic compounds examples include silane, tetramethoxysilane, tetraethoxysilane, tetra n-propoxy silane, tetraisopropoxy silane, tetra-n-butoxy silane, tetra-butoxy silane, dimethyl, and the like.
  • titanium compound examples include titanium methoxide, titanium ethoxide, titanium isopropoxide, titanium tetraisoporopoxide, titanium n-butoxide, titanium diisopropoxide (bis 2, 4 pentanedionate), Examples thereof include titanium diisopropoxide (bis 2,4 ethyl acetoacetate), titanium di n-butoxide (bis 1,4 pentane dionate), titanium acetyl cetate, butyl titanate dimer, and the like.
  • zirconium compound zirconium n- propoxide, zirconium n- butoxy Sid, zirconium t- butoxide, zirconium tri - n- butoxide acetyl ⁇ Seto Natick DOO, zirconium di n - butoxide bis ⁇ cetyl ⁇ Seto sulfonates, zirconium Acetylacetonate, zirconium acetate, zirconium hexafluoropentanedionate and the like.
  • Examples of the aluminum compound include aluminum ethoxide, aluminum triisopropoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum s butoxide, aluminum t-butoxide, aluminum acetylethylacetonate, triethyldiary minimum s -butoxide. Etc.
  • the boron compound includes diborane, tetraborane, boron fluoride, boron chloride, boron bromide, borane-jetyl ether complex, borane-THF complex, borane-dimethylsulfide complex, boron trifluoride jetyl.
  • Examples include ether complexes, triethylborane, trimethoxyborane, triethoxyborane, tri (isopropoxy) borane, borazole, trimethylborazole, triethylborazole, triisopropylborazole, and the like.
  • tin compound examples include tetraethyltin, tetramethyltin, dibutyl acetate, tetrabutyltin, tetraoctyltin, tetraethoxytin, methyltriethoxytin, and jetinorezier.
  • Examples of the settinate, ethoxytin acetoacetonate, dimethyltin diacetatetonate, tin-hydrogen compounds, etc., and tin halides include tin dichloride and tetrasalt tigtin.
  • organometallic compounds for example, antimony ethoxide, arsenic triethoxide, norlium 2, 2, 6, 6-tetramethylheptanedionate, beryllium acetylacetate, bismuth hexaful.
  • Olopentanedionate dimethylcadmium, calcium 2, 2, 6, 6-tetramethylheptanedionate, chromium trifluoropentanedioate, cobalt acetylacetonate, copper hexafluoropentane Zionate, Magnesium Hexafluoropentanedionate-dimethyl ether complex, Gallium ethoxide, Tetraethoxygermane, Tetramethoxygermane, Hafnium t-Budoxide, Hafnium ethoxide, Indium acetylethylacetonate, Indium 2, 6 Dimethylamino heptane dionate, Hue mouth Lanthanum isopropoxide, lead acetate, tetraethyl lead, neodymium acetyl cetate, platinum hexafluoropentane dionate, trimethyl cyclopentagel platinum, rhodium dicarboxy
  • a decomposition gas for decomposing a raw material gas containing these metals to obtain an inorganic compound hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia Gas, nitrous oxide gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, water vapor, fluorine gas, hydrogen fluoride, trifluoroalcohol, trifluorotoluene
  • a source gas containing a metal element and a decomposition gas By appropriately selecting a source gas containing a metal element and a decomposition gas, various metal carbides, metal nitrides, metal oxides, metal halides, metal sulfides and other ceramic films (layers) are obtained. be able to. [0038] A discharge gas that is likely to be in a plasma state is mixed with these reactive gases, and the gas is sent to a plasma discharge generator.
  • nitrogen gas and Z or a group 18 atom of the periodic table specifically, helium, neon, argon, krypton, xenon, radon and the like are used. Of these, nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferred because of its low cost.
  • the discharge gas and the reactive gas are mixed, and a film is formed by supplying the mixed gas as a mixed gas to a plasma discharge generator (plasma generator).
  • the ratio of the discharge gas and the reactive gas varies depending on the properties of the film to be obtained.
  • the reactive gas is supplied with the ratio of the discharge gas to 50% or more of the entire mixed gas.
  • the inorganic compound constituting the ceramic layer according to the present invention includes, for example, the above-mentioned organosilicon compound and oxygen gas or nitrogen gas in a predetermined ratio, and at least one of O atom and N atom.
  • a film containing Si atoms can be obtained.
  • SiO is highly transparent
  • each ceramic layer preferably has a light transmittance T of 80% or more in the visible light region (360 nm to 700 nm).
  • the specific ratio of oxygen and nitrogen atoms can be determined according to the application.
  • xZ (x + y) is 0.4 or more and 0.95 or less. If it exists, it is preferable because a balance between light transmission and waterproofing can be achieved.
  • the display device For applications where it is preferable to absorb or shield light such as an anti-reflection film provided on the rear surface of the optical element, xZ (x + y) is preferably 0 or more and less than 0.4.
  • the ceramic layer according to the present invention is transparent, that is, in the visible light region (360 ⁇ ! To 7
  • the light transmittance T is 80% or more.
  • the transparent ceramic layer makes it possible to make the gas nolia film transparent.
  • the formed ceramic film becomes rough and the gas permeability increases. For this reason, since the ceramic layer is composed of the above-described compound, the carbon content in the ceramic layer is kept low, so that the bonding between oxygen and silicon is not hindered, and the gas has a high barrier property. It becomes possible to grant.
  • various ceramic thin films can be formed by using the above-described source gas together with the discharge gas.
  • examples of the layer having a lower elastic modulus than the ceramic layer include a layer containing a polymer.
  • the elastic modulus of the layer having a lower elastic modulus than the ceramic layer according to the present invention is in the range of lGPa to 10 GPa, and the water vapor transmission coefficient is 1 X 10 _4 g'mZm 2 Zday to l X 10 " 3 gm / m 2 Zday range.
  • the oxygen permeability coefficient of the layer having a lower elastic modulus than the ceramic layer is in the range of 1 X 10 " 2 cm 3 -m / m 2 Zday to l X 10 _1 cm 3 'm / m 2 / day. preferable.
  • the elastic modulus can be measured by a thin film physical property evaluation apparatus MH4000 manufactured by NEC Sanei Co., Ltd.
  • a triangular pyramid diamond indenter with an opposite ridge angle of 80 ° is pushed into a sample that supports both ends with a dedicated sample table. Obtained from load change and indentation depth. In this application, it is a measured value at a temperature of 25 ° C.
  • the water vapor transmission coefficient, and you'll manufactured by MOCON water vapor transmission rate measuring device PERMATR AN-W3 / 33 MG module etc. can be measured using (temperature 40 ° C, relative humidity difference 90% RH) 0 Measurement
  • a substrate with a thin film for example, polyethylene terephthalate ( The water vapor transmission rate of the PET film) and then the water vapor transmission rate of the substrate itself was measured by the method described in JIS—K 7 129B (40 ° C., 90% RH).
  • the water vapor transmission coefficient of the thin film is calculated by calculation from the excess rate, the thickness of the thin film, and the thickness of the substrate.
  • the oxygen permeability coefficient of the base material for example, polyethylene terephthalate (PET) film
  • PET polyethylene terephthalate
  • OX-T RAN2Z21 'L type manufactured by Mocon Measure the oxygen permeability according to JIS-K-7126 (20 ° C, 100% RH), measure the oxygen permeability of the substrate itself, and determine the thickness of the thin film from the water vapor permeability obtained.
  • the oxygen permeability coefficient of the thin film can be calculated by the same calculation.
  • the layer containing a polymer according to the present invention is a polymer thin film mainly composed of an inorganic polymer, an organic polymer, an organic inorganic inorganic material, an hybrid polymer, etc., located between the ceramic layers.
  • the layer is approximately 5 to 500 nm thick and has a low hardness relative to the aforementioned gas barrier ceramic layer, and is also called a stress relaxation layer.
  • the polymer thin film is an inorganic polymer and is composed of a ceramic material similar to the ceramic layer, the average carbon content in the ceramic is 5% (atomic concentration%) or more.
  • the inorganic polymer applicable in the present invention is a film having an inorganic skeleton as a main structure and containing an organic component, and includes a polymer obtained by polymerizing an organometallic compound.
  • These inorganic polymers are not particularly limited, and examples thereof include silicone and polysilazane.
  • a boron compound, a phosphorus compound, or a tin compound can be used.
  • These polymer layers according to the present invention can be formed by a wet process such as a sol-gel method, vapor deposition, sputtering, CVD method (chemical vapor deposition), plasma CVD method, atmospheric pressure or pressure near atmospheric pressure. It can be formed by using a dry process such as a plasma CVD method and using the raw material compound, but the plasma CVD method is used in the production of the gas noor film of the present invention. It is preferable to form by the plasma CVD method using the preferable silicon compound, titanium compound, or aluminum compound. In particular, it is preferable to use a silicon compound.
  • the silicon compound that can be used in the present invention is not particularly limited, but preferred are tetramethylsilane, trimethylmethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, trimethylethoxysilane, dimethyljetoxysilane, Methyltriethoxysilane, tetramethoxysilane, tetramethoxysilane, hexamethyldisiloxane (HMDSO), hexamethyldisilazane, 1,1-dimethyl-1-silacyclobutane, trimethylvinylsilane, methoxydimethylvinylsilane, trimethoxyvinylsilane, Tiltrimethoxysilane, dimethyldivinylsilane, dimethylethoxysilane Ninoresilane, diacetoxydimethylenosilane, dimethoxymethinole 3, 3, 3—Trifnore 3, 3, 3-trifluor
  • the polymer layer according to the present invention is formed from these silicon compounds, in the above production, it is necessary that the layer is relatively low in hardness relative to the ceramic layer, and these are used as raw materials.
  • the average carbon content in the formed ceramic layer is preferably 5.0% (atomic concentration%) or more! /.
  • the organic polymer can be produced using a known polymerizable organic compound. These polymerizable organic compounds can be obtained by casting them on a substrate on which a polymer layer is to be formed, and then polymerizing and crosslinking with light and heat.
  • a polymerizable ethylenically unsaturated bond-containing compound having an ethylenically unsaturated bond in the molecule is preferred.
  • polyfunctional monomers and polyfunctional oligomers having a plurality of addition-polymerizable ethylenic double bonds in a molecule generally used for resins cured by heat, ultraviolet rays, or the like can be used.
  • polymerizable ethylenic double bond-containing compounds are not particularly limited, but preferred examples include 2-ethyl hexyl acrylate, 2-hydroxypropyl acrylate, glycerol acrylate, tetrahydro Furfuryl acrylate, fenoxetyl acrylate, nourphenoxy cetyl acrylate, tetrahydrofurfuryl oxychelate acrylate, tetrahydrofurfuryloxyhexanolide acrylate, 1,3 dioxane alcohol with ⁇ - strength prolatatone Monofunctional acrylates such as pork acrylate, 1,3 dixolane atrelate, or methacrylic acid, itaconic acid, croton, etc., where these acrylates are replaced with metatalate, itaconate, crotonate, maleate Acid, maleic acid Tellurium, e.g., ethylene glycol diatalate, triethylene darcol diatalate, pentaeryth
  • prepolymers can be used in the same manner as described above.
  • One or two or more kinds of prepolymers may be used in combination, or may be used in admixture with the above-mentioned monomer and soot or oligomer.
  • Examples of the prepolymer include adipic acid, trimellitic acid, maleic acid, phthalic acid, terephthalic acid, hymic acid, malonic acid, succinic acid, glutaric acid, itaconic acid, pyromellitic acid, fumaric acid, and glutaric acid.
  • an organic substance capable of plasma polymerization is used as a thin film-forming gas by the atmospheric pressure plasma CVD method, and this is used as a reactive gas for plasma polymerization. Can be easily formed.
  • the organic substance that can be polymerized by plasma include hydrocarbons, vinyl compounds, halogen-containing compounds, and nitrogen-containing compounds.
  • hydrocarbon examples include ethane, ethylene, methane, acetylene, cyclohexane, benzene, xylene, phenol acetylene, naphthalene, propylene, camphor, menthol, toluene, isobutylene, and the like.
  • Examples of the bur compound include acrylic acid, methyl acrylate, and ethyl acrylate.
  • halogen-containing compounds include tetrafluoromethane, tetrafluoroethylene, and hexafluoropropylene.
  • Examples of the nitrogen-containing compound include pyridine, arylamine, butylamine, atta-tolyl, acetonitrile, benzo-tolyl, meta-tolyl-tolyl, and aminobenzene.
  • the polymer layer according to the present invention may be formed by vapor deposition, sputtering, CVD method (chemical vapor deposition), plasma CVD method, or dry method such as plasma CVD method performed under atmospheric pressure or near atmospheric pressure. Force that can be formed by the process In the production of the gas nolia film of the present invention, at least one, preferably all of the polymer layers, among the polymer layers having a lower elastic modulus than the ceramic layer, located between the ceramic layers, are formed. It is preferable to use the plasma CVD method, and it is also possible to use a plasma CVD method (hereinafter referred to as an atmospheric pressure plasma CVD method) performed under atmospheric pressure or pressure near atmospheric pressure. preferable. Details of the atmospheric pressure plasma CVD method will be described later.
  • a reactive gas is mixed with a discharge gas that is likely to be in a plasma state, and the gas is sent to a plasma discharge generator.
  • a discharge gas inert gas
  • nitrogen gas and Z or a group 18 atom of the periodic table specifically, helium, neon, argon, krypton, xenon, radon, etc. are used.
  • nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferred because of its low cost.
  • the discharge gas and the reactive gas are mixed and supplied to a plasma discharge generator (plasma generator) as a mixed gas to form a film.
  • a plasma discharge generator plasma generator
  • the ratio of the discharge gas and the reactive gas varies depending on the properties of the film to be obtained.
  • the reactive gas is supplied with the ratio of the discharge gas to 50% or more of the entire mixed gas.
  • the substrate is not particularly limited as long as it is a film or sheet formed of an organic material capable of holding the above-described ceramic layer having a barrier property and a gas barrier layer composed of a polymer-containing layer. Absent.
  • a homopolymer such as ethylene, polypropylene, butene, or a polyolefin (PO) resin such as a copolymer or copolymer, or an amorphous polyolefin resin such as cyclic polyolefin (APO).
  • PO polyolefin
  • APO cyclic polyolefin
  • a rosin composition comprising an acrylate compound having a radical-reactive unsaturated compound, and a mercapto compound having a thiol group and the acrylate resin compound.
  • a photocurable resin such as a resin composition in which an oligomer such as epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, etc. is dissolved in a polyfunctional acrylate salt, and a mixture thereof Etc. can also be used.
  • ZE NEX ZEONOR (manufactured by ZEON CORPORATION), ARTON (manufactured by GSJ), amorphous cyclopolyolefin resin film, Pure Ace of polycarbonate film (manufactured by Teijin), cellulose triacetate film
  • K-KATAK KC4UX and KC8UX manufactured by Koryo Minoltaput Co., Ltd.
  • the substrate is preferably transparent. Since the base material is transparent and the layer formed on the base material is also transparent, it becomes possible to make a transparent gas noorie film, so it becomes possible to make a transparent substrate such as an organic EL element. It is.
  • the base material of the present invention using the above-described resin or the like may be an unstretched film or a stretched film.
  • the film to be the base material in the present invention can be produced by a conventionally known general method.
  • an unstretched substrate that is substantially amorphous and not oriented can be produced by melting the resin as a material with an extruder, extruding it with an annular die or T-die and quenching it.
  • the unstretched base material can be processed in the direction of the base material (vertical axis) by known methods such as -axial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, and tubular-type simultaneous biaxial stretching.
  • a stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis).
  • the stretching ratio in this case can be appropriately selected according to the resin used as the raw material of the base material, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
  • the gas-nore thin film according to the present invention is used.
  • surface treatment such as corona treatment, flame treatment, plasma treatment, glow discharge treatment, roughening treatment, chemical treatment, etc. may be performed.
  • an anchor coating agent layer may be formed on the surface of the substrate according to the present invention for the purpose of improving the adhesion to the gas barrier thin film.
  • the anchor coating agent used in this anchor coating agent layer includes polyester resin, isocyanate resin, urethane resin, talyl resin, ethylene butyl alcohol resin, butyl modified resin, epoxy resin, modified styrene resin.
  • One, two or more kinds of fat, modified silicone resin, alkyl titanate, etc. can be used in combination.
  • Conventionally known additives can be added to these anchor coating agents.
  • the above anchor coating agent is coated on the substrate by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by removing the solvent, diluent, etc. by drying. be able to.
  • the application amount of the anchor coating agent is preferably about 0.1 to 5 gZm 2 (dry state).
  • the substrate As the substrate, a long product wound up in a roll shape is convenient.
  • the thickness of the base material varies depending on the application of the gas barrier film to be obtained, so it cannot be specified unconditionally.However, when the gas barrier film is used for packaging, it is not particularly limited, because of its suitability as a packaging material. It is preferably 400 ⁇ m, especially 6-30 / ⁇ ⁇ .
  • the film thickness of the substrate used in the present invention is preferably 10 to 200 m, more preferably 50 to LOO ⁇ m.
  • the water vapor permeability of the gas barrier film of the present invention is determined according to the JIS K7129 B method when used in applications requiring high water vapor barrier properties such as organic EL displays and high-definition color liquid crystal displays. It is preferable that the transmittance is 1. OgZm 2 Zday or less (40 ° C, 90% RH). Furthermore, in the case of organic EL display applications, even if there is at least a growing dark spot, Since the display life of the display may become extremely short, it is preferable that the water vapor transmission rate is less than 0.lgZm 2 Zday.
  • the plasma CVD method is also called a plasma-assisted chemical vapor deposition method or a PECVD method.
  • Various inorganic substances can be coated and adhered in a three-dimensional shape with a high substrate temperature. This is a technique that can form a film without having to.
  • the plasma CVD method an electric field is applied to the space in the vicinity of the substrate to generate a space (plasma space) in which a gas in a plasma state exists, and the volatilized 'sublimated organometallic compound is in this plasma space.
  • Inorganic thin films are formed by spraying on the substrate after the decomposition reaction has been introduced into the substrate.
  • the organometallic compound that is the raw material of the inorganic film can be decomposed even at a low temperature. Therefore, it is a film-forming method that can be performed at a low temperature on a substrate on which an inorganic material is formed, and can be sufficiently formed on a plastic substrate.
  • the plasma CVD method near atmospheric pressure, compared with the plasma CVD method in a vacuum, the plasma density is high because it is not necessary to reduce the pressure and the productivity is high. High film formation speed and high pressure under atmospheric pressure compared to normal conditions of CVD method. Under the force condition, the mean free path of the gas is very short, so that a very flat film is obtained. Such a flat film has good optical properties and gas noria properties. In view of the above, in the present invention, it is preferable to apply the atmospheric pressure plasma CVD method over the plasma CVD method under vacuum.
  • FIG. 1 is a schematic view showing the concept of the layer structure of the transparent gas noria film of the present invention.
  • the transparent gas noria film 1 has a base material 2, at least two ceramic layers 3, and a polymer-containing layer 4 having a lower elastic modulus than the ceramic layer positioned between the ceramic layers 3. ing.
  • the figure shows the force when the ceramic layer 3 and the polymer-containing layer 4 are alternately arranged one by one.
  • the arrangement is as long as the polymer-containing layer is sandwiched between the ceramic layers. Nya number does not matter.
  • an adhesive layer 5 for improving adhesiveness may be provided between the respective layers.
  • FIG. 2 is a schematic view showing an example of a jet-type atmospheric pressure plasma discharge treatment apparatus useful for the present invention.
  • the jet type atmospheric pressure plasma discharge processing apparatus is not shown in FIG. 2 (shown in FIG. 3 to be described later). Is an apparatus having gas supply means and electrode temperature adjustment means.
  • the plasma discharge treatment apparatus 10 has a counter electrode composed of a first electrode 11 and a second electrode 12, and the first electrode 11 is connected to the first power source 21 between the counter electrodes.
  • the first high-frequency electric field of electric field strength V and current I is applied, and the second electrode 12 So that a second high frequency electric field of frequency ⁇ , field strength V, current I from source 22 is applied.
  • the first power supply 21 applies a higher frequency electric field strength (V> V) than the second power supply 22.
  • a first filter 23 is installed between the first electrode 11 and the first power source 21, and the first power source 2 1 force facilitates the passage of current to the first electrode 11, and the second power source It is designed so that the current from the second power source 22 to the first power source 21 passes through the current from the ground 22.
  • a second filter 24 is provided between the second electrode 12 and the second power source 22, and it is easy to pass a current from the second power source 22 to the second electrode. Designed to ground the current from 21 and make it difficult to pass the current from the first power supply 21 to the second power supply!
  • Gas G from the gas supply means as shown in Fig. 3 to be described later is introduced between the opposing electrodes (discharge space) 13 of the first electrode 11 and the second electrode 12 to form the first electrode
  • a high-frequency electric field is applied from 11 and the second electrode 12 to generate a discharge, and while the gas G is in a plasma state, the gas G is blown out in the form of a jet to the lower side of the counter electrode (the lower side of the paper).
  • a thin film is formed on the substrate F in the vicinity of the processing position 14.
  • the medium heats or cools the electrode through the pipe from the electrode temperature adjusting means as shown in FIG.
  • the temperature control medium an insulating material such as distilled water or oil is preferably used.
  • plasma discharge treatment it is desirable to uniformly adjust the temperature inside the electrode so that the temperature unevenness of the substrate in the width direction or the longitudinal direction does not occur as much as possible.
  • Fig. 3 shows an atmospheric pressure plasma discharge in which the substrate is treated between the counter electrodes, which is useful for the present invention. It is the schematic which shows an example of an electric processing apparatus.
  • the atmospheric pressure plasma discharge treatment apparatus includes at least a plasma discharge treatment apparatus.
  • electric field applying means 40 having two power sources, gas supplying means 50, electrode temperature adjusting means 6
  • FIG. 3 shows the plasma discharge treatment of the substrate F between the opposed electrodes (discharge space) 32 between the roll rotating electrode (first electrode) 35 and the square tube fixed electrode group (second electrode) 36. It forms a thin film
  • a first filter 43 is provided between the roll rotating electrode (first electrode) 35 and the first power supply 41, and the first filter 43 generates a current from the first power supply 41 to the first electrode. It is designed to facilitate passage, ground the current from the second power source 42, and pass the current from the second power source 42 to the first power source.
  • a second filter 44 is installed between the square tube type fixed electrode group (second electrode) 36 and the second power source 42, and the second filter 44 is connected from the second power source 42 to the second electrode. It is designed to make it easy to pass the current, ground the current from the first power supply 41, and pass the current from the first power supply 41 to the second power supply!
  • the roll rotating electrode 35 may be the second electrode, and the rectangular tube-shaped fixed electrode group 36 may be the first electrode.
  • the first power source is connected to the first electrode, and the second power source is connected to the second electrode.
  • the first power supply applies higher frequency field strength (V> V) than the second power supply
  • the frequency has the ability to satisfy ⁇ ⁇ .
  • the current is preferably I and I.
  • the current I of the first high frequency electric field is preferably
  • the current I of the second high-frequency electric field is preferably 10 mAZcm 2 to 100 mAZcm 2
  • it is 20 mAZcm 2 to 1 OOmAZcm 2 .
  • the gas G generated by the gas generator 51 of the gas supply means 50 is controlled in flow rate and is supplied to the inlet port. It is introduced into the plasma discharge treatment vessel 31 from 52.
  • the base material F is transported from the former or unrolled force as shown in the figure, or transported from the previous stage, and accompanied by the base roll 65 via the guide roll 64
  • the air, etc. is cut off and transferred to and from the square tube fixed electrode group 36 while winding while being in contact with the roll rotation electrode 35, and the roll rotation electrode (first electrode) 35 and the square tube fixed electrode group (Second electrode)
  • An electric field is applied from both the electrode 36 and discharge plasma is generated between the counter electrodes (discharge space) 32.
  • the base material F forms a thin film with a gas in a plasma state while being wound while being in contact with the roll rotating electrode 35.
  • Substrate F passes through -roll 66 and guide roll 67, and is taken up by a winder (not shown) and transferred to the next process.
  • FIG. 4 is a perspective view showing an example of the structure of the conductive metallic base material of the roll rotating electrode shown in FIG. 3 and the dielectric material coated thereon.
  • a roll electrode 35a is formed by covering a conductive metallic base material 35A and a dielectric 35B thereon.
  • the temperature adjustment medium water or silicon oil
  • FIG. 5 is a perspective view showing an example of the structure of a conductive metallic base material of a rectangular tube electrode and a dielectric material coated thereon.
  • a rectangular tube electrode 36a has a coating of a dielectric 36B similar to that of FIG. 4 on a conductive metallic base material 36A, and the structure of the electrode is a metallic pipe. It becomes a jacket that allows temperature adjustment during discharge.
  • a plurality of rectangular tube-shaped fixed electrodes are provided along a circumference larger than the circumference of the roll electrode, and the discharge area of the electrodes faces the roll rotating electrode 35. It is represented by the sum of the areas of the full-width cylindrical fixed electrode surface.
  • the rectangular tube electrode 36a shown in Fig. 5 may be a cylindrical electrode, but the rectangular tube electrode is a cylindrical electrode. Since it has the effect of extending the discharge range (discharge area) compared to the pole, it is preferably used in the present invention.
  • the roll electrode 35a and the rectangular tube electrode 36a are formed by spraying ceramics as dielectrics 35B and 36B on conductive metallic base materials 35A and 36A, respectively, and then forming an inorganic compound. Sealing treatment is performed using a sealing material.
  • the ceramic dielectric is only required to cover about 1 mm in one piece.
  • alumina or silicon nitride is preferably used. Of these, alumina is particularly preferred because it is easy to process.
  • the dielectric layer may be a lining treatment dielectric provided with an inorganic material by lining.
  • the conductive metallic base materials 35A and 36A include titanium metal or titanium alloy, silver, platinum, stainless steel, aluminum, iron, and other metals, a composite material of iron and ceramics, or aluminum and ceramics.
  • titanium metal or a titanium alloy is particularly preferable for the reasons described later.
  • the distance between the electrodes of the first electrode and the second electrode facing each other is such that when a dielectric is provided on one of the electrodes, the surface of the dielectric and the surface of the conductive metallic base material of the other electrode Say the shortest distance. When dielectrics are provided on both electrodes, this is the shortest distance between the dielectric surfaces.
  • the distance between the electrodes is determined in consideration of the thickness of the dielectric provided on the conductive metallic base material, the magnitude of the applied electric field strength, the purpose of using the plasma, etc.
  • the viewpoint power for discharging is preferably 0.1 to 20 mm, particularly preferably 0.2 to 2 mm.
  • the plasma discharge treatment vessel 31 may be made of metal as long as it is insulated from the force electrode in which a treatment vessel made of Pyrex (registered trademark) glass is preferably used.
  • a treatment vessel made of Pyrex (registered trademark) glass is preferably used.
  • polyimide resin or the like may be attached to the inner surface of an aluminum or stainless steel frame, and the metal frame may be ceramic sprayed to achieve insulation.
  • FIG. 2 it is preferable to cover both side surfaces of the parallel electrodes (up to the vicinity of the base material surface) with an object of the above-described material.
  • the applied power source As the first power source (high frequency power source) installed in the atmospheric pressure plasma discharge treatment apparatus of the present invention, the applied power source code Manufacturer Frequency Product name
  • A7 NOL INDUSTRIES 400kHz CF-2000-400k and other commercially available products can be listed and any of them can be used.
  • an electrode capable of maintaining a uniform and stable discharge state by applying such an electric field in an atmospheric pressure plasma discharge treatment apparatus.
  • the second electrode (the second high-frequency electric field) supplies LWZcm 2 or more power (power density), a plasma by exciting a discharge gas It is generated and energy is given to the film forming gas to form a thin film.
  • the upper limit value of the power supplied to the second electrode is preferably 50 WZcm 2 , more preferably 20 W / cm 2 .
  • the lower limit is preferably 1.2 WZcm 2 .
  • the discharge area (cm 2 ) is the discharge at the electrode. It refers to the area of the range where occurs.
  • the output density is improved while maintaining the uniformity of the second high-frequency electric field. You can make it happen. As a result, a further uniform high-density plasma can be generated, and a further improvement in film formation speed and improvement in film quality can be achieved.
  • it is 5 WZcm 2 or more.
  • the upper limit value of the power supplied to the first electrode is preferably 50 WZcm 2 .
  • the waveform of the high-frequency electric field is not particularly limited.
  • a continuous sine wave continuous oscillation mode called continuous mode
  • an intermittent oscillation mode called ON / OFF that is intermittently called pulse mode. Either of them can be used, but at least the second electrode side (second high frequency)
  • continuous sine waves are preferred because they provide a finer and better quality film.
  • the electrode used in such a method for forming a thin film by atmospheric pressure plasma must be able to withstand severe conditions in terms of structure and performance.
  • Such an electrode is preferably a metal base material coated with a dielectric.
  • the difference in linear thermal expansion coefficient between the metallic base material and the dielectric is 10 X 10 — Combinations with a temperature of 6 Z ° C or less. Preferably below 8 X 10- 6 Z ° C, even more preferably not more than 5 X 10- 6 Z ° C, more preferably 2 X 10- 6 Z ° C hereinafter.
  • the linear thermal expansion coefficient is a well-known physical property value of a material.
  • a combination of a conductive metallic base material and a dielectric whose difference in linear thermal expansion coefficient is within this range is as follows:
  • Metallic base material is pure titanium or titanium alloy, and dielectric is ceramic sprayed coating
  • Metal base material is pure titanium or titanium alloy, dielectric is glass lining
  • Metal base material is stainless steel, dielectric is glass lining
  • Metal base material is a composite material of ceramics and iron, and dielectric is ceramic sprayed coating
  • Metallic base material is a composite material of ceramics and iron, and dielectric is glass lining
  • Metallic base material is a composite material of ceramics and aluminum, and dielectric is ceramic sprayed Film
  • Metallic base material is a composite material of ceramics and aluminum, and dielectric is glass lining. From the viewpoint of the difference in linear thermal expansion coefficient, the above-mentioned items 1 or 2 and items 5 to 8 are preferred, and the term 1 is particularly preferred.
  • titanium or a titanium alloy is particularly useful as the metallic base material from the above characteristics.
  • titanium or titanium alloy as the metal base material, by using the above dielectric material, it can withstand long-term use under harsh conditions where there is no deterioration of the electrode in use, especially cracking, peeling, or falling off. I can do it.
  • the atmospheric pressure plasma discharge treatment apparatus applicable to the present invention is described in, for example, JP-A-2004-68143, 2003-49272, International Patent No. 02Z4 8428, etc. in addition to the above description. And an atmospheric pressure plasma discharge treatment apparatus.
  • FIG. 6 is a conceptual diagram of a roll electrode type discharge processing apparatus (atmospheric pressure plasma film forming apparatus) in which a sample of the example was created.
  • Processing was performed using a roll electrode type electric discharge treatment apparatus (atmospheric pressure plasma deposition apparatus) 70 shown in FIG.
  • a plurality of rod-shaped electrodes 72 facing the roll electrode 71 are installed in parallel to the transport direction of the film 73, discharge gas and reactive gas are supplied to each electrode portion by a gas supply device 74, and high-frequency power sources 75 and 76 are used to generate high-frequency power. Electric power was applied to form a film.
  • the base material is a polyethylene terephthalate with clear hard coat layer (CHC) manufactured by Kimoto Co.
  • PET film PET thickness 125 m, CHC thickness 6 ⁇ m was used.
  • the dielectric 77 was coated with lmm on one side of the ceramic spraying force for both the opposing electrodes.
  • the electrode gap after coating was set to lmm.
  • the metal base material coated with a dielectric has a stainless steel jacket specification that has a cooling function with cooling water. During discharge, cooling was performed by cooling the cooling water with the cooling device 78 and controlling the electrode temperature.
  • the low frequency side power source 75 used was a high frequency power source (80 kHz) manufactured by Applied Electronics
  • the high frequency side power source 76 used was a high frequency power source manufactured by Paleshe (13. 56 MHz).
  • Reaction gas 1 5 (volume)% of oxygen gas with respect to the total gas
  • Reactive gas 2 0.1% HMDSO (hexamethyldisiloxane) to all gases
  • Low frequency side power supply power 80kHz lOWZcm 2 (Voltage at this time was 7kV at Vp)
  • High frequency side power supply power 13.56MHz lOWZcm 2 (The voltage at this time was 2kV at Vp)
  • Reaction gas 1 Methane gas was changed from 0 to LO (volume)% with respect to the total gas.
  • Reaction gas 2 0.6 (vol) with respect to the total gas HMDSO 0/0
  • Low frequency side power supply power 80kHz lOWZcm 2 (Voltage at this time was 7kV at Vp)
  • High frequency side power supply power 13.56MHz at 10-12WZcm 2 (Voltage at this time was 2kV at Vp)
  • a polymer layer as a first layer is deposited on the substrate as a first layer, and then only the raw material is replaced, and a ceramic layer as a second layer is deposited as a 50 nm layer. Further, as the third layer, the polymer layers were sequentially laminated under the same conditions, and the fifth layer was laminated.
  • the water vapor transmission rate and the oxygen transmission rate were measured.
  • the water vapor transmission rate and oxygen transmission rate of the base material were measured.
  • the water vapor permeability coefficient and oxygen permeability coefficient of the polymer layer were calculated.
  • the water vapor barrier performance (water vapor permeability) and the oxygen barrier performance (oxygen permeability) were measured using the transparent gas noria film sample finally laminated to the fifth layer.
  • Table 1 shows the measurement results.
  • Methane gas concentration volume%
  • water vapor transmission coefficient g'm / m 2 / day
  • oxygen transmission coefficient m 3 'm / mVday
  • elastic modulus GPa
  • the water vapor permeability coefficient and the oxygen permeability coefficient of each membrane were obtained by calculation from the water vapor permeability and oxygen permeability of the base film, respectively, from the water vapor permeability and oxygen permeability thus obtained. .
  • Elastic modulus Measured with a thin film physical property evaluation device MH4000 manufactured by NEC Sanei Co., Ltd. (Temperature 25 ° C)

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明は、水蒸気透過度で10-7g/m2/dayオーダー、又酸素透過度で10-5cm3・m/2/dayオーダーのバリア性を有する透明ガスバリアフィルムを提供するものであり、これらのガスバリアフィルムは、セラミックス層が少なくとも2層あり、該セラミックス層の間に前記セラミックス層より弾性率の低い層を少なくとも1層有する透明ガスバリアフィルムであって、前記セラミックス層より弾性率の低い層の弾性率が1GPa~10GPa、且つ、水蒸気透過係数が1×10-4g・m/m2/day~1×10-3g・m/m2/dayである透明ガスバリアフィルムにより達成される。

Description

明 細 書
透明ガスバリアフィルム 技術分野
[0001] 本発明は、主に食品や医薬品等の包装材料や電子デバイス等のパッケージ、ある いは有機エレクト口ルミネッセンス素子や液晶等のプラスチック基板と ヽつたディスプ レイ材料に用いられる透明ガスバリアフィルムに関する。
背景技術
[0002] 従来より、プラスチック基板やフィルムの表面に酸ィ匕アルミニウム、酸化マグネシゥ ム、酸化珪素等の金属酸化物の薄膜を形成したガスバリアフィルムは、水蒸気や酸 素等の各種ガスの遮断を必要とする物品の包装、食品や工業用品及び医薬品等の 変質を防止するための包装用途に広く用いられている。また、包装用途以外にも液 晶表示素子、太陽電池、有機エレクト口ルミネッセンス (EL)基板等で使用されている
[0003] この様な分野での包装材料としてアルミ箔等が広く用いられているが、使用後の廃 棄処理が問題となっているほか、基本的には不透明であり、外から内容物を確認す ることができないという課題を抱えており、更に、ディスプレイ材料では透明性が求め られており、全く適用することができない。
[0004] 一方、ポリ塩ィ匕ビユリデン榭脂や塩ィ匕ビユリデンと他のポリマーとの共重合体榭脂 力 なる基材、あるいはこれらの塩ィ匕ビ -リデン系榭脂をポリプロピレン榭脂、ポリエス テル榭脂、ポリアミド榭脂にコーティングしてガスノ リア性を付与した材料が、特に包 装材料として広く用いられている力 焼却処理過程で塩素系ガスが発生するため、環 境保護の観点力 現在問題となっており、更にガスノ リア性が必ずしも充分ではなく 、高度なバリア性が求められる分野へ適用することができない。
[0005] 特に、液晶表示素子、有機 EL素子などへの応用が進んでいる透明基材には、近 年、軽量化、大型化という要求に加え、長期信頼性や形状の自由度が高いこと、曲 面表示が可能であること等の高度な要求が加わり、重く割れやすく大面積ィヒが困難 なガラス基板に代わって透明プラスチック等のフィルム基材が採用され始めている。 例えば、特開平 2— 251429号公報ゃ特開平 6— 124785号公報には、有機エレクト 口ルミネッセンス素子の基板として、高分子フィルムを用いた例が開示されて 、る。
[0006] し力しながら、透明プラスチック等のフィルム基材はガラスに対しガスバリア性が劣る という問題がある。例えば、有機エレクト口ルミネッセンス素子の基板として用いた場 合、ガスバリア性が劣る基材を用いると、水蒸気や空気が浸透して有機膜が劣化し、 発光特性あるいは耐久性等を損なう要因となる。また、電子デバイス用基板として高 分子基板を用いた場合には、酸素が高分子基板を透過して電子デバイス内に浸透 、拡散し、デバイスを劣化させてしまうことや、電子デバイス内で求められる真空度を 維持できないといった問題を引き起こす。
[0007] この様な問題を解決するためにフィルム基板上に金属酸ィ匕物薄膜を形成してガス ノ リア性のフィルム基材とすることが知られている。包装材ゃ液晶表示素子に使用さ れるガスノ リアフィルムとしてはプラスチックフィルム上に酸ィ匕珪素を蒸着したもの(例 えば特許文献 1参照。)や、酸化アルミニウムを蒸着したもの (例えば特許文献 2参照 。)が知られている。
[0008] これら高い水蒸気遮断性の要望に応える方法の 1つとして、緻密なセラミックス層と 、柔軟性を有し、外部からの衝撃を緩和するポリマー層とを交互に繰り返し積層した 構成のガスノ リアフィルムが提案されている(例えば、特許文献 3参照。 ) 0 特許文献 1:特公昭 53— 12953号公報
特許文献 2:特開昭 58— 217344号公報
特許文献 3 :米国特許第 6, 268, 695号明細書
発明の開示
発明が解決しょうとする課題
[0009] 近年では、有機 ELディスプレイや、液晶ディスプレイの大型化、高精細ディスプレ ィ等の開発により、フィルム基板へのガスノ リア性能について水蒸気ノ リアで 1 X 10 gZm2Zday程度まで要求が上がってきており、特許文献 1あるいは特許文献 2に記 載された構成では、いずれも 2g/m2/day程度の水蒸気ノ リア性、あるいは 2mlZ m2Zday程度の酸素透過性を有するにすぎないのが現状で、更に蒸着であるため 真空系の装置が必要となり生産設備が大型且つ生産性が悪いという問題がある。 [0010] また、特許文献 3に記載されたポリマー層はどのようなポリマーでも良いことはなぐ ポリマー層の物性によってはいくら交互に積層を繰り返してもノリア性能は向上する どころか劣化してしまうこともあることが判明している。
[0011] 本発明は上記問題に鑑みてなされたもので、その目的は、水蒸気透過度で 10— 7g /m2/dayオーダー、又酸素透過度で 10— 5cm3/m2/dayオーダーのバリア性を有 する透明ガスノリアフィルムを提供することにある。
課題を解決するための手段
[0012] 本発明の上記目的は、下記構成により達成された。
[0013] 上述した目的は下記に記した発明により達成することが出来る。
[0014] (1)セラミックス層を少なくとも 2層有し、該セラミックス層間に前記セラミックス層より 弾性率の低い層を少なくとも 1層有する透明ガスノリアフィルムにおいて、前記セラミ ックス層より弾性率の低い層の弾性率は lGPa〜10GPaであり、且つ、水蒸気透過 係数は 1 X 10— 4g'mZm2Zday〜l X 10— 3g'mZm2Zdayであることを特徴とする透 明ガスノ リアフィルム。
(2)前記セラミックス層よりも弾性率の低い層の酸素透過係数は 1 X 10"2cm3-m/m 2Zday〜l X
Figure imgf000005_0001
に記載の透明 ガスノ リアフィルム。
(3)前記セラミックス層を構成する物質が、酸化珪素、酸化窒化珪素、又は酸ィ匕アル ミニゥム、又はそれらの混合物であることを特徴とする前記(1)または(2)に記載の透 明ガスノ リアフィルム。
(4)前記セラミックス層よりも弾性率の低い層は、ポリマーを含む層であることを特徴と する前記(1)または(2)に記載の透明ガスノリアフィルム。
発明の効果
[0015] 請求の範囲 1〜4また前記(1)〜(4)に記載の発明によれば、水蒸気透過度で 10— 7 gZm2Zdayオーダー、又酸素透過度で 10 5 cm3Zm2Zdayオーダーのガスノリア 性を有し、シミュレーションでは、ガスバリア性能の観点では 100年以上、効果が期待 できる透明ガスノリアフィルムを提供することが可能となる。
図面の簡単な説明 [0016] [図 1]本発明の透明ガスバリアフィルムの層構成の概念を示す模式図である。
[図 2]本発明に有用なジェット方式の大気圧プラズマ放電処理装置の一例を示した 概略図である。
[図 3]本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処 理装置の一例を示す概略図である。
[図 4]図 3に示したロール回転電極の導電性の金属質母材とその上に被覆されてい る誘電体の構造の一例を示す斜視図である。
[図 5]角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構造の 一例を示す斜視図である。
[図 6]実施例のサンプルを作成したロール電極型放電処理装置 (大気圧プラズマ製 膜装置)の概念図である。
符号の説明
[0017] 1 透明ガスバリアフィルム
2 基材
3 無機層
4 ポリマーを含む層
10、 30 プラズマ放電処理装置
11 第 1電極
12 第 2電極
14 処理位置
21、 41 第 1電源
22、 42 第 2電源
32 放電空間(対向電極間)
35 ロール回転電極(第 1電極)
35a ローノレ電極
35A 金属質母材
35B、 36B 誘電体
36 角筒型固定電極群 (第 2電極) 36a 角筒型電極
36A 金属質母材
40 電界印加手段
50 ガス供給手段
52 給気口
53 排気口
F 基材
G ガス
G° プラズマ状態のガス
発明を実施するための最良の形態
[0018] 本発明者は、上記課題に鑑み鋭意検討を行った結果、基材上に少なくともセラミツ タス層(膜)を 2層以上有し、該セラミックス層(膜)の間に該セラミックス層より弾性率 の低い層を少なくとも 1層以上有するガスノ リアフィルムにおいて、前記セラミックス層 より弾性率の低い層の弾性率を lGPa〜: LOGPaとし、且つ、水蒸気透過係数を 1 X 1 0— 4g'mZm2Zday〜l X 10"3g-m/m2/day,また酸素透過係数を 1 X 10— 2cm3' m/m2/day〜l X
Figure imgf000007_0001
目的のガスバリア性を 備えた透明ガスノ リアフィルムを実現できることを見出し、本発明に至った次第である
[0019] 以下、ガスノ リア性を有する透明ガスノ リアフィルムを構成する各層につ 、て説明 する。
[0020] 本発明に係るセラミックス層としては、ガスノ リア性の、酸素及び水蒸気の透過を阻 止する層であれば、その糸且成等は特に限定されるものではない。本発明のセラミック ス層を構成する材料として具体的には、無機酸化物が好ましぐ酸化珪素、酸化アル ミニゥム、酸化窒化珪素、酸ィ匕窒化アルミニウム、酸化マグネシウム、酸化亜鉛、酸ィ匕 インジウム、酸化スズ等のセラミックス材料を挙げることができる。
[0021] また、本発明におけるセラミックス層の厚さは、用いられるセラミックス材料の種類、 構成により最適条件が異なり、適宜選択される力 5〜2000nmの範囲内であること が好ましい。セラミックス層の厚さ力 上記の範囲より薄い場合には、均一な膜が得ら れず、ガスに対するノ リア性を得ることが困難であるからである。また、セラミックス層 の厚さが上記の範囲より厚い場合には、ガスノ リアフィルムにフレキシビリティを保持 させることが困難であり、成膜後に折り曲げ、引っ張り等の外的要因により、ガスバリ ァフィルムに亀裂が生じる等のおそれがある力もである。
[0022] また、セラミックス層よりも弾性率の低い層の弾性率の範囲としては、セラミックス層 に対し 1Z5以下、望ましくは 1Z10以下が好ましい。この範囲より高いと、フレキシブ ル性が低下し、基材を湾曲させた際に、ノ リア層にマイクロクラックが入り、バリア性が 劣化してしまう。
[0023] 本発明に係るセラミックス層は、後述する原材料をスプレー法、スピンコート法、スパ ッタリング法、イオンアシスト法、後述するプラズマ CVD法、後述する大気圧または大 気圧近傍の圧力下でのプラズマ CVD法等を適用して形成することができる。
[0024] しかしながら、スプレー法やスピンコート法等の湿式法では、分子レベル (nmレべ ル)の平滑性を得ることが難しぐまた溶剤を使用するため、後述する基材が有機材 料であることから、使用可能な基材または溶剤が限定されるという欠点がある。そこで 、本発明においては、プラズマ CVD法等で形成されたものであることが好ましぐ特 に大気圧プラズマ CVD法は、減圧チャンバ一等が不要で、高速製膜ができ生産性 の高 ヽ製膜方法である点から好まし 、。上記ガスノ リア層を大気圧プラズマ CVD法 で形成することにより、均一かつ表面の平滑性を有する膜を比較的容易に形成する ことが可能となるからである。
[0025] 大気圧プラズマ CVD法とは、大気圧または大気圧近傍の圧力下でのプラズマ CV D法であり、大気圧プラズマ CVD法を用いた層形成条件の詳細については、後述す る。
[0026] プラズマ CVD法、大気圧または大気圧近傍の圧力下でのプラズマ CVD法により 得られるセラミックス層(膜)は、ガスノ リア性の層であり、原材料 (原料ともいう)である 有機金属化合物、分解ガス、分解温度、投入電力などの条件を選ぶことで、金属炭 化物、金属窒化物、金属酸化物、金属硫化物、金属ハロゲン化物、またこれらの混 合物 (金属酸窒化物、金属酸化ハロゲン化物、金属窒化炭化物など)等を作り分ける ことができるため好ましい。 [0027] 例えば、珪素化合物を原料化合物として用い、分解ガスに酸素を用いれば、珪素 酸化物が生成する。また、亜鉛化合物を原料化合物として用い、分解ガスに-硫ィ匕 炭素を用いれば、硫ィ匕亜鉛が生成する。これはプラズマ空間内では非常に活性な荷 電粒子 ·活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学 反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定 な化合物へと非常な短時間で変換されるためである。
[0028] このような無機物の原料としては有機金属化合物があげられ、典型または遷移金属 元素を有していれば、常温常圧下で気体、液体、固体いずれの状態であっても構わ ない。気体の場合にはそのまま放電空間に導入できるが、液体、固体の場合は、カロ 熱、パブリング、減圧、超音波照射等の手段により気化させて使用する。又、溶媒に よって希釈して使用してもよぐ溶媒は、メタノール,エタノール, n—へキサンなどの 有機溶媒及びこれらの混合溶媒が使用出来る。尚、これらの希釈溶媒は、プラズマ 放電処理中において、分子状、原子状に分解されるため、影響は殆ど無視すること ができる。
