WO2006017960A1 - Enzyme de détoxification ayant une activité consistant à transformer l'aflatoxine et gène codant pour celle-ci - Google Patents

Enzyme de détoxification ayant une activité consistant à transformer l'aflatoxine et gène codant pour celle-ci Download PDF

Info

Publication number
WO2006017960A1
WO2006017960A1 PCT/CN2005/000050 CN2005000050W WO2006017960A1 WO 2006017960 A1 WO2006017960 A1 WO 2006017960A1 CN 2005000050 W CN2005000050 W CN 2005000050W WO 2006017960 A1 WO2006017960 A1 WO 2006017960A1
Authority
WO
WIPO (PCT)
Prior art keywords
adtz
aflatoxin
activity
enzyme
recombinant
Prior art date
Application number
PCT/CN2005/000050
Other languages
English (en)
French (fr)
Inventor
Dongsheng Yao
Daling Liu
Min Guan
Chunfang Xie
Original Assignee
Guangzhou Co-Win Bioengineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2007001935A priority Critical patent/MX2007001935A/es
Application filed by Guangzhou Co-Win Bioengineering Co., Ltd. filed Critical Guangzhou Co-Win Bioengineering Co., Ltd.
Priority to CA2576069A priority patent/CA2576069C/en
Priority to KR1020077001737A priority patent/KR100850640B1/ko
Priority to US11/629,450 priority patent/US7695751B2/en
Priority to EP05700424A priority patent/EP1780270B1/en
Priority to BRPI0513998-8A priority patent/BRPI0513998A/pt
Priority to JP2007526165A priority patent/JP4495758B2/ja
Priority to DE602005024973T priority patent/DE602005024973D1/de
Priority to AU2005274578A priority patent/AU2005274578B2/en
Priority to AT05700424T priority patent/ATE489458T1/de
Publication of WO2006017960A1 publication Critical patent/WO2006017960A1/zh
Priority to IL180694A priority patent/IL180694A/en
Priority to HK07111708.3A priority patent/HK1106272A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression

Definitions

  • Detoxifying enzyme having activating aflatoxin activity and gene encoding the same
  • the present invention relates to a detoxifying enzyme having an activity to convert aflatoxin and a gene encoding the same.
  • Aflatoxin is a highly toxic mycotoxin, including aflatoxin Bl (AFBj) with the same poisonous group and similar structure, aflatoxin Ml (AFMi) aflatoxin (Aflatoxin Gl, AFGj), etc., which can be produced by the toxic strains Aspergillus flavus and Aspergillus parasiticus, as well as other molds such as Aspergillus oryzae.
  • Aflatoxins are widely found in grains, vocabulary, and food. The main hazards to humans are: (1) Foods contaminated with AFT that fail to remove AFT before consumption will directly harm the eater, or AFT through pollution. The feed through the food chain allows people who eat poultry meat, dairy products, etc.
  • AFT's detoxification technology Due to the harmfulness of aflatoxin, AFT's detoxification technology has long been valued.
  • Some methods for transforming AFT have been known, such as: (1) Amination. This method is used for water-based materials. Because the food contains a large amount of ammonia after treatment, the US FDA stipulates that this method cannot be used for food processing, and it also affects the use because the feed contains a large amount of ammonia.
  • (2) NaOH method for vegetable oil crude to AFT. Due to large equipment investment, high fuel consumption and high cost, it has been gradually eliminated.
  • the method of converting AFT by using physical and chemical means is generally strong, and the utilization value of the processed grain, feed, food, etc. is greatly reduced, and the efficiency is relatively low, and it is not considered from the aspect of this aspect.
  • An ideal method for industrial applications in addition, the method of increasing P450 oxidase in vivo enhances AFB ⁇ ] metabolism, but also enhances the risk of AFBt to humans.
  • the bio-enzymatic method is being researched and developed to directly convert AFT.
  • the inventors purified a biological enzyme capable of transforming AFBi from a strain of the produced enzyme, and produced a protein having a transforming AFBr activity by a recombinant DNA technique in a transformant.
  • ADTZ Aflatoxin-detofizyme
  • the present invention obtains a gene-specific primer for aflatoxin-detoxiflzyme (ADTZ) by purification and sequencing, and clones the gene encoding ADTZ from the total RNA of Armillariella tabescens, which is never The new gene was reported; and the recombinant ADTZ protein was expressed and purified in the Pichia pastoris expression system by genetic engineering.
  • the selected fungus was 3 ⁇ 4m7 //ar/e//a a0escens, collected from the China General Microbial Culture and Conservation Management Center.
  • ADTZ Protein precipitation is first performed by bacterial disruption, ammonium sulfate precipitation, and the precipitated sample is subjected to rapid protein liquid chromatography to obtain a target peak.
  • Obtainment of the N-terminal amino acid sequence of the ADTZ short peptide The target peak was subjected to mass spectrometry to obtain the N-terminal amino acid sequence of the short peptide.
  • the present invention extracts total RNA from Pseudomonas aeruginosa.
  • Primers were designed based on the obtained N-terminal amino acid sequence of short peptides for RT-PCR and SMART RACE.
  • the sequence of the ADTZ gene was about 2.3 kb long.
  • the analyzed sequence contained the complete open reading frame, and the 3' and 5' untranslated regions. .
  • the full-length cDNA encoding the ADTZ mature peptide is 2088 nucleotide bases, encoding 695 amino acids, with a molecular weight of approximately 73-77 kDa (SDS-PAGE electrophoresis), and the isoelectric point pi is between 5.3 and 6.8 (isoelectric focusing electrophoresis) .
  • the amino acid and DNA sequences are shown in the sequence listing.
  • the products produced by the modification thereof, such as the removal, substitution, modification or addition of a partial amino acid are also included in the protein range of the present invention.
  • Another object of the present invention is to provide an expression vector comprising the gene, and a transformant obtained by transforming the host cell with the expression vector.
  • the present invention further provides a method for preparing an aflatoxin detoxifying enzyme, comprising the steps of: culturing the transformant, and recovering the expressed aflatoxin detoxifying enzyme.
  • a gene encoding an ADTZ mature peptide is amplified from the cDNA of Pseudomonas aeruginosa by designing a pair of primers, and cloned into a eukaryotic integrated secretion expression vector, such as pHIL-SI, to construct an expression plasmid pHIL- S1-ADTZ, and the recombinant expression vector was transformed into Pichia pastoris GS115.
  • This expression vector uses AOX as a promoter. By culturing the culture time and induction time, ADTZ expressed more than 25% of the total protein of the medium and was in a soluble state.
  • the eukaryotic expression vector used in the present invention may also be selected from intracellular vectors: PAO815, PPIC3K, PPICZ, PHWO10, PGAPZ, or a secretory vector: PPIC9K, PPICZa, PGAPZa, or the like.
  • the eukaryotic expression strain used may also be Pichia pastoris KM71, MC100-3, SMD1168, SMD1165, SMD1163 or the like as a host cell.
  • the invention can also be implemented by a prokaryotic expression system, and the expression vector: pET, pUCH33, etc., or the same kind of carrier which is commercially available; the prokaryotic expression strain: Escherichia coli BL21, Escherichia coli JM109 and the like are used as host cells.
  • the invention also explores the purification conditions of the recombinant ADTZ.
  • the fermentation broth is precipitated by ammonium sulfate, and the recombinant ADTZ is obtained by hydrophobic chromatography and metal affinity chromatography.
  • the purity of the recombinant protein is over 95%.
  • Another object of the present invention is to provide the use of said detoxifying enzyme having transformed aflatoxin activity in the preparation of aflatoxin detoxification products in feed or food.
  • the detoxifying enzyme having the activity of transforming aflatoxin according to the present invention can be added as a detoxifying agent to the material for detoxification, or used as an immobilized enzyme. Detoxification such as peanut oil.
  • Another object of the present invention is to provide an application of the above-described detoxifying enzyme having aflatoxin-inducing activity for the preparation of a medicament for preventing and treating a tumor induced by aflatoxin.
  • the detoxifying enzyme having the activity of transforming aflatoxin according to the present invention can be added to obtain a drug for preventing and treating a tumor induced by aflatoxin.
  • the inventors isolated and isolated the gene encoding the protein for the first time. Further, the inventors also integrated the gene into an expression vector to produce a transformant, and the production of ADTZ protein was successfully achieved by means of the transformant.
  • the activity identification experiment demonstrated that the recombinant ADTZ has the biological activity of transforming AFBi similar to that of natural ADTZ.
  • the identification of AFB detoxification biological activity by recombination of ADTZ demonstrated that recombinant ADTZ can reduce the teratogenic effect of AFBi and has the biological activity against AFB-induced mutation.
  • the present invention lays a good foundation for the future development of word processing, food processing, and anti-tumor drug development.
  • FIG. 1 shows the results of purified ADTZ PAGE electrophoresis.
  • M is a standard molecular weight protein
  • 1, 2 is BSA (calf serum albumin);
  • 3 is a crude enzyme component precipitated by ammonium sulfate;
  • 4 is purified ADTZ.
  • Figure 2 shows the results of thin-layer chromatography for the purification of AFB by purified ADTZ.
  • 1 is the AFBi standard
  • 2 is the PBS buffer control group
  • 4 is inactivated ADTZ treatment AFB t group
  • 5 ADTZ treatment AFB group
  • 6 is AFB 3 ⁇ 4 standard.
  • Figure 3 shows the results of total RNA electrophoresis of Pseudomonas aeruginosa.
  • Figure 4 shows the electrophoresis of the RT-PCR product.
  • M is DNA Marker
  • E1 is an RT-PCR product.
  • Figure 5 shows the restriction enzyme digestion of the recombinant vector pTE1.
  • M DNA Marker
  • 1 Ptel/Hindlll+EcoRI
  • 2 pTE1/EcoRI
  • 3 pTE1/Hindlll.
  • Figure 6 shows the electrophoretic detection of the 3' RACE product.
  • M is DNA Marker; E2: is 3, RANGE product.
  • Figure 7 is a restriction enzyme digestion of the recombinant vector pTE2.
  • M is DNA Marker; 1: is pTE2/Hindlll+EcoR I; 2: is pTE2/EcoR I; 3: is pTE2/Hindlll.
  • Figure 8 shows the electrophoretic detection of the 5' RACE product.
  • Figure 9 shows the restriction enzyme digestion of the recombinant vector pTE3.
  • M is DMA Marker; 1: 3 ⁇ 4 pTE3/Hindl!I+EcoR I; 2: pTE3/E ⁇ R I ; 3: pTE3/Hindlll.
  • Figure 10 shows the end to end PGR product electrophoresis detection.
  • M is DNA Marker
  • ADTZ is a PCR product.
  • Figure 11 shows the restriction enzyme digestion of the recombinant vector pSA.
  • M is DNA Marker; 1: is pSA/BamHI+EcoRI; 2: is pSA/ Hindlll; 3: is pSA/Sacl.
  • Figure 12 shows the results of SDS-PAGE analysis of the expression product.
  • 1 for the induction of 96 hours of negative control bacteria
  • 2 for the standard molecular weight protein
  • 3 for BSA (calf serum albumin); 4: for 24 hours of induction of recombinant bacteria
  • 5 for 48 hours of induction of recombinant bacteria
  • 6 For the induction of 72 hours of recombinant bacteria
  • 7 for the induction of 96 hours of recombinant bacteria.
  • Figure 13 shows the detection of AFBj activity by recombinant ADTZ.
  • 1 for AFB standard control
  • 2 for AFBi group for recombinant ADTZ
  • 3 for AFBi group for inactivated recombinant ADTZ.
  • 4 Buffer control.
  • Figure 14 is a flow chart showing the construction of ADTZ recombinants and their homologous recombination with Pichia pastoris.
  • the above bacteria are cultured in liquid medium (potato extract 1 liter, glucose 20.0 g, KH 2 P0 4 3.0 g, MgS0 4
  • the fresh bacterial liquid nitrogen is frozen and then tapped into small pieces, 1:1 (W/V) is added to the phosphate buffer solution, homogenized in an ice bath, the cells are sonicated, and the precipitate is centrifuged at 11000-12000 g to be saturated with 20-80%.
  • the ammonium sulfate was fractionated and precipitated.
  • the suspension was suspended in pH 6.0, 0.02 mol/L phosphate buffer, and the protein was fixed (Bradford method).
  • the enzyme activity of the protein component was detected by AFB ELISA kit to obtain an aflatoxin detoxifying enzyme (ADTZ) enzyme solution.
  • ADTZ aflatoxin detoxifying enzyme
  • the crude enzyme solution was dialyzed against 40 volumes of phosphate buffer (pH 6.0, 0.02 mol/L), dialyzed by polyethylene glycol-20000, and filtered by 0.45 ⁇ microfilm to determine the protein (Bradford method).
  • Solution A pH 6.0, 0.02 mol/L phosphate buffer.
  • Solution B pH 6.0, 0.02 mol/L + 1 N NaCI in phosphate buffer.
  • DEAE-Sephadex 50 ml thoroughly stirred and washed with 2 volumes of phosphate buffer, allowed to stand for 20 minutes, and the supernatant was removed by a micro vacuum pump. The same operation, repeated washing, and repeated washing 5 times under the same conditions, to 0.6 The flow rate of ml/min was packed. Column specification: 20 X 30 cm.
  • Eluent PolybufferTM 74 (Pharmacia Co.), 250 ml. Dilute to 100 ml with 100 ml of purified water and store at 4 °C until use.
  • the enzyme solution purified by the above ion exchange chromatography was 6 mL (containing protein 3 mg/mL), and the enzyme solution was equilibrated with Polybuffer 74 (6.5 ml after equilibration).
  • the Mono-p column was equilibrated with the starting buffer for 2 hours, and the column was eluted with Polybuffer 74.
  • 2 ml of the enzyme solution was eluted with Polybuffer 74 eluate for 10 hours.
  • Flow rate 0.2 ml/min.
  • the UV OD 28 () nm was monitored and recorded, and received by a fractional collector, set to 2 ml/tube, ie 10 minutes/tube.
  • the protein (Bradford method) was used to determine the AFB activity of each protein component. The active components are collected.
  • the column was washed with 0.1 mol/L hydrochloric acid until the AU value was returned to zero, and then the column was washed with 1 mol/L NaCI to the AU value to return to zero, and the buffer was equilibrated overnight. Repeat the focus chromatography operation as above to collect the active components.
  • the collected components were separately treated with AFB, and the amount of AFB in the treated sample was measured by ELISA.
  • the same component which was boiled for 10 minutes at 10 CTC was used as a control to make the reduced component of AFB the active component.
  • the specific practices are as follows:
  • Inactivated enzyme solution group AFB ⁇ OOul (concentration 2.5ng/ml methanol) + inactivated enzyme solution 200ul (1.2mg/ml)
  • Active enzyme solution group AFBi 200ul (concentration 2.5ng/ml methanol) + active enzyme solution 200ul (1.2mg/ml)
  • Quality control group AFB 200ul (concentration 2.5ng/ml methanol) + buffer 200ul (1.2mg/ml)
  • Preparation of inactivated enzyme solution The components were boiled at 100 ° C for 10 minutes.
  • AFBi was 1.230 ⁇ 0.508 ng/ml in the sample treated with the active enzyme solution of active ingredient, and AFB was 2.436 ⁇ 0.326 ng/ml in the sample treated with the active ingredient inactivated enzyme solution, quality control group It is 2.508 ⁇ 0.203 ng/ml.
  • the obtained protein was analyzed by SDS-PAGE: the molecular weight was about 73-76 kDa ; isoelectric focusing electrophoresis analysis: the isoelectric point pi was about 5.3-6.8.
  • IL AFB solution (AFB methanol solution: ⁇ . ⁇ / ⁇ , aflatoxin, Alexis Biochemicals Inc., Switzerland) was added and evaporated under nitrogen.
  • ADTZ enzyme solution protein content: 0.1 mg/mL 300 ⁇ , MgSO 4 0.5 ⁇ , PEG200 10 ⁇ , and mix well. The reaction was carried out for 1 hour in a 30 ° C water bath, and then O yLAFB solution was added to each hour until the total amount of AFB in the tube was 2 ⁇ g. After the addition was completed, the reaction was continued for another 2 hours.
  • SD rat induction SD rats were vaccinated for one week, and were suspended in corn oil with intraperitoneal injection (500 mg/kg body weight), sacrificed 5 days later, and fasted 12 hours before sacrifice.
  • Solution A (0.2 mol/L Coenzyme II, filter sterilized) 0.2 ml.
  • Solution B (0.2 mol/L 6-phosphate glucose filter sterilization) 0.25 ml.
  • composition of liquid C (0.4 mol/L MgCI 2 , 20 ml 1.65 mol/L KCI 20 ml, 0.2 mol/L phosphate buffer (pH 7.4) 500 ml, distilled water 315 ml, mixed and filtered and sterilized).
  • the concentration of ADTZ is 0.2 mg/ml
  • the concentration of AFB is 0.2 g/ml
  • pH. The value was 6.0
  • the reaction was carried out at 28 ° C for 120 min, and the system was magnified 10 times.
