WO2015068522A1 - 膨張機一体型圧縮機及び冷凍機並びに冷凍機の運転方法 - Google Patents

膨張機一体型圧縮機及び冷凍機並びに冷凍機の運転方法 Download PDF

Info

Publication number
WO2015068522A1
WO2015068522A1 PCT/JP2014/077109 JP2014077109W WO2015068522A1 WO 2015068522 A1 WO2015068522 A1 WO 2015068522A1 JP 2014077109 W JP2014077109 W JP 2014077109W WO 2015068522 A1 WO2015068522 A1 WO 2015068522A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
expander
casing
refrigerant
motor
Prior art date
Application number
PCT/JP2014/077109
Other languages
English (en)
French (fr)
Inventor
翔太 植田
明登 町田
瑞生 工藤
Original Assignee
株式会社前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前川製作所 filed Critical 株式会社前川製作所
Priority to RU2016122892A priority Critical patent/RU2652462C2/ru
Priority to KR1020167013567A priority patent/KR101818872B1/ko
Priority to US15/034,179 priority patent/US9970449B2/en
Priority to EP14860246.9A priority patent/EP3056744B1/en
Priority to CN201480061097.5A priority patent/CN105765234B/zh
Priority to ES14860246.9T priority patent/ES2652674T3/es
Publication of WO2015068522A1 publication Critical patent/WO2015068522A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/024Units comprising pumps and their driving means the driving means being assisted by a power recovery turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/083Sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/14Refrigerants with particular properties, e.g. HFC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/602Drainage
    • F05D2260/6022Drainage of leakage having past a seal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the present disclosure relates to an expander-integrated compressor and refrigerator, and a method of operating the refrigerator.
  • a compressor for performing a compression stroke of a refrigeration cycle in a refrigerator there is a compressor using a non-contact type bearing such as a magnetic bearing as a bearing of an output shaft of a motor for driving the compressor.
  • a noncontact bearing supports a rotating shaft such as an output shaft of a motor in a noncontacting manner. For this reason, as compared with a rolling bearing that supports the rotating shaft in contact with the rotating shaft, the non-contact type bearing has no mechanical friction loss with the rotating shaft, and has no wear and is thus durable. Excellent. For this reason, when the number of revolutions of the motor is increased, a compressor using a non-contact type bearing such as a magnetic bearing as the bearing of the motor output shaft is used.
  • Patent Document 1 discloses a magnetic bearing in which a turbine wheel is attached to one end of a shaft, a compressor wheel is attached to the other end, and a shaft is supported by a magnetic bearing.
  • a bearing type turbine compressor is disclosed.
  • An object of at least one embodiment of the present invention is to provide an expander-compressor, a refrigerator and a method of operating the refrigerator that can improve the coefficient of performance of the refrigerator.
  • An expander integrated compressor according to at least one embodiment of the present invention, Motor, A compressor connected to the output shaft of the motor and configured to be driven by the motor to compress the fluid; An expander, connected to the output shaft of the motor, configured to expand the fluid and recover power of the output shaft from the fluid; At least one non-contact type bearing disposed between the compressor and the expander for supporting the output shaft in a non-contact manner; A casing for housing the motor, the compressor, the expander, and the at least one non-contact bearing; It is provided to be in communication with the region between the compressor and the expander in the internal space of the casing, and at least a part of the leaked fluid directed from the compressor side to the expander side in the casing inside A bleed line for bleeding from a region to a fluid line connected to the suction side or the discharge side of the compressor outside the casing; The casing seals the area from the outside of the casing such that the flow of fluid between the area and the outside of the casing is only the flow of at least a portion of the leaked
  • the region between the expander and the compressor in the internal space of the casing is not an inherent flow path of the working fluid.
  • seals are generally provided between the compressor and the area and between the expander and the area so as to prevent the working fluid from leaking from the compressor or the expander to the area.
  • it is difficult to completely seal the working fluid so that it does not leak from the compressor side.
  • the expander-compressor unit according to the above-described embodiment is devised on the basis of the above-described findings of the present inventors, and is communicated with the region between the compressor and the expander in the internal space of the casing.
  • a bleed line at the inside of the casing to bleed at least a portion of the leaked fluid from the compressor side to the expander side into the fluid line connected from the region to the suction side or discharge side of the compressor outside the casing I did it. For this reason, since the high temperature leaked fluid flowing into the expander side is reduced and the heat transfer from the high temperature leaked fluid to the expander is reduced, the adiabatic efficiency of the expander caused by the leaked fluid from the compressor side I can improve the decline. Therefore, the COP of the refrigerator using this expander-integrated compressor can be improved.
  • the casing is not sealed from the outside, and in the configuration in which the flow of gas other than leaked fluid from the area toward the fluid line is permitted from the outside of the casing into the area, Heat may be transferred from the incoming gas to the cooler expander side. Therefore, as an unintended heat input factor to the expander side, not only the leaked fluid but also the gas that has flowed into the area from the outside of the casing can be considered, and even if a bleed line is provided, it is not intended to the expander side It is difficult to prevent heat input factors effectively.
  • the flow of the fluid between the region and the outside of the casing is limited to the flow of at least a part of the leaked fluid through the bleed line.
  • the area is sealed from the outside of the casing so that Therefore, the unintended heat input to the expander side is basically only the leaked fluid. Therefore, an unintended heat input to the expander side is generated by forming a flow of working fluid that guides at least a part of the leaked fluid from the compressor side to the expander side in the region by means of the bleed line. It can effectively prevent and dramatically improve COP.
  • the expander-integrated compressor further comprises at least one second compressor different from the compressor, and the second compressor is connected to the output shaft of the motor.
  • the expander-integrated compressor further comprises at least one second compressor different from the compressor, the second compressor being connected to a second output shaft separate from the motor Ru.
  • a refrigerator is A cooling unit for cooling an object to be cooled by heat exchange with a refrigerant;
  • An expander-integrated compressor in which a compressor for compressing the refrigerant and an expander for expanding the refrigerant are integrated;
  • a refrigerant circulation line configured to circulate the refrigerant through the compressor, the expander, and the cooling unit;
  • the expander-integrated compressor is Motor, The compressor connected to the output shaft of the motor and configured to be driven by the motor to compress the refrigerant;
  • the expander connected to the output shaft of the motor, configured to expand the refrigerant and recover power of the output shaft from the refrigerant;
  • At least one non-contact type bearing disposed between the compressor and the expander for supporting the output shaft in a non-contact manner;
  • a casing for housing the motor, the compressor, the expander, and the at least one non-contact bearing; It is provided to be in communication with the region between the compressor and the expander in the internal space of the casing, and at least
  • a bleed line is provided to communicate with the region between the compressor and the expander in the internal space of the casing of the expander-integrated compressor, and expansion is performed from the compressor side inside the casing At least a part of the leaked refrigerant directed to the machine side is extracted from the region to a refrigerant circulation line connected to the suction side or the discharge side of the compressor outside the casing. For this reason, since the high temperature leaked refrigerant flowing into the expander side is reduced and the heat transfer from the high temperature leaked refrigerant to the expander is reduced, the adiabatic efficiency of the expander caused by the refrigerant leaked from the compressor side I can improve the decline.
  • the COP of the refrigerator using this expander-integrated compressor can be improved.
  • the casing is not sealed from the outside, and in the configuration where the flow of gas other than the leaked refrigerant from the region toward the refrigerant circulation line is permitted from the outside of the casing into the region, the inside of the region from the casing outside Heat can be transferred from the gas flowing into the low temperature expander side. Therefore, as an unintended heat input to the expander side, not only the leaked refrigerant but also the gas flowing into the region from the outside of the casing can be considered, and even if a bleed line is provided, it is not intended to the expander side It is difficult to prevent heat input factors effectively.
  • the flow of fluid between the region and the outside of the casing is at least a part of the leaked refrigerant via the bleed line.
  • the area is sealed from the outside of the casing so that it is flow only. Therefore, the factor of unintended heat input to the expander side is basically only the leaked refrigerant. Therefore, an unintended heat input to the expander side is formed by forming a flow of working fluid that guides at least a part of the leaked refrigerant from the compressor side to the expander side into the refrigerant circulation line in the region by the bleed line. Can effectively prevent COP and dramatically improve COP.
  • the expander-integrated compressor is provided in the bleed line, and a bleed valve for adjusting a bleed amount of the leaked refrigerant, and a controller for controlling the bleed valve.
  • the controller is further configured to control an opening degree of the bleed valve based on at least one of a refrigerator COP and a refrigerant temperature difference between the suction side and the discharge side of the expander.
  • Ru The refrigerator COP is obtained from, for example, the formula (1) power consumption standard COP (COP b ) and the formula (2) compression power standard COP (COP c ).
  • G is the mass flow rate [kg / s] of the refrigerant circulating through the refrigerant circulation line
  • P is the motor power (power consumption) [W]
  • h 1 is compressor inlet enthalpy [J / kg]
  • h 2 is compressor outlet enthalpy [J / kg]
  • h 5 is heat exchanger inlet enthalpy [J / kg] for the cooling unit
  • h 6 is the heat exchanger outlet enthalpy [J / kg] for the cooling section.
  • the opening degree of the bleed valve is controlled based on at least one of the refrigerant temperature difference between the suction side and the discharge side of the refrigerator COP or the expander.
  • a controller configured as follows.
