JP2012533878A - マルチビームコヒーレントレーザ放射のダイオード光源 - Google Patents

マルチビームコヒーレントレーザ放射のダイオード光源 Download PDF

Info

Publication number
JP2012533878A
JP2012533878A JP2012520561A JP2012520561A JP2012533878A JP 2012533878 A JP2012533878 A JP 2012533878A JP 2012520561 A JP2012520561 A JP 2012520561A JP 2012520561 A JP2012520561 A JP 2012520561A JP 2012533878 A JP2012533878 A JP 2012533878A
Authority
JP
Japan
Prior art keywords
layer
amplifier
heterostructure
region
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012520561A
Other languages
English (en)
Inventor
シェフェイキン・ワシリー・イワノビッチ
ジェロバニ・ビクトル・アルチロビッチ
ソンク・アレクセイ・ニコラエビッチ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Nano Optics Ltd
Original Assignee
General Nano Optics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Nano Optics Ltd filed Critical General Nano Optics Ltd
Publication of JP2012533878A publication Critical patent/JP2012533878A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique
    • H01S5/1085Oblique facets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4006Injection locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1007Branched waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1064Comprising an active region having a varying composition or cross-section in a specific direction varying width along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2214Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【解決手段】
マルチビームコヒーレントレーザダイオード光源は、マスターレーザ、リニア増幅器、及び2つの直交増幅器を備える。マスターレーザ及び増幅器は、活性層、2つのクラッド層、及びリークイン層を有する放射リークイン領域を含む単一のヘテロ構造の形態にある。ヘテロ構造は、リークイン層の屈折率(nIN)に対するヘテロ構造の屈折率(neff)の比によって特徴付けられる。比neff:nINは、1+δから1−γまで広がる範囲から決定され、ここでδ及びγは1より十分小さい数によって定められ且つγはδよりも大きい。リニア増幅器は、マスターレーザからの放射伝搬の光学軸がリニア増幅器の軸に一致するように配置される。各直交増幅器は、出力エッジを有しており、そしてその光学軸がリニア増幅器の軸に対して直角になるように配置される。放射の一部がリニア増幅器から直交増幅器へ流れ込むようにするために、増幅器の軸が交差する点の近くに要素が設けられる。この要素は、ヘテロ構造の活性層とリークイン領域の一部とリークイン層の厚みの20%〜80%の範囲内で交差すると共に増幅器の軸と45°の傾斜をなす反射面を含む。ダイオード光源の別の実施形態によると、直交増幅器の活性領域に沿って出力要素が配置され、出力要素は、ヘテロ構造層の面と45°の角度で交差する反射面を含み且つ活性層とリークイン層の厚みの30%〜80%とを含む。技術的な結果は、レーザ放射の強度の増大、より高い効率及び信頼性、より長い動作寿命、変調速度の向上、及び製造技術の簡素化である。
【選択図】図1