  • the aflatoxin B-, the post-product and the unreacted residual substrate were extracted three times with an equal volume of chloroform, and the organic phase was combined, and the chloroform was evaporated under reduced pressure at 40 ° C, and the extract was washed out with 3.75 and 3 ml of DMSO, respectively.
  • the DMSO solution of the test sample was added to the supernatant soft agar medium together with the culture supernatant and S 9 , mixed, and poured on the bottom Vogel selection medium at 40 ° C, and then solidified at 37 °.
  • the cells were incubated for 72 hours in a G incubator, and the number of revertant colonies present in each dish was counted.
  • each group of extracts and negative-positive controls were set to 3 plates and repeated once.
  • the results of the extracts of each group were 2 times and 6 groups were averaged.
  • the test substance has a positive dose response above 3 concentrations, and the maximum increase value is twice the solvent control value (ie, MR ⁇ 2), which may be considered as positive for mutagenicity.
  • the number of bacterial back-mutation colonies in the active ADTZ treatment group was similar to that in the negative control group (DMSO control group) (MR values were less than 2).
  • the number of bacterial reverting colonies in the buffer treated control group and the inactivated ADTZ treated control group was significantly higher than that in the negative control group (MR values were greater than 2), and there was no significant difference in the number of bacterial back mutations from the positive control (aflatoxin control). . It indicated that the active ADTZ treatment reaction group had no induced gene mutation.
  • Description ADTZ has a biological activity against AFBj-induced mutations. The results are as follows.
  • the above table shows: The mutagenesis experiment was carried out with Salmonella typhimuriurmn TA98 containing a mixture of rat liver S-9 as the test bacteria.
  • the concentration of the AFB control group used for the mutagenesis experiment was 0.8 ⁇ l / 50 ⁇ ⁇ DMSO / plate.
  • the AFB-treated samples were also tested in the same amount of AFB per plate and maintained the same amount of DMSO. After the plate was incubated for 28 hr, the results were counted and the results were expressed as the average soil SD of the four plates.
  • the Center for Instrumental Testing and Analysis of the Academy of Medical Sciences provides the detection of the amino acid sequence of the N-terminal of the short peptide of ADTZ.
  • the measured amino acid sequences are as follows:
  • the amino acid sequence of the ADTZ short peptide of the present invention is not limited to the above list, and it also contains other short peptide amino acid sequence fragments as long as the fragment is detected by MALDI-MS-TOF or other chemical methods.
  • RT-PCR was performed in the QIAGEN OneStep RT-PCR Kit (QIAGEN Inc. USA) manual to obtain the product of the partial sequence of the DTZ gene.
  • the RT-PCR product was recovered by gelatinization, and TA clone was carried out according to a conventional method.
  • the recombinant plasmid of TA clone was identified by HindlE and EcoRI digestion, and the digestion result was detected by 1.5% agarose gel electrophoresis.
  • the recombinant plasmid was sequenced to obtain a cDNA fragment E1 of the ⁇ D7Z gene.
  • the specific practices are as follows:
  • ADTZ gene-specific primers of the present invention is not limited to the above P1 and P2, G1 and G2, and it also contains other primers. Yes, as long as the primer pair is designed by the amino acid sequence of the ADTZ short peptide obtained by the above method.
  • the total RNA of the template (obtained from Example 4) was denatured at 75 5 for 5 min, and rapidly inserted into ice to cool.
  • Component 1 (Sample 1) 2 (-control) 3 (Sample 2) 4 (-control)
  • Primer P1 1.3 - -
  • E1 Electrophoretic detection of RT-PCR products. As a result, as shown in Fig. 4, a band was obtained in the reaction of the primer pair P1 and P2, and the band position was about 800 bp, which was named E1 fragment.
  • DH5 ci monoclonal was picked in 2 ml of LB liquid medium and cultured overnight at 37 ° C with shaking. 50 ⁇ from activated fresh DH5 ⁇ broth was inoculated into 5 ml of LB liquid medium, shaken at 37 ° C for 1.5-2 h, and ice bathed for 30 min. The bacterial solution was transferred to a sterile centrifuge tube, ⁇ , and centrifuged for 5 min.
  • the transformed single colonies were picked, inoculated into 2 ml of LB liquid medium containing ampicillin, and cultured vigorously at 37 ° C overnight. Take 1.5ml of bacterial liquid in a microcentrifuge tube, centrifuge at 12000rpm for 2min, discard the supernatant; take 400 ⁇ l STE solution to wash the bacteria, mix by vortexing, centrifuge at 12000rpm for 2min, discard the supernatant; add 100 ⁇ ⁇ pre-cooling solution I In the precipitated cells, vigorously shake and mix; add 200 ⁇ ⁇ freshly prepared solution II, immediately mix and invert quickly, ice bath for 3 min; add 150 ⁇ l pre-cooling solution III, repeatedly invert and mix, ice bath for 5 min; 12000 rpm Centrifuge for 5 min, transfer the supernatant to another tube; add an equal volume of phenolic imitation, mix by inversion, centrifuge at 12000 rpm for 5 min; carefully pipette the supernatant to transfer to another tube; add
  • the enzyme was digested at 37 ° C for more than 4 h.
  • the results of restriction enzyme digestion were detected by 1.5% agarose gel electrophoresis. The results are shown in Figure 5.
  • the restriction enzyme digestion of the recombinant vector pTE1, Hindlll+EcoRI double digestion (sample No.1) and Hindlll single digestion (sample No.3) were cut 400bp. There are many bands, and the brightness of the former is higher than that of the latter.
  • EcoRI single digestion cuts the recombinant into a linear (sample No. 2), indicating that there is a Hindlll restriction site in the central position of the E1 fragment.
  • the partial sequence of the AD7Z gene obtained according to Example 5 was designed with primers:
  • the RACE product was recovered by gelatinization, and TA clone was carried out according to a conventional method.
  • the recombinant clone of TA clone was identified by Hindlll and EcoRI digestion, and the digestion result was detected by 1.5% agarose gel electrophoresis.
  • the recombinant plasmid was sent to the sequencing company for sequencing, and two fragments E2 and E3 were obtained, and the carrier sequence was identified by NCBI's VecScreen (BLASTN2.2.5) program (http: ⁇ www.ncbi.nlm.nih.gov I VecScreen.html).
  • E1, E2, E3 were spliced using the DNAMAN program (software from Lynnon BioSoft, USA), and the resulting sequence was obtained using NCBI's ORF Finder program (http://www.ncbi.nlm.nih.gov/gorf/gorf.html
  • NCBI's ORF Finder program http://www.ncbi.nlm.nih.gov/gorf/gorf.html
  • An open reading frame analysis was performed to obtain a full-length cDNA sequence of the ADTZ gene encoding the ADTZ mature peptide. The details are as follows - Primer S1 : 5' -TAGGCG AAGTGTCGTCGTCAATGGAA-3 '
  • Component 1 (sample) 2 (-control) 3 (-control ) , -RACE-Ready cDNA 2.5 1.5
  • the enzyme was digested at 37 ° C for more than 4 h.
  • the results of restriction enzyme digestion were detected by 1.5% agarose gel electrophoresis.
  • the results are shown in Figure 7.
  • the recombinant plasmid pTE2 was digested and identified by Hindlll+EcoRI double digestion (sample No.1). The two bands were cut at 600bp and 300-400bp respectively.
  • Hindlll single digestion (sample No. 3) cut a band about 300-400 bp
  • EcoRI single digestion cut the recombinant vector into a linear (sample No. 2), there is a Hindlll restriction site in the E2 fragment, the position is close One side of the piece.
  • T7 and SP6 were used as sequencing primers, and the ⁇ 377 DNA Sequencer DNA automatic sequencer (provided by Shanghai Boya) was used to measure the forward and reverse directions to obtain a 2-stage nucleic acid sequence.
  • the resulting E2 sequence has a Hinddll cleavage site of AAGCTT at the 3' position.
  • the sample is stored at -20 °C.
  • the enzyme was digested at 37 ° C for more than 4 h.
  • the results of restriction enzyme digestion were detected by 1.5% agarose gel electrophoresis.
  • the results are shown in Figure 9.
  • the recombinant plasmid pTE3 was digested and identified by Hindlll+EcoRI double digestion (sample No. 1). The two bands were located at 1400-1000bp and 300- respectively. About 400bp, Hindlll single enzyme digestion (sample No. 3) showed a band of about 1400-1000bp, and a Hindlll restriction site could exist in the E3 fragment.
  • Plasmid DNA was extracted by picking a recombinant plasmid PEG purification method (Sambrook, et al. 1989, Molecular doing. Cold Spring Harbor Labroratory Press. USA). T7 and SP6 were used as sequencing primers, and the ⁇ 377 DNA Sequencer DNA automatic sequencer (supplied by Shanghai Boya Co., Ltd.) was used to perform the forward and reverse measurements to obtain the E3 fragment nucleic acid sequence.
  • the obtained E3 fragment has a Hindlll restriction site at the 5' position and a Hindlll restriction site at the 3' end.
  • the NCec Vecscreen program was used to identify and remove the vector sequence, and the E1, E2, and E3 were spliced by the DNAMAN program.
  • the obtained sequence was analyzed by the NCBI ORF Finder program, and the sequence length was 2.3 kb, which contained a complete open reading frame. There is a poly (A) tail at the 3' end and contains an untranslated region at the 5' and 3' ends. The results are shown in SEQ ID NO: 02.
  • ADTZ BLASTA sequence similarity query by ADTZ nucleotide sequence and putative amino acid sequence via the Internet, programs BLAST and BLASTX (http://www.ncbi.nlm.nih.gov/ BLAST/), the results indicate that ADTZ is a brand new gene, and the amino acid sequence of the mature peptide encoding ADTZ deduced from it can not find the same sequence in GENEBANK, which is a brand new amino acid sequence.
  • Example 7 Acquisition of the ADT mature peptide cDWA product
  • the ADTZ open reading frame sequence from the start codon to the stop codon was obtained, and the restriction enzyme sites EcoRI (GAATTC) and BamHI (GGATCC) were added to the primers, respectively.
  • PCR amplification was carried out in a conventional manner, and the PCR product was recovered by gelatinization. details as follows:
  • Component 1 (sample) 2 (-control) 3 (-control)
  • Example 8 Construction of recombinant plasmid ADTZ expression plasmid.
  • Example 7 was cloned into pHIL-S1 to construct an expression plasmid pHIL-SI.
  • -ADTZ the cloned target gene was identified by enzyme digestion and sequencing.
  • the recombinant plasmid pHIL-S1 containing the gene ADTZ was constructed as follows: - EcoRI+BamHI double-digested plasmid pHIL-S1 and the target fragment ADTZ, and the digested product was subjected to 0.8% agarose gel electrophoresis. - 'Swim, and cut the gum. Ligation of plasmid pHIL-S1 and the target gene ADTZ was carried out using T4 DNA ligase. The E. coli DH5 a competent cells were prepared by CaCI 2 method, transformed into DH5 a competent cells, and the transformants were selected and the plasmid was extracted.
  • the recombinant plasmid pHIL-S1-ADTZ was identified by digestion with EcoRI+BamHI, HindllL Sacl. Plasmid DNA was extracted by picking up a recombinant plasmid PEG purification method (Sambrook, et al. 2001, Molecular Cloning A Laboratory Manual. Cold Spring Harbor Labroratory Press. USA). T7 and SP6 were used as sequencing primers, and the ⁇ 377 DNA Sequencer' DNA self-sequencer (supplied by Shanghai Boya Co., Ltd.) was used for forward and reverse measurements.
  • the results of the digestion were as shown in Figure 11 - '
  • the recombinant vector pSA was identified by enzyme digestion, BamHU EcoRI double digestion (sample 1 ') cut a band at 2000 bp, Hindlll single digestion (sample 2) cut three bands respectively At about 1400 bp, 600 bp and 500 bp, Sacl single digestion (sample 3) cut the recombinant into linear, indicating that there is no Sacl cleavage site in the insert.
  • the recombinant plasmid pHIL-S1 -ADTZ and plasmid pHIL-S1 were digested with Sacl, and the digested product was subjected to 0.8% agarose gel electrophoresis.
  • the linear recombinant plasmid PHIL-S1-/AD7Z and plasmid pHIL-S1 were obtained after digestion.
  • Pichia pastoris GS115 was transformed according to the protoplast method in the Pichia Expression Kit (Invitrogen Inc., USA) manual, and Mut+ transformants were screened. Using methanol as the sole carbon source to induce expression of recombinant bacteria in the Pichia Expression Kit manual), the culture medium was analyzed by SDS-PAGE.
  • the sample was digested with 0.8% agarose gel electrophoresis, and the linear recombinant plasmid pSA and plasmid pHIL-SI were obtained by digestion.
  • the cultured cells were resuspended in 200 ml of sterile water and transferred to two sterile 10 ml centrifuge tubes; 2. Centrifuge at 1500 xg for 5 min at room temperature, discard the supernatant;
  • the amount of total protein in the culture supernatant was determined to be 0.23 mg/ml after 96 hours of induction.
  • the molecular weight of the target protein is in agreement with the theoretical value of 76.95 kDa predicted by BioEdit software (http: ⁇ www.mbio.ncsu.edu/BioEdit/bioecm.html).
  • the induced fermentation broth was precipitated with 70% saturated (NH 4 ) 2 S0 4 , and a precipitate was obtained to obtain a crude enzyme sample.
  • the crude enzyme sample was dissolved in an equal volume of PBS. After centrifugation, the supernatant was subjected to a hydrophobic chromatography Phenyl sepharose column, and eluted with a continuous gradient elution buffer to collect the target peak. The mixture was desalted by dialysis, and the PBS solution was equilibrated and concentrated. The concentration peak was collected by concentrating the enzyme solution on a metal chelate affinity chromatography Chelating Sepharose column pH 7.5-6.0 in continuous pH gradient buffer. details as follows-
  • the recombinant expression fermentation broth was added to (NH 4 ) 2 S0 4 powder to 40% saturation, centrifuged at 1000 ° C for 20 minutes at 4 ° C, and the supernatant was further added with (NH 4 ) 2 S0 4 powder to 70% saturation. Centrifuge at 10,000 g for 20 minutes at 4 °C. That is, a crude enzyme sample is obtained.
  • the identification of recombinant ADTZ activity was carried out in accordance with the method of Reference Example 2 bis. Preparation of the test sample replaced the natural ADTZ with the recombinantly expressed ADTZ, and the remaining group design and practices were the same. Results: The number of bacterial back-mutation colonies in the active recombinant ADTZ treatment group was similar to that in the negative control group (DMSO control group) (MR values were less than 2). The number of bacterial back-mutation colonies in the buffer-treated control group and the inactivated recombinant ADTZ-treated control group was significantly lower than that in the negative control group (MR values were greater than 2), and the number of bacterial back mutations in the positive control (aflatoxin control) was not significant. difference. It is indicated that recombinant ADTZ has anti-AFB, which causes the biological activity of the mutation. The results are as follows.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Fodder In General (AREA)

