WO2006011248A1 - 空気冷媒式冷却装置および空気冷媒式冷却装置を用いた空気冷媒冷熱システム - Google Patents

空気冷媒式冷却装置および空気冷媒式冷却装置を用いた空気冷媒冷熱システム Download PDF

Info

Publication number
WO2006011248A1
WO2006011248A1 PCT/JP2004/017712 JP2004017712W WO2006011248A1 WO 2006011248 A1 WO2006011248 A1 WO 2006011248A1 JP 2004017712 W JP2004017712 W JP 2004017712W WO 2006011248 A1 WO2006011248 A1 WO 2006011248A1
Authority
WO
WIPO (PCT)
Prior art keywords
air refrigerant
air
heat exchanger
outlet
inlet
Prior art date
Application number
PCT/JP2004/017712
Other languages
English (en)
French (fr)
Inventor
Shigemitsu Kikuchi
Seiichi Okuda
Hiroshi Igawa
Original Assignee
Mitsubishi Heavy Industries, Ltd.
International Center For Environmental Technology Transfer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd., International Center For Environmental Technology Transfer filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to JP2006527781A priority Critical patent/JP4370328B2/ja
Priority to US10/524,877 priority patent/US7322207B2/en
Priority to EP04822210.3A priority patent/EP1801518B1/en
Publication of WO2006011248A1 publication Critical patent/WO2006011248A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/083Sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/047Details of housings; Mounting of active magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/74Sealings of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/004Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2362/00Apparatus for lighting or heating
    • F16C2362/52Compressors of refrigerators, e.g. air-conditioners