[0029] このような有機金属化合物としては、ケィ素化合物として、シラン、テトラメトキシシラ ン、テトラエトキシシラン、テトラ n プロボキシシラン、テトライソプロボキシシラン、テト ラ n ブトキシシラン、テトラ t ブトキシシラン、ジメチノレジメトキシシラン、ジメチノレジ エトキシシラン、ジェチノレジメトキシシラン、ジフエニノレジメトキシシラン、メチノレトリエト キシシラン、ェチルトリメトキシシラン、フエニルトリエトキシシラン、(3, 3, 3—トリフル ォロプロピル)トリメトキシシラン、へキサメチルジシロキサン(HMDSO ;hexamethyl disiloxane)、ビス(ジメチルァミノ)ジメチルシラン、ビス(ジメチルァミノ)メチルビ-ル シラン、ビス(ェチルァミノ)ジメチルシラン、 N, O ビス(トリメチルシリル)ァセトアミド 、ビス(トリメチルシリル)カルポジイミド、ジェチルアミノトリメチルシラン、ジメチルァミノ ジメチルシラン、へキサメチルジシラザン、へキサメチルシクロトリシラザン、ヘプタメチ ルジシラザン、ノナメチルトリシラザン、オタタメチルシクロテトラシラザン、テトラキスジ メチルアミノシラン、テトライソシアナ一トシラン、テトラメチルジシラザン、トリス (ジメチ ルァミノ)シラン、トリエトキシフルォロシラン、ァリルジメチルシラン、ァリルトリメチルシ ラン、ベンジルトリメチルシラン、ビス(トリメチルシリル)アセチレン、 1, 4 ビストリメチ ルシリル 1, 3 ブタジイン、ジ tーブチルシラン、 1, 3 ジシラブタン、ビス(トリメ チルシリル)メタン、シクロペンタジェニルトリメチルシラン、フエ二ルジメチルシラン、フ ェニルトリメチルシラン、プロパルギルトリメチルシラン、テトラメチルシラン、トリメチル シリルアセチレン、 1— (トリメチルシリル)— 1—プロピン、トリス(トリメチルシリル)メタン 、トリス(トリメチルシリル)シラン、ビニルトリメチルシラン、へキサメチルジシラン、オタ タメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、へキサメチルシク ロテトラシロキサン、 Mシリケート 51等が挙げられる。
[0030] チタン化合物としては、例えば、チタンメトキシド、チタンエトキシド、チタンイソプロ ポキシド、チタンテトライソポロポキシド、チタン n—ブトキシド、チタンジイソプロポキシ ド(ビス 2, 4 ペンタンジォネート)、チタンジイソプロボキシド(ビス 2, 4 ェチ ルァセトアセテート)、チタンジ一 n—ブトキシド(ビス一 2, 4 ペンタンジォネート)、 チタンァセチルァセトネート、ブチルチタネートダイマー等が挙げられる。
[0031] ジルコニウム化合物としては、ジルコニウム n—プロポキシド、ジルコニウム n—ブトキ シド、ジルコニウム t—ブトキシド、ジルコニウムトリ— n—ブトキシドアセチルァセトネー ト、ジルコニウムジー n—ブトキシドビスァセチルァセトネート、ジルコニウムァセチルァ セトネート、ジルコニウムアセテート、ジルコニウムへキサフルォロペンタンジォネート 等が挙げられる。
[0032] アルミニウム化合物としては、アルミニウムエトキシド、アルミニウムトリイソプロポキシ ド、アルミニウムイソプロポキシド、アルミニウム n—ブトキシド、アルミニウム s ブトキ シド、アルミニウム t—ブトキシド、アルミニウムァセチルァセトナート、トリェチルジアル ミニゥムトリー s—ブトキシド等が挙げられる。
[0033] 硼素化合物としては、ジボラン、テトラボラン、フッ化硼素、塩化硼素、臭化硼素、ボ ラン—ジェチルエーテル錯体、ボラン— THF錯体、ボラン—ジメチルスルフイド錯体 、三フッ化硼素ジェチルエーテル錯体、トリェチルボラン、トリメトキシボラン、トリェトキ シボラン、トリ(イソプロポキシ)ボラン、ボラゾール、トリメチルボラゾール、トリェチルボ ラゾール、トリイソプロピルボラゾール、等が挙げられる。
[0034] 錫化合物としては、テトラエチル錫、テトラメチル錫、二酢酸ジー n ブチル錫、テト ラブチル錫、テトラオクチル錫、テトラエトキシ錫、メチルトリエトキシ錫、ジェチノレジェ トキシ錫、トリイソプロピルエトキシ錫、ジェチル錫、ジメチル錫、ジイソプロピル錫、ジ ブチル錫、ジェトキシ錫、ジメトキシ錫、ジイソプロポキシ錫、ジブトキシ錫、錫ジブチ ラート、錫ジァセトァセトナート、ェチル錫ァセトァセトナート、エトキシ錫ァセトァセト ナート、ジメチル錫ジァセトァセトナート等、錫水素化合物等、ハロゲン化錫としては、 二塩化錫、四塩ィヒ錫等が挙げられる。
[0035] また、その他の有機金属化合物としては、例えば、アンチモンエトキシド、ヒ素トリエ トキシド、ノ リウム 2, 2, 6, 6—テトラメチルヘプタンジォネート、ベリリウムァセチルァ セトナート、ビスマスへキサフルォロペンタンジォネート、ジメチルカドミウム、カルシゥ ム 2, 2, 6, 6—テトラメチルヘプタンジォネート、クロムトリフルォロペンタンジォネート 、コバルトァセチルァセトナート、銅へキサフルォロペンタンジォネート、マグネシウム へキサフルォロペンタンジォネートージメチルエーテル錯体、ガリウムエトキシド、テト ラエトキシゲルマン、テトラメトキシゲルマン、ハフニウム t ブドキシド、ハフニウムエト キシド、インジウムァセチルァセトナート、インジウム 2, 6 ジメチルァミノヘプタンジ ォネート、フエ口セン、ランタンイソプロポキシド、酢酸鉛、テトラエチル鉛、ネオジゥム ァセチルァセトナート、白金へキサフルォロペンタンジォネート、トリメチルシクロペン タジェ-ル白金、ロジウムジカルボ-ルァセチルァセトナート、ストロンチウム 2, 2, 6 , 6—テトラメチルヘプタンジォネート、タンタルメトキシド、タンタルトリフルォロェトキ シド、テルルエトキシド、タングステンエトキシド、バナジウムトリイソプロポキシドォキシ ド、マグネシウムへキサフルォロアセチルァセトナート、亜鉛ァセチルァセトナート、ジ ェチル亜鉛、などが挙げられる。
[0036] また、これらの金属を含む原料ガスを分解して無機化合物を得るための分解ガスと しては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、 窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素 ガス、水蒸気、フッ素ガス、フッ化水素、トリフルォロアルコール、トリフルォロトルエン
、硫化水素、二酸化硫黄、二硫化炭素、塩素ガスなどが挙げられる。
[0037] 金属元素を含む原料ガスと、分解ガスを適宜選択することで、各種の金属炭化物、 金属窒化物、金属酸化物、金属ハロゲン化物、金属硫ィ匕物等セラミックス膜 (層)を 得ることができる。 [0038] これらの反応性ガスに対して、主にプラズマ状態になりやすい放電ガスを混合し、 プラズマ放電発生装置にガスを送りこむ。
[0039] このような放電ガスとしては、窒素ガスおよび Zまたは周期表の第 18属原子、具体 的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これ らの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ま しい。
[0040] 上記放電ガスと反応性ガスを混合し、混合ガスとしてプラズマ放電発生装置 (ブラズ マ発生装置)に供給することで膜形成を行う。放電ガスと反応性ガスの割合は、得よう とする膜の性質によって異なる力 混合ガス全体に対し、放電ガスの割合を 50%以 上として反応性ガスを供給する。
[0041] 本発明に係るセラミックス層においては、セラミックス層が含有する無機化合物が、 SiOxCy(x= l. 5〜2. 0、 y=0〜0. 5)または、 SiOx、 SiNyまたは SiOxNy (x= 1 〜2、 y=0. 1〜1)であることが好ましぐ特にガスノリア性、水分の透過性、光線透 過性及び後述する大気圧プラズマ CVD適性の観点から、 SiOxであることが好ま ヽ
[0042] 本発明に係るセラミックス層を構成する無機化合物は、例えば、上記有機珪素化合 物に、更に酸素ガスや窒素ガスを所定割合で組み合わせて、 O原子と N原子の少な くともいずれかと、 Si原子とを含む膜を得ることができる。なお、 SiOは透明性が高い
2
もののガスノリア性が少し低めで水分をやや通すことから、 N原子を含んだ方がより 好ましい。すなわち、酸素原子と窒素原子の数の比を x:yとした場合に、 x/ (x+y) は 0. 95以下、さらに 0. 80以下であればより一層好ましい。よって、本発明に係るセ ラミックス層においては、各セラミックス層は、可視光領域(360nm〜700nm)におい て、光透過率 Tが、 80%以上であることが好ましい。
[0043] なお、 N原子の割合が多いと光透過性が低下し、 x=0である SiNではやや黄色み を呈する。そこで、具体的な酸素原子と窒素原子の割合は用途に応じて決めればよ い。例えば、表示装置において発光素子に対して発光面側に膜を形成する場合のよ うな、光透過性を要する用途であれば、 xZ(x+y)が 0. 4以上、 0. 95以下であれば 、光透過性と防水性のバランスをとることができるので好ましい。また、表示装置の発 光素子の後面に設けられる映り込み防止膜のように光を吸収あるいは遮光した方が 好ましい用途であれば xZ (x+y)は 0以上 0. 4未満であることが好ましい。
[0044] 本発明に係るセラミックス層は、前記の通り、透明、即ち、可視光領域(360ηπ!〜 7
OOnm)において、光透過率 Tが、 80%以上であることが好ましぐ上記セラミックス層 が透明であることにより、ガスノリアフィルムを透明なものとすることが可能となり、有機
EL素子の透明基板等の用途にも使用することが可能となる。
[0045] そして、一般的にセラミックス層(膜)に、炭素原子等の不純物質が混入した場合に
、成膜されたセラミックス膜が粗となり、ガス透過率が大きくなる。このことから、セラミツ タス層が上記の化合物で構成されることにより、セラミックス層中の含有炭素比率は低 く保たれることから、酸素 珪素間の結合が妨げられず、ガスに対する高いバリア性 を付与することが可能となる。
[0046] 以上のように、上記のような原料ガスを放電ガスと共に使用することにより様々なセ ラミックスの薄膜を形成することができる。
[0047] 次に、セラミックス層の間に位置する、セラミックス膜より弾性率の低い層について 説明する。本発明において、セラミックス層よりも弾性率の低い層としては、ポリマーを 含む層があげられる。
本発明に係わるセラミックス層より弾性率の低い層の弾性率は lGPa〜10GPaの範 囲であり、且つ、水蒸気透過係数は 1 X 10_4g'mZm2Zday〜l X 10"3g-m/m2 Zdayの範囲である。
また、前記セラミックス層よりも弾性率の低い層の酸素透過係数は 1 X 10"2cm3-m/ m2Zday〜l X 10_1cm3'm/m2/dayの範囲にあることが好ましい。
本発明において、弾性率は、 NEC三栄社製、薄膜物性評価装置 MH4000により測 定できるもので、専用の試料台で両端を支持した試料に、対稜角 80° の三角錐ダイ ャモンド圧子を押し込み、荷重の変化と押し込み深さから求める。本願では温度 25 °Cにおける測定値である。
[0048] また、水蒸気透過係数は、 MOCON社製 水蒸気透過率測定装置 PERMATR AN-W3/33 MGモジュール等使用して測定できる(温度 40°C、相対湿度差 90 %RH) 0測定しょうとする薄膜を形成した基材 (例えば、ポリエチレンテレフタレート( PET)フィルム)の水蒸気透過率、次いで、基材自身の水蒸気透過率を、 JIS— K 7 129Bに記載された方法で測定し (40°C、 90%RH)、得られたそれぞれの水蒸気透 過率、薄膜の厚み、基材の厚みから、計算により、薄膜の水蒸気透過係数を算出す る。
酸素透過係数は、同じぐ測定しょうとする薄膜を形成した基材 (例えば、ポリエチレ ンテレフタレート(PET)フィルム)について、モコン社製酸素透過率測定装置 OX—T RAN2Z21 'Lタイプ等を用いて、 JIS—K— 7126に従って酸素透過率を測定し(2 0°C、 100%RH)、更に基材自身の酸素透過率を測定し、得られたそれぞれの水蒸 気透過率から、薄膜の厚み、基材の厚みを用いて、同じぐ計算により、薄膜の酸素 透過係数が算出できる。
ガスノリア性の前記セラミックス層に隣接する層にお 、ては、フレキシブルな膜が得ら れことが望ましぐ水蒸気透過係数が単に高ければよいものではなぐ水蒸気透過係 数の低下と共に、弾性率は低下し、ひび、また割れやすく脆い膜となることから、水蒸 気透過係数を低く保ち、かつ応力緩和作用を保っためには、セラミックス層に隣接す る層の水蒸気透過係数、また弾性率を上記の範囲に保てばょ 、。
また、酸素透過係数と、弾性率の関係も、この様な関係にあるので、酸素透過係数も 低ければよいというものではなぐ 1 X 10_2cm3'm/m2/day〜l X 10_1cm3-m/ m2/dayの範囲にあることが好まし!/、。
[0049] 本発明に係るポリマーを含む層とは、前記セラミックス層の間に位置する少なくとも 1層の、無機ポリマー、有機ポリマー、有機無機ノ、イブリツドボリマー等を主成分とす るポリマー薄膜 (層)で、その膜厚は、概ね 5〜500nmで、前述のガスバリア性のセラ ミックス層に対し相対的な硬度が低い層で、応力緩和層とも呼ばれる。例えば該ポリ マー薄膜が、無機ポリマーであり前記セラミックス層と同様のセラミックス材料により構 成される場合、セラミックス中の平均炭素含有量が 5% (原子数濃度%)以上のもので ある。
[0050] 本発明で適用できる無機ポリマーは、無機骨格を主構造とし、かつ有機成分を含 有する膜であり、有機金属化合物を重合したものも含む。
[0051] これら無機ポリマーとしては、特に限定は無いが、例えば、シリコーンやポリシラザン などの、硼素化合物、燐化合物、錫化合物を用い形成することができる。
これらの本発明に係るポリマー層の形成には、ゾルゲル法等のウエットプロセス、また 、蒸着、スパッタリング、 CVD法 (ィ匕学蒸着)、プラズマ CVD法、大気圧または大気圧 近傍の圧力下にお!/ヽて実施されるプラズマ CVD法等のドライプロセスを用い、前記 原料ィ匕合物を用いることで形成することができるが、本発明のガスノ リアフィルムの製 造においては、プラズマ CVD法が好ましぐ前記ケィ素化合物や、チタンィヒ合物、ァ ルミ-ゥム化合物を用いプラズマ CVD法により形成することが好ましい。特に、珪素 化合物を用いることが好まし 、。