Description

一种具有转化黄曲霉毒素活性的解毒酶及编码该酶的基因 技术领域
本发明涉及一种具有转化黄曲霉毒素活性的解毒酶及编码该酶的基因。
背景技术
黄曲霉毒素 (Aflatoxin, AFT) 是一类毒性很强的真菌毒素, 包括致毒基团相同、 结构 类似的黄曲霉毒素 (Aflatoxin Bl , AFBj), 黄曲霉毒素 (Aflatoxin Ml , AFMi)黄曲 霉毒素 (Aflatoxin Gl , AFGj)等, 它可以由有毒菌株黄曲霉和寄生曲霉, 以及其他一些 霉菌(如温特曲霉)等所产生。 黄曲霉毒素广泛存在于谷物、 词料、 食品中, 对人类的主要 危害是: (1 )污染了 AFT的食品在食用前如果未能去除 AFT,将使进食者直接受害,或者, AFT通过污染的饲料经食物链使进食禽畜肉、 奶制品等的人间接受害, 直接或间接地引起 急性中毒或诱发人类的癌症; (2)禽畜摄入污染的伺料,轻则中毒, 直接的后果是引起动物 体重下降或引发其他疾病, 间接的后果是通过食物链引起人类的慢性中毒, 诱发癌症, 严重 的引起死亡; (3) 污染 AFT的粮食谷物不能食用或者饲用, 因而报废。
由于黄曲霉毒素的危害性, AFT 的解毒技术长期以来受到人们的重视, 人们已经知道 了一些转化 AFT的方法, 如: (1 ) 氨化法。 该法用于含水词料, 因处理后食品中含大量的 氨, 美国 FDA规定此法不能用于食品加工, 也因饲料中含有大量的氨而影响了使用。 (2) NaOH法 (用于植物油粗炼去 AFT)。 因设备投资大、 油耗大、 成本高, 现已逐渐被淘汰。
(3) 白土吸附法。 因操作劳动强度大及白土尘埃和油耗以及对环境污染等问题, 现已基本 被淘汰。 (4)混合溶剂萃取法, 该方法用于如花生粉, 棉籽等固态食品的 AFT去除, 但在 萃取、溶剂回收和处理时花费昂贵, 无推广应用价值。 (5)高温法。该法是通过对被处理的 样品加热到 268°C以上来破坏 AFT, 因该法通常的加热法较难达到此温度, 而过高温度会 破坏食品中的其他营养成分, 故实际应用很少。 (6) 生物学法。 利用活菌或固定化菌分解 AFT,因活菌会分解原料的营养而且对分解后的新产物不清楚,对新产物的毒性情况不了解, 此方法只用于极少数的饲料和花生油的解毒。 如: 1996年广东微生物所报道用 IspeAyWt/s n/grer菌固态发酵后制备 BDA生物制剂用于解毒。 (7) 紫外线照射法。 利用紫外线的强氧 化作用来破坏 AFT, 效果不稳定, 且能耗大。 (8)超滤-渗滤法, 这种方法只能用于非均相, 对于均相、 酸化牛奶无效, 更因工艺要求苛刻, 设备十分昂贵, 至今无实际应用价值。 (9) 生物酶法, 有学者报道(Brown DW, etc. Proc. Natl. Acad. Sc. USA. 1996)在大肠杆菌中 克隆表达肝细胞色素氧化酶 P450, 以期通过增强黄曲霉毒素代谢的氧化酶用于对进入体内 的被活化的 AFT的转化解毒, 来达到降低进入体内的 AFBi的目的。
上述处理方法中, 由于使用物理化学的手段转化 AFT的方法通常比较强烈, 经处理后 的谷物、饲料、 食品等其利用价值大大降低, 而且效率也相对较低, 从^本方面考虑并不是 工业应用的理想方法, 另外, 体内提高 P450氧化酶的方法虽然能增强 AFB^〈]代谢, 但也 增强了 AFBt的对人的危险性。 而生物酶催化方法, 由于其具有专一性更强、 转化效率高的 特点, 人们正在进行研究开发可以直接转化 AFT的生物酶。
发明内容
本发明的目的是提供一种具有转化黄曲霉毒素活性的解毒酶及编码该酶的基因。
为了得到这种酶, 发明人从筛选得到的一株产酶菌中纯化出能转化 AFBi的生物酶, 并 在一种转化体中借助重组 DNA技术生产了具有转化 AFBr活性的蛋白。 由此, 发明人首先 分离并纯化出了具有该活性的新型蛋白, 命名为黄曲霉毒素解毒酶 (Aflatoxin-detofizyme, ADTZ) o
本发明通过纯化和测序获得黄曲霉毒素解毒酶 (aflatoxin-detoxiflzyme, ADTZ) 的基 因特异性引物,从假蜜环菌 Armillariella tabescens)的总 RNA出发,克隆得到编码 ADTZ 的基因, 该基因是从未报道过的新基因; 并利用基因工程的方法, 在毕赤酵母表达系统中表 达并纯化出重组 ADTZ蛋白。所选择的真菌是 ¾m7 //ar/e//a a0escens, 采自中国普通微生 物菌种保蒇管理中心。
ADTZ的纯化: 首先通过菌体破碎, 硫酸铵沉淀法进行蛋白质沉淀, 沉淀样品通过快速 蛋白质液相色谱层析得到目的峰。 ADTZ短肽 N末端氨基酸序列的获得: 将目的峰进行质 谱分析获得短肽 N末端氨基酸序列。
本发明对假蜜环菌的总 RNA的进行提取。根据所获得的短肽 N末端氨基酸序列设计引 物进行 RT-PCR和 SMART RACE, 得到 ADTZ基因的序列长约 2.3kb, 经分析序列含有完 整的开放阅读框, 3'端和 5' 端的非翻译区。编码 ADTZ成熟肽的全长 cDNA 2088个核苷 酸碱基,编码 695个氨基酸,分子量约为 73~77kDa(SDS-PAGE电泳),等电点 pi在 5.3~6.8 之间 (等电聚焦电泳)。 氨基酸及 DNA序列如序列表所示。 其修饰产物, 例如部分氨基酸 发生去除、 取代、 修饰或加成后所产生的产物, 也包括在本发明所述的蛋白范围之内。
本发明的另一目的是提供包含所述基因的表达载体,以及用所述的表达载体转化宿主细 胞所得的转化体。 本发明进一步提供了一种制备黄曲霉毒素解毒酶的方法, 包括以下步骤: 培养所述转化体, 回收所表达的黄曲霉毒素解毒酶。
本发明通过设计一对引物, 将编码 ADTZ成熟肽的基因从假蜜环菌的 cDNA中扩增出 来, 克隆到真核整合型分泌表达载体, 如: pHIL-SI上, 构建成表达质粒 pHIL-S1-ADTZ, 并将重组表达载体转化毕赤酵母 GS115。此表达载体以 AOX为启动子。通过对培养时间和 诱导时间的摸索, ADTZ的表达量占培养基总蛋白的 25%以上, 并且处于可溶状态。
本发明所用的真核表达载体还可选用胞内型载体: PAO815、PPIC3K、PPICZ、PHWO10、 PGAPZ, 或者分泌型载体: PPIC9K、 PPICZ a , PGAPZ a , 或者市面上销售的同类载体。 所用的真核表达菌株也可以选用毕赤酵母菌 KM71、 MC100-3、 SMD1168、 SMD1165、 SMD1163等作为宿主细胞。 本发明也可用原核表达体系来实现, 选用表达载体: pET、 pUCH33等, 或者市面上销 售的同类载体; 选用原核表达菌株: 大肠杆菌 BL21、 大肠杆菌 JM109等作为宿主细胞。
表达载体的复制方法: 参照 Sambraok等的方法 (Sambraok, et al. 2002, Molecular cloning. Cold Spring Harbor Laboratory Press. USA), 按 CaCI2法制备并转化感受态细胞 E.Coli.DHS , 用含氨节青霉素 (lOO g/mL) 的 LB培养基培养细菌, 碱法提取质粒。
本发明还摸索了重组 ADTZ 的纯化条件, 发酵液经硫酸氨沉淀后采用疏水色谱层析和 金属亲和色谱层析两步纯化法得到重组 ADTZ, 重组蛋白纯度达 95%以上。
本发明的另一目的是提供将所述的具有转化黄曲霉毒素活性的解毒酶在制备饲料或食 品中黄曲霉毒素除毒产品的应用。结合目前的伺料和食品的加工工艺,可将本发明所述的具 有转化黄曲霉毒素活性的解毒酶,作为脱毒剂添加到伺料中进行词料脱毒,或者制成固定化 酶用于如花生油的脱毒。
本发明的另一目的是提供将所述的具有转化黄曲霉毒素活性的解毒酶在制备预防和治 疗由黄曲霉毒素诱发的肿瘤的药物的应用。结合目前的抗肿瘤药物的制备工艺,可添加本发 明所述的具有转化黄曲霉毒素活性的解毒酶,得到用于预防和治疗由黄曲霉毒素诱发的肿瘤 的药物。
发明人首次分离和离析出了编码该蛋白的基因。另外,发明人还将所述基因整合到一种 表达载体中以产生一种转化体, 并且借助于该转化体成功地实现了 ADTZ蛋白的生产。 通 过活性鉴定实验,证明重组 ADTZ具有与天然 ADTZ相似的转化 AFBi的生物活性。通过重 组 ADTZ对 AFB 解毒生物学活性的鉴定实验,证明重组 ADTZ能降低 AFBi的致畸变作用, 具有抗 AFB 引起突变的生物活性作用。本发明为今后在词料加工、 食品加工以及抗肿瘤药 物开发打下了良好的基础。
附图说明
图 1为纯化的 ADTZ PAGE电泳结果。 M: 是标准分子量蛋白; 1、 2: 是 BSA (小牛 血清白蛋白); 3: 是硫酸氨沉淀的粗酶组分; 4: 是纯化的 ADTZ。
图 2 为纯化的 ADTZ转化 AFB 作用的薄层色谱检测结果。 1: 是 AFBi标准品; 2、 3: 是 PBS缓冲液对照组; 4: 是灭活 ADTZ处理 AFB t照组; 5: ADTZ处理 AFB 组; 6: 是 AFB ¾准品。
图 3为假蜜环菌总 RNA电泳结果。
图 4 为 RT-PCR产物电泳。 M: 为 DNA Marker; E1 : 为 RT-PCR产物。
图 5为重组载体 pTE1的酶切鉴定。 M: DNA Marker; 1: 为 Ptel/Hindlll+EcoRI; 2: 为 pTE1/EcoRI; 3: 为 pTE1/Hindlll。
图 6为 3' RACE产物的电泳检测。 M: 为 DNA Marker; E2: 为 3, RANGE产物。 图 7为重组载体 pTE2的酶切鉴定。 M: 为 DNA Marker; 1: 为 pTE2/Hindlll+EcoR I; 2: 为 pTE2/EcoR I ; 3: 为 pTE2/Hindlll。 图 8为 5' RACE产物的电泳检测。 M: 为 DMA Marker; E3: 为 5, RACE产物。
图 9为重组载体 pTE3的酶切鉴定。 M: 为 DMA Marker; 1: ¾ pTE3/Hindl!I+EcoR I; 2: 为 pTE3/E∞R I ; 3: 为 pTE3/Hindlll。
图 10为 End to end PGR产物电泳检测。 M: 为 DNA Marker; ADTZ,: 为 PCR产物。
图 11为重组载体 pSA的酶切鉴定。 M: 为 DNA Marker; 1: 为 pSA/BamHI+EcoRI; 2: 为 pSA/ Hindlll ; 3: 为 pSA/Sacl。
图 12为表达产物的 SDS-PAGE分析结果。 1 : 为诱导 96小时的阴性对照菌; 2: 为标 准分子量蛋白; 3: 为 BSA (小牛血清白蛋白); 4: 为诱导 24小时的重组菌; 5: 为诱导 48小时的重组菌; 6: 为诱导 72小时的重组菌; 7: 为诱导 96小时的重组菌。
图 13为重组 ADTZ转化 AFBj活性 TLC检测。 1:为 AFB 标准品对照; 2:为重组 ADTZ 处理 AFBi组样品; 3: 为灭活的重组 ADTZ处理 AFBi组照样品。 4: 缓冲液对照。
图 14 为 ADTZ重组子的构建及其与毕赤酵母菌同源重组的流程图。
具体实施方式
实施例一、 ADTZ的获得与纯化
一、 菌体的发酵培养
1、 菌种: Armillariella tabescens 。
2、 将上述菌种于液体培养基(马铃薯提取液 1升、葡萄糖 20.0克、 KH2P04 3.0克、 MgS04
• 7H20 1.5克、 维生素微量, pH6.6) 中培养共 25天, 一级至三级分别培养 6天、 4 天、 4天, 四级培养 11天, 培养温度为 24-28°C , 收集菌体。
二、 黄曲霉毒素解毒酶 (ADTZ) 的提取
新鲜菌体液氮冰冻后敲成小块, 1 :1 (W/V) 加入磷酸盐缓冲液, 冰浴中匀浆, 超声破碎细胞, 11000-12000g离心去沉淀物, 以 20-80%饱和的硫酸铵分级沉淀,取沉淀。 以 pH 6.0,0.02 mol/L磷 酸缓冲液溶解悬浮, 定蛋白 (Bradford法), 用 AFB ELISA试剂盒检测蛋白组分的酶活力, 得含黄 曲霉毒素解毒酶 (ADTZ) 酶液。
三、 ADTZ的纯化
(一) 酶样品的准备
粗酶液用 40倍体积的磷酸缓冲液(pH 6.0, 0.02 mol/L)透析脱盐, 聚乙二醇 -20000透析浓 缩, 0.45 μη 微膜过滤, 定蛋白 (Bradford法)。
(二) 快速蛋白质液相色谱 (FPLC) 纯化酶
根据文献 ( Ion Exchange Chromatography principles and methods. Pharmacia Co. Edited,
Pharmacia Co. , 1984,pp.29~31; 和 Chromatofocusing with Polybuffer™ and PBE™ , 6. Experimental. Pharmacia Co. Edited, Pharmacia Co. , 1984,pp.11~24)报道方法选择离子交换 色谱和等电聚焦色谱柱填料及缓冲液, 按操作要求 离子交换色谱以及聚焦色谱均在 FPLC System ( Pharmacia Biotech Co. 美国)上进行。 具体做法如下: 1. 阴离子交换色谱
(1 ) 试剂
pH 6.0, 0.2 mol/L磷酸盐储存缓冲液。
A液: pH 6.0, 0.02 mol/L 的磷酸缓冲液。
B液: pH 6.0, 0.02 mol/L + 1 N NaCI 的磷酸缓冲液。
(2) 柱子的准备
DEAE-Sephadex 50 ml, 以 2倍体积磷酸盐缓沖液充分搅拌洗涤后, 静置 20分钟,以 微型真空泵抽去上清,同样操作,反复洗涤,再以同样条件反复洗涤 5次, 以 0.6 ml/min的流速装柱。 柱规格 :20 X 30 cm.
以 A液平衡该柱至基线稳定在零附近。 酶样品 20 ml (含蛋白 2 mg/ml), 上预柱, 过
DEAE-Sephadex离子交换柱。 氯化钠梯度洗脱: 以 A液洗脱 2小时, A液及 0-80 % 的 B液洗 脱 5小时, 100 % B液洗脱 2 小时。流速: 0.6 ml/min. 以分部收集器收集。紫外 O.D.280nm监测。 聚乙二醇 -20000透析浓缩,脱盐后,定蛋白(Bradford法),分别测定各蛋白组分转化 AFB 活性, 收取活性组分。 重复以上操作, 收集活性组分。
2.聚焦层析
(1 ) 试剂
洗脱液: Polybuffer™ 74 (Pharmacia Co.产品), 250 ml装。 取 100 ml加纯水稀释至 1000 ml, 4 °C保存备用。
起始缓冲液: pH 7.4, 0.025 mol/L咪唑 -HCI缓冲液。
(2) 柱子
Mono-p™ PBE 94,5 χ 20 cm预装柱 (Pharmacia Co.产品)。
经上述离子交换色谱纯化后的酶液 6 mL (含蛋白 3 mg/mL),以 Polybuffer 74平衡该酶液(平 衡后为 6.5 ml)。以起始缓冲液平衡 Mono-p柱 2小时, 以 Polybuffer 74洗脱液过柱,上 2 ml酶液 样品, 以 Polybuffer 74洗脱液洗脱 10小时。 流速: 0.2 ml/min。 紫外 O.D.28()nm监测并记录色谱 图, 以分部收集器接收, 设定 2 ml/管, 即 10分钟 /管。 定蛋白 (Bradford法), 分别测定各蛋白 组分转化 AFB 活性。 收集活性组分。
