WO2006013935A1 - 半導体レーザ素子及び半導体レーザ素子アレイ - Google Patents

半導体レーザ素子及び半導体レーザ素子アレイ Download PDF

Info

Publication number
WO2006013935A1
WO2006013935A1 PCT/JP2005/014321 JP2005014321W WO2006013935A1 WO 2006013935 A1 WO2006013935 A1 WO 2006013935A1 JP 2005014321 W JP2005014321 W JP 2005014321W WO 2006013935 A1 WO2006013935 A1 WO 2006013935A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
semiconductor laser
main waveguide
optical path
waveguide
Prior art date
Application number
PCT/JP2005/014321
Other languages
English (en)
French (fr)
Inventor
Akiyoshi Watanabe
Hirofumi Miyajima
Hirofumi Kan
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to EP05768928A priority Critical patent/EP1811618A4/en
Priority to US11/659,198 priority patent/US7885305B2/en
Publication of WO2006013935A1 publication Critical patent/WO2006013935A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/101Curved waveguide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1014Tapered waveguide, e.g. spotsize converter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique
    • H01S5/1085Oblique facets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface

Definitions

  • the present invention relates to a semiconductor laser element and a semiconductor laser element array.
  • a spatial transverse single mode type and a multimode type are known as structures of semiconductor laser elements.
  • the waveguide width is narrowed in order to limit the oscillation mode in the waveguide to only a single mode.
  • the width of the waveguide is narrow, the area of the emission end is also reduced.
  • the single-mode type semiconductor laser element is suitably used for applications using a relatively low output laser beam.
  • An example of the single mode semiconductor laser element is a semiconductor laser device disclosed in Patent Document 1. This semiconductor laser device is intended to increase the laser beam intensity by extending the width of the waveguide in a single mode semiconductor laser.
  • a multimode semiconductor laser element in a multimode semiconductor laser element, a plurality of modes may be mixed in the waveguide, so that the width of the waveguide can be increased. Accordingly, it is possible to increase the area of the emission end, and it is possible to emit a laser beam having a relatively large intensity.
  • Such a multimode semiconductor laser element is suitably used for applications that require a relatively high output laser beam.
  • the multimode semiconductor laser device has the following problems. In other words, since a plurality of modes coexist in the waveguide, the emission pattern of the laser light emitted from the emission end is disturbed, and the emission angle becomes relatively large. Therefore, the shape of the lens for condensing or collimating the laser beam becomes complicated, and there is a possibility that a desired laser beam cannot be obtained or the lens is expensive.
  • FIG. 23 (a) shows the configuration of this resonator.
  • FIG. The resonator 100 has two regions 102 a and 102 b in the active layer 101.
  • FIG. 23 (b) is a diagram showing the refractive index distribution in the VII-VII section and the VIII-VIII section in FIG. 23 (a).
  • the refractive index n in the regions 102a and 102b is formed smaller than the refractive index n in other regions of the active layer 101.
  • the regions 102a and 102b are formed in the active layer 101 at an angle at which the light L reflected perpendicularly at the emission end 100a and the reflection end 100b is totally reflected by the side surfaces of the regions 102a and 102b.
  • Patent Document 2 with such a configuration, the optical path of the light L that resonates in the active layer 101 is limited, and single-mode oscillation is attempted to be achieved without limiting the waveguide width. -No. 41582
  • Patent Document 2 International Publication No. 00Z48277 Pamphlet
  • the resonator 100 disclosed in Patent Document 2 has the following problems. As described above, according to the configuration of the resonator 100, the optical path of the light L resonating in the active layer 101 can be theoretically limited. However, in reality, it is known that a peak of size (hereinafter referred to as a side peak) appears in a far-field image of emitted light that cannot be ignored in a direction deviated by a certain angle from the outgoing direction. . From this, the active layer 101 in the resonator 100 disclosed in Patent Document 2 has an optical path along the side surfaces of the regions 102a and 102b connected only by the optical path shown in FIG.
  • a peak of size hereinafter referred to as a side peak
  • the present invention has been made in view of the above points, and provides a semiconductor laser element and a semiconductor laser element array that can emit a laser beam having a relatively large intensity and can reduce side peaks. With the goal.
  • a semiconductor laser device includes a first conductivity type cladding layer, a second conductivity type cladding layer, a first conductivity type cladding layer, and a second conductivity type cladding layer.
  • An active layer provided between, a light-emitting surface and a light-reflecting surface that are provided side by side in a predetermined axial direction, and that are formed in the active layer and have a pair of side surfaces, At least one of a refractive index type main waveguide that resonates laser light with the light reflecting surface, between the light emitting surface and one end of the main waveguide, and between the light reflecting surface and the other end of the main waveguide.
  • the relative angle ⁇ between the pair of side surfaces of the main waveguide and the light exit surface and the light reflection surface is based on the total reflection critical angle ⁇ c on the pair of side surfaces.
  • the light deviating from the axial direction of at least one of the light exit surface and the light reflection surface The optical path portion is configured so that a region force different from the resonance end face of the laser beam is emitted on the other surface.
  • the relative angle ⁇ force between the side surface of the main waveguide and the light emitting surface and the light reflecting surface is based on the total reflection critical angle ⁇ c on the side surface.
  • Light incident on the side of the main waveguide at an incident angle smaller than the total reflection critical angle ⁇ c passes through the side and exits the waveguide, so the optical path of light resonating in the main waveguide is the total reflection critical angle. It is limited to an optical path that is incident on the side surface of the main waveguide at an incident angle of ⁇ c or more and is reflected substantially perpendicularly on the light exit surface and the light reflection surface.
  • the optical path of the laser beam that causes resonance is limited due to the structure of the main waveguide, the angle component of the light related to laser oscillation in the main waveguide is limited. For this reason, the phases of the guided light are aligned and oscillation in a single mode or close to a single mode occurs. Therefore, according to the semiconductor laser device, since the width of the waveguide is not limited as in the single mode type, the emission angle in the horizontal direction of the laser beam can be narrowed and the intensity can be increased by extending the waveguide width. It becomes possible to emit the laser beam.
  • the semiconductor laser device includes an optical path portion provided at least one of the light emitting surface and one end of the main waveguide and between the light reflecting surface and the other end of the main waveguide.
  • the optical path force of light related to laser oscillation is totally reflected on the side surface of the main waveguide, and is reflected substantially vertically (along a predetermined axial direction) on the light emitting surface and the light reflecting surface. Limited to the optical path.
  • laser light side peak light
  • the optical path portion is configured such that the side peak light is emitted from a region different from the resonance end face of the laser light on at least one of the light emitting surface and the light reflecting surface. Yes.
  • the resonance of the side peak light can be suppressed in the optical path portion, so that the side peak in the far field image can be reduced.
  • a semiconductor laser element array according to the present invention includes a plurality of semiconductor laser elements having the above-described configuration, and a plurality of semiconductor laser elements are arranged side by side in a direction crossing a predetermined axial direction. It is characterized by. According to this semiconductor laser element array, by providing a plurality of semiconductor laser elements having the above-described configuration, it is possible to emit a laser beam having a large intensity and reduce a side peak in a far-field image.
  • the semiconductor laser device and the semiconductor laser device array of the present invention it is possible to emit a laser beam having a relatively large intensity and reduce the side peak.
  • FIG. 1 is a schematic perspective view showing a configuration of a first embodiment of a semiconductor laser element array.
  • FIG. 2 shows (a) a sectional view showing a part of the II cross section of the semiconductor laser device array shown in FIG. 1, and (b) a II II cross section of the semiconductor laser device array shown in FIG. III is a cross-sectional view showing a part of the III cross section.
  • FIG. 3 is a perspective view of a laminate including a p-type cladding layer.
  • FIG. 4 shows (a) a plan view of the laminate, (b) a sectional view showing the IV-IV cross section of the laminate shown in (a), and (c) the laminate shown in (a). It is sectional drawing which shows the VV cross section and VI-VI cross section of a body.
  • FIG. 5 is a plan view of a main waveguide and an optical path portion generated in the active layer.
  • FIG. 6 is a diagram for explaining light incident on the side surface of the main waveguide at various incident angles.
  • FIG. 7 is a graph for explaining a range in which the magnitude of the relative angle ⁇ is allowed.
  • FIG. 8 shows (a) a graph showing the result of prototyping the semiconductor laser device of the first embodiment and observing its far-field image, and (b) a main waveguide, a light exit surface, and Between and led FIG. 5 is a diagram including a graph showing a result of observing a far-field image of a semiconductor laser device that does not include an optical path portion between a waveguide and a light reflection surface, using a same substrate.
  • FIG. 9 is an enlarged plan view of the semiconductor laser element array in each manufacturing process.
  • FIG. 10 is an enlarged cross-sectional view of the semiconductor laser element array in each manufacturing process.
  • FIG. 11 is a plan view showing the main waveguide and the optical path portion of the semiconductor laser device according to the first modification.
  • FIG. 12 is a plan view showing a main waveguide and an optical path portion included in a semiconductor laser device according to a second modification.
  • FIG. 13 is a plan view showing a main waveguide and an optical path portion included in a semiconductor laser device according to a third modification.
  • FIG. 14 is a plan view showing a ridge portion, a hill portion, and an opening of an insulating layer of a semiconductor laser device according to a fourth modification.
  • FIG. 15 is a plan view showing ridges and hills of a semiconductor laser device according to a fifth modification.
  • FIG. 16 is a plan view showing a waveguide configuration of a semiconductor laser device provided in the semiconductor laser device array of the second embodiment.
  • FIG. 17 is a plan view showing a waveguide configuration of a semiconductor laser device provided in the semiconductor laser device array of the third embodiment.
  • FIG. 18 is a plan view showing a waveguide configuration of the semiconductor laser element array according to the fourth embodiment.
  • FIG. 19 is a cross-sectional view showing a part of the configuration of the semiconductor laser element array according to the fifth embodiment.
  • FIG. 20 is a cross-sectional view showing a part of the configuration of the semiconductor laser element array according to the sixth embodiment.
  • FIG. 21 is a cross-sectional view showing a part of the configuration of the semiconductor laser element array according to the seventh embodiment.
  • FIG. 22 is a cross-sectional view showing a configuration of a modified example of the semiconductor laser device of the seventh embodiment.
  • FIG. 23 is a diagram (a) a plan view showing a configuration of a resonator of a conventional laser element, and (b) a diagram showing refractive index distributions in the VII-VII section and the VIII-VIII section in (a). is there.
  • FIG. 1 is a schematic perspective view showing a configuration of a first embodiment of a semiconductor laser element array according to the present invention.
  • a semiconductor laser element array 1 includes a plurality of semiconductor laser elements 3 formed in a single body.
  • the semiconductor laser element array 1 is not an array but a single semiconductor laser element.
  • the semiconductor laser element array 1 has a light emitting surface la and a light reflecting surface lb which are provided side by side in the direction of a predetermined axis and are opposed to each other.
  • the light emitting surface la and the light reflecting surface lb are provided substantially parallel to each other, and each intersects a predetermined axis A substantially perpendicularly.
  • each of the plurality of semiconductor laser elements 3 has a convex portion 25a formed in a ridge shape.
  • the convex portion 25a is provided so that its longitudinal direction is inclined with respect to the light emitting surface la and the light reflecting surface lb.
  • the semiconductor laser element 3 has a refractive index type corresponding to the convex portion 25a.
  • a waveguide (described later) is formed.
  • the laser light emitting end 14a is a resonance end face where the laser light resonates in this waveguide, and the laser light is emitted from this end face.
  • the plurality of semiconductor laser elements 3 are formed by the length of the convex portion 25a. They are arranged side by side in a direction that intersects the direction.
  • the semiconductor laser element array 1 further includes convex portions 25b and 25c.
  • the convex portions 25b and 25c are formed along the light emitting surface la and the light reflecting surface lb over the plurality of semiconductor laser elements 3, respectively.
  • One side surface of the convex portion 25b is a light emitting surface la.
  • One side surface of the convex portion 25c is a light reflecting surface lb.
  • the convex portion 25b is connected to the end of the convex portion 25a on the light emitting surface la side, and is formed integrally with each convex portion 25a.
  • the convex portion 25c is connected to the end of the convex portion 25a on the light reflecting surface lb side, and is formed integrally with each convex portion 25a.
  • FIG. 2 (a) is a cross-sectional view showing a part of the II cross section of the semiconductor laser element array 1 shown in FIG.
  • FIG. 2B is a cross-sectional view showing a part of a II II cross section and a III III cross section of the semiconductor laser device array 1 shown in FIG.
  • a semiconductor laser element 3 constituting the semiconductor laser element array 1 includes a substrate 11 and a stacked body 12 in which three semiconductor layers are stacked.
  • the laminated body 12 is configured by sequentially laminating three semiconductor layers of an n-type cladding layer (second conductivity type cladding layer) 13, an active layer 15, and a p-type cladding layer (first conductivity type cladding layer) 17.
  • the p-type cladding layer 17 is provided with a ridge portion 9a corresponding to the convex portion 25a and hill-shaped portions 9b and 9c corresponding to the convex portions 25b and 25c.
  • a p-type cap layer 19 that is electrically connected to the p-type cladding layer 17 is provided on the outer layer of the ridge portion 9a and the hill portions 9b and 9c.
  • the ridge portion 9a and the p-type cap layer 19 constitute a convex portion 25a
  • the hill portions 9b and 9c and the p-type cap layer 19 constitute a convex portion 25b and 25c.
  • a p-side electrode layer 23 for injecting an electric current from the outside is provided on the outer layer.
  • an insulating layer 21 is provided between the p-type cladding layer 17 and the p-type cap layer 19 and the p-side electrode layer 23.
  • the insulating layer 21 has an opening 21a. A part of the opening 21a is formed in a part corresponding to the convex part 25a. The other part of the opening 21a is formed in a region where the one end force of the convex portion 25a reaches the light emitting surface la along the direction of the predetermined axis A in the convex portion 25b.
  • the remaining portion of the opening 21a is formed in a region that reaches the light reflecting surface lb along the direction of the predetermined axis A in the other end of the convex portion 25a in the convex portion 25c.
  • an n-side electrode layer 29 is formed on the surface of the substrate 11 opposite to the laminated body 12.
  • the p-side electrode layer 23 is in electrical contact only with the p-type cap layer 19 through the opening 21a. Limited to areas corresponding to 21a. When current is injected into the p-type cap layer 19, the region of the active layer 15 corresponding to the opening 21a becomes the active region.
  • an optical path portion 8a for allowing the laser light that resonates inside the main waveguide 4 to pass through is formed in the active layer 15 between the one end of the main waveguide 4 and the light emitting surface la.
  • an optical path portion 8b is generated in the active layer 15 between the other end of the main waveguide 4 and the light reflecting surface lb.
  • the opening 21a of the insulating layer 21 is also formed on the optical path portions 8a and 8b. Therefore, a gain-type waveguide is formed in the optical path portions 8a and 8b due to current concentration just below the opening 21a.
  • the material of each layer constituting the semiconductor laser element 3 is made of n-GaAs, for example.
  • the n-type cladding layer 13 is made of, for example, n-AlGaAs.
  • the active layer 15 has a multiple quantum well force made of, for example, GalnAsZAlGaAs.
  • the p-type cladding layer 17 is made of, for example, p-AlGaAs.
  • the p-type cap layer 19 is made of, for example, p-GaAs.
  • the p-side electrode layer 23 also has a TiZPtZAu force, for example.
  • the n-side electrode layer 29 also has AuGeZAu force, for example.
  • the insulating layer 21 is made of at least one material of, for example, SiN, SiO, AlO.
  • the semiconductor laser device 3 is configured to transmit light to the main waveguide 4 and the optical path portions 8a and 8b between the active layer 15 and the n-type cladding layer 13 and between the active layer 15 and the p-type cladding layer 17.
  • a light guide layer may be provided to confine the light.
  • the semiconductor laser element 3 includes a light guide layer
  • the light guide layer may have the same conductivity type as that of the adjacent cladding layer, or an impurity that determines the conductivity type may be added.
  • FIG. Fig. 3 is a perspective view of the laminate 12 including the p-type cladding layer 17
  • Fig. 4 (a) is a plan view of the laminate 12
  • Fig. 4 (b) is Fig. 4 ( Fig. 4 (c) is a cross-sectional view showing the IV-IV cross section of the laminate 12 shown in a)
  • Fig. 4 (c) is a cross-sectional view showing the V-V cross section and VI-VI cross section of the laminate 12 shown in Fig. 4 (a). is there.
  • the laminated body 12 is configured by laminating three semiconductor layers of the n-type cladding layer 13, the active layer 15, and the p-type cladding layer 17 in this order.
  • the pair of side surfaces 9g and 9h each define a region of the ridge portion 9a, and is a boundary between the ridge portion 9a and the thin portion 10.
  • the side surfaces 9g and 9h are provided so as to have a relative angle ⁇ with respect to the light emitting surface la and the light reflecting surface lb in the plan view seen from the thickness direction.
  • the hill 9b has a side surface 9u.
  • the side surface facing the side surface 9u of the hill 9b is a light emitting surface la, and the side surface 9u extends along the light emitting surface la.
  • the side surface 9u defines the region of the hill 9b, and is the boundary between the hill 9b and the thin portion 10.
  • the hill 9c has a side surface 9v.
  • the side surface facing the side surface 9v of the hill 9c is a light reflecting surface lb, and the side surface 9v extends along the light reflecting surface lb.
  • the side surface 9v defines the region of the hill portion 9c and is a boundary between the hill portion 9c and the thin portion 10.
  • One end of the side surfaces 9g and 9h of the ridge portion 9a is connected to the side surface 9u of the hill-shaped portion 9b.
  • the other ends of the side surfaces 9g and 9h of the ridge portion 9a are connected to the side surface 9v of the hill portion 9c.
  • an opening 21a of the insulating layer 21 is provided on the ridge portion 9a and the hill-like portions 9b and 9c. Since the opening 21a is covered with the p-side electrode layer 23, the opening 21a is illustrated by a dotted line in FIGS. 3 and 4 (a). A part of the opening 21a extends along a region sandwiched between the side surfaces 9g and 9h of the ridge portion 9a. The other part of the opening 21a is formed in a region where the one end force of the ridge 9a reaches the light emitting surface la along the direction of the predetermined axis A on the hill 9b. Further, the remaining portion of the opening 21a is formed in a region reaching the light reflecting surface lb along the direction of the predetermined axis A on the hill portion 9c along the other end force of the ridge portion 9a.
  • FIG. 5 is a plan view of the main waveguide 4 and the optical path portions 8a and 8b generated in the active layer 15.
  • FIG. 4 a pair of side surfaces 4g and 4h are generated corresponding to the side surfaces 9g and 9h of the ridge portion 9a.
  • the side surfaces 4g and 4h form a relative angle ⁇ with respect to the light emitting surface la and the light reflecting surface lb.
  • the auxiliary line C in the figure is an auxiliary line parallel to the light emitting surface la and the light reflecting surface lb.
  • a part of the light emission surface la becomes a laser light emission end 14a that is one resonance end surface of the laser light L1 that resonates in the main waveguide 4.
  • a part of the light reflection surface lb becomes a laser light reflection end 14b which is the other resonance end surface of the laser light L1 resonated in the main waveguide 4.
  • the laser light emitting end 14a is generated at a position where one end of the main waveguide 4 is projected from the direction of the predetermined axis A onto the light emitting surface la.
  • the laser light reflecting end 14b is generated at a position where the other end of the main waveguide 4 is projected from the direction of the predetermined axis A onto the light reflecting surface lb.
  • a pair of side surfaces 8c and 8d constituting a gain-type waveguide are generated by current collection from the opening 21a (see FIGS. 3 and 4) of the insulating layer 21. .
  • the side surfaces 8c and 8d extend along the direction of the predetermined axis A corresponding to the shape of the opening 21a.
  • the side surface 8c of the optical path portion 8a is in contact with one end of the laser beam emitting end 14a, and the side surface 8d is in contact with the other end of the laser beam emitting end 14a.
  • a pair of side surfaces 8e and 8f constituting a gain-type waveguide are generated by current concentration from the opening 21a of the insulating layer 21.
  • the side surfaces 8e and 8f extend along the direction of the predetermined axis A corresponding to the shape of the opening 21a.
  • the side surface 8e of the optical path portion 8b is in contact with one end of the laser light reflecting end 14b, and the side surface 8f is in contact with the other end of the laser light reflecting end 14b.
  • the side surfaces 4g and 4h of the main waveguide 4 are surfaces caused by an effective refractive index difference between the inside and outside of the main waveguide 4, and each has a certain thickness when the refractive index continuously changes. You may have. Further, the side surfaces 4g and 4h of the main waveguide 4 function as a reflecting surface that selectively transmits or reflects the laser light L1 according to the incident angle to the side surface.
  • One end of the side surface 8c of the optical path portion 8a is in contact with one end of the laser beam emitting end 14a, and one end of the side surface 8d of the optical path portion 8a is in contact with the other end of the laser beam emitting end 14a.
  • the other end of the side 8c is connected to one end of the side 4g of the main waveguide 4 and the other end of the side 8d is the side 4h of the main waveguide 4.
  • Connected to one end of The other end of the side surface 4g of the main waveguide 4 is connected to one end of the side surface 8e of the optical path portion 8b, and the other end of the side surface 4h is connected to one end of the side surface 8f of the optical path portion 8b.
  • the other end of the side surface 8e of the optical path portion 8b is in contact with one end of the laser beam reflecting end 14b, and the other end of the side surface 8f is in contact with the other end of the laser beam reflecting end 14b.
  • (that is, the relative angle 0 between the side surfaces 9g and 9h of the ridge portion 9a and the light exit surface la and the light reflection surface lb) is determined based on the total reflection critical angle ⁇ c at the side surfaces 4g and 4h of the main waveguide 4. It is.
  • the total reflection critical angle ⁇ c at the side surfaces 4g and 4h of the main waveguide 4 is the total reflection critical angle defined by the effective refractive index difference inside and outside the main waveguide 4 which is a refractive index type waveguide.
  • the pair of side surfaces 4g and 4h of the main waveguide 4 can be applied to the light emitting surface la side or the light reflecting surface lb side force with a predetermined axis.
  • the laser beam L1 incident along the direction A is totally reflected.
  • the total reflection critical angle ⁇ c depends on the thickness of the thin portion 10 of the p-type cladding layer 17. Therefore, the total reflection critical angle ⁇ c at the side surfaces 4g and 4h is set to an arbitrary value by, for example, adjusting the thickness of the thin portion 10.
  • the laser light L1 reflected substantially perpendicularly along the direction of the predetermined axis A at the laser light reflecting end 14b passes through the optical path portion 8b and reaches the side surface 4h of the main waveguide 4 Incident at an incident angle ⁇ and totally reflected. Then, the laser beam L1 is incident on the side surface 4g at an incident angle ⁇ and is totally reflected. Thereafter, the laser light L1 travels along the direction of the predetermined axis A, passes through the optical path portion 8a, and reaches the laser light emitting end 14a. A part of the laser beam L1 reaching the laser beam emitting end 14a is transmitted through the laser beam emitting end 14a and emitted to the outside.
  • the other laser light L1 is reflected substantially perpendicularly along the direction of the predetermined axis A at the laser light emitting end 14a, is totally reflected again at the side surfaces 4g and 4h, and returns to the laser light reflecting end 14b. In this way, the laser beam L1 reciprocates between the laser beam emitting end 14a and the laser beam reflecting end 14b and resonates.
  • FIG. 6 is a diagram for explaining light La to Lc incident on the side surface 4g (4h) at various incident angles ⁇ i.
  • incident angle ⁇ re equal to the relative angle ⁇ ( ⁇ ⁇ c) on side 4 g (4h)
  • the incident laser light La is totally reflected at the side surface 4g (4h), and enters the laser light emitting end 14a (laser light reflecting end 14b) perpendicularly along the direction of the predetermined axis A.
  • the laser light La is reflected at the laser light emitting end 14a (laser light reflecting end 14b) and then returns along the same optical path. Therefore, the laser beam La resonates on the same optical path.
  • the laser beam Lc will eventually pass through the side surface 4g (4h) and will not resonate.
  • ⁇ 0 satisfies 0— ⁇ 0 ⁇ 0 c
  • it is incident on the side surfaces 4 g and 4 h at the incident angle 0 i (0 + ⁇ 0 ⁇ 0 i ⁇ 0— ⁇ 0). Only the laser beam to resonate selectively resonates.
  • FIG. 7 is a graph for explaining a range in which the magnitude of the relative angle ⁇ is allowed.
  • the horizontal axis is the magnitude of the relative angle ⁇
  • the vertical axis is the difference ⁇ i- ⁇ between the incident angle ⁇ i of the laser light L1 on the side surfaces 4g and 4h and the relative angle ⁇ .
  • the description will be made assuming that the total reflection critical angle 0 c at the side surfaces 4g and 4h is 86 °.
  • This region B shows a range in which the laser beam L1 can resonate between the laser beam emitting end 14a and the laser beam reflecting end 14b.
  • the relative angle ⁇ is 89 °
  • the laser light L1 is 0 ° ⁇ 0 i— 0 ⁇ 3 °
  • the incident angle ⁇ i is 86 ° or more and 89 ° or less
  • the relative angle ⁇ is larger than the total reflection critical angle ⁇ C, the number of spatial modes of the laser light L1 in the main waveguide 4 increases.
  • the relative angle ⁇ can be limited to 86 ° or more and 87 ° or less, and the angle component of the laser beam L1 can be limited to a practically effective level.
  • the angle component of the light related to the laser oscillation in the main waveguide 4 is limited by the side surfaces 4 g and 4 h of the main waveguide 4.
  • the phases of the guided light are aligned, and oscillation occurs in a single mode or close to a single mode. Therefore, according to the semiconductor laser element 3, the width of the waveguide is not limited as in the cinder mode type, and by extending the waveguide width, the horizontal emission angle of the laser light L can be made narrower. It becomes possible to emit a laser beam having a higher intensity.
  • the length of the main waveguide 4 and the distance between the side faces 4g and 4h are determined by the laser light emitting end 14a (light emitting face). la) and the laser beam L1 that resonates between the laser beam reflecting end 14b (light reflecting surface lb) are preferably reflected so as to be reflected the same number of times on each of the pair of side surfaces 4g and 4h of the main waveguide 4.
  • the main waveguide 4 is a refractive index type waveguide, and the side surfaces 4g and 4h of the main waveguide 4 are generated by a difference in refractive index between the ridge portion 9a of the p-type cladding layer 17 and the outside thereof.
  • the optical path portions 8a and 8b are gain-type waveguides, and the side surfaces 8c to 8f of the optical path portions 8a and 8b are generated only by current concentration just below the opening 21a of the insulating layer 21.
  • the optical confinement action on the side surfaces 8c to 8f of the optical path portions 8a and 8b is a gentler force than the optical confinement action on the side surfaces 4g and 4h of the main waveguide 4.
  • the side surfaces 8c to 8f of the optical path portions 8a and 8b are easier to transmit light than the side surfaces 4g and 4h of the main waveguide 4.
  • the light L2 that has also deviated in the direction of the predetermined axis A out of the light passing through the inside of the optical path portion 8a passes through the side surface 8c or 8d of the optical path portion 8a, and is the laser light emitting end 14a at the light emitting surface la.
  • Different region forces are also emitted to the outside of the semiconductor laser element 3.
  • the light L3 whose direction force of the predetermined axis A deviates from the light passing through the optical path portion 8b passes through the side surface 8e or 8f of the optical path portion 8b, and the laser light reflecting end 14 on the light reflecting surface lb. It is emitted to the outside of the semiconductor laser element 3 from a region different from b. Therefore, the lights L 2 and L 3 deviating from the direction of the predetermined axis A do not contribute to the laser oscillation inside the semiconductor laser element 3.
  • Such light L2 and L3 can resonate in the waveguide and become side peak light when the optical path portions 8a and 8b are not present.
  • the light L2, L3 force deviated in the direction force of the predetermined axis A in the optical path portions 8a, 8b is equalized in the light emitting surface la and the light reflecting surface lb.
  • the optical path portions 8a and 8b are configured so that a region force different from the resonance end face (the laser light emitting end 14a and the laser light reflecting end 14b) of the light L1 is also emitted. Thereby, the resonance of the lights L2 and L3 constituting the side peak can be suppressed in the optical path portions 8a and 8b, so that the side peak in the far-field image can be effectively reduced. Further, by making the optical path portions 8a and 8b gain-type waveguides, it is possible to suppress a decrease in light emission efficiency due to the provision of the optical path portions 8a and 8b.