Description

本発明は光電子工学の主要な構成要素に関し、具体的には小型、高パワー、高効率で且つ広い波長範囲でのレーザコヒーレント放射の光源に関し、即ち水平放射出力を伴うマルチビームコヒーレント放射のダイオード光源及び垂直放射出力を伴うマルチビームコヒーレント放射のダイオード光源に関し、前記光源はマスターダイオードレーザ及びダイオード光増幅器の2段階の組み合わせとして作製される。
増大した出力パワー及び改良されたレーザビーム品質のダイオードレーザは、米国特許第4063189号(ゼロックスコープ(Xerox Corp.)、(米国)、1977年、H01S3/19,331/94.5H)(特許文献1)、ロシア特許第2197048号(ヴイ・アイ・シュベイキン(V. I. Shveikin)、ヴイ・エー・ジェロバーニ(V. A. Gelovani)、2002年2月18日、H01S5/32)(特許文献2)に記載された発明から知られている。
得られている技術的本質及び技術的結果の見地からは、例示的なプロトタイプ注入(以下ダイオード)レーザは、ロシア特許第2278455号(ヴィ・アイ・シュベイキン、2004年11月17日、H01S5/32)(特許文献3)において提案されている。前記ダイオードレーザは、半導体化合物に基づくヘテロ構造と、光学ファセットと、反射器と、抵抗コンタクトと、光共振器とを含む。ヘテロ構造は、リークイン層の屈折率nINに対するヘテロ構造の実効屈折率neffの比によって特徴付けられる。nINに対するneffの比(以下neff/nINと称する)は、1+δから1−δの範囲から決定され、ここでδは1より十分小さい数によって定められる。ヘテロ構造は、少なくとも1つの活性層と、少なくともその1つは活性層の各側上にある少なくとも2つの反射層(以下「クラッド層」と称する)とを含み、前記クラッド層は、少なくとも1つのサブ層から形成されると共にヘテロ構造の実効屈折率neffよりも低い屈折率を有している。ヘテロ構造はまた、放射のために透明な少なくとも1つの放射リークイン領域を含む。リークイン領域は、活性層と活性層の少なくとも1つの側上の対応するクラッド層との間に位置する。リークイン領域は屈折率nINを有し少なくとも1つのサブ層からなるレーザ放射リークイン層リークイン層と、少なくとも1つのサブ層からなる少なくとも1つの閉じ込め層と、少なくとも1つのサブ層からなる主調整層と、から構成され、主調整層は、そのサブ層の少なくとも1つについてリークイン層の屈折率nIN以上の屈折率を有すると共にその表面の1つにて活性層に隣接している。主調整層の一方の表面に対して反対側には、リークイン領域の閉じ込め層が隣接しており、前記閉じ込め層は主調整層の屈折率よりも小さい屈折率を有している。光共振器反射器の反射係数並びにヘテロ構造層の組成及び厚みは、動作中のダイオードレーザに対して、活性層内でもたらされる放射の増幅が動作電流の範囲全域にわたってレーザ発振しきい値を維持するのに十分になるように選択される。ダイオードレーザのそのような構成を、我々は、レーザ発振しきい値電流の場におけるnINに対するneffの特定の比によって特徴付けられるリークイン領域を伴うヘテロ構造に基づくダイオードレーザと称してきた。所与のヘテロ構造に対して、レーザ発振しきい値電流の場におけるnINに対するneffの比は、1+γから1−γの値の範囲から決定され、ここでγの値はδより小さい数によって定められる。
米国特許第4063189号 ロシア特許第2197048号 ロシア特許第2278455号
プロトタイプダイオードレーザの主な利点は、レーザ出力パワーの増大や、放射の角度広がりの対応する低減を伴う垂直面での発光領域のサイズの増大である。一方、プロトタイプダイオードレーザは、その高品質なレーザ放射を同時に伴う出力パワーの更なる増大を制限し、即ち、マルチビームコヒーレント放射(1に近い完全度因子(perfection factor)Mを伴う)の高パワー単一周波数ダイオード光源を、水平面及び垂直面の両方で増幅されたレーザ放出の出力を伴うマスターダイオードレーザ及びダイオード光増幅器の2段階の集積化された組み合わせとして実現することは可能ではない。
広い波長範囲において種々の必要な放射出力を伴うマルチビームのコヒーレントな増幅されたレーザ放射の提案に係るダイオード光源の技術的な結果は、安定した単一周波数且つ単一モードのレーザ種類の発振に対するその増幅されたレーザ放射の出力パワーの何倍もの増大(1〜3乃至はそれ以上の桁)、並びに効率、信頼性、寿命及び変調速度の増大を、光源製造のための技術の顕著な簡素化及び製造コストの低減を伴いながら可能にすることである。
本発明の1つの態様は、以下「マスターレーザ」と称される少なくとも1つの少なくとも単一モードの単一周波数マスターダイオードレーザと、前記マスターレーザに一体的且つ光学的に接続される以下「リニア増幅器」と称される少なくとも1つのダイオード光増幅器と、前記リニア増幅器に一体的且つ光学的に接続される以下「直交増幅器」と称される少なくとも2つのダイオード光増幅器とを含むマルチビームコヒーレントレーザ放射のダイオード光源(以下「DSMCLE」と称される)である。前記マスターレーザ、前記リニア増幅器、及び前記直交増幅器は、半導体化合物に基づく共通のヘテロ構造内に形成される。前記ヘテロ構造は、少なくとも1つの活性層と、少なくとも2つのクラッド層と、放射のために透明な放射リークイン領域とを含む。前記リークイン領域は、活性層と活性層の少なくとも1つの側上の対応するクラッド層との間に置かれ、前記リークイン領域は少なくともリークイン層を含む。前記ヘテロ構造は、リークイン層の屈折率nINに対するヘテロ構造の実効屈折率neffの比、即ちnINに対するneffの比が1から1−γの範囲内であることによって特徴付けられ、ここでγは1より十分小さい数によって定められる。前記マスターレーザは、接続された金属化層を有する活性ストライプレーザ発振領域と、接続された絶縁層を有する放射閉じ込め領域とを含み、前記閉じ込め領域は、マスターレーザの活性レーザ発振領域並びに抵抗コンタクト、光学ファセット、反射器及び光共振器の各側面上に位置している。両光学ファセット上で、光共振器の反射器は1に近い反射係数を有しており、それらはヘテロ構造の活性層の位置の特定された近傍内に位置している。接続された金属化層を有する活性増幅領域を少なくとも含む各リニア増幅器は、マスターレーザの放射の伝搬の光学軸がリニア増幅器の光学軸に一致するように配置される。接続された金属化層を有する活性増幅領域と光反射防止膜を有する光学出力ファセットとを少なくとも含む各直交増幅器は、直交増幅器の光学軸がリニア増幅器の光学軸に対して直角(絶対値(modulus))で位置するように配置される。リニア増幅器の光学軸と各直交増幅器の光学軸との交点の近傍には、レーザ放射の特定部分のリニア増幅器から直交増幅器への流れのために、適宜回転要素と称される積分要素(integral element)がある。前記回転要素は、ヘテロ構造層の面に垂直な少なくとも1つの光学反射面からなり、少なくとも1つの光学反射面は、活性層とヘテロ構造リークイン領域の一部とリークイン層の厚みの20%〜80%の範囲内で交差していると共に、リニア増幅器及び直交増幅器の光学軸との傾斜角を約45°(絶対値)にしている。
独創的なヘテロ構造に基づいて作製された提案に係る新たなDSMCLEの本質的は特徴は、マスターダイオードレーザ(以下「マスターレーザ」と称される)及びそれと接続される一体化されたリニアダイオード光増幅器(以下「リニア増幅器」と称される)の効率的な2段階の一体化された組み合わせにあり、前記リニア増幅器は同時に、一体化された直交ダイオード光増幅器(以下「直交増幅器」と称される)に接続される。提案に係るDSMCLEの新規性は、マスターレーザと前記増幅器の一体化接続が焦点調節光学なしで行われるところにある。第1段階では、マスターレーザとリニア増幅器の一体化接続が実現され、この場合、前記マスターレーザ及びリニア増幅器の放射の伝搬の光学軸の方向は一致する。第2段階のリニア増幅器及び直交増幅器の一体化接続では、前記増幅器の光放射の伝搬の方向、即ちそれらの光学軸の方向は互いに直交している。リニア増幅器からの直交増幅器へのレーザ放射の流れは、リニア増幅器の活性領域の側面側への直交増幅器の活性領域の接続の位置に配置される独創的な回転要素の使用によってもたらされる。
