WO2006013788A1 - カーボンナノチューブの分離方法、分散液及び該分離方法で得られるカーボンナノチューブ - Google Patents

カーボンナノチューブの分離方法、分散液及び該分離方法で得られるカーボンナノチューブ Download PDF

Info

Publication number
WO2006013788A1
WO2006013788A1 PCT/JP2005/013924 JP2005013924W WO2006013788A1 WO 2006013788 A1 WO2006013788 A1 WO 2006013788A1 JP 2005013924 W JP2005013924 W JP 2005013924W WO 2006013788 A1 WO2006013788 A1 WO 2006013788A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
metallic
dispersed
swnts
solution
Prior art date
Application number
PCT/JP2005/013924
Other languages
English (en)
French (fr)
Inventor
Takeshi Akasaka
Takatsugu Wakahara
Yutaka Maeda
Original Assignee
University Of Tsukuba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Tsukuba filed Critical University Of Tsukuba
Priority to CN2005800260510A priority Critical patent/CN101018738B/zh
Priority to JP2006531435A priority patent/JP4734575B2/ja
Priority to KR1020067027774A priority patent/KR100875392B1/ko
Priority to US11/659,157 priority patent/US7884300B2/en
Publication of WO2006013788A1 publication Critical patent/WO2006013788A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/17Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/30Purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • Y10S977/751Single-walled with specified chirality and/or electrical conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/882Assembling of separate components, e.g. by attaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property