  • Fig. 8 (a) is a graph showing a result of observing a far-field image of the semiconductor laser device 3 according to the present embodiment which was manufactured as a prototype.
  • the length of the main waveguide 4 is 1200 m
  • the width of the main waveguide 4 is 40 m
  • the relative angle ⁇ between the side surfaces 4g and 4h of the main waveguide 4 and the light emitting surface la and the light reflecting surface lb is 86 °.
  • the lengths of the optical path portions 8a and 8b (that is, the width of the hill portions 9b and 9c) were set to 400 m.
  • FIG. 8 (b) shows a prototype of a semiconductor laser device that does not have an optical path between the main waveguide and the light exit surface and between the main waveguide and the light reflection surface. It is a graph which shows the result of having observed the far field image.
  • the horizontal axis represents the horizontal radiation angle
  • the vertical axis represents the laser beam intensity.
  • a predetermined laser beam emission direction that is, a predetermined axis A direction
  • an optical path portion (optical path portion 8a) is provided between the light emitting surface la and one end of the main waveguide 4. This Even when the optical path of the side peak light in the main waveguide 4 is not accurately determined, the resonance of the side peak light can be effectively suppressed in the vicinity of the light emitting surface la.
  • the optical path portions 8a and 8b are provided both between the light exit surface la and one end of the main waveguide 4, and between the light reflection surface lb and the other end of the main waveguide 4.
  • the optical path portion may be provided between the light exit surface and one end of the main waveguide and between the light reflection surface and the other end of the main waveguide.
  • the laser light L1 that resonates in the main waveguide 4 between the light emitting surface la and the light reflecting surface lb is generated by the pair of side surfaces 4g and It is preferable that the length of the main waveguide 4 and the distance between the side surfaces are set so that the same number of reflections occurs in each of 4 h. Thereby, the laser beam L1 can be incident and Z-reflected substantially perpendicularly along the direction of the predetermined axis A on both the light emitting surface la and the light reflecting surface lb.
  • the optical path of the laser light L in the main waveguide 4 can be suitably limited.
  • the semiconductor laser element array 1 by providing a plurality of semiconductor laser elements 3 having the above-described effects, it is possible to emit a laser beam having a large intensity, and each semiconductor laser element.
  • the side peak in the far-field image 3 can be reduced.
  • the semiconductor laser element array 1 has the following effects. That is, in the semiconductor laser device array 1, current is partially concentrated and injected into the active layer 15 by the ridge portion 9 a of the p-type cladding layer 17. As a result, light coupling or interference occurs between the main waveguides 4 of the adjacent semiconductor laser elements 3. Accordingly, since the intervals between the main waveguides 4 can be made relatively narrow, more main waveguides 4 can be provided, and a stable laser beam can be emitted with a large output. Furthermore, since the current is partially concentrated and injected into the active layer 15, the electro-optical conversion efficiency is increased and the reactive current can be reduced, so that the heat generation of the semiconductor laser element 3 can be reduced.
  • FIG. 9 shows an enlarged plan view of the semiconductor laser element array 1 in each manufacturing process.
  • FIG. 10 shows an enlarged cross-sectional view of the semiconductor laser device array 1 taken along the line II (see FIG. 1) in each manufacturing process.
  • an n-type GaAs substrate 11 is prepared. On the substrate 11, n-type AlGaAs is 2.0 m, GalnAsZAlGaAs is 0.3 m, p-type AlGaAs is 2.0 m, and p-type GaAs is 0.1.
  • ⁇ m epitaxy is grown to form an n-type cladding layer 13, an active layer 15 having a quantum well structure, a p-type cladding layer 17, and a p-type cap layer 19 (Figs. 9 (a) and 10 (a)). reference).
  • a protective mask 24 is formed on the p-type cap layer 19 side in a shape corresponding to the ridge portion 9a and the hill-like portions 9b and 9c by photowork, and the p-type cap layer 19 and the p-type cladding layer 17 are formed.
  • Etching stops at a depth that does not reach the active layer 15 (see FIGS. 9B and 10B).
  • an SiN film is deposited on the entire crystal surface to form an insulating layer 21, and a part of the SiN film is removed by photowork to form an opening 21a (FIGS. 9 (c) and 10 (c)). reference).
  • a p-side electrode layer 23 is formed on the entire crystal surface with a TiZPtZAu film.
  • the surface on the substrate 11 side is polished and chemically treated to form an n-side electrode layer 29 of AuGeZAu (see FIGS. 9 (d) and 10 (d)).
  • the AR reflecting coating is applied to the light emitting surface la and the HR reflecting coating is applied to the light reflecting surface lb to complete the semiconductor laser device 3 (semiconductor laser device array 1).
  • FIG. 11 is a plan view showing the main waveguide 41 and the optical path portions 8a and 8b of the semiconductor laser device 3a according to this modification.
  • the difference between the semiconductor laser device 3a of the present modification and the semiconductor laser device 3 of the first embodiment is the planar shape of the main waveguide 41.
  • the main waveguide 41 of this modification has a pair of side surfaces 41g and 41h facing each other.
  • the main waveguide 41 has a pair of side surfaces 41i and 41j that face each other.
  • One end of the side surface 41g of the main waveguide 41 is connected to the side surface 8c of the optical path portion 8a, and the other end of the side surface 41g is connected to one end of the side surface 41i.
  • One end of the side surface 41h of the main waveguide 41 is the side surface 8d of the optical path portion 8a.
  • the other end of the side surface 41h is connected to one end of the side surface 41j.
  • the other end of the side surface 41i is connected to the side surface 8e of the optical path portion 8b.
  • the other end of the side surface 41j is connected to the side surface 8f of the optical path portion 8b.
  • the side surfaces 41g to 41j of the main waveguide 41 and the light emitting surface la and the light reflecting surface lb form a relative angle ⁇ .
  • the side surfaces 41g and 41h and the side surfaces 41i and 41j are inclined in directions opposite to each other with respect to the direction of the predetermined axis A, and the side surface 41g and the side surface 41i are connected to each other at an angle 2 ⁇ .
  • the side surface 41h and the side surface 41j are connected to each other at an angle 2 ⁇ .
  • the auxiliary line C in the figure is an auxiliary line parallel to the light emitting surface la and the light reflecting surface lb.
  • Such a shape of the main waveguide 41 is preferably realized by forming the planar shape of the ridge portion of the p-type cladding layer 17 in the same manner as the planar shape of the main waveguide 41.
  • the relative angle ⁇ between the side surfaces 41g to 41j of the main waveguide 41 and the light emitting surface la and the light reflection surface lb is determined based on the total reflection critical angle ⁇ c of the side surfaces 41g to 41j of the main waveguide 41.
  • the pair of side surfaces 41g and 41h of the main waveguide 41 and the pair of side surfaces 41i and 41j force light emitting surface laser light incident along the direction of the predetermined axis A from the la side or the light reflecting surface lb side L1 is totally reflected.
  • the relative angles of the side surfaces 41g and 41h with the light emitting surface la and the light reflecting surface lb and the relative angles of the side surfaces 41i and 41j with the light emitting surface la and the light reflecting surface lb are set to the same angle ⁇ .
  • the relative angles may be different from each other.
  • the total reflection critical angle of the side surfaces 41g and 41h and the total reflection critical angle of the side surfaces 41i and 41j are different from each other.
  • the relative angles between the side surfaces 41g to 41j and the light emitting surface la and the light reflecting surface lb are individually determined based on the total reflection critical angles on the side surfaces 41g to 41j.
  • the total reflection critical angle at the side surfaces 41g to 41j can be set to an arbitrary value by a method such as adjusting the thickness of the thin portion 10 of the p-type cladding layer 17, for example.
  • the laser light L1 reflected substantially perpendicularly along the direction of the predetermined axis A at the laser light reflecting end 14b passes through the optical path portion 8b, and enters the side surface 4lj of the main waveguide 41 at an incident angle ⁇ . All reflected.
  • the laser beam L1 enters the side surface 4 li at an incident angle ⁇ and is totally reflected.
  • the laser beam L1 travels along the direction of the predetermined axis A, enters the side surface 41g at an incident angle ⁇ , and is totally reflected.
  • the laser beam L1 enters the side surface 41h at an incident angle ⁇ and is totally reflected.
  • the laser beam L1 totally reflected by the side surfaces 41g to 41j travels along the direction of the predetermined axis A, passes through the optical path portion 8a, and reaches the laser beam emitting end 14a.
  • the laser beam L1 that reached the laser beam emitting end 14a A part of the light passes through the laser light emitting end 14a and is emitted to the outside.
  • the other laser light L1 is reflected substantially perpendicularly along the direction of the predetermined axis A at the laser light emitting end 14a, is totally reflected again by the side surfaces 41g to 41j, and returns to the laser light reflecting end 14b. In this way, the laser beam L 1 reciprocates between the laser beam emitting end 14a and the laser beam reflecting end 14b and resonates.
  • the light L2 deviated in the direction of the predetermined axis A out of the light passing through the optical path portion 8a passes through the side surface 8c or the side surface 8d of the optical path portion 8a and passes through the side surface 8c of the optical path portion 8a.
  • the light is emitted from the region different from 14a to the outside of the semiconductor laser device 3a.
  • the light L3 deviating from the direction of the predetermined axis A among the light passing through the optical path portion 8b passes through the side surface 8e or the side surface 8f of the optical path portion 8b, and the laser light reflecting end 14b on the light reflecting surface lb. Are emitted from different regions to the outside of the semiconductor laser element 3a.
  • the lights L2 and L3 whose direction force on the predetermined axis A has also deviated do not contribute to laser oscillation inside the semiconductor laser element 3a.
  • the resonance of light constituting the side peak can be suppressed in the optical path portions 8a and 8b, so that the side peak in the far-field image can be effectively reduced.
  • the planar shape of the main waveguide of the semiconductor laser device according to the present invention is not limited to the shape as in the first embodiment, but may be the shape as in this modification. Even in this case, the same effect as the first embodiment can be obtained.
  • the side surfaces 41g and 41h and the side surfaces 41i and 41j are inclined in directions opposite to each other with respect to the direction of the predetermined axis A.
  • FIG. 12 is a plan view showing the main waveguide 42 and the optical path portions 8a and 8b of the semiconductor laser device 3b according to this modification.
  • the difference between the semiconductor laser device 3b of the present modification and the semiconductor laser device 3 of the first embodiment is the planar shape of the main waveguide 42.
  • the main waveguide 42 of this modification has a pair of side surfaces 42g and 42h facing each other.
  • the main waveguide 42 has a pair of side surfaces 42i and 43 ⁇ 4 facing each other.
  • the main waveguide 42 has a pair of side surfaces 42k and 421 facing each other.
  • the main waveguide 42 has a pair of side surfaces 42m and 42 ⁇ facing each other.
  • One end of the side surface 42g of the main waveguide 42 is connected to the side surface 8c of the optical path portion 8a, and the other end of the side surface 42g is connected to one end of the side surface 42i.
  • One end of the side surface 42h of the main waveguide 42 is connected to the side surface 8d of the optical path portion 8a, and the other end of the side surface 42h is connected to one end of the side surface 43 ⁇ 4.
  • the other end of the side surface 42i is connected to one end of the side surface 42k.
  • the other end of the side surface 43 ⁇ 4 is connected to one end of the side surface 421.
  • the other end of side 42k is connected to one end of side 42m.
  • the other end of the side surface 421 is connected to one end of the side surface 42 ⁇ .
  • the other end of the side surface 42m is connected to the side surface 8e of the optical path portion 8b, and the other end of the side surface 42 ⁇ is connected to the side surface 8f of the optical path portion 8b.
  • the side surfaces 42g to 42n of the main waveguide 42, the light emitting surface la, and the light reflecting surface lb form a relative angle of 0 with each other.
  • the side surfaces 42g and 42h, the side surfaces 42k and 421, the side surfaces 42i and 42j, and the side surfaces 42m and 42 ⁇ have opposite inclination directions with respect to the direction of the predetermined axis A.
  • the side surface 42g and the side surface 42i are connected to each other at an angle 2 ⁇ .
  • the side surface 42h and the side surface 42j are connected to each other at an angle 2 ⁇ .
  • the side surface 42i and the side surface 42k are connected to each other at an angle 2 ⁇ .
  • Side 43 ⁇ 4 and side 421 are connected to each other at an angle 2 ⁇ .
  • auxiliary line C in the figure is an auxiliary line parallel to the light emitting surface la and the light reflecting surface lb.
  • Such a shape of the main waveguide 42 is preferably realized by forming the planar shape of the ridge portion of the p-type cladding layer 17 in the same manner as the planar shape of the main waveguide 42.
  • the relative angle ⁇ between the side surfaces 42g to 42n of the main waveguide 42 and the light exit surface la and the light reflection surface lb is determined based on the total reflection critical angle ⁇ c of the side surfaces 42g to 42n of the main waveguide 42.
  • the pair of side surfaces 42g and 42h, 42i and 42j, 42k and 421, and 42m and 42 ⁇ of the main waveguide 42 are applied to the light emitting surface la side or the light reflecting surface lb side in the direction of the predetermined axis A.
  • the laser beam L1 incident along is totally reflected.
  • the side surfaces 42g to 42n of the main waveguide 42 are relative to the light emitting surface la and the light reflecting surface lb.
  • the angles may be different from each other.
  • the laser beam L1 reflected substantially perpendicularly along the direction of the predetermined axis A at the laser beam reflecting end 14b passes through the optical path portion 8b, and enters the side surface 42 ⁇ of the main waveguide 42 at an incident angle ⁇ . reflect.
  • the laser beam L1 enters the side surface 42m at an incident angle ⁇ and is totally reflected.
  • the laser beam L1 travels along the direction of the predetermined axis A, enters the side surface 42k at an incident angle ⁇ , and is totally reflected.
  • the laser beam L1 enters the side surface 421 at an incident angle ⁇ and is totally reflected.
  • the laser beam L1 travels along the direction of the predetermined axis A, enters the side surface 43 ⁇ 4 at an incident angle ⁇ , and is totally reflected. Then, the laser beam L1 enters the side surface 42i at an incident angle ⁇ and is totally reflected. The laser beam L1 travels along a predetermined axis A, enters the side surface 42g at an incident angle ⁇ , and is totally reflected. Then, the laser beam L1 enters the side surface 42h at an incident angle ⁇ and is totally reflected. Thus, the laser beam L1 totally reflected by the side surfaces 42g to 42n travels along the direction of the predetermined axis A, passes through the optical path portion 8a, and reaches the laser beam emitting end 14a.
  • a part of the laser light L1 reaching the laser light emitting end 14a is transmitted through the laser light emitting end 14a and emitted to the outside.
  • the other laser light L1 is reflected substantially perpendicularly along the direction of the predetermined axis A at the laser light emitting end 14a, is totally reflected again by the side surfaces 42g to 42n, and returns to the laser light reflecting end 14b.
  • the laser beam L1 reciprocates between the laser beam emitting end 14a and the laser beam reflecting end 14b and resonates.
  • the light L2 deviated in the direction of the predetermined axis A out of the light passing through the optical path portion 8a passes through the side surface 8c or the side surface 8d of the optical path portion 8a and passes through the side surface 8c of the optical path portion 8a.
  • the light is emitted from the region different from 14a to the outside of the semiconductor laser device 3b.
  • the light L3 deviating from the direction of the predetermined axis A among the light passing through the optical path portion 8b passes through the side surface 8e or the side surface 8f of the optical path portion 8b, and the laser light reflecting end 14b on the light reflecting surface lb. Are emitted from different regions to the outside of the semiconductor laser device 3b.
  • the light L2 and L3 whose direction force on the predetermined axis A is also deviated does not contribute to laser oscillation inside the semiconductor laser element 3b.
  • the resonance of light constituting the side peak can be suppressed in the optical path portions 8a and 8b, so that the side peak in the far-field image can be effectively reduced.
  • the planar shape of the main waveguide of the semiconductor laser device according to the present invention is not limited to the shape as in the first embodiment, but may be the shape as in this modification. Even in this case, the same as the first embodiment The effect of can be obtained. Further, in the main waveguide 42 of this modification, the side surfaces 42g and 42h, the side surfaces 42k and 421, the side surfaces 42i and 42j, and the side surfaces 42m and 42 ⁇ are opposite to each other in the inclination direction with respect to the predetermined shaft axis direction. . Thereby, the side peak light can be further reduced.
  • FIG. 13 is a plan view showing the main waveguide 43 and the optical path portions 8a and 8b of the semiconductor laser device 3c according to this modification.
  • the difference between the semiconductor laser device 3c of the present modification and the semiconductor laser device 3 of the first embodiment is the planar shape of the main waveguide 43.
  • the main waveguide 43 of this modification has a pair of side surfaces 43g and 43h facing each other.
  • the side surfaces 43g and 43h of the main waveguide 43, the light exit surface la, and the light reflection surface lb form a relative angle ⁇ .
  • the auxiliary line C in the figure is an auxiliary line parallel to the light emitting surface la and the light reflecting surface lb.
  • the relative angle ⁇ between the side surfaces 43g and 43h of the main waveguide 43 and the light exit surface la and the light reflection surface lb is determined based on the total reflection critical angle ⁇ c at the side surfaces 43g and 43h of the main waveguide 43. Accordingly, the pair of side surfaces 43g and 43h of the main waveguide 43 totally reflects the laser light L1 incident along the direction of the predetermined axis A on the light exit surface la side or the light reflection surface lb side.
  • the length of the main waveguide 43 and the distance between the side surface 43g and the side surface 43h are such that the laser light L1 resonating in the main waveguide 43 between the light emitting surface la and the light reflecting surface lb is a pair of the main waveguide 43.
  • Each side 43g and 43h is set to reflect twice!
  • the laser beam L1 reflected substantially perpendicularly along the direction of the predetermined axis A at the laser beam reflecting end 14b passes through the optical path portion 8b, and enters the side surface 43h of the main waveguide 43 at an incident angle ⁇ . Anti Shoot.
  • the laser beam L1 enters the side surface 43g at an incident angle ⁇ and is totally reflected.
  • the laser beam L1 travels along the direction of a predetermined axis A, is incident again on the side surface 43h at an incident angle ⁇ , and is totally reflected. Then, the laser beam L1 enters the side surface 43g again at an incident angle ⁇ and is totally reflected.
  • the laser beam L1 totally reflected by the side surfaces 43g and 43h travels along the direction of the predetermined axis A, passes through the optical path portion 8a, and reaches the laser beam emitting end 14a.
  • a part of the laser beam L1 reaching the laser beam emitting end 14a is transmitted through the laser beam emitting end 14a and emitted to the outside.
  • the other laser light L1 is reflected substantially perpendicularly along the direction of the predetermined axis A at the laser light emitting end 14a, and is then totally reflected twice again on each of the side surfaces 43g and 43h, and the laser light reflecting end 14b.
  • the laser beam L1 reciprocates between the laser beam emitting end 14a and the laser beam reflecting end 14b and resonates.
  • the light L2 deviated in the direction of the predetermined axis A passes through the side surface 8c or the side surface 8d of the optical path portion 8a and passes through the side surface 8c of the optical path portion 8a.
  • the light is emitted from the region different from 14a to the outside of the semiconductor laser device 3c.
  • the light L3 deviating from the direction of the predetermined axis A among the light passing through the optical path portion 8b passes through the side surface 8e or the side surface 8f of the optical path portion 8b, and the laser light reflecting end 14b on the light reflecting surface lb. Are emitted from different regions to the outside of the semiconductor laser device 3c.
  • the light beams L2 and L3 whose direction force on the predetermined axis A has also deviated do not contribute to laser oscillation inside the semiconductor laser element 3c.
  • the resonance of light constituting the side peak can be suppressed in the optical path portions 8a and 8b, so that the side peak in the far-field image can be effectively reduced.
  • the planar shape of the main waveguide of the semiconductor laser device according to the present invention is not limited to the shape as in the first embodiment, but may be the shape as in this modification. Even in this case, the same effect as the first embodiment can be obtained.
  • the number of reflections of the laser light L1 on the side surfaces 43g and 43h is larger than that of the main waveguide 4 of the first embodiment, so that the optical path of the laser light L1 can be more strictly limited. .
  • FIG. 14 shows the ridge portion of the semiconductor laser device 3d according to this modification.
  • FIG. 9 is a plan view showing 9a, hills 9b and 9c, and an opening 21b of the insulating layer 21.
  • the difference between the semiconductor laser element 3d of the present modification and the semiconductor laser element 3 of the first embodiment is the shape of the opening 21b of the insulating layer 21.
  • a part of the opening 21b of the present modification is formed on the region R1 on the ridge 9a.
  • the other part of the opening 21b extends on the hill 9b from one end of the ridge 9a in the direction of the predetermined axis A, and has a predetermined distance from the light exit surface la (for example, half the width of the hill 9b). ) Is formed on the region R2 separated by a). Further, the remaining portion of the opening 21b extends on the hill 9c in the direction of the predetermined axis A on the other end of the ridge 9a, and has a predetermined distance from the light reflecting surface lb (for example, the width of the hill 9c). Formed on the region R3 separated by a half).
  • the external force current injection is limited to the region corresponding to the opening 21b of the p-type cap layer 19 (see Fig. 2).
  • the opening 21b has the above-described configuration. Therefore, current injection into the p-type cap layer 19 is performed between the region R1 on the ridge portion 9a and the ridge portion 9a.
  • One end force Extends in the direction of the predetermined axis A and is separated from the light exit surface la by a predetermined distance, and the other end force of the ridge portion 9a extends in the direction of the predetermined axis A and predetermined from the light reflecting surface lb. It is made a region R3 separated by a distance.
  • the semiconductor laser device includes only a part of the optical path portion as in this modification in which the entire optical path portions 8a and 8b may be gain-type waveguides as in the first embodiment. It may be a gain type waveguide. Further, the semiconductor laser device may be configured such that no waveguide is formed in the optical path portion (that is, the current injection region by the opening of the insulating layer is formed only on the ridge portion 9a). The proportion of the optical waveguide portion occupied by the gain-type waveguide may be determined according to the emission efficiency of side peak light and the light emission efficiency required for the semiconductor laser device.
  • FIG. 15 shows the ridge portion of the semiconductor laser device 3e according to this modification.
  • FIG. 9 is a plan view showing 9a and hills 9d and 9e.
  • the difference between the semiconductor laser device 3e of the present modification and the semiconductor laser device 3 of the first embodiment is the shape of the hill portions 9d and 9e.
  • the p-type cladding layer 18 of the present modification is provided with a convex ridge portion 9a and hill portions 9d and 9e.
  • the configuration of the ridge portion 9a is the same as that of the first embodiment.
  • the hill 9d has side faces 9u and 9p.
  • the side surface facing the side surface 9u of the hill-shaped portion 9d is a light emitting surface la, and the side surface 9u extends along the light emitting surface la.
  • the side surface 9u defines the region of the hill 9d, and is the boundary between the hill 9d and the thin portion 10.
  • grooves 9r are intermittently formed in the hill-shaped portion 9d along the light emission surface la, and the side surface 9p is an end surface of the groove 9r.
  • the side surfaces 9p of the adjacent grooves 9r are formed so as to face each other across the current injection region (that is, the region where the opening 21a of the insulating layer 21 is formed) in the hill portion 9d.
  • the hill 9e has side surfaces 9v and 9q.
  • the side surface of the hill 9e facing the side surface 9v is a light reflecting surface lb, and the side surface 9v extends along the light reflecting surface lb.
  • the side surface 9v defines the region of the hill 9e and is the boundary between the hill 9e and the thin portion 10.
  • the hill-like portion 9e is intermittently formed with grooves 9s along the light reflecting surface lb, and the side surface 9q is an end surface of the groove 9s.
  • the side surfaces 9q of the adjacent grooves 9s are formed to face each other across the current injection region (that is, the region where the opening 21a of the insulating layer 21 is formed) in the hill portion 9e.
  • a refractive index type waveguide is configured by the side surface 9p of the hill-shaped portion 9d and the side surface 9q of the hill-shaped portion 9e. Since the semiconductor laser device of the present invention may have such a configuration, the other optical path portion is a gain-type waveguide, so that light deviating from the direction of the predetermined axis A is suitably emitted, and side peak light is emitted. Can be suppressed.
  • FIG. 16 is a plan view showing a waveguide configuration of the semiconductor laser element 3f provided in the semiconductor laser element array of the present embodiment.
  • the semiconductor laser element 3f of the present embodiment is suitably realized by, for example, a ridge-type element configuration similar to that of the semiconductor laser element 3 of the first embodiment (see, for example, FIG. 2 (a)).
  • the semiconductor laser device 3 f of this embodiment includes a main waveguide 44 and an optical path portion 81.
  • the main waveguide 44 is a refractive index type waveguide generated inside the active layer by a ridge portion provided in the p-type cladding layer.
  • the main waveguide 44 has a pair of side surfaces 44g and 44h.
  • the side surfaces 44g and 44h have a relative angle ⁇ with respect to the light emitting surface la and the light reflecting surface lb.
  • One end of the side surfaces 44g and 44h reaches the light reflecting surface lb.
  • the region sandwiched between the side surfaces 44g and 44h is a laser light reflecting end 14b which is one resonance end face of the laser light L1.
  • the laser light emitting end 14a which is the other resonance end face of the light emitting surface la, is generated in a region where one end of the main waveguide 44 on the light emitting surface la side is projected onto the light emitting surface la.
  • the side surface 44g of the main waveguide 44 is such that the extension line Eg from the side surface 44g to the light output surface la and the light output surface la form an acute angle inside the main waveguide 44. It is inclined with respect to the predetermined axis A. Further, the side surface 44h of the main waveguide 44 is inclined with respect to a predetermined axis A so that the extension line Eh from the side surface 44h to the light output surface la and the light output surface la form an acute angle outside the main waveguide 44. ! / Speak.
  • the optical path portion 81 is a refractive index type waveguide generated inside the active layer by a ridge portion provided in the p-type cladding layer.
  • the optical path portion 81 is provided between one end of the main waveguide 44 opposite to the light reflecting surface lb and the light emitting surface la, and has a pair of side surfaces 81c and 81d.
  • One end of the side surface 81c is connected to the other end of the side surface 44g of the main waveguide 44, and the other end of the side surface 81c extends to the light emitting surface la.
  • the side surface 44g of the main waveguide 44 and the side surface 81c of the optical path portion 81 form an angle 0a (180 ° ⁇ ) outside the main waveguide 44 and the optical path portion 81.
  • the side surface 81c of the optical path portion 81 has a relative angle larger than the angle 2 (90 ° ⁇ 0) with respect to the normal line of the light emission surface la, and is directed toward the emission direction of the laser light L1.
  • the optical path 81 is enlarged.
  • One end of the side surface 8 Id is connected to the other end of the side surface 44h of the main waveguide 44, and the other end of the side surface 81d extends to the light emitting surface la.
  • the side surface 44 h of the main waveguide 44 and the side surface 81 d of the optical path portion 81 form an angle ⁇ b «180 °-0) outside the main waveguide 44 and the optical path portion 81.
  • the side surface 81d of the optical path portion 81 is inclined with respect to the normal of the light exit surface 1a in a direction in which the optical path portion 81 expands toward the light exit surface la.
  • the operation of the semiconductor laser device 3f according to the present embodiment is as follows.
  • the laser beam L1 reflected substantially perpendicularly along the direction of the predetermined axis A at the laser beam reflecting end 14b is incident on the side surface 44h of the main waveguide 44 at an incident angle ⁇ and is totally reflected.
  • the laser beam L1 is incident on the side surface 44 g at an incident angle ⁇ and is totally reflected.
  • the laser light L1 travels along the direction of the predetermined axis A, passes through the optical path portion 81, and reaches the laser light emitting end 14a. A part of the laser light L1 reaching the laser light emitting end 14a is transmitted through the laser light emitting end 14a and emitted to the outside. The other laser light L1 is reflected substantially perpendicularly along the direction of the predetermined axis A at the laser light emitting end 14a, is totally reflected again by the side surfaces 44g and 44h, and returns to the laser light reflecting end 14b. In this way, the laser beam L1 reciprocates between the laser beam emitting end 14a and the laser beam reflecting end 14b and resonates.
  • the side surface 81c of the optical path portion 81 forms an angle ⁇ a ( ⁇ 180 °- ⁇ ) with the side surface 44g of the main waveguide 44, a predetermined axis of the light passing through the inside of the optical path portion 81 is formed.