  • the extraction amount is controlled to be a value near the COP maximum extraction amount according to the operating condition.
  • the COP of the refrigerator can be improved.
  • opening degree adjustment is performed by a manual valve, and a fixed opening degree may be sufficient.
  • the operating method of a refrigerator is A motor, a compressor connected to the output shaft of the motor, an expander connected to the output shaft of the motor, and a position between the compressor and the expander with the output shaft contactless And at least one noncontact bearing for supporting, and a casing for accommodating the motor, the compressor, the expander, and the at least one noncontact bearing.
  • the casing seals the area from the outside of the casing such that the flow of fluid between the area and the outside of the casing is only the flow of at least a portion of the leaked fluid through the bleed line.
  • a method of operating a refrigerator comprising an expander-integrated compressor configured as follows: Compressing the refrigerant by the compressor; An expansion step of expanding the refrigerant compressed in the compression step by the expander; A cooling step of cooling an object to be cooled by heat exchange with the refrigerant expanded in the expansion step; At least the leaked refrigerant directed from the compressor side to the expander side in the casing through a bleed line provided to communicate with the region between the compressor and the expander in the internal space of the casing And an extraction step of extracting a portion from the region inside the casing to a refrigerant circulation line connected to the suction side or the discharge side of the compressor outside the casing.
  • an extraction line provided so as to communicate with the region between the compressor and the expander in the internal space of the casing of the expander-integrated compressor, At least a part of the leaked refrigerant from the compressor side to the expander side inside the casing is extracted from the region into the refrigerant circulation line connected to the suction side or the discharge side of the compressor outside the casing. For this reason, since the high temperature leaked refrigerant flowing into the expander side is reduced and the heat transfer from the high temperature leaked refrigerant to the expander is reduced, the adiabatic efficiency of the expander caused by the refrigerant leaked from the compressor side I can improve the decline.
  • the COP of the refrigerator using the expander-integrated compressor can be improved.
  • the casing is not sealed from the outside, and in the configuration where the flow of gas other than the leaked refrigerant from the region toward the refrigerant circulation line is permitted from the outside of the casing into the region, the inside of the region from the casing outside Heat can be transferred from the gas flowing into the low temperature expander side. Therefore, not only the leaked refrigerant but also the gas that has flowed into the area from the outside of the casing can be considered as an unintended heat input factor to the expander side, and even if a bleed line is provided, the intention to the expander side It is difficult to prevent the heat input factor effectively.
  • the flow of fluid between the region and the outside of the casing is at least the leaked refrigerant via the bleed line.
  • the area is sealed from the outside of the casing so that it only partially flows. Therefore, the factor of unintended heat input to the expander side is basically only the leaked refrigerant. Therefore, an unintended heat input to the expander side is formed by forming a flow of working fluid that guides at least a part of the leaked refrigerant from the compressor side to the expander side into the refrigerant circulation line in the region by the bleed line. Can effectively prevent COP and dramatically improve COP.
  • the bleed air from the region inside the casing to the suction side of the compressor based on at least one of the refrigerant temperature difference between the suction side and the discharge side of the refrigerator COP or the expander.
  • the method further comprises a bleed amount adjustment step of adjusting the amount.
  • the extraction amount is adjusted based on at least one of the refrigerant temperature difference between the suction side and the discharge side of the expander COP, so that the COP of the refrigerator can be improved.
  • the heat transferred to the expander from the fluid leaked from the compressor side inside the casing of the expander-integrated compressor is reduced to improve the coefficient of performance (COP) of the refrigerator obtain.
  • FIG. 1 is a view showing an outline of a configuration of an expander-integrated compressor according to an embodiment.
  • the expander-integrated compressor 1 includes a motor 2, a compressor 4, an expander 6, non-contact bearings 32, 34, 36, a casing 9, and a bleed line 24.
  • the compressor 4 is connected to the output shaft 3 of the motor 2 and is configured to be driven by the motor 2 to compress the fluid.
  • the expander 6 is connected to the output shaft 3 of the motor 2 and is configured to expand the fluid and recover the power of the output shaft 3 from the fluid.
  • the motor 2 may be disposed between the compressor 4 and the expander 6 as shown in FIG.
  • the motor 2 may be disposed outside the compressor 4 and the expander (that is, for example, in the axial direction of the output shaft 3, the motor 2, the compressor 4, and the expander 6) May be arranged in the order of
  • the output shaft 3 of the motor 2 is provided with radial magnetic bearings 32, 34 and thrust magnetic bearings 36 disposed between the compressor 4 and the expander 6 (in the present specification, the non-contact bearings 32, 34, 36 or It is supported in a non-contact manner by magnetic bearings 32, 34 and 36).
  • the radial magnetic bearings 32 and 34 are provided on both sides of the motor 2 in the axial direction of the output shaft 3 and lift the output shaft 3 by magnetic force to bear the radial load of the output shaft 3.
  • the thrust magnetic bearing 36 is provided on one side of the motor 2 (between the motor 2 and the expander 6 in the embodiment shown in FIG. 1) in the axial direction of the output shaft 3 and provided on the output shaft 3
  • the thrust load of the output shaft 3 is loaded by the magnetic force so that a gap is formed between it and the axial rotor disk 37.
  • the casing 9 accommodates the motor 2, the compressor 4, the expander 6, the radial magnetic bearings 32, 34 and the thrust magnetic bearing 36.
  • the thrust magnetic bearing 36 and the axial rotor disk 37 provided on the output shaft 3 may be provided between the compressor 4 and the motor 2.
  • the casing 9 of the expander-integrated compressor 1 is provided with a seal 44 for suppressing the leakage of the working fluid from the compressor 4 into the casing 9.
  • a seal portion 64 may be provided to suppress the leakage of the working fluid from the expander 6 into the casing 9.
  • the seal portions 44 and 64 may be, for example, labyrinth seals. In this case, as shown in FIG. 1, the labyrinth seals 44 and 64 are on the back side of the impeller 42 of the compressor 4 or the turbine rotor 62 of the expander 6 and between the impeller 42 or turbine rotor 62 and the casing 9 And may be provided around the output shaft 3 and between the output shaft 3 and the casing 9 respectively.
  • a bleed line 24 is provided to bleed the fluid line connected to the discharge side.
  • the bleed line 24 is provided in communication with the region 5 between the compressor 4 and the expander 6 in the internal space of the casing 9.
  • the bleed line 24 extends radially through the casing 9.
  • the axial position at which the bleed line 24 is provided is not particularly limited, and the bleed line 24 may be formed at the same axial position as the axial rotor disk 37 provided on the output shaft 3 as shown in FIG. .
  • the bleed line 24 By providing the bleed line 24, the high temperature leaked fluid flowing into the expander 6 is reduced, and the transfer of heat from the high temperature leaked fluid to the expander 6 is reduced. Thereby, the adiabatic-efficiency fall of the expander 6 resulting from the fluid leaked from the compressor 4 side can be improved, and therefore COP of the refrigerator using the expander-integrated compressor 1 can be improved.
  • the casing 9 is such that the flow of fluid between the area 5 and the exterior of the casing 9 is only the flow of at least a portion of the leaked fluid through the bleed line 24.
  • 5 is configured to seal from the outside of the casing 9. In a configuration in which the casing 9 is not sealed from the outside, and gas other than leaked fluid flowing from the region 5 toward the fluid line is allowed to flow into the region 5 from the outside of the casing 9, the casing 9 is not closed from the outside. Heat may be transferred from the gas flowing into the region to the low temperature expander 6 side.
  • the expander 6 can be provided even if the bleed line 24 is provided. It is difficult to effectively prevent unintended heat input to the side.
  • the flow of the fluid between the region and the outside of the casing 9 of the casing 24 is at least a part of the leaked fluid through the bleed line 24.
  • the area 5 is sealed from the outside of the casing 9 so that only the flow of Therefore, the factor of unintended heat input to the expander 6 side is basically only the leaked fluid.
  • the intention to the expander 6 side is achieved by forming a flow of working fluid that leads at least a part of the leaked fluid from the compressor 4 side to the expander 6 side in the region 5 to the fluid line by the bleed line 24. It can effectively prevent heat input and dramatically improve COP.
  • the expander-integrated compressor further comprises at least one second compressor different from the compressor, and the second compressor is connected to the output shaft of the motor.
  • the expander-compressor unit 1 may include two or more second compressors different from the compressor 4.
  • One or more second compressors may be connected to an output shaft of a motor different from motor 2 and driven by the motor. For example, even if a second compressor is provided at each end of the output shaft of the motor different from the motor 2 and three expanders are provided to one expander as a whole expander-integrated compressor. Good.
  • FIGS. 2 to 4. are each a schematic view showing the configuration of a refrigerator according to one embodiment.
  • the refrigerator 100 includes a cooling unit 16 for cooling an object to be cooled, an expander-integrated compressor 1 in which the compressor 4 and the expander 6 are integrated, and a refrigerant. And a circulation line 22.
  • the expander-integrated compressor 1 As the expander-integrated compressor 1, the expander-integrated compressor 1 having the bleed line 24 shown in FIG. 1 is used.
  • the compressor 4, the heat exchanger 12, the cold heat recovery heat exchanger 14, the expander 6, and the cooling are provided on the refrigerant circulation line 22.
  • a part 16 is provided in this order, and the refrigerant circulation line 22 is configured to circulate the refrigerant through these devices.