Definitions

  • the present invention relates to a carbon nanotube separation method, a dispersion, and a carbon nanotube obtained by the separation method.
  • the present invention relates to a separation method in which a metallic single-walled carbon nanotube is dispersed in a solution, and subsequently the metallic single-walled carbon nanotube and the semiconductor single-walled carbon nanotube are separated, and the metallic single-layer obtained by the above dispersion.
  • the present invention relates to a dispersion in which carbon nanotubes are dispersed, and metallic or semiconductor single-walled carbon nanotubes produced by this separation method.
  • Carbon nanotubes have excellent mechanical and electrical properties. Therefore, it is expected to be used in a wide range of fields such as electron source materials and conductive resin materials.
  • SWNTs single-walled carbon nanotubes
  • the practical use of SWNTs is difficult because of their difficulty and their dispersibility is low (aggregates in bundles).
  • the present inventors performed sonication of SWNTs in a mixed solution of sulfuric acid and nitric acid and sonication in a mixed solution of sulfuric acid and hydrogen peroxide.
  • SWNTs are highly dispersed in an organic solvent in the presence of amine (see Non-Patent Document 2).
  • the present inventors have already put a bundle of SWNTs formed by bonding a plurality of SWNTs into a tetrahydrofuran solvent containing octylamine, and applied vibration to each SWNTs.
  • Non-patent document 1 a publicly known document on a method for separating semiconductor SWNTs by adding amines to SWNTs and using strong interaction with semiconductor carbon nanotubes
  • Patent Document 5 a publicly known document on a method for separating semiconductor SWNTs by adding amines to SWNTs and using strong interaction with semiconductor carbon nanotubes
  • the pretreatment is premised on the oxidation treatment.
  • an oxidation treatment is performed as a pretreatment or a high-temperature heat treatment is further performed.
  • the carbon nanotubes in the rotating drum are charged by irradiating the electron beam with an electron beam, and the metal-type carbon nanotubes which are not charged are removed from the rotating drum, whereby the metal-type carbon nanotube and the insulating-type carbon nanotube are removed.
  • a method for purifying carbon nanotubes that separates and is known see Patent Document 6).
  • metallic SWNTs can be selectively burned off by energizing SWNTs.
  • Non-Patent Document 3 A method for separating WNTs is known (see Non-Patent Document 3).
  • SWNTs dispersed with a surfactant are electrophoresed to form metallic SW.
  • Non-Patent Document 4 Carbon nanotube separation methods for separating NTs and semiconductor SWNTs are known (see Non-Patent Document 4). With this technology, lpg metallic SWNTs (1 / 100,000 of the raw material) can be obtained from a dispersion containing lOOng SWNTs.
  • a separation method for separating SWNTs based on the difference in diameter and electrical properties by subjecting a SWNTs dispersion dispersed in DNA to a gas-on exchange chromatography is known.
  • the components that flow out early are SWNTs with a small diameter and metallic SWNTs
  • the components that flow out late are SWNTs with a large diameter and semiconductor SWNTs.
  • the diazonium reagent is chemically modified to SWNTs with high selectivity. Metallic nanotubes react and semiconductor SWNTs are excluded (see Non-Patent Document 8).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-168570
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-313906
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-0111344
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2003-238126 Patent Document 5: US Patent Application Publication No. 2004Z0232073
  • Patent Document 6 Japanese Patent Laid-Open No. 6-228824
  • Non-Patent Document 2 Yuya Hirashima, Shinichi Kimura, Yu Maeda, Masaru Hasegawa, Koji Wakahara, Ken Akasaka, Tetsuo Shimizu, Hiroshi Tokumoto, "Interaction of SWNTs with Amin", Proceedings of the Chemical Society of Japan, Association Law The Chemical Society of Japan, March 11, 2004, p. 59
  • Non-Patent Document 3 P. G. Collins, M. S. Arnold, P. Avouris, Science, 2001,292, April 27, 2001, p706-709
  • Non-Patent Document 4 R. Krupke, F. Hennrich, H. v. Lohneysen, M. M. Kappes, science, 2003, 301 July 18, 2003, p.344-347
  • Non-Patent Document 5 M. Zheng, A. Jagota, ED Semke, B. Diner, R. Mclean, SR Lustig, RE Richardson, NG Tassi, Nature Mater., 2003, 2, May 1, 2003, p338 ⁇ 342
  • Non-Patent Document 6 M. Zheng, A, Jagota, M, S, Strano, A, P, Santos, P Barone, SG Chou, BA Diner, MS Dresselhaus, RS Mclean, GB Onoa, GG Samsonidze, E. D Semke, M. Usrey, by DJ Walla, Science, 2003, 302, September 28, 2003, p. 15 45-1548
  • Non-Patent Document 7 H. Li, B. Zhou, Y. Lin, L. Gu, W. Wang, KAS Fernando, S. Kumar, LF Allard, YP Sun, J. Am. Chem. Soc, 2004, 126, January 8, 2004, plOl 4 to 5 dishes
  • Non-Patent Document 8 MS Strano, CA Dyke, ML Usrey, PW Barone, MJ Allen, H. Shan, C. Kittrell, RH Hauge, JM Tour, RE Smalley, Science, 2003, 301, 2 September 003 12 Sun, p. 1519-1522 Disclosure of the invention
  • SWNTs are generally synthesized as a mixture of metallic SWNTs and semiconductor SWNTs due to their diameter and chirality!
  • Patent Documents 1, 3, 4, and Non-Patent Document 2 a technique in which carbon nanotubes are simply dispersed in a solvent or the like is disclosed. When any of metallic SWNTs and semiconductor SWNTs is separated, It does not disclose issues and technical means.
  • Patent Document 2 discloses that carbon nanotubes containing fluorinated SWNTs are treated with a solvent such as di-methylformamide, which greatly improves the hydrogen storage capacity. This is different from the problem and technical means of highly selectively separating metallic carbon nanotubes and semiconductor carbon nanotubes.
  • Non-Patent Document 1 and Patent Document 5 are originally intended to obtain semiconductor carbon nanotubes. Focusing on the strong interaction between amin and semiconductor carbon nanotubes, the semiconductor carbon tubes are dispersed in a liquid dispersion. The semiconductor carbon nanotubes are dispersed in the solution and separated in the supernatant after centrifugation. As a pretreatment, the non-patent document 1 is oxidized or the patent document 5 is oxidized. It is assumed that it will be processed or heated at a higher temperature.
  • Non-Patent Document 1 and Patent Document 5 require a troublesome process of pre-treatment, and cause fine defects due to acid soot, and further damage physical properties.
  • the technique disclosed in Patent Document 6 separates metal-type force-bonded nanotubes and insulating-type carbon nanotubes by charging with electrons, and is used for electron beam irradiation. Equipment is required, and it is considered that it is not always possible to uniformly irradiate the carbon nanotubes with the electron beam. Therefore, the separability is not considered sufficient.
  • the present invention aims to solve such a conventional problem, and realizes a method that enables highly selective separation of metallic SWNTs and semiconductor SWNTs, and this method.
  • the challenge is to obtain purely separated metallic SWNTs and semiconducting SWNTs.
  • Non-Patent Documents 3 to 8 disclose the force disclosed for the concentration of semiconductor SWNTs and the concentration of metallic SWNTs for the separation of metallic SWNTs and semiconductor SWNTs. The challenge is to realize a more complete separation of the two, particularly a technology for separating high-purity metallic SWNTs.
  • the present invention disperses metallic carbon nanotubes among carbon nanotubes, and then separates the metallic carbon nanotubes from the undispersed carbon nanotubes.
  • a step of separating the carbon nanotubes that have not been dispersed by centrifugation or filtration A method for separating carbon nanotubes is provided.
  • the present invention disperses metallic carbon nanotubes among carbon nanotubes, and then separates the metallic carbon nanotubes from semiconductor carbon nanotubes that have not been dispersed.
  • a method of adding the carbon nanotubes in which the metallic carbon nanotubes to be dispersed are added to an amine solution, and the metal that interacts with the amine more strongly than the semiconductor carbon nanotubes due to strong electron accepting property.
  • Ultrasonic treatment of carbon nanotubes comprising a step of dispersing in the amine solution and a step of separating the undispersed semiconductor carbon nanotubes by centrifugation or filtration.
  • the present invention is a carbon nanotube separation method in which carbon nanotubes are dispersed and then separated, and the carbon nanotubes interact with each other.
  • a method for separating Bonn nanotubes is provided.
  • the solvent contains an amphiphilic solvent.
  • Solution power of the amine [0034] A solution of primary amine, secondary amine, tertiary amine, or aromatic amine is preferable.
  • the solution of the substance that interacts with the carbon nanotubes between molecules contains a solvent that is lyophilic with the substance.
  • the process force for separating the carbon nanotubes without being dispersed is preferably performed by centrifugation, filtration or precipitation.
  • the carbon nanotube is preferably SWNTs.
  • step of separating the carbon nanotubes that have not been dispersed it is preferable to control the separation by changing the specific gravity of the solvent of the solution in which the metallic carbon nanotubes are dispersed.
  • the step of separating the carbon nanotubes that have not been dispersed is selectively separated by the diameter of the semiconductor carbon nanotubes by utilizing the fact that electrical characteristics differ depending on the diameter of the semiconductor carbon nanotubes. It is good.
  • the present invention provides a dispersion liquid in which metallic carbon nanotubes are dispersed in the amine solution obtained by adding carbon nanotubes to an ammine solution.
  • the solution of the amine in the dispersion is preferably a primary amine, secondary amine, tertiary amine, or aromatic amine solution.
  • the carbon nanotubes are preferably SWNTs.
  • the present invention is produced by dispersing metallic carbon nanotubes among carbon nanotubes, and separating the dispersed metallic carbon nanotubes from semiconductor carbon nanotubes that are not dispersed.
  • Metallic or semiconducting carbon nanotubes wherein the carbon nanotubes are added to an amine solution, and the metallic carbon nanotubes are dispersed in the amine solution by sonication.
  • a metallic or semiconducting carbon nanotube characterized in that it is produced by separating semiconductor carbon nanotubes from each other by centrifugation or filtration without being dispersed with metallic carbon nanotubes.
  • the present invention is produced by dispersing metallic carbon nanotubes among carbon nanotubes, and separating the dispersed metallic carbon nanotubes from semiconductor carbon nanotubes that are not dispersed.
  • Metallic or semiconducting carbon nanotubes wherein the carbon nanotubes are added into an amine solution, and the metallic carbon nanotubes interact with the amine more strongly than the semiconductor carbon nanotubes due to strong electron accepting properties.
  • Providing carbon nanotubes that are conductive or semiconducting The
  • the present invention is produced by dispersing metallic carbon nanotubes among carbon nanotubes, and separating the dispersed metallic carbon nanotubes from non-dispersed semiconductor carbon nanotubes.
  • Metallic or semiconducting carbon nanotubes wherein the carbon nanotubes are added into a solution of a substance that interacts with the carbon nanotubes, and the metallic carbon nanotubes are dispersed in the solution by ultrasound.
  • a metallic or semiconducting carbon nanotube is provided, wherein the dispersed metallic carbon nanotube and the non-dispersing semiconductor carbon nanotube are produced separately from each other.
  • the amine solution is preferably a primary amine, secondary amine, tertiary amine or aromatic amine amine solution.
  • the metallic or semiconductor carbon nanotubes are preferably SWNTs.
  • metallic SWNTs are used. This makes it possible to selectively separate semiconductor SWNTs.
  • SWNTs to be separated there is no need to pre-process SWNTs to be separated. That is, since SWNTs to be separated do not need to be oxidized or further heated at a high temperature as a pretreatment, a troublesome pretreatment process can be omitted, and fine defects generated in the oxidized carbon nanotubes can be eliminated. Furthermore, the problem that physical properties are impaired by pretreatment does not occur.
  • the specific gravity of the solvent of the ammine solution (dispersion) is appropriately adjusted, when the semiconductor SWNTs that have not been dispersed are precipitated by separation means such as centrifugation, the separation amount, separation ratio, Separation efficiency, separation speed, etc. can be controlled.
  • the amine Since the amine is not chemically modified into carbon nanotubes as in the prior art, the amine can be easily removed from the metallic SWNTs obtained by separation. This enables applications based on carbon nanotubes as nanomaterials in various industrial fields.
  • FIG.l (a) shows SWTNs (AP— SWNTs) obtained by filtering the dispersion after ultrasonic irradiation, (b) shows SWNTs—S, and (c) shows scanning electrons of SWNTs—D. Each shows a microscopic image (SEM image) The
  • FIG. 2 shows an atomic microscope image (AFM image) and a cross-sectional view of a supernatant liquid (SWNTs-S) containing dispersed metallic SWNTs obtained by centrifuging the dispersion liquid after ultrasonic irradiation.