  • the light L2 deviating from the direction of A reaches a region different from the laser light emitting end 14a on the light emitting surface la that does not enter the side surface 81c of the optical path portion 81. Most of the light L2 passes through the light emission surface la and is emitted to the outside of the semiconductor laser element 3f, and does not contribute to laser oscillation inside the semiconductor laser element 3f.
  • the light L2 reflected on the light exit surface la also enters the side surface 81c of the optical path portion 81 at a high incident angle and passes through the side surface 81c, so that it does not contribute to laser oscillation inside the semiconductor laser element 3f.
  • the light L2 whose direction force of the predetermined axis A has deviated in the optical path portion 81 is changed to the resonance end face (laser light emission surface) of the laser light L1 on the light emission surface la.
  • the side surface 81c of the optical path portion 81 is configured so that a region force different from the end 14a) is also emitted. Thereby, resonance of the light L2 constituting the side peak can be suppressed in the optical path portion 81, so that the side peak in the far-field image can be effectively reduced. Further, by making the optical path portion 81 a refractive index type waveguide, it is possible to suppress a decrease in light emission efficiency due to the provision of the optical path portion 81.
  • the side surface 8 lc of the optical path portion 81 extends in the direction in which the optical path portion 81 expands toward the light emitting surface la!
  • the side surface 81c is connected to the side surface 44g of the main waveguide 44 at an acute angle (that is, ⁇ a ⁇ 90 °). It may be sharp.
  • FIG. 17 is a plan view showing a waveguide configuration of the semiconductor laser element 3g provided in the semiconductor laser element array of the present embodiment.
  • the semiconductor laser element 3g of the present embodiment is suitably realized by, for example, a ridge-type element configuration (see FIG. 2 (a)) similar to that of the semiconductor laser element 3 of the first embodiment.
  • the semiconductor laser device 3g of the present embodiment includes a main waveguide 45 and an optical path portion 82.
  • the main waveguide 45 is a refractive index type waveguide generated inside the active layer by a ridge portion provided in the p-type cladding layer.
  • the main waveguide 45 has a pair of side surfaces 45g and 45h.
  • the side surfaces 45g and 45h have a relative angle ⁇ with respect to the light emitting surface la and the light reflecting surface lb.
  • One end of each of the side surfaces 45g and 45h reaches the light emitting surface la.
  • a region sandwiched between the side surfaces 45g and 45h on the light emitting surface la is a laser light emitting end 14a that is one resonance end surface of the laser light L1.
  • the laser light reflecting end 14b which is the other resonance end face of the light reflecting surface lb, is generated in a region where one end of the main waveguide 45 on the light reflecting surface lb side is projected onto the light reflecting surface lb.
  • the side surface 45g of the main waveguide 45 is predetermined so that the extension line Fg from the side surface 45g to the light reflecting surface lb and the light reflecting surface lb form an acute angle outside the main waveguide 45. It is inclined with respect to the axis A. Further, the side surface 45h of the main waveguide 45 is inclined with respect to a predetermined axis A so that the extension line Fh from the side surface 45h to the light reflecting surface lb and the light reflecting surface lb form an acute angle inside the main waveguide 45. And
  • the optical path portion 82 is a refractive index type waveguide generated inside the active layer by a ridge provided in the p-type cladding layer.
  • the optical path portion 82 is provided between one end of the main waveguide 45 opposite to the light emitting surface la and the light reflecting surface lb, and has a pair of side surfaces 82c and 82d.
  • One end of the side surface 82c is connected to the other end of the side surface 45g of the main waveguide 45, and the other end of the side surface 82c extends to the light reflecting surface lb.
  • the side surface 45g of the main waveguide 45 and the side surface 82c of the optical path portion 82 form an angle ⁇ d «180 °- ⁇ ) outside the main waveguide 45 and the optical path portion 82.
  • the side surface 82c of the optical path portion 82 is light with respect to the normal line of the light reflecting surface lb.
  • the road portion 82 is inclined so as to expand toward the light reflecting surface lb.
  • One end of the side surface 82d is connected to the other end of the side surface 45h of the main waveguide 45, and the other end of the side surface 82d extends to the light reflecting surface lb.
  • the side surface 45h of the main waveguide 45 and the side surface 82d of the optical path portion 82 form an angle 0 e ((180 ° — 0) outside the main waveguide 45 and the optical path portion 82.
  • the side surface 82d of the optical path portion 82 has a relative angle greater than the angle 2 (90 ° — ⁇ ) with respect to the normal of the light reflecting surface lb, and the optical path portion toward the light reflecting surface lb. Zoom in on 82.
  • the operation of the semiconductor laser device 3g according to the present embodiment is as follows.
  • the laser beam L1 reflected substantially perpendicularly along the direction of the predetermined axis A at the laser beam reflecting end 14b passes through the optical path portion 82 and enters the side surface 45h of the main waveguide 45 at an incident angle ⁇ and is totally reflected.
  • the laser beam L1 enters the side surface 45g at an incident angle ⁇ and is totally reflected.
  • the laser beam L1 travels along the direction of the predetermined axis A and reaches the laser beam emitting end 14a.
  • a part of the laser light L1 that has reached the laser light emitting end 14a passes through the laser light emitting end 14a and is emitted to the outside.
  • the other laser light L1 is reflected substantially perpendicularly along the direction of the predetermined axis A at the laser light emitting end 14a, is totally reflected again by the side surfaces 45g and 45h, and returns to the laser light reflecting end 14b. In this way, the laser light L1 reciprocates between the laser light emitting end 14a and the laser light reflecting end 14b and resonates.
  • a predetermined axis of the light passing through the optical path portion 82 has a predetermined axis.
  • the light L3 deviating from the direction of A reaches a region different from the laser light reflecting end 14b on the light reflecting surface lb that does not enter the side surface 82d of the optical path portion 82. Most of the light L3 passes through the light reflecting surface lb and is emitted to the outside of the semiconductor laser element 3g, and does not contribute to the laser oscillation inside the semiconductor laser element 3g.
  • the light L3 reflected by the light reflecting surface lb is incident on the side surface 82d of the optical path portion 82 at a low incident angle and passes through the side surface 82d, so that it does not contribute to laser oscillation inside the semiconductor laser element 3g.
  • the light L3 that has also deviated the directional force of the predetermined axis A in the optical path portion 82 is reflected on the resonance end face (the laser beam L1) of the laser light L1 on the light reflecting surface lb.
  • the side surface 82d of the optical path portion 82 is configured so that a region force different from that of the light reflection end 14b) is also emitted.
  • the resonance of the light L3 constituting the side peak is placed in the optical path portion 82. Therefore, the side peak in the far field image can be effectively reduced.
  • only one of the optical path portion 81 of the second embodiment and the optical path portion 82 of the present embodiment may be provided, or both may be provided.
  • FIG. 18 is a plan view showing a waveguide configuration of the semiconductor laser device array lc according to the present embodiment.
  • the semiconductor laser element array lc includes a plurality of semiconductor laser elements 3h.
  • the semiconductor laser element 3h of the present embodiment is suitably realized by a ridge type element configuration (see FIG. 2A) similar to the semiconductor laser element 3 of the first embodiment, for example.
  • the semiconductor laser device 3 h of the present embodiment includes a main waveguide 46 and an optical path portion 83.
  • the main waveguide 46 is a refractive index type waveguide generated inside the active layer by a ridge provided in the p-type cladding layer.
  • the main waveguide 46 has a pair of side surfaces 46g and 46h.
  • the side surfaces 46g and 46h have a relative angle ⁇ with respect to the light emitting surface la and the light reflecting surface lb.
  • One end of side faces 46g and 46h reaches light reflecting surface lb.
  • a region sandwiched between the side surfaces 46g and 46h in the light reflecting surface lb is a laser light reflecting end 14b which is one resonance end surface of the laser light L1.
  • the laser light emitting end 14a which is the other resonance end face of the light emitting surface la is generated in a region where one end of the main waveguide 46 on the light emitting surface la side is projected onto the light emitting surface la.
  • the optical path portion 83 is provided between one end of the main waveguide 46 opposite to the light reflecting surface lb and the light emitting surface 1a, and a part thereof is bent by the pair of side surfaces 83c and 83d.
  • a rate-type waveguide is formed.
  • One end of the side surface 83c is connected to the other end of the side surface 46g of the main waveguide 46.
  • the other end of the side surface 83c extends toward the light reflecting surface lb, and is separated from the light reflecting surface lb by a predetermined distance.
  • the relative angle of the side surface 83c of the optical path portion 83 with respect to the light exit surface la is the same relative angle ⁇ as the side surface 46g of the main waveguide 46.
  • one end of the side surface 83d of the optical path portion 83 is connected to the other end of the side surface 46h of the main waveguide 46.
  • the other end of the side surface 83d extends toward the light reflecting surface lb, and is separated from the light reflecting surface lb by a predetermined distance.
  • the side surface 83d extends in the direction in which the optical path portion 83 extends toward the light exit surface la, and the other end is connected to the other end of the side surface 83c of the adjacent optical path portion 83. I am strong. Accordingly, among the plurality of semiconductor laser elements 3h, the optical path portions 83 of the adjacent semiconductor laser elements 3h are connected to each other in the vicinity of the force light exit surface la, and are integrated.
  • the semiconductor laser element array and the semiconductor laser element according to the present invention are also preferably realized by the configurations of the semiconductor laser element array lc and the semiconductor laser element 3h of the present embodiment. That is, the light deviating from the direction of the predetermined axis A in the optical path portion 83 is connected to the optical path portions 83 (that is, the portion where there is no waveguide side surface) force laser light emitting end 14a and Are emitted outside through different regions and do not resonate.
  • the semiconductor laser device array and the semiconductor laser device according to the present invention include the main waveguide 46 having a necessary length even if a part of the optical path portion 83 does not have a waveguide structure like the semiconductor laser device 3h. Just do it.
  • the length y required for the main waveguide 46 can be expressed as y ⁇ WZtan (90 ° ⁇ 0), where W is the width of the main waveguide 46.
  • FIG. 19 is a cross-sectional view showing a part of the configuration of the semiconductor laser device array according to the present embodiment.
  • the cross section shown in FIG. 19 is a cross section corresponding to the II cross section (see FIG. 1) in the semiconductor laser device array 1 of the first embodiment, and shows the cross section of the main waveguide.
  • the semiconductor laser element array of this embodiment includes a plurality of semiconductor laser elements 3i.
  • the semiconductor laser device 3i includes an n-type semiconductor substrate 11, an n-type cladding layer (second conductivity type cladding layer) 31, an optical guide layer 32, an active layer 33 having a multiple quantum well structure, an optical guide layer 34, p A type cladding layer (first conductivity type cladding layer) 35 and a p-type cap layer 36 are sequentially stacked.
  • the light guide layers 32 and 34 are layers for confining light inside the active layer 33 and in the vicinity thereof.
  • the light guide layer 34 and the p-type cladding layer 35 constitute a convex ridge portion 39.
  • the planar shape of the ridge portion 39 is the same as that of the ridge portion 9a of the first embodiment.
  • the region other than the ridge portion 39 of the light guide layer 34 is a thin portion 34 a thinner than the ridge portion 39.
  • the p-type cap layer 36 is provided on the ridge portion 39 and is electrically connected to the p-type cladding layer 35.
  • the semiconductor laser element 3i includes current blocking portions 37a and 37b, a p-side electrode layer 38, and n A side electrode layer 29 is further provided.
  • the current blocking portions 37a and 37b are portions for allowing current to flow through the ridge portion 39 in a concentrated manner.
  • the current blocking portions 37a and 37b are made of, for example, a semiconductor having a conductivity type opposite to that of the p-type cladding layer 35 or an insulating material.
  • the current block portions 37a and 37b are provided on the thin portion 34a along the side surfaces 39g and 39h of the ridge portion 39, respectively.
  • the P-side electrode layer 38 is provided over the ridge portion 39 and the current blocking portions 37a and 37b, and is in contact with the p-type cap layer 36 on the ridge portion 39.
  • an effective refractive index difference due to the ridge portion 39 is generated, so that a refractive index type main waveguide 30 corresponding to the shape of the ridge portion 39 is generated.
  • the relative angle between the side surfaces 30g and 30h of the main waveguide 30 and the light exit surface la and the light reflection surface lb is determined based on the total reflection critical angle ⁇ c at the side surfaces 30g and 30h.
  • the total reflection critical angle ⁇ c depends on the material composition of the current blocking portions 37a and 37b. That is, when the material composition of the current block portions 37a and 37b is changed, the refractive indexes of the current block portions 37a and 37b are changed.
  • the side surfaces 30g and 30h of the main waveguide 30 are surfaces generated by the difference in refractive index between the inside and the outside of the main waveguide 30. In the case where the refractive index continuously changes, the main waveguide 30 has a certain thickness. Well, ...
  • the refractive index type main waveguide according to the present invention is not limited to the ridge configuration as in the first embodiment, but can be suitably realized even with a configuration such as the semiconductor laser device 3i of the present embodiment. . Further, when the refractive index type waveguide is formed also in the optical path portion according to the present invention, the cross-sectional configuration as shown in FIG. 19 may be applied to the peripheral structure of the optical path portion.
  • FIG. 20 is a cross-sectional view showing a part of the configuration of the semiconductor laser device array according to the present embodiment.
  • the semiconductor laser element array of this embodiment is composed of a plurality of semiconductor laser element examples having a so-called embedded heterostructure.
  • the semiconductor laser device example of this embodiment includes a substrate 11 made of an n-type semiconductor. Further, the semiconductor laser device 3 includes an n-type cladding layer 71, a light guide layer 72, an active layer. A conductive layer 73, a light guide layer 74, a p-type cladding layer 75, and a p-type cap layer 76. These layers are sequentially stacked on the substrate 11 to form a stacked body 79.
  • the multilayer body 79 has a planar shape similar to the planar shape of the ridge portion 9a of the first embodiment.
  • the laminate 79 has a pair of side surfaces 79g and 79h.
  • the active layer 73 has side surfaces 73g and 73h included in the side surfaces 79g and 79h of the laminate 79, respectively.
  • the semiconductor laser device 3j includes current blocking portions 77a and 77b, a p-side electrode layer 78, and an n-side electrode layer 29. Among these, the configuration of the n-side electrode layer 29 is the same as that of the first embodiment.
  • the current blocking portions 77a and 77b are portions for confining current to the active layer 73.
  • the current block portions 77a and 77b are made of, for example, an undoped semiconductor material or an insulating material.
  • the current block portion 77a is provided on the substrate 11 along the side surface 79g of the multilayer body 79 (that is, along the side surface 73g of the active layer 73).
  • the current block portion 77b is provided on the substrate 11 along the side surface 79h of the stacked body 79 (that is, along the side surface 73h of the active layer 73).
  • the p-side electrode layer 78 is provided over the multilayer body 79, the current block portion 77a, and the current block portion 77b, and is in contact with the p-type cap layer 76 on the multilayer body 79.
  • the main waveguide 70 is formed by the difference in refractive index between the inside and outside of the active layer at the side faces 73g and 73h.
  • the main waveguide 70 has a pair of side surfaces 70g and 70h defined by the side surfaces 73g and 73h of the active layer 73, respectively.
  • Relative angle ⁇ between side surfaces 70g and 70h of main waveguide 70 and light exit surface la and light reflection surface lb (that is, relative angle ⁇ between side surfaces 73g and 73h of active layer 73 and light exit surface la and light reflection surface lb) Is determined based on the total reflection critical angle ⁇ c at the sides 70g and 70h.
  • the total reflection critical angle ⁇ c depends on the refractive index difference between the current blocking portions 77a and 77b and the active layer 73.
  • This difference in refractive index can be arbitrarily set, for example, by adjusting the material composition of the current blocking portions 77a and 77b.
  • the refractive index type main waveguide according to the present invention can be suitably realized even in a buried type configuration like the semiconductor laser device example of the present embodiment.
  • the cross-sectional configuration as shown in FIG. 20 may be applied to the peripheral structure of the optical path portion.
  • FIG. 21 is a cross-sectional view showing a part of the configuration of the semiconductor laser device array according to the present embodiment.
  • the semiconductor laser element array of this embodiment includes a plurality of semiconductor laser elements 3k.
  • the semiconductor laser element 3k includes a second semiconductor unit 61.
  • the second semiconductor unit 61 includes a substrate 51 made of an n-type semiconductor, an n-type cladding layer 52 stacked on the substrate 51, and a light guide layer 53 stacked on the n-type cladding layer 52.
  • the second semiconductor portion 61 has a main surface 61c on the surface of the light guide layer 53.
  • the second semiconductor portion 61 has a convex ridge portion 61a.
  • the ridge portion 61a has the same planar shape as the ridge portion 9a (see FIG. 3) of the first embodiment.
  • the ridge portion 61a is formed at a position that divides the main surface 61c.
  • the ridge portion 61a has a pair of side surfaces 6lg and 6lh serving as a boundary between the main surface 61c and the ridge portion 61a.
  • the semiconductor laser element 3k includes a first semiconductor unit 60, an active layer 54 positioned between the first semiconductor unit 60 and the second semiconductor unit 61, and a p-type cap layer 57.
  • the first semiconductor part 60 includes a light guide layer 55 and a p-type cladding layer 56.
  • the active layer 54, the light guide layer 55, the p-type cladding layer 56, and the p-type cap layer 57 are sequentially stacked on the second semiconductor portion 61 including the ridge portion 61a.
  • the semiconductor laser element 3k includes an insulating film 58, a p-side electrode layer 59, and an n-side electrode layer 64.
  • the p-side electrode layer 59 is provided on the p-type cap layer 57, and the insulating film 58 is provided between the p-side electrode layer 59 and the p-type cap layer 57.
  • An opening 58a is formed in the insulating film 58 in a region corresponding to the ridge portion 61a of the second semiconductor portion 61, and the P-side electrode layer 59 and the p-type cap layer 57 are mutually connected via the opening 58a. In contact.
  • the region of the p-type cladding layer 56 corresponding to the opening 58a of the insulating film 58 is a low resistance region 56a by diffusing Zn.
  • the opening 58a and the low resistance region 56a are means for concentrating current in a region on the ridge 61a in the active layer 54.
  • the n-side electrode layer 64 is provided on the surface of the substrate 51 opposite to the main surface 61c.
  • a region corresponding to the opening 58a of the insulating film 58 corresponds to the shape of the ridge portion 6 la by flowing current intensively.
  • a refractive index type main waveguide 50 is generated.
  • the main waveguide 50 has a pair of side surfaces 50g and 50h.
  • the side surfaces 50g and 50h of the main waveguide 50 are surfaces generated by the difference in refractive index between the light guide layer 55 and the p-type cladding layer 56 and the active layer 54 covering the active layer 54, and the planar shape thereof is Specified by side 6 lg and 6 lh.
  • the side surfaces 50g and 50h of the main waveguide 50 may have a certain thickness.
  • the relative angle ⁇ between the side surfaces 50g and 50h of the main waveguide 50 and the light exit surface la and the light reflection surface lb is determined based on the total reflection critical angle ⁇ c at the side surfaces 50g and 50h.
  • the total reflection critical angle ⁇ c at the side surfaces 50g and 50h depends on the heights ha of the side surfaces 61g and 61h of the ridge portion 61a corresponding to the side surfaces 50g and 50h.
  • the total reflection critical angle ⁇ c at the side surfaces 50g and 50h of the main waveguide 50 also depends on the material composition of the light guide layer 55 and the n-type cladding layer 56 on the ridge portion 61a.
  • the total reflection critical angle ⁇ at the side surfaces 50g and 50h c can be adjusted.
  • the refractive index type main waveguide according to the present invention can be suitably realized even with a configuration like the semiconductor laser device 3k of the present embodiment. Further, when the refractive index type waveguide is formed also in the optical path portion according to the present invention, the cross-sectional configuration as shown in FIG. 21 may be applied to the peripheral structure of the optical path portion.
  • FIG. 22 is a cross-sectional view showing a configuration of a semiconductor laser element 31 as a modification of the semiconductor laser element 3k.
  • the semiconductor laser element 31 of this modification is different from the semiconductor laser element 3k of the above embodiment in the configuration of the current concentration means.
  • the semiconductor laser device 31 of this modification does not include the insulating film 58 of the above embodiment, and the low resistance region 56a is not formed in the p-type cladding layer 56.
  • a high resistance region 63 is formed instead of these current concentrating means.
  • the high resistance region 63 is formed on the p-type cap layer 57 side of the region of the first semiconductor portion 60 excluding the ridge portion 6 la.
  • the high resistance region 63 is formed, for example, by injecting protons into the first semiconductor portion 60.
  • the high resistance region 63 which is a current concentration means, has a ridge portion 61.
  • the main waveguide 50 is generated in the active layer 54 by concentrating the current in the region of the active layer 54 on a.
  • the total reflection critical angle ⁇ c of the side surface 50g and 50h of the main waveguide 50 is the side surface 61g of the ridge portion 6la. And depending on the height ha of 61h. Further, the total reflection critical angle ⁇ c of the side surfaces 50 g and 50 h of the main waveguide 50 also depends on the material composition of the light guide layer 55 and the n-type cladding layer 56.
  • the total reflection critical angles of the side surfaces 50g and 50h of the main waveguide 50 are also shown.
  • ⁇ c also depends on the distance between the high resistance region 63 and the active layer 54.
  • the distance between the high resistance region 63 and the active layer 54 can be adjusted, for example, by controlling the depth of proton implantation into the first semiconductor portion 60.
  • the semiconductor laser device and the semiconductor laser device array according to the present invention are not limited to the above-described embodiments and modifications, and can be variously modified.
  • the semiconductor laser device structures such as the ridge type and the buried hetero type are shown in the above embodiments, but the present invention is not limited to these structures.
  • the semiconductor laser device and the semiconductor having the refractive index type waveguide are not limited to these structures. Any laser element array can be applied.
  • the power of exemplifying a GaAs-based semiconductor laser element The configuration of the present invention can be applied to semiconductor laser elements of other materials such as GaN-based and InP-based.
  • the semiconductor laser device includes a first conductivity type cladding layer, a second conductivity type cladding layer, and an active layer provided between the first conductivity type cladding layer and the second conductivity type cladding layer.
  • the light emitting surface and the light reflecting surface which are provided side by side in a predetermined axial direction, are configured by an active layer, have a pair of side surfaces, and a laser beam between the light emitting surface and the light reflecting surface.
  • a refractive index type main waveguide that resonates the optical waveguide, and an optical path portion provided at least one of between the light exit surface and one end of the main waveguide and between the light reflection surface and the other end of the main waveguide.
  • the relative angle ⁇ between the pair of side surfaces of the main waveguide and the light exit surface and the light reflection surface is based on the total reflection viewing angle ⁇ c on the pair of side surfaces, and deviated from the predetermined axial direction in the optical path portion.
  • Resonance edge of the laser beam on at least one of the light emitting surface and the light reflecting surface It is preferable that the optical path portion is configured so that a region force different from the surface is also emitted.
  • the optical path portion is provided between the light emitting surface and one end of the main waveguide. It is also possible that Thereby, resonance of side peak light can be effectively suppressed.
  • the optical path portion may be a gain-type waveguide configured in an active layer.
  • the side of the gain waveguide light confinement is more gradual than the side of the main waveguide, which is a refractive index waveguide. Therefore, the side peak light that deviates from the predetermined axial force out of the light passing through the optical path is The light is easily emitted from the side surface of the portion (gain waveguide) to the outside of the element through a region different from the resonance end face on the light emitting surface or light reflecting surface.
  • the optical path portion is configured such that side peak light is emitted from a region different from the resonance end face of the laser light on at least one of the light emitting surface and the light reflecting surface. Can do. Further, by making at least a part of the optical path portion a gain-type waveguide, it is possible to suppress a decrease in light emission efficiency due to provision of the optical path portion.
  • the semiconductor laser element has a pair of side surfaces in which the optical path portion is provided between the light exit surface and one end of the main waveguide to form a refractive index type waveguide.
  • the semiconductor laser element has a pair of side surfaces in which the optical path portion is provided between the light reflecting surface and the other end of the main waveguide to form a refractive index type waveguide.
  • the side surface on the side where the extension line to the light reflecting surface and the light reflecting surface form an acute angle inside the main waveguide and the side surface of the optical path portion located on the same side as this side surface are the main An angle smaller than 180 ° — 0 may be formed outside the waveguide and the optical path portion.
  • side peak light deviating from a predetermined axial direction out of light passing through the optical path portion does not enter the side surface of the refractive index waveguide in the optical path portion, but directly enters the light exit surface or
  • the angle of the side surface of the refractive index waveguide in the optical path portion is set so as to reach the light reflecting surface. Most of the side peak light reaching the light emitting surface or the light reflecting surface is transmitted through the light emitting surface or the light incident surface and is emitted to the outside of the semiconductor laser element, and does not contribute to laser oscillation.
  • the region force different from the resonance end surface of the laser light on at least one of the light emitting surface and the light reflecting surface By setting the angle of the side surface of the refractive index waveguide in the optical path portion as described above, the region force different from the resonance end surface of the laser light on at least one of the light emitting surface and the light reflecting surface.
  • the optical path portion can be configured so that peak light is emitted.
  • the semiconductor laser element has a length of the main waveguide so that light resonating in the main waveguide between the light emitting surface and the light reflecting surface is reflected the same number of times on each of the pair of side surfaces of the main waveguide. And the distance between the pair of side surfaces may be set. In this way, the resonating light is reflected (total reflection) the same number of times on each of the pair of side surfaces of the main waveguide, so that the resonating light is transmitted in a predetermined axial direction on both the light reflecting surface and the light emitting surface.
  • the incident Z can be suitably reflected along the line.
  • the optical path of the laser light in the main waveguide can be suitably limited.
  • the semiconductor laser element may have a relative angle of 0 force ⁇ ⁇ ⁇ ⁇ ⁇ 6 c + l ° between the side surface of the main waveguide, the light emitting surface, and the light reflecting surface.
  • the optical path of the resonating laser beam can be suitably limited, so that laser oscillation closer to a single mode can be obtained.
  • the relative angle between the side surface of the main waveguide and the light emitting surface and the light reflection surface of the semiconductor laser element may be substantially equal to the total reflection critical angle ⁇ c on the side surface of the main waveguide. Yes. As a result, the laser oscillation mode can be made almost single.
  • the semiconductor laser element array includes a plurality of semiconductor laser elements as described above! /, And the plurality of semiconductor laser elements are arranged side by side in a direction intersecting a predetermined axial direction, and formed integrally. It is preferable that According to this semiconductor laser element array, by providing a plurality of any of the semiconductor laser elements described above, it is possible to emit a laser beam with a high intensity and reduce side peaks in the far-field image.
  • the present invention can emit a laser beam having a relatively large intensity and reduces side peaks.
  • the semiconductor laser device can be used as a semiconductor laser device and a semiconductor laser device array.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 半導体レーザ素子3の活性層15には、p型クラッド層17のリッジ部9aによって屈折率型の主導波路4が生成される。主導波路4の側面4g及び4hは、光出射面1a及び光反射面1bに対し、該側面4g及び4hにおける全反射臨界角θcに基づく相対角度θを有する。主導波路4は、光出射面1a及び光反射面1bに対して所定距離隔たっており、主導波路4の一端と光出射面1aとの間、及び主導波路4の他端と光反射面1bとの間には、レーザ光L1が通過するための光路部分8a及び8bが設けられる。光路部分8a及び8bは利得型導波路となっており、光路部分8a及び8bを通過する光のうち所定の軸Aの方向から逸れた光L2、L3を外部へ放出する。これにより、比較的大きな強度のレーザ光を出射可能であって、サイドピークを低減できる半導体レーザ素子及び半導体レーザ素子アレイが実現される。