  • the compressor 4 is connected to the output shaft 3 of the motor 2 and is configured to be driven by the motor 2 to compress the fluid.
  • the expander 6 is also connected to the output shaft 3 of the motor 2 and is configured to expand the fluid and recover the power of the output shaft 3 from the fluid.
  • the heat exchanger 12 is provided to cool the refrigerant by heat exchange with the cooling water, and the cold heat recovery heat exchanger 14 is provided to recover the cold heat of the refrigerant.
  • the cooling unit 16 is provided to cool an object to be cooled by heat exchange with a refrigerant.
  • the refrigerant circulating in the refrigerant circulation line 22 is compressed by the compressor 4 to rise in temperature and pressure, and then cooled by heat exchange with the cooling water in the heat exchanger 12 provided downstream. Thereafter, the refrigerant is further cooled by the cold heat recovery heat exchanger 14, and then expanded by the expander 6 to lower temperature and pressure, thereby generating cold heat.
  • the refrigerant discharged from the expander 6 exchanges heat with the object to be cooled in the cooling unit 16 to cool the object to be cooled, and the temperature rises due to the thermal load.
  • the refrigerant heated in the cooling unit 16 is introduced into the cold heat recovery heat exchanger 14, and exchanges heat with the high-temperature compressed refrigerant that has passed through the above-described heat exchanger 12, thereby recovering the remaining cold heat into the compressed refrigerant. . Thereafter, the refrigerant returns to the compressor 4 and is compressed by the compressor 4 as described above. In the refrigerator 100, such a refrigeration cycle is configured.
  • the object to be cooled that is cooled by heat exchange with the refrigerant in the cooling unit 16 is liquid nitrogen for cooling a superconducting device such as a superconducting cable.
  • a superconducting device such as a superconducting cable.
  • cooling at a very low temperature is required in order for the superconducting device to be in a superconducting state.
  • the refrigerant circulation line 22 is about 30 to 40 ° C. on the suction side of the compressor 4 and about 90 to 100 ° C.
  • the refrigerant flowing through the refrigerant circulation line can be appropriately selected according to the cooling target temperature of the object to be cooled, and, for example, helium, neon, hydrogen, nitrogen, air, hydrocarbons and the like can be used.
  • a bleed line 24 in communication with the region 5 between the compressor 4 and the expander 6 in the internal space of the casing 9 of the expander-integrated compressor 1. Is connected to a refrigerant circulation line 22 a connected to the suction side of the compressor 4 outside the casing 9. Further, a bleed valve 26 for adjusting the bleed amount is provided on the bleed line 24.
  • the bleed line 24 By providing the bleed line 24, the high temperature leaked fluid flowing into the expander 6 side is reduced, and the heat transfer from the high temperature leaked fluid to the expander 6 is reduced, whereby the pressure from the compressor 4 side is reduced. It is possible to improve the adiabatic efficiency drop of the expander 6 caused by the leaked fluid. Further, since the high temperature leaked fluid flowing into the expander 6 is returned to the refrigerant circulation line 22 via the bleed line 24, the leaked fluid can contribute to the cooling of the object to be cooled. Therefore, the COP of the refrigerator 100 can be improved.
  • the bleed valve 26 is provided on the bleed line 24, a differential pressure is generated before and after the bleed valve 26 in the bleed line 24. That is, on the upstream side of the bleed valve 26 (on the side of the region 5) of the bleed line 24, the refrigerant compressed by the compressor 4 and having a high pressure is present as a leaked refrigerant and is a relatively high pressure. On the other hand, on the downstream side (refrigerant circulation line 22 a side) of the bleed line 24 on the downstream side of the bleed valve 26, the refrigerant is in a low pressure state before being compressed by the compressor 4.
  • the leaked refrigerant present on the relatively high pressure side of the region 5 is a relatively low pressure refrigerant circulation line 22a based on the differential pressure. It will flow to the side automatically. Therefore, since the leaked refrigerant present in the region 5 can be easily returned to the refrigerant circulation line 22 without applying power, energy efficiency is improved and COP is improved.
  • the refrigerant circulation line 22 a connected to the suction side of the compressor 4 is a point where the refrigerant that has become low temperature in the refrigerant circulation line 22 comes back after exhausting the cold heat, and in the entire refrigerant circulation line 22 It is a relatively high temperature part. Therefore, even if the high temperature leaked refrigerant present in the region 5 inside the casing 9 flows into the refrigerant circulation line 22a connected to the suction side of the compressor 4, it causes the performance of the refrigerator 100 to deteriorate. Hateful.
  • the bleed line 24 communicating with the region 5 between the compressor 4 and the expander 6 in the internal space of the casing 9 of the expander-integrated compressor 1 is a compressor outside the casing 9. It is connected to the refrigerant
  • the bleed line 24 By providing the bleed line 24, the high temperature leaked fluid flowing into the expander 6 side is reduced, and the heat transfer from the high temperature leaked fluid to the expander 6 is reduced, whereby the pressure from the compressor 4 side is reduced. It is possible to improve the adiabatic efficiency drop of the expander 6 caused by the leaked fluid.
  • the motor 2 since the high temperature leaked fluid flowing into the expander 6 is returned to the refrigerant circulation line 22b via the extraction line 24, the motor 2 can be compared to the case where the extraction line 24 is connected to the refrigerant circulation line 22a. Power of the vehicle can be reduced.
  • a bleed compressor 18 for pressure-feeding the leaked refrigerant from the region 5 to the refrigerant circulation line 22b is provided on the bleed line 24.
  • the leaked refrigerant is compressed and pressure-fed to the refrigerant circulation line 22b, and it can be used as a refrigerant for cooling the object to be cooled by merging it with the refrigerant compressed by the compressor 4 and having a high pressure.
  • a power for operating the bleed compressor 18 is required separately from the power for operating the motor 2 of the expander-integrated compressor 1, but from that time, the refrigerant flowing through the refrigerant circulation line 22 b
  • the refrigerant at a somewhat higher pressure will join from the bleed compressor 18 to the refrigerant circulation line 22b, and the refrigeration capacity of the whole refrigerator 100 will be increased as much as the discharge flow rate of the bleed compressor 18 is added. For this reason, COP can be improved.
  • the refrigerant circulation line 22 b connected to the discharge side of the compressor 4 is a point into which the refrigerant whose pressure and temperature are compressed by the compressor 4 in the refrigerant circulation line 22 and which flows in flows into the refrigerant circulation line 22. In the high temperature part. Therefore, even if the high temperature leaked refrigerant present in the region 5 inside the casing 9 flows into the refrigerant circulation line 22b connected to the discharge side of the expander 4, it causes the performance of the refrigerator 100 to deteriorate. Hateful.
  • the expander-compressor unit 1 further includes a controller 70 for controlling the bleed valve 26, in addition to the same configuration as the refrigerator shown in FIG.
  • the controller 70 is configured to control the opening degree of the bleed valve 26 based on at least one of the refrigerant temperature difference between the suction side and the discharge side of the expander COP.
  • the refrigerator COP can measure and calculate, for example, the power (power consumption) of the motor 2.
  • the power measurement is performed by the power sensor 71, and the measurement result is transmitted to the controller 70.
  • the temperatures of the suction side and the discharge side of the expander 6 are measured by the temperature sensor 72 installed on the suction side of the expander 6 of the refrigerant circulation line 22 and the temperature sensor 73 installed on the discharge side of the expander 6, respectively.
  • the measurement result is sent to the controller 70.
  • the controller 70 calculates the refrigerant temperature difference between the suction side and the discharge side of the expander 6 from the temperatures measured by the temperature sensor 72 and the temperature sensor 73.
  • the flow rate sensor 74 installed in the bleed line 24 measures and measures the amount of leaked refrigerant that is bled to the refrigerant circulation line 22a connected to the suction side of the compressor 4 outside the region 5 from the region 5 The result is sent to the controller 70.
  • the controller 70 is based on measurements of the flow rate of leaked refrigerant in the bleed line 24, the power of the motor 2, the COP of the refrigerator 100 or the refrigerant temperature difference between the suction and discharge sides of the expander 6.
  • the amount of air drawn from the region 5 inside the casing 9 to the suction side of the compressor 4 is adjusted.
  • the refrigerator COP is obtained from, for example, the formula (1) power consumption standard COP (COP b ) and the formula (2) compression power standard COP (COP c ).
  • G is the mass flow rate [kg / s] of the refrigerant circulating through the refrigerant circulation line 22
  • P is the power (power consumption) [W] of the motor 2.
  • the controller 70 includes at least one of a target refrigerator COP (hereinafter also referred to as “target refrigerator COP”) or a temperature difference between the suction side and the discharge side of the expander 6.
  • target refrigerator COP a target refrigerator COP
  • It has a memory in which information indicating operating conditions is stored, and is detected by at least one of detection results of the refrigerator COP (hereinafter also referred to as “measurement refrigerator COP”) calculated by the power sensor 71 or the like or the temperature sensors 72 and 73.
  • the degree of extraction is controlled by controlling the opening degree of the extraction valve 26 based on the above-mentioned operating condition.
  • the controller 70 is based on the deviation between the information indicating the operating condition of the refrigerator 100 stored in the memory and the detection result of at least one of the measurement refrigerator COP or the temperature sensors 72 and 73, and the opening degree of the bleed valve 26
  • the command value may be determined.