  • AFM image atomic microscope image
  • SWNTs-S supernatant liquid
  • SWNTs, SWNTs—S precipitates SWNTs—D and SWNTs—S containing non-dispersed semiconductor SWNTs obtained by centrifuging the dispersion after ultrasonic irradiation are filtered and centrifuged again
  • SWNTs—M supernatant liquid
  • FIG. 4 Raman spectra of AP-SWNTs and SWNTs-M are shown.
  • the present invention utilizes the interaction between amin and metallic SWNTs based on the difference in electrical characteristics between metallic SWNTs and semiconductor SWNTs, and the difference in interaction between amin and semiconductor SWNTs. This is a method that makes it possible to selectively separate metallic SWNTs into metallic SWNTs and semiconductor SWNTs.
  • the present invention relates to a dispersion liquid in which metallic SW NTs produced in the course of this method are dispersed, and further relates to metallic SWNTs and semiconductor SWNTs separated by the above method.
  • amin SWNTs also referred to as "ammin SWNTs” in this specification
  • electron partitioning occurs between the amin and SWNTs on the surface of SWNTs, and the stronger electrons of metallic SWNTs.
  • the acceptability is thought to cause a stronger interaction between amin on the SWNTs surface and metallic SWNTs than amin-semiconductor SWNTs.
  • metallic SWNTs have a strong electron accepting property with respect to the electrons of nitrogen constituting the amine.
  • the charge density on the hydrogen is reduced and electrons are supplied from metallic SWNTs to the electron deficiency of the hydrogen constituting the amine, a strong interaction occurs between the two.
  • Amine-metallic SWNTs that exhibit such strong interaction with each other are important factors in SWNTs separation based on amine electrical characteristics, and are isolated metals from bundle to non-bundle one by one. Disperses (unwinds) in sex SWNTs. By centrifuging the dispersion liquid containing metallic SWNTs dispersed in this manner, the isolated and dispersed metallic SWNTs are separated from the semiconductor SWNTs.
  • Lmg SWNTs in which metallic SWNTs and semiconducting SWNTs are mixed in a bundle is an amine solution that functions as a dispersion (dispersant). Put in.
  • the ammine solution is an octylamine solution
  • 10 ml of an octylamine tetrahydrofuran solution (THFZoctylamine solution) containing a 1.OM solution of THF (tetrahydrofuran) as a solvent is used as the octylamine solution.
  • THFZoctylamine solution octylamine tetrahydrofuran solution
  • the amine then has a stronger interaction with the gold attribute SWNTs.
  • the dispersion is centrifuged for 12 hours under the conditions of 45 and 620G (specifically, for example, the dispersion is filled in a test tube, and this is suspended by a rotating disk and rotated. Rotate the disk). Then, semiconductor SWNTs with high specific gravity that are solidified in a non-dispersed state (non-dispersed SWNTs) sink as precipitates (SWNTs—D), and metallic SWNTs are dispersed in the supernatant in the dispersion. As a result, metallic SWNTs and semiconductor SWNTs are separated.
  • SWNTs—S a state in which metallic SWNTs are contained in a dispersed state, that is, a supernatant liquid in which metallic SWNTs are dispersed is described in the present specification. Then say “SWNTs—S”.
  • FIGS. 1 (a) to (c) show AP—SWNTs, SWNT s—S (supernatant liquid contained in a dispersed state of metallic SWNTs) obtained by separation by the method of the above example, and These are photographs of the non-dispersed SWNTs deposits (SWNTs-D) observed with a scanning electron microscope. According to Fig. 1, metallic SWNTs are of high purity.
  • FIG. 2 shows that SWNTs—S obtained by separation by the method of the above example was collected on a mica plate, dried with nitrogen gas, and then analyzed by an atomic force microscope (AFM). This is an observed photograph.
  • AFM atomic force microscope
  • the diameter (thickness) of metallic SWNTs is about 0.9-1.3 nm, so metallic SWNTs are dispersed. It is assumed that it will be in an isolated state.
  • the upper graph in Fig. 2 shows the height of metallic SWNTs measured by scanning along the straight line shown in the photograph of Fig. 2 with an atomic force microscope (AFM) probe.
  • the force in which the height of the dispersed metal SWNTs can be seen by the arrows in the graph.
  • the difference in the height of the arrows is that the force of one metal SWNTs is still divided into one, such as two or three. It depends on whether it is a cunning state.
  • FIG. 3 is a graph showing the results of absorption spectrum measurement for each state of SWNTs in the method of the above example. Specifically, the absorption spectrum was measured by vis-NIR (Vis-NEAR INFRARED SPECTRO PHOTOM ETER).
  • SWNTs (trade name: HiPco tube) were placed in a dispersion (octylamine tetrahydrofuran solution) and allowed to interact with ammine. Sonication is performed to obtain a dispersion containing dispersed metallic SWNTs and non-dispersed semiconductor SWNTs (dispersion after ultrasonic irradiation). It is as follows.
  • AP—SWNTs are SWTNs obtained by filtering the dispersion after ultrasonic irradiation.
  • SWNTs—S is a supernatant liquid in which metallic SW NTs obtained by centrifuging the dispersion liquid after ultrasonic irradiation are dispersed.
  • SWNTs—M is a supernatant containing concentrated, dispersed metallic SWNTs obtained by filtering SWNTs—S and then centrifuging again.
  • SWNTs—D is a precipitate in which semiconductor SWNTs obtained by centrifuging the dispersion after ultrasonic irradiation are contained in a non-dispersed state.
  • FIG. 3 shows an absorption spectrum from 400 to 1600 nm.
  • the absorption spectrum in FIG. 3 shows the first band transition (400 to 650 nm) of the metallic SWNTs, the first band transition (900 to 1600 nm) of the semiconductor SWNTs, and the second Nondo transition S22 (550 to 900 nm).
  • the absorption spectrum (mouth) of SWNTs-S shows a fine structure (sharp peak) at 400 to 650 nm. This is due to the addition of amine to THF solution. It also shows that metallic SWNTs are efficiently unpacked one by one and unbundled. If SWNTs are isolated and dispersed, the SWNTs absorption It is well known to those skilled in the art that the tuttle exhibits a fine structure.
  • M is a force that selectively increases the absorption (absorber) in the first band transition (400 to 650 nm) of metallic SWNTs.
  • the first band transition (900 to 1600 nm) and second band transition of the semiconductor SWNTs S22 ( The absorption (absorption band) at 550 to 900 nm) is selectively attenuated.
  • an octylamine solution was used as an example of a primary amine as a dispersion, and the experimental results have been described above.
  • other types of amines such as primary amines, and secondary amines may be used.
  • the present inventors also conducted experiments similar to the above-mentioned experiments, and obtained similar efficient dispersibility for amine solutions containing amines such as tertiary, aromatic amines and amides. The results shown are obtained. As a result, the basicity of the amine and the length and number of the alkyl chains are presumed to contribute to such efficient high dispersibility.
  • the absorption band of the semiconductor SWNTs is selectively attenuated and the metallic SWNTs absorption band is increased. From this, in the above example, the semiconductor SWNTs and the metallic SWNTs are metallic. It is clear that the dispersion based on SWNTs electrical properties, and the subsequent centrifugation step, separates SWNTs very effectively.
  • the SWNTs—S (the supernatant liquid containing the dispersed metallic SWNTs) obtained by centrifugation is filtered and force is applied again. was repeated.
  • FIG. 3 The absorption spectrum of the supernatant (SWNTs-M) thus obtained is shown in FIG.
  • the supernatant in the left bottle shown in Figure 3 indicates SWNTs—S, and the supernatant in the right bottle Shows SWNTs—M, respectively.
  • Fig. 3 it is not a color diagram and cannot be clearly shown.
  • the supernatant in the bottle on the left shows green and the supernatant on the right shows purple.
  • the absorption spectrum of SWNTs-M obtained by repeating the steps of dispersion and centrifugation again after filtration and force shows a strong metallic transition and a weak semiconducting transition. That is, strong absorption in the first-band transition (400 to 650 nm) of SWNTs-M metallic SWNTs and weak absorption in the first-band transition (900 to 1600 nm) and second-band transition S22 (550 to 900 nm) of semiconductor SWNTs. Show. This indicates that metallic SWNTs are concentrated by repeating the above dispersion or centrifugal separation.
  • the Raman spectrum is a useful means for knowing the diameter and electrical characteristics of SWNTs.
  • Figure 4 shows the Raman spectrum obtained by measuring SWNTs with 514.5 nm excitation light.
  • AP-SWNTs is a film obtained by filtering the AP-SWNTs of the above example
  • SWNTs-M is a filter of the SWNTs-M of the above example. It is a film.
  • Fig. 4 (a), (b)! / Radial Breathing Modes (RBM: SWNTs Raman spectrum, characteristic peaks appearing in the region of 100-300 cm _1 , well-known knowledge Therefore, the diameter of SWNTs is generally estimated to be 0.9 to 1.3 nm.
  • the Raman vectors in the region of 160 to 200 cm _1 and 200 to 280 cm _1 are respectively the semiconductor SWNTs.
  • metallic SWNTs semiconductor SWN Ts and metallic SWNTs are characteristically derived.
  • the tangential G band near 1,600 cm _1 is a characteristic Raman that is easily distinguished between metallic and semiconducting SWNTs. Linear.
  • Figures 4 (a) and (c) demonstrate that metallic SWNTs are enriched by observing the stronger Breit-Wigner-Fano linear component force WNTs—M in the tangential G band. RU
  • the concentration ratio of metal to semiconducting SWNTs (the amount of SWNTs—M, the amount of ZAP—the amount of SWNTs) could reach 7.2. .
  • the dispersion or centrifugation step of the embodiment of the present invention can separate metallic SWNTs and semiconducting SWNTs very effectively.
  • the ratio of the integrated value of the Raman spectrum in the region of 160 ⁇ 200cm _ 1 and 200 ⁇ 280Cm _1 the ratio of the amount of each semiconductor SWNTs gold attribute SWNTs can be inferred.
  • the present invention is not limited to this embodiment.
  • aromatic, straight chain, and branched CI—C18 can be used.
  • the amine is not particularly limited as long as it has a strong interaction with the metal SWNTs, but may be a primary amine other than octylamine, and may be a secondary, tertiary amine, aromatic amine, or amine.
  • a solution containing tetrahydrofuran (THF) as a solvent was used as the ammine solution.
  • the solvent is not limited to THF (tetrahydrofuran), and any solvent that is amphiphilic with ammine can be used. Such solvents can also be used. Possible solvents include alcohol, dallicol, dimethyl sulfoxide (DMSO) and the like.
  • surfactants and antifoaming agents can be used as additives in the amine solution.
  • the ultrasonic irradiation may be performed for 1 minute to 168 hours.
  • centrifugation is used for 12 hours under conditions of 45, 620 G. Centrifugation may be performed for 100 to 100000 G, for 1 minute to 168 hours. And as a means for removing non-dispersed semiconductor SWNTs (non-dispersed SWNTs), other methods such as filtration other than centrifugation and precipitation separation other than centrifugation can also be used.
  • the specific gravity of the semiconductor SWNTs (non-dispersed SWNTs) with respect to the dispersion liquid can be changed by changing the specific gravity of the solvent, whereby the semiconductor SWNTs that have not been dispersed can be changed.
  • the amount of the semiconductor SWNTs separated from the metallic SWNTs can be controlled.
  • Separation methods other than centrifugation and filtration include evaporation of the solvent and heating of the dispersion! /, Cooling, additives (eg, nonpolar solvents, polar solvents, salts, acids or alkalis, metals Components such as solvents, reducing agents, oxidizing agents, polymers or organic molecules that interact with the pi-electron system, surfactants), chromatography, electric There are electrophoresis, sedimentation, flotation separation, a combination of these, and the like.
  • additives eg, nonpolar solvents, polar solvents, salts, acids or alkalis, metals Components such as solvents, reducing agents, oxidizing agents, polymers or organic molecules that interact with the pi-electron system, surfactants
  • chromatography electric There are electrophoresis, sedimentation, flotation separation, a combination of these, and the like.
  • Means for removing amines from metallic SWNTs or semiconductor SWNTs obtained in the present invention include means such as washing with a solvent, heating, or decompression.
  • the solvent used for cleaning include ethanol, ether, aliphatic ether, and aliphatic hydrocarbon solvent.
  • SWNTs in a bundle metallic SWNTs and semiconductor SWNTs can be used on a large scale by a simple method using their electrical characteristics and without changing their structures and electrical characteristics. Since separation is possible with a large capacity, it enables applications based on SWNTs of nanomaterials in various industrial fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 束状のカーボンナノチューブから金属性単層カーボンナノチューブと半導体カーボンナノチューブを選択的に分離を可能にする方法を実現し、この方法で、高純度に分離された金属性単層カーボンナノチューブ得ることを可能にする。  金属性単層カーボンナノチューブと半導体カーボンナノチューブの電気的特性の違いに基づく、アミンに対する金属性単層カーボンナノチューブと半導体カーボンナノチューブ相互作用の相違を利用するとともに、アミンがSWNTs分離において重要な因子となることを利用して、束状のカーボンナノチューブから金属性単層カーボンナノチューブを1本ずつ分散し(ほぐし)、このようにして分散したカーボンナノチューブを、遠心分離することで、非分散状態の半導体カーボンナノチューブと分離する。