望ましい実施形態においては、マスターレーザの光共振器の反射器は、ヘテロ構造表面からリークイン領域における特定の深さまで各光学ファセット上に位置している。この場合、マスターレーザの2つのリニア増幅器の各々との一体化接続(焦点調節光学なし且つ実質的に損失なし)は、主として、ヘテロ構造のリークイン層の深く横たわった部分を通して、マスターレーザの光共振器の不透明反射器をバイパスすることで実現される。
望ましい実施形態においては、リニア増幅器は、マスターレーザの光共振器の1つの端部側上にあってよく、また光共振器の各端部側上に1つのリニア増幅器が存在しうる。
望ましい実施形態においては、マスターレーザは、1つの基本モードでレーザ発振を提供し、また必要に応じて単一周波数レーザ発振を提供する。安定な単一周波数レーザ発振(及び単一周波数同調)を達成するために、マスターレーザの光共振器の前記反射器は分布ブラッグ反射器として作製される。
望ましい実施形態においては、マスターレーザの側部閉じ込め領域内には少なくとも1つの分割閉じ込めサブ領域と少なくとも1つの閉じ込めサブ領域とがあり、そこで、特定の幅の分割閉じ込めサブ領域は、ヘテロ構造表面から特定の深さまで活性層の位置の深さまで到達しないようにマスターレーザの活性レーザ発振領域の両側面側上にあり、閉じ込めサブ領域は、ヘテロ構造表面から特定の深さまで活性層の位置の深さを超えるように分割閉じ込めサブ領域の両側面側上にある。閉じ込め領域の独特な横たわり(活性層と交差することを伴う)は、増大したレーザ出力パワーでのレーザ放射のモード安定性を提供する。
望ましい実施形態においては、リニア増幅器の活性領域は、完全にストライプの領域として、あるいは完全に広がっているものとして、あるいはストライプ部分へ向かって滑らかな移行で広がっているものとして作製され得る。その最後の実施形態においては、リニア増幅器の活性領域の広がっている部分はマスターレーザに隣接し、そしてストライプ活性領域へ向かう前記広がっている部分の滑らかな移行は、回転要素の最も近い位置まで実現されている。
望ましい実施形態においては、リニア増幅器の活性領域の各側面側には、ヘテロ構造表面から特定の深さまで活性層の位置の深さまで到達しないように配置された特定の幅の分割閉じ込めサブ領域が隣接している。必要に応じて、分割閉じ込めサブ領域の各側面側には、ヘテロ構造表面から特定の深さまで活性層の位置の深さを超えるように配置された閉じ込めサブ領域が接続される。
望ましい実施形態においては、リニア増幅器のフリー光学ファセット上の光学反射膜は、1に近い反射係数を有している。
望ましい実施形態においては、直交増幅器の活性領域は、完全にストライプの領域として、あるいは完全に広がっているものとして、あるいはストライプ部分へ向かって滑らかな移行で広がっているものとして作製され得る。その最後の実施形態においては、直交増幅器の活性領域の広がっている部分はリニア増幅器に隣接し、そしてストライプ活性領域へ向かう前記広がっている部分の滑らかな移行は、回転要素から特定の距離で実現されている。
望ましい実施形態においては、直交増幅器の活性領域の各側面側には、ヘテロ構造表面から特定の深さまで活性層の位置の深さまで到達しないように配置された特定の幅の分割閉じ込めサブ領域が隣接している。必要に応じて、分割閉じ込めサブ領域の各側面側には、ヘテロ構造表面から特定の深さまで活性層の位置の深さを超えるように配置された閉じ込めサブ領域が接続される。
望ましい実施形態においては、マスターレーザの光共振器の反射器から最も離れた少なくとも1つの回転要素の光学反射面は、基板の側上の少なくともクラッド層までヘテロ構造内へ貫通して作製される。
望ましい実施形態においては、直交増幅器の増幅された放射の出力の少なくとも光学ファセット上の光学反射防止膜は、ゼロに近い反射係数を有している。
望ましい実施形態においては、回転要素の光学反射面はプラス45°の傾斜角を有しており、前記光学反射面の次の回転要素の光学反射面はマイナス45°の傾斜角を有している。これにより反対方向における放射出力の実現が可能になった。
望ましい実施形態においては、共通のヘテロ構造は、p型及びn型の高濃度にドープされた薄い層であってそれらの間にトンネル遷移を有する層によって互いに電気的に接続される少なくとも2つの活性層を含む。
技術的な結果は、非対称ヘテロ構造においてだけでなく対称ヘテロ構造においても達成され、対称ヘテロ構造においては、基板の側上のリークイン領域におけるリークイン層の厚みは、ヘテロ構造の外層の側上のリークイン領域におけるリークイン層の厚みに等しい。
望ましい実施形態においては、マスターレーザ、リニア増幅器及び直交増幅器は独立した抵抗コンタクトを有している。
本発明において提案される独特なDSMCLEの本質は、単一モード(且つ単一周波数)のマスターレーザ、リニア増幅器及び直交増幅器のために提案された共通のヘテロ構造にあり、ヘテロ構造の活性層に直交する面内での極めて大きいサイズの近放射場を伴う。本発明の本質はまた、一体化接続の独創的で且つ効率的な2段階プロセスにあり、第1段階は単一周波数、単一モードマスターレーザのリニア増幅器との接続であり、第2段階はリニア増幅器の直交増幅器との接続である。この場合、直交増幅器の活性領域は、リニア増幅器の活性増幅領域と直角で配置される。リニア増幅器から直交増幅器へのレーザ放射の特定部分の流れは、リニア増幅器の活性領域の直交増幅器との交差の位置に配置された独創的に導入された回転要素によって実現される。この場合、ヘテロ構造面に平行な方向における増幅されたレーザ放射の「水平な」出力が実現される。
本発明において提案されるDSMCLEの技術的な実現は、これまでに十分に開発され且つ広く用いられている既知の基本技術プロセスに基づいている。提案は「産業上の利用可能性」基準に合致する。その製造の主たる特質は、ヘテロ構造並びにマスターレーザのリニア増幅器との及びリニア増幅器の直交増幅器との一体的接続の特徴にある。
本発明の別の態様は、以下「マスターレーザ」と称される少なくとも1つの少なくとも単一モードの単一周波数マスターダイオードレーザと、前記マスターレーザに一体的且つ光学的に接続される以下「リニア増幅器」と称される少なくとも1つのダイオード光増幅器と、前記リニア増幅器に一体的且つ光学的に接続される以下「直交増幅器」と称される少なくとも2つのダイオード光増幅器とを含む垂直放射を伴うマルチビームコヒーレントレーザ放射のダイオード光源(以下「DSMCLE−VE」と称される)である。前記マスターレーザ、前記リニア増幅器、及び前記直交増幅器は、半導体化合物に基づく共通のヘテロ構造内に形成される。前記ヘテロ構造は、少なくとも1つの活性層と、少なくとも2つのクラッド層と、放射のために透明な放射リークイン領域とを含む。前記リークイン領域は、活性層と活性層の少なくとも1つの側上の対応するクラッド層との間に置かれ、前記リークイン領域は少なくともリークイン層を含む。前記ヘテロ構造は、リークイン層の屈折率nINに対するヘテロ構造の実効屈折率neffの比、即ちnINに対するneffの比が1から1−γの範囲内であることによって特徴付けられ、ここでγは1より十分小さい数によって定められる。前記マスターレーザは、接続された金属化層を有する活性ストライプレーザ発振領域と、接続された絶縁層を有する放射閉じ込め領域とを含み、前記閉じ込め領域は、マスターレーザの活性レーザ発振領域並びに抵抗コンタクト、光学ファセット、反射器及び光共振器の各側面上に位置している。両光学ファセット上で、光共振器の反射器は1に近い反射係数を有しており、それらはヘテロ構造の活性層の位置の特定された近傍内に位置している。接続された金属化層を有する活性増幅領域を少なくとも含む各リニア増幅器は、マスターレーザの放射の伝搬の光学軸がリニア増幅器の光学軸に一致するように配置される。接続された金属化層を有する活性増幅領域と光反射防止膜を有する光学出力ファセットとを少なくとも含む各直交増幅器は、直交増幅器の光学軸がリニア増幅器の光学軸に対して直角(絶対値)で位置するように配置される。リニア増幅器の光学軸と各直交増幅器の光学軸との交点の近傍には、レーザ放射の特定部分のリニア増幅器から直交増幅器への流れのために、適宜回転要素と称される積分要素がある。前記回転要素は、ヘテロ構造層の面に垂直な少なくとも1つの光学反射面からなり、少なくとも1つの光学反射面は、活性層とヘテロ構造リークイン領域の一部とリークイン層の厚みの20%〜80%の範囲内で交差していると共に、リニア増幅器及び直交増幅器の光学軸との傾斜角を約45°(絶対値)にしている。また、ヘテロ構造面に垂直な方向における放射出力の可能性は、回転要素から特定の距離で2回増幅されたレーザ放射の伝搬の光学軸の方向における少なくとも1つの直交増幅器の前記活性領域に沿って、幾つかのヘテロ構造層の面と45°(絶対値)の傾斜角で交差する少なくとも1つの光学反射面を含む少なくとも1つの追加的に導入された出力要素であって活性層を含み且つリークイン層を一部、即ちその厚みの30%〜80%を含む出力要素があるという事実を通して達成される。
独創的なヘテロ構造に基づいて作製された提案に係る新たなDSMCLE−VEの本質的は特徴は、マスターダイオードレーザ(以下「マスターレーザ」と称される)及びそれと接続される一体化されたリニアダイオード光増幅器(以下「リニア増幅器」と称される)の効率的な2段階の一体化された組み合わせにあり、前記リニア増幅器は同時に、一体化された直交ダイオード光増幅器(以下「直交増幅器」と称される)に接続される。提案に係るDSMCLE−VEの新規性は、マスターレーザと前記増幅器の一体化接続が焦点調節光学なしで行われるところにある。第1段階では、マスターレーザとリニア増幅器の一体化接続が実現され、この場合、前記マスターレーザ及びリニア増幅器の放射の伝搬の光学軸の方向は一致する。第2段階のリニア増幅器及び直交増幅器の一体化接続では、前記増幅器の放射の伝搬の光学軸の方向は互いに直交している。リニア増幅器からの直交増幅器へのレーザ放射の流れは、リニア増幅器の活性領域の側面側への直交増幅器の活性領域の接続の位置に配置された独創的な回転要素の使用によってもたらされる。また、提案の新規性及び独創性は、追加的な独創的な出力要素が直交増幅器の活性領域内へそれらの光学軸の方向において導入されているという事実にある。前記要素は、直交増幅器の活性領域と交差し且つ外層から放射リークイン層内へ(その一部まで)45°(絶対値)の傾斜角で貫通するように配置された光学反射面を含む。この場合、ヘテロ構造面に直交する「垂直」方向において追加的な増幅されたレーザ放射の出力の実現が可能である。
望ましい実施形態においては、増幅されたレーザ放射は、ヘテロ構造の外層の方向及び/又は半導体基板の方向において出力される。
望ましい実施形態においては、回転要素から最も離れた出力要素の光学反射面は、基板の側でクラッド層へ向かってヘテロ構造内へ深く貫通するように作製される。
望ましい実施形態においては、各光学ファセット上で、マスターレーザの光共振器の反射器は、ヘテロ構造表面からリークイン領域における特定の深さまで位置している。この場合、マスターレーザと2つのリニア増幅器の各々との一体化接続(焦点調節光学なし且つ実質的に損失なし)は、主として、ヘテロ構造のリークイン層の深く横たわった部分を通して、マスターレーザの光共振器の不透明反射器をバイパスすることで実現される。
望ましい実施形態においては、リニア増幅器は、マスターレーザの光共振器の1つの端部側上にあってよく、また光共振器の各端部側上に1つのリニア増幅器があってよい。
望ましい実施形態においては、マスターレーザは、1つの基本モードでレーザ発振を提供し、また必要に応じて単一周波数レーザ発振を提供する。安定な単一周波数レーザ発振(及び単一周波数同調)を達成するために、マスターレーザの光共振器の前記反射器は分布ブラッグ反射器として作製される。
望ましい実施形態においては、マスターレーザの側部閉じ込め領域内には少なくとも1つの分割閉じ込めサブ領域と少なくとも1つの閉じ込めサブ領域とがあり、特定の幅の分割閉じ込めサブ領域は、ヘテロ構造表面から特定の深さまで活性層の位置の深さまで到達しないようにマスターレーザの活性レーザ発振領域の両側面側上にあり、閉じ込めサブ領域は、ヘテロ構造表面から特定の深さまで活性層の位置の深さを超えるように分割閉じ込めサブ領域の両側面側上にある。閉じ込め領域の独特な横たわり(活性層と交差することを伴う)は、増大したレーザ出力パワーでのレーザ放射のモード安定性を提供する。
望ましい実施形態においては、リニア増幅器の活性領域は、完全にストライプの領域として、あるいは完全に広がっているものとして、あるいはストライプ部分へ向かって滑らかな移行で広がっているものとして作製され得る。その最後のバージョンにおいては、リニア増幅器の活性領域の広がっている部分はマスターレーザに隣接し、そしてストライプ活性領域へ向かう前記広がっている部分の滑らかな移行は、回転要素の最も近い位置まで実現されている。
望ましい実施形態においては、リニア増幅器の活性領域の各側面側には、ヘテロ構造表面から特定の深さまで活性層の位置の深さまで到達しないように配置された特定の幅の分割閉じ込めサブ領域が隣接している。必要に応じて、分割閉じ込めサブ領域の各側面側には、ヘテロ構造表面から特定の深さまで活性層の位置の深さを超えるように配置された閉じ込めサブ領域が接続される。
望ましい実施形態においては、リニア増幅器のフリー光学ファセット上の光学反射膜は、1に近い反射係数を有している。
望ましい実施形態においては、直交増幅器の活性領域は、完全にストライプの領域として、あるいは完全に広がっているものとして、あるいはストライプ部分へ向かって滑らかな移行で広がっているものとして作製され得る。その最後の実施形態においては、直交増幅器の活性領域の広がっている部分はリニア増幅器に隣接し、そしてストライプ活性領域へ向かう前記広がっている部分の滑らかな移行は、回転要素から特定の距離で実現されている。
望ましい実施形態においては、直交増幅器の活性増域の各側面側には、ヘテロ構造表面から特定の深さまで活性層の位置の深さまで到達しないように配置された特定の幅の分割閉じ込めサブ領域が隣接している。必要に応じて、分割閉じ込めサブ領域の各側面側には、ヘテロ構造表面から特定の深さまで活性層の位置の深さを超えるように配置された閉じ込めサブ領域が接続される。
望ましい実施形態においては、マスターレーザの光共振器の反射器から最も離れた少なくとも1つの回転要素の光学反射面は、少なくとも基板の側上のクラッド層までヘテロ構造内へ貫通して作製される。
望ましい実施形態においては、直交増幅器の増幅された放射の出力の少なくとも光学ファセット上の光学反射防止膜は、ゼロに近い反射係数を有している。
望ましい実施形態においては、回転要素の光学反射面はプラス45°の傾斜角を有しており、前記光学反射面の次の回転要素の光学反射面はマイナス45°の傾斜角を有している。これにより反対方向における放射出力の実現が可能になった。
望ましい実施形態においては、共通のヘテロ構造は、p型及びn型の高濃度にドープされた薄い層であってそれらの間にトンネル遷移を有する層によって互いに電気的に接続される少なくとも2つの活性層を含む。
望ましい実施形態においては、非対称ヘテロ構造だけでなく対称ヘテロ構造も用いられてよく、対称ヘテロ構造においては、基板の側上のリークイン領域におけるリークイン層の厚みは、ヘテロ構造の外層の側上のリークイン領域におけるリークイン層の厚みに等しい。
望ましい実施形態においては、マスターレーザ、リニア増幅器及び直交増幅器は独立した抵抗コンタクトを有している。
本発明において提案される独特なDSMCLE−VEの本質は、単一モード且つ単一周波数のマスターレーザ、リニア増幅器及び直交増幅器のために提案された共通のヘテロ構造にあり、ヘテロ構造の活性層に直交する面内での極めて大きいサイズの近放射場及び出力放射の極めて小さい発散を伴う。本発明の本質はまた、一体化接続の独創的で且つ効率的な2段階プロセスにあり、第1段階は単一周波数、単一モードマスターレーザのリニア増幅器との接続であり、第2段階はリニア増幅器の直交増幅器との接続である。この場合、直交増幅器の活性領域は、リニア増幅器の活性増幅領域と直角で配置される。リニア増幅器から直交増幅器へのレーザ放射の特定部分の流れは、リニア増幅器の活性領域の直交増幅器との交差の位置に配置された独創的に導入された回転要素によって実現される。また、直交増幅器の光学軸に沿って配置された独創的な積分出力要素を導入することによって、超高パワーなマルチビームで高品質な増幅されたレーザ放射の独創的で効率的な出力が実現され、前記放射は、ヘテロ構造層の面に対して垂直に向いている(ヘテロ構造の外層の方向及び半導体基板の方向の両方)。
本発明において提案されるDSMCLE−VEの技術的な実現は、これまでに十分に開発され且つ広く用いられている既知の基本技術プロセスに基づいている。提案は「産業上の利用可能性」基準に合致する。その製造の主たる特質は、ヘテロ構造並びにマスターレーザとリニア増幅器との一体的接続及びリニア増幅器と直交増幅器との一体的接続の特徴の他、半導体増幅器における積分出力要素の特徴にある。
本発明は図1〜8に関連して下記で詳細に説明される。
マスターレーザと、外面光学ファセット上の反射防止膜を有する2つのリニア増幅器と4つの直交増幅器とを有する提案に係るDSMCLEの模式的な平面図である。 マスターレーザの光学軸及びマスターレーザと一体的に接続されるリニア増幅器の光学軸に沿う提案に係るDSMCLEの縦断面の模式図である。 図1に模式的に示されるDSMCLEとは異なる提案に係るDSMCLEの模式的な平面図であり、そのDSMCLEにおいては、2つのリニア増幅器の各々の活性増幅領域はストライプ部分へ滑らかに広がっている部分からなり、またリニア増幅器の外面光学ファセット上に反射防止膜はない。 図3に模式的に示されるDSMCLEとは異なる提案に係るDSMCLEの模式的な平面図であり、そのDSMCLEにおいては、2つのリニア増幅器の活性増幅領域に4つの直交増幅器が対応する回転要素を介して接続され、その増幅されたレーザ放出は、交互に反対方向に伝搬させられる。 図3に模式的に示されるDSMCLEとは異なる提案に係るDSMCLEの模式的な平面図であり、そのDSMCLEにおいては、1つのリニア増幅器が光共振器の不透明反射器の一方の側上でマスターダイオードレーザに一体的に接続されている。 図3に模式的に示されるDSMCLEとは異なる提案に係るDSMCLE−VEの模式的な平面図であり、そのDSMCLE−VEにおいては、長手方向の光学軸に沿う4つの直交増幅器の各々内に、増幅されたレーザ放射のための3つの出力要素が形成されている。 提案に係るDSMCLE−VEの4つの直交増幅器の1つの縦断面の模式図であり、そのDSMCLE−VEにおいては、出力要素は増幅されたレーザ放射のビームの基板を介した出力を実現している。 増幅されたレーザ放射のビームのヘテロ構造の外面の方向における出力を出力要素が実現している点で図7に模式的に示されるのと異なる直交増幅器の縦断面の模式図である。
以下、添付の図面を参照した具体的な実施形態の記述によって本発明を説明する。マルチビームコヒーレントレーザ放射のダイオード光源(DSMCLE)及び垂直放射出力を伴うマルチビームコヒーレントレーザ放射のダイオード光源(DSMCLE−VE)の実施形態の所与の例は、唯一のものではなく、また他の実現(既知の波長範囲を含む)の利用可能性を想定しており、その特徴は、特許請求の範囲に従う特質の総和に反映されている。
考察のために提案されそして図1〜8に示されるDSMCLE設計において、以下の記号表示が与えられる。
10…提案に係るDSMCLE。
20…マスターダイオードレーザ。その構成要素は、
21…以下「不透明光学反射器」と称される光共振器の不透明反射器、
22…光共振器の光学ファセット、
23…ストライプ活性レーザ発振領域。
30…リニア増幅器。その構成要素は、
31…ストライプ活性増幅領域、
32…外面光学ファセット、
33…反射防止膜、
34…ストライプ領域への滑らかな移行を伴い広がっている活性増幅領域。
40…直交増幅器。その構成要素は、
41…広がっている活性増幅領域、
42…出力光学ファセット、
43…反射防止膜、
44…ストライプ活性増幅領域。
50…ヘテロ構造。その構成要素は、
51…活性層、
52…基板の側上のクラッド層、
53…基板の側上の調節層、
55…外層の側上のクラッド層、
56…外層の側上のリークイン領域、
57…p型の外部コンタクト層、
60…ヘテロ構造のための基板、
61…基板の外面。
70…回転要素。その構成要素は、
71…光学反射面、
72…クラッド層52へ貫通している光学反射面。
80…マスターレーザ、リニア増幅器及び直交増幅器のための側部閉じ込め領域。
100…DSMCLE−VE実施形態。
110…出力要素、
111…光学反射面、
112…クラッド層52へ貫通している光学反射面、
113…出力放射のための反射防止膜。
提案に係るDSMCLE10(図1及び図2参照)は、基本モードでレーザ発振する単一モードマスターレーザ20を含み、マスターレーザ20は、その両端側で2つのリニア増幅器30に一体的に接続されている。レーザ光共振器の両端には不透明な光学反射器21が配置されている。外面の光学ファセット32上に反射防止膜33を有するリニア増幅器30は、回転要素70の使用を伴って同様に直交増幅器40と一体に接続されており、直交増幅器40は末広がりの活性増幅領域41を有している。増幅されたレーザ放射の出力は、4つの直交増幅器40の各々の反射防止光学ファセット42を介して運び出される。
DSMCLE10は、マスターレーザ20とダイオード増幅器30及び40との両方について共通のレーザヘテロ構造50に基づいて作製される。ヘテロ構造50は、n型GaAsの基板60上に成長させられる。リニア増幅器30の直交増幅器40との一体化接続は、回転要素70の使用によって実現される。ヘテロ構造50は、InAlGaAsの1つの活性層51と共にAlGaAs半導体化合物に基づいて成長させられる。活性層51の組成及び厚みによって決定されるレーザ波長は、0.976μmに等しく選択される。
活性層51と基板60の側のクラッド層52との間には、第1のリークイン領域(調節層53及びリークイン層54を含む)が配置されている。反対側で活性層51とクラッド層55との間には、第2のリークイン領域56(調節層及びリークイン層を含む)が配置され、p型の半導体コンタクト層57が第2のリークイン層56に隣接している。金属化層及び対応する絶縁誘電体層はこれらの図には示されていない。実際には、クラッド層52及び55の間に位置するヘテロ構造50の一連の全ての層が、拡張された導波領域を形成する。リークイン層はAlGaAsから作製される。基板60側のリークイン層54の厚みは6μmに等しく選択され、この厚みは反対側のリークイン層の厚みよりも1桁大きい。リークイン層54の屈折率nINに対するヘテロ構造50の実効屈折率neffの計算された比(neff/nIN)は、電流密度0.3kA/cm及び5.0kA/cmでそれぞれ0.999868及び0.999772であった。
上述したヘテロ構造50に基づいて、一体的に接続される1つのマスターレーザ20と2つのリニア増幅器30と4つの直交増幅器40とが形成される。ダイオードレーザ20の光共振器の光学ファセット22における両側上には、1に近い反射係数を有する反射器21(不透明光学反射器)が形成される(膜の蒸着によって)。マスターレーザ20のリニア増幅器30との一体化接続は、主として、深く横たわった(deep-lying)リークイン層54を通して、光共振器の不透明反射器21をバイパスすることで実現される。マスターレーザ20の活性レーザ発振領域23は、9μmのストライプ幅を有するストライプ領域として作製され、光共振器の長さは1000μmに等しく選択される。2つのリニア増幅器30の各々におけるストライプ活性増幅領域31の幅及び長さは、それぞれ12μm及び2000μmである。各リニア増幅器30の外面の光学ファセット32上には、ゼロに近い反射係数(0.0001未満)を有する反射防止膜33が蒸着されている。
各リニア増幅器30と2つの直交増幅器40との間の一体的な光学結合は、活性増幅領域31内への2つの回転要素70の配置によって実現される。エッチングによって作製される各回転要素70は、ヘテロ構造50の層の面に対して直角で配置され且つコンタクト層57からリークイン層54まで垂直に内部へその厚みの60%まで貫通している光学反射面71を含む。この場合、回転要素70の反射面71は、リニア増幅器30内及び2つの直交増幅器40内の両方における増幅された放射の伝搬の光学軸に対して45°(絶対値)の角度で回転されている。各直交増幅器40の活性増幅領域41は、6°の広がり角で広がるように作製される。直交増幅器の長さが5000μmのところで、増幅された放射を出力する光学ファセット42の幅は250μmである。各直交増幅器40の出力光学ファセット42上には、ゼロに近い反射係数(0.0001未満)を有する反射防止膜43が蒸着されている。
同じ主要特性を伴う側部閉じ込め領域80が、マスターレーザ20のストライプ活性レーザ発振領域23に隣接してその両側面上に作製される他、2つのリニア増幅器30の各ストライプ活性増幅領域31に隣接してその両側面上に及び4つの直交増幅器40の各広がり活性領域41に隣接してその両側面上に作製される。領域80は2つのサブ領域を含む(図面には図示せず)。領域23、31、及び41に隣接する第1のストライプ分割閉じ込めサブ領域は、ヘテロ構造50の活性層51が横たわっている深さに到達しないように幅2.0μmで0.7μmの深さまで溝としてエッチングすることによって形成される。第1のサブ領域に接触している第2の閉じ込めサブ領域は、活性層51の横たわっている面と交差し且つリークイン層54内へその厚みの60%まで貫通する凹溝をエッチングすることによって形成される。両溝とも誘電体で埋められる。
DSMCLE10の次の実施形態(図面には図示せず)は、この実施形態においては光共振器の不透明反射器21が、マスターレーザの安定な単一周波数レーザ発振を提供する分布ブラッグ反射器(distributed Bragg reflectors)として形成されている点において、図1及び2に示される実施形態と異なる。
DSMCLE10の次の実施形態(図面には図示せず)は、この実施形態においては共通のヘテロ構造50がp型及びn型の高濃度にドープされた薄い層であってそれらの間にトンネル遷移を有する層によって互いに電気的に接続される少なくとも2つの活性層を含む点において、図1及び2に示される実施形態と異なる。
DSMCLE10の次の実施形態(図面には図示せず)は、この実施形態が20,000μmの各リニア増幅器30の長さに対して50個の直交増幅器40及び50個の回転要素70を含む点において、図1及び2に示される実施形態と異なる。
DSMCLE10の次の実施形態(図3参照)は、この実施形態においては、マスターレーザに最も近い各(2つのうちの)活性増幅領域34が、その始まりの部分において滑らかな移行を伴って50μmのストライプ幅を有するストライプ部分31まで広がっていくように作製されている点において、図1及び図2に示される実施形態と異なる。直交増幅器40の各活性増幅領域44はストライプ領域として作製される。また、マスターレーザ20の光学ファセット22から最も離れた各回転要素70においては、光学反射面72は、リークイン層54内へその厚みの100%まで貫通している。この場合、リニア増幅器30のために反射防止膜33を作る必要性はもはやない。尚、図3及び図4〜図6においては、側部閉じ込め領域は図示されていない。
DSMCLE10の次の実施形態(図面には図示せず)は、この実施形態においては、リニア増幅器30の広がっている活性増幅領域34に隣接する側部閉じ込め領域80が、分割閉じ込めサブ領域のみから構成されている点で前の実施形態と異なる。
DSMCLE10の次の実施形態(図面には図示せず)は、この実施形態においては、直交増幅器40の広がっている活性増幅領域41に隣接する側部閉じ込め領域80が、分割閉じ込めサブ領域のみから構成されている点で前の実施形態と異なる。
DSMCLE10の次の実施形態(図4参照)は、この実施形態においては、各リニア増幅器30の活性増幅領域31において光学反射面72が回転要素70の光学反射面71に対して直角(90°)だけ回転させられている点で、図3に示される実施形態と異なる。この場合、回転要素70の光学反射面71及び72を伴うリニア増幅器30に接続されている直交増幅器40においては、出力される増幅されたレーザ放射は逆方向に伝搬する。
DSMCLE10の次の実施形態(図5参照)は、この実施形態においては、リニア増幅器30のマスターレーザ20との一体的な接続が、光共振器の不透明反射器21を通して一方の側で行われている点で図3に示される実施形態と異なる。光共振器の反対側上では、劈開された光学ファセット22上に不透明反射器21が形成されている。4つの直交増幅器40の活性増幅領域41は、4つの回転要素70を介して1つの活性増幅領域34及び3つのストライプ活性増幅領域31に結合されている。
DSMCLE10の次の実施形態は、この実施形態においては、マスターレーザ20に対して、リニア増幅器30に対して、及び直交増幅器40に対して、独立した(別個の)抵抗コンタクトが形成されている点で前の実施形態と異なり、それらの抵抗コンタクトは、抵抗金属化層の間の薄い分割ストライプの導入によって実現される(図面には図示せず)。
以下の図面に示される提案に係るDSMCLE−VE100は、活性増幅領域41に沿った直交増幅器40内に2つ以上の積分出力要素110がエッチングによって追加的に形成されている点で、上述のDSMCLE実施形態と異なる。要素110は、回転要素70から特定の距離で且つそれらの間で特定の距離で形成される。要素110は、ヘテロ構造の層の面に対して垂直な方向において、増幅されたレーザ放射を出力するように設計される。
DSMCLE−VE100の次の実施形態(図6及び図7参照)は、この実施形態においては、エッチングにより形成される各積分出力要素110が、ストライプ活性増幅領域44と交差して配置された増幅されたレーザ放射のための光学反射面111を含んでいる点で、前の実施形態とは異なる。面111は、ヘテロ構造50(活性層51を含む)の層の面と傾斜角マイナス45°で交差しながらリークイン層54内へその厚みの65%まで貫通している。回転要素70から最も離れた出力要素110のために、光学反射面112がリークイン層54内へその厚みの100%まで貫通している。基板60の外面側61上の増幅されたレーザ放射の出力の面には、反射係数が0.0001未満である反射防止膜113が形成されている。基板60の残りの自由表面上の金属化層及び反射防止膜113は図7には図示されていない。
DSMCLE−VE100の次の実施形態(図6及び図8参照)は、この実施形態においては、積分出力要素110の光学反射面111の傾斜角がプラス45°である点において、前の実施形態と異なる。この実施形態においては、増幅されたレーザ放射の出力は、基板60の位置とは反対の方向においてヘテロ構造50の層の面に対して直角で実現される。この場合、高濃度にドープされたコンタクト層57及びクラッド層の除去の後に、増幅されたレーザ放射の出力の面には、反射係数が0.0001未満の反射防止膜113が蒸着される。コンタクト層57の表面上の金属化層は図8には図示されていない。
提案に係るマルチビームコヒーレントレーザ放射のダイオード光源、即ちDSMCLE及びDSMCLE−VEは、出力放射の発散が極めて小さく、デバイスにおける放射の伝搬の水平面及びヘテロ構造の活性層に対して垂直な面の両方において極めて高いパワーのコヒーレントレーザ放射を生成することを可能にする。
マルチビームコヒーレントレーザ放射のダイオード光源は、精密レーザ材料加工(レーザ切断、溶接、ドリリング、表面溶融、種々の部品の寸法加工、レーザマーキング及び彫刻)において、手術及びパワーセラピーのためのレーザデバイスにおいて、レーザ距離計、レーザ目標照射機において、周波数倍増レーザの実現のために、並びに、ファイバ及び固体レーザをポンピングしそして光増幅器のために用いられる。