Definitions

  • Air refrigerant cooling device and air refrigerant cooling system using air refrigerant cooling device are Air refrigerant cooling device and air refrigerant cooling system using air refrigerant cooling device
  • the present invention relates to an air refrigerant cooling device and an air refrigerant cooling system using the air refrigerant cooling device.
  • the present invention particularly relates to an air refrigerant type cooling device having a magnetic bearing structure and an air refrigerant cooling system using the air refrigerant type cooling device having a magnetic bearing structure.
  • a motor that rotates a rotor shaft via a bearing such as a ball bearing or a roller bearing is used in an air refrigerant cooling device that is a constituent element of the air refrigerant cooling and heating system.
  • regular maintenance work is required to replace the bearings. During this period, the system can cool the cargo in the warehouse. I helped.
  • the number of rotations of the motor provided in the air refrigerant cooling device can be increased. It can be considered to rotate.
  • FIG. 1 shows a schematic configuration of the “magnetic bearing device” disclosed in Japanese Patent Laid-Open No. 8-61366. In the magnetic bearing device shown in FIG.
  • an axial magnetic bearing 5 for controlling the axial displacement of the main shaft 2 via a disk-shaped rotor disk 4 fixed to the main shaft 2, and the axial direction of the axial magnetic bearing 5
  • a magnetic bearing device including a pair of radial magnetic bearings 6 and 7 for controlling the radial displacement of the main shaft 2, and an annular member surrounding the outer peripheral surface of the rotor disk 4, and the annular member Opened in the member and empty for cooling the rotor disk
  • a gap that forms a substantially constant gap through which air flows from the vent 13a between the vent 13a that blows out the air and the main shaft 2 in a state of surrounding the main shaft 2 on both sides in the axial direction of the rotor disk 4.
  • a magnetic bearing device including forming members 20 and 21 has been proposed.
  • Air refrigerant type that has a valve-mounted hot air bypass to take in air above 0 ° C and supply it to the inlet air passage of air-to-air heat exchange ⁇
  • a refrigeration system has been proposed.
  • An object of the present invention is to provide an air refrigerant type cooling device having high reliability and efficiency.
  • an object of the present invention is to provide an air refrigerant type cooling device provided with a magnetic bearing having high reliability and efficiency.
  • Another object of the present invention is to provide an air refrigerant cooling / heating system having a simplified configuration using the air refrigerant cooling device.
  • the air refrigerant cooling device of the present invention includes a motor casing, a main shaft inserted into the motor casing, and first and second magnetic bearings that are stored in the motor casing and hold the main shaft.
  • the compressor is disposed in the first axial direction of the motor and connected to the main shaft, and the compressor and the first magnetic bearing are partitioned by the first labyrinth.
  • the expansion turbine is disposed in the second axial direction of the motor and connected to the main shaft.
  • the expansion turbine and the second magnetic bearing are partitioned by the second labyrinth, and the first and first are separated by external pressure from the outside of the motor. A pressure difference is generated between the space in which the two magnetic bearings are disposed and the inlet space of the compressor and the outlet space of the expansion turbine.
  • the air refrigerant cooling device of the present invention further includes a sensor for measuring the position of the main shaft.
  • the sensor is disposed in the vicinity of the first and second magnetic bearings, and a pressure difference is generated between the space where the sensor is disposed and the outside of the motor casing due to external pressure from the outside of the motor.
  • the air-refrigerant cooling device of the present invention includes a motor casing, a main shaft inserted into the motor casing, and first and second magnets housed in the motor casing and holding the main shaft.
  • the compressor includes a motor having a bearing, a compressor, and an expansion turbine.
  • the compressor is disposed in the first axial direction of the motor and connected to the main shaft.
  • the compressor and the first magnetic bearing are
  • the expansion turbine is arranged in the second axial direction of the motor and connected to the main shaft, and the expansion turbine and the second magnetic bearing are partitioned by the second labyrinth.
  • the air-refrigerant cooling device of the present invention further includes a sensor for measuring the position of the main shaft, a sensor disposed in the vicinity of the first and second magnetic bearings, and a space in which the sensor is disposed. And means for generating a pressure difference between the outside of the motor casing.
  • the air refrigerant cooling system of the present invention includes an air refrigerant cooling device, a first heat exchanger, a second heat exchanger, a refrigerator, a filter and a fan, and includes an air refrigerant cooling
  • the outlet of the compressor of the equipment and the inlet of the first heat exchanger ⁇ are connected, the outlet of the first heat exchanger ⁇ and the inlet of the second heat exchanger are connected, and the outlet of the second heat exchanger and the air refrigerant
  • the expansion turbine's inlet is connected to the expansion turbine's inlet, the outlet of the expansion refrigerant's expansion turbine is connected to the inlet of the refrigerator, and the outlet of the refrigerator is cooled via the second heat exchanger. It is connected to the inlet of the compressor of the equipment, and further, the suction provided in the motor casing is used for cooling inside the motor of the air refrigerant type cooling device.
  • a fan is connected to the pores through a filter.
  • the air refrigerant cooling system of the present invention includes an air refrigerant cooling device, a first heat exchanger, a second heat exchanger, a refrigerator, and a radiator, and includes an air refrigerant cooling device.
  • the outlet of the compressor of the equipment and the inlet of the first heat exchanger ⁇ are connected, the outlet of the first heat exchanger ⁇ and the inlet of the second heat exchanger are connected, the outlet of the second heat exchanger and the air refrigerant Expansion turbine And the outlet of the expansion turbine of the air refrigerant chiller and the inlet of the refrigerator are connected, and the outlet of the refrigerator is connected to the inlet of the compressor of the air refrigerant chiller via the second heat exchanger.
  • a radiator is arranged outside the air refrigerant type cooling device for cooling the inside of the motor of the air refrigerant type cooling device, and an inlet and an outlet of the radiator are arranged in the motor casing. It is connected to the intake hole corresponding to each of the inlet and outlet of the radiator.
  • the air refrigerant cooling / heating system of the present invention includes an air refrigerant cooling device, a first heat exchanger, a second heat exchanger, and a refrigerator, and an outlet of a compressor of the air refrigerant cooling device.
  • the inlet of the first heat exchanger ⁇ are connected, the outlet of the first heat exchanger ⁇ and the inlet of the second heat exchanger ⁇ are connected, the outlet of the second heat exchanger and the air refrigerant cooling device
  • the expansion turbine outlet of the air refrigerant type cooling system is connected to the outlet of the expansion turbine of the air refrigerant cooling system and the inlet of the cooling room, and the outlet of the cooling room is connected to the air refrigerant type cooling system via the second heat exchanger.
  • a pipe connected to the inlet of the compressor and further connected to the outlet of the second heat exchanger is branched to cool the inside of the motor of the air refrigerant type cooling device, and the branched pipe is connected to the air refrigerant type cooling device.
  • the motor casing is disposed in the motor casing and connected to the air intake hole. And compressor inlet of another suction hole and the air refrigerant type cooling apparatus disposed on the single is connected.
  • the reflex container of the present invention includes an air refrigerant type cooling device, a first heat exchanger, a second heat exchanger, a container box, and a radiator, and includes an air refrigerant type cooling device.
  • the outlet of the first compressor and the inlet of the first heat exchanger ⁇ are connected, the outlet of the first heat exchanger ⁇ and the inlet of the second heat exchanger are connected, the outlet of the second heat exchanger and the air refrigerant type
  • the inlet of the expansion turbine of the cooling device is connected, the outlet of the expansion turbine of the air refrigerant type cooling device and the inlet of the container box are connected, and the outlet of the container box is connected to the air refrigerant type cooling device via the second heat exchanger.
  • a radiator is arranged outside the air refrigerant cooling device for cooling the inside of the motor of the air refrigerant cooling device, and the inlet and outlet of the radiator are arranged in the motor casing.
  • Rujageta entrance and in addition, the air-cooled refrigeration unit, the first heat exchange ⁇ , the second heat exchange ⁇ , the container box, and the radiator are connected as a reflex container. OK Constructed portable.
  • An air refrigerant cooling system includes a first bearing that holds a main shaft, a compression mechanism, an expansion turbine, a first heat exchanger, and a second heat exchanger.
  • the outlet of the compression mechanism of the air-refrigerant cooling system is connected to the inlet of the first heat exchanger ⁇ , the outlet of the first heat exchanger ⁇ is connected to the inlet of the second heat exchanger, and the second heat exchanger.
  • the outlet of the air refrigerant cooling device and the inlet of the expansion turbine of the air refrigerant cooling device are connected, the outlet of the expansion turbine of the air refrigerant cooling device and the inlet of the cooling chamber are connected, and the outlet of the cooling chamber is connected via the second heat exchanger.
  • the compressor included in the compression mechanism is connected to the main shaft, and the compressor and the first bearing are partitioned by the first labyrinth.
  • the expansion turbine is connected to the main shaft.
  • the air refrigerant cooling / heating system further includes a first pipe for introducing the refrigerant drawn from between the outlet of the compressor and the inlet of the refrigerator into the space where the first bearing is disposed.
  • the air refrigerant cooling / heating system further includes a second bearing that supports the main shaft at a position closer to the expansion turbine than the compressor, and a spatial force in which the first bearing is arranged for the refrigerant. And a second pipe to be introduced into the space to be arranged.
  • the air refrigerant cooling / heating system according to the present invention further includes a third pipe for guiding the refrigerant from the space where the second bearing is disposed to the outlet side of the expansion turbine.
  • the air refrigerant cooling / heating system according to the present invention further includes a motor that rotates the main shaft.
  • the first and second bearings are magnetic bearings.
  • the first pipe draws the refrigerant from the inlet side of the expansion turbine.
  • the compression mechanism further includes an auxiliary compressor installed on the upstream side of the compressor.
  • the reefer container according to the present invention comprises the air refrigerant cooling system according to the present invention and a container box connected to the outlet of the expansion turbine.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a conventional magnetic bearing device.
  • FIG. 2 shows an air refrigerant cooling / heating system according to Embodiment 3.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the air refrigerant cooling / heating device according to the first embodiment.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of an air refrigerant cooling / heating device according to a second embodiment.
  • FIG. 5 shows an air refrigerant cooling / heating system according to the fourth embodiment.
  • FIG. 6 shows an air refrigerant cooling / heating system according to the fifth embodiment.
  • FIG. 7 shows a reflex container according to the sixth embodiment.
  • FIG. 8 shows an air refrigerant cooling / heating system according to the seventh embodiment.
  • FIG. 9 is a sectional view showing a schematic configuration of an air refrigerant cooling / heating device according to a seventh embodiment.
  • FIG. 10 shows an air refrigerant cooling / heating system according to the eighth embodiment.
  • FIG. 2 shows an air-cooling cooling / heating system 100 according to Embodiment 3 of the present invention.
  • An air refrigerant cooling system 100 according to the present invention includes air refrigerant cooling devices 210 and 310, a first heat exchanger 120, a second heat exchanger 130, and a refrigerator 140.
  • the air refrigerant type cooling devices 210 and 310 each include a compressor, a motor, and an expansion turbine.
  • the air compressed by the compressors of the air refrigerant cooling devices 210 and 310 is cooled by the first heat exchanger 120.
  • This cooled air is further heat-exchanged with the air from the cooler 140 in the second heat exchanger 130, and is adiabatically expanded in the expansion turbines of the air refrigerant type cooling devices 210 and 310 to be cooled at a low temperature (180 ° The temperature is lowered to C). And this low-temperature air is sent directly to the refrigerator 140 Thus, the frozen product in the refrigerator 140 is maintained at a low temperature.
  • the detailed operating principle of the air refrigerant cooling / heating system 100 will be described again in the third embodiment.
  • FIG. 3 shows a cross section of a schematic configuration of the air refrigerant type cooling apparatus 210 according to Embodiment 1 of the present invention.
  • the air refrigerant type cooling device 210 includes a motor 240, a compressor 222, and an expansion turbine 232.
  • the compressor 222 is connected to one end of the motor 240 in the axial direction, and is attached to the main shaft 244 extending from the motor 240.
  • the intake side of the compressor 222 is connected to the compressor inlet pipe 221.
  • the expansion turbine 232 is connected to the other end of the motor 240 opposite to the compressor 222 in the axial direction, and is attached to the main shaft 244 extending from the motor 240.
  • An exhaust side of the expansion turbine 232 is connected to an expansion turbine outlet pipe 231.
  • the motor 240 is located in the center of the compressor 222 and the expansion turbine 232, and supports the main shaft 244, which is a rotational drive unit inserted in the motor casing 241, the stator 248 that drives the main shaft 244, and the main shaft 244 in the radial direction.
  • the air-refrigerant cooling device 210 of the present embodiment aims at high efficiency by rotating at high speed, and high reliability is required during actual operation.
  • the main shaft 244 is inserted into the motor casing 241 of the motor 240! Between the main shaft 244 and the coil (not shown) formed around the stator 248 by electromagnetic force. A rotational driving force is generated against the. With this rotational driving force, the main shaft 244 of the motor 240 rotates relative to the stator 248. During actual operation, the main shaft 244 is placed in the space while maintaining a constant distance in the radial direction and the axial direction by the radial magnetic bearings 245a, 245b, 245c, 245d and the axial magnetic bearings 247a, 247b, 247c, 247d. Retained.
  • the motor casing 241 has A cooling air inlet 270a and a cooling air outlet 270b are provided.
  • cooling air (130 mmAq, 40 ° C) is sent from the fan 260 installed outside the air refrigerant cooling device 210 to the inside of the motor 240 through the cooling air inlet 270a through the filter 250. It is. Cooling air that has been introduced into the motor 240 and has cooled the main shaft 244 and the stator 248 that are the motor drive unit is discharged from the cooling air outlet 270b to the outside of the air refrigerant cooling device 210.
  • refrigerant air (one 173 mmA q, 35 ° C) is taken from the axial opening of the compressor 222 and compressed, and the temperature rises to 119 ° C. Be warmed. Then, the air is discharged from the compressor vent hole 221c to the outside of the compressor 222.
  • refrigerant air (47 ° C.) is taken from the vent hole 231a of the expansion turbine 232, is adiabatically expanded in the expansion turbine 232, and is cooled to 80 ° C.
  • the refrigerant air that has been adiabatically expanded and cooled to 80 ° C. is discharged from the axial opening of the expansion turbine 232 to the outside of the expansion turbine 232.
  • Refrigerant air may leak into the motor 240 from the outside of the motor 240 through the labyrinth part A242 and the labyrinth part B243. At this time, the refrigerant air enters the motor 240 and enters the motor 240. Foreign matter enters. When foreign matter enters the motor 240, the foreign matter adheres to the main shaft 244, radial magnetic bearings 245a, 245b, 245c, 245d and axial magnetic bearings 247a, 247b, 247c, 247d, causing malfunction or failure of the motor 240. It becomes.
  • the motor casing 241 is provided with intake holes 241a, 241b, and 241d force S.
  • the intake holes 241a, 241b, and 241d are arranged in the vicinity of the radial magnetic bearings 245a, 245b, 245c, and 245d and the axial magnetic bearings 247a, 247b, 247c, and 247d, respectively.
  • the intake holes 241a and 241b are connected to the vent holes 221a and 221b provided in the compressor inlet pipe 221 by pipes, respectively.
  • the main shaft of the motor 240 244 Radial magnetic bearings 245a, 245b, 245c, 245d and axial magnetic bearings 247a, 2 47b, 247c, 247d, foreign matter mixed in the vicinity of the compressor 222 and the motor 240 And discharged to the compressor 222.
  • the inside of the motor has a negative pressure compared to the outside of the motor, the foreign matters mixed in the vicinity of the radial magnetic bearings 245a, 245b, 245c, 245d and the axial magnetic bearings 247a, 247b, 247c, 2 47d It is quickly discharged outside the motor.
  • radial magnetic bearings 245a, 245b, 245c, 245d and axial magnetic bearings 247a are added to the motor 240 of the air-refrigerant cooling device 210 composed of the compressor 222, the motor 240 and the expansion turbine 232 Apply 247b, 247c, 247d.
  • a pressure difference is generated between the motor and the compressor 222 and the expansion turbine 232 in order to remove foreign matter mixed in the motor through the external force labyrinth part A242 and the labyrinth part B243 of the motor 240.
  • the air refrigerant type cooling device in the present invention can be applied to refrigeration, refrigeration, and air conditioning cooling by changing the temperature level of the system. Therefore, the refrigeration device, refrigeration device, and air conditioning cooling device are also included. In the present embodiment, the same can be applied to the case of refrigeration and air conditioning cooling by changing the temperature 'pressure level of the power system described only for the case of refrigeration.
  • FIG. 4 shows a cross-sectional view of a schematic configuration of an air refrigerant cooling device 310 according to Embodiment 2 of the present invention.
  • the basic configuration of the air refrigerant type cooling device 310 of the present embodiment is the same as that of the air refrigerant type cooling device 210 of the first embodiment.
  • the radial magnetic bearings 345a, 345b, 345c, 345d and axial magnetic bearings 347a, 347b, 3 47c, 347d are installed near the main shaft 344 and between each magnetic bearing during actual operation. Equipped with radial sensors 349c and 349d for detecting distance and axial sensors 349a and 349b.
  • the air refrigerant type cooling device 310 of the present embodiment includes a motor 340, a compressor 322, and an expansion turbine 332.
  • the compressor 322 is connected to one end of the motor 340 in the axial direction, and is attached to a main shaft 344 that also extends the motor 340 force.
  • a compressor inlet pipe 321 is connected to the intake side of the compressor 322.
  • the expansion turbine 332 is connected to the other end of the motor 340 opposite to the compressor 320 in the axial direction, and is attached to a main shaft 344 extending from the motor 340.
  • a vent hole 331a for taking in refrigerant air is provided on the intake side of the expansion turbine 332, a vent hole 331a for taking in refrigerant air is provided.
  • the exhaust side of the expansion turbine 332 is connected to the expansion turbine outlet piping 331!
  • the motor 340 is located in the center of the compressor 322 and the expansion turbine 332, and includes a main shaft 344 that is a rotational drive unit inserted in the motor casing 341, a stator 348 that drives the main shaft 344, and the main shaft 344 in the radial direction Supporting radial magnetic bearings 345a, 345b, 345c, 345d, rotor disk 346 connected perpendicularly to the main shaft 344, and axial magnetic bearings 347a, 347b, 347c, 347d supporting the main shaft 344 in the axial direction via the rotor disk 346 It has.
  • the air-refrigerant cooling device 310 of the present embodiment aims at high efficiency by rotating at high speed, and high reliability is required during actual operation.
  • the main shaft 344 is inserted into the motor casing 341 of the motor 340! Between the main shaft 344 and the coil (not shown) formed around the stator 348 by electromagnetic force. A rotational driving force is generated against the. With this rotational driving force, the main shaft 344 of the motor 340 rotates relative to the stator 348. During actual operation, the main shaft 344 is placed in the space while maintaining a certain distance in the radial and axial directions by the radial magnetic bearings 345a, 345b, 345c, 345d and the axial magnetic bearings 347a, 347b, 347c, 347d. Retained.
  • the radial magnetic bearing 3 of the main shaft 344 that is magnetically levitated for the purpose of improving the reliability during actual operation of the motor 340 that rotates at a high speed.
  • Radial magnetic bearings 345a, 345b, 345c, 345d and axial magnetic bearings 347a, 347b, 347c, 347d Are provided with radial sensors 349c and 349d and axial sensors 349a and 349b.
  • the radial sensors 349c and 349d and the axial sensors 349a and 349b monitor the position information of the spindle 344 in the radial and axial directions during actual operation.
  • the acquired position information of the spindle 344 is input to an arithmetic device (not shown).
  • the radial magnetic bearings 345a, 345b, 345c, 345d and the axial magnetic bearings 347a, 347b It is calculated in real time how much the position of the spindle 344 should be changed under the control of 347c and 347d.
  • a control device controls the amount of current flowing through each magnetic bearing based on the radial and axial position information of the main shaft 344, so that the main shaft 344 is stably held at a specified position. .
  • the motor casing 341 is provided with a cooling air inlet 370a and a cooling air outlet 370b.
  • the cooling air (13011111 ⁇ , 40 ° C) flows from the fan 360 installed outside the air refrigerant cooling device 310 to the inside of the motor 3 40 through the cooling air inlet 370a through the filter 350. It is sent. Cooling air that has been taken into the motor 340 and has cooled the main shaft 344 and the stator 348, which are motor driving units, is discharged outside the motor casing 341 from the cooling air outlet 370b.
  • air refrigerant cooling device 310 of the present embodiment external force of motor 340 is also mixed into motor 340 through labyrinth portion A342 and labyrinth portion B343, similarly to air refrigerant cooling device 210 in the first embodiment. It is necessary to create a pressure difference between the motor and the compressor 322 and expansion turbine 332 in order to remove incoming foreign matter. Further, in the present embodiment, the radial magnetic bearings 345a, 345b, 345c, 345d and the radial magnetic bearings 347a, 347b, 347c, 347d are arranged in the vicinity. Sensors 349c and 349d and axial sensors 349a and 349b must be kept in a guaranteed temperature environment.
  • refrigerant air (one 173 mmAq, 35 ° C.) is taken in from the axial opening of the compressor 322 and compressed in the compressor 322. The temperature is raised to ° C. Then, the air is discharged from the compressor vent hole 321c to the outside of the compressor 322.
  • the refrigerant air (47 ° C.) is adiabatically expanded in the expansion turbine 332 and cooled to 80 ° C.
  • the refrigerant air that has been adiabatically expanded and cooled to 80 ° C. is also discharged to the outside in the axial direction of the expansion turbine 332.
  • the air intake holes 341a, 341b, 341c are provided in the motor casing 341. 341d.
  • the intake holes 341a, 341b, 341c, and 341d are disposed in the vicinity of the radial magnetic bearings 345a, 345b, 345c, and 345d and the axial magnetic bearings 347a, 347b, 347c, and 347d, respectively.
  • the intake holes 341 c and 341 d are connected to the fan 360 via a filter 350 by piping.
  • the intake / exhaust holes 341a, 341b, 341c, and 341d are respectively formed as radial magnetic bearings 345a, 345b, 345c, 345d and axial magnetic bearings 347a, 347b, 347 c, radiating from the labyrinth part A342 and the labyrinth part B to the radial sensors 349c, 349d and the axial sensors 349a, 349b arranged near the bearings. Hot and cold refrigerant air is prevented from stagnating.
  • the positive pressure fan 360 forcibly discharges the refrigerant air in the vicinity of the sensor to the outside of the motor casing, and the vicinity of the sensor by a compressor, a suction fan, or the like.
  • a pressure difference is generated between the space near the sensor and the outside of the motor casing, and the high and low temperature refrigerant air leaking from the labyrinth part A342 and the labyrinth part B is detected by the sensor. You may make it prevent staying in the vicinity.
  • the labyrinth part A342 and the labyrinth part B343 are further forced to prevent external refrigerant and the like from leaking in the vicinity of the sensor.
  • the positive or negative pressure is applied to the space in the motor casing 341 near the sensor to discharge the high and low temperature refrigerant air to the outside of the motor casing 341.
  • FIG. 2 shows a schematic diagram of an air refrigerant cooling / heating system 100 according to the third embodiment.
  • the air refrigerant cooling system 100 includes the air refrigerant cooling devices 210 and 310, the first heat exchanger 120, the second heat exchanger 130, and the refrigerator 140 according to the first or second embodiment. , And a filter 150 and a fan 160.
  • the refrigerant in the present embodiment is air, and a conventional ring made of ozone refrigerant is used. Concern about the destruction of the border will be wiped out.
  • the inlet of first heat exchanger 120 is connected to the outlets of the compressors of air refrigerant cooling devices 210 and 310 by piping.
  • the inlet of the second heat exchanger 130 is connected to the outlet of the first heat exchanger 120 by piping.
  • the outlet of the second heat exchanger 130 is connected to the inlets of the expansion turbines of the air refrigerant cooling devices 210 and 310 by piping.
  • the outlets of the expansion turbines of the air refrigerant cooling devices 210 and 310 are connected to the refrigerant air inlet of the cooler 140 by piping.
  • the air refrigerant outlet of the cooler 140 is connected to the compressor inlets of the air refrigerant cooling devices 210 and 310 via the second heat exchanger 130 by piping.
  • a fan 160 is connected via a filter 150 to an air intake hole provided in the motor casing for cooling the inside of the motors of the air refrigerant cooling devices 210 and 310.
  • the air refrigerant cooling / heating system 100 is a circulation system using air as a refrigerant. By inserting the cooling chamber 140 into the circulation loop, the refrigerant air is directly introduced into the cooling chamber 140. Send it in.
  • the refrigerator includes a freezer, a refrigerator, etc.
  • the refrigerator 140 is, for example, a semi-enclosed type of space that is cooled by the air refrigerant type cooling devices 210 and 310 in addition to storing the product at a low temperature.
  • the present invention can also be applied to an example in which food or the like is frozen food by passing through a belt conveyor. Furthermore, it can also be used in drug reaction devices that are frozen during the drug manufacturing process.
  • the refrigerant air at 35 ° C (pressure: 173mmAq) sent to the compressor inlet of the air refrigerant type cooling devices 210, 310 is compressed by the compressor and becomes the air refrigerant at 119 ° C as the compressor outlet. More discharged.
  • the discharged air refrigerant at 119 ° C is sent to the first heat exchanger 120 and cooled to 43 ° C by the first heat exchanger 120.
  • the air refrigerant cooled to 43 ° C is sent to the second heat exchanger 130 for heat exchange, and is cooled to around -47 ° C.
  • the air refrigerant cooled to 47 ° C is sent to the inlets of the expansion turbines of the air refrigerant cooling devices 210 and 310, where it is adiabatically expanded and cooled to 80 ° C.
  • the refrigerant air cooled to ⁇ 80 ° C. is sent to the refrigerator 140 to directly cool the product stored in the refrigerator 140.
  • the inside of the refrigerator 140 The temperature is kept around 55 ° C.
  • the 55 ° C refrigerant air discharged from the refrigerator 140 is sent to the second heat exchanger 130, and heat exchange is performed with the air refrigerant sent from the first heat exchanger 120, so that the first heat exchange is performed. Cool the air refrigerant sent from the vessel 120 to -47 ° C.
  • the refrigerant air from the cooling chamber 140 that has exchanged heat in the second heat exchanger 30 and raised the temperature to 35 ° C. is sent again to the compressor inlets of the air refrigerant type cooling devices 210 and 310 to circulate the refrigerant air.
  • the system is established. Further, cooling air for cooling the inside of the motor is sent from the fan 160 to the inside of the motor through the filter 150. Then, after cooling the inside of the motor, the cooling air is released from the inside of the motor to the atmosphere.
  • FIG. 5 shows a schematic diagram of an air refrigerant cooling / heating system 400 according to the fourth embodiment.
  • the basic configuration of the air refrigerant cooling system 400 of the present embodiment is the same as that of the air refrigerant cooling system 100 of the third embodiment. However, there is a difference in the configuration for cooling the motor of the air refrigerant type cooling devices 210 and 310, which is a component requirement.
  • the air refrigerant cooling / heating system 400 is the same as that of the first or second embodiment. Air refrigerant cooling devices 210 and 310, a first heat exchanger 420, a second heat exchanger 430, a refrigerator 440, and a radiator 450 for cooling the motors of the air refrigerant cooling devices 210 and 310 are provided.
  • a radiator 450 is arranged outside the air refrigerant cooling devices 210 and 310.
  • the inlet and outlet of the radiator 450 are connected to the intake holes corresponding to each of the inlet and outlet! Speak.
  • the radiator 450 While the air refrigerant cooling / heating system 400 is being driven, the radiator 450 is simultaneously driven to circulate the air inside the motors of the air refrigerant cooling devices 210 and 310. In addition, the radiator 450 cools the 40 ° C cooling air, which also discharges the internal motor power, to 30 ° C.
  • the air refrigerant cooling / heating system 100 according to the third embodiment has the same effects as those of the third embodiment and increases the cooling efficiency of the motors of the air refrigerant cooling devices 210 and 310. Compared to the above, it is possible to provide an air refrigerant cooling / heating system 400 with higher reliability.
  • FIG. 6 shows a schematic diagram of an air refrigerant cooling / heating system 500 according to the fifth embodiment.
  • the basic configuration of the air refrigerant cooling system 500 of the present embodiment is the same as that of the air refrigerant cooling systems 100 and 400 of the third and fourth embodiments. However, there is a difference in the configuration for cooling the motor of the air refrigerant type cooling devices 210 and 310, which are constituent requirements.
  • the air refrigerant cooling system 500 includes the air refrigerant cooling devices 210 and 310, the first heat exchanger 520, the second heat exchanger 530, and the cooling chamber of the first or second embodiment. 540.
  • the pipe connected to the outlet of the second heat exchanger 530 branches, one at the expansion turbine inlet of the air refrigerant cooling devices 210 and 310, and the other at the motor. It is connected to an intake hole provided in the casing.
  • the intake holes provided in the motor casings of the air refrigerant cooling devices 210 and 310 and the compressor inlets of the air refrigerant cooling devices 210 and 310 are connected by a pipe.
  • the air refrigerant cooling system 500 a part of the 47 ° C refrigerant air discharged from the second heat exchanger 530 is always discharged from the air refrigerant cooling devices 210 and 310.
  • the motor is sent to the inside of the motor to cool the inside of the motor.
  • the cooled refrigerant air is discharged from the motor at about 40 ° C., and is sent to the inlets of the compressors of the air refrigerant type cooling devices 210 and 310 again.
  • the refrigerant air maintains the temperature in the refrigerator 540 at a low temperature and simultaneously cools the motors of the air refrigerant cooling devices 210 and 310.
  • Embodiments 3 and 4 the same effects as those of Embodiments 3 and 4 are provided, and the internal cooling of the motors of air refrigerant cooling devices 210 and 310 is efficiently performed using circulating refrigerant air. Can be done. Thereby, it is possible to provide a highly reliable air refrigerant cooling / heating system 500 at a lower cost than the air refrigerant cooling / heating systems 100 and 400 of the third and fourth embodiments.
  • FIG. 7 shows a schematic diagram of a ref container 600 (reefer container) according to the sixth embodiment.
  • the basic configuration of the reflex container 600 of the present embodiment is the same as that of the air refrigerant cooling / heating system 400 in the fourth embodiment. However, the entire system is configured to be portable.
  • the reflex container 600 includes the air refrigerant cooling devices 210 and 310, the first heat exchange ⁇ 620, the second heat exchange ⁇ 630, and the container box 640 of the first or second embodiment. , And a radiator 650 for cooling the motors of the air refrigerant cooling devices 210 and 310.
  • the radiator 6 is provided outside the air refrigerant cooling devices 210 and 310. 50 are arranged. RAJETA 650 inlets and outlets are located on the motor casing! / Connected to the inlets corresponding to each of the inlets and outlets! Speak. While the reflex container 600 is being driven, the radiator 650 is simultaneously driven to circulate the air inside the motors of the air-cooling type cooling devices 210 and 310. The radiator 650 cools the 40 ° C cooling air discharged from the motor to 30 ° C.
  • the air refrigerant type cooling devices 210 and 310, the first heat exchanger 620, the second heat exchanger 630, the container box 640, and the radiator 6 50 that are constituent requirements are all included. It is configured to be portable, and the entire system can be loaded on a car, ship, railway, etc., and the product can be transported in the container box 640 while being stored frozen.
  • the entire system by making the entire system portable, it is possible to provide a highly reliable air refrigerant cooling / heating system for refrigeration and transportation where demand is expected to increase in the future.
  • the force described only for the case of refrigeration can be applied to the case of refrigeration and air conditioning cooling by changing the temperature level of the system as in the other examples.
  • FIG. 8 shows a schematic diagram of an air refrigerant cooling / heating system 700 according to the third embodiment.
  • An air refrigerant cooling system 700 according to the present embodiment includes an air refrigerant cooling device 410, a first heat exchanger 720, a second heat exchanger 730, and a refrigerator 740.
  • the air refrigerant cooling device 410 includes a compressor 422 and an expansion turbine 432.
  • the inlet of the first heat exchanger 720 is connected to the outlet of the compressor 422 of the air refrigerant cooling device 410 by piping.
  • the inlet of the second heat exchanger 730 is connected to the outlet of the first heat exchanger 720 by piping.
  • the outlet of the second heat exchanger 730 is connected to the inlet of the expansion turbine 432 of the air refrigerant type cooling device 410 by piping.
  • the outlet of the expansion turbine 432 of the air refrigerant cooling device 410 is connected to the refrigerant air inlet of the cooler 740 by piping.
  • the air refrigerant outlet of the refrigerator 740 is connected to the compressor 422 inlet of the air refrigerant cooling device 410 via the second heat exchanger 730 by piping.
  • the air refrigerant cooling / heating system 700 includes a piping force that couples the second heat exchanger 730 and the expansion turbine 432, a force for branching out the air refrigerant, and a magnetic bearing on the compressor 422 side of the motor 440.
  • Piping 750 is provided to supply the space where The air refrigerant cooling / heating system 700 further draws the air refrigerant from the space where the magnetic bearings on the compressor 422 side of the motor 440 are arranged, and is supplied to the space where the magnetic bearings on the expansion turbine 432 side of the motor 440 are arranged. Speak with 760.
  • the air refrigerant cooling / heating system 700 further includes a pipe 770 that draws the air refrigerant and supplies it to the pipe that connects the expansion turbine 432 and the refrigerator 740, in which the magnetic bearing on the expansion turbine 432 side of the motor 400 is arranged.
  • FIG. 9 shows a cross section of a schematic configuration of an air refrigerant cooling device 410 according to Embodiment 9 of the present invention.
  • the air refrigerant type cooling device 410 includes a motor 440, a compressor 422, and an expansion turbine 432.
  • the motor 440 is a synchronous motor having a rotation speed of about 21000 rpm.
  • the compressor 422 is connected to one end of the motor 440 in the axial direction, and is attached to the main shaft 444 extending from the motor 440.
  • the inlet side of the compressor 422 is connected to the compressor inlet pipe 421.
  • the expansion turbine 432 is connected to the other end of the motor 440 opposite to the axial compressor 422 and attached to the main shaft 444 extending from the motor 440.
  • the outlet side of the expansion turbine 432 is connected to the expansion turbine outlet pipe 431.
  • the motor 440 is positioned at the center of the compressor 422 and the expansion turbine 432, and is inserted into the motor casing 441, and includes a main shaft 444 that is a rotary drive unit and a stator 448 that drives the main shaft 444.
  • the motor 440 further includes radial magnetic bearings 445a and 445c that support the radial load of the main shaft 444 on the compressor 422 side.
  • Radiano magnetic bearings 445a, 445c [In contrast, a first magnetic bearing chamber 451 is provided in a direction opposite to the space in which the stator 448 is provided. The first magnetic bearing chamber 451 is partitioned from the space provided with the compressor 422 force S by the labyrinth portion A442. Labyrinth part A442 prevents refrigerant air compressed by compressor 422 from flowing into motor 440.
  • the first magnetic bearing chamber 451 includes a rotor disk 446 coupled to the spindle 444 and a spindle 4 via the rotor disk 446. Axial magnetic bearings 447a and 447b that support 44 axial loads are arranged!
  • the motor 440 further includes radial magnetic bearings 445b and 445d that support the radial load of the main shaft 444 on the expansion turbine 432 side.
  • Radiorole magnetic bearings 445b, 445d [On the other hand, a stator 448 is provided, and a second magnetic bearing chamber 452 is provided in a direction opposite to the space. The second magnetic bearing chamber 452 is partitioned from the space in which the expansion turbine 432 is provided by the labyrinth portion B443. The labyrinth B443 prevents the refrigerant air adiabatically expanded in the expansion turbine 432 from flowing into the motor 440.
  • a radial sensor 449c for detecting the distance between the main shaft 444 and the radial magnetic bearings 445a and 445c is installed.
  • the first magnetic bearing chamber 451 further includes axial sensors 449a and 449b that detect the axial distance between the rotor disk 451 and the wall surface of the first magnetic bearing chamber 451.
  • the second magnetic bearing chamber 452 is provided with a radial sensor 449d for detecting the distance between the main shaft 444 and the radial bearings 445b and 445d!
  • One end of a pipe 750 is connected and opened in the first magnetic bearing chamber 451 in which the radial sensor 449c and the axial sensors 449a and 449b are arranged.
  • the other end of the pipe 750 is connected to a pipe connecting the second heat exchanger 730 and the expansion turbine 432.
  • an exhaust port 441a is provided in the first magnetic bearing chamber 451, at a position where the positional force to which the pipe 750 is connected is also separated.
  • One end of a pipe 760 is connected to the exhaust port 441a.
  • the other end of the pipe 760 is connected to an intake port 441 b provided in the second magnetic bearing chamber 452.
  • An exhaust port 441d is provided in the second magnetic bearing chamber 452 at a position away from the position force to which the pipe 760 is connected.
  • One end of a pipe 770 is connected to the exhaust port 441d and opened.
  • the other end of the pipe 770 is connected to the expansion turbine outlet pipe 431 and is open.
  • the motor 440 is driven.
  • the compressor 422 and the expansion turbine 432 rotate.
  • the radial sensors 449c and 449d and the axial sensors 449a and 449b monitor the positional information of the main shaft 444 in the radial and axial directions during actual operation.
  • the acquired position information of the main shaft 444 is input to a calculation device (not shown).
  • the arithmetic unit uses the radial magnetic bearings 445a, 445b, 445c, 445d and the axial magnetic bearing 4 47a. , 447b, 447c, and 447d, the amount of change in the position of the spindle 444 can be calculated in real time.
  • a control device controls the amount of current flowing through each magnetic bearing based on the radial and axial position information of the main shaft 444, so that the main shaft 444 is stably held at a specified position.
  • the motor casing 441 is provided with a cooling air inlet 470a and a cooling air outlet 470b.
  • cooling air (130 mmAq, 40 ° C) is sent from the cooling air inlet 470a into the motor 44 40 through the filter 450 from the fan 460 installed outside the air refrigerant cooling device 410. It is. Cooling air that has been introduced into the motor 440 and has cooled the main shaft 444 and the stator 448, which are motor drive units, is discharged from the cooling air outlet 470b to the outside of the air refrigerant cooling device 410.
  • Refrigerant air of 35 ° C (pressure; 173 mmAq) sent to the compressor 422 inlet is compressed by the compressor 422 and discharged from the compressor 422 outlet as 119 ° C air refrigerant.
  • the discharged 119 ° C air refrigerant is sent to the first heat exchanger 720, where it is cooled to 43 ° C.
  • air refrigerant cooled to 43 ° C It is sent to heat exchanger 730 for heat exchange and cooled to around 47 ° C.
  • the air refrigerant cooled to 47 ° C. is sent to the vent hole 43 la of the expansion turbine of the air refrigerant cooling device 410, where it is adiabatically expanded and cooled to ⁇ 80 ° C.
  • This refrigerant air cooled to 80 ° C is sent to the refrigerator 740 to directly cool the product stored in the refrigerator 740.
  • the temperature in the refrigerator 740 is maintained around 55 ° C.
  • the -55 ° C refrigerant air discharged from the refrigerator 740 is sent to the second heat exchanger 730, where it exchanges heat with the air refrigerant sent from the first heat exchanger 720. Cool the air refrigerant sent from vessel 720 to -47 ° C.
  • the refrigerant air from the refrigerator 740 which has exchanged heat with the second heat exchanger 730 and heated up to 35 ° C, is sent to the compressor inlet of the air refrigerant type cooling device 410 again to circulate the refrigerant air.
  • the system is established.
  • the pressure in the first magnetic bearing chamber 451 is lower than the pressure inside the pipe connecting the second heat exchanger 730 and the expansion turbine 432. Therefore, a part of the air refrigerant inside the pipe connecting the second heat exchanger 730 and the expansion turbine 432 is drawn out to the pipe 750 and supplied to the first magnetic bearing chamber 451.
  • the refrigerant air supplied to the first magnetic bearing chamber 451 has a low temperature of about 47 ° C, and therefore contains a small amount of moisture.
  • the inside of the first magnetic bearing chamber 451 is cooled by the supplied air refrigerant.
  • the radial sensor 449c, the axial sensor 449a, and the axial sensor 449b are cooled. Therefore, the operations of the radial sensor 449c, the axial sensor 449a, and the axial sensor 449b are stabilized.
  • the radial sensor 449c, the axial sensor 449a, or the axial sensor 449b it is possible to use an inexpensive sensor with a narrower operating temperature range, thereby achieving cost reduction.
  • the pressure in the first magnetic bearing chamber 451 is higher than the pressure in the second magnetic bearing chamber 452. Therefore, the air inside the first magnetic bearing chamber 451 is drawn out to the pipe 760. Inside the first magnetic bearing chamber 451, a directional air flow is generated from the pipe 750 to the pipe 760, and foreign matter is blown away.
  • the temperature of the air drawn from the first magnetic bearing chamber 451 to the pipe 760 is about 40 ° C. .
  • the temperature of the low-temperature, low-moisture air supplied to the first magnetic bearing chamber 451 by the pipe 750 is increased, so that the air drawn into the pipe 760 has a very low humidity. This air is supplied to the second magnetic bearing chamber 452.
  • the pressure inside second magnetic bearing chamber 452 is higher than the pressure inside expansion turbine outlet pipe 431. Therefore, the air inside the second magnetic bearing chamber 452 is drawn out to the pipe 770 and supplied to the expansion turbine outlet pipe 431. The air drawn out by the pipe 750 from the middle of the refrigerant air circulation cycle is supplied to the circulation cycle again by the pipe 770, so that the operation of the circulation cycle becomes stable.
  • FIG. 10 shows the configuration of the air refrigerant cooling / heating system according to the eighth embodiment.
  • An air refrigerant cooling device 810 of the air refrigerant cooling system 800 in the present embodiment includes an auxiliary compressor 802, a motor 804, an auxiliary cooler 806, a main compressor 822, and an expansion turbine 832.
  • the auxiliary compressor 802 is driven by a motor 804.
  • the outlet side of the auxiliary compressor 802 is connected to the auxiliary cooler 806 via a pipe.
  • the outlet side of the auxiliary cooler 806 is connected to the main compressor 822 via a pipe.
  • the main compressor 822 is connected coaxially with the expansion turbine 832.
  • Examples of the type of bearing that supports the rotating shaft that connects the main compressor 822 and the expansion turbine 832 include ball bearings, roller bearings, and magnetic bearings.
  • the outlet side of main compressor 822 is connected to cooler 820 via a pipe.
  • the outlet side of the cooler 820 is connected to the high temperature side passage of the heat exchanger 830.
  • the outlet side of the high temperature side passage of the heat exchanger 830 is connected to the expansion turbine 832.
  • the outlet side of the expansion turbine 832 is connected to the air outlet 5 of the refrigerator 840.
  • the refrigerator 840 is provided with an air intake 2, and the air intake 2 is connected to the low temperature side passage of the heat exchanger 830 through a pipe.
  • the outlet side of the low temperature side passage of the heat exchanger 830 is connected to the auxiliary compressor 802.
  • One end of a pipe 870 is connected to the pipe connecting the expansion turbine 832 and the refrigerator 840 and opened.
  • the other end of the pipe 870 is connected to a bearing space (first bearing chamber) disposed between the compressor 822 and the expansion turbine 832.
  • One end of the pipe 860 is connected and opened at a position away from the position force where the pipe 850 of the first bearing chamber is connected.
  • the other end of the pipe 860 is connected to a space (second bearing chamber) (not shown) on the expansion turbine 832 side.
  • One end of the pipe 870 is connected to a position away from the position force where the pipe 860 of the second bearing chamber is connected.
  • the other end of the pipe 870 is connected to a pipe that connects the expansion turbine 832 and the refrigerator 840 and opens.
  • the motor 804 is driven and the auxiliary compressor 802 rotates.
  • the main compressor 822 and the expansion turbine 832 rotate.
  • Auxiliary cooler 806 is activated. Cooler 820 is activated.
  • Refrigerant air that has exited from the outlet of the low temperature side passage of heat exchanger 830 is compressed and discharged by auxiliary compressor 802.
  • the discharged refrigerant air is cooled by the auxiliary cooler 806.
  • the refrigerant air discharged from the auxiliary cooler 806 is compressed and discharged by the main compressor 822.
  • the refrigerant air discharged from the main compressor 822 is cooled by the cooler 820.
  • the refrigerant air coming out of the cooler 8 20 is further cooled by the heat exchange 830.
  • the refrigerant air cooled by the heat exchange 830 is further cooled by adiabatic expansion in the expansion turbine 832.
  • Refrigerant air from the expansion turbine 832 is supplied from the air outlet 5 to the inside of the refrigerator 840.
  • the inside of the refrigerator 840 is cooled.
  • the air inside the refrigerator 840 is taken from the air inlet 2 and heated by the heat exchanger 830.
  • the refrigerant air whose temperature has been raised is supplied to the auxiliary compressor 802.
  • Part of the air refrigerant exiting the expansion turbine 832 is drawn out to the pipe 850 and supplied to the first bearing chamber.
  • the air in the first bearing chamber is drawn to pipe 860.
  • An air flow is generated inside the first bearing chamber, and foreign matter is blown away.
  • the air in the first bearing chamber is supplied to the second bearing chamber via a pipe 860. Inside the second bearing chamber, frost may adhere due to low-temperature air charcoal on the outlet side of the expansion turbine 832.
  • the air supplied from the pipe 860 to the second bearing chamber prevents frost from adhering, and the bearing operates stably.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

 本発明の目的は、信頼性および効率の高い、磁気軸受け構造を有した空気冷媒式冷却装置を提供することである。本発明では、コンプレッサ、モータおよび膨張タービンから構成される空気冷媒式冷却装置のモータに磁気軸受けを採用する。モータ外部からラビリンス部を通してモータ内部に混入してくる異物を除去するために、モータ内部とコンプレッサ間に圧力差を作る。これにより、高速回転を保持し、高効率で信頼性の高い空気冷媒冷却装置が実現される。磁気軸受け近傍に、主軸のラジアル方向およびアキシャル方向の位置を検知するためのセンサが配置される。このセンサがコンプレッサ側および膨張タービン側のラビリンスからリークしてくる冷媒用空気に曝されるのを防ぐ目的で、上記センサ取り付け部とモータ外部との間にも同時に圧力差を作る。これにより、センサの動作が安定する。この空気冷媒冷却装置を冷熱システムに組み込むことにより、シンプルな構成で高効率、且つ極めて信頼性の高い空気冷媒冷熱システムが実現される。

Description

明 細 書
空気冷媒式冷却装置および空気冷媒式冷却装置を用いた空気冷媒冷 熱システム
技術分野
[0001] 本発明は、空気冷媒式冷却装置及び空気冷媒式冷却装置を用いた空気冷媒冷 熱システムに関する。本発明は特に、磁気軸受け構造を有した空気冷媒式冷却装置 および磁気軸受け構造を有した空気冷媒式冷却装置を用いた空気冷媒冷熱システ ムに関する。
背景技術
[0002] 従来の空気冷媒冷熱システムでは、その構成要件である空気冷媒式冷却装置に おいて、ボールベアリング、ころベアリング等のベアリングを介してロータ軸を回転さ せるモータを使用していた。このため、所望の温度の冷却空気を作る際には、空気冷 媒式冷却装置の他に、この空気冷媒式冷却装置に取り入れられる冷媒空気を前もつ てある程度圧縮するためのブースタや、冷却器等を備える必要があった。また、ボー ルベアリング、ころベアリング等を使用するモータにおいては、ベアリングを交換する ための定期的なメンテナンス作業が発生し、この期間内においては当該システムによ つて倉庫内の荷物を冷却することが出来な力つた。
[0003] 空気冷媒式冷却装置の冷却性能を向上させ、空気冷媒冷熱システムをシンプルな 構成とするための手段としては、空気冷媒式冷却装置に備えられているモータの回 転数を上げて高速回転させることが考えられる。
[0004] 一般に、高速回転する駆動機構を実現するものとして「磁気軸受装置」が知られて いる。図 1に、特開平 8-61366号公報に開示されている「磁気軸受装置」の概略構 成を示す。図 1に示される磁気軸受装置では、主軸 2に固定された円盤状のロータデ イスク 4を介して主軸 2の軸方向変位を制御するアキシャル磁気軸受 5と、このアキシ ャル磁気軸受 5の軸方向の両側に配置され、主軸 2の径方向変位を制御する一対の ラジアル磁気軸受 6、 7とを備えた磁気軸受装置において、上記ロータディスク 4の外 周面を取り囲む環状の部材と、この環状の部材に開口されロータディスク冷却用の空 気を吹き出す通気口 13aと、ロータディスク 4の軸方向の両側において主軸 2の周囲 を取り囲んだ状態で、主軸 2との間に、通気口 13aからの空気を流す略一定の隙間 を形成する隙間形成部材 20、 21とを備えた磁気軸受装置が提案されている。
[0005] また、今述べてきたような技術に関連して、以下に示すような提案がなされている。
[0006] 特開平 11— 132582号公報に開示されている「空気冷媒式冷凍装置」では、空気 の経路に、圧縮機、空気冷却器、空気対空気熱交換器および膨張機を空気の流れ の順に配置し、要冷却室内の空気を前記の空気対空気熱交換器を経て該圧縮機に 取入れ、該膨張機を出た空気を該要冷却室内に吹き出すようにした空気冷媒式冷 凍装置において、該膨張機を出た空気の一部または全部を要冷却室を迂回して該 空気対空気熱交換器に戻すための弁介装の第 1のバイパス路と、圧縮機を出て膨張 機に入る前の空気路力 0°C以上の空気を取り入れ、これを空気対空気熱交^^の 入口側空気路に供給するための弁介装の温風バイパス路が設けられた空気冷媒式 冷凍装置が提案されている。
発明の開示
[0007] 本発明の目的は、信頼性および効率の高!、空気冷媒式冷却装置を提供すること である。本発明の目的は特に、信頼性および効率の高い磁気軸受けを備えた空気 冷媒式冷却装置を提供することである。また、上記空気冷媒式冷却装置を用いて構 成を簡素化した空気冷媒冷熱システムを提供することである。
[0008] 本発明の空気冷媒式冷却装置は、モータケ一シングと、モータケ一シング内に挿 入された主軸と、モータケ一シング内に格納されて主軸を保持する第 1および第 2の 磁気軸受けとを有するモータと、コンプレッサと、膨張タービンとを備え、コンプレッサ は、モータの第 1の軸方向に配置されて主軸に接続され、コンプレッサと第 1の磁気 軸受けとは第 1のラビリンスにより仕切られ、膨張タービンは、モータの第 2の軸方向 に配置されて主軸に接続され、膨張タービンと第 2の磁気軸受けとは第 2のラビリンス により仕切られ、モータ外部からの外圧により、第 1および第 2の磁気軸受けの配置さ れる空間とコンプレッサの入口空間および膨張タービンの出口空間との間に圧力差 が生成される。
[0009] また、本発明の空気冷媒式冷却装置は、さらに主軸の位置を測定するためのセン サを備え、センサは第 1および第 2の磁気軸受け近傍に配置され、モータ外部からの 外圧により、センサが配置されている空間とモータケ一シング外部との間に圧力差が 生成される。
[0010] また、本発明の空気冷媒式冷却装置は、モータケ一シングと、モータケ一シング内 に挿入された主軸と、モータケ一シング内に格納されて主軸を保持する第 1および第 2の磁気軸受けとを有するモータと、コンプレッサと、膨張タービンとを備え、コンプレ ッサは、モータの第 1の軸方向に配置されて主軸に接続され、コンプレッサと第 1の磁 気軸受けとは第 1のラビリンスにより仕切られ、膨張タービンは、モータの第 2の軸方 向に配置されて主軸に接続され、膨張タービンと第 2の磁気軸受けとは第 2のラビリン スにより仕切られ、さらに、第 1および第 2の磁気軸受けの配置される空間と、コンプレ ッサの入口空間および膨張タービンの出口空間との間に圧力差を生成する手段とを 備える。
[0011] また、本発明の空気冷媒式冷却装置は、さらに主軸の位置を測定するためのセン サと、センサは第 1および第 2の磁気軸受け近傍に配置され、センサが配置されてい る空間とモータケ一シング外部との間に圧力差を生成する手段とを備える。
[0012] また、本発明の空気冷媒冷熱システムは、空気冷媒式冷却装置と、第 1熱交換器と 、第 2熱交換器と、冷却庫と、フィルタおよびファンとを備え、空気冷媒式冷却装置の コンプレッサの出口と第 1熱交^^の入口とが接続され、第 1熱交^^の出口と第 2 熱交換器の入口とが接続され、第 2熱交換器の出口と空気冷媒式冷却装置の膨張 タービンの入口とが接続され、空気冷媒式冷却装置の膨張タービンの出口と冷却庫 の入口とが接続され、冷却庫の出口は第 2熱交換器を介して空気冷媒式冷却装置 のコンプレッサの入口に接続され、さらに、空気冷媒式冷却装置のモータ内部の冷 却のため、モータケ一シングに設けられた吸
気孔にフィルタを介してファンが接続される。
[0013] また、本発明の空気冷媒冷熱システムは、空気冷媒式冷却装置と、第 1熱交換器と 、第 2熱交換器と、冷却庫と、ラジェ一タとを備え、空気冷媒式冷却装置のコンプレツ サの出口と第 1熱交^^の入口とが接続され、第 1熱交^^の出口と第 2熱交 の入口とが接続され、第 2熱交換器の出口と空気冷媒式冷却装置の膨張タービンの 入口とが接続され、空気冷媒式冷却装置の膨張タービンの出口と冷却庫の入口とが 接続され、冷却庫の出口は第 2熱交換器を介して空気冷媒式冷却装置のコンプレツ サの入口に接続され、さらに、空気冷媒式冷却装置のモータ内部の冷却のため、空 気冷媒式冷却装置の外部にラジェータが配置され、ラジェ一タの入口および出口は モータケ一シングに配設されて 、るラジェ一タの入口および出口のそれぞれに対応 する吸気孔に接続される。
[0014] また、本発明の空気冷媒冷熱システムは、空気冷媒式冷却装置と、第 1熱交換器と 、第 2熱交換器と、冷却庫とを備え、空気冷媒式冷却装置のコンプレッサの出口と第 1熱交^^の入口とが接続され、第 1熱交^^の出口と第 2熱交^^の入口とが接 続され、第 2熱交換器の出口と空気冷媒式冷却装置の膨張タービンの入口とが接続 され、空気冷媒式冷却装置の膨張タービンの出口と冷却庫の入口とが接続され、冷 却庫の出口は第 2熱交換器を介して空気冷媒式冷却装置のコンプレッサの入口に 接続され、さらに、空気冷媒式冷却装置のモータ内部の冷却のため、第 2熱交換器 の出口に接続された配管が分岐されて、分岐された配管は空気冷媒式冷却装置の モータケ一シングに配設されて 、る吸気孔に接続され、空気冷媒式冷却装置のモー タケ一シングに配設されている他の吸気孔と空気冷媒式冷却装置のコンプレッサの 入口とが接続される。
[0015] また、本発明のレフコンテナは、空気冷媒式冷却装置と、第 1熱交換器と、第 2熱交 換器と、コンテナボックスと、ラジェ一タとを備え、空気冷媒式冷却装置のコンプレツ サの出口と第 1熱交^^の入口とが接続され、第 1熱交^^の出口と第 2熱交 の入口とが接続され、第 2熱交換器の出口と空気冷媒式冷却装置の膨張タービンの 入口とが接続され、空気冷媒式冷却装置の膨張タービンの出口とコンテナボックスの 入口とが接続され、コンテナボックスの出口は第 2熱交換器を介して空気冷媒式冷却 装置のコンプレッサの入口に接続され、さらに、空気冷媒式冷却装置のモータ内部 の冷却のため、空気冷媒式冷却装置の外部にラジェータが配置され、ラジェータの 入口および出口はモータケ一シングに配設されて 、るラジェ一タの入口および出口 のそれぞれに対応する吸気孔に接続され、さらに、空気冷却式冷凍装置と、第 1熱 交^^と、第 2熱交^^と、コンテナボックスと、ラジェ一タとはレフコンテナとして可 搬式に構成される。
[0016] 本発明による空気冷媒冷熱システムは、主軸を保持する第 1の軸受けと、圧縮機構 と、膨張タービンと、第 1熱交換器と、第 2熱交換器とを備える。空気冷媒式冷却装置 の圧縮機構の出口と第 1熱交^^の入口とが接続され、第 1熱交^^の出口と第 2 熱交換器の入口とが接続され、第 2熱交換器の出口と空気冷媒式冷却装置の膨張 タービンの入口とが接続され、空気冷媒式冷却装置の膨張タービンの出口と冷却庫 の入口とが接続され、冷却庫の出口は第 2熱交換器を介して圧縮機構の入口に接 続される。圧縮機構が備えるコンプレッサは主軸に接続され、コンプレッサと第 1の軸 受けとは第 1のラビリンスにより仕切られる。膨張タービンは主軸に接続される。空気 冷媒冷熱システムはさらに、コンプレッサの出口と冷却庫の入口との間から引き出さ れた冷媒を第 1の軸受けの配置される空間に導入する第 1配管を備える。
[0017] 本発明による空気冷媒冷熱システムは、さらに、コンプレッサよりも膨張タービンに 近い位置で主軸を支持する第 2の軸受けと、冷媒を第 1の軸受けの配置される空間 力も第 2の軸受けの配置される空間に導入する第 2配管とを備える。
[0018] 本発明による空気冷媒冷熱システムは、さらに、冷媒を第 2の軸受けの配置される 空間から膨張タービンの出口側に導く第 3配管を備える。
[0019] 本発明による空気冷媒冷熱システムは更に、主軸を回転するモータを備える。第 1 および第 2の軸受は磁気軸受である。
[0020] 本発明による空気冷媒冷熱システムにおいて、第 1配管は冷媒を膨張タービンの 入口側から引き出す。
[0021] 本発明による空気冷媒冷熱システムにおいて、圧縮機構は更に、コンプレッサより も上流側に設置された補助コンプレッサを備える。
本発明によるリーファーコンテナは、本発明による空気冷媒冷熱システムと、膨張タ 一ビンの出口に接続されたコンテナボックスとを備える。
[0022] 本発明により、高効率で信頼性の高い空気冷媒冷却装置を実現させることができる
[0023] また、上記高効率で信頼性の高い空気冷媒冷却装置を冷熱システムに組み込むこ とにより、シンプルな構成で高効率、且つ信頼性の高い空気冷媒冷熱システムを提 供することができる。
図面の簡単な説明
[0024] [図 1]従来の磁気軸受装置の概略構成を示す断面図である。
[図 2]実施の形態 3に係わる空気冷媒冷熱システムである。
[図 3]実施の形態 1に係わる空気冷媒冷熱装置の概略構成を示す断面図である。
[図 4]実施の形態 2に係わる空気冷媒冷熱装置の概略構成を示す断面図である。
[図 5]実施の形態 4に係わる空気冷媒冷熱システムである。
[図 6]実施の形態 5に係わる空気冷媒冷熱システムである。
[図 7]実施の形態 6に係わるレフコンテナである。
[図 8]実施の形態 7に係わる空気冷媒冷熱システムである。
[図 9]実施の形態 7に係わる空気冷媒冷熱装置の概略構成を示す断面図である。
[図 10]実施の 8に係わる空気冷媒冷熱システムである。
発明を実施するための最良の形態
[0025] 添付図面を参照して、本発明による空気冷媒式冷却装置および上記空気冷媒式 冷却装置を用いた空気冷媒冷熱システムを実施するための最良の形態を以下に説 明する。
[0026] 初めに、本発明の全体構成を概観する目的で、空気冷媒式冷却装置用磁気軸受 け構造を有する空気冷媒式冷却装置、および空気冷媒式冷却装置を用いた空気冷 媒冷熱システムについて説明する。図 2に、本発明の実施の形態 3に係わる空気冷 媒冷熱システム 100が示されている。本発明に係わる空気冷媒冷熱システム 100は 、空気冷媒式冷却装置 210、 310、第 1熱交換器 120、第 2熱交換器 130および冷 却庫 140を備えている。空気冷媒式冷却装置 210、 310は、コンプレッサ、モータお よび膨張タービンを備えて 、る。
[0027] 本発明に係わる空気冷媒冷熱システム 100においては、空気冷媒式冷却装置 21 0、 310のコンプレッサで圧縮された空気が第 1熱交^^ 120で冷却される。この冷 却された空気は、さらに冷却庫 140からの空気と第 2熱交翻 130において熱交換 され、空気冷媒式冷却装置 210、 310の膨張タービンにて断熱膨張されて低温 (一 8 0°C)に降温される。そして、この低温の空気が直接冷却庫 140に送り込まれることに より、冷却庫 140内の冷凍製品が低温に維持されるものである。空気冷媒冷熱システ ム 100の詳細な動作原理については、実施の形態 3において改めて説明する。
[0028] (実施の形態 1)
図 3に、本発明の実施の形態 1に係わる空気冷媒式冷却装置 210の概略構成の断 面を示す。本実施の形態の空気冷媒式冷却装置 210は、モータ 240、コンプレッサ 2 22および膨張タービン 232を備えている。コンプレッサ 222は、モータ 240の軸方向 の一端に接続され、モータ 240から伸びている主軸 244に取り付けられる。コンプレ ッサ 222の吸気側はコンプレッサ入口配管 221に接続されている。膨張タービン 232 は、モータ 240の軸方向のコンプレッサ 222とは反対側のもう一端に接続され、モー タ 240から伸びている主軸 244に取り付けられる。膨張タービン 232の排気側は膨張 タービン出口配管 231に接続されている。モータ 240は、コンプレッサ 222および膨 張タービン 232の中央に位置し、モータケ一シング 241に挿入されている回転駆動 部である主軸 244、主軸 244を駆動させるステータ 248、主軸 244をラジアル方向に 支持するラジアル磁気軸受 245a、 245b, 245c, 245d、主軸 244に垂直に接続さ れたロータディスク 246、そしてロータディスク 246を介して主軸 244をアキシャル方 向【こ支持するアキシャノレ磁気軸受 247a、 247b, 247c, 247dを備えて!/ヽる。
[0029] 次に、本実施の形態の空気冷媒式冷却装置 210の動作原理を説明する。
[0030] 本実施の形態の空気冷媒式冷却装置 210は、高速回転することにより高効率を目 的とするものであり、実動作時には高い信頼性が求められる。
[0031] まず、モータ 240のモータケ一シング 241に挿入されて!、る主軸 244と、ステータ 2 48の周囲に形成されて 、る図示せぬコイルとの間にお 、て、電磁力により主軸に対 する回転駆動力が発生する。この回転駆動力によりモータ 240の主軸 244がステー タ 248に対して回転する。実動作時に主軸 244は、ラジアル磁気軸受 245a、 245b, 245c, 245dおよびアキシャル磁気軸受 247a、 247b, 247c, 247dにより、ラジアル 方向およびアキシャル方向にそれぞれの磁気軸受力 一定距離を保ったまま空間中 に保持される。
[0032] モータ 240の実動作時には、主軸 244の回転によりモータ 240内部に熱が発生す る。このモータ 240内部で発生した熱を排熱する目的で、モータケ一シング 241には 、冷却空気入口 270aおよび冷却空気出口 270bが配設されている。そしてモータ 24 0実動作時には、空気冷媒式冷却装置 210外部に設置されているファン 260からフィ ルタ 250を介して冷却空気(130mmAq、 40°C)が冷却空気入口 270aからモータ 2 40内部へ送り込まれる。モータ 240内部の取り入れられてモータ駆動部である主軸 2 44およびステータ 248を冷却した冷却空気は、冷却空気出口 270bから空気冷媒式 冷却装置 210外部に排出される。
[0033] 本実施の形態の空気冷媒式冷却装置 210においては、冷媒用空気 (一 173mmA q、 35°C)がコンプレッサ 222の軸方向の開口部から取り入れられて圧縮され、 119 °Cまで昇温される。そして、コンプレッサ通気孔 221cからコンプレッサ 222外部に吐 出される。また、冷媒用空気 (一 47°C)が膨張タービン 232の通気孔 231aから取り入 れられて膨張タービン 232において断熱膨張されて 80°Cまで冷却される。そして、 断熱膨張されて 80°Cまで冷却された冷媒用空気は膨張タービン 232の軸方向開 口部から膨張タービン 232外部に吐出される。
[0034] コンプレッサ 222および膨張タービン 232において冷媒用空気の圧縮および断熱 膨張が行われる際、圧縮された冷媒用空気および断熱膨張された冷媒用空気がそ れぞれモータ 240内に流入しないように、モータ 240とコンプレッサ 222および膨張タ 一ビン 232間はラビリンス部 A242およびラビリンス部 B243でシールドされている。
[0035] し力し、モータ 240外部からラビリンス部 A242およびラビリンス部 B243を通してモ ータ 240内部に冷媒用空気が漏入することがあり、このとき、冷媒用空気に混入して モータ 240内部に異物が入り込む。モータ 240内に異物が混入すると、この異物が、 主軸 244、ラジアル磁気軸受 245a、 245b, 245c, 245dおよびアキシャル磁気軸受 247a, 247b, 247c, 247dに付着し、モータ 240の動作不良または故障の要因とな る。
[0036] 本実施の形態においては、モータケ一シング 241に吸気孔 241a、 241b, 241d力 S 備えられている。吸気孔 241a、 241b, 241dはそれぞれラジアル磁気軸受 245a、 2 45b、 245c, 245dおよびアキシャル磁気軸受 247a、 247b, 247c, 247d近傍に配 設される。吸気孔 241a、 241bは、それぞれ配管によりコンプレッサ入口配管 221に 配設されている通気孔 221a、 221bと接続される。これ〖こより、モータ 240の主軸 244 、ラジアル磁気軸受 245a、 245b, 245c, 245dおよびアキシャル磁気軸受 247a、 2 47b、 247c, 247d近傍に混入してきた異物は、コンプレッサ 222とモータ 240内部と の間に形成された負圧の圧力差により、コンプレッサ 222へと排出される。本実施の 形態においては、モータ内部がモータ外部に比べて負圧となるため、ラジアル磁気 軸受 245a、 245b, 245c, 245dおよびアキシャル磁気軸受 247a、 247b, 247c, 2 47d近傍に混入してきた異物がモータ外部に素早く排出される。
[0037] 本実施の形態では、コンプレッサ 222、モータ 240および膨張タービン 232から構 成される空気冷媒式冷却装置 210のモータ 240に、ラジアル磁気軸受 245a、 245b 、 245c, 245dおよびアキシャル磁気軸受 247a、 247b, 247c, 247dを適用する。 また、モータ 240外部力 ラビリンス部 A242およびラビリンス部 B243を通してモータ 内部に混入してくる異物を除去するために、モータ内部とコンプレッサ 222および膨 張タービン 232間に圧力差を生成する。
[0038] これにより、高速回転にも係わらず、主軸および軸受けの部品寿命が伸ばされる他 、ベアリング交換等が無くなり、モータとしての信頼性が向上する。また、モータ内部 に混入する異物の除去がなされるため、さらにモータとしての信頼性を向上させてい る。よって、高効率で信頼性の高い空気冷媒式冷却装置 210を実現させることができ る。
本発明における空気冷媒式冷却装置は、系の温度'圧力レベルを変えて冷凍、冷 蔵、空調冷房に適用することができるため、冷凍装置、冷蔵装置、空調冷房装置をも 包括する。なお、本実施の形態においては冷凍の場合についてのみ説明した力 系 の温度'圧力レベルを変えて冷蔵、空調冷房の場合についても同様に適用すること が出来る。
[0039] (実施の形態 2)
図 4に、本発明の実施の形態 2に係わる空気冷媒式冷却装置 310の概略構成の断 面を示す。本実施の形態の空気冷媒式冷却装置 310の基本構成は実施の形態 1の 空気冷媒式冷却装置 210と同じである力 更に、空気冷媒式冷却装置 310のラジア ル磁気軸受 345a、 345b, 345c, 345dおよびアキシャル磁気軸受 347a、 347b, 3 47c, 347d近傍に設置されて、実動作中に主軸 344とそれぞれの磁気軸受間との 距離を検知するラジアルセンサ 349c、 349dおよびアキシャルセンサ 349a、 349bを 備えている。
[0040] 本実施の形態の空気冷媒式冷却装置 310は、モータ 340と、コンプレッサ 322およ び膨張タービン 332を備えている。コンプレッサ 322は、モータ 340の軸方向の一端 に接続され、モータ 340力も伸びている主軸 344に取り付けられている。コンプレッサ 322の吸気側にはコンプレッサ入口配管 321が接続されている。膨張タービン 332 は、モータ 340の軸方向のコンプレッサ 320とは反対側のもう一端に接続され、モー タ 340から伸びている主軸 344に取り付けられている。膨張タービン 332の吸気側に は冷媒空気を取り入れるための通気孔 331aが設けられている。膨張タービン 332の 排気側は膨張タービン出口配管 331に接続されて!、る。
[0041] モータ 340は、コンプレッサ 322および膨張タービン 332の中央に位置し、モータ ケーシング 341に挿入されている回転駆動部である主軸 344、主軸 344を駆動させ るステータ 348、主軸 344をラジアル方向に支持するラジアル磁気軸受 345a、 345b 、 345c, 345d、主軸 344に垂直に接続されたロータディスク 346、そしてロータディ スク 346を介して主軸 344をアキシャル方向に支持するアキシャル磁気軸受 347a、 347b, 347c, 347dを備えている。
[0042] 次に、本実施の形態の空気冷媒式冷却装置 310の動作原理を説明する。
[0043] 本実施の形態の空気冷媒式冷却装置 310は、高速回転することにより高効率を目 的とするものであり、実動作時には高い信頼性が求められる。
[0044] まず、モータ 340のモータケ一シング 341に挿入されて!、る主軸 344と、ステータ 3 48の周囲に形成されて 、る図示せぬコイルとの間にお 、て、電磁力により主軸に対 する回転駆動力が発生する。この回転駆動力によりモータ 340の主軸 344がステー タ 348に対して回転する。実動作時に主軸 344は、ラジアル磁気軸受 345a、 345b, 345c, 345dおよびアキシャル磁気軸受 347a、 347b, 347c, 347dにより、ラジアル 方向およびアキシャル方向にそれぞれの磁気軸受力 一定距離を保ったまま空間中 に保持される。
[0045] 本実施の形態においては既述したように、高速回転させるモータ 340の実動作時 の信頼性を向上させる目的で磁気浮上している上記主軸 344のラジアル磁気軸受 3 45a、 345b, 345c, 345dおよびアキシャル磁気軸受 347a、 347b, 347c, 347d力 らの距離を一定に保っためにラジアル磁気軸受 345a、 345b, 345c, 345dおよび アキシャル磁気軸受 347a、 347b, 347c, 347d近傍にラジアルセンサ 349c、 349d およびアキシャルセンサ 349a、 349bが配設されている。ラジアルセンサ 349c、 349 dおよびアキシャルセンサ 349a、 349bにより、実動作時の主軸 344のラジアルおよ びアキシャル方向の位置情報がモニタされる。取得された主軸 344の位置情報は、 図示せぬ演算装置に入力される。演算装置では、入力された主軸 344の位置情報 に基づいて、主軸 344を現在の位置力 規定位置に戻すためには、ラジアル磁気軸 受 345a、 345b, 345c, 345dおよびアキシャル磁気軸受 347a、 347b, 347c, 34 7dの制御により主軸 344の位置をどの程度変化させればよいのかがリアルタイムで 演算される。図示せぬ演算装置で演算された電流の変化量の情報は、図示せぬ制 御装置に入力される。そして、図示せぬ制御装置により主軸 344のラジアルおよびァ キシャル方向の位置情報に基づ!、てそれぞれの磁気軸受けを流れる電流量が制御 されて、主軸 344が規定位置に安定的に保持される。
[0046] モータ 340の実動作時には、主軸 344の回転によりモータ 340内部に熱が発生す る。このモータ 340内部で発生した熱を排熱する目的で、モータケ一シング 341には 、冷却空気入口 370aおよび冷却空気出口 370bが配設されている。そしてモータ 34 0実動作時には、空気冷媒式冷却装置 310外部に設置されているファン 360からフィ ルタ350を介して冷却空気(13011111^、 40°C)が冷却空気入口 370aからモータ 3 40内部へ送り込まれる。モータ 340内部の取り入れられてモータ駆動部である主軸 3 44およびステータ 348を冷却した冷却空気は、冷却空気出口 370bからモータケ一 シング 341外部に排出される。
[0047] 本実施の形態の空気冷媒式冷却装置 310においては、実施の形態 1における空 気冷媒式冷却装置 210と同様にモータ 340外部力もラビリンス部 A342およびラビリ ンス部 B343を通してモータ 340内部に混入してくる異物を除去するために、モータ 内部とコンプレッサ 322および膨張タービン 332間に圧力差を作る必要がある。さら に、本実施の形態においては、ラジアル磁気軸受 345a、 345b, 345c, 345dおよ びアキシャル磁気軸受 347a、 347b, 347c, 347d近傍に配置されているラジアルセ ンサ 349c、 349dおよびアキシャルセンサ 349a、 349bを保証された温度環境に保 持する必要がある。
[0048] 本実施の形態においては、実施の形態 1と同様、冷媒用空気 (一 173mmAq、 35 °C)がコンプレッサ 322の軸方向の開口部から取り入れられてコンプレッサ 322にお いて圧縮されて 119°Cまで昇温される。そして、コンプレッサ通気孔 321cからコンプ レッサ 322外部に排出される。また、冷媒用空気 (一 47°C)が膨張タービン 332にお いて断熱膨張されて 80°Cまで冷却される。そして、断熱膨張されて 80°Cまで冷却 された冷媒用空気は膨張タービン 332の軸方向開口部力も外部に排出される。コン プレッサ 322および膨張タービン 332において冷媒用空気の圧縮および断熱膨張 が行われる際、圧縮された冷媒用空気および断熱膨張された冷媒用空気がそれぞ れモータ 340内に流入しないように、モータ 340とコンプレッサ 322および膨張タービ ン 332間はラビリンス部 A342およびラビリンス部 B343でシールドされて!/、る。しかし 、モータ 340外部からラビリンス部 A342およびラビリンス部 B343を通してモータ 340 内部に冷媒用空気が漏入することがある。このとき、ラジアルセンサ 349c、 349dおよ びアキシャルセンサ 349a、 349bに高温または低温の冷媒用空気が影響を及ぼす 可能性がある。
[0049] 本実施の形態においては、上記異物の除去と、ラジアルセンサ 349c、 349dおよび アキシャルセンサ 349a、 349bの駆動温度環境を保持することを目的として、モータ ケーシング 341に吸気孔 341a、 341b, 341c, 341dが備えられている。吸気孔 341 a、 341b, 341c, 341dはそれぞれラジアル磁気軸受 345a、 345b, 345c, 345dお よびアキシャル磁気軸受 347a、 347b, 347c, 347d近傍に配設される。吸気孔 341 c、 341dは、それぞれ配管によりフィルタ 350を介してファン 360と接続される。これ により、モータ 340の主軸 344、ラジアル磁気軸受 345a、 345b, 345c, 345dおよ びアキシャル磁気軸受 347a、 347b, 347c, 347d近傍に混入してきた異物は、モ 一ターケーシング 341外部とモーターケーシング 341内部との間に形成された圧力 差により、吸気孔 341a、 341bよりモーターケーシング 341外部へと排出される。本 実施の形態においては、吸排気孔 341a、 341b, 341c, 341dがそれぞれラジアル 磁気軸受 345a、 345b, 345c, 345dおよびアキシャル磁気軸受 347a、 347b, 347 c、 347d近傍に配設されていることにより、さらに、それぞれの軸受け近傍に配置さ れているラジアルセンサ 349c、 349dおよびアキシャルセンサ 349a、 349bにラビリン ス部 A342およびラビリンス部 Bからリークしてくる高温および低温の冷媒用空気が滞 留するのが防止される。
[0050] 本実施の形態においては、上記したように正圧のファン 360にて強制的にセンサ近 傍の冷媒用空気をモータケ一シング外部に排出するほか、コンプレッサや吸引ファン などでセンサ近傍部へ負圧をかけることにより、センサ近傍部の空間とモータケーシ ング外部との間に圧力差を生成して、ラビリンス部 A342およびラビリンス部 Bからリー クしてくる高温および低温の冷媒用空気がセンサ近傍に滞留するのを防止するよう にしても良い。コンプレッサ等により負圧がかけられた場合には,モータ内部に混入 してくる異物は素早くモータ外部に排出され、ファン等により正圧がかけられた場合 には、ラビリンス部を通ってセンサ近傍に流れ込んでくる高温および低温の冷媒空気 が遮断される利点がある。
[0051] 本実施の形態では、モータ 340外部からラビリンス部 A342およびラビリンス部 B34 3を通してモータ内部に混入してくる異物を除去するために、モータ内部とモータ外 部との間に圧力差を作る。本実施の形態においては、さらに、ラビリンス部 A342およ びラビリンス部 B力 リークしてくる高温および低温の冷媒用空気がセンサ近傍に滞 留するのを防止するために、強制的に外部ファン等で正圧または負圧をセンサ近傍 のモータケ一シング 341内の空間に負荷して高温および低温の冷媒用空気をモータ ケーシング 341外部に排出する。これにより、モータ 340の高速回転を保持し、高効 率で実施の形態 1よりもさらに信頼性の高い空気冷媒冷却装置 310を実現させること ができる。
[0052] (実施の形態 3)
図 2に、本実施の形態 3に係わる空気冷媒冷熱システム 100の概略図を示す。
[0053] 本実施の形態に係わる空気冷媒冷熱システム 100は、実施の形態 1または 2の空 気冷媒式冷却装置 210、 310、第 1熱交換器 120、第 2熱交換器 130、冷却庫 140、 およびフィルタ 150とファン 160を備えている。
[0054] 本実施の形態における冷媒は空気であり、従来使用されてきたオゾン冷媒による環 境破壊の懸念は一掃される。
[0055] 本実施の形態において、空気冷媒式冷却装置 210、 310のコンプレッサの出口に 第 1熱交換器 120の入口が配管により接続される。第 1熱交換器 120の出口に第 2熱 交換器 130の入口が配管により接続される。第 2熱交換器 130の出口は、配管により 空気冷媒式冷却装置 210、 310の膨張タービンの入口に接続される。空気冷媒式冷 却装置 210、 310の膨張タービンの出口は、配管により冷却庫 140の冷媒空気入口 に接続される。そして、冷却庫 140の空気冷媒出口は、配管により第 2熱交換器 130 を介して空気冷媒式冷却装置 210、 310のコンプレッサ入口に接続される。また、空 気冷媒式冷却装置 210、 310のモータ内部の冷却のため、モータケ一シングに設け られた吸気孔にフィルタ 150を介してファン 160が接続される。
[0056] 次に、本実施の形態に係わる空気冷媒冷熱システム 100の動作原理について説 明する。本実施の形態の空気冷媒冷熱システム 100は、空気を冷媒とした循環型シ ステムであり、その循環ループに冷却庫 140を^ aみ込むことにより、冷媒の空気を冷 却庫 140内に直接送り込む。ここで、冷却庫は、冷凍庫、冷蔵庫等を含むものである 冷却庫 140は、例えば、製品を低温に保存する以外にも、半密閉式で、空気冷媒 式冷却装置 210、 310により冷却された空間を食品等がベルトコンベアにより通過す ることで冷凍食品とされる例に本発明を適用することも可能である。さらに、医薬品の 製造過程において冷凍する医薬品反応装置にも使用可能である。
[0057] まず、空気冷媒式冷却装置 210、 310のコンプレッサ入口に送り込まれた 35°C (圧 力; 173mmAq)の冷媒空気は、コンプレッサにより圧縮されて 119°Cの空気冷媒と してコンプレッサ出口より排出される。排出された 119°Cの空気冷媒は第 1熱交 120に送られて、第 1熱交^^ 120で 43°Cにまで冷却される。さらに、 43°Cにまで冷 却された空気冷媒は、第 2熱交換器 130に送られて熱交換され、 - 47°C近傍にまで 冷却される。この 47°Cにまで冷却された空気冷媒は、空気冷媒式冷却装置 210、 3 10の膨張タービンの入口に送り込まれ、ここで断熱膨張されて 80°Cにまで冷却さ れる。この - 80°Cにまで冷却された冷媒空気は冷却庫 140に送られて、直接冷却庫 140内に保存されている製品を冷却する。本実施の形態においては、冷却庫 140内 の温度はおおよそ 55°C近傍に保たれて 、る。冷却庫 140から排出された 55°Cの 冷媒空気は、第 2熱交換器 130に送られ、第 1熱交換器 120から送られてきた空気 冷媒と熱交換されることにより、第 1熱交換器 120から送られてきた空気冷媒を- 47 °Cにまで冷却する。そして、第 2熱交 30で熱交換をし、 35°Cまで昇温した冷却 庫 140からの冷媒空気は、再度空気冷媒式冷却装置 210、 310のコンプレッサ入口 に送り込まれることにより冷媒空気の循環システムが成立する。また、ファン 160から フィルタ 150を介してモータ内部を冷却するための冷却空気がモータ内部に送り込ま れる。そして、モータ内部を冷却した後、冷却空気はモータ内部から大気に開放され る。
[0058] 本実施の形態においては、冷媒に空気を使用することにより、従来のフロン等の冷 媒に比べて環境汚染の心配が無い。また、実施の形態 1または 2に示される空気冷 媒式冷却装置 210、 310を使用することにより、最小限の熱交換器を備えるのみで冷 却庫 140内を所望の温度に冷却することができる高効率且つ、信頼性の高い空気冷 媒冷熱システム 100を提供することができる。
[0059] また、本実施の形態にお!ヽては本質的に構成がシンプルであるため、全体の設備 費が低減される他、低温の冷媒空気を直接冷却庫 140内に送り込むため、ユニットク ーラおよび倉庫内の冷媒配管が不要となる。このため、建設費用の大幅な削減が実 現される。
[0060] さらに、空気冷媒式冷却装置 210、 310においては、磁気軸受けが採用されること により、機械式の軸受けに必要であった軸受けの点検、軸およびボールベアリングの 交換、機械的軸受けに必要とされる潤滑油の交換費等、メンテナンス費用の大幅な 削減が実現される。
[0061] (実施の形態 4)
図 5に、本実施の形態 4に係わる空気冷媒冷熱システム 400の概略図を示す。
[0062] 本実施の形態の空気冷媒冷熱システム 400の基本構成は、実施の形態 3における 空気冷媒冷熱システム 100と同様である。但し、構成要件である空気冷媒式冷却装 置 210、 310のモータ冷却のための構成に差異がある。
[0063] 本実施の形態に係わる空気冷媒冷熱システム 400は、実施の形態 1または 2の空 気冷媒式冷却装置 210、 310、第 1熱交換器 420、第 2熱交換器 430、冷却庫 440、 および空気冷媒式冷却装置 210、 310のモータを冷却するためのラジェータ 450を 備えている。
[0064] 本実施の形態の構成および動作原理については、実施の形態 3における空気冷 媒冷熱システム 100と同様であるため、ここでは説明を省略する。
[0065] 本実施の形態においては、空気冷媒式冷却装置 210、 310の外部にラジェータ 4 50が配置されている。ラジェータ 450の入口および出口は、モータケ一シングに配 設されて!/ヽる上記入口および出口のそれぞれに対応する吸気孔に接続されて!ヽる。
[0066] そして、空気冷媒冷熱システム 400の駆動中には、同時にラジェータ 450が駆動さ れて空気冷媒式冷却装置 210、 310のモータ内部の空気が循環される。また、ラジ エータ 450により、モータ内部力も排出される 40°Cの冷却空気は 30°Cにまで冷却さ れる。
[0067] 本実施の形態においては、実施の形態 3と同様の効果を備えると共に、空気冷媒 式冷却装置 210、 310のモータの冷却効率が上がることにより、実施の形態 3の空気 冷媒冷熱システム 100に比べてさらに信頼性の高い空気冷媒冷熱システム 400を提 供することができる。
[0068] (実施の形態 5)
図 6に、本実施の形態 5に係わる空気冷媒冷熱システム 500の概略図を示す。
[0069] 本実施の形態の空気冷媒冷熱システム 500の基本構成は、実施の形態 3および 4 における空気冷媒冷熱システム 100および 400と同様である。但し、構成要件である 空気冷媒式冷却装置 210、 310のモータ冷却のための構成に差異がある。
[0070] 本実施の形態に係わる空気冷媒冷熱システム 500は、実施の形態 1または 2の空 気冷媒式冷却装置 210、 310、第 1熱交換器 520、第 2熱交換器 530、および冷却 庫 540を備えている。
[0071] 本実施の形態の構成および動作原理については、実施の形態 3における空気冷 媒冷熱システム 100と同様であるため、ここでは説明を省略する。
[0072] 本実施の形態においては、第 2熱交換器 530の出口に接続された配管が分岐して 、一方が空気冷媒式冷却装置 210、 310の膨張タービン入口に、もう一方がモータ ケーシングに配設されている吸気孔に接続されている。また、空気冷媒式冷却装置 2 10、 310のモータケ一シングに配設されている吸気孔と、空気冷媒式冷却装置 210 、 310のコンプレッサ入口とが配管により接続されている。
[0073] これにより、空気冷媒冷熱システム 500の駆動中には、常に第 2熱交換器 530の出 ロカ 排出される 47°Cの冷媒空気の一部が空気冷媒式冷却装置 210、 310のモ ータ内部に送られて、モータ内部の冷却が行われる。また、冷却後の冷媒空気は、 4 0°C程になってモータ内から排出されて、再度空気冷媒式冷却装置 210、 310のコ ンプレッサの入口へ送られる。これにより、本実施の形態においては、冷媒空気が冷 却庫 540内の温度を低温に維持すると同時に、空気冷媒式冷却装置 210、 310の モータ内部の冷却を行う。
[0074] 本実施の形態においては、実施の形態 3および 4と同様の効果を備えると共に、循 環型の冷媒空気を使用して空気冷媒式冷却装置 210、 310のモータの内部冷却を 効率良く行うことが出来る。これにより、実施の形態 3および 4の空気冷媒冷熱システ ム 100、 400に比べてさらに安価な設備費で、信頼性の高い空気冷媒冷熱システム 500を提供することができる。
[0075] (実施の形態 6)
図 7に、本実施の形態 6に係わるレフコンテナ 600 (リーファーコンテナ)の概略図を 示す。
[0076] 本実施の形態のレフコンテナ 600の基本構成は、実施の形態 4における空気冷媒 冷熱システム 400と同様である。但し、システム全体が可搬となるように構成されてい る。
[0077] 本実施の形態に係わるレフコンテナ 600は、実施の形態 1または 2の空気冷媒式冷 却装置 210、 310、第 1熱交^^ 620、第 2熱交^^ 630、コンテナボックス 640、お よび空気冷媒式冷却装置 210、 310のモータを冷却するためのラジェータ 650を備 えている。
[0078] 本実施の形態の構成および動作原理については、実施の形態 3、 4における空気 冷媒冷熱システム 100、 400と同様であるため、ここでは説明を省略する。
[0079] 本実施の形態においては、空気冷媒式冷却装置 210、 310の外部にラジェータ 6 50が配置されている。ラジェータ 650の入口および出口は、モータケ一シングに配 設されて!/ヽる上記入口および出口のそれぞれに対応する吸気孔に接続されて!ヽる。 そして、レフコンテナ 600の駆動中には、同時にラジェータ 650が駆動されて空気冷 媒式冷却装置 210、 310のモータ内部の空気が循環される。また、ラジェータ 650に より、モータ内部から排出される 40°Cの冷却空気は 30°Cにまで冷却される。
[0080] さらに、本実施の形態においては、構成要件である空気冷媒式冷却装置 210、 31 0、第 1熱交換器 620、第 2熱交換器 630、コンテナボックス 640、およびラジェータ 6 50全てが可搬式として構成されており、このシステム全体を車、船舶、鉄道等に積載 して、コンテナボックス 640内にて製品を冷凍保存しながら運搬することができる。
[0081] 本実施の形態においては、システム全体を可搬式とすることにより、今後需要が増 えると予想される冷凍運搬に、信頼性の高!ヽ空気冷媒冷熱システムを提供すること ができる。なお、本実施の形態においては冷凍の場合についてのみ説明した力 他 の実施例と同様に系の温度'圧力レベルを変えて冷蔵、空調冷房の場合についても 適用することが出来る。
[0082] (実施の形態 7)
図 8に、本実施の形態 3に係わる空気冷媒冷熱システム 700の概略図を示す。本 実施の形態に係わる空気冷媒冷熱システム 700は、空気冷媒式冷却装置 410、第 1 熱交換器 720、第 2熱交換器 730及び冷却庫 740を備えている。空気冷媒式冷却装 置 410は、コンプレッサ 422と膨張タービン 432とを備えている。
[0083] 空気冷媒式冷却装置 410のコンプレッサ 422の出口に第 1熱交換器 720の入口が 配管により接続される。第 1熱交換器 720の出口に第 2熱交換器 730の入口が配管 により接続される。第 2熱交換器 730の出口は、配管により空気冷媒式冷却装置 410 の膨張タービン 432の入口に接続される。空気冷媒式冷却装置 410の膨張タービン 432の出口は、配管により冷却庫 740の冷媒空気入口に接続される。そして、冷却 庫 740の空気冷媒出口は、配管により第 2熱交換器 730を介して空気冷媒式冷却装 置 410のコンプレッサ 422入口に接続される。また、空気冷媒式冷却装置 410のモ ータ 440内部の冷却のため、モータケ一シングに設けられた吸気孔にフィルタを介し てファンが接続される。 [0084] 本実施の形態において、空気冷媒冷熱システム 700は、第 2熱交換器 730と膨張 タービン 432とを結合する配管力 分岐して力 空気冷媒を引き出しモータ 440のコ ンプレッサ 422側の磁気軸受が配置されている空間に供給する配管 750を備えてい る。空気冷媒冷熱システム 700はさらに、モータ 440のコンプレッサ 422側の磁気軸 受が配置されている空間から空気冷媒を引き出しモータ 440の膨張タービン 432側 の磁気軸受が配置されて ヽる空間に供給する配管 760を備えて ヽる。空気冷媒冷熱 システム 700はさらに、モータ 400の膨張タービン 432側の磁気軸受が配置されてい る空間力も空気冷媒を引き出して膨張タービン 432と冷却庫 740とを結合する配管 に供給する配管 770を備えて 、る。
[0085] 図 9に、本発明の実施の形態 9に係わる空気冷媒式冷却装置 410の概略構成の断 面を示す。本実施の形態の空気冷媒式冷却装置 410は、モータ 440、コンプレッサ 4 22および膨張タービン 432を備えている。モータ 440は、回転数が 21000rpm程度 の同期モータである。コンプレッサ 422は、モータ 440の軸方向の一端に接続され、 モータ 440から伸びている主軸 444に取り付けられる。コンプレッサ 422の入口側は コンプレッサ入口配管 421に接続されて 、る。
[0086] 膨張タービン 432は、モータ 440の軸方向のコンプレッサ 422とは反対側のもう一 端に接続され、モータ 440から伸びている主軸 444に取り付けられる。膨張タービン 432の出口側は、膨張タービン出口配管 431に接続されている。モータ 440は、コン プレッサ 422および膨張タービン 432の中央に位置し、モータケ一シング 441に挿入 されて 、る回転駆動部である主軸 444、主軸 444を駆動させるステータ 448を備えて いる。
[0087] モータ 440は更に、主軸 444のラジアル荷重をコンプレッサ 422側で支持するラジ ァノレ磁気軸受 445a、 445cを備えて!/ヽる。ラジアノレ磁気軸受 445a、 445c【こ対してス テータ 448が設けられている空間と反対の方向には、第 1の磁気軸受室 451が設け られている。第 1の磁気軸受室 451は、ラビリンス部 A442によりコンプレッサ 422力 S 設けられた空間と仕切られている。ラビリンス部 A442は、コンプレッサ 422により圧縮 された冷媒空気がモータ 440に流入することを防止している。第 1の磁気軸受室 451 には、主軸 444に結合されたロータディスク 446と、ロータディスク 446を介して主軸 4 44のアキシャル荷重を支持するアキシャル磁気軸受 447a、 447bとが配置されて!ヽ る。
[0088] モータ 440は更に、主軸 444のラジアル荷重を膨張タービン 432側で支持するラジ ァノレ磁気軸受 445b、 445dを備えて!/ヽる。ラジアノレ磁気軸受 445b、 445d【こ対して ステータ 448が設けられて 、る空間と反対の方向には、第 2の磁気軸受室 452が設 けられている。第 2の磁気軸受室 452は、ラビリンス部 B443により膨張タービン 432 が設けられた空間と仕切られている。ラビリンス部 B443は、膨張タービン 432におい て断熱膨張した冷媒空気がモータ 440に流入することを防止している。
[0089] 第 1の磁気軸受室 451には、主軸 444とラジアル磁気軸受 445a、 445cとの間の距 離を検知するラジアルセンサ 449cが設置されている。第 1の磁気軸受室 451には更 に、ロータディスク 451と第 1磁気軸受室 451の壁面とのアキシャル方向の距離を検 知するアキシャルセンサ 449a、 449bが設置されて!、る。
第 2の磁気軸受室 452には、主軸 444とラジアノレ磁気軸受 445b、 445dとの間の距 離を検知するラジアルセンサ 449dが設置されて!、る。
[0090] ラジアルセンサ 449c、アキシャルセンサ 449a、 449bが配置されている第 1の磁気 軸受室 451には、配管 750の一端が接続され開口している。図 9には図示されてい ないが、配管 750の他端は第 2熱交翻730と膨張タービン 432とを接続する配管 に接続している。第 1の磁気軸受室 451の、配管 750が接続されている位置力も離 れた位置には排気口 441aが設けられている。排気口 441aには配管 760の一端が 接続されている。
配管 760の他端は、第 2の磁気軸受室 452に設けられた吸気口 441bに接続され ている。第 2の磁気軸受室 452の、配管 760が接続されている位置力も離れた位置 には、排気口 441dがもうけられている。排気口 441dには、配管 770の一端が接続さ れ開口している。配管 770の他端は膨張タービン出口配管 431に接続され開口して いる。
[0091] 次に、本実施の形態の空気冷媒式冷却装置 700の動作原理を説明する。
[0092] モータ 440が駆動される。コンプレッサ 422と膨張タービン 432とが回転する。
[0093] モータ 440のモータケ一シング 441に挿入されて!、る主軸 444と、ステータ 448の 周囲に形成されている図示せぬコイルとの間において、電磁力により主軸に対する 回転駆動力が発生する。この回転駆動力によりモータ 440の主軸 444がステータ 44 8【こ対して回転する。実動作時【こ主軸 444ίま、ラジアノレ磁気軸受 445a、 445b, 445 c、 445dおよびアキシャル磁気軸受 447a、 447b, 447c, 447dにより、ラジアル方 向およびアキシャル方向にそれぞれの磁気軸受力 一定距離を保ったまま空間中に 保持される。
[0094] ラジアルセンサ 449c、 449dおよびアキシャルセンサ 449a、 449bにより、実動作時 の主軸 444のラジアルおよびアキシャル方向の位置情報がモニタされる。取得された 主軸 444の位置情報は、図示せぬ演算装置に入力される。演算装置では、入力され た主軸 444の位置情報に基づ 、て、主軸 444を現在の位置から規定位置に戻すた めには、ラジアル磁気軸受 445a、 445b, 445c, 445dおよびアキシャル磁気軸受 4 47a, 447b, 447c, 447dの帘 lj御により主軸 444の位置をどの程度変ィ匕させればよ V、のかがリアルタイムで演算される。図示せぬ演算装置で演算された電流の変化量 の情報は、図示せぬ制御装置に入力される。そして、図示せぬ制御装置により主軸 444のラジアルおよびアキシャル方向の位置情報に基づ 、てそれぞれの磁気軸受 けを流れる電流量が制御されて、主軸 444が規定位置に安定的に保持される。
[0095] モータ 440の実動作時には、主軸 444の回転によりモータ 440内部に熱が発生す る。このモータ 440内部で発生した熱を排熱する目的で、モータケ一シング 441には 、冷却空気入口 470aおよび冷却空気出口 470bが配設されている。そしてモータ 44 0実動作時には、空気冷媒式冷却装置 410外部に設置されているファン 460からフィ ルタ 450を介して冷却空気(130mmAq、 40°C)が冷却空気入口 470aからモータ 4 40内部へ送り込まれる。モータ 440内部に取り入れられてモータ駆動部である主軸 4 44およびステータ 448を冷却した冷却空気は、冷却空気出口 470bから空気冷媒式 冷却装置 410外部に排出される。
[0096] コンプレッサ 422入口に送り込まれた 35°C (圧力; 173mmAq)の冷媒空気は、コ ンプレッサ 422により圧縮されて 119°Cの空気冷媒としてコンプレッサ 422出口より排 出される。排出された 119°Cの空気冷媒は第 1熱交 720に送られて、第 1熱交 720で 43°Cにまで冷却される。さらに、 43°Cにまで冷却された空気冷媒は、第 2 熱交換器 730に送られて熱交換され、 47°C近傍にまで冷却される。この 47°Cに まで冷却された空気冷媒は、空気冷媒式冷却装置 410の膨張タービンの通気孔 43 laに送り込まれ、ここで断熱膨張されて— 80°Cにまで冷却される。この— 80°Cにまで 冷却された冷媒空気は冷却庫 740に送られて、直接冷却庫 740内に保存されている 製品を冷却する。本実施の形態においては、冷却庫 740内の温度はおおよそ 55 °C近傍に保たれている。冷却庫 740から排出された - 55°Cの冷媒空気は、第 2熱交 730に送られ、第 1熱交換器 720から送られてきた空気冷媒と熱交換されること により、第 1熱交換器 720から送られてきた空気冷媒を- 47°Cにまで冷却する。そし て、第 2熱交換器 730で熱交換をし、 35°Cまで昇温した冷却庫 740からの冷媒空気 は、再度空気冷媒式冷却装置 410のコンプレッサ入口に送り込まれることにより冷媒 空気の循環システムが成立する。
[0097] 定常運転時、第 1の磁気軸受室 451の圧力は第 2熱交換器 730と膨張タービン 43 2とを結合する配管の内部の圧力よりも低い。そのため、第 2熱交 730と膨張タ 一ビン 432とを結合する配管の内部の空気冷媒の一部は配管 750に引き出されて 第 1の磁気軸受室 451に供給される。第 1の磁気軸受室 451に供給された冷媒空気 は、 47°C程度の低温であり、低温であるために含まれる水分は少ない。第 1の磁気 軸受室 451の内部は、供給された空気冷媒により冷却される。
[0098] 第 1の磁気軸受室 451の内部が冷却されることにより、ラジアルセンサ 449c、アキ シャルセンサ 449a及びアキシャルセンサ 449bが冷却される。そのため、ラジアルセ ンサ 449c、アキシャルセンサ 449a及びアキシャルセンサ 449bの動作が安定化する 。あるいはラジアルセンサ 449c、アキシャルセンサ 449a又はアキシャルセンサ 449b として、保証された動作温度の範囲がより狭く安価なものを使用することが可能になり コストダウンが達成される。
[0099] 第 1の磁気軸受室 451の圧力は第 2の磁気軸受室 452の圧力よりも高い。そのため 、第 1の磁気軸受室 451の内部の空気は配管 760に引き出される。第 1の磁気軸受 室 451の内部には配管 750から配管 760に向力 空気の流れが発生し、異物が吹き 飛ばされる。
[0100] 第 1の磁気軸受室 451から配管 760に引き出された空気の温度は 40°C程度である 。配管 750により第 1の磁気軸受室 451に供給された低温低水分の空気が昇温され ることにより、配管 760に引き出された空気は非常に湿度が低い。この空気は第 2の 磁気軸受室 452に供給される。
[0101] 第 2の磁気軸受室 452には、ラビリンス部 B443を通って膨張タービン 431の出口 側の空気冷媒がリークすることがある。このリークした冷媒は非常に低温であるため、 第 2の磁気軸受室 452の内部に霜が付着する可能性がある。配管 760から非常に湿 度が低く 40°C程度の空気が供給されることにより、霜の付着が防止される。霜の付着 が防止されることにより、ラジアル磁気軸受 445bにおける軸の回転の安定性が増す 。特に、回転数が 21000rpm程度の高速回転をするモータが用いられる場合、非常 に高い精度で軸受の安定性が求められる。そのため、回転軸に霜が付着することが 防止されることによりウェイトバランスが高精度に維持されることは特に好ましい。さら に、非常に湿度が低い空気が供給されることにより第 2の磁気軸受室 452の内部に 鲭が発生することが抑制され、軸受の安定性、耐久性がさらに向上する。
[0102] 第 2の磁気軸受室 452の内部の圧力は、膨張タービン出口配管 431の内部の圧力 よりも高い。そのため、第 2の磁気軸受室 452の内部の空気は配管 770に引き出され 、膨張タービン出口配管 431に供給される。冷媒空気の循環サイクルの途中から配 管 750により引き出された空気が、配管 770により再び循環サイクルに供給されること により、循環サイクルの動作が安定になる。
[0103] (実施の形態 8)
図 10に、実施の形態 8における空気冷媒冷熱システムの構成を示す。
[0104] 本実施の形態における空気冷媒冷熱システム 800の空気冷媒式冷却装置 810は、 補助コンプレッサ 802、モータ 804、補助冷却器 806、主コンプレッサ 822及び膨張 タービン 832を含んでいる。補助コンプレッサ 802はモータ 804により駆動される。補 助コンプレッサ 802の出口側は配管を介して補助冷却器 806に接続されている。補 助冷却器 806の出口側は配管を介して主コンプレッサ 822に接続されている。主コン プレッサ 822は膨張タービン 832と同軸に接続される。主コンプレッサ 822と膨張タ 一ビン 832とを接続する回転軸を支持する軸受のタイプとしては、ボール軸受、ころ 軸受、磁気軸受などが例示される。 [0105] 主コンプレッサ 822の出口側は配管を介して冷却器 820に接続されている。冷却器 820の出口側は熱交換器 830の高温側通路に接続されている。熱交換器 830の高 温側通路の出口側は膨張タービン 832に接続されている。膨張タービン 832の出口 側は冷却庫 840の空気吹出口 5に接続されている。冷却庫 840は空気取入口 2を備 え、空気取入口 2は配管を介して熱交換器 830の低温側通路に接続されている。熱 交翻 830の低温側通路の出口側は補助コンプレッサ 802に接続されている。
[0106] 膨張タービン 832と冷却庫 840とを結合する配管には配管 870の一端が接続され 開口している。配管 870の他端はコンプレッサ 822と膨張タービン 832との間に配置 されている軸受空間(第 1の軸受室)に接続されている。第 1の軸受室の配管 850が 接続された位置力も離れた位置には配管 860の一端が接続され開口している。配管 860の他端は膨張タービン 832側の図示しない空間(第 2の軸受室)に接続されてい る。第 2の軸受室の配管 860が接続された位置力も離れた位置には配管 870の一端 が接続されて 、る。配管 870の他端は膨張タービン 832と冷却庫 840とを結合する 配管に結合され開口して 、る。
[0107] 次に、本実施の形態の空気冷媒式冷却装置 800の動作原理を説明する。
[0108] モータ 804が駆動され、補助コンプレッサ 802が回転する。主コンプレッサ 822と膨 張タービン 832とが回転する。補助冷却器 806が起動される。冷却器 820が起動さ れる。
[0109] 熱交換器 830の低温側通路の出口から出た冷媒空気が補助コンプレッサ 802によ り圧縮され吐出される。吐出された冷媒空気は補助冷却器 806により冷却される。補 助冷却器 806から出た冷媒空気は主コンプレッサ 822により圧縮され吐出される。主 コンプレッサ 822から吐出された冷媒空気は冷却器 820により冷却される。冷却器 8 20から出た冷媒空気は熱交翻830により更に冷却される。熱交翻830により冷 却された冷媒空気は膨張タービン 832において断熱膨張することにより更に冷却さ れる。膨張タービン 832から出た冷媒空気は空気吹出口 5から冷却庫 840の内部に 供給される。冷却庫 840の内部は冷却される。冷却庫 840の内部の空気は空気取入 口 2から取り入れられ熱交換器 830により昇温される。昇温された冷媒空気は補助コ ンプレッサ 802に供給される。 膨張タービン 832から出た空気冷媒の一部は配管 850に引き出されて第 1の軸受 室に供給される。第 1の軸受室の空気は配管 860に引き出される。第 1の軸受室の内 部には空気の流れが生じ、異物が吹き飛ばされる。第 1の軸受室の空気は配管 860 を介して第 2の軸受室に供給される。第 2の軸受室の内部には膨張タービン 832の 出口側の低温空気カ^ークして霜が付着することがある。配管 860から第 2の軸受室 に供給される空気により霜の付着が防止され、軸受が安定的に動作する。