Description

明 細 書
カーボンナノチューブの分離方法、分散液及び該分離方法で得られる力 一ボンナノチューブ
技術分野
[0001] 本発明は、カーボンナノチューブの分離方法、分散液及び該分離方法で得られる カーボンナノチューブに関する発明である。特に、本発明は、金属性単層カーボンナ ノチューブを溶液中に分散し、引き続き金属性単層カーボンナノチューブと半導体 単層カーボンナノチューブを分離する分離方法、及び上記分散で得られた金属性単 層カーボンナノチューブが分散された分散液、及びこの分離方法で生成される金属 性又は半導体の単層カーボンナノチューブに関する発明である。
背景技術
[0002] カーボンナノチューブは、優れた機械的、電気的性質を有する。このため、電子源 材料、導電榭脂材料等、幅広い分野への利用の可能性が期待されている。特に、単 層カーボンナノチューブ (本明細書では、「SWNTs」という。)が有する優れた電子特 性の利用が強く要望されている。し力しながら、 SWNTsの可溶ィ匕が難しいこと、およ び分散性が低 、 (束状に凝集して 、る)事から実用化がほとんど進んで 、な 、。
[0003] SWNTsを各応用分野に適用するために、束状の SWNTsを孤立した一本のものと して有機溶媒に分散することは、本技術分野において、きわめて重要な技術的な課 題であり、これは均一系化学反応を可能にするものである。
[0004] 従来、束状の SWNTsを分散する技術的手段として、非共有結合相互作用、化学 修飾等が知られている。具体的手段の一例を、以下に紹介する。
[0005] 本発明者らは、 SWNTsを、硫酸 硝酸の混合溶液中での超音波処理および硫酸 と過酸ィ匕水素の混合溶液中での超音波処理をした後、有機ァミンおよび脱水剤の存 在下でァミンと化学反応をさせァミンで修飾して、溶媒に可溶ィ匕する SWNTsを製造 する方法を提案して!/ヽる (特許文献 1参照)。
[0006] また、フッ化した SWNTsを含むカーボンナノチューブに対してジオメチルフオルム アミド等の溶媒で処理する事で、炭素原子の六員環構造及び電子状態を変化させて 水素吸蔵能を大きく向上させる点が公知である (特許文献 2参照)。
[0007] また、有機高分子材料を含む溶液中に SWNTsを均一に分散させることで、高均一 性の塗料を製造し、基体表面に SWNTsを含む物質層を均一に形成する技術が公 知である (特許文献 3参照)。
[0008] また、カーボンナノチューブを、疎水部一親水部の構造を有する化合物から成る分 散剤を含む分散液によって、化学修飾することもなしに、簡単かつ安定に分散する 方法が公知である (特許文献 4参照)。
[0009] さらに、 SWNTsを、ァミン存在下の有機溶媒中に高分散化する点は、公知である( 非特許文献 2参照)。
[0010] 以上の従来例と一部重複するが、従来、高分子やパイ—共役化合物と、 SWNTsと の非共有結合型結合を形成することによって、それらの構造や性質を変えることなく 、束状の SWNTsを非水溶液に分散できる方法がすでに提案されている。しかし、こ のように非水溶液中において分散された SWNTsの分光学的な確認は、従来、報告 されていなかった。
[0011] そこで、本発明者らは、すでに、 SWNTsが複数本結合されて成る束状の SWNTs を、ォクチルァミン (octylamine)を含むテトラヒドロフラン溶媒に入れて、振動を付与し て 1本ずつの SWNTsに分離し、分光光度計で吸収スペクトルを測定し、吸収スぺク トルから束状の SWNTsが 1本ずつの SWNTsに分離した度合!/、を客観的に確認可 能する加工処理方法に関する発明を、本願の基礎出願の後であるが提案している( 特願 2004— 310231)。
[0012] さらに、従来、金属性カーボンナノチューブと半導体カーボンナノチューブとを分離 する別の技術的手段として、電気泳動、クロマトグラフィー、非共有結合相互作用、 化学修飾等が知られている。それらの具体的な手段の一例を、以下に紹介する。
[0013] 例えば、半導体カーボンナノチューブを得ることを目的とし、 SWNTsにアミンを添 加し、半導体カーボンナノチューブとの強い相互作用を利用して、半導体 SWNTsを 分離する方法については、公知文献があり(非特許文献 1)、又、公知ではないが米 国内で本願の基礎出願より先行して出願されている(特許文献 5参照)。この場合、 非特許文献 1記載のものでは、前処理として酸化処理を前提としており、特許文献 5 記載の発明では、前処理として酸化処理するか、或いはさらに高温加熱処理すること を前提としている。
[0014] さらに、回転ドラム内のカーボンナノチューブに電子ビームを照射して帯電させ、帯 電しな力つた金属タイプのカーボンナノチューブを回転ドラムから除くことにより金属 タイプのカーボンナノチューブと絶縁タイプのカーボンナノチューブとを分離するカー ボンナノチューブの精製法は公知である (特許文献 6参照)。
[0015] さらに、 SWNTsを通電させることで金属性 SWNTsを選択的に焼き切ることができ
、通電することで金属性 SWNTsを除去し、半導体 SWNTsを残留させる、半導体 S
WNTsの分離法は公知である (非特許文献 3参照)。
[0016] また、界面活性剤で分散した SWNTsを電気泳動処理することにより、金属性 SW
NTsと半導体 SWNTsを分離するカーボンナノチューブの分離法は公知である(非 特許文献 4参照)。この技術では、 lOOngの SWNTsを含む分散液から、 lpgの金属 性 SWNTs (原料の 10万分の 1)が得られる。
[0017] また、 DN Aで分散した SWNTs分散液をァ-オン交換クロマトグラフィー処理する ことによって直径と電気的性質の違いに基づいた SWNTsの分離を行う分離法は公 知である。スペクトル分析によると、早く流出する成分は直径が細い SWNTsと金属 性 SWNTsであり、遅く流出する成分は直径が太い SWNTsと半導体 SWNTsである
(非特許文献 5、 6参照)。
[0018] また、非共有結合相互作用と推定されるポルフィリン誘導体の半導体 SWNTsへの 選択性の結果として、分散液中に半導体 SWNTsを顕著に濃縮し、残留物に優先的 に金属性 SWNTsを濃縮する方法は公知である(非特許文献 7参照)。
[0019] さらに、電気的性質に起因して、ジァゾニゥム試薬が高い選択性を持って、 SWNT sに化学修飾する。金属性ナノチューブが反応し、半導体 SWNTsは除外される(非 特許文献 8参照)。
[0020] 特許文献 1:特開 2004— 168570号公報
特許文献 2:特開 2004 - 313906号公報
特許文献 3:特開 2001— 011344号公報
特許文献 4:特開 2003— 238126号公報 特許文献 5:米国特許出願公開 2004Z0232073号明細書
特許文献 6:特開平 6 - 228824号公報
特 §千文献 1 : Debjitし nattopadnyay, Izabela Galeska, rotios Papadimitrakopouios 著、「A Route for Bulk Separation of Semiconducting from Metallic Single-Wall Carb on NanotubesJ、 JACS ARTICLES, J. AM. CHEM. SOC. VOL.125, NO.11, 2003、 T he Nanomaterials Optoelectronics Laboratory, Department of Chemistry ^ Polymer P rogram, Institute of Materials Science, University of Connecticut^ p. 3370〜3375 2003年 2月 22日発行
非特許文献 2 :平嶋由哉、木村新一、前田優、長谷川正、若原孝次、赤阪健、清水 哲夫、徳本洋志著、「SWNTsのァミンとの相互作用」、 日本化学会予稿集、社団法 人日本化学会、 2004年 3月 11日発行、 p. 59
非特許文献 3 : P. G. Collins, M. S. Arnold, P. Avouris著、 Science, 2001,292、 2001 年 4月 27日、 p706〜709
非特許文献 4 : R. Krupke, F. Hennrich, H. v. Lohneysen, M. M. Kappes著, science, 2003,3012003年 7月 18日、 p.344〜347
非特許文献 5 : M. Zheng, A. Jagota, E. D. Semke, B. Diner, R. Mclean, S. R. Lustig, R. E. Richardson, N. G. Tassi著、 Nature Mater., 2003, 2, 2003年 5月 1日、 p338 〜342
非特許文献 6 : M. Zheng, A, Jagota, M, S, Strano, A, P, Santos, P Barone, S. G. Ch ou, B. A. Diner, M. S. Dresselhaus, R. S. Mclean, G. B. Onoa, G. G. Samsonidze, E . D. Semke, M. Usrey, D. J. Walla著, Science, 2003,302、 2003年 9月 28日、 p. 15 45〜1548
非特許文献 7 : H. Li, B. Zhou, Y. Lin, L. Gu, W. Wang, K. A. S. Fernando, S. Kuma r, L. F. Allard, Y.P. Sun著、 J. Am. Chem. Soc, 2004, 126、 2004年 1月 8日、 plOl 4〜皿 5
非特許文献 8 : M. S. Strano, C. A. Dyke, M. L. Usrey, P W Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, R. E. Smalley著, Science, 2003, 301、 2 003年 9月 12日、 p. 1519〜1522 発明の開示
発明が解決しょうとする課題
[0021] ところで、 SWNTsは、一般に、直径とカイラリティーに起因した金属性 SWNTsと半 導体 SWNTsの混合物として合成されて!、るが、金属性 SWNTsと半導体 SWNTs のそれぞれの電気的特性に着目して、分散乃至分離することは、 1本ずつの SWNT sを得るためにきわめて有用な技術的手段である。
[0022] そして、カーボンナノチューブを分散させる方法は、従来、上記文献中で示すように 、いくつかの提案がされ、カーボンナノチューブを溶媒中に分散させるという点は知ら れているが、カーボンナノチューブから、金属性 SWNTsと半導体 SWNTsを高度に 選択的に分離すると!ヽぅ課題や技術手段は、知られて!/ヽな ヽ。
[0023] 例えば、特許文献 1、 3、 4、非特許文献 2では、単にカーボンナノチューブを溶媒 等に分散する技術は開示されている力 いずれも、金属性 SWNTsと半導体 SWNT sを分離すると!、う、課題及び技術手段を開示するものではな 、。
[0024] また、特許文献 2では、フッ化した SWNTsを含むカーボンナノチューブに対してジ オメチルフオルムアミド等の溶媒で処理する点は開示されて 、るが、これは水素吸蔵 能を大きく向上させることを課題とするものであり、金属性カーボンナノチューブと半 導体カーボンナノチューブを高度に選択的に分離するという課題や技術手段とは異 なるものである。
[0025] また、非特許文献 1、特許文献 5は、本来、半導体カーボンナノチューブを得ること を目的としているものであって、ァミンと半導体カーボンナノチューブの強い相互作用 に着目し半導体カーボンチューブを分散液中に分散させ、遠心分離後、上澄み液 内に分離された半導体カーボンナノチューブを得るものであり、その前処理として、 非特許文献 1の場合は酸化処理するか、特許文献 5の場合は、酸化処理するか、或 いはさらに高温加熱処理することを前提として 、る。
[0026] し力しながら、このような前処理をしたカーボンナノチューブには微細な欠損等が生 じてしまう。いずれにしろ、非特許文献 1、特許文献 5では、前処理という面倒な工程 を要するとともに、酸ィ匕による微細な欠損が生じ、さらには物性が損なわれるという問 題がある。 [0027] また、特許文献 6に開示されている技術は、電子帯電させることで、金属タイプの力 一ボンナノチューブと絶縁タイプのカーボンナノチューブとを分離するものであり、そ の電子ビーム照射用の設備が必要であり、しかもカーボンナノチューブを均一に電 子ビームを照射することは必ずしも可能ではな 、と考えられ、このため分離性も十分 とは考えられない。
[0028] 本発明は、このような従来の問題点を解決することを目的とするものであり、金属性 SWNTsと半導体 SWNTsの高選択的分離を可能にする方法を実現するとともに、こ の方法で、純粋に分離された金属性 SWNTsと半導体 SWNTsを得ることを課題とす るものである。
[0029] なお、非特許文献 3〜8は、金属性 SWNTsと半導体 SWNTsの分離について、半 導体 SWNTsの濃縮、及び金属性 SWNTsの濃縮等について開示されている力 こ れらに対して本発明では、両者のより完全の分離、特に、高純度の金属性 SWNTs を分離する技術を実現することを課題とするものである。
課題を解決するための手段