本発明で用いることのできるケィ素化合物としては、特に限定はないが、好ましいも のとして、テトラメチルシラン、トリメチルメトキシシラン、ジメチルジメトキシシラン、メチ ルトリメトキシシラン、トリメチルエトキシシラン、ジメチルジェトキシシラン、メチルトリエ トキシシラン、テトラメトキシシラン、テトラメトキシシラン、へキサメチノレジシロキサン(H MDSO ;hexamethyldisiloxane)、へキサメチルジシラザン、 1, 1—ジメチルー 1— シラシクロブタン、トリメチルビニルシラン、メトキシジメチルビニルシラン、トリメトキシビ ニルシラン、ェチルトリメトキシシラン、ジメチルジビニルシラン、ジメチルェトキシェチ ニノレシラン、ジァセトキシジメチノレシラン、ジメトキシメチノレー 3, 3, 3—トリフノレ才ロプ 口ビルシラン、 3, 3, 3—トリフルォロプロピルトリメトキシシラン、ァリールトリメトキシシ ラン、エトキシジメチルビニルシラン、ァリールアミノトリメトキシシラン、 N—メチル N ートリメチルシリルァセトアミド、 3—ァミノプロピルトリメトキシシラン、メチルトリビュルシ ラン、ジァセトキシメチルビニルシラン、メチルトリァセトキシシラン、ァリールォキシジメ チルビニルシラン、ジェチルビニルシラン、ブチルトリメトキシシラン、 3—ァミノプロピ ルジメチルエトキシシラン、テトラビニルシラン、トリァセトキシビニルシラン、テトラァセ トキシシラン、 3—トリフルォロアセトキシプロピルトリメトキシシラン、ジァリールジメトキ シシラン、ブチルジメトキシビニルシラン、トリメチル—3—ビニルチオプロビルシラン、 フエニルトリメチルシラン、ジメトキシメチルフエニルシラン、フエニルトリメトキシシラン、 3 -アタリロキシプロピルジメトキシメチルシラン、 3 -アタリロキシプロピルトリメトキシシ ラン、ジメチルイソペンチ口キシビニルシラン、 2—ァリールォキシェチルチオメトキシト リメチルシラン、 3—グリシドキシプロピルトリメトキシシラン、 3—ァリールァミノプロピル トリメトキシシラン、へキシルトリメトキシシラン、ヘプタデカフルォロデシルトリメトキシシ ラン、ジメチルェチキシフエニルシラン、ベンゾイロキシトリメチルシラン、 3—メタクリロ キシプロピルジメトキシメチルシラン、 3—メタクリロキシプロピルトリメトキシシラン、 3— イソシァネートプロピルトリエトキシシラン、ジメチルエトキシ一 3—グリシドキシプロピ ルシラン、ジブトキシジメチルシラン、 3—ブチルァミノプロピルトリメチルシラン、 3—ジ メチルァミノプロピルジェトキシメチルシラン、 2—(2—アミノエチルチオェチル)トリエ トキシシラン、ビス(ブチルァミノ)ジメチルシラン、ジビュルメチルフエ-ルシラン、ジァ セトキシメチルフエニルシラン、ジメチルー p—トリルビニルシラン、 p—スチリルトリメト キシシラン、ジェチルメチルフエニルシラン、ベンジルジメチルエトキシシラン、ジエト キシメチルフエ-ルシラン、デシルメチルジメトキシシラン、ジェトキシー 3—グリシドキ シプロピルメチルシラン、ォクチ口キシトリメチルシラン、フエニルトリビニルシラン、テト ラァリールォキシシラン、ドデシルトリメチルシラン、ジァリールメチルフエ-ルシラン、 ジフエ二ルメチルビニルシラン、ジフエニルエトキシメチルシラン、ジァセトキシジフエ -ルシラン、ジベンジルジメチルシラン、ジァリールジフエ-ルシラン、ォクタデシルト リメチルシラン、メチルォクタデシルジメチルシラン、ドコシルメチルジメチルシラン、 1 , 3 ジビニルー 1, 1, 3, 3—テトラメチルジシロキサン、 1, 3 ジビニルー 1, 1, 3, 3—テトラメチルジシラザン、 1, 4 ビス(ジメチルビ-ルシリル)ベンゼン、 1, 3 ビス (3 ァセトキシプロピル)テトラメチルジシロキサン、 1, 3, 5 トリメチルー 1, 3, 5— トリビュルシクロトリシロキサン、 1, 3, 5 トリス(3, 3, 3 トリフルォロプロピル)— 1, 3, 5 トリメチルシクロトリシロキサン、オタタメチルシクロテトラシロキサン、 1, 3, 5, 7 ーテトラエトキシー 1, 3, 5, 7—テトラメチルシクロテトラシロキサン、デカメチルシクロ ペンタシロキサン等を挙げるこができる。
[0053] 本発明に係るポリマー層が、これらの珪素化合物から形成される場合、前記の製造 において、セラミックス層に対し相対的に硬度が低い層であることが必要であり、これ らを原料として形成されるセラミックス層中の平均炭素含有量は 5. 0% (原子数濃度 %)以上であることが好まし!/、。
[0054] また、ポリマー層が有機ポリマーを主成分とする層である場合、有機ポリマーとして は、公知の重合性有機化合物を用い製造することができる。 これら重合性有機化合物を用い、これらをポリマー層を形成させる基材上にキャスト した後、光、熱により、重合'架橋させることで得ることが出来る。重合性有機化合物と しては、分子内にエチレン性不飽和結合を有する重合可能なエチレン性不飽和結 合含有ィ匕合物が好ましぐまた、一般的なラジカル重合性のモノマー類、光、熱、紫 外線等により硬化する榭脂に一般的に用いられる分子内に付加重合可能なェチレ ン性二重結合を複数有する多官能モノマー類や多官能オリゴマー類を用いることが できる。
これらの重合可能なエチレン性二重結合含有ィ匕合物に特に限定は無いが、好まし いものとして、例えば、 2—ェチルへキシルアタリレート、 2—ヒドロキシプロピルアタリ レート、グリセロールアタリレート、テトラヒドロフルフリルアタリレート、フエノキシェチル アタリレート、ノユルフェノキシェチルアタリレート、テトラヒドロフルフリルォキシェチル アタリレート、テトラヒドロフルフリルォキシへキサノリドアタリレート、 1, 3 ジォキサン アルコールの ε一力プロラタトン付カ卩物のアタリレート、 1, 3 ジォキソランアタリレー ト等の単官能アクリル酸エステル類、或いはこれらのアタリレートをメタタリレート、イタ コネート、クロトネート、マレエートに代えたメタクリル酸、ィタコン酸、クロトン酸、マレイ ン酸エステル、例えば、エチレングリコールジアタリレート、トリエチレンダルコールジ アタリレート、ペンタエリスリトールジアタリレート、ハイド口キノンジアタリレート、レゾル シンジアタリレート、へキサンジオールジアタリレート、ネオペンチルグリコールジアタリ レート、トリプロピレングリコールジアタリレート、ヒドロキシピバリン酸ネオペンチルグリ コーノレのジアタリレート、ネオペンチルグリコーノレアジペートのジアタリレート、ヒドロキ シピバリン酸ネオペンチルグリコールの ε一力プロラタトン付カ卩物のジアタリレート、 2 - (2—ヒドロキシ一 1, 1—ジメチルェチル) 5 ヒドロキシメチル一 5 ェチル 1, 3—ジォキサンジアタリレート、トリシクロデカンジメチロールアタリレート、トリシクロデカ ンジメチロールアタリレートの ε—力プロラタトン付カ卩物、 1, 6 へキサンジオールの ジグリシジルエーテルのジアタリレート等の 2官能アクリル酸エステル類、或いはこれ らのアタリレートをメタタリレート、イタコネート、クロトネート、マレエートに代えたメタタリ ル酸、ィタコン酸、クロトン酸、マレイン酸エステル、例えばトリメチロールプロパントリ アタリレート、ジトリメチロールプロパンテトラアタリレート、トリメチロールェタントリアタリ レート、ペンタエリスリトールトリアタリレート、ペンタエリスリトールテトラアタリレート、ジ ペンタエリスリトールテトラアタリレート、ジペンタエリスリトールペンタアタリレート、ジぺ ンタエリスリトールへキサアタリレート、ジペンタエリスリトールへキサアタリレートの ε 力プロラタトン付加物、ピロガロールトリアタリレート、プロピオン酸 'ジペンタエリスリト ールトリアタリレート、プロピオン酸 'ジペンタエリスリトールテトラアタリレート、ヒドロキ シピバリルアルデヒド変性ジメチロールプロパントリアタリレート等の多官能アクリル酸 エステル酸、或いはこれらのアタリレートをメタタリレート、イタコネート、クロトネート、マ レエートに代えたメタクリル酸、ィタコン酸、クロトン酸、マレイン酸エステル等を挙げる ことができる。
[0056] また、プレボリマーも上記同様に使用することができる。プレボリマーは、 1種又は 2 種以上を併用してもよいし、上述の単量体及び Ζ又はオリゴマーと混合して用いても よい。
[0057] プレポリマーとしては、例えばアジピン酸、トリメリット酸、マレイン酸、フタル酸、テレ フタル酸、ハイミック酸、マロン酸、こはく酸、グルタール酸、ィタコン酸、ピロメリット酸 、フマル酸、グルタール酸、ピメリン酸、セバシン酸、ドデカン酸、テトラヒドロフタル酸 等の多塩基酸と、エチレングリコール、プロピレンダルコール、ジエチレングリコール、 プロピレンオキサイド、 1, 4 ブタンジオール、トリエチレングリコール、テトラエチレン グリコール、ポリエチレングリコール、グリセリン、トリメチロールプロパン、ペンタエリス リトール、ソルビトール、 1, 6 へキサンジオール、 1, 2, 6 へキサントリオール等の 多価のアルコールの結合で得られるポリエステルに (メタ)アクリル酸を導入したポリエ ステルアタリレート類、例えば、ビスフエノール A ·ェピクロルヒドリン'(メタ)アクリル酸、 フエノールノボラック ·ェピクロルヒドリン ·(メタ)アクリル酸のようにエポキシ榭脂に (メタ )アクリル酸を導入したエポキシアタリレート類、例えば、エチレングリコール 'アジピン 酸'トリレンジイソシァネート · 2—ヒドロキシェチルアタリレート、ポリエチレングリコール 'トリレンジイソシァネート · 2—ヒドロキシェチルアタリレート、ヒドロキシェチルフタリル メタタリレート ·キシレンジイソシァネート、 l t 2—ポリブタジエングリコール 'トリレンジィ ソシァネート · 2—ヒドロキシェチルアタリレート、トリメチロールプロパン 'プロピレングリ コール'トリレンジイソシァネート · 2—ヒドロキシェチルアタリレートのように、ウレタン榭 脂に (メタ)アクリル酸を導入したウレタンアタリレート、例えば、ポリシロキサンアタリレ ート、ポリシロキサン'ジイソシァネート · 2—ヒドロキシェチルアタリレート等のシリコー ン榭脂アタリレート類、その他、油変性アルキッド榭脂に (メタ)アタリロイル基を導入し たアルキッド変性アタリレート類、スピラン榭脂アタリレート類等のプレボリマーが挙げ られる。
[0058] また、本発明に係るポリマー層に適用可能な有機ポリマーとしては、前記大気圧プ ラズマ CVD法により、薄膜形成性ガスとしてプラズマ重合可能な有機物を用い、これ を反応性ガスとしてプラズマ重合させることでも容易に形成できる。プラズマ重合可能 な有機物としては、炭化水素、ビニル化合物、含ハロゲンィ匕合物、含窒素化合物を 挙げることが出来る。
[0059] 炭化水素としては、例えば、ェタン、エチレン、メタン、アセチレン、シクロへキサン、 ベンゼン、キシレン、フエ-ルアセチレン、ナフタレン、プロピレン、カンフォー、メント ール、トルエン、イソブチレン等を挙げることができる。
[0060] ビュル化合物としては、例えば、アクリル酸、メチルアタリレート、ェチルアタリレート
、メチルメタタリレート、ァリルメタタリレート、アクリルアミド、スチレン、 (Xーメチルスチ レン、ビュルピリジン、酢酸ビュル、ビュルメチルエーテル等を挙げることが出来る。
[0061] 含ハロゲン化合物としては、四フッ化メタン、四フッ化工チレン、六フッ化プロピレン
、フロロアルキルメタタリレート等を挙げることが出来る。
[0062] 含窒素化合物としては、例えば、ピリジン、ァリルァミン、ブチルァミン、アタリ口-トリ ル、ァセトニトリル、ベンゾ-トリル、メタタリ口-トリル、ァミノベンゼン等を挙げることが 出来る。
[0063] 本発明に係るポリマー層の形成としては、蒸着、スパッタリング、 CVD法 (化学蒸着 )、プラズマ CVD法、また、大気圧または大気圧近傍の圧力下において実施される プラズマ CVD法等のドライプロセスで形成することができる力 本発明のガスノ リアフ イルムの製造においては、セラミックス層の間に位置する、セラミックス層より弾性率の 低いポリマー層のうち、少なくとも 1層、好ましくは全てのポリマー層をプラズマ CVD 法で形成することが好ましぐ更には、大気圧または大気圧近傍の圧力下において 実施されるプラズマ CVD法 (以下、大気圧プラズマ CVD法とも 、う)を用いることが 好ましい。なお、大気圧プラズマ CVD法の詳細については、後述する。
[0064] 大気圧プラズマ CVD法にぉ ヽては、反応性ガスに、主にプラズマ状態になりやす い放電ガスを混合し、プラズマ放電発生装置にガスを送りこむ。このような放電ガス( 不活性ガス)としては、窒素ガスおよび Zまたは周期表の第 18属原子、具体的には、 ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中で も窒素、ヘリウム、アルゴンが好ましく用いられ、窒素がコストが安く特に好ましい。
[0065] 上記放電ガスと反応性ガスを混合し、混合ガスとしてプラズマ放電発生装置 (ブラズ マ発生装置)に供給することで膜形成を行う。放電ガスと反応性ガスの割合は、得よう とする膜の性質によって異なる力 混合ガス全体に対し、放電ガスの割合を 50%以 上として反応性ガスを供給する。
[0066] 次ぎに、本発明の透明ガスバリアフィルムにおいて用いられる基材について説明す る。
[0067] 基材は、上述したバリア性を有するセラミックス層、ポリマーを含む層からなるガスバ リア層を保持することができる、有機材料で形成されたフィルム乃至シートであれば 特に限定されるものではない。
[0068] 具体的には、エチレン、ポリプロピレン、ブテン等の単独重合体または共重合体ま たは共重合体等のポリオレフイン (PO)榭脂、環状ポリオレフイン等の非晶質ポリオレ フィン榭脂(APO)、ポリエチレンテレフタレート(PET)、ポリエチレン 2, 6 ナフタレ ート(PEN)等のポリエステル系榭脂、ナイロン 6、ナイロン 12、共重合ナイロン等のポ リアミド系(PA)榭脂、ポリビュルアルコール(PVA)榭脂、エチレン ビュルアルコー ル共重合体 (EVOH)等のポリビュルアルコール系榭脂、ポリイミド (PI)榭脂、ポリエ 一テルイミド (PEI)榭脂、ポリサルホン (PS)榭脂、ポリエーテルサルホン (PES)榭脂 、ポリエーテルエーテルケトン (PEEK)榭脂、ポリカーボネート(PC)榭脂、ポリビ- ルブチラート(PVB)榭脂、ポリアリレート(PAR)榭脂、エチレン一四フッ化工チレン 共重合体(ETFE)、三フッ化塩化エチレン(PFA)、四フッ化工チレン パーフルォ 口アルキルビュルエーテル共重合体(FEP)、フッ化ビ-リデン(PVDF)、フッ化ビ- ノレ(PVF)、ノ ーフノレオ口エチレン一パーフロロプロピレン一パーフロロビ-ノレエーテ ルー共重合体 (EPA)等のフッ素系榭脂等を用いることができる。 [0069] また、上記に挙げた榭脂以外にも、ラジカル反応性不飽和化合物を有するアタリレ ート化合物によりなる榭脂組成物や、上記アクリルレートィヒ合物とチオール基を有す るメルカプト化合物よりなる榭脂組成物、エポキシアタリレート、ウレタンアタリレート、 ポリエステルアタリレート、ポリエーテルアタリレート等のオリゴマーを多官能アタリレー トモノマーに溶解せしめた榭脂組成物等の光硬化性榭脂およびこれらの混合物等を 用いることも可能である。さらに、これらの榭脂の 1または 2種以上をラミネート、コーテ イング等の手段によって積層させたものを基材フィルムとして用いることも可能である
[0070] これらの素材は単独であるいは適宜混合されて使用することも出来る。中でもゼォ ネックスゃゼォノア(日本ゼオン (株)製)、非晶質シクロポリオレフイン榭脂フィルムの ARTON (ジヱイエスアール (株)製)、ポリカーボネートフィルムのピュアエース(帝人 (株)製)、セルローストリアセテートフィルムのコ-カタック KC4UX、 KC8UX (コ-力 ミノルタォプト (株)製)などの市販品を好ましく使用することが出来る。