以 0.1 mol/L盐酸洗柱子至 AU值回零,再以 1 mol/L NaCI洗柱子至 AU值回零, 以起始缓冲 液平衡柱子过夜。 同上条件重复聚焦色谱操作, 收集活性组分。
3、 用 ELISA法检测活性组分
将收集到的各组分分别处理 AFB , 用 ELISA检测处理后样品中 AFB 的量, 用 10CTC 煮沸 10分钟的相同组分作对照, 能使 AFB 减少的组分为活性的组分。 具体做法如下:
( 1 ) 样品的制备
灭活酶液组: AFB^OOul (浓度 2.5ng/ml甲醇) +灭活酶液 200ul ( 1.2mg/ml)
活性酶液组: AFBi 200ul (浓度 2.5ng/ml甲醇) +活性酶液 200ul ( 1.2mg/ml) 质控组: AFB 200ul (浓度 2.5ng/ml甲醇) +缓冲液 200ul ( 1.2mg/ml) 灭活酶液的制备: 组分在 100°C煮沸 10分钟。
混匀, 30°C反应 30min, 10CTC煮沸 15min, 3000g离心 5min去沉淀, 制备好样品后 按 ELISA试剂盒 (AgraQuantTM Total Aflatoxin Assay 4/40, ROMER公司产品, 美国) 操作说明书操作, 由标准曲线计算处理后产物中含有的 AFB1 D 检测收集的各组分, 能使样 品中 AFBi减少的组分为有活性的组分。 检测结果: 有活性组分的活性酶液处理的样品中 AFBi为 1.230±0.508ng/ml,有活性组分的灭活性酶液处理的样品中 AFB 为 2.436±0.326 ng/ml, 质控组为 2.508 ±0.203 ng/ml。
活性峰在非还原性条件下进行电泳 (PAGE)表明它为单一谱带。 结果如图 1。
所得蛋白经 SDS-PAGE电泳分析: 分子量约为 73~76kDa; 等电聚焦电泳分析: 等电 点 pi约为 5.3~6.8。
实施例二: 纯化的 AEDTZ活性鉴定
一、 ADTZ转化 AFB 活性的鉴定
依据中国预防医学科学院标准处 (食品卫生国家标准汇编 中国预防医学科学院标准处 编, 北京, 中国标准出版社, 1998年版, pp410~415) 和翟永信 (薄层色谱在食品分析中 的应用, 翟永信、 陆冰真编, 北京大学出版社, 1991 年版, pp118~123)报道的方法, 用 薄层色谱法对由 ADTZ处理的 AFB 进行检测, 鉴定纯化到的 ADTZ活性。 具体做法如下 -
1、 实验组:
取 1 支 1.5 ml 的离心管, 加入 I L AFB 溶液(AFB 甲醇溶液: Ο.δμρ/μί, 黄曲霉 毒素 , Alexis Biochemicals Inc., Switzerland), 氮气挥干。 分别加入 ADTZ酶液 (蛋 白含量: 0.1mg/mL ) 300 μί, MgSO40.5 μΐ, PEG200 10 μί, 充分混匀。 30°C水浴, 反 应 1小时, 以后每小时向各加入 O yLAFB溶液, 直至管内 AFB 总量为 2 yg。 加毕后, 再继续反应 2小时。
2、 对照组:
取 1 支 1.5 ml 的离心管, 标记对照组 1 : 加入 I LAFB 溶液, 氮气挥干, 分别加入
300 μ!_酶液(预先以 100°C水浴 5分钟灭活)、 MgSO40.5 μΙ、 PEG200 10 μΐ, 充分混匀。 另取 1支 1.5 ml 的离心管,标记对照组 2:加入 I LAFBr溶液,氮气挥干,分别加入 PBS 缓冲液 (0.1M pH: 6.6) 300 il, MgSO40.5 μΐ, PEG200 10 μί, 充分混勾。 后续操作与 实验组相同。
以上实验组和对照组用反应后, 各加入 2倍体积的氯仿进行萃取 2次, 于 45°C, 氮气 下挥干萃取物, 加入 1 ml 的甲醇充分溶解萃取物, 得实验组样品 (活性酶组)、 对照组 1 (灭活酶组) 和对照组 2 (缓冲液对照组)。
3、 薄层色谱 (TLC) 检测反应产物
取新活化 ( 10CTC 2小时)的预制硅胶薄层板(10X 10 cm , 60 A, Whatman, USA), 在薄层板上点样:点距边缘 1cm ,点间距 1cm。从左到右:第 1点: 10μΙ_ 25 pg/ml的 AFB 氯仿溶液; 第 2、 3点: 各为 10μ1_对照组 2;第 4点: 10μ!_ 2号对照组 1 ; 第 5点: 10μΙ_ 实验组; 第 6点: 10μ1_ 25 μ9/ιηΙ的 AFB 氯仿溶液。
展开: 在展开槽内加 10ml 无水乙醚展开, 取出挥干。
观察: 在 365nm波长紫外光下观察荧光, 拍照, 结果如图 2所示。
结果显示: AFB 标准品 (1、 6) 以及酶的灭活对照 (4)和 PBS缓冲液对照 (2、 3), 乙醚展开时都只发生微小的迁移, 而用 ADTZ处理后的 AFB 产物 Rf值则接近 1 (=0.95), 表明解毒处理后的 AFB其极性显著减小, 与 AFB 明显不同, 说明纯化得到的 ADTZ具有 转化 AFB^ 活性。
二、 ADTZ对 AFB ¥毒生物学活性的鉴定
微生物回复突变实验 (Ames实验)参照中华人民共和国卫生部药政局颁布的方法 [中 华人民共和国卫生部药政局编, 新药(西药) 临床研究指导汇编(药学、 药理学、 毒理学), 1993年 7月]进行。 具体做法如下:
1 . 测试菌株 ,
为组氨酸营养缺陷型鼠伤寒沙门氏菌株 TA98 (引自卫生部药品生物制品检定所), -85
。C (零下 85 °C) 低温冰箱保存, 测试前对釆用的菌株进行基因型鉴定及自发回变数测定, 生物学鉴定合格, 符合实验要求。
2. 肝 S9的制备
( 1 ) SD大鼠诱导: SD大鼠检疫一周确定无病, 用多氯联苯混悬于玉米油, 腹腔注 射 (500 mg/kg体重), 5天后处死, 处死前 12小时禁食。
(2) S9组分的制备: 经上述诱导的 SD大鼠断头放血, 无菌下取肝, 称重, 肝脏用 冷 0.15 mol/L (下同) KCI漂洗。 以 1 g肝脏加 3 ml的比例在均漿器中均柴, 每份组织的 均浆时间保持一致。将均 液在 0 °C, 经 9000 g离心 20分钟, 取上清液, 经证明无菌后, 存 -85 °C冰箱备用。
3. Sg混合液的制备
将下列 A、 B、 C液和 S9组分混合, 保存 4 °C下 4小时内使用。
A液: (0.2 mol/L 辅酶 II, 过滤灭菌) 0.2 ml。
B液: (0.2 mol/L 6-磷酸葡萄糖过滤灭菌) 0.25 ml。
C液: 8.55 ml o
C液组成 (0.4 mol/L MgCI2 , 20 ml 1.65 mol/L KCI 20 ml, 0.2 mol/L 磷酸缓冲液 (pH7.4) 500 ml, 蒸馏水 315 ml, 混和后过滤灭菌)。
S9组分: lOOmlo
4. 受试样品的制备
在反应体系为 30ml的系统中, ADTZ浓度为 0.2mg/ml, AFB 的浓度为 0.2 g/ml, pH 值 6.0, 于 28°C下反应 120 min, 体系放大 10倍。 反应后, 以等体积氯仿萃取黄曲霉毒素 B-,后产物及未反应的残留底物 3次,合并有机相, 40 °C减压挥干氯仿,分别以 3.75和 3 ml DMSO洗出提取物(活性酶处理反应组); 以预先用氯仿灭活的 ADTZ代替活性 ADTZ, 在 同条件下处理黄曲霉毒素 Bl (灭活酶处理对照组); 以缓冲液代替活性 ADTZ S液, 在同条 件下处理黄曲霉毒素 (缓冲液处理对照组)。 以上样品均在 -15 °C下保存备用。
5. 回复突变实验
将受试样品的 DMSO溶液与培养过夜的菌液及 S9—起加入上层软琼脂培养基中,混匀, 在 40 °C下倒在底层 Vogel选择培养基上, 待凝固后于 37 °G温箱中培养 72小时, 计算每 个培养皿出现的回复突变菌落数。
每批测试时每组提取液及阴阳性对照均设 3个平皿, 并重复 1次,各组提取液结果为 2 次 6组平均值。 实验结果以回复菌落数、 突变率 (MR =样品回变菌落数 /阴性对照回变菌 落数) 和抑制率 (%) [= {1 - (被试物回变菌落数 - 阴性对照组回变菌落数) / ( 81对 照组回变菌落数 - 阴性对照组回变菌落数) } χ 100 %]表示。
6. 结果评价标准
若溶剂对照组在正常范围内, 受检物在 3个浓度以上有阳性剂量反应, 最大增加值为 溶剂对照值的两倍 (即 MR≥2), 可考虑为致突变阳性。
7. 结果:
活性 ADTZ处理反应组的细菌回复突变菌落数与阴性对照组(DMSO对照组)相近(MR 值均小于 2)。 缓冲液处理对照组和灭活 ADTZ处理对照组的细菌回复突变菌落数明显高于 阴性对照组 (MR值均大于 2), 与阳性对照 (黄曲霉毒素 对照) 的细菌回复突变数无显 著性差异。表明活性 ADTZ处理反应组受试物无诱发基因突变作用。说明 ADTZ具有抗 AFBj 引起突变的生物活性作用。 结果如下表。
黄曲霉毒素 经酶处理后的细菌突变回复试验 测试样品 回复突变数 /平板 MR 抑制率 (%)
PBS-对照组 378+77 13.09
灭活酶处理组 359±59 12.86
酶处理组 31士 12 1.11 99.16
AFB 对照组 385土 97 13.75
DMSO对照组 28 ± 5
上表说明: 诱变实验以含有大鼠肝 S-9混合物的 Salmonella typhimuriurmn TA98为供 试菌进行。用于诱变实验的 AFB对照组的浓度为 0.8μ9/50μΙ DMSO/平板。而 AFB 酶处理 后的样品每板也以相当于同样量的 AFB 进行实验,并保持同样量的 DMSO。平板培养 28hr 后, 计数, 结果以四个平板的平均值土 SD表示。
实施例三 ADTZ短肽氨基酸序列的获得
收集实施例一纯化所得的活性组分的峰尖, 或将活性组分用 PAGE电泳收集目的带, 采用 Q-TOF2 (电喷雾一四极杆飞行时间一串联质谱) 仪(英国 Micromass公司, 由军事
R 医学科学院仪器测试分析中心提供)进行 ADTZ短肽 N末端的氨基酸序列检测。 所测得的 氨基酸序列如下:
M1 : EAWEGFTALVDK M2-. NKLLQDA GELENLYVR
本发明的 ADTZ短肽氨基酸序列不限于上述所列,它还包含其他短肽氨基酸顺序片段, 只要该片段是用 MALDI-MS-TOF或其他化学方法等检测 ADTZ而获得。
实施例四: 产酶菌总 R A的提取
将产酶菌菌体组织放入预冷过的研钵中, 加入液氮研磨, 至样品为粉末状, 取 100mg 左右样品转至 1.5ml离心管中,加入 1ml的 Trizol,振荡混勾,室温静置 5分钟,加入 200μΙ 氯仿, 振荡混勾 2分钟, 冰浴 5分钟, 2-8°C , 12000Xg, 离心 15min, 转移上清至另一 1.5ml离心管。加入 500μΙ预冷的异丙醇,冰浴静置 20min, 2-8°C , 12000Xg,离心 10min, 弃上清, 加入 1ml预冷的 75%乙醇, 洗條沉淀及离心管壁, 2-8°C , 7500 X g, 离心 5min, 弃上清, 空气干燥 5-10min, 加入 50 u l DEPC无菌水, 至完全溶解, 进行紫外分析及电泳 检测 (1.1%Agarose/EB 100V 20min), 样品保存于 _80°C。 结果如图 3所示, 从电泳检测 结果中可看到 28s rRNA和 18s sRNA两条特征谱带条带清晰, 亮度比接近 2: 1 , 说明总 RNA没有降解。
实施例五、 ADTZ基因特异性引物的获得:
从实施例三所得到的 ADTZ短肽氨基酸序列设计 2对引物 (P1、 P2和 G1、 G2)。 参 照 QIAGEN OneStep RT-PCR Kit (QIAGEN Inc. 美国)手册进行 RT-PCR以获得 DTZ 基因部分序列的产物。 切胶回收 RT-PCR产物, 并按常规方法进行 TA克隆, 用 HindlE和 EcoRI酶切鉴定 TA克隆的重组质粒, 1.5%琼脂糖凝胶电泳检测酶切结果。将重组质粒进行 测序, 得到 \D7Z基因的 cDNA片段 E1。 具体做法如下:
引物对 1 " 引物对 2
P1 : 5' -TGGGARGGNTTYACNGC-3' G1 : 5' -CARGAYGCNAAYGGNGA-3 '
P2: 5, -TCNCCRTTNGCRTCYTG-3 ' G2: 5' -GCNGTRAANCCYTCCCA-3' 本发明扩增 ADTZ基因特异性引物的弓 I物对不限于以上的 P1与 P2, G1与 G2, 它还 包含其他的引物对, 只要该引物对是由上方法获得的 ADTZ短肽氨基酸序列所设计。
(一) RT-PCR的步骤
1、 将模板总 RNA (由实施例四获得) 于 75Ό变性 5min, 迅速插入冰中冷却,
2、 准备 Master Mix (80μΙ总体系)
42 μΙ RNase-free Water
16 μΙ 5 X QIAGEN OneStep RT-PCR Buffer
3.2 μΙ dNTP Mix ( 10mM)
3.2 ul QIAGEN OneStep RT-PCR Enzyme Mix
64.4μΙ 抽吸混勾, 短暂离心;
3、 按照下表所示顺序添加各组分至 0.5ml无菌离心管中 (单位: μΙ )
组分 1 (样品 1 ) 2 (-control ) 3 (样品 2) 4 (-control)
RNA 1.3 - - -
Primer P1 1.3 1.3 - -
Primer P2 1.3 1.3 - -
Primer G1 - - 1.3 1.3
Primer G2 - - 1.3 1.3
Water - 1.3 - 1.3
Master Mix 16.1 16.1 16.1 16.1 总体积 20 20 20 20
4、 PCR循环程序:
。 Reverse transcription: 50。C 30min
β Initial PCR activation step: 50 °C 15min
3-step cycling
15 cycles: 94 °C 40sec
65 °C 1 min (-rc/cycle)
72 °C 1 min
25 cycles: 94 °C 40sec
50 °C 1 min
72V 1 min
• Final extension : 70 °C 10min
5、 循环结束后取 5μΙ样品电泳检测。
(二) 切胶回收 RT-PCR产物
1. 配制的 ΤΑΕ电泳缓冲液, 并配制 0.8%琼脂糖凝胶;
2. 将 50μΙ 的 RT-PCR产物与 10 Χ loading buffer按比例混合, 上样;
3. 100V, 电泳 20min;
4. 电泳结束后, 在紫外灯下观察条带位置, 切下目的带, 转移至一个新的灭菌的 1.5ml 的离心管中;
5. 加入 800 μ旧 uffer NT1;
6. 漩涡振荡 NucleoTrap Suspension, 使小珠完全悬浮后, 取 10 μ Ι加入离心管中;
7. 将离心管在 50°C水浴 6min, 期间每隔 2min短暂漩涡振荡;
8. 室温下, 10000 X g, 离心 30s, 弃上清;
9. 加入 500 μ | Buffer NT2, 短暂漩涡振荡, 室温下, 10000X g, 离心 30s, 弃上清。
重复此步骤一次。 10.加入 500 μ Ι Buffer NT3, 短暂漩涡振荡, 室温下, 10000Xg, 离心 30s, 弃上清。 重复此步骤一次。