[0030] 本発明は上記課題を解決するために、カーボンナノチューブのうち金属性カーボン ナノチューブを分散させ、次いで、該金属性カーボンナノチューブと分散しなかった カーボンナノチューブとを分離する、カーボンナノチューブの分離方法であって、金 属性カーボンナノチューブを分散すべき前記カーボンナノチューブを、ァミンの溶液 に、添加する工程と、前記金属性カーボンナノチューブを、超音波処理によって、前 記ァミンの溶液中で分散処理する工程と、分散されなかったカーボンナノチューブを 遠心分離又はろ過によって分離する工程と、を有することを特徴とするカーボンナノ チューブの分離方法を提供する。
[0031] 本発明は上記課題を解決するために、カーボンナノチューブのうち金属性カーボン ナノチューブを分散させ、次いで、該金属性カーボンナノチューブと分散しなかった 半導体カーボンナノチューブとを分離する、カーボンナノチューブの分離方法であつ て、金属性カーボンナノチューブを分散すべき前記カーボンナノチューブを、ァミン の溶液に、添加する工程と、強い電子受容性によって、前記半導体カーボンナノチュ ーブより強くァミンと相互作用する前記金属性カーボンナノチューブを、超音波処理 で、前記ァミンの溶液中で分散処理する工程と、前記分散されなかった半導体カー ボンナノチューブを遠心分離又はろ過によって分離する工程と、を有することを特徴 とするカーボンナノチューブの分離方法を提供する。
[0032] 本発明は上記課題を解決するために、カーボンナノチューブを分散させ、次 、で、 該カーボンナノチューブを分離する、カーボンナノチューブの分離方法であって、前 記カーボンナノチューブと分子間相互作用する物質の溶液に、カーボンナノチュー ブを添加する工程と、カーボンナノチューブを前記溶液中で分散処理する工程と、分 散されなかったカーボンナノチューブを分離する工程と、を有することを特徴とする力 一ボンナノチューブの分離方法を提供する。
[0033] 前記ァミンの溶液力 ァミンと親媒性のある溶媒を含むことが好ましい。
[0034] 前記ァミンの溶液力 一級ァミン、二級ァミン、三級ァミン、又は芳香族ァミンの溶液 であることが好ましい。
[0035] 前記カーボンナノチューブと分子間相互作用する物質の溶液が、該物質と親媒性 のある溶媒を含むことが好まし 、。
[0036] 前記分散されな力つたカーボンナノチューブを分離する工程力 遠心分離、ろ過又 は沈殿により行われることが好ま 、。
[0037] 前記カーボンナノチューブは、 SWNTsであることが好ましい。
[0038] 前記分散されな力つたカーボンナノチューブを分離する工程では、金属性カーボン ナノチューブを分散する溶液の溶媒の比重を変えることで、分離を制御することが好 ましい。
[0039] 前記分散されな力つたカーボンナノチューブを分離する工程は、前記半導体カー ボンナノチューブの直径により電気的特性が異なることを利用して、前記半導体カー ボンナノチューブの直径で選択的に分離する構成としてもよい。
[0040] 本発明は上記課題を解決するために、ァミンの溶液にカーボンナノチューブが添 カロされた前記ァミンの溶液中に、金属性カーボンナノチューブが分散されている分散 液を提供する。
[0041] 上記分散液のァミンの溶液が、一級ァミン、二級ァミン、三級ァミン、又は芳香族ァ ミンの溶液であることが好まし 、。 [0042] 上記分散液では、カーボンナノチューブは、 SWNTsであることが好ましい。
[0043] 本発明は上記課題を解決するために、カーボンナノチューブのうち金属性カーボン ナノチューブが分散され、該分散された金属性カーボンナノチューブが、分散されな い半導体カーボンナノチューブと分離されて生成される金属性又は半導体のカーボ ンナノチューブであって、前記カーボンナノチューブは、ァミンの溶液内に添加され、 超音波処理により、前記金属性カーボンナノチューブが、前記アミン溶液内で分散さ れ、該分散された金属性カーボンナノチューブと分散しな 、半導体カーボンナノチュ ーブが遠心分離又はろ過によって互いに分離して生成されて成ることを特徴とする 金属性又は半導体のカーボンナノチューブを提供する。
[0044] 本発明は上記課題を解決するために、カーボンナノチューブのうち金属性カーボン ナノチューブが分散され、該分散された金属性カーボンナノチューブが、分散されな い半導体カーボンナノチューブと分離されて生成される金属性又は半導体のカーボ ンナノチューブであって、前記カーボンナノチューブは、ァミンの溶液内に添加され、 強い電子受容性によって、前記半導体カーボンナノチューブより強くァミンと相互作 用する前記金属性カーボンナノチューブが、超音波処理により、前記アミン溶液内で 分散され、該分散された金属性カーボンナノチューブと分散しな 、半導体カーボン ナノチューブが遠心分離又はろ過によって互いに分離して生成されて成ることを特 徴とする金属性又は半導体のカーボンナノチューブを提供する。
[0045] 本発明は上記課題を解決するために、カーボンナノチューブのうち金属性カーボン ナノチューブが分散され、該分散された金属性カーボンナノチューブが、分散されな い半導体カーボンナノチューブと分離されて生成される金属性又は半導体のカーボ ンナノチューブであって、前記カーボンナノチューブは、カーボンナノチューブと分子 間相互作用する物質の溶液内に添加され、超音波により、前記金属性カーボンナノ チューブが、前記溶液内で分散され、該分散された金属性カーボンナノチューブと 分散しない半導体カーボンナノチューブが互いに分離して生成されて成ることを特徴 とする金属性又は半導体のカーボンナノチューブを提供する。
[0046] 前記金属性又は半導体のカーボンナノチューブでは、ァミンの溶液が、一級アミン 、二級ァミン、三級ァミン、又は芳香族ァミンの溶液であることが好ましい。 [0047] 前記金属性又は半導体のカーボンナノチューブは、 SWNTsであることが好ましい 発明の効果
[0048] 本発明では、金属性 SWNTsと半導体 SWNTsの電気的特性の違いに基づぐアミ ン等の物質に対する金属性 SWNTsと半導体 SWNTsの相互作用の相違を利用す ることにより、金属性 SWNTsと半導体 SWNTsを、選択的に分離することを可能にす ることがでさる。
[0049] 特に、本発明では、金属性 SWNTsに対してより強い相互作用を有するァミン等の 物質を分散液の添加剤として採用したので、分散液内で 1本の金属性 SWNTsを孤 立して分散でき、これを分離すれば、 1本ずつ孤立した高純度の金属性 SWNTsを、 必要な用途に直接適用できる。
[0050] 本発明では、分離すべき SWNTsを、前処理する必要がない。即ち、前処理として 、分離すべき SWNTsを酸化処理するか、或いはさらに高温加熱処理する必要がな いので、面倒な前処理工程が省け、また、酸化されたカーボンナノチューブに生じる 微細な欠損等がなぐさらに前処理により物性が損なわれるという問題も生じない。
[0051] 本発明では、ァミン溶液 (分散液)の溶媒の比重を適宜調整すれば、分散しなかつ た半導体 SWNTsを、遠心分離等の分離手段によって沈殿させる際に、その分離量 、分離比率、分離効率、分離速度等を制御することができる。
[0052] そして、従来、電気的特性を利用して分離するのに必要であった電子ビーム等の 設備を特に必要とすることなぐ簡単な方法で、大量に、し力も高純度に制御された 金属性 SWNTsに分散し分離して得ることができる。
[0053] 従来技術のように、アミンをカーボンナノチューブに化学反応で修飾するようなこと は行わな 、ので、分離して得られた金属性 SWNTsからアミンを容易に取り除くことで きる。これによつて、各産業分野でのナノ材料のカーボンナノチューブに基づく応用 を可能にする。
図面の簡単な説明
[0054] [図 l] (a)は超音波照射後の分散液をろ過して得た SWTNs (AP— SWNTs)、 (b) は SWNTs— S、(c)は SWNTs— Dの走査型電子微鏡像(SEM像)を、それぞれ示 す。
[図 2]超音波照射後の分散液を遠心分離して得た分散した金属性 SWNTsを含む上 澄み液 (SWNTs - S)の原子間顕微鏡像 (AFM像)と断面図を示す。
[図 3]SWNTs、 SWNTs— S、超音波照射後の分散液を遠心分離して得た非分散半 導体 SWNTsが含まれる沈殿物 SWNTs— D、及び SWNTs— Sをろ過し再度遠心 分離を行って得た金属性 SWNTsが濃縮して含まれる上澄み液(SWNTs— M)の V is— NIRスペクトルを示す。
[図 4] AP— SWNTsと SWNTs— Mのラマンスペクトルを示す。
発明を実施するための最良の形態
[0055] 本発明を実施するための最良の形態を、実施例に基づいて図面を参照して以下に 説明する。
[0056] 本発明は、金属性 SWNTsと半導体 SWNTsの電気的特性の違いに基づぐァミン と金属性 SWNTs間の相互作用、及びァミンと半導体 SWNTs間の相互作用の相違 を利用して、束状の SWNTsを、金属性 SWNTsと半導体 SWNTsに選択的に分離 可能とする方法である。そして、本発明は、この方法の過程で生成される金属性 SW NTsが分散された分散液に関し、さらに、上記の方法で分離された金属性 SWNTs と半導体 SWNTsに関する。
[0057] 従来、電気的特性によるカーボンナノチューブの分離は、上述のとおりいくつかの 方法があつたが、いずれも完全な解決策ではない。本発明は、この点の解決方法を 提供するものである。 SWNTsを、アミンを含む溶液中(ァミン溶液)に入れると、アミ ン類は、 SWNTsの表面に負の電化密度を提供する。
[0058] ところで、ァミンと SWNTsの組み合わせ(本明細書においては「ァミン一 SWNTs」 とも表記する。)においては、 SWNTs表面上のァミンと SWNTs間に電子分配が生じ 、金属性 SWNTsのより強い電子受容性によって、 SWNTs表面上のァミンと金属性 SWNTs間に、ァミン—半導体 SWNTsよりも強い相互作用が生じるものと考えられる
[0059] より詳細には、アミンー金属性 SWNTsにおいては、金属性 SWNTsはアミンを構 成する窒素の電子に対して強い電子受容性を有するので、結果として、アミンを構成 する水素上での電荷密度が低下し、金属性 SWNTsからアミンを構成する水素の電 子欠損に対して電子を供給することにより、両者間に強い相互作用が生じる。
[0060] このように互いに強い相互作用を示すアミンー金属性 SWNTsは、ァミン電気的特 性に基づいた SWNTs分離における重要な因子となって、束状から非束状の 1本ず つ孤立した金属性 SWNTsに分散する(ほぐれる)。このようにして分散された金属性 SWNTsを含む分散液を、遠心分離することで、孤立して分散され金属性 SWNTsを 、半導体 SWNTsから分離する。
実施例
[0061] 本発明の実施例を以下に説明する。金属性 SWNTsと半導体 SWNTsが束状に混 合した lmgの SWNTs (本実施例では、購入した「HiPcoチューブ」(商品名)を利用 した。)を、分散液 (分散剤)として機能するァミン溶液に入れる。
[0062] この実施例では、ァミン溶液は、ォクチルァミン溶液であり、ォクチルァミン溶液とし て、溶媒である THF (テトラヒドロフラン)の 1. OM溶液を含む、 10mlのォクチルアミ ンテトラヒドロフラン溶液 (THFZoctylamine 溶液)を使用する。すると、アミンは、金 属性 SWNTsに対して、より強い相互作用を生じる。
[0063] その後、 2時間、超音波照射を室温で行う。すると、束状の SWNTsは、分散する( ほぐれる) 1S ァミンが強い相互作用によって物理的に吸着している金属性 SWNTs は、互いに束状に戻ることなく分散液内で分散状態となり、半導体 SWNTsは互いに 力もみ合い非分散状態となる。これにより、分散液は、分散した金属性 SWNTsと、非 分散状態の半導体 SWNTs (非分散 SWNTs)とが含まれて 、る状態となる。この分 散液をろ過した SWNTsを本明細書では「AP— SWNTs」と言う。
[0064] 引き続いて、分散液を、 45, 620Gの条件で、 12時間、遠心分離を行う(具体的に は、例えば、試験管内に分散液を充填してこれを回転円盤に吊り下げて回転円盤を 回転する)。すると、非分散状態で固まっている比重が大きい半導体 SWNTs (非分 散 SWNTs)は、沈殿物(SWNTs— D)として沈み、金属性 SWNTsは分散液中、上 澄み液に分散された状態となり、この結果、金属性 SWNTsと半導体 SWNTsは、分 離される。このように、分散液中に分散された状態で金属性 SWNTsが含まれた状態 のもの、即ち、金属性 SWNTsが分散された状態で含まれる上澄み液を、本明細書 では「SWNTs— S」と言う。
[0065] (実験例)
本発明の上記実施例の効果を確認するために、本発明では、以下のような測定、 実験を行った。この結果を図 1〜4を参照して以下に説明する。
[0066] 図 1 (a)〜(c)は、 AP— SWNTsと、上記実施例の方法で分離して得られた SWNT s— S (金属性 SWNTs分散した状態で含まれる上澄み液)と、非分散 SWNTsの沈 殿物(SWNTs— D)を、それぞれ走査型電子顕微鏡で観察した写真である。この図 1によると、金属性 SWNTsは、高純度であることを示している。
[0067] そして、図 2の下の図は、上記実施例の方法で分離して得られた SWNTs— Sを雲 母板に採取し、窒素ガスで乾燥させて原子間力顕微鏡 (AFM)で観察した写真であ る。