Claims (21)

  1. マルチビームコヒーレントレーザ放射のダイオード光源であって、
    以下マスターレーザと称される少なくとも1つの少なくとも単一モードの単一周波数マスターダイオードレーザと、
    前記マスターレーザに一体的且つ光学的に接続される以下リニア増幅器と称される少なくとも1つのダイオード光増幅器と、
    前記リニア増幅器に一体的且つ光学的に接続される以下直交増幅器と称される少なくとも2つのダイオード光増幅器とを含み、
    前記マスターレーザ、前記リニア増幅器、及び前記直交増幅器は、半導体化合物に基づく共通のヘテロ構造内に形成され、
    前記ヘテロ構造は、少なくとも1つの活性層と、少なくとも2つのクラッド層と、放射のために透明な放射リークイン領域とを含み、
    前記リークイン領域は、前記活性層と前記活性層の少なくとも1つの側上の対応するクラッド層との間に置かれると共に少なくともリークイン層を含み、
    前記ヘテロ構造は、前記リークイン層の屈折率nINに対する前記ヘテロ構造の実効屈折率neffの比、即ちnINに対するneffの比が1から1−γの範囲内であることによって特徴付けられ、ここでγは1より十分小さい数によって定められ、
    前記マスターレーザは、接続された金属化層を有する活性ストライプレーザ発振領域と、接続された絶縁層を有する側部放射閉じ込め領域とを含み、
    前記閉じ込め領域は、前記マスターレーザの前記活性レーザ発振領域並びに抵抗コンタクト、光学ファセット、反射器及び光共振器の各側面上に位置し、
    両光学ファセット上で前記光共振器の前記反射器は1に近い反射係数を有すると共に前記ヘテロ構造の前記活性層の位置の特定された近傍内に位置し、
    接続された金属化層を伴う活性増幅領域を少なくとも含む各リニア増幅器は、前記マスターレーザの放射の伝搬の光学軸が前記リニア増幅器の光学軸に一致するように配置され、
    接続された金属化層を伴う活性増幅領域と光反射防止膜を伴う光学出力ファセットとを少なくとも含む各直交増幅器は、前記直交増幅器の光学軸が前記リニア増幅器の光学軸に対して直角(絶対値)で位置するように配置され、
    前記リニア増幅器の前記光学軸と各直交増幅器の前記光学軸との交点の近傍には、レーザ放射の特定部分の前記リニア増幅器から前記直交増幅器への流れのために、適宜回転要素と称される積分要素があり、
    前記回転要素は、ヘテロ構造層の面に垂直な少なくとも1つの光学反射面を含み、前記少なくとも1つの光学反射面は、前記活性層と前記ヘテロ構造リークイン領域の一部と前記リークイン層の厚みの20%〜80%の範囲内で交差していると共に前記リニア増幅器及び前記直交増幅器の前記光学軸との傾斜角を約45°(絶対値)にしている、マルチビームコヒーレントレーザ放射のダイオード光源。
  2. 前記マスターレーザの前記光共振器の前記反射器は、前記ヘテロ構造表面から前記リークイン領域における特定の深さまで各光学ファセット上に位置している請求項1に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
  3. 前記マスターレーザの前記光共振器の各端部側上に1つのリニア増幅器がある請求項1に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
  4. 前記マスターレーザの前記光共振器の前記反射器は分布ブラッグ反射器である請求項1に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
  5. 前記マスターレーザの前記側部閉じ込め領域内には少なくとも1つの分割閉じ込めサブ領域と少なくとも1つの閉じ込めサブ領域とがあり、特定の幅の前記分割閉じ込めサブ領域は、前記ヘテロ構造表面から特定の深さまで前記活性層の位置の深さまで到達しないように前記マスターレーザの前記活性レーザ発振領域の両側面側上に位置し、前記閉じ込めサブ領域は、前記ヘテロ構造表面から特定の深さまで前記活性層の位置の前記深さを超えるように前記分割閉じ込めサブ領域の両側面側上に位置している請求項1に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
  6. 前記リニア増幅器の前記活性増幅領域は前記マスターレーザの側で少なくともその長さの一部で広がっている請求項1に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
  7. ストライプ部分へ向かって当該広がっている部分の滑らかな移行がある請求項6に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
  8. 前記リニア増幅器の前記活性増幅領域の各側面側は、前記ヘテロ構造表面から特定の深さまで前記活性層の位置の深さまで到達しないように配置された特定の幅の分割閉じ込めサブ領域を有している請求項1に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
  9. 前記分割閉じ込めサブ領域の各側面側は、前記ヘテロ構造表面から特定の深さまで前記活性層の位置の前記深さを超えるように配置された閉じ込めサブ領域を有している請求項8に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
  10. 前記直交増幅器の前記活性増幅領域は前記リニア増幅器の側で少なくともその長さの特定の一部で広がっている請求項1に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
  11. ストライプ部分へ向かって当該広がっている部分の滑らかな移行がある請求項10に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
  12. 前記直交増幅器の前記活性増幅領域の各側面側は、前記ヘテロ構造表面から特定の深さまで前記活性層の位置の深さまで到達しないように配置された特定の幅の分割閉じ込めサブ領域を有している請求項1に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
  13. 前記分割閉じ込めサブ領域の各側面側は、前記ヘテロ構造表面から特定の深さまで前記活性層の位置の前記深さを超えるように配置された閉じ込めサブ領域を有している請求項12に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
  14. 前記マスターレーザの前記光共振器の前記反射器から最も離れた回転要素の前記光学反射面が、基板の側で前記ヘテロ構造表面から前記クラッド層へ向かって位置している請求項1に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
  15. 前記直交増幅器の増幅された放射の出力の光学ファセット上の光学反射防止膜はゼロに近い反射係数を有している請求項1に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
  16. 前記回転要素の前記光学反射面はプラス45°の傾斜角を有しており、前記光学反射面の次の回転要素の光学反射面はマイナス45°の傾斜角を有している請求項1に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
  17. 前記共通のヘテロ構造内には、p型及びn型の高濃度にドープされた薄い層であって該p型とn型との間にトンネル遷移を有する層によって互いに電気的に接続された少なくとも2つの活性層がある請求項1に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
  18. 少なくとも各マスターレーザ、各リニア増幅器、及び、各直交増幅器は独立した抵抗コンタクトを有している請求項1に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
  19. 前記回転要素から特定の距離で2回増幅されたレーザ放射の伝搬の光学軸の方向における少なくとも1つの直交増幅器の前記活性領域に沿って、幾つかのヘテロ構造層の面と45°(絶対値)の傾斜角で交差する少なくとも1つの光学反射面を含む少なくとも1つの導入された出力要素であって前記活性層を含み且つ前記リークイン層を一部、即ちその厚みの30%〜80%を含む出力要素がある請求項1に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
  20. 前記回転要素から最も離れた出力要素の光学反射面は基板の側で前記ヘテロ構造表面から前記クラッド層へ向かってある請求項19に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
  21. 前記マルチビームコヒーレントレーザ放射のダイオード光源は請求項2〜18のいずれかに記載のように作製される請求項19に記載のマルチビームコヒーレントレーザ放射のダイオード光源。
JP2012520561A 2009-07-17 2010-07-07 マルチビームコヒーレントレーザ放射のダイオード光源 Withdrawn JP2012533878A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2009127486/28A RU2419934C2 (ru) 2009-07-17 2009-07-17 Диодный источник многолучевого когерентного лазерного излучения (варианты)
RU2009127486 2009-07-17
PCT/RU2010/000377 WO2011008127A1 (ru) 2009-07-17 2010-07-07 Диодный источник многолучевого когерентного лазерного излучения (варианты)