Claims

請求の範囲
[1] 主軸を保持する第 1および第 2の磁気軸受けを有するモータと、
コンプレッサと、
膨張タービンと
を具備し、
前記コンプレッサは前記主軸に接続され、前記コンプレッサと前記第 1の磁気軸受 けとは第 1のラビリンスにより仕切られ、
前記膨張タービンは前記主軸に接続され、前記膨張タービンと前記第 2の磁気軸 受けとは第 2のラビリンスにより仕切られ、
前記モータ外部からの外圧により、前記第 1および第 2の磁気軸受けの配置される 空間と前記コンプレッサの入口空間および前記膨張タービンの出口空間との間に圧 力差が生成される
空気冷媒式冷却装置。
[2] 請求項 1に記載の空気冷媒式冷却装置にお!、て、
さらに前記主軸の位置を測定するためのセンサを具備し、
前記センサは前記第 1および第 2の磁気軸受け近傍に配置され、
前記モータ外部からの外圧により、前記センサが配置されている空間と前記モータ が備えるケーシングの外部との間に圧力差が生成される
空気冷媒式冷却装置。
[3] 主軸を保持する第 1および第 2の磁気軸受けとを有するモータと、
コンプレッサと、
膨張タービンと
を具備し、
前記コンプレッサは前記主軸に接続され、前記コンプレッサと前記第 1の磁気軸受 けとは第 1のラビリンスにより仕切られ、
前記膨張タービンは前記主軸に接続され、前記膨張タービンと前記第 2の磁気軸 受けとは第 2のラビリンスにより仕切られ、
さらに、前記第 1および第 2の磁気軸受けの配置される空間と前記コンプレッサの入 口空間および前記膨張タービンの出口空間との間に圧力差を生成する手段を備え る
空気冷媒式冷却装置。
[4] 請求項 3に記載の空気冷媒式冷却装置にお 、て、
さらに前記主軸の位置を測定するためのセンサと、
前記センサは前記第 1および第 2の磁気軸受け近傍に配置され、前記センサが配 置されている空間と前記モータが備えるケーシングの外部との間に圧力差を生成す る手段と
を具備する
空気冷媒式冷却装置。
[5] 請求項 1から 4の 、ずれかに記載の空気冷媒式冷却装置と、
第 1熱交換器と、
第 2熱交換器と、
冷却庫と、
フィルタおよびファンと
を具備し、
前記空気冷媒式冷却装置の前記コンプレッサの出口と前記第 1熱交換器の入口と が接続され、前記第 1熱交^^の出口と前記第 2熱交^^の入口とが接続され、前 記第 2熱交換器の出口と前記空気冷媒式冷却装置の前記膨張タービンの入口とが 接続され、前記空気冷媒式冷却装置の前記膨張タービンの出口と前記冷却庫の入 口とが接続され、前記冷却庫の出口は前記第 2熱交換器を介して前記空気冷媒式 冷却装置の前記コンプレッサの入口に接続され、
前記ファンは、前記フィルタを介して前記モータが備えるケーシングの内部に流体 を吹き込む空気冷媒冷熱システム。
[6] 請求項 1から 4の 、ずれかに記載の空気冷媒式冷却装置と、
第 1熱交換器と、
第 2熱交換器と、
冷却庫と、 ラジェータと
を具備し、
前記空気冷媒式冷却装置の前記コンプレッサの出口と前記第 1熱交換器の入口と が接続され、前記第 1熱交^^の出口と前記第 2熱交^^の入口とが接続され、前 記第 2熱交換器の出口と前記空気冷媒式冷却装置の前記膨張タービンの入口とが 接続され、前記空気冷媒式冷却装置の前記膨張タービンの出口と前記冷却庫の入 口とが接続され、前記冷却庫の出口は前記第 2熱交換器を介して前記空気冷媒式 冷却装置の前記コンプレッサの入口に接続され、
前記空気冷媒式冷却装置の外部に前記ラジェータが配置され、前記ラジェータの 入口および出口は前記モータが備えるケーシングに配設されて 、る前記ラジェータ の入口および出口のそれぞれに対応する吸気孔に接続される
空気冷媒冷熱システム。
請求項 1から 4のいずれかに記載の空気冷媒式冷却装置と、
第 1熱交換器と、
第 2熱交換器と、
冷却庫と
を具備し、
前記空気冷媒式冷却装置の前記コンプレッサの出口と前記第 1熱交換器の入口と が接続され、前記第 1熱交^^の出口と前記第 2熱交^^の入口とが接続され、前 記第 2熱交換器の出口と前記空気冷媒式冷却装置の前記膨張タービンの入口とが 接続され、前記空気冷媒式冷却装置の前記膨張タービンの出口と前記冷却庫の入 口とが接続され、前記冷却庫の出口は前記第 2熱交換器を介して前記空気冷媒式 冷却装置の前記コンプレッサの入口に接続され、
前記モータ内部の冷却のため、前記第 2熱交換器の出口に接続された配管が分岐 されて、前記分岐された配管は前記モータが備えるケーシングに配設されている吸 気孔に接続され、前記ケーシングに配設されている他の吸気孔と前記空気冷媒式冷 却装置の前記コンプレッサの入口とが接続される
空気冷媒冷熱システム。 [8] 請求項 1から 4の 、ずれかに記載の空気冷媒式冷却装置と、
第 1熱交換器と、
第 2熱交換器と、
コンテナボックスと、
ラジェータと
を具備し、
前記空気冷媒式冷却装置の前記コンプレッサの出口と前記第 1熱交換器の入口と が接続され、前記第 1熱交^^の出口と前記第 2熱交^^の入口とが接続され、前 記第 2熱交換器の出口と前記空気冷媒式冷却装置の前記膨張タービンの入口とが 接続され、前記空気冷媒式冷却装置の前記膨張タービンの出口と前記コンテナボッ タスの入口とが接続され、前記コンテナボックスの出口は前記第 2熱交 を介して 前記空気冷媒式冷却装置の前記コンプレッサの入口に接続され、
前記空気冷媒式冷却装置の前記モータ内部の冷却のため、前記空気冷媒式冷却 装置の外部に前記ラジェータが配置され、前記ラジェ一タの入口および出口は前記 モータが備えるケーシングに配設されて 、る前記ラジェ一タの入口および出口のそ れぞれに対応する吸気孔に接続され、
さらに、請求項 1から 4のいずれかに記載の空気冷媒式冷却装置と、第 1熱交換器 と、第 2熱交^^と、コンテナボックスと、ラジェ一タとは可搬式に構成される リーファーコンテナ。
[9] 主軸を保持する第 1の軸受けと、
圧縮機構と、
膨張タービンと、
第 1熱交換器と、
第 2熱交^^と
を具備し、
前記空気冷媒式冷却装置の前記圧縮機構の出口と前記第 1熱交換器の入口とが 接続され、前記第 1熱交^^の出口と前記第 2熱交^^の入口とが接続され、前記 第 2熱交換器の出口と前記空気冷媒式冷却装置の前記膨張タービンの入口とが接 続され、前記空気冷媒式冷却装置の前記膨張タービンの出口と前記冷却庫の入口 とが接続され、前記冷却庫の出口は前記第 2熱交換器を介して前記圧縮機構の入 口に接続され、
前記圧縮機構が備えるコンプレッサは前記主軸に接続され、前記コンプレッサと前 記第 1の軸受けとは第 1のラビリンスにより仕切られ、
前記膨張タービンは前記主軸に接続され、
さらに、前記コンプレッサの出口と前記冷却庫の入口との間から引き出された冷媒 を前記第 1の軸受けの配置される空間に導入する第 1配管を具備する
空気冷媒冷熱システム。
[10] 請求項 9に記載の空気冷媒冷熱システムにおいて、
さらに、前記コンプレッサよりも前記膨張タービンに近い位置で前記主軸を支持す る第 2の軸受けと、
前記冷媒を前記第 1の軸受けの配置される空間から前記第 2の軸受けの配置され る空間に導入する第 2配管とを具備する
空気冷媒冷熱システム。
[11] 請求項 10に記載の空気冷媒冷熱システムにおいて、
さらに、前記冷媒を前記第 2の軸受けの配置される空間から前記膨張タービンの出 口側に導く第 3配管を具備する
空気冷媒冷熱システム。
[12] 請求項 9から 11のいずれかに記載の空気冷媒冷熱システムにおいて、
更に、前記主軸を回転するモータ
を具備し、
前記第 1および第 2の軸受は磁気軸受である
空気冷媒冷熱システム。
[13] 請求項 9から 12のいずれかに記載の空気冷媒冷熱システムにおいて、
前記第 1配管は前記冷媒を前記膨張タービンの入口側から引き出す
空気冷媒冷熱システム。
[14] 請求項 9から 11のいずれかに記載の空気冷媒冷熱システムにおいて、 前記圧縮機構は更に、前記コンプレッサよりも上流側に設置された補助コンプレツ サを備える
空気冷媒冷熱システム。
請求項 9から 14のいずれかに記載の空気冷媒冷熱システムと、
前記膨張タービンの出口に接続されたコンテナボックス
とを具備する
リーファーコンテナ。
PCT/JP2004/017712 2004-07-30 2004-11-29 空気冷媒式冷却装置および空気冷媒式冷却装置を用いた空気冷媒冷熱システム WO2006011248A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006527781A JP4370328B2 (ja) 2004-07-30 2004-11-29 空気冷媒式冷却装置および空気冷媒式冷却装置を用いた空気冷媒冷熱システム
US10/524,877 US7322207B2 (en) 2004-07-30 2004-11-29 Air refrigerant cooling apparatus and air refrigeration system using the air refigerant cooling apparatus
EP04822210.3A EP1801518B1 (en) 2004-07-30 2004-11-29 Air refrigerant type cooling apparatus and air refrigerant cold system using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004224926 2004-07-30
JP2004-224926 2004-07-30