[0068] この図 2の写真によると、ォクチルアミンテトラヒドロフラン溶液 (THFZoctylamine溶 液)中に、分散し孤立した金属性 SWNTsが存在することを示しており、この金属性 S WNTsは、束状の SWNTsから、きわめて効率よく非束状の孤立した SWNTsになつ て 、ることを示している。
[0069] そして、金属性 SWNTsの直径は、図 4 (詳細は後述する段落 0084)力 0. 9— 1.
3nmであることが分かっており、この AFM分析の図 2からみて、金属性 SWNTsの直 径 (太さ)が 0. 9- 1. 3nm程度であることからして、金属性 SWNTsは、分散し孤立 した状態となって 、ることが想定される。
[0070] 図 2の上のグラフは、原子間力顕微鏡 (AFM)の探針で、図 2の写真で示される直 線に沿って、走査して測定される金属製 SWNTsの高さを示す図である。この図で、 横軸は写真に対応した長さ単位を示し、縦軸は探針で検出した高さを示す。グラフ 中の矢印の部分によって、分散された金属製 SWNTsの高さが分かる力 この矢印 部分の高さの相違は、 1本の金属製 SWNTsである力 2本、 3本等未だ 1本に分離さ れて ヽな 、状態であるかによる。
[0071] 図 2の上のグラフ中、 3箇所のそれぞれにおいて 2つずつ矢印で示す部分があるが 、それぞれの箇所中の右側の矢印の部分の金属製 SWNTsの高さ高さは次のとおり である。左の箇所の右矢印では、束状の SWNTsが分離されて得られた 1本の SWN Tsの高さであり、その高さは約 1. 08nmであり、中央の箇所の右側の矢印では、 SW NTsの高さが約 0. 89nmであった。これに対して、右の箇所の右矢印では、 SWNT sの高さが約 2. lOnmである。右の箇所では、 SWNTsが少なくとも探針の軸方向( 垂直方向)に数本が束になった状態であり、未だ 1本に分離されていない状態である
[0072] 図 3は、上記実施例の方法において、 SWNTsのそれぞれの状態について、吸収 スペクトル測定をした結果を示すグラフである。吸収スペクトル測定は、具体的には、 vis— NIR (可視近赤外分光光度計: Vis - NEAR INFRARED SPECTRO PHOTOM ETER)により、分光分析を行った。
[0073] 繰り返しの説明となる力 上記実施例では、購入した SWNTs (商品名: HiPcoチュ ーブ)を分散液 (ォクチルアミンテトラヒドロフラン溶液)に入れ、ァミンとの相互作用を 行わせてから超音波照射を行!、、分散状態の金属性 SWNTsと非分散状態の半導 体 SWNTsを含む分散液 (超音波照射後の分散液)を得るが、図 3中の分析対象試 料は、次のとおりである。
[0074] (ィ)「AP— SWNTs」は、超音波照射後の分散液をろ過して得た SWTNsである。
(口)「SWNTs— S」は、超音波照射後の分散液を遠心分離して得られた金属性 SW NTsを分散した状態で含まれる上澄み液である。
(ハ)「SWNTs— M」は、 SWNTs— Sをろ過してから再度遠心分離を行って得られ た分散した金属性 SWNTsが濃縮して含まれる上澄み液である。
(二)「SWNTs— D」は、超音波照射後の分散液を遠心分離して得られた半導体 SW NTsが非分散状態で含まれる沈殿物である。
[0075] 図 3は、 400〜1600nmの吸収スペクトルを示している。図 3の吸収スペクトルは、 金属性 SWNTsの第一バンド遷移(400〜650nm)、半導体 SWNTsの第一バンド 遷移(900〜1600nm)と第ニノンド遷移 S22 (550〜900nm)を示す。
[0076] 図 3によると、 SWNTs— Sの吸収スペクトル(口)は、 400〜650nmにおいて微細 構造 (シャープなピーク)を示している力 このことは、 THF溶液にアミンを添加するこ とで、金属性 SWNTsが効率よく 1本ずつほぐれて、非バンドル化することも示してい る。なお、 SWNTsの孤立して分散化されていると、上記のように SWNTsの吸収スぺ タトルが微細構造を示すことは、当業者に周知な知見である。
[0077] また、図 3によると、上澄み溶液と沈殿物の両方に、それぞれ全てのピークが存在 するが、上澄み(SWNTs— S、 SWNTs-M)は沈殿物(SWNTs— D)と比べ、ピー クが顕著に現れている。
[0078] そして、 1回の遠心分離後の SWNTs— Sに較べて、 2回の遠心分離後の SWNTs
Mは、金属性 SWNTsの第一バンド遷移 (400〜650nm)における吸収(吸収体) が選択的に増大している力 半導体 SWNTsの第一バンド遷移(900〜1600nm)と 第二バンド遷移 S22 (550〜900nm)における吸収(吸収帯)が選択的に減衰してい る。
[0079] このことは、遠心分離を繰り返すことで、金属性 SWNTsと半導体金属性 SWNTs の分離が促進されている、即ち、それぞれについて濃縮されることを示すものである 。一方、 SWNTs— D (沈殿物)の吸収スペクトルから、 SWNTs— D (沈殿物)は濃縮 された半導体 SWNTsであることが明らかである。
[0080] 上記実施例では、分散液として一級ァミンの一例としてォクチルァミン溶液を使用し 、その実験結果を以上において説明したが、分散液としては、一級ァミンの他の種類 のァミン、さらには二級、三級、芳香族ァミンそしてアミドといったアミン類を含むアミン 溶液を使用してもよぐこれらについても、本発明者らは上記実験と同様な実験を行 い、同様の効率的な分散性を示す結果を得ている。この結果、ァミンの塩基性とアル キル鎖の長さおよび数はこのような効率的高分散性に寄与があるものと推測される。
[0081] 上記図 3の分析結果のとおり、半導体 SWNTsの吸収帯が選択的に減衰し、金属 性 SWNTs吸収帯が増大している力 このことから、上記実施例において、半導体 S WNTsと金属性 SWNTs電気的特性に基づいた分散により、さらに、その後の遠心 分離工程によって、 SWNTsが、きわめて効果的に分離されることが明らかである。
[0082] 金属性 SWNTsを更に濃縮するために、遠心分離して得られた SWNTs— S (分散 された金属性 SWNTsを含む上澄み液)を、ろ過して力 再度、上記分散乃至遠心 分離の工程を繰り返した。
[0083] このようにして得られた上澄み液(SWNTs— M)の吸収スペクトルを、図 3中におい て示す。図 3に示す左側の瓶中の上澄みは SWNTs— Sを示し、右側の瓶中の上澄 みは SWNTs— Mを、それぞれ示す。なお、図 3ではカラー図ではないので、明示で きないが、左側の瓶中の上澄みは緑色を、右側の上澄みは紫色を、それぞれ示して いる。
[0084] 上記のように、ろ過して力 再度、分散乃至遠心分離の工程を繰り返して得られた SWNTs— Mの吸収スペクトルは、強い金属性の遷移と弱い半導体性の遷移を示す 。即ち、 SWNTs— Mの金属性SWNTsの第ーバンド遷移(400〜650nm)における 強い吸収と、半導体 SWNTsの第一バンド遷移(900〜1600nm)と第二バンド遷移 S22 (550〜900nm)における弱い吸収を示す。このこと力ら、上記分散乃至遠心分 離の繰り返しにより、金属性 SWNTsが濃縮されることを示している。
[0085] 本発明では、前述のとおり、ァミンに対する金属性 SWNTsの強い電子受容性によ つて金属性 SWNTsがより強くァミンと相互作用を行い、し力もァミンの電気的特性に 基づ!/、た SWNTs分離にお!、て重要な因子であることから、束状の SWNTsが超音 波で分散されてからも、金属性 SWNTsは束状となることなぐ分散液中で分散し、分 離される。
[0086] この点は、実施例の分散乃至遠心分離の繰り返し工程で得られた SWNTs— Mに ついて、図 3に示すように、金属性 SWNTsの第一バンド遷移(400〜650nm)にお ける吸収の増加を観測したことにより実証されている。
[0087] ところで、ラマンスペクトルは、 SWNTsの直径や電気的特性を知るために有用な手 段である。図 4は、 SWNTsを 514. 5nmの励起光で測定して得られたラマンスぺタト ルを示す。この図 4中、「AP— SWNTs」は、上記実施例の AP— SWNTsをろ過して フィルム状にしたもの(film)であり、「SWNTs— M」は上記実施例の SWNTs— Mを ろ過してフィルム状にしたもの(film)である。
[0088] 図 4 (a)、 (b)にお!/、て、 Radial Breathing Modes (RBM: SWNTsのラマンスぺタト ルにおいて 100〜300cm_1の領域に現れる特徴的なピークであり、周知の知見であ る。)から、 SWNTsの直径は概して 0. 9〜1. 3nmと見積もられる。
[0089] また、片浦プロット(Kataura plot:当業者において本出願前に周知の知見である。 ) による詳細な比較から、 160〜200cm_1と 200〜280cm_1の領域におけるラマンス ベクトルは、それぞれ半導体 SWNTsと金属性 SWNTsを帰属される(半導体 SWN Tsと金属性 SWNTsの由来の特性を示すものである)。
[0090] AP— SWNTsと SWNTs— Mのラマンスペクトルの強度比は、 160〜280cm_1領 域で非常に差があるが、これは、 AP— SWNTsから SWNTs— Mとしたことにより、金 属性 SWNTsが濃縮されて 、ることを実証して 、る。
[0091] Dresselhausと共同研究者らによる広く引用される研究によれば、 1、 600cm_1付近 の tangential G bandは、金属 SWNTsと半導性 SWNTsの間で容易に識別される特 徴的なラマン線形である。図 4 (a)、(c)では、 tangential G bandにおけるより強い Brei t- Wigner- Fano線形成分力 WNTs— Mに観察されたことにより、金属性 SWNTsが 濃縮されて 、ることを実証して 、る。
[0092] 図 4 (b)に示すように、本発明によると、半導性 SWNTsに対する金属の濃縮比(S WNTs— Mの量 ZAP— SWNTsの量)を 7. 2まで達することができた。この結果、本 発明の実施例の分散乃至遠心分離工程が、非常に効果的に金属性 SWNTsと半導 性 SWNTsを分離できることを示している。なお、 160〜200cm_ 1と 200〜280cm_1 の領域におけるラマンスペクトルの積分値の比により、それぞれ半導体 SWNTsと金 属性 SWNTsの量の比が推測可能である。
[0093] 本発明に係る実施例を説明したが、本発明はこの実施例に限定されるものではな い。例えば、ォクチルァミンに加えて芳香族、直鎖上、枝上の CI— C18が使用でき る。そして、アミンは、金属 SWNTsと強い相互作用を有するものであればよいが、ォ クチルァミン以外の一級ァミンでもよいし、さらに二級、三級ァミン、芳香族ァミン、アミ ドでもよい。
[0094] また上記実施例では、ァミン溶液として、テトラヒドロフラン (THF)を溶媒として含む 溶液を利用したが、溶媒は THF (テトラヒドロフラン)に限定されず、ァミンと親媒性が あるものであればどのような溶媒でも使用できる。可能な溶媒として、アルコール、ダリ コール、又はジメチルスルォキシド(DMSO)等が含まれる。また、ァミン溶液に、界 面活性剤や消泡剤も添加剤としても使用できる。
[0095] 超音波照射は、 1分から 168時間の間でもよい。
[0096] 分離手段として、上記実施例では遠心分離を利用し 45, 620Gの条件で、 12時間 行った力 遠心分離は 100から 100000G、 1分から 168時間で行ってもよい。そして 、非分散状態の半導体 SWNTs (非分散 SWNTs)を除去する手段としては、遠心分 離に限定されることなぐろ過、遠心分離以外の沈殿分離などの他の方法も使用でき る。
[0097] なお、溶媒の比重を変えることで、分散されな!、半導体 SWNTs (非分散 SWNTs) の分散液に対する相対的な比重を変えることができ、これによつて、分散されなかつ た半導体 SWNTsを分離する工程にお 、て、金属性 SWNTsに対して半導体 SWN Tsを分離する量を制御することが可能となる。
[0098] 遠心分離及びろ過以外の分離の方法としては、溶媒の留去、分散液の加熱ある!/、 は冷却、添加物(例.非極性溶媒、極性溶媒、塩、酸あるいはアルカリ、金属イオン、 炭化水素の溶解力が高い溶媒、還元剤、若しくは酸化剤、パイ電子系と相互作用の あるポリマーあるいは有機分子、界面活性剤、のような成分)の添加、或いは、クロマ トグラフィー、電気泳動、沈降、浮上分離、これらの組み合わせ等がある。
[0099] 本発明において得られた金属製 SWNTs又は半導体 SWNTsから、アミンを除去 する手段としては、溶剤による洗浄、加熱、または減圧等の手段がある。洗浄に使用 する溶剤としては、例えば、エタノール、エーテル、脂肪族のエーテル、脂肪族炭化 水素系溶剤等がある。
[0100] 以上、本発明を実施するための最良の形態を、実施例に基づいて説明したが、本 発明はこのような実施例に限定されるものではなぐ特許請求の範囲によって記載さ れた技術的事項の範囲内で改良と追加が可能である。
産業上の利用可能性
[0101] 本発明によれば、束状の SWNTsから、金属性 SWNTsと半導体 SWNTsをそれら の電気的特性を利用して、それぞれの構造や電気特性を変えることなぐ簡単な方 法で大規模、大容量で分離ができるから、各種の産業分野におけるナノ材料の SW NTsに基づく応用を可能にする。