Description

明 細 書
半導体レーザ素子及び半導体レーザ素子アレイ 技術分野
[0001] 本発明は、半導体レーザ素子、及び半導体レーザ素子アレイに関するものである。
背景技術
[0002] 従来より、半導体レーザ素子の構造として空間横シングルモード型とマルチモード 型とが知られている。このうち、シングルモード型の半導体レーザ素子では、導波路 内における発振モードを単一のモードのみに限定するために、導波路の幅が狭く形 成される。しかし、導波路の幅が狭いと出射端の面積も小さくなる。また、出射端にお いてレーザ光密度が過大になると、半導体レーザ素子の信頼性等に影響する。従つ て、シングルモード型の半導体レーザ素子は、比較的低出力のレーザ光を用いる用 途に好適に用いられる。なお、このシングルモード型の半導体レーザ素子の例として は、特許文献 1に開示された半導体レーザ装置がある。この半導体レーザ装置は、シ ングルモード型の半導体レーザにおいて導波路の幅を拡張し、レーザ光強度を高め ることを目的としている。
[0003] 他方、マルチモード型の半導体レーザ素子では、導波路内において複数のモード が混在してもよいため、導波路の幅を広く形成できる。従って、出射端の面積を大きく することが可能となり、比較的大きな強度のレーザ光を出射することができる。このよう なマルチモード型の半導体レーザ素子は、比較的高出力のレーザ光を必要とする用 途に好適に用いられる。
[0004] しかし、マルチモード型の半導体レーザ素子には、次のような問題がある。すなわ ち、導波路内において複数のモードが混在するため、出射端から出射されるレーザ 光の出射パターンが乱れ出射角が比較的大きくなつてしまう。従って、このレーザ光 を集光またはコリメートするためのレンズの形状が複雑となり、所望のレーザ光が得ら れなかったり、レンズが高価になるといった不利益を生じるおそれがある。
[0005] 上記したマルチモード型半導体レーザ素子の問題点を解決するための技術として 、例えば特許文献 2に開示された共振器がある。図 23 (a)は、この共振器の構成を 示す平面図である。この共振器 100は、活性層 101内に 2つの領域 102a及び 102b を有している。図 23 (b)は、図 23 (a)の VII— VII断面及び VIII— VIII断面における屈 折率分布を示す図である。図 23 (b)に示すとおり、領域 102a及び 102bにおける屈 折率 nは、活性層 101の他の領域における屈折率 nよりも小さく形成されている。ま
2 1
た、領域 102a及び 102bは、出射端 100a及び反射端 100bにおいて垂直に反射し た光 Lが該領域 102a及び 102bの側面にて全反射する角度で活性層 101内に形成 されている。特許文献 2では、このような構成によって、活性層 101内を共振する光 L の光路を限定し、導波路幅を制限することなく単一モード発振を実現しょうとしている 特許文献 1 :特開平 10- 41582号公報
特許文献 2:国際公開第 00Z48277号パンフレット
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、特許文献 2に開示された共振器 100には、次の問題点がある。前述 したように、この共振器 100の構成によれば、活性層 101内を共振する光 Lの光路を 理論上限定することができる。しかし実際には、出射光の遠視野像において、出射方 向から或る角度逸れた方向に無視できな 、大きさのピーク(以下、サイドピークと 、う )が出現することが知られている。このことから、特許文献 2に開示された共振器 100 における活性層 101の内部には、図 23 (a)に示された光路だけでなぐ領域 102a及 び 102bの側面に沿った光路や、或いは領域 102a及び 102bの側面のうちいずれか 一方の側面のみにおいて反射するような光路が存在すると考えられる。このように、 所定の出射方向から逸れた方向にサイドピークが出現すると、活性層内を共振した 光の一部が有効に利用されないために素子の発光効率が低下する。また、集光用レ ンズにおいてサイドピーク光が散乱し、素子の劣化要因となる。
[0007] 本発明は、上述の点を鑑みてなされたものであり、比較的大きな強度のレーザ光を 出射可能であって、サイドピークを低減できる半導体レーザ素子及び半導体レーザ 素子アレイを提供することを目的とする。
課題を解決するための手段 [0008] 上記課題を解決するために、本発明による半導体レーザ素子は、第 1導電型クラッ ド層と、第 2導電型クラッド層と、第 1導電型クラッド層と第 2導電型クラッド層との間に 設けられた活性層と、所定の軸方向に並んで設けられ、互いに対向する光出射面及 び光反射面と、活性層において構成され、一対の側面を有し、光出射面と光反射面 との間でレーザ光を共振させる屈折率型の主導波路と、光出射面と主導波路の一端 との間、及び光反射面と主導波路の他端との間のうち少なくとも一方に設けられた光 路部分とを備え、主導波路の一対の側面と光出射面及び光反射面との相対角度 Θ がー対の側面における全反射臨界角 Θ cに基づいており、光路部分において所定の 軸方向から逸れた光が、光出射面及び光反射面のうち少なくとも一方の面において レーザ光の共振端面とは異なる領域力 放出されるように、光路部分が構成されて 、 ることを特徴とする。
[0009] 上記半導体レーザ素子では、主導波路の側面と光出射面及び光反射面との相対 角度 Θ力 該側面における全反射臨界角 Θ cに基づいている。全反射臨界角 Θ cよ り小さな入射角で主導波路の側面に入射する光は側面を透過して導波路外へ出て しまうので、主導波路内を共振する光の光路は、全反射臨界角 Θ c以上の入射角で 主導波路の側面に入射し、光出射面及び光反射面において略垂直に反射するよう な光路に限定される。従って、主導波路の構造上、共振が起こるレーザ光の光路が 限定されるので、主導波路内でのレーザ発振に関わる光の角度成分が制限される。 このため、導波光の位相が揃って、単一モードか或いは単一モードに近い発振が生 じる。従って、上記半導体レーザ素子によれば、シングルモード型のように導波路の 幅が制限されないので、導波路幅を拡張することによりレーザ光の水平方向の出射 角をより狭くできるとともに、より高い強度のレーザ光を出射することが可能となる。
[0010] また、上記半導体レーザ素子は、光出射面と主導波路の一端との間、及び光反射 面と主導波路の他端との間のうち少なくとも一方に設けられた光路部分を備える。こ の半導体レーザ素子では、レーザ発振に関わる光の光路力 主導波路の側面にお いて全反射し、光出射面及び光反射面において略垂直に (所定の軸方向に沿って) 反射するような光路に限定される。しかしながら、課題に関して述べたように、実際に はこのような限定された光路力も逸れたレーザ光 (サイドピーク光)が観察される。本 発明による半導体レーザ素子においては、このサイドピーク光が、光出射面及び光 反射面のうち少なくとも一方の面においてレーザ光の共振端面とは異なる領域から 放出されるように、光路部分が構成されている。これにより、サイドピーク光の共振を 光路部分にぉ 、て抑制できるので、遠視野像におけるサイドピークを低減できる。
[0011] 本発明による半導体レーザ素子アレイは、上記した構成の半導体レーザ素子を複 数備え、複数の半導体レーザ素子が、所定の軸方向と交差する方向に並んで配置さ れて一体に形成されていることを特徴とする。この半導体レーザ素子アレイによれば 、上述した構成を有する半導体レーザ素子を複数備えることによって、大きな強度の レーザ光を出射できるとともに、遠視野像におけるサイドピークを低減できる。
発明の効果
[0012] 本発明の半導体レーザ素子及び半導体レーザ素子アレイによれば、比較的大きな 強度のレーザ光を出射可能であって、サイドピークを低減できる。
図面の簡単な説明
[0013] [図 1]図 1は、半導体レーザ素子アレイの第 1実施形態の構成を示す概略斜視図であ る。
[図 2]図 2は、(a)図 1に示した半導体レーザ素子アレイの I I断面の一部を示す断 面図、及び (b)図 1に示した半導体レーザ素子アレイの II II断面及び III III断面の 一部を示す断面図である。
[図 3]図 3は、 p型クラッド層を含む積層体の斜視図である。
[図 4]図 4は、(a)積層体の平面図、(b) (a)に示した積層体の IV— IV断面を示す断 面図、及び (c) (a)に示した積層体の V— V断面及び VI— VI断面を示す断面図であ る。
[図 5]図 5は、活性層内に生成される主導波路及び光路部分の平面図である。
[図 6]図 6は、主導波路の側面に様々な入射角で入射する光について説明するため の図である。
[図 7]図 7は、相対角度 Θの大きさが許容される範囲を説明するためのグラフである。
[図 8]図 8は、(a)第 1実施形態の半導体レーザ素子を試作し、その遠視野像を観察 した結果を示すグラフ、及び (b)比較のため、主導波路と光出射面との間及び主導 波路と光反射面との間に光路部分を備えない半導体レーザ素子を同一基板を用い て試作し、その遠視野像を観察した結果を示すグラフ、を含む図である。
[図 9]図 9は、各製造工程における半導体レーザ素子アレイの拡大平面図である。
[図 10]図 10は、各製造工程における半導体レーザ素子アレイの拡大断面図である。 圆 11]図 11は、第 1変形例による半導体レーザ素子が有する主導波路及び光路部 分を示す平面図である。
[図 12]図 12は、第 2変形例による半導体レーザ素子が有する主導波路及び光路部 分を示す平面図である。
[図 13]図 13は、第 3変形例による半導体レーザ素子が有する主導波路及び光路部 分を示す平面図である。
[図 14]図 14は、第 4変形例による半導体レーザ素子のリッジ部、丘状部、及び絶縁 層の開口部を示す平面図である。
[図 15]図 15は、第 5変形例による半導体レーザ素子のリッジ部及び丘状部を示す平 面図である。
[図 16]図 16は、第 2実施形態の半導体レーザ素子アレイが備える半導体レーザ素子 の導波路構成を示す平面図である。
[図 17]図 17は、第 3実施形態の半導体レーザ素子アレイが備える半導体レーザ素子 の導波路構成を示す平面図である。
[図 18]図 18は、第 4実施形態による半導体レーザ素子アレイの導波路構成を示す平 面図である。
[図 19]図 19は、第 5実施形態による半導体レーザ素子アレイの構成の一部を示す断 面図である。
[図 20]図 20は、第 6実施形態による半導体レーザ素子アレイの構成の一部を示す断 面図である。
[図 21]図 21は、第 7実施形態による半導体レーザ素子アレイの構成の一部を示す断 面図である。
[図 22]図 22は、第 7実施形態の半導体レーザ素子の変形例の構成を示す断面図で ある。 [図 23]図 23は、(a)従来のレーザ素子の共振器の構成を示す平面図、及び (b) (a) の VII— VII断面及び VIII— VIII断面における屈折率分布を示す図である。
符号の説明
[0014] la…光出射面、 lb…光反射面、 1、 lc…半導体レーザ素子アレイ、 3、 3a〜31〜 半導体レーザ素子、 4…主導波路、 4g、 4h…側面、 8a、 8b…光路部分、 8c〜8f〜 側面、 9a…リッジ部、 9b〜9e…丘状部、 9g、 9h、 9u、 9ν· · ·側面、 10· · ·薄厚部、 11 …基板、 12· · ·積層体、 13· · ·η型クラッド層、 14a…レーザ光出射端、 14b…レーザ光 反射端、 15· · ·活性層、 17· · ·ρ型クラッド層、 19· · ·ρ型キャップ層、 21…絶縁層、 21a …開口部、 23· · ·ρ側電極層、 25a〜25c…凸部、 29· · ·η側電極層。
発明を実施するための最良の形態
[0015] 以下、添付図面を参照しながら本発明による半導体レーザ素子及び半導体レーザ 素子アレイの実施の形態を詳細に説明する。なお、図面の説明において同一の要素 には同一の符号を付し、重複する説明を省略する。
[0016] (第 1の実施の形態)
図 1は、本発明による半導体レーザ素子アレイの第 1実施形態の構成を示す概略 斜視図である。図 1を参照すると、半導体レーザ素子アレイ 1は、複数の半導体レー ザ素子 3がー体に形成されてなる。半導体レーザ素子アレイ 1が備える半導体レーザ 素子 3の数は幾つでもよぐ一つのみ備える場合はアレイではなく単体の半導体レー ザ素子となる。半導体レーザ素子アレイ 1は、所定の軸 Αの方向に並んで設けられて 互いに対向する光出射面 la及び光反射面 lbを有する。本実施形態では、光出射面 la及び光反射面 lbは互いに略平行に設けられており、それぞれが所定の軸 Aと略 垂直に交差している。光出射面 la上には、複数の半導体レーザ素子 3それぞれのレ 一ザ光出射端 14aが水平方向に並んで配置されている。また、複数の半導体レーザ 素子 3のそれぞれは、リッジ状に成形された凸部 25aを有する。凸部 25aは、その長 手方向が光出射面 la及び光反射面 lbに対して斜めになるように設けられており、半 導体レーザ素子 3には凸部 25aに対応して屈折率型の導波路 (後述)が形成される。 レーザ光出射端 14aは、この導波路においてレーザ光が共振する共振端面であり、 レーザ光はこの端面から出射する。複数の半導体レーザ素子 3は、凸部 25aの長手 方向と交差する方向に並んで配置されて一体に形成されて 、る。
[0017] また、半導体レーザ素子アレイ 1は、凸部 25b及び 25cを更に有する。凸部 25b及 び 25cは、複数の半導体レーザ素子 3にわたつて、それぞれ光出射面 la及び光反 射面 lbに沿って形成されている。凸部 25bの一側面は、光出射面 laとなっている。 凸部 25cの一側面は、光反射面 lbとなっている。凸部 25bは、凸部 25aそれぞれの 光出射面 la側の端部と繋がっており、凸部 25aそれぞれと一体に形成されている。ま た、凸部 25cは、凸部 25aそれぞれの光反射面 lb側の端部と繋がっており、凸部 25 aそれぞれと一体に形成されて 、る。
[0018] 図 2 (a)は、図 1に示した半導体レーザ素子アレイ 1の I I断面の一部を示す断面 図である。また、図 2 (b)は、図 1に示した半導体レーザ素子アレイ 1の II II断面及び III III断面の一部を示す断面図である。図 2 (a)及び図 2 (b)を参照すると、半導体 レーザ素子アレイ 1を構成する半導体レーザ素子 3は、基板 11と、 3層の半導体層が 積層された積層体 12とを備えている。積層体 12は、 n型クラッド層(第 2導電型クラッ ド層) 13、活性層 15、及び p型クラッド層(第 1導電型クラッド層) 17の 3つの半導体層 が順に積層されて構成されている。 p型クラッド層 17〖こは、凸部 25aに対応するリッジ 部 9aと、凸部 25b及び 25cに対応する丘状部 9b及び 9cが設けられている。リッジ部 9a及び丘状部 9b、 9cの外側の層には p型クラッド層 17と電気的に接続される p型キ ヤップ層 19が設けられている。そして、リッジ部 9aと p型キャップ層 19とで凸部 25aを 構成しており、丘状部 9b及び 9cと p型キャップ層 19とで凸部 25b及び 25cを構成し ている。
[0019] 更に外側の層には外部からの電流を注入する p側電極層 23が設けられている。ま た、 p型クラッド層 17及び p型キャップ層 19と p側電極層 23との間には、絶縁層 21が 設けられている。絶縁層 21は、開口部 21aを有している。開口部 21aの一部は、凸部 25aに対応する部分に形成されている。開口部 21aの他の一部は、凸部 25bにおい て凸部 25aの一端力 所定の軸 Aの方向に沿って光出射面 laに達する領域に形成 されている。さらに、開口部 21aの残りの部分は、凸部 25cにおいて凸部 25aの他端 力 所定の軸 Aの方向に沿って光反射面 lbに達する領域に形成されている。また、 積層体 12とは反対側の基板 11の面上には n側電極層 29が形成されている。 [0020] p側電極層 23は、開口部 21aを介して p型キャップ層 19にのみ電気的に接触する ようになっているので、外部からの電流注入は、 p型キャップ層 19の開口部 21aに対 応する領域にのみ限定してなされる。 p型キャップ層 19に電流が注入されると、開口 部 21aに対応する活性層 15の領域が活性領域となる。このとき、リッジ部 9aとその周 辺部との屈折率差によって、活性層 15には実効的な屈折率差が生じるため、活性層 15内にはリッジ部 9aの平面形状に応じた屈折率型の主導波路 4が生成される。ここ で、リッジ部 9aと光出射面 la及び光反射面 lbとの間にはそれぞれ丘状部 9b及び 9c が存在しているため(後に詳述)、主導波路 4の一端と光出射面 laとの間、及び主導 波路 4の他端と光反射面 lbとの間は、それぞれ丘状部 9b及び 9cの幅に相当する距 離だけ隔たっている。従って、活性層 15内における主導波路 4の一端と光出射面 la との間の部分には、主導波路 4内部を共振するレーザ光が通過するための光路部分 8aが生じる。同様に、活性層 15内における主導波路 4の他端と光反射面 lbとの間の 部分には、光路部分 8bが生じる。また、本実施形態では、絶縁層 21の開口部 21aが 光路部分 8a及び 8b上にも形成されている。従って、開口部 21a直下への電流集中 によって、光路部分 8a及び 8bには利得型導波路が構成される。
[0021] 半導体レーザ素子 3を構成する各層の材料を例示すると、基板 11は、例えば n— G aAsからなる。 n型クラッド層 13は、例えば n— AlGaAsからなる。活性層 15は、例え ば GalnAsZAlGaAsによる多重量子井戸力 なる。 p型クラッド層 17は、例えば p— AlGaAsからなる。 p型キャップ層 19は、例えば p— GaAsからなる。 p側電極層 23は 、例えば TiZPtZAu力もなる。 n側電極層 29は、例えば AuGeZAu力もなる。絶縁 層 21は、例えば SiN、 SiO、 Al Oのうち少なくとも一種類の材料からなる。
2 2 3
[0022] なお、半導体レーザ素子 3は、活性層 15と n型クラッド層 13との間、及び活性層 15 と p型クラッド層 17との間に、主導波路 4及び光路部分 8a、 8bに光を閉じ込めるため の光ガイド層を備えても良い。半導体レーザ素子 3が光ガイド層を備える場合には、 光ガイド層は、隣接するクラッド層と同じ導電型でもよぐ或いは導電型を決定する不 純物が添加されて 、なくてもょ 、。
[0023] ここで、図 3及び図 4を参照して p型クラッド層 17について説明する。図 3は p型クラ ッド層 17を含む積層体 12の斜視図、図 4 (a)は積層体 12の平面図、図 4 (b)は図 4 ( a)に示した積層体 12の IV— IV断面を示す断面図、図 4 (c)は図 4 (a)に示した積層 体 12の V— V断面及び VI— VI断面を示す断面図である。上述のとおり、積層体 12は 、 n型クラッド層 13、活性層 15、及び p型クラッド層 17の 3つの半導体層が順に積層 されて構成されている。
[0024] p型クラッド層 17には、凸状のリッジ部 9aが形成されている。また、 p型クラッド層 17 には、 p型クラッド層 17における他の領域 (リッジ部 9aを除く)よりも厚い丘状部 9b及 び 9cが形成されている。 p型クラッド層 17のリッジ部 9a及び丘状部 9b、 9c以外の領 域は、リッジ部 9a及び丘状部 9b、 9cよりも薄い薄厚部 10となっている。リッジ部 9aは 、互いに対向する一対の側面 9g及び 9hを有する。一対の側面 9g及び 9hは、それぞ れリッジ部 9aの領域を規定しており、リッジ部 9aと薄厚部 10との境界となっている。側 面 9g及び 9hは、厚さ方向から見た平面図において、光出射面 la及び光反射面 lb に対し相対角度 Θを有するように設けられている。丘状部 9bは、側面 9uを有する。 丘状部 9bの側面 9uと対向する側面は光出射面 laであり、側面 9uは光出射面 laに 沿って延びている。側面 9uは、丘状部 9bの領域を規定しており、丘状部 9bと薄厚部 10との境界となっている。丘状部 9cは、側面 9vを有する。丘状部 9cの側面 9vと対向 する側面は光反射面 lbであり、側面 9vは光反射面 lbに沿って延びている。側面 9v は、丘状部 9cの領域を規定しており、丘状部 9cと薄厚部 10との境界となっている。リ ッジ部 9aの側面 9g及び 9hの一端は、丘状部 9bの側面 9uと繋がっている。リッジ部 9 aの側面 9g及び 9hの他端は、丘状部 9cの側面 9vと繋がって 、る。
[0025] また、リッジ部 9a上及び丘状部 9b、 9c上には、絶縁層 21の開口部 21aが設けられ ている。なお、開口部 21aは p側電極層 23に覆われているため、図 3及び図 4 (a)で は開口部 21aを点線によって図示している。開口部 21aの一部は、リッジ部 9aの側面 9g及び 9hに挟まれた領域に沿って延びている。開口部 21aの他の一部は、丘状部 9b上においてリッジ部 9aの一端力も所定の軸 Aの方向に沿って光出射面 laに達す る領域に形成されている。さらに、開口部 21aの残りの部分は、丘状部 9c上において リッジ部 9aの他端力 所定の軸 Aの方向に沿って光反射面 lbに達する領域に形成 されている。
[0026] 活性層 15には、リッジ部 9aの平面形状に対応した主導波路 4が生成される。また、 主導波路 4と光出射面 la及び光反射面 lbとの間には、光出射面 laと光反射面 lbと の間を共振するレーザ光が通過する光路部分 8a及び 8bが生じる。ここで、図 5は、 活性層 15内に生成される主導波路 4、及び光路部分 8a、 8bの平面図である。主導 波路 4には、リッジ部 9aの側面 9g、 9hそれぞれに対応して一対の側面 4g、 4hが生 成される。側面 4g、 4hは、光出射面 la及び光反射面 lbに対して相対角度 Θをなす 。なお、図中の補助線 Cは、光出射面 la及び光反射面 lbと平行な補助線である。光 出射面 laの一部は、主導波路 4において共振するレーザ光 L1の一方の共振端面で あるレーザ光出射端 14aとなる。また、光反射面 lbの一部は、主導波路 4において共 振するレーザ光 L1の他方の共振端面であるレーザ光反射端 14bとなる。レーザ光出 射端 14aは、主導波路 4の一端を所定の軸 Aの方向から光出射面 laに投影した位 置に生じる。レーザ光反射端 14bは、主導波路 4の他端を所定の軸 Aの方向から光 反射面 lbに投影した位置に生じる。
[0027] また、光路部分 8aには、絶縁層 21の開口部 21a (図 3及び図 4参照)からの電流集 中によって、利得型導波路を構成する一対の側面 8c及び 8dが生成される。側面 8c 及び 8dは、開口部 21aの形状に対応して所定の軸 Aの方向に沿って延びている。そ して、光路部分 8aの側面 8cは、レーザ光出射端 14aの一端に接しており、側面 8dは 、レーザ光出射端 14aの他端に接している。また、光路部分 8bには、絶縁層 21の開 口部 21aからの電流集中によって、利得型導波路を構成する一対の側面 8e及び 8f が生成される。側面 8e及び 8fは、開口部 21aの形状に対応して所定の軸 Aの方向に 沿って延びている。そして、光路部分 8bの側面 8eは、レーザ光反射端 14bの一端に 接しており、側面 8fは、レーザ光反射端 14bの他端に接している。なお、主導波路 4 の側面 4g及び 4hは、主導波路 4内外の実効的な屈折率差によって生じる面であり、 屈折率が連続的に変化している場合にはそれぞれが或る一定の厚さを有してもよい 。また、主導波路 4の側面 4g及び 4hは、レーザ光 L1を当該側面への入射角に応じ て選択的に透過又は反射させる反射面として機能する。