  • the controller 70 may include, for example, a P controller, a PI controller, a PID controller, or the like as a controller for determining the opening degree command value of the bleed valve 26. Further, the operating condition of the refrigerator 100 at which the COP becomes maximum may be changed according to the cooling load in the cooling unit 16. In this case, the controller 70 adjusts the extraction amount based on the detection result of at least one of the measurement refrigerator COP or the temperature sensors 72 and 73 so that the operating condition according to the cooling load in the cooling unit 16 is realized. It is also good.
  • enthalpy h 1 , h 2 , h 5 and h 6 are measured values of pressure P 1 , P 2 , P 5 and P 6 and temperature T 1 , T 2 , T 5 and T 6 at each point, respectively. It is obtained from Therefore, in the refrigerator 100 according to some embodiments, a flowmeter (not shown) for measuring the mass flow rate of the refrigerant circulating through the refrigerant circulation line 22, the inlet and the outlet of the compressor 4, and the cooling unit 16 A temperature sensor (not shown) and a pressure sensor (not shown) may be provided to measure the temperature and pressure at the inlet and outlet of the sensor, respectively.
  • the controller 70 includes a memory in which information indicating at least one of the maximum values of the temperature difference between the suction side and the discharge side of the target refrigerator COP or the expander 6 is stored, and the measurement refrigerator COP or temperature The degree of extraction is controlled by controlling the opening degree of the extraction valve 26 so that the detection result of at least one of the sensors 72, 73 approaches the maximum value of the temperature difference between the suction side and the discharge side of the target refrigerator COP or the expander 6.
  • the controller 70 is information indicating the maximum value of the temperature difference between the suction side and the discharge side of the target refrigerator COP or the expander 6 stored in the memory, and at least one of the measurement refrigerator COP or the temperature sensors 72 and 73.
  • the opening degree command value of the bleed valve 26 may be determined based on the deviation from the detection result.
  • the controller 70 may include, for example, a P controller, a PI controller, a PID controller, or the like as a controller for determining the opening degree command value of the bleed valve 26.
  • the controller 70 does not exceed the upper limit of the extraction amount determined to not exceed the allowable load (thrust load) of the thrust magnetic bearing 36 from the region 5 inside the casing 9. It is configured to adjust the amount of air drawn to the suction side of the compressor 4.
  • the magnetic force of the thrust magnetic bearing 36 is controlled by current control to maintain the floating position of the output shaft 3 against the thrust load applied to the output shaft 3.
  • the thrust magnetic bearing 36 has an allowable load value (maximum value).
  • the thrust load applied to the output shaft 3 is caused by the force caused by the pressure of the compression stroke section (the outer peripheral portion of the impeller 42) on the compressor 4 side and the pressure of the expansion stroke section (the outer peripheral portion of the turbine rotor 62) on the expander 6 side.
  • the opening degree control of the extraction valve 26 is performed so that the extraction amount does not exceed the upper limit value determined so that the load of the thrust magnetic bearing 36 does not exceed the allowable value.
  • the amount of bleed air can be controlled within an appropriate range that does not affect the operation of the vehicle.
  • the controller 70 controls the amount of bleed air from the region 5 inside the casing 9 to the suction side of the compressor 4 so that the thrust load borne by the thrust magnetic bearing 36 does not exceed the load bearing capacity of the thrust magnetic bearing 36. Configured to adjust. In one embodiment, the controller 70 is configured such that a bleed amount is realized such that the thrust load imposed by the thrust magnetic bearing 36 matches the allowable thrust load obtained by multiplying the load resistance of the thrust magnetic bearing 36 by the safety factor. 26 opening control. In this case, a load sensor for measuring the load of the thrust magnetic bearing 36 may be installed in the expander-integrated compressor 1, and the measurement result of the load sensor may be transmitted to the controller 70.
  • FIGS. 1 and 2 An operation method of the refrigerator according to the embodiment will be described using FIGS. 1 and 2.
  • the method of operating a refrigerator is a method of operating a refrigerator equipped with the expander-integrated compressor 1 shown in FIG. 1 and includes a compression step, an expansion step, a cooling step, and an extraction step. .
  • the refrigerant compressed in the compression step is expanded by the expander 6 in the expansion step.
  • the object to be cooled is cooled by heat exchange with the refrigerant expanded in the expansion step.
  • the compression step may be followed by the step of cooling the refrigerant compressed in the compression step after the expansion step.
  • the bleed step the bleed line 24 provided in communication with the region 5 between the compressor 4 and the expander 6 in the internal space of the casing 9 extends from the compressor 4 to the expander 6 side in the casing 9. At least a part of the leaked refrigerant directed to the air is extracted from the region 5 inside the casing 9 to the refrigerant circulation line 22a connected to the suction side of the compressor 4 outside the casing 9.
  • the extraction step at least a part of the leaked refrigerant is extracted from the region 5 inside the casing 9 to the refrigerant circulation line 22a connected to the suction side of the compressor 4 outside the casing 9.
  • the high temperature leaked fluid flowing into the expander 6 side is reduced, and the heat transfer from the high temperature leaked fluid to the expander 6 is reduced, whereby the expansion caused by the leaked fluid from the compressor 4 side
  • the adiabatic efficiency drop of the machine 6 can be improved.
  • the leaked fluid flowing into the expander 6 is returned to the refrigerant circulation line 22 via the bleed line 24, the leaked fluid can be properly processed without affecting the cooling capacity. Therefore, the COP of the refrigerator 100 can be improved.
  • the operation method of the refrigerator according to the embodiment is an operation method of a refrigerator provided with the expander-integrated compressor 1 shown in FIG. 1 and includes a compression step, an expansion step, a cooling step, an extraction step, and an extraction amount. And adjusting.
  • the compression step, the expansion step, the cooling step, and the bleeding step are the same as the operation method of the refrigerator according to the above-described embodiment, and thus the description thereof is omitted.
  • the bleed amount adjustment step the bleed amount from the region 5 inside the casing 9 to the suction side of the compressor 4 based on the refrigerator COP or at least one of the refrigerant temperature differences between the suction side and the discharge side of the expander 6 Adjust the
  • the measurement of the power of the motor 2 for calculating the refrigerator COP is performed by the power sensor 71 for measuring the power (power consumption) of the motor 2, and the measurement result is transmitted to the controller 70.
  • Ru The temperatures of the suction side and the discharge side of the expander 6 are measured by the temperature sensor 72 installed on the suction side of the expander 6 of the refrigerant circulation line 22 and the temperature sensor 73 installed on the discharge side of the expander 6, respectively.
  • the measurement result is sent to the controller 70.
  • the controller 70 calculates the refrigerant temperature difference between the suction side and the discharge side of the expander 6 from the temperatures measured by the temperature sensor 72 and the temperature sensor 73.
  • the flow rate sensor 74 installed in the bleed line 24 measures and measures the amount of leaked refrigerant that is bled to the refrigerant circulation line 22a connected to the suction side of the compressor 4 outside the region 5 from the region 5 The result is sent to the controller 70.
  • the controller 70 measures the flow rate of the leaked refrigerant in the bleed line 24, the power of the motor 2, the COP of the refrigerator 100 or the temperature difference between the suction side and the discharge side of the expander 6 and the like. Based on this, the amount of air drawn from the region 5 inside the casing 9 to the suction side of the compressor 4 is adjusted.
  • the controller 70 includes a memory in which information indicating the operating condition of the refrigerator 100 including at least one of the temperature difference between the suction side and the discharge side of the target refrigerator COP or the expander 6 is stored, and a power sensor Based on the detection result of at least one of the temperature sensors 72 and 73, the opening degree of the bleed valve 26 is controlled to adjust the bleed amount so that the operating condition is realized.
  • the controller 70 instructs the opening degree of the bleed valve 26 based on the deviation between the information indicating the operating condition of the refrigerator 100 stored in the memory and the detection result of at least one of the power sensor 71 or the temperature sensors 72 and 73. You may decide the value.
  • the controller 70 may include, for example, a P controller, a PI controller, a PID controller, or the like as a controller for determining the opening degree command value of the bleed valve 26. Further, the operating condition of the refrigerator 100 at which the COP becomes maximum may be changed according to the cooling load in the cooling unit 16. In this case, the controller 70 may adjust the extraction amount based on the detection result of at least one of the power sensor 71 or the temperature sensors 72 and 73 so that the operating condition according to the cooling load in the cooling unit 16 is realized. Good.
  • the controller 70 includes a memory in which information indicating at least one of the maximum values of the temperature difference between the suction side and the discharge side of the target refrigerator COP or the expander 6 is stored, and the measurement refrigerator COP or temperature The degree of extraction is controlled by controlling the opening degree of the extraction valve 26 so that the detection result of at least one of the sensors 72, 73 approaches the maximum value of the temperature difference between the suction side and the discharge side of the target refrigerator COP or the expander 6.
  • the controller 70 is information indicating the maximum value of the temperature difference between the suction side and the discharge side of the target refrigerator COP or the expander 6 stored in the memory, and detection of at least one of the power sensor 71 or the temperature sensors 72 and 73.
  • the opening degree command value of the bleed valve 26 may be determined based on the deviation from the result.
  • the controller 70 may include, for example, a P controller, a PI controller, a PID controller, or the like as a controller for determining the opening degree command value of the bleed valve 26.
  • the controller 70 controls the amount of bleed air from the region 5 inside the casing 9 to the suction side of the compressor 4 so that the thrust load borne by the thrust magnetic bearing 36 does not exceed the load bearing capacity of the thrust magnetic bearing 36. Configured to adjust. In one embodiment, the controller 70 is configured such that a bleed amount is realized such that the thrust load imposed by the thrust magnetic bearing 36 matches the allowable thrust load obtained by multiplying the load resistance of the thrust magnetic bearing 36 by the safety factor. 26 opening control. In this case, a load sensor for measuring the load of the thrust magnetic bearing 36 may be installed in the expander-integrated compressor 1, and the measurement result of the load sensor may be transmitted to the controller 70.
  • the adjustment of the amount of extraction in the extraction amount adjustment step may be performed manually without intervention of the controller.
  • the casing is based on measurements of the flow rate of the leaked refrigerant in the bleed line 24, the power of the motor 2, the COP of the refrigerator 100 or the refrigerant temperature difference between the suction and discharge sides of the expander 6, etc. 9) Adjust the amount of bleed air from the region 5 inside to the suction side of the compressor 4; In one embodiment, a record of information indicating the operating condition of the refrigerator 100 including at least one of the temperature difference between the suction side and the discharge side of the target refrigerator COP or the expander 6 at which the COP becomes maximum is prepared.
  • the opening degree of the extraction valve 26 is controlled to adjust the extraction amount so that the operating condition is realized. Further, the operating condition of the refrigerator 100 at which the COP becomes maximum may be changed according to the cooling load in the cooling unit 16. In this case, the extraction amount may be adjusted based on the detection result of at least one of the measurement refrigerator COP or the temperature sensors 72 and 73 so that the operating condition corresponding to the cooling load in the cooling unit 16 is realized.
  • a record of information indicating at least one of the maximum value of the temperature difference between the suction side and the discharge side of the target refrigerator COP or the expander 6 is prepared, and the measurement refrigerator COP or the temperature sensor 72, 73
  • the degree of extraction is controlled by controlling the opening degree of the extraction valve 26 so that the detection result of at least one of the two approaches the maximum value of the temperature difference between the suction side and the discharge side of the target refrigerator COP or the expander 6.
  • the opening degree command value of the bleed valve 26 may be determined based on
  • the amount of bleed air from the region 5 inside the casing 9 to the suction side of the compressor 4 is adjusted so that the thrust load borne by the thrust magnetic bearing 36 does not exceed the load bearing capacity of the thrust magnetic bearing 36.
  • the opening degree of the bleed valve 26 is realized so that the thrust load imposed by the thrust magnetic bearing 36 matches the allowable thrust load obtained by multiplying the load capacity of the thrust magnetic bearing 36 by the safety factor. Take control.
  • FIG. 5 is a graph showing a comparison of expander heat insulation efficiency ratios of the refrigerator according to the embodiment and the refrigerator of the comparative example
  • FIG. 6 is a refrigerant capacity ratio of the refrigerator according to the embodiment and the refrigerator of the comparative example
  • FIG. 7 is a graph showing a comparison of COP ratios of the refrigerator according to one embodiment and the refrigerator of the comparative example.
  • the refrigerator 100 shown in FIG. 2 and the refrigerator of the comparative example are constructed, and the suction side pressure of the compressor 4 is changed to measure the power of the motor 2, the suction side and the discharge side temperature of the expander 6, etc. , Expander insulation efficiency, refrigeration capacity, COP acquired. The results are shown in FIGS. 5 to 7, respectively.
  • the expander heat insulation efficiency ratio, the refrigeration capacity ratio, and the COP ratio in FIGS. 5 to 7 represent ratios when the result of measurement without “bleed air” is 1, respectively.
  • the expander thermal insulation efficiency is improved in the suction side pressure range of the measured compressor 4, and the refrigerator (“without bleed”) of the comparative example
  • the refrigerator 100 improved about 18% on the basis of expander thermal insulation efficiency.
  • the refrigerating capacity was improved by about 28% in the refrigerator 100 based on the comparative example.
  • the refrigerator 100 also improves about 37% with respect to COP (compressive power standard) based on the comparative example. From this result, it is shown that the COP is significantly improved in the refrigerator 100 provided with the bleed line 24 and the bleed valve 26 as compared with the refrigerator of the comparative example in which the bleed line 24 and the bleed valve 26 are not provided. .

Abstract

膨張機一体型圧縮機のケーシング内部で圧縮機側から漏出した流体から膨張機に移動する熱を低減し、冷凍機の成績係数(COP)を向上し得ることを目的とし、膨張機一体型圧縮機は、モータと、モータの出力軸に接続される圧縮機と、モータの出力軸に接続される膨張機と、圧縮機と膨張機の間に配置される非接触型軸受と、ケーシングと、ケーシングの内部空間のうち前記圧縮機と前記膨張機との間の領域に連通するように設けられ、ケーシング内部において圧縮機側から膨張機側に向かう漏出流体を領域からケーシングの外部の圧縮機の吸入側又は吐出側に接続される流体ラインに抽気するための抽気ラインと、を備える。ケーシングは、前記領域とケーシングの外部との間の流体の流れが抽気ラインを介した漏出流体の少なくとも一部の流れのみとなるように、領域をケーシングの外部から密閉するように構成される。

Description

膨張機一体型圧縮機及び冷凍機並びに冷凍機の運転方法
 本開示は、膨張機一体型圧縮機及び冷凍機並びに冷凍機の運転方法に関する。
 冷凍機において冷凍サイクルの圧縮行程を行うための圧縮機として、圧縮機を駆動するモータの出力軸の軸受に磁気軸受等の非接触型の軸受を用いたものがある。非接触型の軸受は、モータの出力軸等の回転軸を非接触で支持する。このため、回転軸と接触した状態で回転軸を支持する転がり軸受と比べて、非接触型の軸受は回転軸との間での機械的な摩擦損失がなく、また、摩耗がないため耐久性に優れる。このため、モータの回転数が大きくなる場合等に、モータ出力軸の軸受に磁気軸受等の非接触型の軸受を用いた圧縮機が用いられる。
 このような非接触型の軸受を用いた膨張機一体型圧縮機として、特許文献1には、シャフトの一端にタービン翼車、他端にコンプレッサ翼車を取り付け、シャフトを磁気軸受で支承した磁気軸受式タービンコンプレッサが開示されている。
特開平7-91760
 特許文献1に記載されるような膨張機一体型圧縮機を冷凍機に用いると、膨張機で流体が膨張する際に発生する膨張エネルギーの一部が回収され、回収された膨張エネルギーは、圧縮機を駆動するためのモータ回転軸の回転エネルギーとして利用される。このため、モータの動力が低減されることとなり、冷凍機の成績係数(COP)が向上する。
 しかしながら、今後より一層のエネルギー効率化のため、COPのさらなる改善が望まれる。
 本発明の少なくとも一実施形態の目的は、冷凍機の成績係数を向上し得る膨張機一体型圧縮機及び冷凍機並びに冷凍機の運転方法を提供することである。
 本発明の少なくとも一実施形態に係る膨張機一体型圧縮機は、
 モータと、
 前記モータの出力軸に接続され、前記モータによって駆動されて流体を圧縮するように構成された圧縮機と、
 前記モータの前記出力軸に接続され、前記流体を膨張させて前記流体から前記出力軸の動力を回収するように構成された膨張機と、
 前記圧縮機と前記膨張機の間に配置され、前記出力軸を非接触で支持するための少なくとも一つの非接触型軸受と、
 前記モータ、前記圧縮機、前記膨張機及び前記少なくとも一つの非接触型軸受を収容するケーシングと、
 前記ケーシングの内部空間のうち前記圧縮機と前記膨張機との間の領域に連通するように設けられ、前記ケーシング内部において前記圧縮機側から前記膨張機側に向かう漏出流体の少なくとも一部を前記領域から前記ケーシングの外部の前記圧縮機の吸入側又は吐出側に接続される流体ラインに抽気するための抽気ラインと、を備え、
 前記ケーシングは、前記領域と前記ケーシングの外部との間の流体の流れが前記抽気ラインを介した前記漏出流体の少なくとも一部の流れのみとなるように、前記領域を前記ケーシングの外部から密閉するように構成される。
 膨張機一体型圧縮機において、ケーシングの内部空間のうち、膨張機と圧縮機との間の領域は、作動流体の本来的な流路ではない。このため、圧縮機と前記領域との間、及び膨張機と前記領域との間は、通常、圧縮機や膨張機から前記領域へ作動流体が漏出しないようにシールが設けられる。しかしながら、このようなシールが設けられていても、作動流体を完全に密封して圧縮機側から漏出させないようにすることは困難である。
 本発明者らの鋭意検討の結果、圧縮機で圧縮された作動流体の一部がシールのわずかな間隙を通って圧縮機側から前記領域を介して膨張機側に漏出し、膨張機側に流入した高温の漏出流体が膨張機の断熱効率の低下要因になることが明らかになった。
 上記実施形態に係る膨張機一体型圧縮機は、本発明者らの上記知見に基づき工夫を凝らしたものであり、ケーシングの内部空間のうち圧縮機と膨張機との間の領域に連通するように抽気ラインを設け、ケーシング内部において圧縮機側から膨張機側に向かう漏出流体の少なくとも一部を前記領域からケーシングの外部の前記圧縮機の吸入側又は吐出側に接続される流体ラインに抽気するようにした。このため、膨張機側に流入する高温の漏出流体が低減され、高温の漏出流体から膨張機への熱の移動が低減されるので、圧縮機側からの漏出流体に起因した膨張機の断熱効率低下を改善できる。したがってこの膨張機一体型圧縮機を用いた冷凍機のCOPを改善できる。
 また、仮に、ケーシングが外部から密閉されておらず、前記領域から流体ラインに向かう漏出流体以外のガスのケーシング外部から前記領域内への流入が許容される構成では、ケーシング外部から前記領域内に流入するガスから低温の膨張機側に熱が移動し得る。そのため、膨張機側への意図せぬ入熱要因として、漏出流体だけでなく、ケーシング外部から前記領域内に流入したガスも考えられ、抽気ラインを設けても、膨張機側への意図せぬ入熱要因を効果的に防ぐことは難しい。これに対し、上記実施形態に係る膨張機一体型圧縮機では、ケーシングは前記領域とケーシングの外部との間の流体の流れが前記抽気ラインを介した前記漏出流体の少なくとも一部の流れのみとなるように、前記領域が前記ケーシングの外部から密閉される。そのため、膨張機側への意図せぬ入熱要因は基本的には漏出流体だけである。したがって、前記領域内において圧縮機側から膨張機側に向かう漏出流体の少なくとも一部を流体ラインに導く作動流体の流れを抽気ラインによって形成することで、膨張機側への意図せぬ入熱を効果的に防ぎ、COPを劇的に改善することができる。
 幾つかの実施形態では、膨張機一体型圧縮機は前記圧縮機とは異なる少なくとも一つの第2圧縮機をさらに備え、前記第2圧縮機は前記モータの前記出力軸に接続される。
 幾つかの実施形態では、膨張機一体型圧縮機は前記圧縮機とは異なる少なくとも一つの第2圧縮機をさらに備え、前記第2圧縮機は前記モータとは別の第2出力軸に接続される。
 本発明の少なくとも一実施形態に係る冷凍機は、
 冷却対象物を冷媒との熱交換により冷却するための冷却部と、
 前記冷媒を圧縮するための圧縮機、及び、前記冷媒を膨張させるための膨張機が一体化された膨張機一体型圧縮機と、
 前記圧縮機、前記膨張機及び前記冷却部を通して前記冷媒を循環させるように構成された冷媒循環ラインと、を備え、
 前記膨張機一体型圧縮機は、
  モータと、
  前記モータの出力軸に接続され、前記モータによって駆動されて前記冷媒を圧縮するように構成された前記圧縮機と、
  前記モータの前記出力軸に接続され、前記冷媒を膨張させて前記冷媒から前記出力軸の動力を回収するように構成された前記膨張機と、
  前記圧縮機と前記膨張機の間に配置され、前記出力軸を非接触で支持するための少なくとも一つの非接触型軸受と、
  前記モータ、前記圧縮機、前記膨張機及び前記少なくとも一つの非接触型軸受を収容するケーシングと、
  前記ケーシングの内部空間のうち前記圧縮機と前記膨張機との間の領域に連通するように設けられ、前記ケーシング内部において前記圧縮機側から前記膨張機側に向かう漏出冷媒の少なくとも一部を前記領域から前記ケーシングの外部の前記圧縮機の吸入側又は吐出側に接続される冷媒循環ラインに抽気するための抽気ラインと、を備え、
 前記ケーシングは、前記領域と前記ケーシングの外部との間の流体の流れが前記抽気ラインを介した前記漏出流体の少なくとも一部の流れのみとなるように、前記領域を前記ケーシングの外部から密閉するように構成される。
 上記実施形態に係る冷凍機では、膨張機一体型圧縮機のケーシングの内部空間のうち圧縮機と膨張機との間の領域に連通するように抽気ラインを設け、ケーシング内部において圧縮機側から膨張機側に向かう漏出冷媒の少なくとも一部を前記領域からケーシングの外部の前記圧縮機の吸入側又は吐出側に接続される冷媒循環ラインに抽気するようにした。このため、膨張機側に流入する高温の漏出冷媒が低減され、高温の漏出冷媒から膨張機への熱の移動が低減されるので、圧縮機側からの漏出冷媒に起因した膨張機の断熱効率低下を改善できる。したがってこの膨張機一体型圧縮機を用いた冷凍機のCOPを改善できる。
 また、仮に、ケーシングが外部から密閉されておらず、前記領域から冷媒循環ラインに向かう漏出冷媒以外のガスのケーシング外部から前記領域内への流入が許容される構成では、ケーシング外部から前記領域内に流入するガスから低温の膨張機側に熱が移動し得る。そのため、膨張機側への意図せぬ入熱要因として、漏出冷媒だけでなく、ケーシング外部から前記領域内に流入したガスも考えられ、抽気ラインを設けても、膨張機側への意図せぬ入熱要因を効果的に防ぐことは難しい。これに対し、上記実施形態に係る冷凍機では、膨張機一体型圧縮機のケーシングは前記領域とケーシングの外部との間の流体の流れが前記抽気ラインを介した前記漏出冷媒の少なくとも一部の流れのみとなるように、前記領域が前記ケーシングの外部から密閉される。そのため、膨張機側への意図せぬ入熱要因は基本的には漏出冷媒だけである。したがって、前記領域内において圧縮機側から膨張機側に向かう漏出冷媒の少なくとも一部を冷媒循環ラインに導く作動流体の流れを抽気ラインによって形成することで、膨張機側への意図せぬ入熱を効果的に防ぎ、COPを劇的に改善することができる。
 幾つかの実施形態では、前記膨張機一体型圧縮機は、前記抽気ラインに設けられ、前記漏出冷媒の抽気量を調節するための抽気バルブと、前記抽気バルブを制御するためのコントローラと、をさらに備え、前記コントローラは、冷凍機COP、及び、前記膨張機の吸入側と吐出側との冷媒温度差の少なくとも何れか一つに基づいて、前記抽気バルブの開度を制御するように構成される。
 なお、冷凍機COPは、例えば式(1)消費電力基準COP(COP)及び式(2)圧縮動力基準COP(COP)などから求められる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
(ただし、上記式(1)及び式(2)において、Gは冷媒循環ラインを循環する冷媒の質量流量[kg/s]であり、Pはモータの動力(消費電力)[W]であり、hは圧縮機入口エンタルピ[J/kg]であり、hは圧縮機出口エンタルピ[J/kg]であり、hは冷却部用熱交換器入口エンタルピ[J/kg]であり、hは冷却部用熱交換器出口エンタルピ[J/kg]である。)
 漏出冷媒により膨張機側に流入する熱は、漏出冷媒を冷媒循環ラインに抽気する抽気量が多いほど減少する。一方、抽気量を多くしすぎると、圧縮機で圧縮された後、冷媒循環ラインを循環せず、冷却対象物の冷却に寄与しない漏出冷媒が増加することとなり、圧縮に用いられるモータ動力の増加及び圧縮機効率の低下を招くこととなる。したがって、膨張機一体型圧縮機を用いた冷凍機のCOPが最大になる抽気量(COP最大抽気量)が存在する。
 上記実施形態に係る冷凍機では、このような事情を鑑み、前記冷凍機COP又は、膨張機の吸入側と吐出側との冷媒温度差の少なくとも一方に基づいて、抽気バルブの開度を制御するように構成されたコントローラを設けた。このため、前記冷凍機COP又は、膨張機の吸入側と吐出側との冷媒温度差の少なくとも一方に基づいて、運転条件に応じて抽気量をCOP最大抽気量近傍の値となるように制御すれば冷凍機のCOPを向上させることができる。
 また、条件変化が少ない運転では、手動バルブにより開度調整を行い、一定開度でもよい。
 本発明の一実施形態に係る冷凍機の運転方法は、
 モータと、前記モータの出力軸に接続される圧縮機と、前記モータの前記出力軸に接続される膨張機と、前記圧縮機と前記膨張機の間に配置され、前記出力軸を非接触で支持するための少なくとも一つの非接触型軸受と、前記モータ、前記圧縮機、前記膨張機及び前記少なくとも一つの非接触型軸受を収容するケーシングと、を含み、
 前記ケーシングは、前記領域と前記ケーシングの外部との間の流体の流れが前記抽気ラインを介した前記漏出流体の少なくとも一部の流れのみとなるように、前記領域を前記ケーシングの外部から密閉するように構成された膨張機一体型圧縮機を備える冷凍機の運転方法であって、
 前記圧縮機により冷媒を圧縮する圧縮ステップと、
 前記圧縮ステップにおいて圧縮された前記冷媒を前記膨張機により膨張させる膨張ステップと、
 前記膨張ステップにおいて膨張された前記冷媒との熱交換により冷却対象物を冷却する冷却ステップと、
 前記ケーシングの内部空間のうち前記圧縮機と前記膨張機との間の領域に連通するように設けられた抽気ラインを通じて、前記ケーシング内部において前記圧縮機側から前記膨張機側に向かう漏出冷媒の少なくとも一部を前記ケーシング内部の前記領域から前記ケーシングの外部の前記圧縮機の吸入側又は吐出側に接続される冷媒循環ラインに抽気する抽気ステップと、を備える。
 上記実施形態に係る運転方法によれば、抽気ステップにおいて、膨張機一体型圧縮機のケーシングの内部空間のうち圧縮機と膨張機との間の領域に連通するように設けられた抽気ラインを通じて、ケーシング内部において圧縮機側から膨張機側に向かう漏出冷媒の少なくとも一部を前記領域からケーシングの外部の前記圧縮機の吸入側又は吐出側に接続される冷媒循環ラインに抽気するようにした。このため、膨張機側に流入する高温の漏出冷媒が低減され、高温の漏出冷媒から膨張機への熱の移動が低減されるので、圧縮機側からの漏出冷媒に起因した膨張機の断熱効率低下を改善できる。したがって膨張機一体型圧縮機を用いた冷凍機のCOPを改善できる。
 また、仮に、ケーシングが外部から密閉されておらず、前記領域から冷媒循環ラインに向かう漏出冷媒以外のガスのケーシング外部から前記領域内への流入が許容される構成では、ケーシング外部から前記領域内に流入するガスから低温の膨張機側に熱が移動し得る。そのため、膨張機側への意図せぬ入熱要因には、漏出冷媒だけでなく、ケーシング外部から前記領域内に流入したガスも考えられ、抽気ラインを設けても、膨張機側への意図せぬ入熱要因を効果的に防ぐことは難しい。これに対し、上記実施形態に係る冷凍機の運転方法では、膨張機一体型圧縮機のケーシングは前記領域とケーシングの外部との間の流体の流れが前記抽気ラインを介した前記漏出冷媒の少なくとも一部の流れのみとなるように、前記領域が前記ケーシングの外部から密閉される。そのため、膨張機側への意図せぬ入熱要因は基本的には漏出冷媒だけである。したがって、前記領域内において圧縮機側から膨張機側に向かう漏出冷媒の少なくとも一部を冷媒循環ラインに導く作動流体の流れを抽気ラインによって形成することで、膨張機側への意図せぬ入熱を効果的に防ぎ、COPを劇的に改善することができる。
 幾つかの実施形態では、前記冷凍機COP又は、前記膨張機の吸入側と吐出側との冷媒温度差の少なくとも一方に基づいて、前記ケーシング内部の前記領域から前記圧縮機の吸入側への抽気量を調節する抽気量調節ステップをさらに備える。
 この場合、前記冷凍機COP又は、膨張機の吸入側と吐出側との冷媒温度差の少なくとも一方に基づいて抽気量を調節するので、冷凍機のCOPを向上させることができる。
 本発明の少なくとも一実施形態によれば、膨張機一体型圧縮機のケーシング内部で圧縮機側から漏出した流体から膨張機に移動する熱を低減し、冷凍機の成績係数(COP)を向上し得る。
一実施形態に係る膨張機一体型圧縮機の構成の概略を示す図である。 一実施形態に係る冷凍機の構成の概略を示す模式図である。 一実施形態に係る冷凍機の構成の概略を示す模式図である。 一実施形態に係る冷凍機の構成の概略を示す模式図である。 一実施形態に係る冷凍機と比較例の冷凍機の膨張機断熱効率比の比較を示すグラフである。 一実施形態に係る冷凍機と比較例の冷凍機の冷凍能力比の比較を示すグラフである。 一実施形態に係る冷凍機と比較例の冷凍機のCOP比の比較を示すグラフのである。
 以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 図1は、一実施形態に係る膨張機一体型圧縮機の構成の概略を示す図である。同図に示すように、膨張機一体型圧縮機1は、モータ2と、圧縮機4と、膨張機6と、非接触型軸受32,34,36と、ケーシング9と、抽気ライン24とを備える。
 圧縮機4は、モータ2の出力軸3に接続され、モータ2によって駆動されて流体を圧縮するように構成される。一方、膨張機6は、モータ2の出力軸3に接続され、流体を膨張させて流体から出力軸3の動力を回収するように構成される。モータ2は、図1に示すように、圧縮機4と膨張機6の間に配置されていてもよい。また、他の実施形態では、モータ2は、圧縮機4と膨張機の外側に配置されていてもよい(すなわち、例えば、出力軸3の軸方向において、モータ2、圧縮機4、膨張機6の順に配置されていてもよい)。
 モータ2の出力軸3は、圧縮機4と膨張機6との間に配置されたラジアル磁気軸受32,34及びスラスト磁気軸受36(本明細書においてまとめて非接触型軸受32,34,36又は磁気軸受32,34,36と称することがある。)によって非接触で支持される。ラジアル磁気軸受32,34は、出力軸3の軸方向においてモータ2の両側に設けられ、磁力によって出力軸3を浮上させて出力軸3のラジアル荷重を負担する。一方、スラスト磁気軸受36は、出力軸3の軸方向においてモータ2の一方の側(図1に示す実施形態ではモータ2と膨張機6との間)に設けられ、出力軸3に設けられたアキシャルロータディスク37との間にギャップが形成されるように磁力によって出力軸3のスラスト荷重を負担する。
 ケーシング9は、モータ2と、圧縮機4と、膨張機6と、ラジアル磁気軸受32,34及びスラスト磁気軸受36を収容する。
 なお、スラスト磁気軸受36及び出力軸3に設けられたアキシャルロータディスク37とは、圧縮機4とモータ2の間に設けられてもよい。
 幾つかの実施形態では、膨張機一体型圧縮機1のケーシング9内部には、圧縮機4からの作動流体のケーシング9内部への漏えいを抑制するためのシール部44が設けられる。また、膨張機6からの作動流体のケーシング9内部への漏えいを抑制するためのシール部64とが設けられてもよい。シール部44,64は、例えば、ラビリンスシールであってもよい。この場合、ラビリンスシール44,64は、図1に示すように、圧縮機4のインペラ42又は膨張器6のタービンロータ62の背面側であってインペラ42又はタービンロータ62とケーシング9との間、及び出力軸3の周囲であって出力軸3とケーシング9との間に、それぞれ設けられていてもよい。
 ところが、圧縮機4からの作動流体のケーシング9内部への漏えいを抑制するシール部44を設けても、圧縮機4からの作動流体のケーシング9内部への漏えいを完全に阻止することは難しい。すなわち、膨張機一体型圧縮機1のケーシング9内部において、圧縮機4で圧縮され高温となった作動流体の一部は、圧縮機インペラ42の背面と領域5の間を密封するためのシール部44のわずかな間隙を通って圧縮機4側から前記領域5に侵入する。領域5に侵入した圧縮機4側からの漏出流体は、出力軸3と磁気軸受32,34,36との間にはギャップを通過し、作動温度が圧縮機4よりも低い膨張機6側に漏出する。
 このため、圧縮機4側からの高温の漏出流体に起因して意図せぬ膨張機6への入熱が起こり、膨張機6の断熱効率が低下してしまうおそれがある。
 そこで、幾つかの実施形態では、このようにケーシング9内部において圧縮機4側から膨張機6側に向かう漏出流体の少なくとも一部を、領域5からケーシング9の外部の圧縮機4の吸入側又は吐出側に接続される流体ラインに抽気するために抽気ライン24を設ける。
 抽気ライン24は、ケーシング9の内部空間のうち、圧縮機4と膨張機6との間の領域5に連通するように設けられる。一実施形態では、抽気ライン24は、ケーシング9を貫通するように径方向に延在している。なお、抽気ライン24が設けられる軸方向位置は特に限定されず、図1に示すように出力軸3に設けられたアキシャルロータディスク37と同一の軸方向位置に抽気ライン24を形成してもよい。