Claims

請求の範囲
[1] カーボンナノチューブのうち金属性カーボンナノチューブを分散させ、次いで、該 金属性カーボンナノチューブと分散しなかったカーボンナノチューブとを分離する、 カーボンナノチューブの分離方法であって、
金属性カーボンナノチューブを分散すべき前記カーボンナノチューブを、ァミンの 溶液に、添加する工程と、
前記金属性カーボンナノチューブを、超音波処理によって、前記ァミンの溶液中で 分散処理する工程と、
分散されな力つたカーボンナノチューブを遠心分離又はろ過によって分離するェ 程と、
を有することを特徴とするカーボンナノチューブの分離方法。
[2] カーボンナノチューブのうち金属性カーボンナノチューブを分散させ、次いで、該 金属性カーボンナノチューブと分散しなかった半導体カーボンナノチューブとを分離 する、カーボンナノチューブの分離方法であって、
金属性カーボンナノチューブを分散すべき前記カーボンナノチューブを、ァミンの 溶液に、添加する工程と、
強い電子受容性によって、前記半導体カーボンナノチューブより強くァミンと相互作 用する前記金属性カーボンナノチューブを、超音波処理で、前記ァミンの溶液中で 分散処理する工程と、
前記分散されな力つた半導体カーボンナノチューブを遠心分離又はろ過によって 分離する工程と、
を有することを特徴とするカーボンナノチューブの分離方法。
[3] 前記ァミンの溶液が、ァミンと親媒性のある溶媒を含むことを特徴とする請求項 1又
2記載のカーボンナノチューブの分離方法。
[4] 前記ァミンの溶液力 一級ァミン、二級ァミン、三級ァミン、又は芳香族ァミンの溶液 であることを特徴とする請求項 1、 2又は 3記載のカーボンナノチューブの分離方法。
[5] カーボンナノチューブを分散させ、次!、で、該カーボンナノチューブを分離する、力 一ボンナノチューブの分離方法であって、 前記カーボンナノチューブと分子間相互作用する物質の溶液に、カーボンナノチュ ーブを添加する工程と、
カーボンナノチューブを前記溶液中で分散処理する工程と、
分散されな力つたカーボンナノチューブを分離する工程と、
を有することを特徴とするカーボンナノチューブの分離方法。
[6] 前記カーボンナノチューブと分子間相互作用する物質の溶液が、該物質と親媒性 のある溶媒を含むことを特徴とする請求項 5記載のカーボンナノチューブの分離方法
[7] 前記分散されな力つたカーボンナノチューブを分離する工程が、遠心分離、沈殿、 又はろ過により行われることを特徴とする請求項 4又は 5記載のカーボンナノチューブ の分離方法。
[8] 前記カーボンナノチューブは、単層カーボンナノチューブであることを特徴とする請 求項 1〜7記載のカーボンナノチューブの分離方法。
[9] 前記分散されなかったカーボンナノチューブを分離する工程では、金属性カーボン ナノチューブを分散する溶液の溶媒の比重を変えることで、分離を制御することを特 徴とする請求項 1〜8のいずれかに記載のカーボンナノチューブの分離方法。
[10] 前記分散されな力つたカーボンナノチューブを分離する工程は、前記半導体カー ボンナノチューブの直径により電気的特性が異なることを利用して、前記半導体カー ボンナノチューブの直径で選択的に分離することを特徴とする請求項 1〜9のいずれ かに記載のカーボンナノチューブの分離方法。
[11] ァミンの溶液にカーボンナノチューブが添加された前記ァミンの溶液中に、金属性 カーボンナノチューブが分散されていることを特徴とする分散液。
[12] 前記ァミンの溶液力 一級ァミン、二級ァミン、三級ァミン、又は芳香族ァミンの溶液 であることを特徴とする請求項 11記載の分散液。
[13] 前記カーボンナノチューブは、単層カーボンナノチューブであることを特徴とする請 求項 11又は 12記載のカーボンナノチューブの分散液。
[14] カーボンナノチューブのうち金属性カーボンナノチューブが分散され、該分散され た金属性カーボンナノチューブが、分散されな!ヽ半導体カーボンナノチューブと分離 されて生成される金属性又は半導体のカーボンナノチューブであって、 前記カーボンナノチューブは、ァミンの溶液内に添加され、超音波処理により、前 記金属性カーボンナノチューブが、前記アミン溶液内で分散され、該分散された金 属性カーボンナノチューブと分散しない半導体カーボンナノチューブが遠心分離又 はろ過によって互いに分離して生成されて成ることを特徴とする金属性又は半導体 のカーボンナノチューブ。
[15] カーボンナノチューブのうち金属性カーボンナノチューブが分散され、該分散され た金属性カーボンナノチューブが、分散されな!ヽ半導体カーボンナノチューブと分離 されて生成される金属性又は半導体のカーボンナノチューブであって、
前記カーボンナノチューブは、ァミンの溶液内に添加され、強い電子受容性によつ て、前記半導体カーボンナノチューブより強くァミンと相互作用する前記金属性カー ボンナノチューブが、超音波処理により、前記アミン溶液内で分散され、該分散され た金属性カーボンナノチューブと分散しない半導体単層カーボンナノチューブが遠 心分離又はろ過によって互いに分離して生成されて成ることを特徴とする金属性又 は半導体のカーボンナノチューブ。
[16] カーボンナノチューブのうち金属性カーボンナノチューブが分散され、該分散され た金属性カーボンナノチューブが、分散されな!ヽ半導体カーボンナノチューブと分離 されて生成される金属性又は半導体のカーボンナノチューブであって、
前記カーボンナノチューブは、カーボンナノチューブと分子間相互作用する物質の 溶液内に添加され、超音波により、前記金属性カーボンナノチューブが、前記溶液 内で分散され、該分散された金属性カーボンナノチューブと分散しな 、半導体カー ボンナノチューブが互いに分離して生成されて成ることを特徴とする金属性又は半導 体のカーボンナノチューブ。
[17] 前記ァミンの溶液力 一級ァミン、二級ァミン、三級ァミン、又は芳香族ァミンの溶液 であることを特徴とする請求項 14又は 15記載の金属性又は半導体のカーボンナノ チューブ。
[18] 前記カーボンナノチューブは、単層カーボンナノチューブであることを特徴とする請 求項 14〜 17のいずれかに記載の金属性又は半導体のカーボンナノチューブ。
PCT/JP2005/013924 2004-08-02 2005-07-29 カーボンナノチューブの分離方法、分散液及び該分離方法で得られるカーボンナノチューブ WO2006013788A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2005800260510A CN101018738B (zh) 2004-08-02 2005-07-29 碳纳米管的分离方法、分散液及用该分离方法得到的碳纳米管
JP2006531435A JP4734575B2 (ja) 2004-08-02 2005-07-29 カーボンナノチューブの分離方法、分散液及び該分離方法で得られるカーボンナノチューブ
KR1020067027774A KR100875392B1 (ko) 2004-08-02 2005-07-29 카본 나노튜브의 분리방법 및 분산액
US11/659,157 US7884300B2 (en) 2004-08-02 2005-07-29 Method of carbon nanotube separation, dispersion liquid and carbon nanotube obtained by the separation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US59296604P 2004-08-02 2004-08-02
US60/592,966 2004-08-02

Publications (1)

Publication Number Publication Date
WO2006013788A1 true WO2006013788A1 (ja) 2006-02-09

Family

ID=35787075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013924 WO2006013788A1 (ja) 2004-08-02 2005-07-29 カーボンナノチューブの分離方法、分散液及び該分離方法で得られるカーボンナノチューブ

Country Status (5)

Country Link
US (1) US7884300B2 (ja)
JP (1) JP4734575B2 (ja)
KR (1) KR100875392B1 (ja)
CN (1) CN101018738B (ja)
WO (1) WO2006013788A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143281A1 (ja) * 2007-05-21 2008-11-27 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブの高効率分離法
JP2008285386A (ja) * 2007-05-21 2008-11-27 National Institute Of Advanced Industrial & Technology カーボンナノチューブの分離法
WO2009008486A1 (ja) 2007-07-10 2009-01-15 Japan Science And Technology Agency 透明導電性薄膜とその製造方法
JP2009018947A (ja) * 2007-07-10 2009-01-29 National Institute Of Advanced Industrial & Technology カーボンナノチューブ薄膜
WO2009075293A1 (ja) * 2007-12-10 2009-06-18 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブの簡便な分離法
JP2009533227A (ja) * 2006-03-08 2009-09-17 カナトゥ オイ 高アスペクト比構造の分離方法
JP2010502548A (ja) * 2006-08-30 2010-01-28 ノースウェスタン ユニバーシティ 単分散単一壁カーボンナノチューブの集団およびこの集団を提供するための関連の方法
US7662298B2 (en) 2005-03-04 2010-02-16 Northwestern University Separation of carbon nanotubes in density gradients
WO2010089395A2 (fr) 2009-02-06 2010-08-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé et kit de séparation de nanotubes de carbone métalliques et semi-conducteurs
WO2010150808A1 (ja) * 2009-06-23 2010-12-29 日本電気株式会社 ナノカーボン材料の分離方法、分離装置、及び分離済ナノカーボン分散溶液
WO2011096342A1 (ja) * 2010-02-04 2011-08-11 独立行政法人科学技術振興機構 選択的に化学修飾されたカーボンナノチューブの製造方法
JP2012153600A (ja) * 2007-03-27 2012-08-16 National Institute Of Advanced Industrial Science & Technology 遠心分離機を用いた金属性cnt半導体性cntの直接分離方法
US8323784B2 (en) 2007-08-29 2012-12-04 Northwestern Universtiy Transparent electrical conductors prepared from sorted carbon nanotubes and methods of preparing same
JP2013502318A (ja) * 2009-08-24 2013-01-24 エンパイア テクノロジー ディベロップメント エルエルシー 磁性粒子を使用するカーボンナノチューブの分離
US8608969B2 (en) * 2007-03-02 2013-12-17 Micron Technology, Inc. Nanotube separation methods
US8734684B2 (en) 2008-10-24 2014-05-27 Kuraray Co., Ltd. Method for producing metallic carbon nanotube, carbon nanotube dispersion liquid, carbon nanotube-containing film, and transparent conductive film
JP6212677B1 (ja) * 2017-02-28 2017-10-11 日本電気株式会社 単層カーボンナノチューブ分離装置、単層カーボンナノチューブ分離方法
JP6237965B1 (ja) * 2017-02-28 2017-11-29 日本電気株式会社 ナノカーボンの分離装置及び分離方法
JP6237966B1 (ja) * 2017-02-28 2017-11-29 日本電気株式会社 ナノカーボンの分離方法及び精製方法
JP6237967B1 (ja) * 2017-02-28 2017-11-29 日本電気株式会社 ナノカーボンの分離方法及び精製方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7402194B2 (en) * 2005-07-27 2008-07-22 International Business Machines Corporation Carbon nanotubes as low voltage field emission sources for particle precipitators
WO2008057108A2 (en) * 2006-01-27 2008-05-15 Los Alamos National Security, Llc Chirality-based separation of carbon nanotubes
KR100913700B1 (ko) * 2007-06-12 2009-08-24 삼성전자주식회사 아민 화합물을 포함하는 탄소 나노튜브(cnt) 박막 및 그제조방법
KR100907024B1 (ko) * 2007-07-05 2009-07-10 삼성전자주식회사 탄소나노튜브의 분리 방법과 분산 방법 및 이들 방법에이용되는 조성물
CN101185913B (zh) * 2007-09-22 2010-12-22 兰州大学 从单壁碳纳米管中分离金属性和半导体性纳米管的方法
CN100569637C (zh) 2007-11-30 2009-12-16 北京大学 一种制备半导体性单壁碳纳米管的方法
KR101596372B1 (ko) 2008-02-15 2016-03-08 삼성디스플레이 주식회사 표시장치용 투명전극, 표시장치 및 표시장치의 제조방법
US9296912B2 (en) 2009-08-14 2016-03-29 Nano-C, Inc. Solvent-based and water-based carbon nanotube inks with removable additives
US9340697B2 (en) 2009-08-14 2016-05-17 Nano-C, Inc. Solvent-based and water-based carbon nanotube inks with removable additives
GB2558486B (en) * 2010-11-02 2018-11-07 Cambridge Entpr Ltd Carbon fibre
CN102078864B (zh) * 2010-11-29 2013-01-16 中国科学院苏州纳米技术与纳米仿生研究所 碳纳米管的选择性宏量分离方法
KR20140033555A (ko) 2012-08-29 2014-03-19 삼성전자주식회사 탄소나노튜브 분리 방법
CN102963878A (zh) * 2012-12-05 2013-03-13 复旦大学 一种获得大量高纯度半导体性单壁碳纳米管的分离方法
CN103407983B (zh) * 2013-07-17 2015-02-18 同济大学 一种具有特定手性的单壁碳纳米管的分离方法
DE112016001523T5 (de) * 2015-03-31 2018-03-15 Shinshu University Umkehrosmose-Verbundmembran und Verfahren zur Herstellung einer Umkehrosmose-Verbundmembran
US11326063B2 (en) 2015-12-17 2022-05-10 Zeon Corporation Fibrous carbon nanostructure dispersion liquid
US10710881B2 (en) * 2015-12-17 2020-07-14 Zeon Corporation Fibrous carbon nanostructure dispersion liquid
CN107298436B (zh) * 2016-04-07 2019-12-06 中国科学院苏州纳米技术与纳米仿生研究所 获取高纯度半导体性单壁碳纳米管的方法
CN106082174B (zh) * 2016-06-20 2019-06-28 青岛科技大学 一种碳纳米管分散装置
CN110885076B (zh) * 2019-12-23 2021-05-25 哈尔滨工业大学 一种气相高效连续选择性分离碳纳米管的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2522469B2 (ja) 1993-02-01 1996-08-07 日本電気株式会社 カ―ボン・ナノチュ―ブの精製法
US6641793B2 (en) * 1998-10-02 2003-11-04 University Of Kentucky Research Foundation Method of solubilizing single-walled carbon nanotubes in organic solutions
JP2001011344A (ja) 1999-06-30 2001-01-16 Nec Corp 塗料とそれを用いて形成された膜及びそれらの製造方法
JP2003238126A (ja) 2002-02-14 2003-08-27 Toray Ind Inc カーボンナノチューブの親水性分散液およびその製造方法
JP3764986B2 (ja) 2002-11-18 2006-04-12 独立行政法人科学技術振興機構 可溶性カーボンナノチューブの製造法
US20040232073A1 (en) 2003-02-10 2004-11-25 Fotios Papadimitrakopoulos Bulk separation of semiconducting and metallic single wall nanotubes
JP2004313906A (ja) 2003-04-15 2004-11-11 Nissan Motor Co Ltd 水素吸蔵材料、水素吸蔵体、水素貯蔵装置、燃料電池車両、及び水素吸蔵材料の製造方法
US20070280876A1 (en) * 2004-03-25 2007-12-06 William Marsh Rice University Functionalization of Carbon Nanotubes in Acidic Media
JP2008508183A (ja) * 2004-07-29 2008-03-21 ウィリアム・マーシュ・ライス・ユニバーシティ バンドギャップによるカーボンナノチューブのバルク分離