[0028] 光路部分 8aの側面 8cの一端はレーザ光出射端 14aの一端に接しており、光路部 分 8aの側面 8dの一端はレーザ光出射端 14aの他端に接している。側面 8cの他端は 主導波路 4の側面 4gの一端に繋がっており、側面 8dの他端は主導波路 4の側面 4h の一端に繋がって 、る。主導波路 4の側面 4gの他端は光路部分 8bの側面 8eの一端 に繋がっており、側面 4hの他端は光路部分 8bの側面 8fの一端に繋がっている。光 路部分 8bの側面 8eの他端はレーザ光反射端 14bの一端に接しており、側面 8fの他 端はレーザ光反射端 14bの他端に接して 、る。
[0029] ここで、主導波路 4の側面 4g及び 4hと光出射面 la及び光反射面 lbとの相対角度
Θ (すなわち、リッジ部 9aの側面 9g及び 9hと光出射面 la及び光反射面 lbとの相対 角度 0 )は、主導波路 4の側面 4g、 4hにおける全反射臨界角 Θ cに基づいて決定さ れる。ここで、主導波路 4の側面 4g、 4hにおける全反射臨界角 Θ cは、屈折率型導 波路である主導波路 4の内外の実効的な屈折率差によって規定される全反射臨界 角である。
[0030] 相対角度 Θが全反射臨界角 Θ cに基づいて決定されることにより、主導波路 4の一 対の側面 4g及び 4hが、光出射面 la側または光反射面 lb側力も所定の軸 Aの方向 に沿って入射するレーザ光 L1を全反射させる。なお、本実施形態において、全反射 臨界角 Θ cは、 p型クラッド層 17の薄厚部 10の厚さに依存する。従って、側面 4g及び 4hにおける全反射臨界角 Θ cは、例えば薄厚部 10の厚さを調整するなどの方法に よって任意の値に設定される。
[0031] 図 5に示すように、レーザ光反射端 14bにおいて所定の軸 Aの方向に沿って略垂 直に反射したレーザ光 L1は、光路部分 8bを通過し、主導波路 4の側面 4hに入射角 Θで入射し、全反射する。そして、レーザ光 L1は側面 4gに入射角 Θで入射し、全反 射する。その後、レーザ光 L1は所定の軸 Aの方向に沿って進み、光路部分 8aを通 過してレーザ光出射端 14aに達する。レーザ光出射端 14aに達したレーザ光 L1の一 部は、レーザ光出射端 14aを透過して外部へ出射される。また、他のレーザ光 L1は レーザ光出射端 14aにおいて所定の軸 Aの方向に沿って略垂直に反射し、再び側 面 4g及び 4hで全反射してレーザ光反射端 14bに戻る。このようにして、レーザ光 L1 は、レーザ光出射端 14aとレーザ光反射端 14bとの間を往復し、共振することとなる。
[0032] ここで、レーザ光 L1が前述した光路に限定されるしくみについて説明する。図 6は、 側面 4g (4h)に様々な入射角 Θ iで入射する光 La〜Lcについて説明するための図 である。図 6を参照すると、側面 4g (4h)に相対角度 ø (≥ ø c)と等しい入射角 Θ re 入射したレーザ光 Laは、側面 4g (4h)において全反射し、レーザ光出射端 14a (レー ザ光反射端 14b)に対し所定の軸 Aの方向に沿って垂直に入射する。そして、レーザ 光 Laは、レーザ光出射端 14a (レーザ光反射端 14b)において反射したのち、同一 の光路を迪つて戻る。従って、レーザ光 Laは同一光路上を共振することとなる。
[0033] これに対し、側面 4g (4h)に相対角度 Θよりも小さな入射角 0 i= 0 — Δ 0で入射 したレーザ光 Lbは、 0— Δ 0が全反射臨界角 Θ cよりも小さいと、側面 4g (4h)を透 過することとなり、共振しない。また、側面 4g (4h)に相対角度 Θよりも大きな入射角 θ ί= θ + Δ Θで入射したレーザ光 Lcは、入射角 Θ iが全反射臨界角 Θ cよりも大き いために側面 4g (4h)において全反射する力 レーザ光出射端 14a (レーザ光反射 端 14b)において反射した後、再度側面 4g (4h)に入射する際に入射角 Θ iが Θ i= θ - Δ Θとなる。 θ - Δ Θの値が全反射臨界角 Θ cよりも小さいと、レーザ光 Lcも、 結局側面 4g (4h)を透過することとなり、共振しない。このように、主導波路 4において は、 Δ 0が 0— Δ 0≥ 0 cを満たす場合に、入射角 0 i ( 0 + Δ 0≥ 0 i≥ 0— Δ 0 )で側面 4g及び 4hに入射するレーザ光のみが選択的に共振することとなる。
[0034] 相対角度 Θが全反射臨界角 Θ cとほぼ一致していれば、上述した Δ Θをほぼゼロ にできるのでレーザ光 L1の角度成分を極めて狭い範囲に制限できる。しかし、実際 には素子の温度変化による全反射臨界角 Θ cの変化などを考慮する必要がある。相 対角度 Θが全反射臨界角 Θ cより大きい範囲で全反射臨界角 Θ cに近ければ、レー ザ光 L1の角度成分を或る程度制限することができる。ここで、図 7は、相対角度 Θの 大きさが許容される範囲を説明するためのグラフである。図 7において、横軸は相対 角度 Θの大きさであり、縦軸は側面 4g及び 4hへのレーザ光 L1の入射角 Θ iと相対 角度 Θとの差 Θ i- Θである。なお、ここでは、側面 4g及び 4hにおける全反射臨界角 0 cを 86° と仮定して説明する。
[0035] 図 7を参照すると、座標 ( θ , Θ i— Θ ) = (86, 0)、 (90, 0)、 (90, 4)で囲まれる領 域 Bが図示されている。この領域 Bは、レーザ光 L1がレーザ光出射端 14aとレーザ光 反射端 14bとの間で共振することができる範囲を示している。例えば、相対角度 Θが 89° のとき、 0° ≤ 0 i— 0≤3° 、すなわち入射角 Θ iが 86° 以上 89° 以下のレー ザ光 L1であれば、側面 4g及び 4hにおいて全反射臨界角 0 c ( = 86° )を超えること なく共振することができる。し力しながら、相対角度 Θが全反射臨界角 Θ Cよりも過大 であると、主導波路 4内でのレーザ光 L1の空間モード数が増大してしまう。従って、 例えば相対角度 Θを 86° ≤ Θ≤87° (すなわち、 0 c≤ 0≤ 0 c + l° )とすること により、 0° ≤ θ ί- Θ≤1° 、つまり入射角 Θ iを 86° 以上 87° 以下に制限すること ができ、レーザ光 L1の角度成分を実用上有効な程度に制限することができる。
[0036] このように、主導波路 4内でのレーザ発振に関わる光の角度成分は、主導波路 4の 側面 4g、 4hによって制限される。これにより、導波光の位相が揃って、単一モードか 或いは単一モードに近い発振が生じる。従って、半導体レーザ素子 3によれば、シン ダルモード型のように導波路の幅が制限されないので、導波路幅を拡張することによ りレーザ光 Lの水平方向の出射角をより狭くできるとともに、より高い強度のレーザ光 を出射することが可能となる。
[0037] なお、主導波路 4の長さ及び側面 4g及び 4h同士の間隔(すなわち、リッジ部 9aの 長さ及び一対の側面 9g及び 9h同士の間隔)は、レーザ光出射端 14a (光出射面 la) とレーザ光反射端 14b (光反射面 lb)との間で共振するレーザ光 L1が、主導波路 4 の一対の側面 4g及び 4hのそれぞれにおいて同じ回数反射するように設けられること が好ましい。
[0038] 再び図 3〜図 5を参照する。前述したように、主導波路 4は屈折率型導波路であり、 主導波路 4の側面 4g及び 4hは、 p型クラッド層 17のリッジ部 9aとその外部との屈折率 差によって生じる。他方、光路部分 8a及び 8bは利得型導波路であり、光路部分 8a 及び 8bの側面 8c〜8fは、絶縁層 21の開口部 21a直下への電流集中のみによって 生じる。従って、光路部分 8a及び 8bの側面 8c〜8fにおける光閉じ込め作用は、主 導波路 4の側面 4g、 4hにおける光閉じ込め作用よりも緩や力となる。すなわち、光路 部分 8a及び 8bの側面 8c〜8fでは、主導波路 4の側面 4g、 4hと比較して光が透過し 易くなつている。これにより、光路部分 8a内部を通過する光のうち所定の軸 Aの方向 力も逸れた光 L2は、光路部分 8aの側面 8cまたは 8dを通過し、光出射面 laにおける レーザ光出射端 14aとは異なる領域力も半導体レーザ素子 3の外部へ放出される。 同様に、光路部分 8b内部を通過する光のうち所定の軸 Aの方向力も逸れた光 L3は 、光路部分 8bの側面 8eまたは 8fを通過し、光反射面 lbにおけるレーザ光反射端 14 bとは異なる領域から半導体レーザ素子 3の外部へ放出される。従って、所定の軸 A の方向から逸れた光 L2、 L3は、半導体レーザ素子 3内部におけるレーザ発振に寄 与しない。なお、このような光 L2、 L3は、光路部分 8a及び 8bが存在しない場合には 、導波路内を共振してサイドピーク光となり得る。
[0039] このように、本実施形態の半導体レーザ素子 3では、光路部分 8a、 8bにおいて所 定の軸 Aの方向力 逸れた光 L2、 L3力 光出射面 la及び光反射面 lbにおいてレ 一ザ光 L1の共振端面 (レーザ光出射端 14a、レーザ光反射端 14b)とは異なる領域 力も放出されるように、光路部分 8a、 8bが構成されている。これにより、サイドピークを 構成する光 L2、 L3の共振を光路部分 8a及び 8bにおいて抑制できるので、遠視野 像におけるサイドピークを効果的に低減できる。また、光路部分 8a、 8bを利得型導波 路とすることにより、光路部分 8a、 8bを設けることによる発光効率の低下を抑えること ができる。
[0040] ここで、図 8 (a)は、本実施形態の半導体レーザ素子 3を試作し、その遠視野像を観 察した結果を示すグラフである。この試作では、主導波路 4の長さを 1200 m、主導 波路 4の幅を 40 m、主導波路 4の側面 4g及び 4hと光出射面 la及び光反射面 lbと の相対角度 Θを 86° 、光路部分 8a及び 8bの長さ(すなわち丘状部 9b、 9cの幅)を 4 00 mとした。また、図 8 (b)は、比較のため、主導波路と光出射面との間及び主導 波路と光反射面との間に光路部分を備えない半導体レーザ素子を同一基板を用い て試作し、その遠視野像を観察した結果を示すグラフである。なお、図 8 (a)及び図 8 (b)においては、横軸に水平方向の放射角を示し、縦軸にレーザ光強度を示してい る。水平放射角においては、所定のレーザ光出射方向(すなわち所定の軸 Aの方向 )を 0° として 、る。図 8 (b)に示すように、半導体レーザ素子が光路部分を備えな 、 場合には、所定のレーザ光出射方向に対して 10° 〜20° の付近に無視できないサ イドピークが存在している。これに対し、図 8 (a)に示すように、本実施形態の半導体 レーザ素子 3では、 10° 〜20° 付近のサイドピークが大幅に低減されていることが ゎカゝる。
[0041] また、本実施形態のように、半導体レーザ素子 3では、光出射面 laと主導波路 4の 一端との間に光路部分 (光路部分 8a)が設けられて 、ることが好ま 、。これにより、 主導波路 4内部におけるサイドピーク光の光路が正確に判明しない場合であっても、 光出射面 laの近傍においてサイドピーク光の共振を効果的に抑制することができる 。なお、本実施形態では、光路部分 8a及び 8bが、光出射面 laと主導波路 4の一端と の間、及び光反射面 lbと主導波路 4の他端との間の双方に設けられているが、光路 部分は、光出射面と主導波路の一端との間、及び光反射面と主導波路の他端との間 のうち 、ずれか一方に設けられて 、てもよ 、。
[0042] また、上述したように、本実施形態による半導体レーザ素子 3では、光出射面 laと 光反射面 lbとの間で主導波路 4内を共振するレーザ光 L1が、一対の側面 4g及び 4 hのそれぞれにおいて同じ回数反射するように、主導波路 4の長さ及び側面間隔が 設定されることが好ましい。これにより、レーザ光 L1は光出射面 la及び光反射面 lb の双方において所定の軸 Aの方向に沿って略垂直に入射 Z反射することができる。 また、レーザ光 L1が主導波路 4の側面 4g、 4hにおいて少なくとも 1回ずつ全反射す るので、主導波路 4内において光出射面 laと光反射面 lbとを直線で結ぶような光路 は存在しない。従って、本実施形態の半導体レーザ素子 3によれば、主導波路 4内 のレーザ光 Lの光路を好適に制限することができる。
[0043] また、本実施形態による半導体レーザ素子アレイ 1によれば、上記効果を有する半 導体レーザ素子 3を複数備えることによって、大きな強度のレーザ光を出射すること ができるとともに、各半導体レーザ素子 3の遠視野像におけるサイドピークを低減する ことができる。
[0044] さらに、本実施形態による半導体レーザ素子アレイ 1は、次の効果を有する。すな わち、半導体レーザ素子アレイ 1では、 p型クラッド層 17のリッジ部 9aによって、活性 層 15に対して電流が部分的に集中して注入される。これにより、隣り合う半導体レー ザ素子 3の主導波路 4同士での光の結合や干渉が生じに《なる。従って、主導波路 4同士の間隔を比較的狭くすることが可能になるので、主導波路 4をより多く設けるこ とができ、大出力で安定したレーザ光を出射することができる。さらに、活性層 15に 対して電流が部分的に集中して注入されることにより、電気 '光変換効率が高まり、無 効電流を低減できるので、半導体レーザ素子 3の熱発生を低減できる。従って、半導 体レーザ素子アレイ 1の信頼性が高まり、長寿命化を実現できる。 [0045] 次に、半導体レーザ素子アレイ 1の製造方法について図 9及び図 10を参照しなが ら説明する。図 9は、各製造工程における半導体レーザ素子アレイ 1の拡大平面図を 示している。また、図 10は、各製造工程における半導体レーザ素子アレイ 1の I—I断 面(図 1参照)における拡大断面図を示している。まず、 n型 GaAsの基板 11を準備し 、基板 11上に順に、 n型 AlGaAsを 2. 0 m、 GalnAsZAlGaAsを 0. 3 m、 p型 AlGaAsを 2. 0 m、 p型 GaAsを 0. 1 μ mェピタキシャル成長させ、それぞれ n型ク ラッド層 13、量子井戸構造を有する活性層 15、 p型クラッド層 17、 p型キャップ層 19 を形成する(図 9 (a)、図 10 (a)参照)。
[0046] 続いて、 p型キャップ層 19側にフォトワークによりリッジ部 9a及び丘状部 9b、 9cに対 応する形状に保護マスク 24を形成し、 p型キャップ層 19及び p型クラッド層 17をエツ チングする。エッチングは活性層 15に達しない深さで停止する(図 9 (b)、図 10 (b) 参照)。続いて、 SiN膜を結晶表面全体に堆積して絶縁層 21を形成し、フォトワーク により一部の SiN膜を除去して開口部 21aを形成する(図 9 (c)、図 10 (c)参照)。続 いて、 TiZPtZAu膜で p側電極層 23を結晶表面全体に形成する。また、基板 11側 の表面の研磨、化学処理を行い、 AuGeZAuにより n側電極層 29を形成する(図 9 ( d)、図 10 (d)参照)。最後に、光出射面 laに AR反射膜コーティングを、光反射面 lb に HR反射膜コーティングをそれぞれ行 ヽ、半導体レーザ素子 3 (半導体レーザ素子 アレイ 1)が完成する。
[0047] (第 1の変形例)
次に、第 1実施形態による半導体レーザ素子アレイ 1 (半導体レーザ素子 3)の第 1 変形例について説明する。図 11は、本変形例による半導体レーザ素子 3aが有する 主導波路 41及び光路部分 8a、 8bを示す平面図である。本変形例の半導体レーザ 素子 3aと第 1実施形態の半導体レーザ素子 3との相違点は、主導波路 41の平面形 状である。
[0048] 本変形例の主導波路 41は、互いに対向する一対の側面 41g及び 41hを有する。ま た、主導波路 41は、互いに対向する一対の側面 41i及び 41jを有する。主導波路 41 の側面 41gの一端は光路部分 8aの側面 8cに繋がっており、側面 41gの他端は側面 41iの一端に繋がっている。主導波路 41の側面 41hの一端は光路部分 8aの側面 8d に繋がっており、側面 41hの他端は側面 41jの一端に繋がっている。側面 41iの他端 は光路部分 8bの側面 8eに繋がっている。側面 41jの他端は光路部分 8bの側面 8fに 繋がっている。主導波路 41の側面 41g〜41jと光出射面 la及び光反射面 lbとは、 互いに相対角度 Θをなしている。また、側面 41g及び 41hと側面 41i及び 41jとは、所 定の軸 Aの方向に対する傾斜方向が互いに逆となっており、側面 41gと側面 41iとが 互いに角度 2 Θを成して繋がっており、側面 41hと側面 41jとが互いに角度 2 Θを成 して繋がっている。なお、図中の補助線 Cは、光出射面 la及び光反射面 lbと平行な 補助線である。このような主導波路 41の形状は、 p型クラッド層 17のリッジ部の平面 形状を主導波路 41の平面形状と同様に形成することによって好適に実現される。
[0049] 主導波路 41の側面 41g〜41jと光出射面 la及び光反射面 lbとの相対角度 Θは、 主導波路 41の側面 41g〜41jにおける全反射臨界角 Θ cに基づいて決定される。こ れにより、主導波路 41の一対の側面 41g及び 41h、並びに一対の側面 41i及び 41j 力 光出射面 la側または光反射面 lb側から所定の軸 Aの方向に沿って入射するレ 一ザ光 L1を全反射させる。なお、本実施形態では側面 41g及び 41hと光出射面 la 及び光反射面 lbとの相対角度、及び側面 41i及び 41jと光出射面 la及び光反射面 lbとの相対角度を同じ角度 Θとしているが、相対角度は互いに異なっても良い。そ の場合、側面 41g及び 41hの全反射臨界角と、側面 41i及び 41jの全反射臨界角と が互いに異なる。そして、側面 41g〜41jと光出射面 la及び光反射面 lbとの相対角 度は、側面 41g〜41jにおける全反射臨界角に基づいて個別に決定される。なお、 側面 41g〜41jにおける全反射臨界角は、例えば p型クラッド層 17の薄厚部 10の厚 さを調整するなどの方法によって任意の値に設定することができる。
[0050] レーザ光反射端 14bにおいて所定の軸 Aの方向に沿って略垂直に反射したレーザ 光 L1は、光路部分 8bを通過し、主導波路 41の側面 4 ljに入射角 Θで入射し、全反 射する。そして、レーザ光 L1は側面 4 liに入射角 Θで入射し、全反射する。レーザ光 L1は所定の軸 Aの方向に沿って進み、側面 41gに入射角 Θで入射し、全反射する。 そして、レーザ光 L1は側面 41hに入射角 Θで入射し、全反射する。こうして、側面 41 g〜41jで全反射したレーザ光 L1は所定の軸 Aの方向に沿って進み、光路部分 8aを 通過してレーザ光出射端 14aに達する。レーザ光出射端 14aに達したレーザ光 L1の 一部は、レーザ光出射端 14aを透過して外部へ出射される。また、他のレーザ光 L1 はレーザ光出射端 14aにおいて所定の軸 Aの方向に沿って略垂直に反射し、再び 側面 41g〜41jで全反射してレーザ光反射端 14bに戻る。このようにして、レーザ光 L 1は、レーザ光出射端 14aとレーザ光反射端 14bとの間を往復し、共振することとなる
[0051] また、光路部分 8a内部を通過する光のうち所定の軸 Aの方向力 逸れた光 L2は、 光路部分 8aの側面 8cまたは側面 8dを通過し、光出射面 laにおけるレーザ光出射 端 14aとは異なる領域から半導体レーザ素子 3aの外部へ放出される。同様に、光路 部分 8b内部を通過する光のうち所定の軸 Aの方向から逸れた光 L3は、光路部分 8b の側面 8eまたは側面 8fを通過し、光反射面 lbにおけるレーザ光反射端 14bとは異 なる領域から半導体レーザ素子 3aの外部へ放出される。従って、所定の軸 Aの方向 力も逸れた光 L2、 L3は、半導体レーザ素子 3a内部におけるレーザ発振に寄与しな い。これにより、第 1実施形態の半導体レーザ素子 3と同様に、サイドピークを構成す る光の共振を光路部分 8a及び 8bにおいて抑制できるので、遠視野像におけるサイド ピークを効果的に低減できる。
[0052] 本発明による半導体レーザ素子の主導波路の平面形状は、第 1実施形態のような 形状に限らず、本変形例のような形状でもよい。この場合でも、第 1実施形態と同様 の効果を得ることができる。また、本変形例の主導波路 41では、側面 41g及び 41hと 側面 41i及び 41jとは、所定の軸 Aの方向に対する傾斜方向が互いに逆となっている 。主導波路 41をこのように構成することにより、制限された光路を共振するレーザ光 L 1以外の光路の発生をより効果的に防ぐことができるので、サイドピーク光を更に低減 できる。
[0053] (第 2の変形例)
次に、第 1実施形態による半導体レーザ素子アレイ 1 (半導体レーザ素子 3)の第 2 変形例について説明する。図 12は、本変形例による半導体レーザ素子 3bが有する 主導波路 42及び光路部分 8a、 8bを示す平面図である。本変形例の半導体レーザ 素子 3bと第 1実施形態の半導体レーザ素子 3との相違点は、主導波路 42の平面形 状である。 [0054] 本変形例の主導波路 42は、互いに対向する一対の側面 42g及び 42hを有する。ま た、主導波路 42は、互いに対向する一対の側面 42i及び 4¾を有する。また、主導波 路 42は、互いに対向する一対の側面 42k及び 421を有する。また、主導波路 42は、 互いに対向する一対の側面 42m及び 42ηを有する。主導波路 42の側面 42gの一端 は光路部分 8aの側面 8cに繋がっており、側面 42gの他端は側面 42iの一端に繋が つている。主導波路 42の側面 42hの一端は光路部分 8aの側面 8dに繋がっており、 側面 42hの他端は側面 4¾の一端に繋がって 、る。側面 42iの他端は側面 42kの一 端に繋がっている。側面 4¾の他端は側面 421の一端に繋がっている。側面 42kの他 端は側面 42mの一端に繋がって 、る。側面 421の他端は側面 42ηの一端に繋がつ ている。側面 42mの他端は光路部分 8bの側面 8eに繋がっており、側面 42ηの他端 は光路部分 8bの側面 8fに繋がって 、る。
[0055] 主導波路 42の側面 42g〜42nと光出射面 la及び光反射面 lbとは、互いに相対角 度 0をなしている。また、側面 42g及び 42h並びに側面 42k及び 421と、側面 42i及 び 42j並びに側面 42m及び 42ηとは、所定の軸 Aの方向に対する傾斜方向が互い に逆となっている。側面 42gと側面 42iとは、互いに角度 2 Θを成して繋がっている。 側面 42hと側面 42jとは、互いに角度 2 Θを成して繋がっている。側面 42iと側面 42k とは、互いに角度 2 Θを成して繋がっている。側面 4¾と側面 421とは、互いに角度 2 Θを成して繋がっている。側面 42kと側面 42mとは、互いに角度 2 Θを成して繋がつ ている。側面 421と側面 42ηとは、互いに角度 2 Θを成して繋がっている。なお、図中 の補助線 Cは、光出射面 la及び光反射面 lbと平行な補助線である。このような主導 波路 42の形状は、 p型クラッド層 17のリッジ部の平面形状を主導波路 42の平面形状 と同様に形成することによって好適に実現される。
[0056] 主導波路 42の側面 42g〜42nと光出射面 la及び光反射面 lbとの相対角度 Θは、 主導波路 42の側面 42g〜42nにおける全反射臨界角 Θ cに基づいて決定される。こ れにより、主導波路 42の一対の側面 42g及び 42h、 42i及び 42j、 42k及び 421、並 びに 42m及び 42ηのそれぞれが、光出射面 la側または光反射面 lb側力も所定の 軸 Aの方向に沿って入射するレーザ光 L1を全反射させる。なお、上記第 1変形例と 同様に、主導波路 42の各側面 42g〜42nと光出射面 la及び光反射面 lbとの相対 角度は、互いに異なっても良い。
[0057] レーザ光反射端 14bにおいて所定の軸 Aの方向に沿って略垂直に反射したレーザ 光 L1は、光路部分 8bを通過し、主導波路 42の側面 42ηに入射角 Θで入射し、全反 射する。そして、レーザ光 L1は側面 42mに入射角 Θで入射し、全反射する。レーザ 光 L1は所定の軸 Aの方向に沿って進み、側面 42kに入射角 Θで入射し、全反射す る。そして、レーザ光 L1は側面 421に入射角 Θで入射し、全反射する。レーザ光 L1 は所定の軸 Aの方向に沿って進み、側面 4¾に入射角 Θで入射し、全反射する。そ して、レーザ光 L1は側面 42iに入射角 Θで入射し、全反射する。レーザ光 L1は所定 の軸 Aの方向に沿って進み、側面 42gに入射角 Θで入射し、全反射する。そして、レ 一ザ光 L1は側面 42hに入射角 Θで入射し、全反射する。こうして、側面 42g〜42n で全反射したレーザ光 L1は所定の軸 Aの方向に沿って進み、光路部分 8aを通過し てレーザ光出射端 14aに達する。レーザ光出射端 14aに達したレーザ光 L1の一部 は、レーザ光出射端 14aを透過して外部へ出射される。また、他のレーザ光 L1はレ 一ザ光出射端 14aにおいて所定の軸 Aの方向に沿って略垂直に反射し、再び側面 4 2g〜42nで全反射してレーザ光反射端 14bに戻る。このようにして、レーザ光 L1は、 レーザ光出射端 14aとレーザ光反射端 14bとの間を往復し、共振することとなる。
[0058] また、光路部分 8a内部を通過する光のうち所定の軸 Aの方向力 逸れた光 L2は、 光路部分 8aの側面 8cまたは側面 8dを通過し、光出射面 laにおけるレーザ光出射 端 14aとは異なる領域から半導体レーザ素子 3bの外部へ放出される。同様に、光路 部分 8b内部を通過する光のうち所定の軸 Aの方向から逸れた光 L3は、光路部分 8b の側面 8eまたは側面 8fを通過し、光反射面 lbにおけるレーザ光反射端 14bとは異 なる領域から半導体レーザ素子 3bの外部へ放出される。従って、所定の軸 Aの方向 力も逸れた光 L2、 L3は、半導体レーザ素子 3b内部におけるレーザ発振に寄与しな い。これにより、第 1実施形態の半導体レーザ素子 3と同様に、サイドピークを構成す る光の共振を光路部分 8a及び 8bにおいて抑制できるので、遠視野像におけるサイド ピークを効果的に低減できる。
[0059] 本発明による半導体レーザ素子の主導波路の平面形状は、第 1実施形態のような 形状に限らず、本変形例のような形状でもよい。この場合でも、第 1実施形態と同様 の効果を得ることができる。また、本変形例の主導波路 42では、側面 42g及び 42h 並びに側面 42k及び 421と、側面 42i及び 42j並びに側面 42m及び 42ηとは、所定の 軸 Αの方向に対する傾斜方向が互いに逆となっている。これにより、サイドピーク光を 更に低減できる。
[0060] (第 3の変形例)
次に、第 1実施形態による半導体レーザ素子アレイ 1 (半導体レーザ素子 3)の第 3 変形例について説明する。図 13は、本変形例による半導体レーザ素子 3cが有する 主導波路 43及び光路部分 8a、 8bを示す平面図である。本変形例の半導体レーザ 素子 3cと第 1実施形態の半導体レーザ素子 3との相違点は、主導波路 43の平面形 状である。
[0061] 本変形例の主導波路 43は、互いに対向する一対の側面 43g及び 43hを有する。
主導波路 43の側面 43gの一端は光路部分 8aの側面 8cに繋がっており、側面 43gの 他端は光路部分 8bの側面 8eに繋がっている。主導波路 43の側面 43hの一端は光 路部分 8aの側面 8dに繋がっており、側面 43hの他端は光路部分 8bの側面 8fに繋 力 ている。主導波路 43の側面 43g及び 43hと光出射面 la及び光反射面 lbとは、 互いに相対角度 Θをなしている。図中の補助線 Cは、光出射面 la及び光反射面 lb と平行な補助線である。このような主導波路 43の形状は、 p型クラッド層 17のリッジ部 の平面形状を主導波路 43の平面形状と同様に形成することによって好適に実現さ れる。
[0062] 主導波路 43の側面 43g及び 43hと光出射面 la及び光反射面 lbとの相対角度 Θ は、主導波路 43の側面 43g及び 43hにおける全反射臨界角 Θ cに基づいて決定さ れる。これにより、主導波路 43の一対の側面 43g及び 43hが、光出射面 la側または 光反射面 lb側力 所定の軸 Aの方向に沿って入射するレーザ光 L1を全反射させる 。また、主導波路 43の長さ及び側面 43gと側面 43hとの間隔は、光出射面 laと光反 射面 lbとの間で主導波路 43内を共振するレーザ光 L1が主導波路 43の一対の側面 43g及び 43hのそれぞれにお 、て 2回ずつ反射するように設定されて!、る。
[0063] レーザ光反射端 14bにおいて所定の軸 Aの方向に沿って略垂直に反射したレーザ 光 L1は、光路部分 8bを通過し、主導波路 43の側面 43hに入射角 Θで入射し、全反 射する。そして、レーザ光 L1は側面 43gに入射角 Θで入射し、全反射する。レーザ 光 L1は所定の軸 Aの方向に沿って進み、側面 43hに入射角 Θで再度入射し、全反 射する。そして、レーザ光 L1は側面 43gに入射角 Θで再度入射し、全反射する。こう して、側面 43g及び 43hで全反射したレーザ光 L1は所定の軸 Aの方向に沿って進 み、光路部分 8aを通過してレーザ光出射端 14aに達する。レーザ光出射端 14aに達 したレーザ光 L1の一部は、レーザ光出射端 14aを透過して外部へ出射される。また 、他のレーザ光 L1はレーザ光出射端 14aにおいて所定の軸 Aの方向に沿って略垂 直に反射し、再び側面 43g及び 43hのそれぞれで二度全反射してレーザ光反射端 1 4bに戻る。このようにして、レーザ光 L1は、レーザ光出射端 14aとレーザ光反射端 1 4bとの間を往復し、共振することとなる。
[0064] また、光路部分 8a内部を通過する光のうち所定の軸 Aの方向力 逸れた光 L2は、 光路部分 8aの側面 8cまたは側面 8dを通過し、光出射面 laにおけるレーザ光出射 端 14aとは異なる領域から半導体レーザ素子 3cの外部へ放出される。同様に、光路 部分 8b内部を通過する光のうち所定の軸 Aの方向から逸れた光 L3は、光路部分 8b の側面 8eまたは側面 8fを通過し、光反射面 lbにおけるレーザ光反射端 14bとは異 なる領域から半導体レーザ素子 3cの外部へ放出される。従って、所定の軸 Aの方向 力も逸れた光 L2、 L3は、半導体レーザ素子 3c内部におけるレーザ発振に寄与しな い。これにより、第 1実施形態の半導体レーザ素子 3と同様に、サイドピークを構成す る光の共振を光路部分 8a及び 8bにおいて抑制できるので、遠視野像におけるサイド ピークを効果的に低減できる。
[0065] 本発明による半導体レーザ素子の主導波路の平面形状は、第 1実施形態のような 形状に限らず、本変形例のような形状でもよい。この場合でも、第 1実施形態と同様 の効果を得ることができる。また、本変形例の主導波路 43では、側面 43g及び 43hに おけるレーザ光 L1の反射回数が第 1実施形態の主導波路 4よりも多いため、レーザ 光 L1の光路を更に厳しく制限することができる。
[0066] (第 4の変形例)
次に、第 1実施形態による半導体レーザ素子アレイ 1 (半導体レーザ素子 3)の第 4 変形例について説明する。図 14は、本変形例による半導体レーザ素子 3dのリッジ部 9a、丘状部 9b、 9c、及び絶縁層 21の開口部 21bを示す平面図である。本変形例の 半導体レーザ素子 3dと第 1実施形態の半導体レーザ素子 3との相違点は、絶縁層 2 1の開口部 21bの形状である。
[0067] 本変形例の開口部 21bの一部は、リッジ部 9a上の領域 R1上に形成されている。開 口部 21bの他の一部は、丘状部 9b上においてリッジ部 9aの一端から所定の軸 Aの 方向に延びており光出射面 laと所定距離 (例えば丘状部 9bの幅の半分)だけ隔てら れてた領域 R2上に形成されている。また、開口部 21bの残りの部分は、丘状部 9c上 においてリッジ部 9aの他端力 所定の軸 Aの方向に延びており光反射面 lbと所定距 離 (例えば丘状部 9cの幅の半分)だけ隔てられてた領域 R3上に形成されて 、る。
[0068] 半導体レーザ素子 3dでは、外部力 の電流注入は、 p型キャップ層 19 (図 2参照) の開口部 21bに対応する領域にのみ限定してなされる。本変形例の半導体レーザ素 子 3dでは、開口部 21bが上記のような構成となっているので、 p型キャップ層 19への 電流注入は、リッジ部 9a上の領域 R1と、リッジ部 9aの一端力 所定の軸 Aの方向に 延びており光出射面 laから所定距離隔てられた領域 R2と、リッジ部 9aの他端力 所 定の軸 Aの方向に延びており光反射面 lbから所定距離隔てられた領域 R3とになさ れる。従って、本変形例の光路部分においては、その一部 (領域 R2及び R3に対応 する部分)のみが利得型導波路となる。そして、光路部分における領域 R2及び R3に 対応する部分以外の部分は、実質的に電流が注入されないため、いわゆる導波路を 構成しない。
[0069] 本発明による半導体レーザ素子は、第 1実施形態のように光路部分 8a、 8bの全体 が利得型導波路であってもよぐ本変形例のように、光路部分の一部のみが利得型 導波路であってもよい。また、半導体レーザ素子は、光路部分に導波路が構成され ない (すなわち、絶縁層の開口部による電流注入領域がリッジ部 9a上にのみ形成さ れる)ような構成でもよい。光路部分を利得型導波路が占める割合は、サイドピーク光 の放出効率や、半導体レーザ素子に要求される発光効率に応じて決定するとよい。
[0070] (第 5の変形例)
次に、第 1実施形態による半導体レーザ素子アレイ 1 (半導体レーザ素子 3)の第 5 変形例について説明する。図 15は、本変形例による半導体レーザ素子 3eのリッジ部 9a、並びに丘状部 9d及び 9eを示す平面図である。本変形例の半導体レーザ素子 3 eと第 1実施形態の半導体レーザ素子 3との相違点は、丘状部 9d及び 9eの形状であ る。
[0071] 本変形例の p型クラッド層 18には、凸状のリッジ部 9a及び丘状部 9d、 9eが形成さ れている。リッジ部 9aの構成は、第 1実施形態と同様である。丘状部 9dは、側面 9u及 び 9pを有する。丘状部 9dの側面 9uと対向する側面は光出射面 laであり、側面 9uは 光出射面 laに沿って延びている。側面 9uは、丘状部 9dの領域を規定しており、丘 状部 9dと薄厚部 10との境界となっている。また、丘状部 9dには光出射面 laに沿って 断続的に溝 9rが形成されており、側面 9pは溝 9rの端面である。隣り合う溝 9rそれぞ れの側面 9pは、丘状部 9dにおける電流注入領域 (すなわち絶縁層 21の開口部 21a が形成された領域)を挟んで互いに対向するように形成されて ヽる。
[0072] 丘状部 9eは、側面 9v及び 9qを有する。丘状部 9eの側面 9vと対向する側面は光反 射面 lbであり、側面 9vは光反射面 lbに沿って延びている。側面 9vは、丘状部 9eの 領域を規定しており、丘状部 9eと薄厚部 10との境界となっている。また、丘状部 9eに は光反射面 lbに沿って断続的に溝 9sが形成されており、側面 9qは溝 9sの端面であ る。隣り合う溝 9sそれぞれの側面 9qは、丘状部 9eにおける電流注入領域 (すなわち 絶縁層 21の開口部 21aが形成された領域)を挟んで互いに対向するように形成され ている。
[0073] 本変形例における光路部分の一部には、丘状部 9dの側面 9p及び丘状部 9eの側 面 9qによって、屈折率型導波路が構成される。本発明の半導体レーザ素子はこのよ うな構成であってもよぐ他の光路部分は利得型導波路となっているため所定の軸 A の方向を逸れた光を好適に放出し、サイドピーク光の共振を抑えることができる。
[0074] (第 2の実施の形態)
次に、本発明に係る半導体レーザ素子及び半導体レーザ素子アレイの第 2実施形 態について説明する。図 16は、本実施形態の半導体レーザ素子アレイが備える半 導体レーザ素子 3fの導波路構成を示す平面図である。なお、本実施形態の半導体 レーザ素子 3fは、例えば第 1実施形態の半導体レーザ素子 3と同様のリッジ型の素 子構成 (例えば図 2 (a)参照)によって好適に実現される。 [0075] 図 16を参照すると、本実施形態の半導体レーザ素子 3fは、主導波路 44及び光路 部分 81を備える。主導波路 44は、 p型クラッド層に設けられたリッジ部によって活性 層内部に生成される屈折率型の導波路である。主導波路 44は、一対の側面 44g及 び 44hを有する。側面 44g及び 44hは、光出射面 la及び光反射面 lbに対して相対 角度 Θを有する。側面 44g及び 44hの一端は光反射面 lbまで達している。光反射面 lbにお 、て側面 44g及び 44hに挟まれた領域は、レーザ光 L1の一方の共振端面で あるレーザ光反射端 14bとなる。また、本実施形態では、光出射面 laにおける他方 の共振端面であるレーザ光出射端 14aは、主導波路 44の光出射面 la側の一端を光 出射面 laに投影した領域に生じる。
[0076] また、本実施形態にぉ 、ては、主導波路 44の側面 44gは、側面 44gから光出射面 laまでの延長線 Egと光出射面 laとが主導波路 44の内側に鋭角をなすように所定の 軸 Aに対して傾斜している。また、主導波路 44の側面 44hは、側面 44hから光出射 面 laまでの延長線 Ehと光出射面 laとが主導波路 44の外側に鋭角をなすように所定 の軸 Aに対して傾斜して!/ヽる。
[0077] 光路部分 81は、 p型クラッド層に設けられたリッジ部によって活性層内部に生成さ れる屈折率型の導波路である。光路部分 81は、主導波路 44における光反射面 lbと は反対側の一端と光出射面 laとの間に設けられており、一対の側面 81c及び 81dを 有する。側面 81cの一端は主導波路 44の側面 44gの他端と繋がっており、側面 81c の他端は光出射面 laまで延びている。主導波路 44の側面 44gと光路部分 81の側 面 81cとは、主導波路 44及び光路部分 81の外側に角度 0 a (く 180° — Θ )を成し ている。換言すれば、光路部分 81の側面 81cは、光出射面 laの法線に対して角度 2 (90° ― 0 )よりも大きな相対角度を有しており、レーザ光 L1の出射方向へ向けて光 路部分 81を拡大している。また、側面 8 Idの一端は主導波路 44の側面 44hの他端 と繋がっており、側面 81dの他端は光出射面 laまで延びている。主導波路 44の側面 44hと光路部分 81の側面 81dとは、主導波路 44及び光路部分 81の外側に角度 Θ b « 180° - 0 )を成している。換言すれば、光路部分 81の側面 81dは、光出射面 1 aの法線に対して、光路部分 81が光出射面 laへ向けて拡大する方向に傾斜してい る。 [0078] 本実施形態による半導体レーザ素子 3fの作用は、次のとおりである。レーザ光反射 端 14bにおいて所定の軸 Aの方向に沿って略垂直に反射したレーザ光 L1は、主導 波路 44の側面 44hに入射角 Θで入射し、全反射する。そして、レーザ光 L1は側面 4 4gに入射角 Θで入射し、全反射する。その後、レーザ光 L1は所定の軸 Aの方向に 沿って進み、光路部分 81を通過してレーザ光出射端 14aに達する。レーザ光出射端 14aに達したレーザ光 L1の一部は、レーザ光出射端 14aを透過して外部へ出射され る。また、他のレーザ光 L1はレーザ光出射端 14aにおいて所定の軸 Aの方向に沿つ て略垂直に反射し、再び側面 44g及び 44hで全反射してレーザ光反射端 14bに戻る 。このようにして、レーザ光 L1は、レーザ光出射端 14aとレーザ光反射端 14bとの間 を往復し、共振することとなる。
[0079] また、光路部分 81の側面 81cは主導波路 44の側面 44gと角度 Θ a (く 180° - Θ )を成して 、るため、光路部分 81内部を通過する光のうち所定の軸 Aの方向から逸 れた光 L2は、光路部分 81の側面 81cに入射することなぐ光出射面 laにおけるレー ザ光出射端 14aとは異なる領域に達する。そして、光 L2の大部分は、光出射面 laを 通過して半導体レーザ素子 3fの外部へ放出され、半導体レーザ素子 3f内部におけ るレーザ発振に寄与しない。また、光出射面 laにおいて反射した光 L2も、光路部分 81の側面 81cに高入射角で入射し、側面 81cを透過するので、半導体レーザ素子 3 f内部におけるレーザ発振に寄与しない。
[0080] このように、本実施形態の半導体レーザ素子 3fでは、光路部分 81において所定の 軸 Aの方向力も逸れた光 L2が、光出射面 laにおいてレーザ光 L1の共振端面(レー ザ光出射端 14a)とは異なる領域力も放出されるように、光路部分 81の側面 81cが構 成されている。これにより、サイドピークを構成する光 L2の共振を光路部分 81におい て抑制できるので、遠視野像におけるサイドピークを効果的に低減できる。また、光 路部分 81を屈折率型導波路とすることにより、光路部分 81を設けることによる発光効 率の低下を抑えることができる。なお、本実施形態の半導体レーザ素子 3fでは光路 部分 81の側面 8 lcが光出射面 laへ向けて光路部分 81が拡大する方向に延びて!/、 る力 側面 81cは光出射面 laに沿って(すなわち Θ a = 90° )延びていてもよい。或 いは、側面 81cは、主導波路 44の側面 44gと鋭角をなして (すなわち Θ a< 90° )繋 がっていてもよい。
[0081] (第 3の実施の形態)
次に、本発明に係る半導体レーザ素子及び半導体レーザ素子アレイの第 3実施形 態について説明する。図 17は、本実施形態の半導体レーザ素子アレイが備える半 導体レーザ素子 3gの導波路構成を示す平面図である。なお、本実施形態の半導体 レーザ素子 3gは、例えば第 1実施形態の半導体レーザ素子 3と同様のリッジ型の素 子構成(図 2 (a)参照)によって好適に実現される。
[0082] 図 17を参照すると、本実施形態の半導体レーザ素子 3gは、主導波路 45及び光路 部分 82を備える。主導波路 45は、 p型クラッド層に設けられたリッジ部によって活性 層内部に生成される屈折率型の導波路である。主導波路 45は、一対の側面 45g及 び 45hを有する。側面 45g及び 45hは、光出射面 la及び光反射面 lbに対して相対 角度 Θを有する。側面 45g及び 45hの一端は光出射面 laまで達している。光出射面 laにおいて側面 45g及び 45hに挟まれた領域は、レーザ光 L1の一方の共振端面で あるレーザ光出射端 14aとなる。また、本実施形態では、光反射面 lbにおける他方 の共振端面であるレーザ光反射端 14bは、主導波路 45の光反射面 lb側の一端を 光反射面 lbに投影した領域に生じる。
[0083] また、本実施形態においては、主導波路 45の側面 45gは、側面 45gから光反射面 lbまでの延長線 Fgと光反射面 lbとが主導波路 45の外側に鋭角をなすように所定の 軸 Aに対して傾斜している。また、主導波路 45の側面 45hは、側面 45hから光反射 面 lbまでの延長線 Fhと光反射面 lbとが主導波路 45の内側に鋭角をなすように所 定の軸 Aに対して傾斜して 、る。
[0084] 光路部分 82は、 p型クラッド層に設けられたリッジ部によって活性層内部に生成さ れる屈折率型の導波路である。光路部分 82は、主導波路 45における光出射面 laと は反対側の一端と光反射面 lbとの間に設けられており、一対の側面 82c及び 82dを 有する。側面 82cの一端は主導波路 45の側面 45gの他端と繋がっており、側面 82c の他端は光反射面 lbまで延びている。主導波路 45の側面 45gと光路部分 82の側 面 82cとは、主導波路 45及び光路部分 82の外側に角度 Θ d « 180° - Θ )を成し ている。換言すれば、光路部分 82の側面 82cは、光反射面 lbの法線に対して、光 路部分 82が光反射面 lbへ向けて拡大する方向に傾斜している。また、側面 82dの 一端は主導波路 45の側面 45hの他端と繋がっており、側面 82dの他端は光反射面 lbまで延びている。主導波路 45の側面 45hと光路部分 82の側面 82dとは、主導波 路 45及び光路部分 82の外側に角度 0 e (く 180° — 0 )を成している。換言すれば 、光路部分 82の側面 82dは、光反射面 lbの法線に対して角度 2 (90° — Θ )よりも 大きな相対角度を有しており、光反射面 lbへ向けて光路部分 82を拡大して 、る。
[0085] 本実施形態による半導体レーザ素子 3gの作用は、次のとおりである。レーザ光反 射端 14bにおいて所定の軸 Aの方向に沿って略垂直に反射したレーザ光 L1は、光 路部分 82を通過して主導波路 45の側面 45hに入射角 Θで入射し、全反射する。そ して、レーザ光 L1は側面 45gに入射角 Θで入射し、全反射する。その後、レーザ光 L1は所定の軸 Aの方向に沿って進み、レーザ光出射端 14aに達する。レーザ光出 射端 14aに達したレーザ光 L1の一部は、レーザ光出射端 14aを透過して外部へ出 射される。また、他のレーザ光 L1はレーザ光出射端 14aにおいて所定の軸 Aの方向 に沿って略垂直に反射し、再び側面 45g及び 45hで全反射してレーザ光反射端 14 bに戻る。このようにして、レーザ光 L1は、レーザ光出射端 14aとレーザ光反射端 14 bとの間を往復し、共振することとなる。
[0086] また、光路部分 82の側面 82dは主導波路 45の側面 45hと角度 0 e (< 180° - Θ )を成して 、るため、光路部分 82内部を通過する光のうち所定の軸 Aの方向から逸 れた光 L3は、光路部分 82の側面 82dに入射することなぐ光反射面 lbにおけるレー ザ光反射端 14bとは異なる領域に達する。そして、光 L3の大部分は、光反射面 lbを 通過して半導体レーザ素子 3gの外部へ放出され、半導体レーザ素子 3g内部におけ るレーザ発振に寄与しない。また、光反射面 lbにおいて反射した光 L3も、光路部分 82の側面 82dに低入射角で入射し、側面 82dを透過するので、半導体レーザ素子 3 g内部におけるレーザ発振に寄与しない。