Publications (1)

Publication Number Publication Date
WO2006011248A1 true WO2006011248A1 (ja) 2006-02-02

Family

ID=35786007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017712 WO2006011248A1 (ja) 2004-07-30 2004-11-29 空気冷媒式冷却装置および空気冷媒式冷却装置を用いた空気冷媒冷熱システム

Country Status (4)

Country Link
US (1) US7322207B2 (ja)
EP (1) EP1801518B1 (ja)
JP (1) JP4370328B2 (ja)
WO (1) WO2006011248A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537104A (ja) * 2007-08-16 2010-12-02 ジョンソン コントロールズ テクノロジー カンパニー 電磁軸受を利用するターボ機械内にてシールを位置決めする方法
JP2011504574A (ja) * 2007-11-23 2011-02-10 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 極低温冷凍方法及びデバイス
JP2012020728A (ja) * 2010-07-16 2012-02-02 Hamilton Sundstrand Corp キャビン空気コンプレッサ装置およびその冷却方法
WO2015068522A1 (ja) * 2013-11-11 2015-05-14 株式会社前川製作所 膨張機一体型圧縮機及び冷凍機並びに冷凍機の運転方法
WO2016178272A1 (ja) * 2015-05-01 2016-11-10 株式会社前川製作所 冷凍機及び冷凍機の運転方法
WO2017212713A1 (ja) * 2016-06-07 2017-12-14 株式会社Ihi 回転機械
US9862493B2 (en) 2013-05-28 2018-01-09 Hamilton Sundstrand Corporation Motor cooling blower and containment structure
JP2019113208A (ja) * 2017-12-21 2019-07-11 三菱重工冷熱株式会社 空気冷媒サイクルを用いた冷却装置
WO2024075438A1 (ja) * 2022-10-07 2024-04-11 三菱重工業株式会社 冷凍システム

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7757502B2 (en) * 2004-09-22 2010-07-20 Hamilton Sundstrand Corporation RAM fan system for an aircraft environmental control system
US7874175B2 (en) * 2008-05-15 2011-01-25 Ronald Edward Graf Heat engine / heat pump using centrifugal fans
TWI425176B (zh) * 2011-05-04 2014-02-01 Univ Nat Pingtung Sci & Tech 一種利用壓差作動之致冷裝置
WO2013015885A1 (en) * 2011-06-30 2013-01-31 Carrier Corporation Compressor surge detection
EP2678569B1 (en) 2011-07-15 2015-11-18 Carrier Corporation Compressor clearance control
CN103184906B (zh) * 2011-12-31 2016-06-29 新奥科技发展有限公司 能源供应的方法及装置
US9261101B2 (en) 2012-10-31 2016-02-16 Hamilton Sundstrand Corporation Fan housing for ram air fan
DE102012024362A1 (de) * 2012-12-13 2014-06-18 Gea Bock Gmbh Verdichter
US10753655B2 (en) * 2015-03-30 2020-08-25 William A Kelley Energy recycling heat pump
ITUA20161513A1 (it) * 2016-03-09 2017-09-09 Nuovo Pignone Tecnologie Srl Motocompressore - espantore integrato
CN105698434A (zh) * 2016-04-13 2016-06-22 桂林电子科技大学 一种压缩空气制冷及制备热水装置
EP3555481B1 (en) 2016-12-14 2020-09-02 Carrier Corporation Two-stage centrifugal compressor
DE102019203181A1 (de) * 2019-03-08 2020-09-10 Denso Automotive Deutschland Gmbh Kompakte Kältemaschine
CZ2020548A3 (cs) 2020-10-08 2021-10-27 Mirai Intex Sagl Turbokompresorové soustrojí chladicího stroje
IT202100026741A1 (it) * 2021-10-19 2023-04-19 Nuovo Pignone Tecnologie Srl Circuito ad anello chiuso per fluido di raffreddamento di un cuscino magnetico per un sistema espantore-compressore

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2237373A (en) 1989-10-10 1991-05-01 Aisin Seiki Air conditioning systems
JPH0791760A (ja) * 1993-09-17 1995-04-04 Hitachi Ltd 磁気軸受式タービンコンプレッサ
JPH1155899A (ja) * 1997-07-29 1999-02-26 Ishikawajima Harima Heavy Ind Co Ltd 超高速回転電機
JP2001123997A (ja) * 1999-10-21 2001-05-08 Hitachi Ltd 磁気軸受搭載遠心圧縮機

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696637A (en) * 1968-08-15 1972-10-10 Air Prod & Chem Method and apparatus for producing refrigeration
US4328684A (en) * 1978-04-10 1982-05-11 Hughes Aircraft Company Screw compressor-expander cryogenic system with magnetic coupling
JPS5618883A (en) 1979-07-25 1981-02-23 Eekoo Denki Kogyo Kk Health training device
JPH05106944A (ja) 1991-10-14 1993-04-27 Nippondenso Co Ltd 冷凍装置
US5248239A (en) * 1992-03-19 1993-09-28 Acd, Inc. Thrust control system for fluid handling rotary apparatus
US5267449A (en) 1992-05-20 1993-12-07 Air Products And Chemicals, Inc. Method and system for cryogenic refrigeration using air
JPH0632123A (ja) 1992-07-16 1994-02-08 Bridgestone Corp 空気入りバイアスタイヤ
JPH06101498A (ja) * 1992-09-18 1994-04-12 Hitachi Ltd 磁気軸受式タービン・コンプレッサ
US5644928A (en) * 1992-10-30 1997-07-08 Kajima Corporation Air refrigerant ice forming equipment
JPH0861821A (ja) 1994-08-16 1996-03-08 Kajima Corp 低温,冷凍倉庫
JP3636746B2 (ja) 1994-08-25 2005-04-06 光洋精工株式会社 磁気軸受装置
JPH09178323A (ja) 1995-12-26 1997-07-11 Hitachi Plant Eng & Constr Co Ltd 冷凍冷蔵倉庫
JP3716061B2 (ja) * 1996-10-25 2005-11-16 三菱重工業株式会社 ターボ冷凍機
JP3336428B2 (ja) 1997-03-21 2002-10-21 日本酸素株式会社 凍結方法
US5924307A (en) * 1997-05-19 1999-07-20 Praxair Technology, Inc. Turbine/motor (generator) driven booster compressor
GB9721850D0 (en) * 1997-10-16 1997-12-17 Normalair Garrett Ltd Motor cooling
JP3824757B2 (ja) 1997-10-24 2006-09-20 鹿島建設株式会社 空気冷媒式冷凍装置
JP3891668B2 (ja) 1997-10-24 2007-03-14 鹿島建設株式会社 空気清浄冷却設備
US6151909A (en) * 1998-03-13 2000-11-28 Alliedsignal Inc. Two spool air cycle machine having concentric shafts
US6148622A (en) * 1998-04-03 2000-11-21 Alliedsignal Inc. Environmental control system no condenser high pressure water separation system
JP2000002481A (ja) * 1998-06-16 2000-01-07 Nippon Sanso Kk 窒素製造装置及び方法
JP2000356425A (ja) 1999-06-16 2000-12-26 Nippon Sanso Corp 低温ガス発生装置および低温ガス発生方法
DE10009373C2 (de) * 2000-02-29 2002-03-14 Airbus Gmbh Klimatisierungssystem für ein Verkehrsflugzeug
JP4584435B2 (ja) 2000-10-16 2010-11-24 株式会社前川製作所 凍結融解粉末乾燥方法とその装置
JP2003083634A (ja) 2001-09-06 2003-03-19 Sekisui Chem Co Ltd ヒートポンプシステム
JP2003302116A (ja) 2002-04-05 2003-10-24 Mitsubishi Heavy Ind Ltd 保冷・保温装置
US6848261B2 (en) * 2003-04-03 2005-02-01 Honeywell International Inc. Condensing cycle with energy recovery augmentation
DK1650811T3 (da) 2003-07-24 2013-07-08 Kaneka Corp Stakket fotoelektrisk converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2237373A (en) 1989-10-10 1991-05-01 Aisin Seiki Air conditioning systems
JPH0791760A (ja) * 1993-09-17 1995-04-04 Hitachi Ltd 磁気軸受式タービンコンプレッサ
JPH1155899A (ja) * 1997-07-29 1999-02-26 Ishikawajima Harima Heavy Ind Co Ltd 超高速回転電機
JP2001123997A (ja) * 1999-10-21 2001-05-08 Hitachi Ltd 磁気軸受搭載遠心圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1801518A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537104A (ja) * 2007-08-16 2010-12-02 ジョンソン コントロールズ テクノロジー カンパニー 電磁軸受を利用するターボ機械内にてシールを位置決めする方法
JP2011504574A (ja) * 2007-11-23 2011-02-10 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 極低温冷凍方法及びデバイス
JP2012020728A (ja) * 2010-07-16 2012-02-02 Hamilton Sundstrand Corp キャビン空気コンプレッサ装置およびその冷却方法
US9862493B2 (en) 2013-05-28 2018-01-09 Hamilton Sundstrand Corporation Motor cooling blower and containment structure
WO2015068522A1 (ja) * 2013-11-11 2015-05-14 株式会社前川製作所 膨張機一体型圧縮機及び冷凍機並びに冷凍機の運転方法
JP2015094259A (ja) * 2013-11-11 2015-05-18 株式会社前川製作所 膨張機一体型圧縮機及び冷凍機並びに冷凍機の運転方法
RU2652462C2 (ru) * 2013-11-11 2018-04-26 Майекава Мфг. Ко., Лтд. Детандер-компрессор, холодильное устройство и способ эксплуатации холодильного устройства
US9970449B2 (en) 2013-11-11 2018-05-15 Mayekawa Mfg. Co., Ltd. Expander-integrated compressor, refrigerator and operating method for refrigerator
WO2016178272A1 (ja) * 2015-05-01 2016-11-10 株式会社前川製作所 冷凍機及び冷凍機の運転方法
JPWO2016178272A1 (ja) * 2015-05-01 2017-09-28 株式会社前川製作所 冷凍機及び冷凍機の運転方法
US10415857B2 (en) 2015-05-01 2019-09-17 Mayekawa Mfg. Co., Ltd. Refrigerator and operation method for refrigerator
WO2017212713A1 (ja) * 2016-06-07 2017-12-14 株式会社Ihi 回転機械
JP2017219246A (ja) * 2016-06-07 2017-12-14 株式会社Ihi 回転機械
JP2019113208A (ja) * 2017-12-21 2019-07-11 三菱重工冷熱株式会社 空気冷媒サイクルを用いた冷却装置
WO2024075438A1 (ja) * 2022-10-07 2024-04-11 三菱重工業株式会社 冷凍システム

Also Published As

Publication number Publication date
JP4370328B2 (ja) 2009-11-25
EP1801518A1 (en) 2007-06-27
EP1801518A4 (en) 2012-03-28
EP1801518B1 (en) 2013-09-11
JPWO2006011248A1 (ja) 2008-05-01
US7322207B2 (en) 2008-01-29
US20070101755A1 (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP4370328B2 (ja) 空気冷媒式冷却装置および空気冷媒式冷却装置を用いた空気冷媒冷熱システム
US8336328B2 (en) Air cycle refrigerating/cooling system and turbine unit used therefor
US7535150B1 (en) Centrifugal turbine blower with gas foil bearings
US8347648B2 (en) Air cycle refrigerating/cooling system and turbine unit used therefor
US20080199326A1 (en) Two-stage vapor cycle compressor
TWI373565B (en) Vacuum exhaust system
WO2006011501A1 (ja) 空気冷媒式冷却装置と空気冷媒式冷却装置を用いた空気冷媒冷熱システム
JP5041343B2 (ja) 電子機器の冷却システム
CN109424375A (zh) 具有磁轴承冷却的涡轮机系统和方法
KR102331134B1 (ko) 유량조절이 가능한 냉각장치를 가진 터보송풍기
CN114876878B (zh) 一种磁悬浮风机风冷冷却方法及其冷却装置
CN114251251B (zh) 用于压缩机的散热结构及压缩机
JP2008082216A (ja) 圧縮膨張タービンシステム
JP2007162493A (ja) 圧縮膨張タービンシステム
JP2009062848A (ja) モータ一体型の磁気軸受装置
JP2008072809A (ja) モータ一体型の磁気軸受装置
JP5042479B2 (ja) 空気サイクル冷凍冷却システム
JP2009050066A (ja) モータ一体型の磁気軸受装置
JP2007162492A (ja) 圧縮膨張タービンシステム
JP2008072810A (ja) モータ一体型の磁気軸受装置
JP2009162464A (ja) 空気サイクル冷凍装置
KR102124452B1 (ko) 터보 압축기
JP2007162491A (ja) 圧縮膨張タービンシステム
JP2008039129A (ja) 空気サイクル冷凍機用タービンユニット
JP2008072812A (ja) モータ一体型磁気軸受装置およびモータ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007101755

Country of ref document: US

Ref document number: 10524877

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006527781

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2004822210

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10524877

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004822210

Country of ref document: EP