Publications (1)

Publication Number Publication Date
JP2012533878A true JP2012533878A (ja) 2012-12-27

Family

ID=43449568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012520561A Withdrawn JP2012533878A (ja) 2009-07-17 2010-07-07 マルチビームコヒーレントレーザ放射のダイオード光源

Country Status (10)

Country Link
US (1) US8401046B2 (ja)
EP (1) EP2466704A1 (ja)
JP (1) JP2012533878A (ja)
KR (1) KR20120034099A (ja)
CN (1) CN102474074B (ja)
CA (1) CA2768469A1 (ja)
IL (1) IL217391A0 (ja)
RU (1) RU2419934C2 (ja)
SG (1) SG177488A1 (ja)
WO (1) WO2011008127A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10203399B2 (en) 2013-11-12 2019-02-12 Big Sky Financial Corporation Methods and apparatus for array based LiDAR systems with reduced interference
US9360554B2 (en) 2014-04-11 2016-06-07 Facet Technology Corp. Methods and apparatus for object detection and identification in a multiple detector lidar array
US10036801B2 (en) 2015-03-05 2018-07-31 Big Sky Financial Corporation Methods and apparatus for increased precision and improved range in a multiple detector LiDAR array
US9866816B2 (en) 2016-03-03 2018-01-09 4D Intellectual Properties, Llc Methods and apparatus for an active pulsed 4D camera for image acquisition and analysis

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063189A (en) 1976-04-08 1977-12-13 Xerox Corporation Leaky wave diode laser
RU2134007C1 (ru) * 1998-03-12 1999-07-27 Государственное предприятие Научно-исследовательский институт "Полюс" Полупроводниковый оптический усилитель
RU2142665C1 (ru) * 1998-08-10 1999-12-10 Швейкин Василий Иванович Инжекционный лазер
JP2003078209A (ja) * 2001-09-05 2003-03-14 Fujitsu Ltd 光半導体装置
RU2197048C1 (ru) 2002-02-18 2003-01-20 Швейкин Василий Иванович Инжекционный лазер
RU2278455C1 (ru) * 2004-11-17 2006-06-20 Василий Иванович Швейкин Гетероструктура, инжекционный лазер, полупроводниковый усилительный элемент и полупроводниковый оптический усилитель
DE102006061532A1 (de) 2006-09-28 2008-04-03 Osram Opto Semiconductors Gmbh Kantenemittierender Halbleiterlaser mit mehreren monolithisch integrierten Laserdioden

Also Published As

Publication number Publication date
US20120113998A1 (en) 2012-05-10
EP2466704A1 (en) 2012-06-20
CN102474074A (zh) 2012-05-23
IL217391A0 (en) 2012-02-29
WO2011008127A1 (ru) 2011-01-20
RU2009127486A (ru) 2011-01-27
US8401046B2 (en) 2013-03-19
CA2768469A1 (en) 2011-01-20
CN102474074B (zh) 2014-01-01
RU2419934C2 (ru) 2011-05-27
SG177488A1 (en) 2012-02-28
KR20120034099A (ko) 2012-04-09

Similar Documents

Publication Publication Date Title
US5337328A (en) Semiconductor laser with broad-area intra-cavity angled grating
JP4793820B2 (ja) 2次元フォトニック結晶面発光レーザ光源
US10658813B2 (en) Low divergence high brightness broad area lasers
US9647416B2 (en) Bidirectional long cavity semiconductor laser for improved power and efficiency
CN110311296A (zh) 具有扩张式激光振荡器波导的二极管激光器封装件
US8238398B2 (en) Diode laser, integral diode laser, and an integral semiconductor optical amplifier
JP2012533878A (ja) マルチビームコヒーレントレーザ放射のダイオード光源
US5568500A (en) Semiconductor laser
JPH0319292A (ja) 半導体レーザ
JP2001332810A (ja) レーザ装置
JP2004266280A (ja) 半導体レーザおよび光ポンピングされる半導体装置
JP2006086184A (ja) レーザダイオード
JP7402222B2 (ja) 半導体発光装置
US10348055B2 (en) Folded waveguide structure semiconductor laser
JP3084042B2 (ja) 半導体レーザ素子とその製造方法
JP2016189437A (ja) 半導体レーザ素子
JP2015220358A (ja) 光素子
JP2010073708A (ja) 半導体発光素子および外部共振器型レーザ光源
JPH0337876B2 (ja)
JPH01238082A (ja) 半導体レーザ
JP2010153451A (ja) 半導体レーザ,およびこれを備えたラマン増幅器
TW201230566A (en) Diode source of multibeam coherent laser emission
RU2398325C2 (ru) Диодный многолучевой источник лазерного когерентного излучения
Fukushima et al. Design of optical coupling systems between two-dimensional quasi-stadium laser diodes and single-mode optical fibers
JP2009272470A (ja) 半導体レーザ

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131001