[0087] このように、本実施形態の半導体レーザ素子 3gでは、光路部分 82にお 、て所定の 軸 Aの方向力も逸れた光 L3が、光反射面 lbにおいてレーザ光 L1の共振端面(レー ザ光反射端 14b)とは異なる領域力も放出されるように、光路部分 82の側面 82dが構 成されている。これにより、サイドピークを構成する光 L3の共振を光路部分 82におい て抑制できるので、遠視野像におけるサイドピークを効果的に低減できる。なお、第 2 実施形態の光路部分 81、及び本実施形態の光路部分 82は、いずれか一方のみ設 けられてもよく、双方共に設けられてもよい。
[0088] (第 4の実施の形態)
次に、本発明による半導体レーザ素子アレイの第 4実施形態について説明する。図 18は、本実施形態による半導体レーザ素子アレイ lcの導波路構成を示す平面図で ある。半導体レーザ素子アレイ lcは、複数の半導体レーザ素子 3hを備える。なお、 本実施形態の半導体レーザ素子 3hは、例えば第 1実施形態の半導体レーザ素子 3 と同様のリッジ型の素子構成(図 2 (a)参照)によって好適に実現される。
[0089] 図 18を参照すると、本実施形態の半導体レーザ素子 3hは、主導波路 46及び光路 部分 83を備える。主導波路 46は、 p型クラッド層に設けられたリッジ部によって活性 層内部に生成される屈折率型の導波路である。主導波路 46は、一対の側面 46g及 び 46hを有する。側面 46g及び 46hは、光出射面 la及び光反射面 lbに対して相対 角度 Θを有する。側面 46g及び 46hの一端は光反射面 lbまで達している。光反射面 lbにおいて側面 46g及び 46hに挟まれた領域は、レーザ光 L1の一方の共振端面で あるレーザ光反射端 14bとなる。また、本実施形態では、光出射面 laにおける他方 の共振端面であるレーザ光出射端 14aは、主導波路 46の光出射面 la側の一端を光 出射面 laに投影した領域に生じる。
[0090] 光路部分 83は、主導波路 46における光反射面 lbとは反対側の一端と光出射面 1 aとの間にわたって設けられており、一対の側面 83c及び 83dによってその一部が屈 折率型導波路を構成している。側面 83cの一端は、主導波路 46の側面 46gの他端と 繋がっている。側面 83cの他端は、光反射面 lbに向けて延びており、光反射面 lbと は所定距離隔たっている。なお、本実施形態では、光出射面 laに対する光路部分 8 3の側面 83cの相対角度は、主導波路 46の側面 46gと同じ相対角度 Θとなっている 。また、光路部分 83の側面 83dの一端は主導波路 46の側面 46hの他端と繋がって いる。側面 83dの他端は、光反射面 lbに向けて延びており、光反射面 lbとは所定距 離隔たつている。本実施形態では、側面 83dは、光路部分 83が光出射面 laへ向け て拡がる方向に延びており、その他端は、隣りの光路部分 83の側面 83cの他端と繋 力 ている。従って、複数の半導体レーザ素子 3hのうち、隣り合う半導体レーザ素子 3hの光路部分 83同士力 光出射面 la付近で互いに繋がり一体となっている。
[0091] 本発明による半導体レーザ素子アレイ及び半導体レーザ素子は、本実施形態の半 導体レーザ素子アレイ lc及び半導体レーザ素子 3hのような構成によっても、好適に 実現される。すなわち、光路部分 83において所定の軸 Aの方向から逸れた光は、光 路部分 83同士が繋がって 、る部分 (すなわち導波路側面が存在しな 、部分)力 レ 一ザ光出射端 14aとは異なる領域を通って外部へ放出され、共振しない。本発明に よる半導体レーザ素子アレイ及び半導体レーザ素子では、半導体レーザ素子 3hの ように光路部分 83の一部が導波路構造となっていなくても、必要な長さの主導波路 4 6を備えていればよい。なお、主導波路 46に必要な長さ yは、主導波路 46の幅を Wと して y≥WZtan (90° — 0 )と表すことができる。
[0092] (第 5の実施の形態)
続 、て、本発明による半導体レーザ素子(半導体レーザ素子アレイ)の第 5実施形 態について説明する。図 19は、本実施形態による半導体レーザ素子アレイの構成の 一部を示す断面図である。なお、図 19に示す断面は、第 1実施形態の半導体レーザ 素子アレイ 1における I I断面(図 1参照)に相当する断面であり、主導波路の断面を 示している。
[0093] 本実施形態の半導体レーザ素子アレイは、複数の半導体レーザ素子 3iを備える。
半導体レーザ素子 3iは、 n型半導体からなる基板 11、 n型クラッド層(第 2導電型クラ ッド層) 31、光ガイド層 32、多重量子井戸構造の活性層 33、光ガイド層 34、 p型クラ ッド層(第 1導電型クラッド層) 35、及び p型キャップ層 36が順に積層されて構成され ている。光ガイド層 32及び 34は、活性層 33内部及びその近傍に光を閉じ込めるた めの層である。光ガイド層 34及び p型クラッド層 35は、凸状のリッジ部 39を構成して いる。リッジ部 39の平面形状は、第 1実施形態のリッジ部 9aと同様である。光ガイド層 34のリッジ部 39以外の領域は、リッジ部 39よりも薄い薄厚部 34aとなっている。また、 p型キャップ層 36は、リッジ部 39上に設けられており、 p型クラッド層 35と電気的に接 続される。
[0094] また、半導体レーザ素子 3iは、電流ブロック部 37a及び 37b、 p側電極層 38、及び n 側電極層 29を更に備える。このうち、 n側電極層 29の構成は上記第 1実施形態と同 様である。電流ブロック部 37a及び 37bは、リッジ部 39に電流を集中的に流すための 部分である。電流ブロック部 37a及び 37bは、例えば p型クラッド層 35とは反対導電 型の半導体や、或いは絶縁性材料によって構成される。電流ブロック部 37a及び 37 bは、それぞれリッジ部 39の側面 39g及び 39hに沿って薄厚部 34a上に設けられる。 P側電極層 38は、リッジ部 39上及び電流ブロック部 37a、 37b上にわたって設けられ ており、リッジ部 39上において p型キャップ層 36と接触している。
[0095] 活性層 33には、リッジ部 39による実効的な屈折率差が生じることにより、リッジ部 39 の形状に対応した屈折率型の主導波路 30が生成される。主導波路 30の側面 30g及 び 30hと光出射面 la及び光反射面 lb (図 1参照)との相対角度は、側面 30g及び 30 hにおける全反射臨界角 Θ cに基づいて決定される。本実施形態において、全反射 臨界角 Θ cは、電流ブロック部 37a及び 37bの材料組成に依存する。すなわち、電流 ブロック部 37a及び 37bの材料組成を変化させると、電流ブロック部 37a及び 37bの 屈折率が変化する。従って、側面 30g及び 30hにおける実効的な屈折率差が変化 するので、全反射臨界角 Θ cが変化することとなる。なお、主導波路 30の側面 30g及 び 30hは、主導波路 30内外の屈折率差によって生じる面であり、屈折率が連続的に 変化して 、る場合には或る一定の厚さを有してもょ 、。
[0096] 本発明に係る屈折率型の主導波路は、第 1実施形態のようなリッジ型の構成に限ら ず、本実施形態の半導体レーザ素子 3iのような構成でも好適に実現することができる 。また、本発明に係る光路部分にも屈折率型導波路を構成する場合には、図 19に示 したような断面構成を光路部分の周辺構造にも適用するとよい。
[0097] (第 6の実施の形態)
続 、て、本発明による半導体レーザ素子(半導体レーザ素子アレイ)の第 6実施形 態について説明する。図 20は、本実施形態による半導体レーザ素子アレイの構成の 一部を示す断面図である。本実施形態の半導体レーザ素子アレイは、いわゆる埋め 込みへテロ構造を有する複数の半導体レーザ素子 ¾によって構成されて 、る。
[0098] 図 20を参照すると、本実施形態の半導体レーザ素子 ¾は、 n型半導体からなる基 板 11を備える。また、半導体レーザ素子 ¾は、 n型クラッド層 71、光ガイド層 72、活 性層 73、光ガイド層 74、 p型クラッド層 75、及び p型キャップ層 76を備える。これらの 層は、順に基板 11上に積層されており、積層体 79を構成している。積層体 79は、第 1実施形態のリッジ部 9aの平面形状と同様の平面形状を有する。積層体 79は、一対 の側面 79g及び 79hを有する。活性層 73は、積層体 79の側面 79g及び 79hにそれ ぞれ含まれる側面 73g及び 73hを有する。
[0099] また、半導体レーザ素子 3jは、電流ブロック部 77a及び 77bと、 p側電極層 78と、 n 側電極層 29とを備える。このうち、 n側電極層 29の構成は上記第 1実施形態と同様 である。電流ブロック部 77a及び 77bは、活性層 73へ電流を狭窄して流すための部 分である。電流ブロック部 77a及び 77bは、例えばアンドープの半導体材料、或いは 絶縁性材料によって構成される。電流ブロック部 77aは、積層体 79の側面 79gに沿 つて (すなわち活性層 73の側面 73gに沿って)、基板 11上に設けられる。また、電流 ブロック部 77bは、積層体 79の側面 79hに沿って(すなわち活性層 73の側面 73hに 沿って)、基板 11上に設けられる。 p側電極層 78は、積層体 79上、電流ブロック部 7 7a上、及び電流ブロック部 77b上にわたって設けられており、積層体 79上において p 型キャップ層 76と接触している。
[0100] 活性層 73には、側面 73g及び 73hにおいて活性層内外に屈折率差が生じることに より、主導波路 70が形成される。主導波路 70は、活性層 73の側面 73g及び 73hの それぞれによって規定される一対の側面 70g及び 70hを有する。主導波路 70の側 面 70g及び 70hと光出射面 la及び光反射面 lbとの相対角度 Θ (すなわち活性層 73 の側面 73g及び 73hと光出射面 la及び光反射面 lbとの相対角度 Θ )は、側面 70g 及び 70hにおける全反射臨界角 Θ cに基づいて決定される。本実施形態において、 全反射臨界角 Θ cは、電流ブロック部 77a及び 77bと活性層 73との屈折率差に依存 する。この屈折率差は、例えば電流ブロック部 77a及び 77bの材料組成を調整するこ とによって任意に設定することができる。
[0101] 本発明に係る屈折率型の主導波路は、本実施形態の半導体レーザ素子 ¾のような 埋め込み型の構成でも好適に実現することができる。また、本発明に係る光路部分 にも屈折率型導波路を構成する場合には、図 20に示したような断面構成を光路部 分の周辺構造にも適用するとよ ヽ。 [0102] (第 7の実施の形態)
次に、本発明による半導体レーザ素子アレイの第 7実施形態について説明する。図 21は、本実施形態による半導体レーザ素子アレイの構成の一部を示す断面図であ る。本実施形態の半導体レーザ素子アレイは、複数の半導体レーザ素子 3kを備える 。半導体レーザ素子 3kは、第 2の半導体部 61を備える。第 2の半導体部 61は、 n型 半導体からなる基板 51と、基板 51上に積層された n型クラッド層 52と、 n型クラッド層 52上に積層された光ガイド層 53とを含んで構成されている。また、第 2の半導体部 6 1は、光ガイド層 53の表面に主面 61cを有する。
[0103] また、第 2の半導体部 61は、凸状のリッジ部 61aを有する。リッジ部 61aは、第 1実 施形態のリッジ部 9a (図 3参照)と同様の平面形状を有する。リッジ部 61aは、主面 61 cを分割する位置に形成されている。リッジ部 61aは、主面 61cとリッジ部 61aとの境 界となる一対の側面 6 lg及び 6 lhを有する。
[0104] また、半導体レーザ素子 3kは、第 1の半導体部 60と、第 1の半導体部 60及び第 2 の半導体部 61の間に位置する活性層 54と、 p型キャップ層 57とを備える。第 1の半 導体部 60は、光ガイド層 55及び p型クラッド層 56を含んで構成される。活性層 54、 光ガイド層 55、 p型クラッド層 56、及び p型キャップ層 57は、リッジ部 61a上を含む第 2の半導体部 61上に順に積層される。
[0105] また、半導体レーザ素子 3kは、絶縁膜 58、 p側電極層 59、及び n側電極層 64を備 える。 p側電極層 59は p型キャップ層 57上に設けられており、絶縁膜 58は p側電極層 59と p型キャップ層 57との間に設けられている。絶縁膜 58には、第 2の半導体部 61 のリッジ部 61aに対応する領域に開口部 58aが形成されており、開口部 58aを介して P側電極層 59と p型キャップ層 57とが互いに接触している。また、絶縁膜 58の開口部 58aに対応する p型クラッド層 56の領域は、 Znが拡散されて低抵抗領域 56aとなって いる。開口部 58a及び低抵抗領域 56aは、活性層 54におけるリッジ部 61a上の領域 に電流を集中させるための手段である。 n側電極層 64は、主面 61cとは反対側の基 板 51の面上に設けられている。
[0106] 活性層 54には、絶縁膜 58の開口部 58aに対応する領域 (すなわち、リッジ部 61a に対応する領域)〖こ集中的に電流が流れることにより、リッジ部 6 laの形状に対応した 屈折率型の主導波路 50が生成される。主導波路 50は、一対の側面 50g及び 50hを 有する。主導波路 50の側面 50g及び 50hは、活性層 54を覆う光ガイド層 55及び p型 クラッド層 56と活性層 54との屈折率差によって生じる面であり、その平面形状がリツ ジ部 6 laの側面 6 lg及び 6 lhにより規定される。なお、光ガイド層 55及び p型クラッド 層 56の屈折率が連続的に変化している場合には、主導波路 50の側面 50g及び 50h は或る一定の厚さを有してもょ 、。
[0107] 主導波路 50の側面 50g及び 50hと光出射面 la及び光反射面 lb (図 1参照)との相 対角度 Θは、側面 50g及び 50hにおける全反射臨界角 Θ cに基づいて決定される。 本実施形態において、側面 50g及び 50hにおける全反射臨界角 Θ cは、側面 50g及 び 50hに対応するリッジ部 61aの側面 61g及び 61hそれぞれの高さ haに依存する。 また、主導波路 50の側面 50g及び 50hにおける全反射臨界角 Θ cは、リッジ部 61a 上の光ガイド層 55及び n型クラッド層 56の材料組成にも依存する。従って、リッジ部 6 laの側面 6 lg及び 6 lhそれぞれの高さ ha、または光ガイド層 55及び n型クラッド層 5 6の材料組成を調整することにより、側面 50g及び 50hにおける全反射臨界角 Θ cを 調整することができる。
[0108] 本発明に係る屈折率型の主導波路は、本実施形態の半導体レーザ素子 3kのよう な構成でも好適に実現することができる。また、本発明に係る光路部分にも屈折率型 導波路を構成する場合には、図 21に示したような断面構成を光路部分の周辺構造 にも適用するとよい。
[0109] 図 22は、半導体レーザ素子 3kの変形例として、半導体レーザ素子 31の構成を示 す断面図である。本変形例の半導体レーザ素子 31が上記実施形態の半導体レーザ 素子 3kと異なる点は、電流集中手段の構成である。本変形例の半導体レーザ素子 3 1は、上記実施形態の絶縁膜 58を備えておらず、 p型クラッド層 56に低抵抗領域 56a も形成されていない。本変形例の半導体レーザ素子 31では、これらの電流集中手段 に代えて、高抵抗領域 63が形成されている。高抵抗領域 63は、第 1の半導体部 60 のうち、リッジ部 6 la上を除く領域の p型キャップ層 57側に形成されている。高抵抗領 域 63は、例えば第 1の半導体部 60にプロトンを注入することにより形成される。本変 形例の半導体レーザ素子 31では、電流集中手段である高抵抗領域 63がリッジ部 61 a上の活性層 54の領域に電流を集中させることによって、活性層 54に主導波路 50 が生成される。
[0110] 本変形例の半導体レーザ素子 31では、上記実施形態の半導体レーザ素子 3kと同 様に、主導波路 50の側面 50g及び 50hの全反射臨界角 Θ cは、リッジ部 6 laの側面 61g及び 61hの高さ haに依存する。また、主導波路 50の側面 50g及び 50hの全反 射臨界角 Θ cは、光ガイド層 55及び n型クラッド層 56の材料組成にも依存する。
[0111] また、本実施形態においては、主導波路 50の側面 50g及び 50hの全反射臨界角
Θ cは、高抵抗領域 63と活性層 54との間隔にも依存する。高抵抗領域 63と活性層 5 4との間隔は、例えば第 1の半導体部 60に対するプロトンの打ち込み深さを制御する こと〖こよって調整することができる。
[0112] 本発明による半導体レーザ素子及び半導体レーザ素子アレイは、上記各実施形態 及び変形例に限られるものではなぐ他に様々な変形が可能である。例えば、上記各 実施形態においてリッジ型や埋め込みヘテロ型などの半導体レーザ素子構造を示し たが、本発明はこれらの構造に限られるものではなぐ屈折率型の導波路を有する半 導体レーザ素子及び半導体レーザ素子アレイであれば適用できる。また、上記各実 施形態では GaAs系半導体レーザ素子を例示した力 本発明の構成は、 GaN系や I nP系など、他の材料系の半導体レーザ素子にも適用できる。
[0113] ここで、半導体レーザ素子は、第 1導電型クラッド層と、第 2導電型クラッド層と、第 1 導電型クラッド層と第 2導電型クラッド層との間に設けられた活性層と、所定の軸方向 に並んで設けられ、互いに対向する光出射面及び光反射面と、活性層において構 成され、一対の側面を有し、光出射面と光反射面との間でレーザ光を共振させる屈 折率型の主導波路と、光出射面と主導波路の一端との間、及び光反射面と主導波 路の他端との間のうち少なくとも一方に設けられた光路部分とを備え、主導波路の一 対の側面と光出射面及び光反射面との相対角度 Θがー対の側面における全反射臨 界角 Θ cに基づいており、光路部分において所定の軸方向から逸れた光が、光出射 面及び光反射面のうち少なくとも一方の面においてレーザ光の共振端面とは異なる 領域力も放出されるように、光路部分が構成されて 、ることが好ま 、。
[0114] また、半導体レーザ素子は、光路部分が、光出射面と主導波路の一端との間に設 けられていることとしてもよい。これにより、サイドピーク光の共振を効果的に抑制する ことができる。
[0115] また、半導体レーザ素子は、光路部分の少なくとも一部が、活性層において構成さ れた利得型導波路であることとしてもよい。利得型導波路の側面では、屈折率型導 波路である主導波路の側面よりも光の閉じ込めが緩やかなので、光路部分を通過す る光のうち所定の軸方向力 逸れたサイドピーク光は、光路部分 (利得型導波路)の 側面から、光出射面または光反射面における共振端面とは異なる領域を経て素子外 部へ放出され易くなる。従って、この半導体レーザ素子によれば、光出射面及び光 反射面のうち少なくとも一方の面においてレーザ光の共振端面とは異なる領域から サイドピーク光が放出されるように、光路部分を構成することができる。また、光路部 分の少なくとも一部を利得型導波路とすることにより、光路部分を設けることによる発 光効率の低下を抑えることができる。
[0116] また、半導体レーザ素子は、光路部分が、光出射面と主導波路の一端との間に設 けられて屈折率型導波路を構成する一対の側面を有しており、主導波路の一対の側 面のうち、光出射面までの延長線と光出射面とが主導波路の内側に鋭角をなす側の 側面と、この側面と同じ側に位置する光路部分の側面とが、主導波路及び光路部分 の外側に 180° — 0より小さな角度を成していることとしてもよい。
[0117] また、半導体レーザ素子は、光路部分が、光反射面と主導波路の他端との間に設 けられて屈折率型導波路を構成する一対の側面を有しており、主導波路の一対の側 面のうち、光反射面までの延長線と光反射面とが主導波路の内側に鋭角をなす側の 側面と、この側面と同じ側に位置する光路部分の側面とが、主導波路及び光路部分 の外側に 180° — 0より小さな角度を成していることとしてもよい。
[0118] これらの半導体レーザ素子では、光路部分を通過する光のうち所定の軸方向から 逸れたサイドピーク光が光路部分における屈折率型導波路の側面へ入射せずに直 接光出射面または光反射面に達するように、光路部分における屈折率型導波路の 側面の角度が設定されている。そして、光出射面または光反射面に達したサイドピー ク光の大部分は、光出射面または光入射面を透過して半導体レーザ素子の外部へ 放出され、レーザ発振には寄与しない。従って、これらの半導体レーザ素子によれば 、光路部分における屈折率型導波路の側面の角度が上記のように設定されることに よって、光出射面及び光反射面のうち少なくとも一方の面においてレーザ光の共振 端面とは異なる領域力 サイドピーク光が放出されるように、光路部分を構成すること ができる。
[0119] また、半導体レーザ素子は、光出射面と光反射面との間で主導波路内を共振する 光が主導波路の一対の側面のそれぞれにおいて同じ回数反射するように、主導波 路の長さ及び一対の側面同士の間隔が設定されて 、ることとしてもよ 、。このように、 共振する光が主導波路の一対の側面のそれぞれにおいて同じ回数反射 (全反射) することによって、共振する光は光反射面及び光出射面の双方にぉ 、て所定の軸方 向に沿って好適に入射 Z反射することができる。また、共振する光を主導波路の一 対の側面にぉ 、て少なくとも 1回ずつ全反射させることにより、主導波路内にお 、て 光出射面と光反射面とを直線で結ぶような光路の発生を抑制できる。従って、この半 導体レーザ素子によれば、主導波路内のレーザ光の光路を好適に制限することがで きる。
[0120] また、半導体レーザ素子は、主導波路の側面と光出射面及び光反射面との相対角 度 0力 θ ο≤ θ ≤ 6 c + l° の範囲内であることとしてもよい。これによつて、共振す るレーザ光の光路を好適に限定することができるので、より単一モードに近いレーザ 発振を得ることができる。
[0121] また、半導体レーザ素子は、主導波路の側面と光出射面及び光反射面との相対角 度 Θ力 主導波路の側面における全反射臨界角 Θ cと略一致していることとしてもよ い。これによつて、レーザ発振のモードをほぼ単一とすることができる。
[0122] また、半導体レーザ素子アレイは、上記した!/、ずれかの半導体レーザ素子を複数 備え、複数の半導体レーザ素子が、所定の軸方向と交差する方向に並んで配置され て一体に形成されていることが好ましい。この半導体レーザ素子アレイによれば、上 述したいずれかの半導体レーザ素子を複数備えることによって、大きな強度のレーザ 光を出射できるとともに、遠視野像におけるサイドピークを低減できる。
産業上の利用可能性
[0123] 本発明は、比較的大きな強度のレーザ光を出射可能であって、サイドピークを低減 できる半導体レーザ素子、及び半導体レーザ素子アレイとして利用可能である。