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
COLLINS P.G. ET AL: "Engineering carbon nanotubes and nanotube circuits using electrical breakdown", SCIENCE, vol. 292, 27 April 2001 (2001-04-27), pages 706 - 709, XP002957182 *
HIRASHIMA Y. ET AL: "Iteraction of Single-Walled Carbon Nanotubes with Amine", THE CHEMICAL SOCIETY OF JAPAN YOKOSHU, vol. 84, no. 1, 11 March 2004 (2004-03-11), pages 59, (2 A4-35), XP002996845 *
KRUPKE R. ET AL: "Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes", SCIENCE, vol. 301, 18 July 2003 (2003-07-18), pages 344 - 347, XP002339479 *
LI H. ET AL: "Selective Interactions of Porphyrins with Semiconducting Single-Walled Carbon Nanotubes", J.AM.CHEM.SOC., vol. 126, 8 January 2004 (2004-01-08), pages 1014 - 1015, XP002996846 *

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8110125B2 (en) 2005-03-04 2012-02-07 Northwestern University Separation of carbon nanotubes in density gradients
US7662298B2 (en) 2005-03-04 2010-02-16 Northwestern University Separation of carbon nanotubes in density gradients
JP2009533227A (ja) * 2006-03-08 2009-09-17 カナトゥ オイ 高アスペクト比構造の分離方法
US8871295B2 (en) 2006-03-08 2014-10-28 Canatu Oy Method for separating high aspect ratio molecular structures
US9926195B2 (en) 2006-08-30 2018-03-27 Northwestern University Monodisperse single-walled carbon nanotube populations and related methods for providing same
US10689252B2 (en) 2006-08-30 2020-06-23 Northwestern University Monodisperse single-walled carbon nanotube populations and related methods for providing same
JP2010502548A (ja) * 2006-08-30 2010-01-28 ノースウェスタン ユニバーシティ 単分散単一壁カーボンナノチューブの集団およびこの集団を提供するための関連の方法
US11608269B2 (en) 2006-08-30 2023-03-21 Northwestern University Monodisperse single-walled carbon nanotube populations and related methods for providing same
US8608969B2 (en) * 2007-03-02 2013-12-17 Micron Technology, Inc. Nanotube separation methods
JP2012153600A (ja) * 2007-03-27 2012-08-16 National Institute Of Advanced Industrial Science & Technology 遠心分離機を用いた金属性cnt半導体性cntの直接分離方法
WO2008143281A1 (ja) * 2007-05-21 2008-11-27 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブの高効率分離法
JP2008285387A (ja) * 2007-05-21 2008-11-27 National Institute Of Advanced Industrial & Technology カーボンナノチューブの高効率分離法
WO2008143279A1 (ja) * 2007-05-21 2008-11-27 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブの分離法
US8697026B2 (en) 2007-05-21 2014-04-15 National Institute Of Advanced Industrial Science And Technology High efficient carbon nanotube separation method
JP2008285386A (ja) * 2007-05-21 2008-11-27 National Institute Of Advanced Industrial & Technology カーボンナノチューブの分離法
JP2009018947A (ja) * 2007-07-10 2009-01-29 National Institute Of Advanced Industrial & Technology カーボンナノチューブ薄膜
CN101730917B (zh) * 2007-07-10 2012-07-04 独立行政法人科学技术振兴机构 透明导电性薄膜和其制造方法
WO2009008486A1 (ja) 2007-07-10 2009-01-15 Japan Science And Technology Agency 透明導電性薄膜とその製造方法
US8425873B2 (en) 2007-07-10 2013-04-23 Japan Science And Technology Agency Transparent electroconductive thin film and its production method
US8323784B2 (en) 2007-08-29 2012-12-04 Northwestern Universtiy Transparent electrical conductors prepared from sorted carbon nanotubes and methods of preparing same
US8404207B2 (en) 2007-12-10 2013-03-26 National Institute Of Advanced Industrial Science And Technology Method for simply separatng carbon nanotube
JP5408588B2 (ja) * 2007-12-10 2014-02-05 独立行政法人産業技術総合研究所 カーボンナノチューブの簡便な分離法
WO2009075293A1 (ja) * 2007-12-10 2009-06-18 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブの簡便な分離法
US8881908B2 (en) 2007-12-10 2014-11-11 National Institute Of Advanced Industrial Science And Technology Method for simply separating carbon nanotube
US8734684B2 (en) 2008-10-24 2014-05-27 Kuraray Co., Ltd. Method for producing metallic carbon nanotube, carbon nanotube dispersion liquid, carbon nanotube-containing film, and transparent conductive film
US9206040B2 (en) 2009-02-06 2015-12-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method and kit for separating metal and semiconductor carbon nanotubes
WO2010089395A2 (fr) 2009-02-06 2010-08-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé et kit de séparation de nanotubes de carbone métalliques et semi-conducteurs
WO2010150808A1 (ja) * 2009-06-23 2010-12-29 日本電気株式会社 ナノカーボン材料の分離方法、分離装置、及び分離済ナノカーボン分散溶液
JP5541283B2 (ja) * 2009-06-23 2014-07-09 日本電気株式会社 ナノカーボン材料の分離方法、及び分離装置
JPWO2010150808A1 (ja) * 2009-06-23 2012-12-10 日本電気株式会社 ナノカーボン材料の分離方法、分離装置、及び分離済ナノカーボン分散溶液
US8961762B2 (en) 2009-06-23 2015-02-24 Nec Corporation Method for separating nanocarbon material, separation device, and separated nanocarbon dispersion solution
JP2013502318A (ja) * 2009-08-24 2013-01-24 エンパイア テクノロジー ディベロップメント エルエルシー 磁性粒子を使用するカーボンナノチューブの分離
JP5150772B2 (ja) * 2010-02-04 2013-02-27 独立行政法人科学技術振興機構 選択的に化学修飾されたカーボンナノチューブの製造方法
WO2011096342A1 (ja) * 2010-02-04 2011-08-11 独立行政法人科学技術振興機構 選択的に化学修飾されたカーボンナノチューブの製造方法
US8940937B2 (en) 2010-02-04 2015-01-27 Japan Science And Technology Agency Method for producing selectively functionalized carbon nanotubes
WO2018158811A1 (ja) * 2017-02-28 2018-09-07 日本電気株式会社 ナノカーボンの分離方法及び精製方法、並びに分散液
JP6237967B1 (ja) * 2017-02-28 2017-11-29 日本電気株式会社 ナノカーボンの分離方法及び精製方法
WO2018158842A1 (ja) * 2017-02-28 2018-09-07 日本電気株式会社 ナノカーボンの分離方法及び精製方法、並びに分散液
JP6212677B1 (ja) * 2017-02-28 2017-10-11 日本電気株式会社 単層カーボンナノチューブ分離装置、単層カーボンナノチューブ分離方法
WO2018158830A1 (ja) * 2017-02-28 2018-09-07 日本電気株式会社 ナノカーボンの分離装置及び分離方法
JP6237966B1 (ja) * 2017-02-28 2017-11-29 日本電気株式会社 ナノカーボンの分離方法及び精製方法
US11485640B2 (en) 2017-02-28 2022-11-01 Nec Corporation Single-walled carbon nanotube separation apparatus and single-walled carbon nanotube separation method
US11511229B2 (en) 2017-02-28 2022-11-29 Nec Corporation Nanocarbon separation method
US11583804B2 (en) 2017-02-28 2023-02-21 Nec Corporation Nanocarbon separation method, nanocarbon purification method, and dispersion liquid
JP6237965B1 (ja) * 2017-02-28 2017-11-29 日本電気株式会社 ナノカーボンの分離装置及び分離方法
US11857926B2 (en) 2017-02-28 2024-01-02 Nec Corporation Nanocarbon separation apparatus and nanocarbon separation method

Also Published As

Publication number Publication date
US20080308772A1 (en) 2008-12-18
US7884300B2 (en) 2011-02-08
JP4734575B2 (ja) 2011-07-27
CN101018738A (zh) 2007-08-15
CN101018738B (zh) 2010-09-01
KR100875392B1 (ko) 2008-12-23
KR20070049116A (ko) 2007-05-10
JPWO2006013788A1 (ja) 2008-05-01

Similar Documents

Publication Publication Date Title
WO2006013788A1 (ja) カーボンナノチューブの分離方法、分散液及び該分離方法で得られるカーボンナノチューブ
Zhu et al. Fluorescent chromophore functionalized single-wall carbon nanotubes with minimal alteration to their characteristic one-dimensional electronic states
Haddon et al. Purification and separation of carbon nanotubes
US10569197B2 (en) Methods for sorting nanotubes by electronic type
US7939047B2 (en) Bulk separation of carbon nanotubes by bandgap
JP4208722B2 (ja) 単層カーボンナノチューブを分離する方法
US8703092B2 (en) Type separation of single-walled carbon nanotubes via two-phase liquid extraction
JP5213025B2 (ja) ナノカーボン物質分散液とその製造方法、ナノカーボン物質構成体
JP2016056096A (ja) 物質溶媒と複合マトリクスを同定し、特徴付ける方法および装置、並びにその使用方法
Backes Noncovalent functionalization of carbon nanotubes: fundamental aspects of dispersion and separation in water
Zhang et al. Towards chirality-pure carbon nanotubes
ITPD20110153A1 (it) Metodo di sintesi di nanotubi di carbonio funzionalizzati per cicloaddizione in flusso continuo ed apparato per lo stesso
CN104955904B (zh) 具有可移除性添加剂的溶剂基和水基碳纳米管油墨
KR100790839B1 (ko) 탄소나노튜브의 비파괴적 정제 방법
Chaturvedi et al. Carbon Nanotube-Purification and Sorting Protocols.
Lefebvre et al. Metrological assessment of single-wall carbon nanotube materials by optical methods
KR20170092351A (ko) 단일벽 탄소나노튜브를 분리하는 방법 및 단일벽 탄소나노튜브를 포함하는 조성물
Liu The functionalization of carbon nanotubes.
Wang et al. Minimizing purification-induced defects in single-walled carbon nanotubes gives films with improved conductivity
Moore Single walled carbon nanotubes: Suspension in aqueous/surfactant media and chirality controlled synthesis on surfaces
CN117658116A (zh) 一种纳米碳材料制备方法
Bhatt Facile route to purification and separation of high aspect ratio single-walled carbon nanotubes and its application in electronics
Khabashesku¹ et al. Confined tubular carbon nanostructures for nanoreactors and synthons
JP5095914B2 (ja) 被覆されたカーボンナノチューブ
Wei Purification and chiral selective enrichment of single-walled carbon nanotubes for macroelectronic applications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531435

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067027774

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11659157

Country of ref document: US

Ref document number: 200580026051.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase