WO2006021337A1 - Katalytisch beschichtetes partikelfilter und verfahren zu seiner herstellung sowie seine verwendung - Google Patents

Katalytisch beschichtetes partikelfilter und verfahren zu seiner herstellung sowie seine verwendung Download PDF

Info

Publication number
WO2006021337A1
WO2006021337A1 PCT/EP2005/008824 EP2005008824W WO2006021337A1 WO 2006021337 A1 WO2006021337 A1 WO 2006021337A1 EP 2005008824 W EP2005008824 W EP 2005008824W WO 2006021337 A1 WO2006021337 A1 WO 2006021337A1
Authority
WO
WIPO (PCT)
Prior art keywords
palladium
catalyst
particulate filter
platinum
filter
Prior art date
Application number
PCT/EP2005/008824
Other languages
English (en)
French (fr)
Inventor
Marcus Pfeifer
Markus Koegel
Roger Staab
Pascal Adolph
Yvonne Demel
Tobias Kuhl
Egbert Lox
Thomas Kreuzer
Frank-Walter Schuetze
Original Assignee
Umicore Ag & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34981116&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006021337(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Umicore Ag & Co. Kg filed Critical Umicore Ag & Co. Kg
Priority to US11/660,843 priority Critical patent/US7977275B2/en
Priority to JP2007528681A priority patent/JP5447757B2/ja
Priority to EP05774993.9A priority patent/EP1789161B1/de
Priority to BRPI0514502A priority patent/BRPI0514502B1/pt
Priority to KR1020077006369A priority patent/KR101273228B1/ko
Priority to CA002577621A priority patent/CA2577621A1/en
Publication of WO2006021337A1 publication Critical patent/WO2006021337A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a catalytically coated particulate filter and a method for its production and its use for removing carbon monoxide, hydrocarbons and soot particles from the exhaust gas of an internal combustion engine, in particular a lean-burned gasoline engine or a diesel engine.
  • Particulate filters are able to filter out soot particles from the lean exhaust gas of internal combustion engines and thus to prevent their emission into the atmosphere.
  • Various filter types can be used for this purpose, such as so-called Wandflußf ⁇ lter, ceramic fibers or foams and filters made of wire mesh, which allow separation rates of up to 95% and more.
  • the real difficulty is not in the filtration of the soot particles, but in the regeneration of the filter used. Carbon black burns only at temperatures of about 600 0 C. These temperatures are achieved by modern diesel engines in general only in the full load range. Therefore, additional, supporting measures for the oxidation of the deposited in or on the filter soot particles are necessary.
  • active and passive measures In the active measures, the temperature of the filter is raised, for example, by electric heating on the necessary for the oxidation of the soot temperature. Such measures are always associated with increased fuel consumption. In the passive systems, for example, the use of organometallic fuel additives such as ferrocene or by a catalytic coating of the filter, the soot ignition temperature is lowered. However, this lowering of the soot ignition temperature is generally not able to ensure regeneration of the filter even at low load points, so that nowadays a combination of active and passive measures is generally used.
  • the combination of an oxidation catalyst in conjunction with a particle filter has proved particularly useful.
  • the oxidation catalyst is arranged in front of the particle filter in the exhaust system.
  • unburned fuel and carbon monoxide reach the oxidation catalyst and are catalytically converted there to carbon dioxide and water.
  • the exhaust gas With the help of the released heat of reaction, the exhaust gas and thus also behind it arranged particle filter heated.
  • the post injection quantity can be reduced and the filter regenerated at each operating point of the engine.
  • close-coupled filters are installed in passenger cars, in which a so-called precatalyst is integrated on the filter substrate, that is, the coating of the precatalyst is applied directly to the particulate filter substrate.
  • a close-coupled filter must have a correspondingly high oxidation potential in order to be able to guarantee compliance with the statutory emission limit values for hydrocarbons and CO over the specified mileage.
  • the filter must be able to convert post-injection hydrocarbons throughout its service life so as to provide the exotherm required for soot burn-up. Because of the use of such a filter close to the engine, its catalytically active coating must have high thermal stability.
  • the object of the invention is to provide a catalytically activated diesel particulate filter which exhibits high fresh activity, good aging stability and sulfur resistance with respect to the conversion of carbon monoxide and hydrocarbons.
  • a catalytically coated particle filter having a first and a second end face, which is characterized in that the particle filter starting from the first end face on a fraction of its length L is coated with a first and then with a second catalyst and the first catalyst platinum and palladium on first support materials and the second catalyst comprises platinum and optionally palladium on second support materials.
  • the catalytic coating of the particulate filter according to the invention thus consists essentially of a platinum catalyst, which is activated in addition to palladium in a zone starting from an end face of the filter.
  • the filter is installed in the application in the vehicle so that the additionally activated with palladium end face of the filter faces the engine, thus forming the inlet end face for the exhaust gases of the diesel engine.
  • the particle filter according to the invention thus has an increased palladium concentration on the inflow side.
  • the filter according to the invention with its two successive catalyst coatings on filter substrates, for example of silicon carbide, is particularly suitable for installation close to the motor.
  • These filters have a high thermal mass and therefore heat up only slowly. Therefore, the light-off temperature of the catalyst located on the rear part of the filter is generally not achieved over all phases of the legally prescribed test cycles, such as the NEDC (New European Driving Cycle). This is especially true for long filters with lengths over 15 cm. This means that the catalyst on this part of the filter contributes little or no to the conversion of hydrocarbons and carbon monoxide in the test cycle.
  • the filter according to the invention reduces this problem by an increased noble metal concentration in the input region of the filter.
  • the aging stability of platinum can be improved by combining platinum with palladium.
  • Palladium on the other hand, is more susceptible to sulfur poisoning.
  • the coating By arranging the palladium in the input region of the filter, the coating here obtains good resistance to the high temperature loads in this region.
  • the lighter sulfur poisoning of palladium is not significant here, since in this area the temperature of the exhaust gas from time to time exceeds the Desulfatmaschinestemperatur, especially in the periodic regeneration of the soot filter.
  • the combination of a palladium / platinum catalyst in the inlet region of the particle filter with a platinum catalyst in the rear region provides optimum behavior against aging and sulfur poisoning.
  • the particulate filler retains good catalytic activity throughout its lifetime and can fully react the large quantities of carbon monoxide and hydrocarbons produced during post-injection, for example, to generate heat.
  • the support materials of the first and second catalysts may be the same or different. Preferably, they are selected from a group of support materials consisting of alumina, silica, titania, zirconia, ceria, and mixtures or mixed oxides thereof.
  • These materials may be thermally stabilized by doping with rare earth oxides, alkaline earth oxides or silica.
  • active alumina is preferably stabilized by doping with barium oxide, lanthanum oxide or silica, wherein the doping elements are present in a concentration of 1 to 40 wt .-%, calculated as oxide and based on the total weight of the stabilized aluminum oxide.
  • cerium oxide it is intended to use cerium oxide as support material for its oxygen-storing properties, it is advantageous to use a cerium / zirconium mixed oxide instead of a pure cerium oxide.
  • Cerium / zirconium mixed oxides generally have a higher temperature stability than cerium oxide alone. This stability can be further improved by doping the material with, for example, praseodymium oxide.
  • the weight ratio of palladium to platinum in the first catalyst is advantageously between 10: 1 and 1:50.
  • the weight ratio of palladium to platinum in the second catalyst is less than the corresponding weight ratio in the first catalyst.
  • the second catalyst does not contain palladium.
  • the weight ratio of palladium to platinum averaged over the entire particle filter is preferably in the range between 1: 1 and 1:50 and particularly preferably in the range between 1: 6 and 1:50.
  • First and second catalyst may overlap each other. In extreme cases, this overlap is complete, that is, the second catalyst is applied uniformly over the entire length of the particulate filter and the first catalyst is deposited starting from the first end face on this second catalyst over a fraction of the length of the filter substrate.
  • the first catalyst may be considered to consist of two superimposed coatings whose first, lower layer has the same composition as the second catalyst.
  • first and second catalysts can be applied to a third catalyst which is present over the entire length of the particle filter as a coating.
  • filter substrates for the particle filter according to the invention, all known filter substrates can be used.
  • wall flow filters made of a ceramic material such as silicon carbide, cordierite, aluminum titanate or mullite are used.
  • Wandflußfilter usually have a cylindrical shape with two end faces and a lateral surface and are traversed from the first end face to the second end face of a plurality of lying substantially parallel to the cylinder axis Strömungska ⁇ channels for the exhaust gases of diesel engines.
  • the cross-sectional shape of Wandflußfilter depends on the installation requirements on the motor vehicle. Widely used are filter bodies with a round cross section, elliptical or triangular cross section.
  • the flow channels usually have a square or hexagonal cross section and are arranged in a narrow grid over the entire cross section of the filter body.
  • the channel or cell density of the flow channels varies between 10 and 140 cm 2.
  • the thickness of the channel walls between two adjacent flow channels is typically 0.1 to 0.3 mm, depending on the cell density.
  • the flow channels are mutually closed at the first and second end faces.
  • one end face forms the inlet end face and the second end face forms the outlet end face for the exhaust gas.
  • the flow channels which are open at the inlet side form the inlet channels and the flow channels which are open at the outlet side form the outlet channels.
  • Inlet and outlet channels are alternately adjacent and separated by the channel walls between them.
  • the exhaust gas has to change over from the inlet channels through the channel walls between inlet and outlet channels into the outlet channels of the filter.
  • the material from which the Wandflußfilter are constructed an open-pored porosity.
  • Wall flow filters whose porosity is between 30 and 95% and whose pores have average diameters between 10 and 50 ⁇ m are preferably used.
  • the porosity is between 45 to 90%.
  • the porosity of conventional ceramic flow-through honeycomb bodies is about 30% at the lower end of the porosity range of Wandflußfiltern. The difference in the mean pore diameter, which is only about 4 to 5 ⁇ m in conventional flow-through honeycomb bodies, is even clearer.
  • the catalyst coatings are preferably present substantially in the pores of the particulate filter substrate. As a result, the effect caused by the coating increase in the exhaust backpressure is kept as low as possible.
  • the catalyst materials can be introduced into the pores of the filter material in various forms:
  • the powder materials are suspended in water and ground for homogenization.
  • the grinding is carried out so that the maximum size of the carrier particles in the suspension is less than 10 microns.
  • the mean particle size d 5 o is reduced to less than 2 ⁇ m by grinding.
  • the corresponding d 90 diameter is then according to experience below 5 microns.
  • the term d 50 (d 90 ) here means that the volume of particles with particle sizes below d 50 (dc > o) adds up to 50% (90%) of the volume of all particles. This small particle size ensures that the carrier materials are deposited almost exclusively in the pores of the filter material.
  • the support materials can already be activated with platinum and / or palladium.
  • the activation can also take place after application of the carrier materials to the filter substrate by means of a subsequent impregnation with soluble precursors of the noble metals.
  • the conversion of these precursors into their catalytically active form then takes place by the final drying and calcination of the filter.
  • the carrier materials can also be produced in the form of a sol.
  • a sol consists of preformed particles with particle diameters below 1 ⁇ m, generally even below 0.5 ⁇ m.
  • the techniques for the preparation of a particular substance in the form of a sol are known to those skilled in the art. Due to their small particle diameter, these materials are deposited almost exclusively in the pores during the coating of the filter substrates.
  • the sols can also be activated before coating with platinum and / or palladium.
  • the activation can also be effected only after application of the support materials by impregnation with soluble precursors of the noble metals.
  • the filter can be impregnated with a common solution of precursors of the carrier materials and of the catalytically active noble metals. By the subsequent drying and calcination, these precursors are converted into the final catalyst materials.
  • the upstream increased palladium loading can then be prepared by impregnation with corresponding precursors of palladium or by a second coating with a palladium-containing catalyst material, wherein prior to application of the second coating, the first coating is at least dried.
  • FIG. 1 Bag emission in the NEDC test cycle for the filters of Comparative Examples 3 and 4 and of Example 2 in the fresh state and after hydrothermal aging
  • FIG. 2 Behavior of light-off temperatures for carbon monoxide (CO) and hydrocarbons (HC) for three different filter coatings with increasing aging
  • the aging of the coated filter was carried out at 750 0 C in air with a water vapor content of 10 vol .-% for a period of 16 hours (hydrothermal aging).
  • the particle filter substrates were in each case silicon carbide filter bodies with a cell density of 46.5 cm -1 (300 cpsi) and a channel wall thickness of 0.3 mm (12 mils).
  • the filter material had a porosity of 60% with an average pore diameter of 30 microns.
  • the first filter substrate was coated with a supported on a stabilized ⁇ -alumina platinum catalyst.
  • the catalyst material was suspended in water and thoroughly ground, so that substantially all catalyst particles had diameters of less than 10 ⁇ m.
  • the d 9 o diameter of the catalyst particles was less than 5 microns.
  • To coat the filter it was aligned vertically with its flow channels. Then the suspension was pumped through the lower end face into the filter. After a short time, excess suspension was sucked down. Due to this coating, the suspension was deposited substantially in the pores of the filter. Thereafter, the filter was dried and calcined at 500 ° C. for 2 hours.
  • the finished filter had a platinum concentration of 3.18 g / L (90 g / ft 3 ).
  • the second filter substrate was coated in an analogous manner with a supported on stabilized ⁇ -alumina palladium / platinum catalyst.
  • the palladium / platinum catalyst had a palladium / platinum ratio of 1: 4.
  • Total precious metal loading was also 3.18 g / L (90 g / ft 3 ).
  • the third filter substrate was coated uniformly over its entire length with a platinum catalyst as in Comparative Example 1.
  • the platinum loading was reduced to 3.1 g / L (88 g / ft 3 ) over Filter VI.
  • the later gas inlet side of the filter was subsequently re-impregnated with 0.42 g / l (12 g / ft 3 ) of palladium using palladium nitrate.
  • the total noble metal content of the filter was thus also 3.18 g / l (90 g / ft 3 ).
  • the one by the Post-impregnation formed first catalyst had a noble metal concentration of 3.53 g / l (100 g / fit 3 ) with a palladium / platinum ratio of 1: 7.3.
  • the second catalyst was formed in this case by the non-palladium-impregnated platinum catalyst. Its palladium / platinum ratio was thus 0.
  • the light-off temperatures of these three filters for the conversion of carbon monoxide and hydrocarbons in the fresh and aged state was determined on a model gas system by loading with a model exhaust gas.
  • the space velocity was 25,000 h -1 .
  • the model exhaust gas was heated to determine the light-off temperatures at a rate of 15 ° C./minute
  • the composition of the model exhaust gas used is shown in Table 1:
  • the measured light-off temperatures of the three filters can be found in Table 2.
  • the filter substrate was uniformly coated over its entire length with the platinum catalyst of Comparative Example 1.
  • the platinum concentration on the finished filter was 3.18 g / L (90 g / ft 3 ).
  • the filter substrate was uniformly coated over its entire length with the palladium / platinum catalyst of Comparative Example 2.
  • the palladium / platinum catalyst had a palladium / platinum ratio of 1: 4.
  • the total noble metal loading on the filter was 3.18 g / L (90 g / ft 3 ).
  • the filter substrate was first uniformly coated with the platinum catalyst of Comparative Example 1 at a platinum concentration of 3.1 g / L (88 g / ft 3 ). Thereafter, the entrance side of the filter was reimpregnated to a length of 25.4 mm with 0.42 g / l (12 g / ft 3 ) of palladium using palladium nitrate. The total precious metal content of the filter was thus also 3.18 g / L (90 g / ft 3 ).
  • the first catalyst formed by the post-impregnation had a noble metal concentration of 3.53 g / L (100 g / ft 3 ) with a palladium / platinum ratio of 1: 7.3.
  • a second set of filters V3, V4 and F2 were made.
  • the filters were initially measured fresh without pre-catalyst on a direct injection diesel engine (2.2 l displacement) with turbocharging and charge air cooling and a power of 100 kW with respect to their light-off. Subsequently, all the filters were each sulfurized for 6 hours at exhaust gas temperatures between 200 and 300 ° C using a diesel fuel with 2400 mass ppm S and reread. The results are summarized in Table 3:
  • the filter with the Pt-only coating has a similar freshness activity as the filter according to the invention with upstream impregnation with palladium.
  • Filter V2 with a Pd / Pt coating uniform over the filter length is very sensitive to sulfur poisoning. The reason for this is the easy poisonability of palladium with sulfur. This problem is largely avoided if palladium is introduced according to the invention only in an upstream zone of the filter. At the same time this can be the thermal aging stability of the coated filter over a pure platinum catalyst can be improved.
  • a 143.8 mm diameter, 152.4 mm (5.66 "x 6") silicon carbide filter body was first primed.
  • This basecoat contained a supported on a stabilized ⁇ -alumina platinum / palladium catalyst with a palladium / platinum mass ratio of 1: 2.
  • the catalyst material was suspended in water and thoroughly ground, so that essentially all catalyst particles Diameter of less than 10 microns had.
  • the d 90 diameter of the catalyst particles was less than 5 ⁇ m.
  • the noble metal concentration of this coating was 2.12 g / L (60 g / ft 3 ).
  • a zone of 25.4 mm length was additionally coated with the same catalyst suspension as for the base coat, starting from the entry end face.
  • the noble metal concentration in this zone coating was also 2.12 g / l.
  • Another filter body was provided with a base coat as in Comparative Example 5.
  • a 25.4 mm length zone was additionally coated with a platinum catalyst supported on a stabilized ⁇ -alumina starting from the entry face.
  • the milling of the catalyst suspension was again conducted so that the d 90 diameter of the catalyst particles after milling was less than 5 ⁇ m.
  • a noble metal concentration of 2.12 g / L was set for the zone coating.
  • a third filter body according to the invention was first coated with a platinum catalyst.
  • the grinding and coating was carried out as in the preceding comparative examples 5 and 6.
  • the precious metal concentration of this coating was again 2.12 g / l.
  • a zone 25.4 mm in length, starting from the entrance face was additionally coated with a platinum / palladium catalyst of Comparative Example 5 supported on a stabilized ⁇ -alumina.
  • the light-off temperatures for CO and HC were determined for the three particulate filters of Comparative Examples 5 and 6 and of Example 4 on the vehicle already used in Example 2.
  • the particle filters were measured in the fresh state and after each successive special aging stresses.
  • the filters were successively subjected to the following aging:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Es wird ein Partikelfilter mit einer katalytischen Beschichtung vorgeschlagen, die zwei hintereinander angeordnete Katalysatoren enthält. Der erste Katalysator befindet sich im Gaseintrittsbereich des Filters und enthält einen Palladium/Platin-Katalysator. Der zweite Katalysator ist dahinter angeordnet und enthält bevorzugt nur Platin als katalytisch aktive Komponente. Die Kombination dieser beiden Katalysatoren verleiht dem beschichteten Filter eine gute Alterungsstabilität und Resistenz gegenüber einer Schwefelvergiftung.

Description

Katalytisch beschichtetes Partikelfilter und Verfahren zu seiner Herstellung sowie seine Verwendung
Beschreibung
Die Erfindung betrifft ein katalytisch beschichtetes Partikelfilter sowie ein Verfahren zu seiner Herstellung und seine Verwendung zur Entfernung von Kohlenmonoxid, Kohlenwasserstoffen und Rußpartikeln aus dem Abgas eines Verbrennungsmotors, insbesondere eines mager betriebenen Benzinmotors oder eines Dieselmotors.
Partikelfilter sind in der Lage, Rußpartikel aus dem mageren Abgas von Verbren¬ nungsmotoren herauszufiltern und so deren Emission in die Atmosphäre zu verhindern. Zu diesem Zweck können verschiedene Filtertypen eingesetzt werden, wie sogenannte Wandflußfϊlter, keramische Fasern oder Schäume sowie Filter aus Drahtgeflechten, die Abscheidegrade bis zu 95 % und mehr ermöglichen. Die eigentliche Schwierigkeit besteht aber nicht in der Filtration der Rußpartikel, sondern in der Regeneration der eingesetzten Filter. Kohlenstoffruß verbrennt erst bei Temperaturen von etwa 600 0C. Diese Temperaturen werden aber von modernen Dieselmotoren im allgemeinen nur im Vollastbereich erzielt. Daher sind zusätzliche, unterstützende Maßnahmen zur Oxidation der im oder auf dem Filter abgeschiedenen Rußpartikel notwendig. Man unterscheidet zwischen aktiven und passiven Maßnahmen: Bei den aktiven Maßnahmen wird die Temperatur des Filters beispielsweise durch elektrische Aufheizung über die zur Oxidation des Rußes notwendige Temperatur angehoben. Solche Maßnahmen sind stets mit einem Kraftstoffmehrverbrauch verbunden. Bei den passiven Systemen wird beispielsweise durch die Verwendung von metallorganischen Kraftstoffadditiven wie Ferrocen oder durch eine katalytische Beschichtung des Filters die Rußzündtemperatur abgesenkt. Diese Absenkung der Rußzündtemperatur ist aber im allgemeinen nicht in der Lage, eine Regeneration des Filters auch bei niedrigen Lastpunkten zu gewährleis¬ ten, so daß heutzutage im allgemeinen eine Kombination von aktiven und passiven Maßnahmen eingesetzt wird.
Besonders bewährt hat sich die Kombination eines Oxidationskatalysators in Verbin¬ dung mit einem Partikelfilter. Dabei ist der Oxidationskatalysator vor dem Partikelfilter in der Abgasanlage angeordnet. Durch eine Nacheinspritzung oder andere motorische Maßnahmen gelangen unverbrannter Kraftstoff und Kohlenmonoxid auf den Oxidati¬ onskatalysator und werden dort katalytisch zu Kohlendioxid und Wasser umgesetzt. Mit Hilfe der freiwerdenden Reaktionswärme wird das Abgas und damit auch das dahinter angeordnete Partikelfilter aufgeheizt. In Verbindung mit einer die Rußzündtemperatur senkenden katalytischen Beschichtung des Filters oder von Kraftstoffadditiven kann die Nacheinspritzmenge vermindert und das Filter in jedem Betriebspunkt des Motors regeneriert werden.
Neuerdings werden in Personenkraftwagen auch motornahe Filter eingebaut, bei denen ein sogenannter Vorkatalysator auf dem Filtersubstrat integriert ist, das heißt die Beschichtung des Vorkatalysators ist direkt auf dem Partikelfiltersubstrat aufgebracht. Ein solches motornahes Filter muß über ein entsprechend hohes Oxidationspotential verfügen, um die Einhaltung der gesetzlich festgelegten Emissionsgrenzwerte für Kohlenwasserstoffe und CO über die vorgegebene Laufleistung garantieren zu können. Darüber hinaus muß das Filter über seine gesamte Lebensdauer in der Lage sein, während der Regeneration nacheingespritzte Kohlenwasserstoffe umzusetzen, um so die zum Rußabbrand benötigte Exothermie zur Verfügung stellen zu können. Wegen des motornahen Einsatzes eines solchen Filters muß seine katalytisch aktive Beschichtung eine hohe thermische Stabilität aufweisen.
Bis heute werden für Diesel-Personenkraftwagen nahezu ausschließlich Filterbeschich- tungen mit Platin eingesetzt. Prinzipiell sind schon seit geraumer Zeit auch Beschich- tungen auf der Basis von Platin und Palladium beschrieben. Diese zeichnen sich durch eine hervorragende Temperaturstabilität aus, besitzen jedoch im Vergleich zu alleinigen Platin-Beschichtungen eine deutlich geringere Frischaktivität. Ein weiterer Nachteil von Platin und Palladium enthaltenden katalytischen Beschichtungen ist ihre hohe Empfindlichkeit gegenüber Schwefel, die bis heute ihre Verwendung für Dieselmotoren von Personenwagen verhindert hat. Palladium wird schon bei relativ kurzer Einwirkung von Schwefeldioxid enthaltendem Dieselabgas vergiftet, was mit einem entsprechenden Aktivitätsverlust einhergeht. Andererseits ist diese Verschwefelung bei hohen Abgastemperaturen reversibel. Dies führt dazu, daß bei periodisch regenerierenden Systemen wie beispielsweise Applikationen mit Dieselpartikelfilter bei der Regenerati¬ on des Filters der Katalysator selbst gleichzeitig „entgiftet" wird.
Aufgabe der Erfindung ist die Bereitstellung eines katalytisch aktivierten Dieselpartikel- filters, das eine hohe Frischaktivität, gute Alterungsstabilität und Schwefelresistenz bezüglich der Umsetzung von Kohlenmonoxid und Kohlenwasserstoffen zeigt.
Diese Aufgabe wird durch ein katalytisch beschichtetes Partikelfilter mit einer ersten und einer zweiten Stirnfläche gelöst, welches dadurch gekennzeichnet ist, daß das Partikelfilter beginnend von der ersten Stirnfläche auf einem Bruchteil seiner Länge L mit einem ersten und im Anschluß daran mit einem zweiten Katalysator beschichtet ist und der erste Katalysator Platin und Palladium auf ersten Trägermaterialien und der zweite Katalysator Platin und gegebenenfalls Palladium auf zweiten Trägermaterialien enthält.
Die katalytische Beschichtung des erfindungsgemäßen Partikelfilters besteht also im wesentlichen aus einem Platin-Katalysator, der in einer Zone ausgehend von einer Stirnfläche des Filters zusätzlich mit Palladium aktiviert ist. Das Filter wird bei der Anwendung im Fahrzeug so eingebaut, daß die zusätzlich mit Palladium aktivierte Stirnfläche des Filters dem Motor zugewandt ist, also die Eintrittsstirnfläche für die Abgase des Dieselmotors bildet. Das erfindungsgemäße Partikelfilter weist somit anströmseitig eine erhöhte Palladiumkonzentration auf.
Das erfindungsgemäße Filter mit seinen beiden hintereinanderliegenden Katalysatorbe- schichtungen auf Filtersubstraten zum Beispiel aus Siliziumkarbid ist besonders für den motornahen Einbau geeignet. Diese Filter besitzen eine hohe thermische Masse und erwärmen sich daher nur langsam. Daher wird die Anspringtemperatur des auf dem hinteren Teil des Filters befindlichen Katalysators im allgemeinen nicht über alle Phasen der gesetzlich vorgeschriebenen Testzyklen, wie zum Beispiel dem NEDC (New European Driving Cycle), erreicht. Das gilt besonders bei langen Filtern mit Längen über 15 cm. Das bedeutet, daß der Katalysator auf diesem Teil der Filter nicht oder nur wenig zur Umsetzung von Kohlenwasserstoffen und Kohlenmonoxid im Testzyklus beiträgt. Das erfindungsgemäße Filter vermindert dieses Problem durch eine erhöhte Edelmetallkonzentration im Eingangsbereich des Filters.
Es wurde nun gefunden, daß eine Kombination von hintereinanderliegenden Katalysato¬ ren mit verschiedenen Palladium/Platin-Verhältnissen besonders günstige Eigenschaften bezüglich Alterung und Schwefelvergiftung aufweist. Reine Platin-Katalysatoren zeigen eine gute Frischaktivität und eine gute Schwefelresistenz, dagegen ist die Alterungssta¬ bilität von reinen Platin-Katalysatoren nicht besonders gut. Ein solcher Katalysator ist daher besonders für den hinteren Teil des Partikelfilters geeignet.
Die Alterungsstabilität von Platin kann durch eine Kombination von Platin mit Palladium verbessert werden. Palladium ist dagegen anfälliger für eine Schwefelver- giftung. Durch Anordnung des Palladiums im Eingangsbereich des Filters erhält die Beschichtung hier eine gute Widerstandsfähigkeit gegen die hohen Temperaturbelas¬ tungen in diesem Bereich. Die leichtere Schwefelvergiftbarkeit des Palladiums fällt hier nicht ins Gewicht, da in diesem Bereich die Temperatur des Abgases von Zeit zu Zeit die Desulfatisierungstemperatur überschreitet, insbesondere bei der periodischen Regenerierung des Rußfilters.
Insgesamt liefert die Kombination eines Palladium/Platin-Katalysators im Eintrittsbe¬ reich des Partikelfilters mit einem Platin-Katalysator im rückwärtigen Bereich ein optimales Verhalten gegenüber Alterung und Schwefelvergiftung. Das Partikelfüter behält über seine gesamte Lebensdauer eine gute katalytische Aktivität und kann die zum Beispiel bei einer Nacheinspritzung anfallenden großen Mengen von Kohlenmo- noxid und Kohlenwasserstoffen unter Erzeugung von Wärme vollständig umsetzen.
Für die katalytische Aktivität der katalytischen Beschichtung sind jedoch nicht nur die Edelmetalle verantwortlich, sondern auch die verwendeten Trägermaterialien spielen hierbei eine wichtige Rolle. Die Trägermaterialien des ersten und zweiten Katalysators können gleich oder verschieden sein. Bevorzugt werden sie aus einer Gruppe von Trägermaterialien ausgewählt, die aus Aluminiumoxid, Siliciumdioxid, Titanoxid, Zirkonoxid, Ceroxid und Mischungen oder Mischoxiden davon besteht.
Diese Materialien können durch Dotierung mit Seltenerdoxiden, Erdalkalioxiden oder Siliciumdioxid thermisch stabilisiert sein. Bevorzugt wird zum Beispiel aktives Aluminiumoxid durch Dotieren mit Bariumoxid, Lanthanoxid oder Siliciumdioxid stabilisiert, wobei die Dotierungselemente in einer Konzentration von 1 bis 40 Gew.-%, berechnet als Oxid und bezogen auf das Gesamtgewicht des stabilisierten Aluminium- oxids vorliegen. Soll als Trägermaterial Ceroxid wegen seiner Sauerstoff speichernden Eigenschaften eingesetzt werden, so ist es vorteilhaft statt eines reinen Ceroxids ein Cer/Zirkon-Mischoxid zu verwenden. Cer/Zirkon-Mischoxide besitzen in der Regel eine höhere Temperaturstabilität als Ceroxid allein. Diese Stabilität kann durch Dotieren des Materials mit zum Beispiel Praseodymoxid noch weiter verbessert werden.
Das Gewichtsverhältnis von Palladium zu Platin im ersten Katalysator liegt vorteilhafter Weise zwischen 10 : 1 und 1 : 50. Das Gewichtsverhältnis von Palladium zu Platin im zweiten Katalysator ist kleiner als das entsprechende Gewichtsverhältnis im ersten Katalysator. In einer bevorzugten Ausführungsform enthält der zweite Katalysator kein Palladium.
Das über das gesamte Partikelfilter gemittelte Gewichtsverhältnis von Palladium zu Platin liegt bevorzugt im Bereich zwischen 1 : 1 und 1 : 50 und besonders bevorzugt im Bereich zwischen 1 : 6 und 1 : 50. Erster und zweiter Katalysator können einander überlappen. Im Extremfall ist diese Überlappung vollständig, das heißt der zweite Katalysator ist gleichmäßig auf der gesamten Länge des Partikelfilters aufgebracht und der erste Katalysator ist beginnend von der ersten Stirnfläche auf diesem zweiten Katalysator über einen Bruchteil der Länge des Filtersubstrates abgeschieden. In diesem Fall kann der erste Katalysator als aus zwei übereinanderliegenden Beschichtungen bestehend aufgefaßt werden, dessen erste, untere Schicht die gleiche Zusammensetzung wie der zweite Katalysator aufweist.
In einer besonderen Ausführungsform können erster und zweiter Katalysator auf einem dritten Katalysator aufgebracht sein, der über der gesamten Länge des Partikelfilters als Beschichtung vorliegt.
Für das erfindungsgemäße Partikelfilter können alle bekannten Filtersubstrate eingesetzt werden. Bevorzugt werden Wandflußfilter verwendet, welche aus einem keramischen Material wie Siliziumkarbid, Cordierit, Aluminiumtitanat oder Mullit gefertigt sind.
Wandflußfilter besitzen in der Regel eine zylindrische Form mit zwei Stirnflächen und einer Mantelfläche und werden von der ersten Stirnfläche zur zweiten Stirnfläche von einer Vielzahl von im wesentlichen parallel zur Zylinderachse liegenden Strömungska¬ nälen für die Abgase der Dieselmotoren durchzogen. Die Querschnittsform der Wandflußfilter hängt von den Einbauerfordernissen am Kraftfahrzeug ab. Weit verbreitet sind Filterkörper mit rundem Querschnitt, elliptischem oder dreieckförmigem Querschnitt. Die Strömungskanäle weisen meist einen quadratischen, oder hexagonalen Querschnitt auf und sind in einem engen Raster über den gesamten Querschnitt der Filterkörper angeordnet. Je nach Anwendungsfall variiert die Kanal- beziehungsweise Zelldichte der Strömungskanäle zwischen 10 und 140 cm"2. Die Dicke der Kanalwände zwischen zwei benachbarten Strömungskanälen beträgt typischerweise je nach Zelldichte 0,1 bis 0,3 mm.
Zur Ausbildung der Filterwirkung sind die Strömungskanäle wechselseitig an der ersten und zweiten Stirnfläche verschlossen. Entsprechend der Anordnung des Filters im Abgasstrom des Dieselmotors bildet eine Stirnfläche die Eintrittsstirnfläche und die zweite Stirnfläche die Austrittsstirnfläche für das Abgas. Die an der Eintrittsseite offenen Strömungskanäle bilden die Eintrittskanäle und die an der Austrittsseite offenen Strömungskanäle bilden die Austrittskanäle. Ein- und Austrittskanäle sind abwechselnd benachbart und werden durch die Kanalwände zwischen ihnen voneinander getrennt. Bei seinem Weg durch das Filter muß das Abgas von den Eintrittskanälen durch die Kanalwände zwischen Ein- und Austrittskanälen hindurch in die Austrittskanäle des Filters hinüberwechseln. Zu diesem Zweck weist das Material, aus welchem die Wandflußfilter aufgebaut sind, eine offenporige Porosität auf. Bevorzugt werden Wandflußfilter eingesetzt, deren Porosität zwischen 30 und 95 % liegt und deren Poren mittlere Durchmesser zwischen 10 und 50 μm aufweisen. Bevorzugt beträgt die Porosität zwischen 45 bis 90 %. Demgegenüber liegt die Porosität konventioneller, keramischer Durchfluß- Wabenkörper mit etwa 30 % am unteren Ende des Porositätsbe¬ reichs von Wandflußfiltern. Noch deutlicher ist der Unterschied beim mittleren Porendurchmesser, der bei konventionellen Durchfluß- Wabenkörpern nur bei etwa 4 bis 5 μm liegt.
Die Katalysatorbeschichtungen liegen bevorzugt im wesentlichen in den Poren des Partikelfiltersubstrates vor. Hierdurch wird die infolge der Beschichtung bewirkte Erhöhung des Abgasgegendrucks so gering wie möglich gehalten.
Die Katalysatormaterialien können in verschiedener Form in die Poren des Filtermateri¬ als eingebracht werden:
• in Form fester Pulvermaterialien
• als Sole
• als Lösungen von Vorstufen der späteren Trägermaterialien, die erst durch eine abschließende Calcinierung in ihre endgültige Form überführt werden.
Im ersten Fall werden die Pulvermaterialien zum Beispiel in Wasser suspendiert und zwecks Homogenisierung vermählen. Die Vermahlung wird dabei so geführt, daß die maximale Größe der Trägerpartikel in der Suspension kleiner als 10 μm ist. Erfahrungs¬ gemäß ist dies in hinreichendem Maße erfüllt, wenn die mittlere Partikelgröße d5o durch die Vermahlung auf unter 2 μm vermindert wird. Der entsprechende d90-Durchmesser liegt dann erfahrungsgemäß unter 5 μm. Die Bezeichnung d50 (d90) bedeutet hier, daß das Volumen der Partikel mit Teilchengrößen unterhalb von d50 (dc>o) sich zu 50 % (90 %) des Volumens aller Partikel addiert. Diese geringe Partikelgröße gewährleistet, daß die Trägermaterialien fast ausschließlich in den Poren des Filtermaterials abgelagert werden. Die Trägermaterialien können hierbei schon mit Platin und/oder Palladium aktiviert sein. Die Aktivierung kann jedoch auch nach Aufbringen der Trägermaterialien auf das Filtersubstrat durch eine nachträgliche Imprägnierung mit löslichen Vorstufen der Edelmetalle erfolgen. Die Überführung dieser Vorstufen in ihre katalytisch aktive Form erfolgt dann durch die abschließende Trocknung und Calcinierung des Filters. Die Trägermaterialien können auch in Form eines SoIs hergestellt werden. Ein SoI besteht aus vorgeformten Partikeln mit Partikeldurchmessern unter 1 μm, in der Regel sogar unter 0,5 μm. Die Techniken zur Herstellung eines bestimmten Stoffes in Form eines Soles sind dem Fachmann bekannt. Auf Grund ihrer geringen Partikeldurchmesser werden auch diese Materialien bei der Beschichtung der Filtersubstrate fast ausschlie߬ lich in den Poren abgelagert. Wie schon im Falle der Verwendung von Pulvermateria¬ lien können auch die Sole vor dem Beschichten mit Platin und/oder Palladium aktiviert werden. Alternativ kann auch hier die Aktivierung erst nach Aufbringen der Trägerma¬ terialien durch Imprägnierung mit löslichen Vorstufen der Edelmetalle erfolgen.
Als dritte Möglichkeit der Einbringung der Katalysatormaterialien in die Poren des Filtermaterials kann das Filter mit einer gemeinsamen Lösung von Vorstufen der Trägermaterialien und der katalytisch aktiven Edelmetalle imprägniert werden. Durch die anschließende Trocknung und Calcinierung werden diese Vorstufen in die endgülti¬ gen Katalysatormaterialien überführt.
Die anströmseitig erhöhte Palladiumbeladung kann danach durch Imprägnieren mit entsprechenden Vorstufen des Palladiums oder durch eine zweite Beschichtung mit einem Palladium enthaltenden Katalysatormaterial hergestellt werden, wobei vor Aufbringen der zweiten Beschichtung die erste Beschichtung zumindest getrocknet wird.
Die folgenden Beispiele und Vergleichsbeispiele sowie die Figuren 1 und 2 sollen die Erfindung weiter erläutern. Es zeigen:
Figur 1: Beutelemission im NEDC-Testzyklus für die Filter der Vergleichsbeispiele 3 und 4 und des Beispiels 2 im frischen Zustand und nach hydrothermaler Alte¬ rung
Figur 2: Verhalten der Anspringtemperaturen für Kohlenmonoxid (CO) und Kohlenwasserstoffe (HC) für drei verschiedene Filterbeschichtungen mit zu¬ nehmender Alterung
Es wurden mehrere Dieselpartikelfüter mit unterschiedlichen Beschichtungen hergestellt und ihre Anspringtemperaturen für die Umsetzung von Kohlenmonoxid und Kohlenwasserstoffen im frischen und gealterten Zustand ermittelt. Die Alterung der beschichteten Filter erfolgte bei 750 0C an Luft mit einem Wasserdampfgehalt von 10 Vol.-% für die Dauer von 16 Stunden (hydrothermale Alterung). Bei den Partikelfilter-Substraten handelte es sich jeweils um Filterkörper aus Silizium¬ karbid mit einer Zelldichte von 46,5 cm'1 (300 cpsi) und einer Dicke der Kanalwände von 0,3 mm (12 mil). Das Filtermaterial hatte eine Porosität von 60 % mit einem mittleren Porendurchmesser von 30 μm.
Für die Vergleichsbeispiele 1 und 2 sowie für Beispiel 1 wurden 3 Filtersubstrate mit den Abmessungen 25,4 x 25,4 x 152,4 mm (I" x 1" x 6") eingesetzt, die nach Beschich- tung in einer Modellgasanlage vermessen wurden.
Vergleichsbeispiel 1: (Filter Vl)
Das erste Filtersubstrat wurde mit einem auf einem stabilisierten γ-Aluminiumoxid geträgerten Platin-Katalysator beschichtet. Hierzu wurde das Katalysatormaterial in Wasser suspendiert und gründlich vermählen, so daß im wesentlichen alle Katalysator¬ partikel Durchmesser von weniger als 10 μm aufwiesen. Der d9o-Durchmesser der Katalysatorpartikel war kleiner als 5 μm. Zur Beschichtung des Filters wurde es mit seinen Strömungskanälen senkrecht ausgerichtet. Dann wurde die Suspension durch die untere Stirnfläche in das Filter eingepumpt. Nach kurzer Zeit wurde überschüssige Suspension nach unten abgesaugt. Durch diese Beschichtung wurde die Suspension im wesentlichen in den Poren des Filters abgelagert. Danach wurde das Filter getrocknet und bei 500 0C für die Dauer von 2 Stunden calciniert. Das fertige Filter besaß eine Platin-Konzentration von 3,18 g/l (90 g/ft3).
Vergleichsbeispiel 2; (Filter V2)
Das zweite Filtersubstrat wurde in analoger Weise mit einem auf stabilisiertem γ- Aluminiumoxid geträgerten Palladium/Platin-Katalysator beschichtet. Der Palladi- um/Platin-Katalysator wies ein Palladium/Platin-Verhältnis von 1 : 4 auf. Die Gesamtedelmetallbeladung betrug ebenfalls 3,18 g/l (90 g/ft3).
Beispiel 1: (Filter Fl)
Das dritte Filtersubstrat wurde zur Anfertigung eines erfindungsgemäßen Filters zu¬ nächst über seine gesamte Länge gleichmäßig mit einem Platin-Katalysator wie in Vergleichsbeispiel 1 beschichtet. Die Platinbeladung wurde jedoch gegenüber Filter Vl auf 3,1 g/l (88 g/ft3) vermindert. Zur Bildung des ersten Katalysators wurde anschlie- ßend die spätere Gaseintrittsseite des Filters über 25,4 mm Länge mit 0,42 g/l (12 g/ft3) Palladium unter Verwendung von Palladiumnitrat nachimprägniert. Der Gesamtedel¬ metallgehalt des Filters betrug somit ebenfalls 3,18 g/l (90 g/ft3). Der durch die Nachimprägnierung gebildete erste Katalysator besaß eine Edelmetallkonzentration von 3,53 g/l (100 g/fit3) mit einem Palladium/Platin- Verhältnis von 1 : 7,3. Der zweite Katalysator wurde in diesem Fall durch den nicht mit Palladium nachimprägnierten Platin-Katalysator gebildet. Sein Palladium/Platin-Verhältnis betrug also 0.
Die Anspringtemperaturen dieser drei Filter für die Umsetzung von Kohlenmonoxid und Kohlenwasserstoffen im frischen und gealterten Zustand wurde an einer Modell¬ gasanlage durch Belastung mit einem Modellabgas ermittelt. Die Raumgeschwindigkeit betrug 25.000 h"1. Das Modellabgas wurde zur Bestimmung der Anspringtemperaturen mit einer Rate von 15 °C/min aufgeheizt. Die Zusammensetzung des verwendeten Modellabgases ist in Tabelle 1 wiedergegeben:
Tabelle 1; Zusammensetzung des Modellabgases für die Messung der Anspring¬ temperaturen
Figure imgf000010_0001
Die gemessenen Anspringtemperaturen der drei Filter finden sich in Tabelle 2.
Tabelle 2:
Figure imgf000010_0002
In den folgenden Vergleichsbeispielen 3 und 4 sowie in Beispiel 2 wurden Filtersub¬ strate aus Siliziumkarbid mit 143,8 mm Durchmesser und 152,4 mm Länge in gleicher Art und Weise beschichtet wie die Filtersubstrate der vorangegangenen Vergleichsbei- spiele und Beispiele.
Vergleichsbeispiel 3; (Filter V3)
Das Filtersubstrat wurde gleichmäßig über seine gesamte Länge mit dem Platin- Katalysator von Vergleichsbeispiel 1 beschichtet. Die Platinkonzentration auf dem fertigen Filter betrug 3,18 g/l (90 g/ft3).
Vergleichsbeispiel 4: (Filter V4)
Das Filtersubstrat wurde gleichmäßig über seine gesamte Länge mit dem Palladi¬ um/Platin-Katalysator von Vergleichsbeispiel 2 beschichtet. Der Palladium/Platin- Katalysator wies ein Palladium/Platin- Verhältnis von 1 : 4 auf. Die Gesamtedelmetall¬ beladung auf dem Filter betrug 3,18 g/l (90 g/ft3).
Beispiel 2: (Filter F2)
Das Filtersubstrat wurde zunächst gleichmäßig mit dem Platin-Katalysator von Vergleichsbeispiel 1 mit einer Platinkonzentration von 3,1 g/l (88 g/ft3) beschichtet. Danach wurde die Eintrittsseite des Filters auf einer Länge von 25,4 mm mit 0,42 g/l (12 g/ft3) Palladium unter Verwendung von Palladiumnitrat nachimprägniert. Der Gesamtedelmetallgehalt des Filters betrug somit ebenfalls 3,18 g/l (90 g/ft3). Der durch die Nachimprägnierung gebildete erste Katalysator besaß eine Edelmetallkonzentration von 3,53 g/l (100 g/ft3) mit einem Palladium/Platin- Verhältnis von 1 : 7,3.
Die Überprüfung der katalytischen Aktivität dieser Filter im frischen Zustand und nach hydrothermaler Alterung wurde an einem Euro III zertifizierten Diesel-PKW mit einem 100 kW 2,2 1 Dieselmotor mit Common-Rail vorgenommen. Dieses Fahrzeug war serienmäßig mit einem Oxidationskatalysator und Partikelfilter ausgestattet. Statt der Anspringtemperaturen wurden am Fahrzeug die Emissionen im NEDC-Fahrzyklus ermittelt. Hierzu wurde das serienmäßige Abgasreinigungssystem aus Oxidationskataly¬ sator und Partikelfilter jeweils durch das beschichtete Partikelfilter ersetzt. Die Ergeb- nisse einschließlich der Rohemissionen des Fahrzeugs sind in Figur 1 zusammenge¬ stellt. Es ist deutlich zu erkennen, daß das erfmdungsgemäße Filter nach Beispiel 2 die Frisch¬ aktivität des nur mit einem Pt/Aluminiumoxid-Katalysator ausgerüsteten Filters (Vergleichsbeispiel 3) und die Alterungsstabilität des gleichmäßig mit einem Pd- Pt/Aluminiumoxid-Katalysator beschichteten Filters (Vergleichsbeispiel 4) aufweist.
Beispiel 3:
Es wurde ein zweiter Satz Filter V3, V4 und F2 hergestellt.
Die Filter wurden ohne Vorkatalysator an einem direkteinspritzenden Dieselmotor (2,2 1 Hubraum) mit Abgasturboaufladung und Ladeluftkühlung und einer Leistung von 100 kW bezüglich ihrer Anspringtemperatur zunächst frisch vermessen. Anschließend wurden alle Filter jeweils für 6 Stunden bei Abgastemperaturen zwischen 200 und 300°C unter Verwendung eines Dieselkraftstoffs mit 2400 Massen-ppm S verschwefelt und erneut vermessen. Die Ergebnisse sind in Tabelle 3 zusammengestellt:
Tabelle 3: Anspringtemperaturen am 2,2 1 Motor, frisch und nach Verschwefelung
Figure imgf000012_0001
Es ist deutlich erkennbar, daß das Filter mit der nur-Pt-Beschichtung eine ähnliche Frischaktivität aufweist, wie das erfindungsgemäße Filter mit anströmseitiger Nachimprägnierung mit Palladium. Filter V2 mit einer über die Filterlänge gleichmäßi¬ gen Pd/Pt-Beschichtung ist sehr empfindlich gegenüber einer Schwefelvergiftung. Der Grund hierfür ist die leichte Vergiftbarkeit von Palladium mit Schwefel. Dieses Problem wird weitgehend vermieden, wenn Palladium gemäß der Erfindung nur in einer anströmseitigen Zone des Filters eingebracht wird. Gleichzeitig kann dadurch die thermische Alterungsstabilität des beschichteten Filters gegenüber einem reinen Platin- Katalysator verbessert werden.
Vergleichsbeispiel 5 (Filter V5):
Auf einen Filterkörper aus Siliziumkarbid mit 143,8 mm Durchmesser und 152,4 mm Länge (5,66" x 6") wurde zunächst eine Grundbeschichtung aufgebracht. Diese Grundbeschichtung enthielt einen auf einem stabilisierten γ- Aluminiumoxid geträgerten Platin/Palladium-Katalysator mit einem Palladium/Platin-Massenverhältnis von 1 : 2. Zum Aufbringen der Beschichtung wurde das Katalysatormaterial in Wasser suspen¬ diert und gründlich vermählen, so daß im wesentlichen alle Katalysatorpartikel Durchmesser von weniger als 10 μm aufwiesen. Der d90-Durchmesser der Katalysator¬ partikel war kleiner als 5 μm. Die Edelmetallkonzentration dieser Beschichtung betrug 2,12 g/l (60 g/ft3).
Nach einer Zwischentrocknung wurde eine Zone mit einer Länge von 25,4 mm beginnend von der Eintrittsstirnfläche zusätzlich mit derselben Katalysatorsuspension wie für die Grundbeschichtung beschichtet. Die Edelmetallkonzentration in dieser Zonenbeschichtung betrug ebenfalls 2,12 g/l.
Vergleichsbeispiel 6 (Filter V6):
Es wurde ein weiterer Filterkörper mit einer Grundbeschichtung wie in Vergleichsbei¬ spiel 5 versehen.
Nach einer Zwischentrocknung wurde eine Zone mit einer Länge von 25,4 mm beginnend von der Eintrittsstirnfläche zusätzlich mit einem auf einem stabilisierten γ-Aluminiumoxid geträgerten Platin-Katalysator beschichtet. Die Vermahlung der Katalysatorsuspension wurde wieder so geführt, daß der d90-Durchmesser der Katalysa¬ torpartikel nach dem Mahlen weniger als 5 μm betrug. Wie für die Grundbeschichtung wurde für die Zonenbeschichtung eine Edelmetallkonzentration von 2,12 g/l eingestellt.
Beispiel 4 (Filter F3*):
Ein dritter Filterkörper wurde erfindungsgemäß erst mit einem Platin-Katalysator beschichtet. Die Vermahlung und Beschichtung wurde wie in den vorangegangenen Vergleichsbeispielen 5 und 6 vorgenommen. Die Edelmetallkonzentration dieser Beschichtung betrug wieder 2, 12 g/l. Nach einer Zwischentrocknung wurde eine Zone mit einer Länge von 25,4 mm beginnend von der Eintrittsstirnfläche zusätzlich mit einem auf einem stabilisierten γ-Aluminiurnoxid geträgerten Platin/Palladium-Katalysator von Vergleichsbeispiel 5 beschichtet.
Anwendungsuntersuchungen:
Die Anspringtemperaturen für CO und HC wurde für die drei Partikelfilter der Vergleichsbeispiele 5 und 6 und von Beispiel 4 an dem schon in Beispiel 2 verwendeten Fahrzeug ermittelt. Die Partikelfilter wurden im frischen Zustand und jeweils nach aufeinanderfolgenden speziellen Alterungsbelastungen vermessen. Die Filter wurden nacheinander den folgenden Alterungen unterworfen:
• 6-stündige Verschwefelung am Motor wie in Beispiel 3
• Alterung durch Nacheinspritzung mit 20 Nacheinspritzzyklen (PI- Alterung). Jeder Zyklus dauerte 12 min. Die Nacheinspritzung wurde bei Filtereingangstemperatu¬ ren von 450 °C vorgenommen. Infolge der Nacheinspritzung betrug der Kohlenmo- noxidgehalt des Abgases 2500 ppm und der Kohlenwasserstoffgehalt mehr als
18000 ppm. Durch Verbrennen dieser Schadstoffe am Filterkatalysator stieg die Filtertemperatur während eines Zyklus auf 850 0C.
• Hydrothermale Ofenalterung bei 750 °C an Luft mit einem Wasserdampfgehalt von 10 Vol.-% für die Dauer von 16 Stunden.
Nach jeder Alterung wurden die Anspringtemperaturen der drei Filterkörper für die Umsetzung von CO und HC ermittelt. Die Daten sind im Diagramm von Figur 2 dargestellt. Die Ergebnisse zeigen eindeutig, daß das erfindungsgemäß beschichtet Filter von Beispiel 4 bei deutlich verbesserter Schwefelresistenz eine vergleichbare Alterungsstabilität wie das Filter von Vergleichsbeispiel 5 mit einem reinen PIa- tin/Palladium-Katalysator aufweist.

Claims

Patentansprüche
1. Katalytisch beschichtetes Partikelfilter mit einer ersten und einer zweiten Stirnfläche und einer axialen Länge L, dadurch g ekennzeichnet, daß das Partikelfilter beginnend von der ersten Stirnfläche auf einem Bruchteil seiner Länge L mit einem ersten und im Anschluß daran mit einem zweiten Ka¬ talysator beschichtet ist und der erste Katalysator Platin und Palladium auf ersten Trägermaterialien und der zweite Katalysator Platin und gegebenenfalls Palladium auf zweiten Trägermaterialien enthält.
2. Partikelfilter nach Anspruch 1, dadurch gekennz ei chnet, daß erste und zweite Trägermaterialien gleich oder verschieden sein können und ausgewählt sind aus der Gruppe bestehend aus Aluminiumoxid, Siliciumdioxid, Titanoxid, Zirkonoxid und Mischungen oder Mischoxiden davon.
3. Partikelfilter nach Anspruch 1 , dadurch gekennze i chnet, daß das Gewichtsverhältnis von Palladium zu Platin im ersten Katalysator zwi¬ schen 10 : 1 und 1 : 50 liegt und das Gewichtsverhältnis von Palladium zu Platin im zweiten Katalysator kleiner ist als das entsprechende Gewichtsverhältnis im ersten Katalysator.
4. Partikelfilter nach Anspruch 1, dadurch gekennze ichnet, daß erster und zweiter Katalysator einander überlappen können.
5. Partikelfilter nach Anspruch 1 , dadurch g ekennze ichnet, daß erster und zweiter Katalysator auf einem dritten Katalysator aufgebracht sind, der über der gesamten Länge des Partikelfüters als Beschichtung vorliegt.
6. Partikelfilter nach Anspruch 1 , dadurch gekennze i chnet, daß der erste Katalysator aus zwei übereinanderliegenden Beschichtungen besteht, wobei die untere Beschichtung die gleiche Zusammensetzung wie der zweite Ka¬ talysator hat.
7. Partikelfilter nach Anspruch 6, dadurch gekennz e i chnet, daß das Gewichtsverhältnis von Palladium zu Platin des ersten Katalysators zwi¬ schen 10 : 1 und 1 : 50 liegt und das Gewichtsverhältnis von Palladium zu Platin im zweiten Katalysator kleiner ist als das entsprechende Gewichtsverhältnis im ersten Katalysator.
8. Partikelfilter nach Anspruch 1 , dadurch gekennzei chnet, daß das über das gesamte Partikelfilter gemittelte Gewichtsverhältnis von Palladi- um zu Platin im Bereich zwischen 1 : 1 und 1 : 50 liegt.
9. Partikelfilter nach Anspruch 8, dadurch gekennzei chnet, daß das über das gesamte Partikelfilter gemittelte Gewichtsverhältnis von Palladi¬ um zu Platin im Bereich zwischen 1 : 6 und 1 : 50 liegt.
10. Partikelfilter nach Anspruch 1 , d adurch gekennzei chnet, daß es sich bei dem Partikelfilter um ein Wandflußfilter aus keramischem Materi¬ al wie Siliziumkarbid, Cordierit, Aluminiumtitanat oder Mullit handelt, welches eine offenporige Struktur mit einer Porosität zwischen 30 und 95 % und mittleren Porendurchmessern zwischen 10 und 50 μm aufweist.
11. Partikelfilter nach Anspruch 10, dadurch gekennzei chnet, daß die Katalysatorbeschichtungen im wesentlichen in den Poren des Partikelfil¬ ters vorliegen.
12. Verfahren zur Herstellung eines Partikelfilters nach Anspruch 11 , dadurch gekennzeichnet, daß die Katalysatoren in Form einer Suspension der mit Platin und/oder Palladium aktivierten Trägermaterialien, deren mittlere Partikeldurchmesser kleiner als 2 μm sind, über die ganze Länge L in die Poren des Partikelfilters eingebracht werden und eine anströmseitig erhöhte Palladiumbeladung durch nachträgliches Impräg¬ nieren mit entsprechenden Vorstufen des Palladiums oder durch eine zweite Be- schichtung mit einem Palladium enthaltenden Katalysatormaterial hergestellt wird.
13. Verfahren zur Herstellung eines Partikelfilters nach Anspruch 11 , dadurch g ekennzeichnet, daß die Katalysatoren in Form einer Suspension der Trägermaterialien, deren ma¬ ximale Partikelgröße kleiner als 10 μm ist, über die ganze Länge L in die Poren des Partikelfilters eingebracht und danach mit Platin und/oder Palladium durch
Imprägnieren mit löslichen Vorstufen dieser Edelmetalle katalytisch aktiviert werden, wobei eine anströmseitig erhöhte Palladiumbeladung durch nachträgli¬ ches Imprägnieren mit entsprechenden Vorstufen des Palladiums oder durch eine zweite Beschichtung mit einem Palladium enthaltenden Katalysatormaterial her- gestellt wird.
14. Verfahren zur Herstellung eines Partikelfilters nach Anspruch 11, dadurch g ekennze i chnet, daß die Katalysatoren in Form eines SoIs der mit Platin und/oder Palladium akti¬ vierten Trägermaterialien, deren maximale Partikelgröße kleiner als 1 μm ist, über die ganze Länge L in die Poren des Partikelfϊlters eingebracht werden, wobei eine anströmseitig erhöhte Palladiumbeladung durch nachträgliches Imprägnieren mit entsprechenden Vorstufen des Palladiums oder durch eine zweite Beschichtung mit einem Palladium enthaltenden Katalysatormaterial hergestellt wird.
15. Verfahren zur Herstellung eines Partikelfilters nach Anspruch 11 , dadurch g ekennze i chnet, daß die Katalysatoren in Form eines SoIs der Trägermaterialien, deren maximale Partikelgröße kleiner als 1 μm ist, über die ganze Länge L in die Poren des Parti¬ kelfilters eingebracht und danach mit Platin und/oder Palladium durch Imprägnie¬ ren mit löslichen Vorstufen dieser Edelmetalle katalytisch aktiviert werden, wobei eine anströmseitig erhöhte Palladiumbeladung durch nachträgliches Imprägnieren mit entsprechenden Vorstufen des Palladiums oder durch eine zweite Beschich¬ tung mit einem Palladium enthaltenden Katalysatormaterial hergestellt wird.
16. Verfahren zur Herstellung eines Partikelfilters nach Anspruch 11 , dadurch gekennzei chnet, daß die Katalysatoren durch Imprägnieren des Partikelfilters mit einer gemeinsa¬ men Lösung von Vorstufen der Trägermaterialien und der katalytisch aktiven Edelmetalle über die ganze Länge L in die Poren des Partikelfilters eingebracht und durch anschließende Trocknung und Calcinierung in die endgültigen Kataly¬ satormaterialien überführt werden, wobei eine anströmseitig erhöhte Palladium- beladung durch nachträgliches Imprägnieren mit entsprechenden Vorstufen des Palladiums oder durch eine zweite Beschichtung mit einem Palladium enthalten¬ den Katalysatormaterial hergestellt wird.
17. Verwendung des Partikelfilters nach einem der Ansprüche 1 bis 11 zur Reinigung der Abgase eines Verbrennungsmotors.
PCT/EP2005/008824 2004-08-21 2005-08-13 Katalytisch beschichtetes partikelfilter und verfahren zu seiner herstellung sowie seine verwendung WO2006021337A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/660,843 US7977275B2 (en) 2004-08-21 2005-08-13 Catalytically coated particle filter and method for producing the same and its use
JP2007528681A JP5447757B2 (ja) 2004-08-21 2005-08-13 触媒被覆された粒子フィルタ及びその製造方法並びにその使用
EP05774993.9A EP1789161B1 (de) 2004-08-21 2005-08-13 Katalytisch beschichtetes partikelfilter und verfahren zu seiner herstellung sowie seine verwendung
BRPI0514502A BRPI0514502B1 (pt) 2004-08-21 2005-08-13 filtro de partículas cataliticamente revestido e processo para a produção do mesmo e seu uso
KR1020077006369A KR101273228B1 (ko) 2004-08-21 2005-08-13 촉매로 피복된 입자 필터, 이의 제조방법 및 이의 용도
CA002577621A CA2577621A1 (en) 2004-08-21 2005-08-13 Catalytically coated particulate filter, and process for producing it and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004040549.2 2004-08-21
DE102004040549.2A DE102004040549B4 (de) 2004-08-21 2004-08-21 Katalytisch beschichtetes Partikelfilter und seine Verwendung

Publications (1)

Publication Number Publication Date
WO2006021337A1 true WO2006021337A1 (de) 2006-03-02

Family

ID=34981116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/008824 WO2006021337A1 (de) 2004-08-21 2005-08-13 Katalytisch beschichtetes partikelfilter und verfahren zu seiner herstellung sowie seine verwendung

Country Status (9)

Country Link
US (1) US7977275B2 (de)
EP (1) EP1789161B1 (de)
JP (1) JP5447757B2 (de)
KR (1) KR101273228B1 (de)
CN (1) CN100540122C (de)
BR (1) BRPI0514502B1 (de)
CA (1) CA2577621A1 (de)
DE (1) DE102004040549B4 (de)
WO (1) WO2006021337A1 (de)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1789191A1 (de) * 2004-08-21 2007-05-30 Umicore AG & Co. KG Verfahren zum beschichten eines wandflussfilters mit feinteiligen feststoffen und damit erhaltenes filter und seine verwendung
JP2008057337A (ja) * 2006-08-29 2008-03-13 Hino Motors Ltd 排気浄化装置
JP2008264636A (ja) * 2007-04-17 2008-11-06 Tokyo Roki Co Ltd ディーゼルエンジン用排ガス浄化システムの酸化触媒
WO2009079590A1 (en) * 2007-12-18 2009-06-25 Basf Catalysts Llc Catalyzed soot filter manufacture and systems
EP2098279A1 (de) * 2008-02-20 2009-09-09 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Abgasreinigungsvorrichtung für einen Verbrennungsmotor
DE102008042767A1 (de) 2008-10-13 2010-04-15 Ford Global Technologies, LLC, Dearborn Abgasreinigungsanlage
DE102008042766A1 (de) 2008-10-13 2010-04-15 Ford Global Technologies, LLC, Dearborn Kombinierte Abgasnachbehandlungseinrichtung
EP1941942A3 (de) * 2006-11-29 2010-08-11 ICT Co., Ltd. Oxidationskatalysator und Abgasreinigungssystem damit
DE102009000804A1 (de) 2009-02-12 2010-08-19 Ford Global Technologies, LLC, Dearborn Abgasreinigungsanlage
JP2010540217A (ja) * 2007-09-28 2010-12-24 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト 主に化学量論的混合気で運転される内燃機関の排ガスからの粒子の除去
JP2011512249A (ja) * 2008-02-14 2011-04-21 ビー・エイ・エス・エフ、コーポレーション 低い白金/パラジウム比を有するcsf
WO2011057649A1 (de) * 2009-11-12 2011-05-19 Umicore Ag & Co. Kg Verbesserter dieseloxidationskatalysator
DE102013013973A1 (de) 2013-08-23 2015-02-26 Clariant Produkte (Deutschland) Gmbh Partikelfilter zur Reinigung von Abgasen, Abgasreinigungssystem und Verfahren zur Reinigung von Abgas
DE202009019007U1 (de) 2008-05-07 2015-04-22 Umicore Ag & Co. Kg SCR-Katalysator zur Verminderung von Stickoxiden in Kohlenwasserstoff-haltigen Abgasen
JP2015158206A (ja) * 2006-12-01 2015-09-03 ビーエーエスエフ コーポレーション 領域的に被覆されたフィルター、排気処理システム及び方法
EP1797288B1 (de) 2004-09-14 2015-11-11 BASF Corporation Druckausgeglichener, katalytischer russfilter
WO2017191099A1 (de) 2016-05-02 2017-11-09 Umicore Ag & Co. Kg Drei-zonen-dieseloxidationskatalysator
US10001053B2 (en) 2008-06-27 2018-06-19 Umicore Ag & Co. Kg Method and device for the purification of diesel exhaust gases

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2406803A (en) 2004-11-23 2005-04-13 Johnson Matthey Plc Exhaust system comprising exotherm-generating catalyst
US8119075B2 (en) * 2005-11-10 2012-02-21 Basf Corporation Diesel particulate filters having ultra-thin catalyzed oxidation coatings
KR101621983B1 (ko) 2008-02-05 2016-05-31 바스프 코포레이션 미립자 트랩을 갖는 가솔린 엔진 배출물 처리 시스템
DE102008010388B4 (de) 2008-02-21 2015-04-16 Umicore Ag & Co. Kg Verfahren zur Beschichtung eines Dieselpartikelfilters und damit hergestelltes Dieselpartikelfilter
KR100969378B1 (ko) 2008-03-31 2010-07-09 현대자동차주식회사 배기 가스 정화 장치
EP2112339A1 (de) * 2008-04-24 2009-10-28 Umicore AG & Co. KG Verfahren und Vorrichtung zur Reinigung von Abgasen eines Verbrennungsmotors
EP2123345B1 (de) * 2008-05-23 2010-08-04 Umicore AG & Co. KG Vorrichtung zur Reinigung von Dieselabgasen
DE102008040646A1 (de) * 2008-07-23 2010-01-28 Robert Bosch Gmbh Abgasnachbehandlungseinrichtung für eine Brennkraftmaschine mit Fremdzündung
DE102008055890A1 (de) * 2008-11-05 2010-05-12 Süd-Chemie AG Partikelminderung mit kombiniertem SCR- und NH3-Schlupf-Katalysator
US8512657B2 (en) 2009-02-26 2013-08-20 Johnson Matthey Public Limited Company Method and system using a filter for treating exhaust gas having particulate matter
GB0903262D0 (en) * 2009-02-26 2009-04-08 Johnson Matthey Plc Filter
US8637426B2 (en) * 2009-04-08 2014-01-28 Basf Corporation Zoned catalysts for diesel applications
US8246923B2 (en) 2009-05-18 2012-08-21 Umicore Ag & Co. Kg High Pd content diesel oxidation catalysts with improved hydrothermal durability
US8557203B2 (en) 2009-11-03 2013-10-15 Umicore Ag & Co. Kg Architectural diesel oxidation catalyst for enhanced NO2 generator
JP5909191B2 (ja) 2009-11-20 2016-04-26 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 帯状触媒スートフィルタ
WO2011104666A1 (en) 2010-02-23 2011-09-01 Basf Se Improved catalyzed soot filter
US8263033B2 (en) * 2010-02-23 2012-09-11 Ford Global Technologies, Llc Palladium-contaning oxidation catalyst
JP5775512B2 (ja) * 2010-03-31 2015-09-09 日本碍子株式会社 ハニカムフィルタ及びハニカムフィルタの製造方法
US8815189B2 (en) 2010-04-19 2014-08-26 Basf Corporation Gasoline engine emissions treatment systems having particulate filters
DE102010038143A1 (de) * 2010-10-13 2012-04-19 Hjs Emission Technology Gmbh & Co. Kg Verfahren zum Absenken der Rußzündtemperatur von auf einem Partikelfilter akkumuliertem Ruß
US8591820B2 (en) 2011-03-11 2013-11-26 Corning Incorporated Honeycomb filters for reducing NOx and particulate matter in diesel engine exhaust
DE102011100017A1 (de) * 2011-04-29 2012-10-31 Süd-Chemie AG Verfahren zur Herstellung gezonter Katalysatoren
US8524182B2 (en) 2011-05-13 2013-09-03 Basf Se Catalyzed soot filter with layered design
CN103648607B (zh) * 2011-05-13 2016-08-17 巴斯夫欧洲公司 具有层状设计的催化滤烟器
US8789356B2 (en) 2011-07-28 2014-07-29 Johnson Matthey Public Limited Company Zoned catalytic filters for treatment of exhaust gas
GB201121468D0 (en) 2011-12-14 2012-01-25 Johnson Matthey Plc Improvements in automotive catalytic aftertreatment
EP2623183B1 (de) * 2012-02-03 2015-08-26 Umicore AG & Co. KG Katalytisch aktives partikelfilter und dessen verwendung
EP2653681B2 (de) 2012-04-20 2019-12-04 Umicore AG & Co. KG Verwendung eines Beschichteten Dieselpartikelfilters zum Verhindern der Kontamination eines SCR-Katalysators
US8568674B1 (en) 2012-08-10 2013-10-29 Basf Corporation Diesel oxidation catalyst composites
US9333490B2 (en) * 2013-03-14 2016-05-10 Basf Corporation Zoned catalyst for diesel applications
JP2015025433A (ja) 2013-07-29 2015-02-05 三菱自動車工業株式会社 内燃機関の排気浄化装置
GB2518418A (en) * 2013-09-20 2015-03-25 Johnson Matthey Plc Electrically heated catalyst for a compression ignition engine
DE102015212788A1 (de) 2015-07-08 2017-01-12 Volkswagen Aktiengesellschaft Katalytisch aktives Partikelfilter
EP3501648B1 (de) 2017-12-19 2023-10-04 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
EP3505245B1 (de) 2017-12-19 2019-10-23 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
EP3505246B1 (de) * 2017-12-19 2019-10-23 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
CN111801160B (zh) 2018-02-26 2024-08-09 巴斯夫公司 用于汽油机废气后处理的催化剂
WO2019188620A1 (ja) * 2018-03-30 2019-10-03 三井金属鉱業株式会社 排ガス浄化触媒
WO2020112469A1 (en) * 2018-11-30 2020-06-04 Corning Incorporated Batch mixtures containing pre-reacted inorganic particles and methods of manufacture of ceramic bodies therefrom
JP7386626B2 (ja) * 2019-06-18 2023-11-27 株式会社キャタラー パティキュレートフィルタ
EP3932542A1 (de) 2020-07-03 2022-01-05 BASF Corporation Katalysator für die partikelverbrennung in benzinemissionsbehandlungssystemen

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4515758A (en) * 1982-09-03 1985-05-07 Degussa Aktiengesellschaft Process and catalyst for the reduction of the ignition temperature of diesel soot filtered out of the exhaust gas of diesel engines
EP0160482A2 (de) * 1984-04-23 1985-11-06 Engelhard Corporation Katalytischer Abgasfilter für Teilchen eines Dieselmotors
EP0233860A2 (de) * 1986-02-19 1987-08-26 BÖHLER Gesellschaft m.b.H. Abgasreinigungseinrichtung
EP0626188A1 (de) * 1992-09-14 1994-11-30 Sumitomo Electric Industries, Limited Filtermedium zur abgasreinigung und methode zur dessen herstellung
DE19854794A1 (de) * 1998-11-27 2000-05-31 Degussa Katalysator für die Reinigung der Abgase eines Dieselmotors
US6172000B1 (en) * 1999-04-26 2001-01-09 Ford Global Technologies, Inc. Diesel catalyst made from a mixture of particles: platinum on alumina and manganese-zirconium oxide
EP1123728A1 (de) * 2000-02-08 2001-08-16 Luigi Pellegrino Gerät zum Vermindern der von Abgasen verursachten Luftverschmutzung
US20030021745A1 (en) * 2001-04-13 2003-01-30 Engelhard Corporation SOx tolerant NOx trap catalysts and methods of making and using the same
WO2004047958A2 (de) * 2002-11-22 2004-06-10 Umicore Ag & Co. Kg Katalysator und verfahren zur beschichtung eines katalysatorträgers enthaltend zwei unterschiedliche teilstrukturen mit einer katalytisch aktiven beschichtung
WO2004073856A1 (fr) * 2003-02-18 2004-09-02 KOSTYAKOV, Vyacheslav Vasilievich Catalyseur pour purifier les gaz d'echappement de moteurs
JP2005009407A (ja) * 2003-06-19 2005-01-13 Toyota Motor Corp 内燃機関の排気浄化装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522941A (en) * 1983-07-18 1985-06-11 Syracuse University Method of controlling the distribution of a coating material upon the surface of a support
JPH05293384A (ja) * 1992-04-15 1993-11-09 Nissan Motor Co Ltd 排ガス浄化用触媒及び排ガス浄化方法
US5376610A (en) * 1992-04-15 1994-12-27 Nissan Motor Co., Ltd. Catalyst for exhaust gas purification and method for exhaust gas purification
DZ1918A1 (fr) * 1994-08-02 2002-02-17 Shell Internaional Res Mij B V Procédé d'oxydation catalytique partielle d'hydrocarbures.
EP0804274B1 (de) * 1995-01-20 2002-04-17 Engelhard Corporation Vorrichtung zur schadstoffentfernung aus umgebungsluft in der motorhaube eines fahrzeuges
JPH09173866A (ja) 1995-12-28 1997-07-08 Nippon Soken Inc ディーゼル排ガス浄化フィルタ
JP3560408B2 (ja) 1996-02-15 2004-09-02 株式会社日本自動車部品総合研究所 ディーゼル排ガス浄化フィルタおよびその製造方法
US5981427A (en) * 1996-09-04 1999-11-09 Engelhard Corporation Catalyst composition
JPH10202105A (ja) * 1997-01-22 1998-08-04 Toyota Motor Corp ディーゼル排ガス用酸化触媒
JP3548683B2 (ja) * 1997-04-02 2004-07-28 トヨタ自動車株式会社 排ガス浄化用触媒
JP4511070B2 (ja) * 2001-03-29 2010-07-28 日本碍子株式会社 ハニカム構造体及びそのアッセンブリ
JP2003080081A (ja) * 2001-09-12 2003-03-18 Cataler Corp 排ガス浄化用触媒
JP3855266B2 (ja) * 2001-11-01 2006-12-06 日産自動車株式会社 排気ガス浄化用触媒
KR100691789B1 (ko) * 2002-02-15 2007-03-12 아이씨티 코., 엘티디. 내연기관 배기가스정화용 촉매, 그 제조방법 및 내연기관배기가스의 정화방법
JP3876731B2 (ja) * 2002-02-26 2007-02-07 トヨタ自動車株式会社 触媒担体構造体と排気ガス浄化用触媒
JP2004016931A (ja) * 2002-06-17 2004-01-22 Nissan Motor Co Ltd 排気ガス浄化触媒
US20040001781A1 (en) * 2002-06-27 2004-01-01 Engelhard Corporation Multi-zone catalytic converter
JP3874270B2 (ja) * 2002-09-13 2007-01-31 トヨタ自動車株式会社 排ガス浄化フィルタ触媒及びその製造方法
CZ2005147A3 (cs) * 2002-09-13 2005-06-15 Johnson Matthey Public Limited Company Způsob zpracovávání výfukových plynů z vznětového motoru, vznětový motor a vozidlo jej obsahující
US7189375B2 (en) 2002-09-16 2007-03-13 Delphi Technologies, Inc. Exhaust treatment device
JP2004124895A (ja) * 2002-10-07 2004-04-22 Kyowa Metal Work Co Ltd 円錐スクロールコンプレッサ
US7094728B2 (en) * 2003-06-11 2006-08-22 Delphi Technologies, Inc. Method for control of washcoat distribution along channels of a particulate filter substrate
US7722829B2 (en) * 2004-09-14 2010-05-25 Basf Catalysts Llc Pressure-balanced, catalyzed soot filter

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4515758A (en) * 1982-09-03 1985-05-07 Degussa Aktiengesellschaft Process and catalyst for the reduction of the ignition temperature of diesel soot filtered out of the exhaust gas of diesel engines
EP0160482A2 (de) * 1984-04-23 1985-11-06 Engelhard Corporation Katalytischer Abgasfilter für Teilchen eines Dieselmotors
EP0233860A2 (de) * 1986-02-19 1987-08-26 BÖHLER Gesellschaft m.b.H. Abgasreinigungseinrichtung
EP0626188A1 (de) * 1992-09-14 1994-11-30 Sumitomo Electric Industries, Limited Filtermedium zur abgasreinigung und methode zur dessen herstellung
DE19854794A1 (de) * 1998-11-27 2000-05-31 Degussa Katalysator für die Reinigung der Abgase eines Dieselmotors
US6172000B1 (en) * 1999-04-26 2001-01-09 Ford Global Technologies, Inc. Diesel catalyst made from a mixture of particles: platinum on alumina and manganese-zirconium oxide
EP1123728A1 (de) * 2000-02-08 2001-08-16 Luigi Pellegrino Gerät zum Vermindern der von Abgasen verursachten Luftverschmutzung
US20030021745A1 (en) * 2001-04-13 2003-01-30 Engelhard Corporation SOx tolerant NOx trap catalysts and methods of making and using the same
WO2004047958A2 (de) * 2002-11-22 2004-06-10 Umicore Ag & Co. Kg Katalysator und verfahren zur beschichtung eines katalysatorträgers enthaltend zwei unterschiedliche teilstrukturen mit einer katalytisch aktiven beschichtung
WO2004073856A1 (fr) * 2003-02-18 2004-09-02 KOSTYAKOV, Vyacheslav Vasilievich Catalyseur pour purifier les gaz d'echappement de moteurs
JP2005009407A (ja) * 2003-06-19 2005-01-13 Toyota Motor Corp 内燃機関の排気浄化装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 200460, Derwent World Patents Index; Class E36, AN 2004-626095, XP002347898 *
DATABASE WPI Section Ch Week 200510, Derwent World Patents Index; Class E36, AN 2005-083848, XP002347897 *
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 12 5 December 2003 (2003-12-05) *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1789191A1 (de) * 2004-08-21 2007-05-30 Umicore AG & Co. KG Verfahren zum beschichten eines wandflussfilters mit feinteiligen feststoffen und damit erhaltenes filter und seine verwendung
EP1797288B1 (de) 2004-09-14 2015-11-11 BASF Corporation Druckausgeglichener, katalytischer russfilter
JP2008057337A (ja) * 2006-08-29 2008-03-13 Hino Motors Ltd 排気浄化装置
US8034311B2 (en) 2006-11-29 2011-10-11 Ict Co., Ltd. Oxidation catalyst and exhaust-gas purification system using the same
EP3925700A1 (de) * 2006-11-29 2021-12-22 Umicore Shokubai Japan Co., Ltd. Oxidationskatalysator und abgasreinigungssystem damit
EP1941942A3 (de) * 2006-11-29 2010-08-11 ICT Co., Ltd. Oxidationskatalysator und Abgasreinigungssystem damit
JP2019143632A (ja) * 2006-12-01 2019-08-29 ビーエーエスエフ コーポレーション 領域的に被覆されたフィルター、排気処理システム及び方法
JP2017180464A (ja) * 2006-12-01 2017-10-05 ビーエーエスエフ コーポレーション 領域的に被覆されたフィルター、排気処理システム及び方法
JP2015158206A (ja) * 2006-12-01 2015-09-03 ビーエーエスエフ コーポレーション 領域的に被覆されたフィルター、排気処理システム及び方法
JP2008264636A (ja) * 2007-04-17 2008-11-06 Tokyo Roki Co Ltd ディーゼルエンジン用排ガス浄化システムの酸化触媒
JP2010540217A (ja) * 2007-09-28 2010-12-24 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト 主に化学量論的混合気で運転される内燃機関の排ガスからの粒子の除去
WO2009079590A1 (en) * 2007-12-18 2009-06-25 Basf Catalysts Llc Catalyzed soot filter manufacture and systems
CN101970088A (zh) * 2007-12-18 2011-02-09 巴斯夫公司 催化烟灰过滤器的制造和系统
US8114354B2 (en) 2007-12-18 2012-02-14 Basf Corporation Catalyzed soot filter manufacture and systems
CN101970088B (zh) * 2007-12-18 2013-10-16 巴斯夫公司 催化烟灰过滤器的制造和系统
JP2011512249A (ja) * 2008-02-14 2011-04-21 ビー・エイ・エス・エフ、コーポレーション 低い白金/パラジウム比を有するcsf
EP2098279A1 (de) * 2008-02-20 2009-09-09 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Abgasreinigungsvorrichtung für einen Verbrennungsmotor
US8137635B2 (en) 2008-02-20 2012-03-20 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purification device for internal combustion engine
EP3195920A1 (de) 2008-05-07 2017-07-26 Umicore Ag & Co. Kg Verfahren zur verminderung von stickoxiden in kohlenwasserstoff-haltigen abgasen unter verwendung eines scr-katalysators auf basis eines molekularsiebes
EP2898941A1 (de) 2008-05-07 2015-07-29 Umicore AG & Co. KG Anordnung zur behandlung von stickoxide (nox) und kohlenwasserstoffe (hc) enthaltenden dieselmotorenabgasen
EP2918329A1 (de) 2008-05-07 2015-09-16 Umicore Ag & Co. Kg Anordnung und verfahren zur verminderung von stickoxiden in kohlenwasserstoffhaltigen abgasen unter verwendung eines scr-katalysators auf basis eines molekularsiebes
EP2918330A1 (de) 2008-05-07 2015-09-16 Umicore Ag & Co. Kg Verfahren zur verminderung von stickoxiden in kohlenwasserstoffhaltigen abgasen unter verwendung eines scr-katalysators auf basis eines molekularsiebes und scr-katalysator dafür
DE202009019007U1 (de) 2008-05-07 2015-04-22 Umicore Ag & Co. Kg SCR-Katalysator zur Verminderung von Stickoxiden in Kohlenwasserstoff-haltigen Abgasen
DE202009019001U1 (de) 2008-05-07 2015-05-11 Umicore Ag & Co. Kg Anordnung zur Behandlung von Stickoxide (NOx) und Kohlenwasserstoffe (HC) enthaltenden Dieselmotorenabgasen
US10001053B2 (en) 2008-06-27 2018-06-19 Umicore Ag & Co. Kg Method and device for the purification of diesel exhaust gases
US10316739B2 (en) 2008-06-27 2019-06-11 Umicore Ag & Co. Kg Method and device for the purification of diesel exhaust gases
DE102008042767A1 (de) 2008-10-13 2010-04-15 Ford Global Technologies, LLC, Dearborn Abgasreinigungsanlage
DE102008042766A1 (de) 2008-10-13 2010-04-15 Ford Global Technologies, LLC, Dearborn Kombinierte Abgasnachbehandlungseinrichtung
US8341946B2 (en) 2008-10-13 2013-01-01 Ford Global Technologies, Llc Exhaust-gas aftertreatment system
US8202484B2 (en) 2008-10-13 2012-06-19 Ford Global Technologies, Llc Combined exhaust gas aftertreatment device
DE102008042767B4 (de) * 2008-10-13 2012-03-01 Ford Global Technologies, Llc Abgasreinigungsanlage
DE102009000804A1 (de) 2009-02-12 2010-08-19 Ford Global Technologies, LLC, Dearborn Abgasreinigungsanlage
DE102009000804B4 (de) * 2009-02-12 2013-07-04 Ford Global Technologies, Llc Abgasreinigungsanlage
US9011783B2 (en) 2009-11-12 2015-04-21 Umicore Ag & Co. Kg Diesel oxidation catalyst
CN102574055A (zh) * 2009-11-12 2012-07-11 尤米科尔股份公司及两合公司 改进的柴油氧化催化剂
WO2011057649A1 (de) * 2009-11-12 2011-05-19 Umicore Ag & Co. Kg Verbesserter dieseloxidationskatalysator
DE102013013973A1 (de) 2013-08-23 2015-02-26 Clariant Produkte (Deutschland) Gmbh Partikelfilter zur Reinigung von Abgasen, Abgasreinigungssystem und Verfahren zur Reinigung von Abgas
WO2017191099A1 (de) 2016-05-02 2017-11-09 Umicore Ag & Co. Kg Drei-zonen-dieseloxidationskatalysator
US10767528B2 (en) 2016-05-02 2020-09-08 Umicore Ag & Co. Kg Three-zone diesel oxidation catlayst

Also Published As

Publication number Publication date
CN100540122C (zh) 2009-09-16
DE102004040549B4 (de) 2017-03-23
BRPI0514502A (pt) 2008-06-17
EP1789161A1 (de) 2007-05-30
CN101043930A (zh) 2007-09-26
CA2577621A1 (en) 2006-03-02
KR20070068348A (ko) 2007-06-29
JP5447757B2 (ja) 2014-03-19
US20090137386A1 (en) 2009-05-28
JP2008510605A (ja) 2008-04-10
DE102004040549A1 (de) 2006-02-23
US7977275B2 (en) 2011-07-12
EP1789161B1 (de) 2016-04-20
KR101273228B1 (ko) 2013-06-11
BRPI0514502B1 (pt) 2016-07-12

Similar Documents

Publication Publication Date Title
EP1789161B1 (de) Katalytisch beschichtetes partikelfilter und verfahren zu seiner herstellung sowie seine verwendung
EP2054153B1 (de) Katalytisch beschichteter dieselpartikelfilter, verfahren zu seiner herstellung und seine verwendung
EP3520882B1 (de) Verwendung einer abgasreinigungsanlage zur reinigung der abgase von mit überwiegend stöchiometrischem luft/kraftstoff-gemisch betriebenen verbrennungsmotoren
EP2247385B1 (de) Verfahren zur beschichtung eines dieselpartikelfilters und damit hergestelltes dieselpartikelfilter
DE102010002425B4 (de) Filter
EP2558691B1 (de) Reduktionskatalytisch beschichtetes dieselpartikelfilter mit verbesserten eigenschaften
EP2042225B2 (de) Entfernung von Partikeln aus dem Abgas von mit überwiegend stöchiometrischem Luft/Kraftstoff-Gemisch betriebenen Verbrennungsmotoren
EP2181749B1 (de) Dieselpartikelfilter mit verbesserten Staudruckeigenschaften
DE112016004452T5 (de) Benzinpartikelfilter
DE112016005997T5 (de) Benzinpartikelfilter
DE102013207415A1 (de) Filtersubstrat, das einen Dreiwegekatalysator umfasst
DE102014105736A1 (de) Motor mit Fremdzündung und Abgassystem, das ein katalysiertes in Zonen beschichtetes Filtersubstrat umfasst
CN105008025A (zh) 包含三效催化过滤器的强制点火发动机和排气系统
WO2009140989A1 (de) Vorrichtung zur reinigung von dieselabgasen
DE102016111766A1 (de) Katalytischer wandstromfilter, der eine membran aufweist
DE102020110011A1 (de) Abgasreinigungsvorrichtung
WO2022129023A1 (de) Katalytisch aktiver partikelfilter mit hoher filtrationseffizienz
DE102009006403A1 (de) Vanadiumfreier Diesel-Oxidationskatalysator und Verfahren zu dessen Herstellung
DE102022002854A1 (de) Katalytisch aktiver Partikelfilter mit hoher Filtrationseffizienz und Oxidationsfunktion
DE102021107130B4 (de) Vorrichtung zur Erhöhung der Frischfiltration von Benzinpartikelfiltern
DE112014003954T5 (de) Abgasreinigunskatalysator und Verfahren zum Herstellen desselben

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2577621

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007528681

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005774993

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077006369

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580036139.0

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005774993

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0514502

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 11660843

Country of ref document: US