Claims

請求の範囲
第 1導電型クラッド層と、
第 2導電型クラッド層と、
前記第 1導電型クラッド層と前記第 2導電型クラッド層との間に設けられた活性層と 所定の軸方向に並んで設けられ、互いに対向する光出射面及び光反射面と、 前記活性層において構成され、一対の側面を有し、前記光出射面と前記光反射面 との間でレーザ光を共振させる屈折率型の主導波路と、
前記光出射面と前記主導波路の一端との間、及び前記光反射面と前記主導波路 の他端との間のうち少なくとも一方に設けられた光路部分と
を備え、
前記主導波路の前記一対の側面と前記光出射面及び前記光反射面との相対角度 Θが前記一対の側面における全反射臨界角 Θ cに基づいており、
前記光路部分において前記所定の軸方向から逸れた光が、前記光出射面及び前 記光反射面のうち少なくとも一方の面において前記レーザ光の共振端面とは異なる 領域カゝら放出されるように、前記光路部分が構成されていることを特徴とする、半導 体レーザ素子。
前記光路部分が、前記光出射面と前記主導波路の一端との間に設けられているこ とを特徴とする、請求項 1に記載の半導体レーザ素子。
前記光路部分の少なくとも一部が、前記活性層において構成された利得型導波路 であることを特徴とする、請求項 1または 2に記載の半導体レーザ素子。
前記光路部分が、前記光出射面と前記主導波路の一端との間に設けられて屈折 率型導波路を構成する一対の側面を有しており、
前記主導波路の前記一対の側面のうち、前記光出射面までの延長線と前記光出 射面とが前記主導波路の内側に鋭角をなす側の前記側面と、この側面と同じ側に位 置する前記光路部分の前記側面とが、前記主導波路及び前記光路部分の外側に 1 80° ― Θより小さな角度を成していることを特徴とする、請求項 1または 2に記載の半 導体レーザ素子。 [5] 前記光路部分が、前記光反射面と前記主導波路の他端との間に設けられて屈折 率型導波路を構成する一対の側面を有しており、
前記主導波路の前記一対の側面のうち、前記光反射面までの延長線と前記光反 射面とが前記主導波路の内側に鋭角をなす側の前記側面と、この側面と同じ側に位 置する前記光路部分の前記側面とが、前記主導波路及び前記光路部分の外側に 1
80° - Θより小さな角度を成していることを特徴とする、請求項 1〜4のいずれか一 項に記載の半導体レーザ素子。
[6] 前記光出射面と前記光反射面との間で前記主導波路内を共振する光が前記主導 波路の前記一対の側面のそれぞれにおいて同じ回数反射するように、前記主導波 路の長さ及び前記一対の側面同士の間隔が設定されていることを特徴とする、請求 項 1〜5のいずれか一項に記載の半導体レーザ素子。
[7] 前記主導波路の前記側面と前記光出射面及び前記光反射面との相対角度 Θが、 θ ο≤ θ ≤ 6 c + l° の範囲内であることを特徴とする、請求項 1〜6のいずれか一項 に記載の半導体レーザ素子。
[8] 前記主導波路の前記側面と前記光出射面及び前記光反射面との相対角度 Θが、 前記主導波路の前記側面における全反射臨界角 Θ cと略一致していることを特徴と する、請求項 1〜6のいずれか一項に記載の半導体レーザ素子。
[9] 請求項 1〜8のいずれか一項に記載の半導体レーザ素子を複数備え、
前記複数の半導体レーザ素子が、前記所定の軸方向と交差する方向に並んで配 置されて一体に形成されていることを特徴とする、半導体レーザ素子アレイ。
PCT/JP2005/014321 2004-08-05 2005-08-04 半導体レーザ素子及び半導体レーザ素子アレイ WO2006013935A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05768928A EP1811618A4 (en) 2004-08-05 2005-08-04 SEMICONDUCTOR LASER DEVICE AND MATRIX OF SEMICONDUCTOR LASER DEVICES
US11/659,198 US7885305B2 (en) 2004-08-05 2005-08-04 Semiconductor laser device and semiconductor laser device array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-229858 2004-08-05
JP2004229858A JP2006049650A (ja) 2004-08-05 2004-08-05 半導体レーザ素子及び半導体レーザ素子アレイ

Publications (1)

Publication Number Publication Date
WO2006013935A1 true WO2006013935A1 (ja) 2006-02-09

Family

ID=35787214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014321 WO2006013935A1 (ja) 2004-08-05 2005-08-04 半導体レーザ素子及び半導体レーザ素子アレイ

Country Status (4)

Country Link
US (1) US7885305B2 (ja)
EP (1) EP1811618A4 (ja)
JP (1) JP2006049650A (ja)
WO (1) WO2006013935A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3878868B2 (ja) 2002-03-01 2007-02-07 シャープ株式会社 GaN系レーザ素子
WO2007040108A1 (ja) * 2005-09-30 2007-04-12 Anritsu Corporation 半導体光素子および半導体光素子を搭載した外部共振レーザ
JP5715332B2 (ja) * 2009-08-31 2015-05-07 株式会社東芝 半導体発光素子
KR101754280B1 (ko) * 2011-05-04 2017-07-07 한국전자통신연구원 반도체 광 소자 및 그 제조 방법
CN102263375B (zh) * 2011-06-20 2013-07-03 中国电子科技集团公司第十三研究所 实现大角度均匀照射的半导体激光器及光场拼接方法
DE102011111604B4 (de) * 2011-08-25 2023-01-19 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Strahlungsemittierendes Halbleiterbauelement
WO2013115179A1 (ja) * 2012-01-30 2013-08-08 古河電気工業株式会社 半導体光素子、集積型半導体光素子および半導体光素子モジュール
JP5403305B2 (ja) * 2013-01-23 2014-01-29 セイコーエプソン株式会社 発光装置
JPWO2016006409A1 (ja) * 2014-07-09 2017-04-27 凸版印刷株式会社 液剤注入装置
WO2016129618A1 (ja) 2015-02-12 2016-08-18 古河電気工業株式会社 半導体レーザ素子およびレーザ光照射装置
WO2021148121A1 (en) * 2020-01-23 2021-07-29 Huawei Technologies Co., Ltd. Dfb laser with angled central waveguide section
CN114488395A (zh) * 2020-10-27 2022-05-13 南京中兴软件有限责任公司 光电印制电路板及参数确定方法、电子设备、存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511400A (en) * 1978-07-03 1980-01-26 Xerox Corp Injection laser
JPH02214181A (ja) * 1989-02-14 1990-08-27 Mitsubishi Electric Corp 半導体レーザ装置
JPH0448792A (ja) * 1990-06-15 1992-02-18 Anritsu Corp 窓領域を有する半導体能動光素子
JPH04243216A (ja) * 1991-01-17 1992-08-31 Nec Corp 光導波路の製造方法ならびに光集積素子及びその製造方法
JPH0527130A (ja) * 1990-12-07 1993-02-05 Nippon Telegr & Teleph Corp <Ntt> 光導波路デバイス
JPH05501938A (ja) * 1989-11-13 1993-04-08 ベル コミュニケーションズ リサーチ インコーポレーテッド 傾斜ファセット付きテーパ状導波路の進行波レーザ増幅器
JPH08211342A (ja) * 1995-02-03 1996-08-20 Hitachi Ltd 半導体光機能素子
JPH09307181A (ja) * 1996-05-20 1997-11-28 Hitachi Ltd 半導体レーザ装置
JPH1041582A (ja) 1996-07-24 1998-02-13 Sony Corp 光導波路型半導体レーザ装置
JP2001185810A (ja) * 1999-12-24 2001-07-06 Mitsubishi Chemicals Corp 半導体光デバイス装置及びその製造方法
JP2004214226A (ja) * 2002-12-26 2004-07-29 Toshiba Corp 半導体レーザ装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821277A (en) * 1987-04-20 1989-04-11 General Electric Company Super-luminescent diode
US4958355A (en) * 1989-03-29 1990-09-18 Rca Inc. High performance angled stripe superluminescent diode
WO2000048277A1 (de) 1999-02-09 2000-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Resonatoranordnung mit mindestens zwei faltungselementen
US6542529B1 (en) * 2000-02-01 2003-04-01 Jds Uniphase Corporation Folded cavity, broad area laser source
US6804281B1 (en) * 2001-01-23 2004-10-12 James N. Walpole Large modal volume semiconductor laser system with spatial mode filter
JP3878868B2 (ja) * 2002-03-01 2007-02-07 シャープ株式会社 GaN系レーザ素子
JP4634081B2 (ja) * 2004-03-04 2011-02-16 浜松ホトニクス株式会社 半導体レーザ素子及び半導体レーザ素子アレイ
JP4243216B2 (ja) 2004-04-26 2009-03-25 京セラ株式会社 ウェハ支持部材

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511400A (en) * 1978-07-03 1980-01-26 Xerox Corp Injection laser
JPH02214181A (ja) * 1989-02-14 1990-08-27 Mitsubishi Electric Corp 半導体レーザ装置
JPH05501938A (ja) * 1989-11-13 1993-04-08 ベル コミュニケーションズ リサーチ インコーポレーテッド 傾斜ファセット付きテーパ状導波路の進行波レーザ増幅器
JPH0448792A (ja) * 1990-06-15 1992-02-18 Anritsu Corp 窓領域を有する半導体能動光素子
JPH0527130A (ja) * 1990-12-07 1993-02-05 Nippon Telegr & Teleph Corp <Ntt> 光導波路デバイス
JPH04243216A (ja) * 1991-01-17 1992-08-31 Nec Corp 光導波路の製造方法ならびに光集積素子及びその製造方法
JPH08211342A (ja) * 1995-02-03 1996-08-20 Hitachi Ltd 半導体光機能素子
JPH09307181A (ja) * 1996-05-20 1997-11-28 Hitachi Ltd 半導体レーザ装置
JPH1041582A (ja) 1996-07-24 1998-02-13 Sony Corp 光導波路型半導体レーザ装置
JP2001185810A (ja) * 1999-12-24 2001-07-06 Mitsubishi Chemicals Corp 半導体光デバイス装置及びその製造方法
JP2004214226A (ja) * 2002-12-26 2004-07-29 Toshiba Corp 半導体レーザ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1811618A4

Also Published As

Publication number Publication date
US20090022194A1 (en) 2009-01-22
US7885305B2 (en) 2011-02-08
EP1811618A4 (en) 2010-02-24
JP2006049650A (ja) 2006-02-16
EP1811618A1 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
WO2006013935A1 (ja) 半導体レーザ素子及び半導体レーザ素子アレイ
CA2338106C (en) High power laterally antiguided semiconductor light source with reduced transverse optical confinement
CA1325670C (en) Combination index/gain guided semiconductor lasers
JP4817255B2 (ja) 光半導体素子及びその製造方法
WO2005086303A1 (ja) 半導体レーザ素子及び半導体レーザ素子アレイ
US6650672B2 (en) Semiconductor laser element having excellent light confinement effect and method for producing the semiconductor laser element
JPH1012959A (ja) 半導体発光素子、発光素子モジュールおよび半導体発光素子の製造方法
CN101019284A (zh) 半导体激光元件及半导体激光元件阵列
EP1413016B1 (en) Curved waveguide ring laser
JPH084187B2 (ja) 半導体レーザ
CN105703217A (zh) 多喇叭形激光振荡器波导
JPS5940592A (ja) 半導体レ−ザ素子
JP2011124521A (ja) 半導体レーザおよびその製造方法
JP2000509913A (ja) レーザ装置
JP2012533878A (ja) マルチビームコヒーレントレーザ放射のダイオード光源
JPH0542148B2 (ja)
JP2003218462A (ja) 分布帰還型半導体レーザ装置
JP2515729B2 (ja) 半導体レ−ザ装置
JP4545502B2 (ja) 半導体レーザ素子及び半導体レーザ素子アレイ
WO2006001339A1 (ja) 半導体レーザ素子及び半導体レーザ素子アレイ
JP2006093614A (ja) 半導体レーザ素子及び半導体レーザ素子アレイ
JP2009177058A (ja) 半導体レーザ装置
JPH0316192A (ja) 半導体レーザ
CN115864135A (zh) 一种两端带有渐变脊波导的dfb激光器芯片
JPH0337876B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005768928

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005768928

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11659198

Country of ref document: US