11.再次 10000 X g, 离心 30s, 弃上清, 空气中干燥 10-15min;
12.加入 30 w lTE Buffer (pH8.0), 重悬沉淀。 回收的片段命名为 " E1 "。 RT-PCR产物 的电泳检测。 结果如图 4所示, 显示引物对 P1和 P2的反应结果中获得一个条带, 条带位置约于 800bp左右, 命名为 E1片段。
(三) TA克隆与测序
连接
在 1.5ml新的灭菌的离心管中加入下列成份:
1 μΙ pUCm-T载体
3 μΙ Ε1片断 (RT-PCR回收产物)
1 μΙ 10 X buffer
1 μΙ Τ4 DNA连接酶
加 4μΙ的无菌水补充总体积至 10μΙ;
抽吸混匀, 短暂离心, 22°C水浴 4h以上。
CaCI2法制备 E.coli DH5 α感受态细胞
挑取 DH5 ci单克隆于 2mlLB液体培养基中, 37°C振荡培养过夜。 从活化的新鲜 DH5 α菌液中取 50 μ Ι接种于 5mlLB液体培养基中, 37°C 振荡培养 1.5-2h, 冰浴 30min, 将菌液转移至无菌离心管中, δΟΟΟφΓΐΐ,离心 5min,弃上清,取 1.5ml冰浴的无菌 CaCI2 加入离心管, 悬浮菌体, 冰浴 10min, 5000rpm, 离心 5min, 弃上清; 加入 200 μ |冰 浴的无菌 CaCI2加入离心管, 悬浮菌体, 保存于 4°C下备用。
转化 DH5 a感受态细胞
取感受态细胞 200 μ |加入含 10 μ |连接物的离心管中, 混匀, 冰浴 30min; 42Ό水浴 90s; 立即冰浴 3-5min; 加入 800 μ I LB液体培养基, 37°C温育 40-60min; 将一转化的 感受态细胞涂布于含有 Amp及 IPTG/X-gal的 LB固体培养基上, 每个 90mm平板涂布 200 u l, 37°C振荡培养 12-16h。
碱提质粒 DNA
挑取转化的单菌落, 接种到 2ml的含有氨苄青霉素的 LB液体培养基中, 37°C剧烈振荡 培养过夜。取 1.5ml菌液于微量离心管中, 12000rpm离心 2min,弃上清;取 400 μ I STE 溶液洗菌体, 漩涡振荡混匀, 12000rpm离心 2min, 弃上清; 加入 100 μ Ι预冷溶液 I 于沉淀菌体中, 剧烈振荡混勾; 加入 200 μ Ι新鲜配制的溶液 II, 立即快速颠倒混匀, 冰浴 3min;加入 150 μ I预冷溶液 III,反复颠倒混匀,冰浴 5min; 12000rpm离心 5min, 上清移至另一管中; 加入等体积酚仿, 颠倒混匀, 12000rpm离心 5min; 小心吸取上清 转移至另一管中; 加入两倍体积的预冷无水乙醇, 颠倒混匀, 室温静置 40-60min; 12000rpm离心 10min,弃上清;加入 200 μ I 70%乙醇,漂洗沉淀, 12000rpm离心 1min, 弃上清; 打开管盖空气中干燥 5-10min, 加入 30 μ I无 DNA酶的 RNA酶的 ΤΕ溶解沉 淀, 37。C温育 1h。 贮存于 -20°C。
5 酶切鉴定重组质粒 pTE1
用 HindlH和 EcoRI酶切鉴定 TA克隆的重组子, 如下表: (单位: μΙ)
编号 Buffer M Buffer H Hindlll EcoRI pTE1 H20
1 (20μΙ体系) 2 - 1 1 10 6
2 (20μΙ体系) - 2 - 1 10 6
3 (20μΙ体系) 2 - 1 -- 10 6
37°C酶切 4h以上。 1.5%琼脂糖凝胶电泳检测酶切结果, 结果如图 5, 重组载体 pTE1 的酶切鉴定, Hindlll+EcoRI双酶切(1号样品)和 Hindlll单酶切(3号样品)均切下 400bp 多的条带, 且前者的亮度比后者高, EcoRI单酶切将重组子切成线性(2号样品), 表明 E1 片断中央位置存在一个 Hindlll酶切位点。
6 测序
重组质粒 PEG纯化法 (Sambrook, et al. 1989,Molecular doing. Cold Spring Harbor Labroratory Press. USA) 提取质粒 DNA。 以 T7和 SP6为测序弓 |物, 釆用 ABI377 DNA Sequencer DNA自动序列仪(由上海博雅公司提供), 正反向进行测定, 得到 E1片段核酸 序歹 U。测序结果:序列包含引物 P1和 P2序列, 在中间位置出有一个 aagctt的 Hindlll酶切 位点。
实施例六: 编码 ADTZ全长 cDNA序列的获得
根据实施例五已获得的 AD7Z基因部分序列 E1片段设计引物:
S1 (5, -TAGGCGAAGTGTCGTCGTCAATGGAA-3 ' )
S3 (5, -GAAGTTATCGGCTTTCCAGTCAGAGGGT-3 ' )
分别作为 3' RACE和 5' RACE的引物, 按 SMART™ RACE cDNA amplification Kit
(COLONTECH Laboratories, Inc. Cat. No. K1811-2)手册进行 3, RACE和 5, RACE。 切胶回收 RACE产物, 并按常规方法进行 TA克隆, 用 Hindlll和 EcoRI酶切鉴定 TA克隆 的重组子, 1.5%琼脂糖凝胶电泳检测酶切结果。 将重组质粒送交测序公司进行测序, 得到 两个片断 E2、 E3, 利用 NCBI 的 VecScreen ( BLASTN2.2.5 ) 程序 ( http:〃 www.ncbi.nlm.nih.gov I VecScreen.html) 识别去除载体序列, 用 DNAMAN 程序 (美国 Lynnon BioSoft公司的软件) 将 E1、 E2、 E3拼接, 将得到的序列用 NCBI的 ORF Finder 程序(http://www.ncbi.nlm.nih.gov/gorf/gorf.html)进行开放阅读框分析, 得到了编码 ADTZ 成熟肽的 ADTZ基因的全长 cDNA序列。 具体如下- 引物 S1 : 5' -TAGGCG AAGTGTCGTCGTCAATGGAA-3 '
引物 S3: 5' -GAAGTTATCGGCTTTCCAGTCAGAGGGT-3' 一、 3' RACE
(一) 3' RACE-Ready cDNA的制备:
1. 将模板总 RNA于 75°C变性 5min, 迅速插入冰中冷却;
2. 在一个 0.5ml 灭菌离心管中加入以下试剂:
1 μΙ 变性的模板总 RNA
1 μΙ 3' —CDS Primer A
加 3μΙ的无 RNA酶的无菌水补充体积到 5μΙ;
3. 抽吸混匀, 并短暂离心使混合液位于管底;
4. 70V , 温浴 2min;
5. 冰浴 2min, 稍稍离心后加入下列试剂:
2 μΙ 5 X First-Strand Buffer
1 μΙ DTT (20mM)
1 μΙ dNTP Mix ( 10mM )
1 μΙ PowerScript Reverse Transcriptase
10 μΙ 总体积
6. 轻轻抽吸混匀试剂并稍稍离心;
7. 温箱中 42°C温浴 1.5h;
8. 用 l OO^Tricine-EDTA buffer稀释产物;
9. 72°C温育 7min;
10. 样品存于 -20°C。
(二) 3' RACE的步骤
1 . 准备 Master Mix ( 100μΙ总体系)
69 μΙ PCR-Grade Water
10 μΙ 10 X Advantage 2 PCR Buffer
2 μΙ dNTP Mix ( 10mM )
2 μΐ 50 X Advantage 2 Polymerase Mix
83 μΙ
抽吸混匀, 短暂离心;
2.按照下表所示顺序添加各组分至 0.5ml无菌离心管中 (单位: μΙ)
组分 1 (样品) 2 (-control) 3 (-control ) , -RACE-Ready cDNA 2.5 1.5
UPM ( 10 X ) 5 3
Primer
Figure imgf000015_0001
Master mix 41.5 24.9 16.6 总体积 50 30 20
3. PCR循环程序:
° 5 cycles: 94 °C 5sec
72 °C 3min
° 5 cycles: 94 °C 5sec
70 °C 10sec
72 °C 3min
。 35 cycles: 94 °C 5sec
68。C 10sec
72。C 3min
4. 循环结束后取 5μΙ样品电泳检测, 结果如图 6所示, 显示 3' RACE获得一个一条 带的产物, 产物带位于分子量约 800bp处, 命名为 E2片段。
(三) 切胶回收 3, RACE产物, TA克隆, CaCI2法制备 E.coli DH5 a感受态细胞, 转 化 DH5 α感受态细胞, 碱提质粒 DMA (实验操作同前面实施例五的内容)。
(四) 酶切鉴定重组质粒 PTE2
用 Hind!II和 EcoRI酶切鉴定 TA克隆的重组子, 如下表: (单位: μΙ )
编号 Buffer M Buffer H Hindlll EcoRI pTE2 H20
1 (20μΙ体系) 2 - 1 1 10 6
2 ( 20μ1体系) - 2 - 1 10 6
3 (20μΙ体系) 2 - 1 - 10 6
37°C酶切 4h以上。 1.5%琼脂糖凝胶电泳检测酶切结果,结果如图 7所示,重组载体 pTE2 的酶切鉴定, Hindlll+EcoRI双酶切 (1号样品) 切下两条带分别位于 600bp和 300-400bp 左右, Hindlll单酶切(3号样品)切下一条带约 300-400bp, EcoRI单酶切将重组载体切成 线性 (2号样品), E2片断中存在一个 Hindlll酶切位点, 位置约靠近片断的某一侧。
(五)测序:重组质粒 PEG纯化法(Sambraok, et al. 1989, Molecular doing. Cold Spring
Harbor Labroratory Press. USA)提取质粒 DNA。 以 T7和 SP6为测序引物, 釆用 ΑΒΙ377 DNA Sequencer DNA自动序列仪 (由上海博雅公司提供), 正反向进行测定, 得到 2段核 酸序列。 得到的 E2序列, 在偏 3' 位置存在一个 AAGCTT的 Hindlll 酶切位点。
二、 5' RACE
(一) 5' RACE-Ready cDNA的制备
1.取出模板总 RNA于 75°C变性 5min, 迅速插入冰中冷却;
2. 在一个 0.5ml 灭菌离心管中加入以下试剂:
1 μΙ 变性的模板总 RNA 1 μΙ 5' —CDS Primer A
1 μΐ SMART II A Oligonucleotide
加 2μΙ的无 R A酶的无菌水补充体积到 5μΙ;
2. 抽吸混匀, 并短暂离心使混合液位于管底;
3. 70V, 、温浴 2min;
4. 冰浴 2min, 稍稍离心后加入下列试剂:
2 μΙ 5 X First-Strand Buffer
1 μΙ DTT (20mM)
1 μΙ dNTP Mix (10mM)
I μΙ PowerScript Reverse Transcriptase
10 μΙ 总体积
5. 轻轻抽吸混匀试剂并稍稍离心;
6. 温箱中 42°C温浴 1.5h;
7. 用 lOC^ITricine-EDTAbuffer稀释产物;
8. 72°C温育 7min;
9. 样品存于 -20°C。
(二) 5, RACE步骤
1. 准备 Master Mix (110μΙ总体系)
75.9 μΙ PCR-Grade Water
II μΙ 10 X Advantage 2 PGR Buffer
2.2 μΙ dNTP Mix (10mM)
2.2 μΐ 50 X Advantage 2 Polymerase Mix
91.3 μΙ
抽吸混勾, 短暂离心;
2.按照下表所示顺序添加各组分至 0.5ml无菌离心管中 (单位: μΙ)
组分 1 (样品) 2 (+control) 3 (-control) 4 (-control) , -RACE-Ready cDNA 2.5 1 1 1
UPM (10X) 5 - 2 -
Primer S1 (10μ(η) - 0.4 - -
Primer S3 (10μητι) 1 0.4 - 0.4
H20 - 1.6 0.4 2
Master mix 41.5 16.6 16.6 16.6 总体积 50 20 20 20
3. PCR循环程序: 。 94 °C 1 min
。 5 cycles: 94 °C 30sec
72V 4min
。 5 cycles: 94 °C 30sec
70 °C 4min
。 25 cycles: 94 °C 30sec
68 °C 4min
。 72 °C 10min
4. 循环结束后取 5μΙ样品电泳检测, 得到 5' RACE产物 Ε3。 结果如图 8所示, 显示 5' RACE获得一个单条带的产物, 条带位置约于 1400-1800bp左右, 命名为 E3片段。
(三) 切胶回收 5' RACE产物, TA克隆, CaCI2法制备 E.coli DH5 a感受态细胞, 转化 DH5 a感受态细胞, 碱提质粒 DNA (实验操作同实施例五的内容)。
(四) 酶切鉴定重组质粒 pTE3
用 Hind!II和 EcoRI酶切鉴定 TA克隆的重组子, 如下表: (单位: μΙ)
编号 Buffer Buffer H Hindin EcoRI pTE3 H20
1 (20μΙ体系) 2 - 1 1 10 6
2 ( 20μΙ体系) - 2 - 1 10 6
3 (20μΙ体系) 2 - 1 - 10 6
37°C酶切 4h以上。 1.5%琼脂糖凝胶电泳检测酶切结果, 结果如图 9所示, 重组载体 pTE3的酶切鉴定, Hindlll+EcoRI双酶切 (1号样品) 出现两条带分别位于 1400-1000bp 和 300-400bp左右, Hindlll单酶切 (3号样品) 出现一条带约 1400-1000bp, E3片断中能 存在一个 Hindlll酶切位点。
(五) 测序
挑取重组质粒 PEG纯化法 (Sambrook, et al. 1989, Molecular doing. Cold Spring Harbor Labroratory Press. USA)提取质粒 DNA。 以 T7和 SP6为测序引物, 采用 ΑΒΙ377 DNA Sequencer DNA自动序列仪(由上海博雅公司提供), 正反向进行测定, 得到 E3片段 核酸序列。 得到的 E3片段, 在偏向 5' 位置存在一个 Hindlll酶切位点, 在 3' 末端存在一 个 Hindlll酶切位点。
三、 ADTZ cDNA序列的拼接
利用 NCBI的 Vecscreen程序识别去除载体序列, 用 DNAMAN程序将 E1、 E2、 E3 拼接, 将得到的序列用 NCBI 的 ORF Finder程序进行开放阅读框分析, 得到序列长度为 2.3kb, 含有完整开放阅读框, 有 3' 末端的 poly (A) 尾巴, 并包含 5' 端和 3' 端的非翻 译区。 结果见图序列 SEQ ID N02。 将 ADTZ核苷酸序列和推测的氨基酸序列通过因特网 进行 BLASTA序列相似性査询, 程序 BLAST和 BLASTX ( http:// www.ncbi.nlm.nih.gov/ BLAST/) , 结果表明 ADTZ为一全新的基因, 由其推算出的编码 ADTZ的成熟肽氨基酸序 列在 GENEBANK中找不到相同的序列, 为一全新的氨基酸序列。
编码 ADTZ全长 cDNA序列的获得不限于用实施例六所述的方法, 用 ADTZ短肽氨基 酸序列设计探针从 Armillaiiella tabescens的 cDNA文库中克隆该序列也包含在内。 实施例七: 编码 ADT 成熟肽 cDWA产物的获得
分析实施例六所得编码 ADTZ全长 cDNA序列的两端序列, 设计了一对引物: P3: 5' -GTCGAATTCATGGCCACCACAACTGTC-3 '
P4: 3' -GTAACTCTCTGCTAACACTCCTAGGGAC-5 '
以获得从起始密码子开始到终止密码子的 ADTZ开放阅读框序列, 并在引物上分别添加限 制酶切位点 EcoRI ( GAATTC) 和 BamHI (GGATCC)。 按常规方法进行 PCR扩增, 切胶 回收 PCR产物。 具体如下:
1 . 准备 Master Mix ( 100μΙ总体系)
69 μΙ PCR-Grade Water
10 μΙ 10 X Advantage 2 PCR Buffer
2 μΙ dNTP Mix ( 10m )
2 μΐ 50 X Advantage 2 Polymerase Mix
83 μΙ
抽吸混匀, 短暂离心;
2.按照下表所示顺序添加各组分至 0.5ml无菌离心管中 (单位: μΙ)
组分 1 (样品) 2 (-control) 3 (-control)
5, -RACE-Ready cDNA 2.5 - 1
Primer P3 ( 10μιτι ) 1 0.6 -
Primer P4 ( 10μιη) 1 0.6 -
H20 4 3.9 2.4
Msster mix 41.5 24.9 16.6 总体积 50 30 20
3. PCR循环程序:
94 °C 1 min
• 5 cycles: 94 °C 30sec
72 °C 4min
• 5 cycles: 94 °C 30sec
70'C 4min
• 35 cycles 94 °C 30sec
68 °C 4min 72 °C 10min
4. 循环结束后取 5μΙ样品电泳检测, 结果如图 10所示, 显示 PCR获得一个一条带的 产物, 条带位置约于 1800bp左右, 命名为 ADTZ' 片段。
5. 切胶回收 PCR产物. .
按常规的 PCR产物回收方法进行。 得到含编码 ADTZ成熟肽的 cDNA, 此片断命名为
"ADTZ' "。
实施例八: 重组质粒 ADTZ表达质粒的构建 .
' 基因克隆按常规方法 ( Sambrook, et al. 2001 , Molecular Cloning A Laboratory Manual. Cold Spring Harbor Labroratory Press. USA)进行, 将实施例七所得的 ADTZ,克 隆到 pHIL-S1构建成表达质粒 pHIL-SI-ADTZ , 克隆后的目的基因经酶切、 测序鉴定。
具体做法: 如图 14 所示, 含基因 ADTZ 的重组质粒 pHIL-S1 的构建过程为: - EcoRI+BamHI双酶切质粒 pHIL-S1和目的片断 ADTZ, 酶切产物进行 0.8%琼脂糖凝胶电 -' 泳, 并切胶回收。利用 T4 DNA连接酶进行质粒 pHIL-S1和目的基因 ADTZ的连接。 CaCI2 法制备 E.coli DH5 a感受态细胞, 转化 DH5 a感受态细胞, 筛选转化子, 碱提质粒。 用 EcoRI+BamHI, HindllL Sacl酶切鉴定重组质粒 pHIL-S1-ADTZ。 挑取重组质粒 PEG纯 化法 ( Sambrook, et al. 2001 , Molecular Cloning A Laboratory Manual. Cold Spring Harbor Labroratory Press. USA)提取质粒 DNA。 以 T7和 SP6为测序引物, 采用 ΑΒΙ377 DNA Sequencer' DNA自 序列仪 (由上海博雅公司提供), 正反向进行测定。 酶切结果如 - 图 11所示,'重组载体 pSA的酶切鉴定, BamHU EcoRI双酶切 (样品 1 ')切下一条带位于 2000bp左右, Hindlll单酶切(样品 2 )切下三条带分别约在 1400bp, 600bp和 500bp,Sacl 单酶切 (样品 3) 将重组质 切成线性, 说明插入片段中没有 Sacl酶切位点。
实施例九: 重组 ADTZ的表达
用 Sacl酶切重组质粒 pHIL-S1 -ADTZ和质粒 pHIL-S1 ,酶切产物进行 0.8%琼脂糖凝胶 电泳, 切胶回收酶切后的线性重组质粒 PHIL-S1-/AD7Z 和质粒 pHIL-S1。 按 Pichia Expression Kit ( Invitrogen Inc. , 美国) 手册中的原生质法转化毕赤酵母菌 GS115, 筛选 Mut+转化子。利用甲醇作为唯一碳源对重组菌进行诱导表达 拔 Pichia Expression Kit手册 操作) 中, 培养液经 SDS-PAGE电泳分析表明, 转化子经诱导表达后, 培养液上清出现明 显的目的蛋白带, 而转化不含目的基因的空质粒的对照菌在相同的条件下诱导 96小时, 在 上清中未检测到目的蛋白条带。 结果如图 12所示, 转化子经甲醇诱导表达后, 培养液上清 出现明显的目的蛋白带;而转化不含目的基因的空质粒的阴性对照菌,在相同的条件下诱导 在上清中无目的蛋白出现。
具体做法如下:
一、 重组子与毕赤酵母的同源重组
(一) 线性化质粒 · Sacl酶切重组质粒 pSA和质粒 pHIL-SI, 同时线性化质粒 pHIL-S1是作为下面实验的 control
酶切 pSA (120总体系): 12μΙ Buffer L+ 8μΙ Sacl+ 100μΙ pSA
酶切 pHIL-S1 (120总体系): 12μ! Buffer L+ 8μΙ Sacl+ 100μΙ pHIL-S1
0.8%琼脂糖凝胶电泳酶切样品,切胶回收酶切后的线性重组质粒 pSA和质粒 pHIL-SI。
(二) 培养用于原生质化的毕赤酵母菌 GS115
1. 从平板上挑取一个 GS115单克隆接种于 10mlYPD中, 在 150ml锥形瓶中, 3CTC, 250-300rpm振荡培养过夜;
2. 从昨日培养的的 10mlYPD菌液中分别取 5, 10, 20μ I接种于 200mlYPD中, 在 500ml的锥形瓶中, 250-300rpm振荡培养过夜;
3. 检测 3个瓶中菌液的 OD6。。值, 取 ODstra=0.2-0.3的菌液转入离心管中, 室温 1500 xg离心 5min, 弃上清, 收集的细胞用于原生质化。
(三) 毕赤酵母菌 GS115的原生质化
1. 培养收集的细胞重悬于 200ml的无菌水中, 转移至两个无菌的 10ml离心管中; 2. 室温下, 1500Xg离心 5min, 弃上清;
3. 用 10ml新鲜配制的 SED洗沉淀, 室温下, 1500Xg离心 5min, 弃上清;
4. 用 10mMM山梨醇洗沉淀, 室温下, 1500Xg离心 5min, 弃上清;
5. 用 10mlSCE重悬沉淀;
6. 取一管 Zymolyase冻融后轻弹管壁, 使溶液混勾;
7. 取 7.5 μ| Zymolyase加入管中, 30°C温育 30min;
8. 室温下 750Xg离心 10min, 收集菌体, 弃上清;
9. 用 10ml 1M山梨醇洗原生质体,轻轻敲打管壁分散沉淀,室温下 750Xg离心 10min, 收集菌体, 弃上清;
10. 用 10ml CaS洗菌体, 室温下 750Xg离心 10min, 收集菌体, 弃上清;
11 将沉淀重悬于 0.6ml CaS中, 此原生质体在 30min内必须使用。
(四) 原生质法转化毕赤酵母菌 GS115
1. 分别取 100 μΙ毕赤酵母原生质体加 ΛΑ、 B、 C 3个无菌 15ml离心管中;
2. A管中不加 DNA作为阴性对照, B管中加入 30 μ I线性化的原质粒 pHIL-S1,C管中加 入 30 μ I线性化的重组质粒 pSA, 室温下温育 10min,期间准备一支 3ml新鲜配制的 PEG/CaT;
3. 各管中加入 1ml新鲜配制的 PEG/CaT, 轻轻混匀, 室温下温育 10min;
4. 室温下 750Xg离心 10分钟, 弃上清, 控干;
5. 将沉淀重悬于 150 μΙ SOS中, 室温温育 20min;
6. 各管加入 850 μ I 1 M山梨醇, 准备铺板; 7. 涂布 RD固体培养基,每板涂布 200 μ l,28-30°C温育倒置培养,转化子约在 4-6天出现。
(五) 筛选 Mut+转化子
1 . 用无菌牙签挑取 His+转化子, 分别在 MM和 IV1D板上一一对应点菌, 同时点上 GS115/His+Muf Albumin和 GS115/His+Mut+ β -gal作为对照。
2. 28-30'C温育倒置培养 2天;
3. 两天后, 观察对照 MM和 MD板, 若在两板上均生长良好为 Muf, 若在 MD上生长 良好, 在 MM板上生长少或不生长则为 Muf。
(六) 重组菌的诱导表达
1 . 挑取一个 His+Muf "转化子的单克隆, 接种于 25m旧 MG, 在 250ml的锥形瓶中, 28-30 °C, 250-300rpm振荡培养, 直至 OD600=2-6 (约 16-18h) ;
2. 1500-3000X g离心 5min收集细胞,弃上清,重悬细胞于 BMM中至 OD6C)。为 1.0 (约 需 100-200m旧 MM) , 在 1升的锥形瓶中, 28-30°C, 250-300rpm继续振荡培养。
3. 每 24h加 100%甲醇, 始终浓度至 0.5% , 保持诱导表达;
4. 诱导表达 96h的时间。 培养液离心 2- 3min, 留取上清放入 -80°C保存以用于纯化表达 产物。
经诱导 96小时培养上清中总蛋白量达 0.23mg/ml。 目的蛋白的分子量与用 BioEdit软 件 (http:〃 www.mbio.ncsu.edu/BioEdit/bioecm.html) 预测的理论值 76.95kDa相符。
实施例十: 重组 ADTZ的纯化
诱导表达的发酵液经 70%饱和 (NH4) 2S04沉淀, 收取沉淀获得粗酶样品。 粗酶样品 以等体积的 PBS溶解,离心后取上清上疏水色谱层析 Phenyl sepharose柱, 以连续梯度的 洗脱缓冲液洗脱, 收集目的峰。 透析脱盐, PBS溶液平衡后浓缩。 浓缩酶液上金属螯合亲 和色谱层析 Chelating Sepharose柱 pH7.5~6.0的连续 pH梯度缓冲液进行洗脱, 收集目的 峰。 具体如下-
1、 硫酸氨沉淀收集粗酶
重组表达发酵液加入 (NH4) 2S04粉末至 40%饱和度, 4°C, lOOOOg离心 20分钟, 上清继续再加入 (NH4) 2S04粉末至 70%饱和度。 4°C, 10000g离心 20分钟。 即获得粗 酶样品。
2、 疏水层析: ADTZ粗酶样品以等体积的 0.02M PBS (pH: 6.0)液溶解, 4000 g 4 °C离心 10分钟,取上清,上 Phenyl sepharose柱 [Phenyl sepharose 6 Fast flow( high sub), Pharmacia Biotech, Inc], 溶液液 (0.02 M PBS+30%饱和硫酸铵, pH: 6.0)洗至基线, 然后以连续梯度的洗脱缓冲液 [A液 (0.02 M PBS +10%饱和硫酸铵,pH: 6.0)+B液 (0.02M PBS, pH: 6.0) ]洗脱, 收活性峰。 透析脱盐, 并以 F液 (0.02 M PBS+0.5M NaCI, pH: 7.5)平衡, 浓縮至蛋白浓度约为 1 mg/ml。
3、 金属螯合层析: Chelating Sepharose[Chelating Sepharose Fast Flow, Pharmacia Biotech, Inc]预先以 0.2M CuCI2溶液饱和,以纯水洗柱至基线,再用 F液 (0.02 M PBS+0.5M NaCI, pH: 7.5) 洗至基线稳定。 将经过疏水层析后的目的峰样品上样, 分别以不连续 pH 梯度缓冲液 G液 [0.02 M PBS+0.5 NaCI, pH7.5~6.0的不连续 pH梯度缓冲液(依次增加 0.5个 pH单位) ]进行洗脱, 收集目的峰。 目的峰用 SDS-PAGE电泳鉴定。
结果: 诱导表达后的 1升发酵液, 经以上的纯化后可获得 58 mg纯化的重组 ADTZ。 纯度达到 95%以上。
实施例十一: 重组 ADTZ活性的鉴定
重组 ADTZ活性的鉴定按参照实施例二之一方法进行。反应体系: ( 1 )活性酶组: 1μΙ_ AFB,溶液 (AFB 甲醇溶液: 0.5μ9/μί_, 氮气挥干) +重组表达 ADTZ酶液 (蛋白含量: 0.1mg/mL ) 300 μΐ_+ 0.5 μ!_ MgS04+ 10 μ1_ PEG200 ; (2) 灭活酶组: 1 μΙ_ AFB,溶液 (AFB 甲醇溶液: 0.5yg/ L,氮气挥干) +灭活的重组表达 ADTZ酶液 (蛋白含量: 0.1mg/mL, 预先以 10CTC水浴 5分钟) 300 L+ 0.5 pL MgSO4+ 10 ML PEG200 ; (3) 缓冲液对照组: I LAFB 溶液(AFB 甲醇溶液: O.Spg/ML, 氮气挥干) +PBS缓冲液(O.I M pH: 6.6) 300 μΙ_+ 0.5 μΙ_ MgS04 + 10 μΐ_ PEG200; 反应体系充分混匀, 3CTC水浴, 反应 1小时, 以后 每小时向各加入 0.5μΙ_ AFB 溶液, 直至管内 AFB 总量为 2 pg=加毕后, 再继续反应 6小 时。 反应结束后按实施例二之一方法操作点板展开检测。
结果显示: 用重组 ADTZ处理后的 AFB 产物则 Rf值接近 1 (=0.93), 与天然 ADTZ 的结果相似,表明重组 ADTZ具有转化 AFB 活性。结果如图 13所示,表明用重组 ADTZ 处理后的 AFB 产物则 Rf值接近 1 (=0.93), 与天然的 ADTZ相似, 表明重组的 ADTZ有 转化 AFBi的活性。
实施例十二 重组 ADTZ对 81解毒生物学活性的鉴定
重组 ADTZ活性的鉴定按参照实施例二之二方法进行。受试样品的制备将天然的 ADTZ 替换为重组表达的 ADTZ, 其余的分组设计和做法同样。结果: 活性重组 ADTZ处理反应组 的细菌回复突变菌落数与阴性对照组 (DMSO对照组) 相近(MR值均小于 2)。 缓冲液处 理对照组和灭活重组 ADTZ处理对照组的细菌回复突变菌落数明显髙于阴性对照组( MR值 均大于 2), 与阳性对照 (黄曲霉毒素 对照) 的细菌回复突变数无显著性差异。 说明重组 ADTZ具有抗 AFB,引起突变的生物活性作用。 结果如下表。
黄曲霉毒素 B 经重组表达酶处理后的细菌突变回复试验 测试样品 回复突变数 /平板 MR 抑制率 (%)
PBS-对照组 379+57 12.03
灭活重组酶处理组 353±63 11.66
重组酶处理组 30 ± 01 1.01 98.06
AFB-,对照组 383+65 12.35
DMSO对照组 26 ± 8 ~