[0071] また、基材は透明であることが好ま 、。基材が透明であり、基材上に形成する層も 透明であることにより、透明なガスノ リアフィルムとすることが可能となるため、有機 EL 素子等の透明基板とすることも可能となるからである。
[0072] また、上記に挙げた榭脂等を用いた本発明の基材は、未延伸フィルムでもよぐ延 伸フィルムでもよい。
[0073] 本発明において基材となるフィルムは、従来公知の一般的な方法により製造するこ とが可能である。例えば、材料となる榭脂を押し出し機により溶融し、環状ダイや Tダ ィにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の 基材を製造することができる。また、未延伸の基材をー軸延伸、テンター式逐次二軸 延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法に より、基材の流れ (縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸する ことにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料とな る榭脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ 2〜 10倍が好ましい。
[0074] また、本発明に係るフィルム (基材)にお 、ては、本発明に係わるガスノ リア性の薄 膜を形成する前にコロナ処理、火炎処理、プラズマ処理、グロ一放電処理、粗面化 処理、薬品処理などの表面処理を行ってもよい。
[0075] さらに、本発明に係る基材表面には、ガスバリア性の薄膜との密着性の向上を目的 としてアンカーコート剤層を形成してもよい。このアンカーコート剤層に用いられるァ ンカーコート剤としては、ポリエステル榭脂、イソシァネート榭脂、ウレタン榭脂、アタリ ル榭脂、エチレンビュルアルコール榭脂、ビュル変性榭脂、エポキシ榭脂、変性スチ レン榭脂、変性シリコン榭脂、およびアルキルチタネート等を、 1または 2種以上併せ て使用することができる。これらのアンカーコート剤には、従来公知の添加剤をカ卩える こともできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイ フコート、ディップコート、スプレーコート等の公知の方法により基材上にコーティング し、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。 上記のアンカーコート剤の塗布量としては、 0. l〜5gZm2 (乾燥状態)程度が好まし い。
[0076] 基材は、ロール状に巻き上げられた長尺品が便利である。基材の厚さは、得られる ガスバリアフィルムの用途によって異なるので一概には規定できないが、ガスバリアフ イルムを包装用途とする場合には、特に制限を受けるものではなぐ包装材料として の適性から、 3~400 μ m,中でも 6〜30 /ζ πιの範囲内とすることが好ましい。
[0077] また、本発明に用いられる基材は、フィルム形状のものの膜厚としては 10〜200 mが好ましぐより好ましくは 50〜: LOO μ mである。
[0078] 本発明のガスバリアフィルムの水蒸気透過度としては、有機 ELディスプレイや高精 彩カラー液晶ディスプレイ等の高度の水蒸気バリア性を必要とする用途に用いる場 合、 JIS K7129 B法に従って測定した水蒸気透過度が、 1. OgZm2Zday以下で あることが好ましく(40°C、 90%RH)、さらに有機 ELディスプレイ用途の場合、極わ ずかであっても、成長するダークスポットが発生し、ディスプレイの表示寿命が極端に 短くなる場合があるため、水蒸気透過度が、 0. lgZm2Zday未満であることが好ま しい。
[0079] 以上説明した薄膜の形成を行う大気圧または大気圧近傍の圧力下でのプラズマ C VD法にっ 、て以下説明する。 [0080] 次 、で、本発明のガスノ リア榭脂基材の製造方法にぉ 、て、本発明に係るポリマ 一層あるいはガスノ リア層の形成に好適に用 、ることのできるプラズマ CVD法及び 大気圧プラズマ CVD法について、更に詳細に説明する。
[0081] 本発明に係るプラズマ CVD法にっ ヽて説明する。
[0082] プラズマ CVD法は、プラズマ助成式化学的気相成長法、 PECVD法とも称され、 各種の無機物を、立体的な形状でも被覆性 ·密着性良ぐ且つ、基材温度をあまり高 くすることなしに製膜することができる手法である。
[0083] 通常の CVD法 (ィ匕学的気相成長法)では、揮発 *昇華した有機金属化合物が高温 の基材表面に付着し、熱により分解反応が起き、熱的に安定な無機物の薄膜が生成 されるというものである。このような通常の CVD法 (熱 CVD法とも称する)では、通常 5 00°C以上の基板温度が必要であるため、プラスチック基材への製膜には使用するこ とができない。
[0084] 一方、プラズマ CVD法は、基材近傍の空間に電界を印加し、プラズマ状態となった 気体が存在する空間 (プラズマ空間)を発生させ、揮発 '昇華した有機金属化合物が このプラズマ空間に導入されて分解反応が起きた後に基材上に吹きつけられること により、無機物の薄膜を形成するというものである。プラズマ空間内では、数%の高い 割合の気体がイオンと電子に電離しており、ガスの温度は低く保たれるものの、電子 温度は非常な高温のため、この高温の電子、あるいは低温ではあるがイオン'ラジカ ルなどの励起状態のガスと接するために無機膜の原料である有機金属化合物は低 温でも分解することができる。したがって、無機物を製膜する基材についても低温ィ匕 することができ、プラスチック基材上へも十分製膜することが可能な製膜方法である。
[0085] しかしながら、プラズマ CVD法にお!、ては、ガスに電界を印加して電離させ、プラ ズマ状態とする必要があるため、通常は、 0. 101kPa〜10. lkPa程度の減圧空間 で製膜していたため、大面積のフィルムを製膜する際には設備が大きく操作が複雑 であり、生産性の課題を抱えている方法である。
[0086] これに対し、大気圧近傍でのプラズマ CVD法では、真空下のプラズマ CVD法に比 ベ、減圧にする必要がなく生産性が高いだけでなぐプラズマ密度が高密度であるた めに製膜速度が速ぐ更には CVD法の通常の条件に比較して、大気圧下という高圧 力条件では、ガスの平均自由工程が非常に短いため、極めて平坦な膜が得られ、そ のような平坦な膜は、光学特性、ガスノリア性共に良好である。以上のことから、本発 明においては、大気圧プラズマ CVD法を適用すること力 真空下のプラズマ CVD法 よりも好まし ヽ。
[0087] 図 1は、本発明の透明ガスノリアフィルムの層構成の概念を示す模式図である。
[0088] 透明ガスノリアフィルム 1は、基材 2と、少なくとも 2層のセラミックス層 3と、セラミック ス層 3の間に位置するセラミックス層より弾性率の低い、ポリマーを含む層 4とを有して いる。
[0089] 図ではセラミックス層 3とポリマーを含む層 4とを 1層ずつ交互に配置した場合を示し た力 その配置はセラミックス層の間にポリマーを含む層が挟まれていれば良ぐ順 番ゃ数は問わない。
[0090] また、各層間に接着性を上げるための接着層 5を設けても良い。
[0091] 以下、大気圧或!、は大気圧近傍でのプラズマ CVD法を用いて、弾性率が lGPa 〜10GPa、且つ、水蒸気透過係数が 1 X 10— 4g 'mZm2Zday〜l X 10"3g -m/m2 Zdayの範囲にあり、また、酸素透過係数が 1 X 10— 2cm3'm/m2/day〜l X 10_1c m3 · mZm2Zdayの範囲にあるポリマー層、ある!/、はセラミックス層を形成する装置に ついて詳述する。
[0092] 本発明の透明ガスバリアフィルムの製造方法において、ポリマー層あるいはセラミツ タス層の形成に使用されるプラズマ製膜装置の一例について、図 2〜図 5に基づ ヽ て説明する。図中、符号 Fは基材の一例としての長尺フィルムである。
[0093] 図 2は、本発明に有用なジェット方式の大気圧プラズマ放電処理装置の一例を示し た概略図である。
[0094] ジェット方式の大気圧プラズマ放電処理装置は、プラズマ放電処理装置、二つの 電源を有する電界印加手段の他に、図 2では図示してない (後述の図 3に図示してあ る)が、ガス供給手段、電極温度調節手段を有している装置である。
[0095] プラズマ放電処理装置 10は、第 1電極 11と第 2電極 12から構成されている対向電 極を有しており、該対向電極間に、第 1電極 11からは第 1電源 21からの周波数 ω 、
1 電界強度 V、電流 Iの第 1の高周波電界が印加され、また第 2電極 12からは第 2電 源 22からの周波数 ω、電界強度 V、電流 Iの第 2の高周波電界が印加されるように
2 2 2
なっている。第 1電源 21は第 2電源 22より高い高周波電界強度 (V >V )を印加出
1 2 来、また第 1電源 21の第 1の周波数 ωは第 2電源 22の第 2の周波数 ωより低い周
1 2 波数を印加出来る。
[0096] 第 1電極 11と第 1電源 21との間には、第 1フィルタ 23が設置されており、第 1電源 2 1力 第 1電極 11への電流を通過しやすくし、第 2電源 22からの電流をアースして、 第 2電源 22から第 1電源 21への電流が通過しに《なるように設計されている。
[0097] また、第 2電極 12と第 2電源 22との間には、第 2フィルター 24が設置されており、第 2電源 22から第 2電極への電流を通過しやすくし、第 1電源 21からの電流をアースし て、第 1電源 21から第 2電源への電流を通過しにくくするように設計されて!、る。
[0098] 第 1電極 11と第 2電極 12との対向電極間(放電空間) 13に、後述の図 3に図示して あるようなガス供給手段カゝらガス Gを導入し、第 1電極 11と第 2電極 12から高周波電 界を印加して放電を発生させ、ガス Gをプラズマ状態にしながら対向電極の下側 (紙 面下側)にジェット状に吹き出させて、対向電極下面と基材 Fとで作る処理空間をブラ ズマ状態のガス G° で満たし、図示してない基材の元巻き(アンワインダー)から巻き ほぐされて搬送して来る力、あるいは前工程力も搬送して来る基材 Fの上に、処理位 置 14付近で薄膜を形成させる。薄膜形成中、後述の図 3に図示してあるような電極 温度調節手段から媒体が配管を通って電極を加熱または冷却する。プラズマ放電処 理の際の基材の温度によっては、得られる薄膜の物性や組成等は変化することがあ り、これに対して適宜制御することが望ましい。温度調節の媒体としては、蒸留水、油 等の絶縁性材料が好ましく用いられる。プラズマ放電処理の際、幅手方向あるいは 長手方向での基材の温度ムラができるだけ生じないように電極の内部の温度を均等 に調節することが望まれる。
[0099] ジェット方式の大気圧プラズマ放電処理装置を複数基接して直列に並べて同時に 同じプラズマ状態のガスを放電させることが出来るので、何回も処理され高速で処理 することも出来る。また各装置が異なったプラズマ状態のガスをジェット噴射すれば、 異なった層の積層薄膜を形成することも出来る。
[0100] 図 3は、本発明に有用な、対向電極間で基材を処理する方式の大気圧プラズマ放 電処理装置の一例を示す概略図である。
[0101] 本発明に係る大気圧プラズマ放電処理装置は、少なくとも、プラズマ放電処理装置
30、二つの電源を有する電界印加手段 40、ガス供給手段 50、電極温度調節手段 6
0を有して!/、る装置である。
[0102] 図 3は、ロール回転電極 (第 1電極) 35と角筒型固定電極群 (第 2電極) 36との対向 電極間 (放電空間) 32で、基材 Fをプラズマ放電処理して薄膜を形成するものである
[0103] ロール回転電極 (第 1電極) 35と角筒型固定電極群 (第 2電極) 36との間の放電空 間(対向電極間) 32に、ロール回転電極 (第 1電極) 35には第 1電源 41から周波数 ω、電界強度 V、電流 Iの第 1の高周波電界を、また角筒型固定電極群 (第 2電極)
1 1 1
36には第 2電源 42から周波数 ω、電界強度 V、電流 Iの第 2の高周波電界をかけ
2 2 2
るようになっている。
[0104] ロール回転電極 (第 1電極) 35と第 1電源 41との間には、第 1フィルタ 43が設置され ており、第 1フィルタ 43は第 1電源 41から第 1電極への電流を通過しやすくし、第 2電 源 42からの電流をアースして、第 2電源 42から第 1電源への電流を通過しに《する ように設計されている。また、角筒型固定電極群 (第 2電極) 36と第 2電源 42との間に は、第 2フィルタ 44が設置されており、第 2フィルター 44は、第 2電源 42から第 2電極 への電流を通過しやすくし、第 1電源 41からの電流をアースして、第 1電源 41から第 2電源への電流を通過しに《するように設計されて!、る。
[0105] なお、本発明においては、ロール回転電極 35を第 2電極、また角筒型固定電極群 36を第 1電極としてもよい。何れにしろ第 1電極には第 1電源力 また第 2電極には第 2電源が接続される。第 1電源は第 2電源より高い高周波電界強度 (V >V )を印加
1 2 することが好ましい。また、周波数は ω < ωとなる能力を有している。
1 2
[0106] また、電流は Iく Iとなることが好ましい。第 1の高周波電界の電流 Iは、好ましくは
1 2 1
0. 3mAZcm2〜20mAZcm2、さらに好ましくは 1. OmAZcm2〜20mAZcm2で ある。また、第 2の高周波電界の電流 Iは、好ましくは 10mAZcm2〜100mAZcm2
2
、さらに好ましくは 20mAZcm2〜 1 OOmAZcm2である。
[0107] ガス供給手段 50のガス発生装置 51で発生させたガス Gは、流量を制御して給気口 52よりプラズマ放電処理容器 31内に導入する。
[0108] 基材 Fを、図示されて ヽな ヽ元卷き力も巻きほぐして搬送されて来る力 または前ェ 程から搬送されて来て、ガイドロール 64を経て-ップロール 65で基材に同伴されて 来る空気等を遮断し、ロール回転電極 35に接触したまま巻き回しながら角筒型固定 電極群 36との間に移送し、ロール回転電極 (第 1電極) 35と角筒型固定電極群 (第 2 電極) 36との両方から電界をかけ、対向電極間(放電空間) 32で放電プラズマを発 生させる。基材 Fはロール回転電極 35に接触したまま巻き回されながらプラズマ状態 のガスにより薄膜を形成する。基材 Fは、 -ップロール 66、ガイドロール 67を経て、図 示してない巻き取り機で巻き取る力 次工程に移送する。
[0109] 放電処理済みの処理排ガス G' は排気口 53より排出する。
[0110] 薄膜形成中、ロール回転電極 (第 1電極) 35及び角筒型固定電極群 (第 2電極) 36 を加熱または冷却するために、電極温度調節手段 60で温度を調節した媒体を、送 液ポンプ Pで配管 61を経て両電極に送り、電極内側から温度を調節する。なお、 68 及び 69はプラズマ放電処理容器 31と外界とを仕切る仕切板である。
[0111] 図 4は、図 3に示したロール回転電極の導電性の金属質母材とその上に被覆され て 、る誘電体の構造の一例を示す斜視図である。
[0112] 図 4において、ロール電極 35aは導電性の金属質母材 35Aとその上に誘電体 35B が被覆されたものである。プラズマ放電処理中の電極表面温度を制御するため、温 度調節用の媒体 (水もしくはシリコンオイル等)が循環できる構造となっている。
[0113] 図 5は、角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構 造の一例を示す斜視図である。
[0114] 図 5において、角筒型電極 36aは、導電性の金属質母材 36Aに対し、図 4同様の 誘電体 36Bの被覆を有しており、該電極の構造は金属質のパイプになっていて、そ れがジャケットとなり、放電中の温度調節が行えるようになつている。
[0115] なお、角筒型固定電極の数は、上記ロール電極の円周より大きな円周上に沿って 複数本設置されていおり、該電極の放電面積はロール回転電極 35に対向している 全角筒型固定電極面の面積の和で表される。
[0116] 図 5に示した角筒型電極 36aは、円筒型電極でもよいが、角筒型電極は円筒型電 極に比べて、放電範囲 (放電面積)を広げる効果があるので、本発明に好ましく用い られる。
[0117] 図 4及び図 5において、ロール電極 35a及び角筒型電極 36aは、それぞれ導電性 の金属質母材 35A及び 36Aの上に誘電体 35B及び 36Bとしてのセラミックスを溶射 後、無機化合物の封孔材料を用いて封孔処理したものである。セラミックス誘電体は 片肉で lmm程度被覆あればよい。溶射に用いるセラミックス材としては、アルミナ '窒 化珪素等が好ましく用いられる力 この中でもアルミナが加工し易いので、特に好まし く用いられる。また、誘電体層が、ライニングにより無機材料を設けたライニング処理 誘電体であってもよい。
[0118] 導電性の金属質母材 35A及び 36Aとしては、チタン金属またはチタン合金、銀、 白金、ステンレススティール、アルミニウム、鉄等の金属等や、鉄とセラミックスとの複 合材料またはアルミニウムとセラミックスとの複合材料を挙げることが出来るが、後述 の理由からはチタン金属またはチタン合金が特に好ましい。
[0119] 対向する第 1電極および第 2の電極の電極間距離は、電極の一方に誘電体を設け た場合、該誘電体表面ともう一方の電極の導電性の金属質母材表面との最短距離 のことを言う。双方の電極に誘電体を設けた場合、誘電体表面同士の距離の最短距 離のことを言う。電極間距離は、導電性の金属質母材に設けた誘電体の厚さ、印加 電界強度の大きさ、プラズマを利用する目的等を考慮して決定されるが、いずれの場 合も均一な放電を行う観点力 0. l〜20mmが好ましぐ特に好ましくは 0. 2〜2m mである。
[0120] 本発明に有用な導電性の金属質母材及び誘電体につ!、ての詳細につ 、ては後 述する。
[0121] プラズマ放電処理容器 31はパイレックス (登録商標)ガラス製の処理容器等が好ま しく用いられる力 電極との絶縁がとれれば金属製を用いることも可能である。例えば 、アルミニウムまたは、ステンレススティールのフレームの内面にポリイミド榭脂等を張 り付けても良ぐ該金属フレームにセラミックス溶射を行い絶縁性をとつてもよい。図 2 にお 、て、平行した両電極の両側面 (基材面近くまで)を上記のような材質の物で覆 うことが好ましい。 [0122] 本発明の大気圧プラズマ放電処理装置に設置する第 1電源 (高周波電源)としては 印加電源記号 メーカー 周波数 製品名
A1 神鋼電機 3kHz SPG3 -4500
A2 神鋼電機 5kHz SPG5 -4500
A3 春日電機 15kHz AGI-023
A4 神鋼電機 50kHz SPG50— 4500
A5 ハイデン研究所 100kHz * PHF-6k
A6 ノール工業 200kHz CF- 2000 - 200k
A7 ノール工業 400kHz CF— 2000— 400k等の市販のものを挙 げることが出来、何れも使用することが出来る。
[0123] また、第 2電源(高周波電源)としては、
印加電源記号 メーカー 周波数 製品名
B1 ノール工業 800kHz CF- 2000 -800k
B2 パール工業 2MHz CF— 2000— 2M
B3 ノール工業 13. 56MHz CF— 5000— 13M
B4 ノール工業 27MHz CF- 2000- 27M
B5 パール工業 150MHz CF—2000—150M等の市販のものを 挙げることが出来、何れも好ましく使用出来る。
[0124] なお、上記電源のうち、 *印はハイデン研究所インパルス高周波電源 (連続モード で 100kHz)である。それ以外は連続サイン波のみ印加可能な高周波電源である。
[0125] 本発明にお 、ては、このような電界を印加して、均一で安定な放電状態を保つこと が出来る電極を大気圧プラズマ放電処理装置に採用することが好ましい。
[0126] 本発明において、対向する電極間に印加する電力は、第 2電極 (第 2の高周波電 界)に lWZcm2以上の電力(出力密度)を供給し、放電ガスを励起してプラズマを発 生させ、エネルギーを薄膜形成ガスに与え、薄膜を形成する。第 2電極に供給する電 力の上限値としては、好ましくは 50WZcm2、より好ましくは 20W/cm2である。下限 値は、好ましくは 1. 2WZcm2である。なお、放電面積(cm2)は、電極において放電 が起こる範囲の面積のことを指す。
[0127] また、第 1電極 (第 1の高周波電界)にも、 lWZcm2以上の電力(出力密度)を供給 することにより、第 2の高周波電界の均一性を維持したまま、出力密度を向上させるこ とが出来る。これにより、更なる均一高密度プラズマを生成出来、更なる製膜速度の 向上と膜質の向上が両立出来る。好ましくは 5WZcm2以上である。第 1電極に供給 する電力の上限値は、好ましくは 50WZcm2である。
[0128] ここで高周波電界の波形としては、特に限定されない。連続モードと呼ばれる連続 サイン波状の連続発振モードと、パルスモードと呼ばれる ONZOFFを断続的に行う 断続発振モード等があり、そのどちらを採用してもよいが、少なくとも第 2電極側 (第 2 の高周波電界)は連続サイン波の方がより緻密で良質な膜が得られるので好まし 、。
[0129] このような大気圧プラズマによる薄膜形成法に使用する電極は、構造的にも、性能 的にも過酷な条件に耐えられるものでなければならない。このような電極としては、金 属質母材上に誘電体を被覆したものであることが好ましい。
[0130] 本発明に使用する誘電体被覆電極にお!ヽては、様々な金属質母材と誘電体との 間に特性が合うものが好ましぐその一つの特性として、金属質母材と誘電体との線 熱膨張係数の差が 10 X 10—6Z°C以下となる組み合わせのものである。好ましくは 8 X 10— 6Z°C以下、更に好ましくは 5 X 10— 6Z°C以下、更に好ましくは 2 X 10— 6Z°C以 下である。なお、線熱膨張係数とは、周知の材料特有の物性値である。
[0131] 線熱膨張係数の差が、この範囲にある導電性の金属質母材と誘電体との組み合わ せとしては、
1:金属質母材が純チタンまたはチタン合金で、誘電体がセラミックス溶射被膜
2:金属質母材が純チタンまたはチタン合金で、誘電体がガラスライニング
3:金属質母材力 Sステンレススティールで、誘電体がセラミックス溶射被膜
4:金属質母材がステンレススティールで、誘電体がガラスライニング
5:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がセラミックス溶射被 膜
6:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がガラスライニング
7:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がセラミックス溶射 皮膜
8:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がガラスライニング 等がある。線熱膨張係数の差という観点では、上記 1項または 2項および 5〜8項が 好ましぐ特に 1項が好ましい。
[0132] 本発明において、金属質母材は、上記の特性からはチタンまたはチタン合金が特 に有用である。金属質母材をチタンまたはチタン合金とすることにより、誘電体を上記 とすることにより、使用中の電極の劣化、特にひび割れ、剥がれ、脱落等がなぐ過酷 な条件での長時間の使用に耐えることが出来る。
[0133] 本発明に適用できる大気圧プラズマ放電処理装置としては、上記説明し以外に、 例えば、特開 2004— 68143号公報、同 2003— 49272号公報、国際特許第 02Z4 8428号パンフレット等に記載されている大気圧プラズマ放電処理装置を挙げること ができる。
実施例
[0134] 図 6は実施例のサンプルを作成したロール電極型放電処理装置(大気圧プラズマ 製膜装置)の概念図である。
[0135] 図 6に示すロール電極型放電処理装置(大気圧プラズマ製膜装置) 70を用いて処 理を実施。ロール電極 71に対向する棒状電極 72を複数個、フィルム 73の搬送方向 に対し平行に設置し、各電極部にガス供給装置 74により放電ガスと反応ガスを供給 し、高周波電源 75及び 76により高周波電力を投入し膜を形成した。
[0136] 基材としては、きもと社製クリアハードコート層(CHC)付ポリエチレンテレフタレート
(PET)フィルム(PETの厚さ 125 m、 CHCの厚さ 6 μ m)を用いた。
[0137] ここで誘電体 77は対向する電極共に、セラミックス溶射力卩ェのものに片肉で lmm 被覆した。被覆後の電極間隙は、 lmmに設定した。また誘電体を被覆した金属母材 は、冷却水による冷却機能を有するステンレス製ジャケット仕様であり、放電中は冷 却装置 78で冷却水を冷却し電極温度コントロールを行いながら実施した。ここで、低 周波側電源 75は応用電機製高周波電源(80kHz)、高周波側電源 76はパールェ 業製高周波電源(13. 56MHz)を使用した。
[0138] 〈セラミックス層〉 放電ガス : Nガス
2
反応ガス 1:酸素ガスを全ガスに対し 5 (体積) %
反応ガス 2 :HMDSO (hexamethyldisiloxane)を全ガスに対し 0. 1% 低周波側電源電力: 80kHzを lOWZcm2 (この時の電圧は Vpで 7kVであった) 高周波側電源電力: 13. 56MHzを lOWZcm2 (この時の電圧は Vpで 2kVであつ た)
〈ポリマー層〉
放電ガス : Nガス
2
反応ガス 1:メタンガスを全ガスに対し 0〜: LO (体積)%で変化させた。
[0139] 反応ガス 2 :HMDSOを全ガスに対し 0. 6 (体積)0 /0
低周波側電源電力: 80kHzを lOWZcm2 (この時の電圧は Vpで 7kVであった) 高周波側電源電力: 13. 56MHzを 10〜12WZcm2 (この時の電圧は Vpで 2kV であった)
前記大気圧プラズマ製膜装置を用いて、前記基材上に第 1層目としてポリマー層を 約 lOOnm製膜し、次に原材料のみを入れ替えて、第 2層目としてセラミックス層を約 50nm製膜し、更に第 3層目として、ポリマー層を同条件にて逐次積層を行い、第 5 層まで積層を行った。
[0140] 基材上に第 1層目のポリマー層を製膜したところで、水蒸気透過率、酸素透過率を 測定し、同時に測定した基材 (ポリエチレンテレフタレートフィルム)の水蒸気透過率、 酸素透過率をもちいて、ポリマー層の水蒸気透過係数、酸素透過係数を算出した。 また、最終的に第 5層まで積層した透明ガスノリアフィルム試料を用いて、水蒸気バリ ァ性能 (水蒸気透過率)、酸素バリア性能 (酸素透過率)を測定した。
以下、表 1に測定結果を示した。
[0141] [表 1] ポリマー β 全体
試料
|S周;皮 ¾ メタンガス 水蒸気 酸素 弾性率 水蒸気 酸素 備考
No.
(13.56MHz) 濃度(%) 透過係数 透過係数 (GPa) 透過率 透過率
1 10W/cm2 0 8.4X10— 2 6.6 0.6 1.3X10"4 1.3X10 比較
2 10W/cm2 1 5.6X10"2 3.2 0.8 9.2X10"5 6.8X10"3 比較
3 10 /cm2 3 1.2X10"3 5.0X10"1 1.2 1.6X10 1.7X10— 4 比較
4 10 /cm2 5 8.3X10— 4 7.4X10 3.5 1.1 X10"7 1.1 X10"5 本発明
5 10W/cm2 10 3.2X10— 4 4.2X10一2 5.8 1.1 X10"7 1.1 X10— 5 本発明
6 12W/cm2 5 8,0X10— 4 5.7X10 1.4 5.0X10—7 1.9X10 本発明
7 12W/cm2 10 1.1 X10— 4 9.5X10—3 9.5 8.1 10"7 2.5X10"5 本発明
8 12W/cm2 1 8.4X10"5 2.2X10—3 12.5 8.9X10— 4 4.6X10"' 比較
9 1 2W/cm2 3 5.6X10"6 7.7X10 24.6 2.7X10"' 9.3X10"' 比較
[0142] 各単位は下記の通り
メタンガス濃度:体積%、水蒸気透過係数: g'm/m2/day、酸素透過係数: m3'm /mVday,弾性率: GPa
〈測定方法〉
水蒸気透過率 (gZm2Zday)、及び、酸素透過率 (ml/m2Zday): (株)クリエテツ ク社製 WOPET— 003型を使用し測定。それぞれ JIS— K— 7129B (水蒸気透過率 ;40°C 90%RH)、また、 JIS—K— 7126(酸素透過率; 20°C 100%RH)に記載 された方法で測定した。
[0143] ここで 10— 2オーダーまでは、モコン社製酸素透過率測定装置 OX— TRAN2Z21' Lタイプ及び水蒸気透過率測定装置 PERMATRAN— W3Z33Gタイプにより基準 サンプルを比較評価した後、モコン社製装置を基準に更正を行い、シミュレーション により 10— 7オーダーまで外挿した。
[0144] 各膜の水蒸気透過係数、酸素透過係数は、この様にして求めた水蒸気透過率、及 び、酸素透過率から、基材フィルムの水蒸気透過率及び酸素透過率から計算により それぞれ求めた。
[0145] 弾性率: NEC三栄社製、薄膜物性評価装置 MH4000により測定。(温度 25°C)

Claims

請求の範囲
[1] セラミックス層を少なくとも 2層有し、該セラミックス層間に前記セラミックス層より弾性 率の低い層を少なくとも 1層有する透明ガスノ リアフィルムにおいて、前記セラミックス 層より弾性率の低い層の弾性率は lGPa〜: LOGPaであり、且つ、水蒸気透過係数は 1 X 10— 4g 'mZm2Zday〜l X 10— 3g 'mZm2Zdayであることを特徴とする透明ガス バリアフィルム。
[2] 前記セラミックス層よりも弾性率の低い層の酸素透過係数は 1 X 10"2cm3-m/mVd ay〜l X
Figure imgf000034_0001
透明ガスノ リアフィルム。
[3] 前記セラミックス層を構成する物質が、酸化珪素、酸化窒化珪素、又は酸化アルミ- ゥム、又はそれらの混合物であることを特徴とする請求の範囲第 1項または 2項に記 載の透明ガスバリアフィルム。
[4] 前記セラミックス層よりも弾性率の低い層は、ポリマーを含む層であることを特徴とす る請求の範囲第 1項または 2項に記載の透明ガスバリアフィルム。
PCT/JP2005/023456 2005-01-13 2005-12-21 透明ガスバリアフィルム WO2006075490A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006552871A JPWO2006075490A1 (ja) 2005-01-13 2005-12-21 透明ガスバリアフィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-006447 2005-01-13
JP2005006447 2005-01-13

Publications (1)

Publication Number Publication Date
WO2006075490A1 true WO2006075490A1 (ja) 2006-07-20

Family

ID=36677520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023456 WO2006075490A1 (ja) 2005-01-13 2005-12-21 透明ガスバリアフィルム

Country Status (2)

Country Link
JP (1) JPWO2006075490A1 (ja)
WO (1) WO2006075490A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010076288A (ja) * 2008-09-26 2010-04-08 Toppan Printing Co Ltd ガスバリア性積層フィルム
JP2010532708A (ja) * 2007-07-06 2010-10-14 シデル・パーティシペーションズ 少なくとも3つの層を含むプラズマ堆積遮蔽コーティング、そのような1つのコーティングを得るための方法、およびそのようなコーティングでコーティングされた容器
JP2011143577A (ja) * 2010-01-13 2011-07-28 Konica Minolta Holdings Inc ガスバリアフィルムの製造方法、ガスバリアフィルム及び有機光電変換素子
US8846187B2 (en) * 2007-02-06 2014-09-30 Konica Minolta Holdings, Inc. Transparent gas barrier film and method for producing transparent gas barrier film
JP2016054027A (ja) * 2014-09-02 2016-04-14 日本放送協会 有機電界発光素子
WO2016190284A1 (ja) * 2015-05-22 2016-12-01 コニカミノルタ株式会社 ガスバリア性フィルムおよびその製造方法
JP2018012234A (ja) * 2016-07-20 2018-01-25 コニカミノルタ株式会社 ガスバリアー性フィルム及び電子デバイス

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003276115A (ja) * 2002-03-26 2003-09-30 Dainippon Printing Co Ltd 積層体およびその製造方法
JP2003341003A (ja) * 2002-05-24 2003-12-03 Dainippon Printing Co Ltd 積層体およびその製造方法
JP2004001429A (ja) * 2002-04-01 2004-01-08 Konica Minolta Holdings Inc 基板及びその基板を有する有機エレクトロルミネッセンス素子
JP2004122608A (ja) * 2002-10-03 2004-04-22 Sony Chem Corp 耐久性フォトクロミックフィルム
JP2005246716A (ja) * 2004-03-03 2005-09-15 Fuji Photo Film Co Ltd ガスバリア性積層フィルムおよび該フィルムを用いた画像表示素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003276115A (ja) * 2002-03-26 2003-09-30 Dainippon Printing Co Ltd 積層体およびその製造方法
JP2004001429A (ja) * 2002-04-01 2004-01-08 Konica Minolta Holdings Inc 基板及びその基板を有する有機エレクトロルミネッセンス素子
JP2003341003A (ja) * 2002-05-24 2003-12-03 Dainippon Printing Co Ltd 積層体およびその製造方法
JP2004122608A (ja) * 2002-10-03 2004-04-22 Sony Chem Corp 耐久性フォトクロミックフィルム
JP2005246716A (ja) * 2004-03-03 2005-09-15 Fuji Photo Film Co Ltd ガスバリア性積層フィルムおよび該フィルムを用いた画像表示素子

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8846187B2 (en) * 2007-02-06 2014-09-30 Konica Minolta Holdings, Inc. Transparent gas barrier film and method for producing transparent gas barrier film
JP2010532708A (ja) * 2007-07-06 2010-10-14 シデル・パーティシペーションズ 少なくとも3つの層を含むプラズマ堆積遮蔽コーティング、そのような1つのコーティングを得るための方法、およびそのようなコーティングでコーティングされた容器
JP2010076288A (ja) * 2008-09-26 2010-04-08 Toppan Printing Co Ltd ガスバリア性積層フィルム
JP2011143577A (ja) * 2010-01-13 2011-07-28 Konica Minolta Holdings Inc ガスバリアフィルムの製造方法、ガスバリアフィルム及び有機光電変換素子
JP2016054027A (ja) * 2014-09-02 2016-04-14 日本放送協会 有機電界発光素子
WO2016190284A1 (ja) * 2015-05-22 2016-12-01 コニカミノルタ株式会社 ガスバリア性フィルムおよびその製造方法
JPWO2016190284A1 (ja) * 2015-05-22 2018-03-08 コニカミノルタ株式会社 ガスバリア性フィルムおよびその製造方法
JP2018012234A (ja) * 2016-07-20 2018-01-25 コニカミノルタ株式会社 ガスバリアー性フィルム及び電子デバイス

Also Published As

Publication number Publication date
JPWO2006075490A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
JP5267714B2 (ja) 透明ガスバリア性フィルムの製造方法および有機エレクトロルミネッセンス素子
JP5626308B2 (ja) ガスバリア積層体の製造方法及びガスバリア積層体
JPWO2008096616A1 (ja) 透明ガスバリア性フィルム及びその製造方法
JPWO2008096617A1 (ja) 透明ガスバリア性フィルム及び透明ガスバリア性フィルムの製造方法
JPWO2008096615A1 (ja) 透明ガスバリア性フィルム及びその製造方法
US20090252893A1 (en) Plasma discharge treatment apparatus, and method of manufacturing gas barrier film
WO2006075490A1 (ja) 透明ガスバリアフィルム
JP2006068992A (ja) ガスバリア性フィルム
JP2005320583A (ja) ガスバリア性透明プラスチックフィルムとその製造方法および該ガスバリア性透明プラスチックフィルムを用いた有機el素子
JP2011036778A (ja) バリアフィルムの製造方法
JP2006219721A (ja) 機能性フィルムの製造方法と機能性フィルムと表示素子と表示装置
JP5012745B2 (ja) ハードコート層付積層体
JP2011036803A (ja) バリアフィルムの製造方法
JP2009279778A (ja) ハードコート層付積層体
JP5719106B2 (ja) 透明ガスバリア性フィルム及び透明ガスバリア性フィルムの製造方法
US20140255288A1 (en) Gas barrier laminate and production method of the same
JP5663875B2 (ja) ハードコート層付積層体
JP5482651B2 (ja) ハードコート層付積層体
JP2005200710A (ja) 薄膜の形成方法とそれにより造られた薄膜および透明プラスチックフィルム
JP2006264094A (ja) ガスバリア性フィルム
JP2010058476A (ja) ハードコート層付積層体
JP2010058477A (ja) ハードコート層付積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006552871

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05820137

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5820137

Country of ref document: EP