Claims

权利 要 求
1、一种具有转化黄曲霉毒素活性的解毒酶,其等电点为 5.3~6.8,分子量为 73~77 千道尔顿, 其氨基酸序列如序列表所示。
2、 编码如权利要求 1所述的具有转化黄曲霉毒素活性的解毒酶的基因。
3、 如权利要求 2所述的基因, 其核苷酸序列如序列表所示。
4、 包含如权利要求 3所述的基因的重组表达载体。
5、 用如权利要求 4所述的重组表达载体转化宿主细胞所得的转化体。
6、 制备如权利要求 1所述的解毒酶的方法, 其特征在于, 包括以下步骤: 培养 用包含如权利要求 5所述的转化体,回收所表达的具有转化黄曲霉毒素活性的解 毒酶。
7、 如权利要求 1所述的具有转化黄曲霉毒素活性的解毒酶在制备词料和食品中 黄曲霉毒素除毒产品的应用。
8、 如权利要求 1所述的具有转化黄曲霉毒素活性的解毒酶在制备预防和治疗由 黄曲霉毒素诱发的肿瘤的药物的应用。
PCT/CN2005/000050 2004-08-17 2005-01-13 Enzyme de détoxification ayant une activité consistant à transformer l'aflatoxine et gène codant pour celle-ci WO2006017960A1 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
BRPI0513998-8A BRPI0513998A (pt) 2004-08-17 2005-01-13 detoxifizima com atividade de transformar aflotoxina e codificação do gene da mesma
CA2576069A CA2576069C (en) 2004-08-17 2005-01-13 Detoxifizyme with activity of transforming aflatoxin and the gene encodes thereof
KR1020077001737A KR100850640B1 (ko) 2004-08-17 2005-01-13 아플라톡신을 변화시키는 활성을 가진 효소 및 그 효소를 코딩하는 유전자
US11/629,450 US7695751B2 (en) 2004-08-17 2005-01-13 Detoxifizyme with activity of transforming aflatoxin and the gene encodes thereof
EP05700424A EP1780270B1 (en) 2004-08-17 2005-01-13 A detoxifizyme having activity of transforming aflatoxin and the gene encodes thereof
MX2007001935A MX2007001935A (es) 2004-08-17 2005-01-13 Detoxifizima con actividad para transformar la aflatoxina y el gen que codifica la misma.
JP2007526165A JP4495758B2 (ja) 2004-08-17 2005-01-13 アフラトキシンを転化する活性を有する解毒酵素、及びこの酵素をコーディングする遺伝子
AT05700424T ATE489458T1 (de) 2004-08-17 2005-01-13 Detoxifizym mit aktivität zur transformation von aflatoxin sowie das dafür codierende gen
AU2005274578A AU2005274578B2 (en) 2004-08-17 2005-01-13 A detoxifizyme having activity of transforming aflatoxin and the gene encodes thereof
DE602005024973T DE602005024973D1 (de) 2004-08-17 2005-01-13 Detoxifizym mit aktivität zur transformation von aflatoxin sowie das dafür codierende gen
IL180694A IL180694A (en) 2004-08-17 2007-01-14 A toxin-removing substance that has the sub-activity of aflatoxin and its genetic coding
HK07111708.3A HK1106272A1 (en) 2004-08-17 2007-10-30 A detoxifizyme having activity of transforming aflatoxin and the gene encodes thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200410051120.0 2004-08-17
CNB2004100511200A CN1294255C (zh) 2004-08-17 2004-08-17 一种具有转化黄曲霉毒素活性的解毒酶及编码该酶的基因

Publications (1)

Publication Number Publication Date
WO2006017960A1 true WO2006017960A1 (fr) 2006-02-23

Family

ID=35718321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000050 WO2006017960A1 (fr) 2004-08-17 2005-01-13 Enzyme de détoxification ayant une activité consistant à transformer l'aflatoxine et gène codant pour celle-ci

Country Status (16)

Country Link
US (1) US7695751B2 (zh)
EP (1) EP1780270B1 (zh)
JP (1) JP4495758B2 (zh)
KR (1) KR100850640B1 (zh)
CN (1) CN1294255C (zh)
AT (1) ATE489458T1 (zh)
AU (1) AU2005274578B2 (zh)
BR (1) BRPI0513998A (zh)
CA (1) CA2576069C (zh)
DE (1) DE602005024973D1 (zh)
HK (1) HK1106272A1 (zh)
IL (1) IL180694A (zh)
MX (1) MX2007001935A (zh)
RU (1) RU2359032C2 (zh)
WO (1) WO2006017960A1 (zh)
ZA (1) ZA200700269B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807074A (zh) * 2022-06-06 2022-07-29 江西省科学院生物资源研究所 一种黄曲霉毒素分解酶及其编码基因、重组载体、重组菌及应用
CN115341010A (zh) * 2021-05-13 2022-11-15 华中农业大学 参与黄曲霉毒素b1毒性效应的靶点及其应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294255C (zh) 2004-08-17 2007-01-10 广州科仁生物工程有限公司 一种具有转化黄曲霉毒素活性的解毒酶及编码该酶的基因
DE602008006778D1 (de) 2007-12-14 2011-06-16 Novozymes As Verfahren zum abbau von zearalenon in einem futterprodukt unter verwendung von laccase
CN101959425A (zh) * 2008-03-05 2011-01-26 诺维信公司 饲料产品中黄曲霉毒素的解毒
CN104130984B (zh) * 2014-07-30 2016-09-28 暨南大学 作用于杂色曲菌素的黄曲霉毒素氧化酶
CN104611305B (zh) * 2014-12-30 2017-11-17 暨南大学 胰蛋白酶抗性提高的黄曲霉毒素解毒酶
CN105112394A (zh) * 2015-09-11 2015-12-02 江南大学 一种能降解黄曲霉毒素b1的裂解酶的分离纯化方法
CN105400755B (zh) * 2015-12-09 2018-10-30 暨南大学 一种定点突变改造的人二肽基肽酶iii
CN105543250B (zh) * 2016-02-26 2018-12-21 广西大学 亮菌漆酶基因及其重组毕赤酵母工程菌和应用
CN107201377A (zh) * 2017-06-13 2017-09-26 山东仙普爱瑞科技股份有限公司 一种生产肝脏解毒酶的工程菌的构建及其应用
CN109370995B (zh) * 2018-12-11 2021-05-25 中国农业科学院北京畜牧兽医研究所 锰过氧化物酶CsMnP及其编码基因和应用
CN109557305B (zh) * 2019-01-09 2022-03-04 中粮集团有限公司 一种黄曲霉毒素b1降解酶及其应用和检测黄曲霉毒素b1的免疫层析试纸条
KR102114663B1 (ko) 2019-05-22 2020-05-25 한국식품연구원 아플라톡신 생성 균주의 생육억제 및 아플라톡신 생성 억제활성을 갖는 신규한 와이젤라 파라메센테로이데스 균주 및 이의 용도

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1240828A (zh) * 1998-06-30 2000-01-12 广东药学院 黄曲霉毒素b1的解毒酶提取工艺
CN1263720A (zh) * 1999-10-27 2000-08-23 广东省技术开发中心 黄曲霉毒素b1解毒酶去除黄曲霉毒素b1的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919685A (en) * 1997-08-08 1999-07-06 Incyte Pharmaceuticals, Inc. Human aflatoxin B1 aldehyde reductase
CA2345203A1 (en) * 1998-10-07 2000-04-13 Maxygen Inc. Dna shuffling to produce nucleic acids for mycotoxin detoxification
CN1294255C (zh) 2004-08-17 2007-01-10 广州科仁生物工程有限公司 一种具有转化黄曲霉毒素活性的解毒酶及编码该酶的基因

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1240828A (zh) * 1998-06-30 2000-01-12 广东药学院 黄曲霉毒素b1的解毒酶提取工艺
CN1263720A (zh) * 1999-10-27 2000-08-23 广东省技术开发中心 黄曲霉毒素b1解毒酶去除黄曲霉毒素b1的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAS C. ET AL: "In vitro degradation of aflatoxin B1 by horseradish peroxidase", FOOD CHEMISTRY, no. 68, 2000, pages 309 - 313, XP002309151 *
LIU D ET AL: "Production, purification, and characterization of an intracellular aflatoxin-detoxifizyme from Armillariella tabescens (E-20)", FOOD AND CHEMICAL TOXICOLOGY, vol. 39, 2001, pages 461 - 466, XP003017569 *
LIU D.L. ET AL: "Characterization of Immobillzed Aflatoxin-detoxizyme", CHINESE JOURNAL OF BIOTECHNOLOGY, vol. 19, no. 5, 2003, pages 603 - 607, XP008085418 *
SMILEY R.D. ET AL: "Preliminary Evidence that Degradation of Aflatoxin B1 by Flavobacterium aurantiacum is Enzymatic", JOURNAL OF FOOD PROTECTION, vol. 63, no. 3, 2000, pages 415 - 418, XP008085417 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115341010A (zh) * 2021-05-13 2022-11-15 华中农业大学 参与黄曲霉毒素b1毒性效应的靶点及其应用
CN114807074A (zh) * 2022-06-06 2022-07-29 江西省科学院生物资源研究所 一种黄曲霉毒素分解酶及其编码基因、重组载体、重组菌及应用
CN114807074B (zh) * 2022-06-06 2023-10-13 江西省科学院生物资源研究所 一种黄曲霉毒素分解酶及其编码基因、重组载体、重组菌及应用

Also Published As

Publication number Publication date
CA2576069C (en) 2011-05-17
BRPI0513998A (pt) 2008-05-20
JP4495758B2 (ja) 2010-07-07
IL180694A (en) 2012-01-31
CA2576069A1 (en) 2006-02-23
IL180694A0 (en) 2007-06-03
JP2008509684A (ja) 2008-04-03
RU2007103735A (ru) 2008-09-27
AU2005274578B2 (en) 2008-02-28
ZA200700269B (en) 2008-05-28
KR20070032796A (ko) 2007-03-22
AU2005274578A1 (en) 2006-02-23
EP1780270A1 (en) 2007-05-02
EP1780270A4 (en) 2007-10-24
US7695751B2 (en) 2010-04-13
EP1780270B1 (en) 2010-11-24
HK1106272A1 (en) 2008-03-07
CN1712526A (zh) 2005-12-28
RU2359032C2 (ru) 2009-06-20
US20080260711A1 (en) 2008-10-23
ATE489458T1 (de) 2010-12-15
KR100850640B1 (ko) 2008-08-07
MX2007001935A (es) 2007-04-17
CN1294255C (zh) 2007-01-10
DE602005024973D1 (de) 2011-01-05

Similar Documents

Publication Publication Date Title
WO2006017960A1 (fr) Enzyme de détoxification ayant une activité consistant à transformer l'aflatoxine et gène codant pour celle-ci
KR102291978B1 (ko) 목적 단백질의 발현을 위한 재조합 숙주세포
CN108794635B (zh) 一种牛乳铁蛋白肽-人溶菌酶融合蛋白、基因及其应用
CN110527677B (zh) 玉米赤霉烯酮水解酶突变体zhdm2及其编码基因和应用
CN105062992B (zh) 一种细胞内溶素和编码此细胞内溶素的多核苷酸
US10308925B2 (en) Methionine lyase, encoding gene and biosynthetic method thereof
Lin et al. Prokaryotic expression of the chicken xanthine oxidase (XOD) subunit and its localization in liver and kidney
CN107082804B (zh) 一种卵形鲳鲹β-胸腺素及其应用
WO2024008204A1 (zh) MmPI在制备胰蛋白酶抑制剂中的应用
WO2007113615A1 (en) Superoxide dismutase (sod) gene and a method of identifying and cloning thereof
Tao et al. Expression of the zebrafish β-defensin 3 mature peptide in Pichia pastoris and its purification and antibacterial activity
TWI282370B (en) Improved method for the recombinant production of polypeptides
CN116355887A (zh) 一种链球菌前噬菌体裂解酶lys733及其应用
CN113801857B (zh) 一种酶活提高的NADH脱氢酶突变体SlNOX及其应用
CN110819645B (zh) 锦鲤Gtpch2基因、编码蛋白及其应用
JPH08504580A (ja) 組換え型イヌ胃リパーゼ及び医薬組成物
CN108277210A (zh) 霉烯酮水解酶zen214及编码基因和应用
Wang et al. Heterologous expression of bovine lactoferricin in Pichia methanolica
JPH06311884A (ja) プラスミド及びそれで形質転換されたエ シェリチア・コリ
CN101570760A (zh) 重组鼠β-防御素3多肽及其制备方法与用途
CN110551702A (zh) 重组塔宾曲霉单宁酶及其表达和应用
CN105349536A (zh) 一种烟草病程相关蛋白pr10基因的特异性pcr引物及其应用
CN116640755B (zh) 一种链球菌前噬菌体裂解酶lys1519及其应用
CN110946275B (zh) 小麦静息巯基氧化酶在改善乳剂型特医食品稳定性中的应用
EP2726619B1 (en) Peptide with the enzymatic activity of a dicer-like protein, a method for preparing short rna molecules, and use thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11629450

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007/00269

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 180694

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2005274578

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005700424

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077001737

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2576069

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007526165

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2005274578

Country of ref document: AU

Date of ref document: 20050113

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005274578

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/001935

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007103735

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 1020077001737

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005700424

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0513998

Country of ref document: BR