 抽気ライン24を設けることで、膨張機6側に流入する高温の漏出流体が低減され、高温の漏出流体から膨張機6への熱の移動が低減される。これにより、圧縮機4側からの漏出流体に起因した膨張機6の断熱効率低下を改善でき、したがって膨張機一体型圧縮機1を用いた冷凍機のCOPを改善できる。
 幾つかの実施形態では、ケーシング9は、前記領域5とケーシング9の外部との間の流体の流れが抽気ライン24を介した前記漏出流体の少なくとも一部の流れのみとなるように、前記領域5をケーシング9の外部から密閉するように構成される。
 仮に、ケーシング9が外部から密閉されておらず、前記領域5から流体ラインに向かう漏出流体以外のガスのケーシング9外部から前記領域5内への流入が許容される構成では、ケーシング9外部から前記領域内に流入するガスから低温の膨張機6側に熱が移動し得る。そのため、膨張機6側への意図せぬ入熱要因には、漏出流体だけでなく、ケーシング9外部から前記領域5内に流入したガスも考えられ、抽気ライン24を設けても、膨張機6側への意図せぬ入熱要因を効果的に防ぐことは難しい。これに対し、本実施形態に係る膨張機一体型圧縮機1では、ケーシング24は前記領域とケーシング9の外部との間の流体の流れが前記抽気ライン24を介した前記漏出流体の少なくとも一部の流れのみとなるように、前記領域5が前記ケーシング9の外部から密閉される。そのため、膨張機6側への意図せぬ入熱要因は基本的には漏出流体だけである。したがって、前記領域5内において圧縮機4側から膨張機6側に向かう漏出流体の少なくとも一部を流体ラインに導く作動流体の流れを抽気ライン24によって形成することで、膨張機6側への意図せぬ入熱を効果的に防ぎ、COPを劇的に改善することができる。
 幾つかの実施形態では、膨張機一体型圧縮機は前記圧縮機とは異なる少なくとも一つの第2圧縮機をさらに備え、前記第2圧縮機は、前記モータの前記出力軸に接続される。
 例えば、第2圧縮機、圧縮機4、モータ2及び膨張機6がこの順に配置されるように、第2圧縮機、圧縮機4及び膨張機6がモータ2の出力軸3に接続されてもよい。
 また、幾つかの実施形態では、膨張機一体型圧縮機1は、圧縮機4とは異なる第2圧縮機を2以上備えていてもよい。
 1以上の第2圧縮機は、モータ2とは別のモータの出力軸に接続され、該モータによって駆動されてもよい。例えば、モータ2とは別のモータの出力軸の両端に1台ずつの第2圧縮機を設け、膨張機一体型圧縮機全体として膨張機1台に対して圧縮機を3台備える構成としてもよい。
 次に、図2~図4を用いて、実施形態に係る冷凍機について説明する。
 図2~図4は、それぞれ、一実施形態に係る冷凍機の構成を示す模式図である。
 図2~図4に示すように、冷凍機100は、冷却対象物を冷却するための冷却部16と、圧縮機4及び膨張機6が一体化された膨張機一体型圧縮機1と、冷媒循環ライン22とを備える。図2~図4に示す冷凍機100では、膨張機一体型圧縮機1として、図1に示した、抽気ライン24を備える膨張機一体型圧縮機1が用いられる。
 幾つかの実施形態では、図2~図4に示すように、冷媒循環ライン22上には、圧縮機4と、熱交換器12と、冷熱回収熱交換器14と、膨張機6と、冷却部16とがこの順に設けられ、冷媒循環ライン22はこれらの機器を通して冷媒を循環させるように構成される。
 圧縮機4は、モータ2の出力軸3に接続され、モータ2によって駆動されて流体を圧縮されるように構成される。また、膨張機6は、モータ2の出力軸3に接続され、流体を膨張させて流体から出力軸3の動力を回収するように構成される。
 熱交換器12は、冷媒を冷却水と熱交換することにより冷却するために設けられ、冷熱回収熱交換器14は、冷媒の冷熱を回収するために設けられる。
 冷却部16は、冷却対象物を冷媒との熱交換により冷却するために設けられる。
 冷媒循環ライン22を循環する冷媒は、圧縮機4により圧縮されて温度及び圧力が上昇した後、下流側に設けられた熱交換器12において冷却水と熱交換することにより冷却される。その後、冷媒は冷熱回収熱交換器14によってさらに冷却された後、膨張機6によって膨張されて温度及び圧力が低下することで冷熱を生成する。
 膨張機6から吐出された冷媒は、冷却部16において冷却対象物と熱交換することにより冷却対象物を冷却するとともに、熱負荷によって温度が上昇する。
 冷却部16において昇温された冷媒は、冷熱回収熱交換器14に導入され、上述の熱交換器12を通った高温の圧縮冷媒と熱交換することにより、残った冷熱を圧縮冷媒に回収させる。この後冷媒は圧縮機4に戻り、再度上述したように圧縮機4により圧縮される。
 冷凍機100においては、このような冷凍サイクルが構成される。
 幾つかの実施例では、冷却部16において冷媒との熱交換により冷却される冷却対象物は、超電導ケーブル等の超電導機器を冷却するための液体窒素である。この場合、超電導機器が超電導状態となるために極低温での冷却が必要となる。このとき、冷凍機100の膨張機6の吐出側では冷媒が極低温であるため、冷媒循環ライン22内では、圧縮機4側の温度と膨張機6側の温度の差が大きい。例えば、一実施例において、冷媒循環ライン22の温度は、圧縮機4の吸入側では約30~40℃、吐出側では約90~100℃であるのに対し、膨張機6の吸入側では約-190~-200℃、吐出側では約-210~-220℃である。
 このように圧縮機4側と膨張機6側では温度差が大きいため、ケーシング9内部においても圧縮機4側と膨張機6側では大きな温度差がある。このため、圧縮機4側から膨張機6側に向かう漏出冷媒が少量だとしても、膨張機の断熱効率を低下させる要因となる。したがって、抽気ラインを設けて高温の漏出冷媒をケーシング9の外部に抽気することにより、膨張機4側から圧縮機6側へ流入する熱を低減することができるということは、特にこのような極低温を扱う領域において意義が大きい。
 なお、冷媒循環ラインを流れる冷媒としては、冷却対象物の冷却目標温度などに応じて適宜選択することができ、例えばヘリウム、ネオン、水素、窒素、空気、炭化水素等を用いることができる。
 幾つかの実施形態では、図2及び図4に示すように、膨張機一体型圧縮機1のケーシング9内部空間のうち圧縮機4と膨張機6との間の領域5に連通する抽気ライン24は、ケーシング9外部の圧縮機4の吸入側に接続される冷媒循環ライン22aに接続される。また、抽気ライン24上には、抽気量を調整するための抽気バルブ26が設けられる。
 抽気ライン24を設けたことで、膨張機6側に流入する高温の漏出流体が低減され、高温の漏出流体から膨張機6への熱の移動が低減されることにより、圧縮機4側からの漏出流体に起因した膨張機6の断熱効率低下を改善できる。また、膨張機6側に流入する高温の漏出流体を、抽気ライン24を経由して冷媒循環ライン22に戻すので、漏出流体を冷却対象物の冷却に寄与させることができる。したがって冷凍機100のCOPを改善できる。
 また、抽気ライン24上に抽気バルブ26が設けられているため、抽気ライン24において抽気バルブ26の前後で差圧が発生する。つまり、抽気ライン24のうち抽気バルブ26の上流側(前記領域5側)では、圧縮機4で圧縮され高圧となった冷媒が漏出冷媒として存在しており比較的高圧である。これに対して、抽気ライン24のうち抽気バルブ26の下流側(冷媒循環ライン22a側)では、冷媒は圧縮機4で圧縮される前の低圧の状態である。したがって、抽気ライン24において抽気バルブ26の前後で差圧が発生するため、比較的高圧側の前記領域5側に存在する漏出冷媒は、上記差圧に基づいて比較的低圧側の冷媒循環ライン22a側に自動的に流れることとなる。したがって、動力を加えずとも前記領域5に存在する漏出冷媒を容易に冷媒循環ライン22に戻すことができるので、エネルギー効率において優れ、COPが向上する。
 また、圧縮機4の吸入側に接続される冷媒循環ライン22aは、冷媒循環ライン22において低温となった冷媒が冷熱を使い切った後で戻ってくる箇所であり、冷媒循環ライン22全体の中では比較的高温の部分である。したがって、ケーシング9内部の前記領域5に存在する高温の漏出冷媒を、圧縮機4の吸入側に接続される冷媒循環ライン22aに流入させても、冷凍機100の性能を低下させる要因とはなりにくい。
 図3に示す冷凍機100では、膨張機一体型圧縮機1のケーシング9内部空間のうち圧縮機4と膨張機6との間の領域5に連通する抽気ライン24は、ケーシング9外部の圧縮機4の吐出側に接続される冷媒循環ライン22bに接続される。また、抽気ライン24上には、ケーシング9内部において圧縮機4側から膨張機6側に向かう漏出冷媒を前記領域5から冷媒循環ライン22bに圧送するための抽気圧縮機18が設けられる。
 抽気ライン24を設けたことで、膨張機6側に流入する高温の漏出流体が低減され、高温の漏出流体から膨張機6への熱の移動が低減されることにより、圧縮機4側からの漏出流体に起因した膨張機6の断熱効率低下を改善できる。また、膨張機6側に流入する高温の漏出流体を、抽気ライン24を経由して冷媒循環ライン22bに戻すので、抽気ライン24が冷媒循環ライン22aに接続されている場合に比べて、モータ2の動力を低減できる。
 また、抽気ライン24上に、漏出冷媒を前記領域5から冷媒循環ライン22bに圧送するための抽気圧縮機18が設けられる。これにより漏出冷媒を圧縮して冷媒循環ライン22bに圧送し、圧縮機4で圧縮されて高圧となった冷媒と合流させて、冷却対象物を冷却するための冷媒として用いることができる。
 この際、膨張機一体型圧縮機1のモータ2を作動させるための動力とは別に、抽気圧縮機18を作動させるための動力が必要となるが、その分、冷媒循環ライン22bを流れる冷媒よりも多少高い圧力の冷媒が抽気圧縮機18から冷媒循環ライン22bに合流することになり、冷凍機100全体としては抽気圧縮機18の吐出流量が加えられる分、冷凍能力が高くなる。このため、COPを向上させることができる。
 また、圧縮機4の吐出側に接続される冷媒循環ライン22bは、冷媒循環ライン22において圧縮機4により圧縮され圧力及び温度が上昇した冷媒が流入する箇所であり、冷媒循環ライン22全体の中では高温の部分である。したがって、ケーシング9内部の前記領域5に存在する高温の漏出冷媒を、膨張機4の吐出側に接続される冷媒循環ライン22bに流入させても、冷凍機100の性能を低下させる要因とはなりにくい。
 図4に示す例示的な実施形態では、膨張機一体型圧縮機1が、図2に示す冷凍機と同様の構成に加え、抽気バルブ26を制御するためのコントローラ70をさらに備える。
 コントローラ70は、冷凍機COP、又は、膨張機6の吸入側と吐出側との冷媒温度差の少なくとも一方に基づいて、抽気バルブ26の開度を制御するように構成される。
 冷凍機COPは、例えば、モータ2の動力(消費電力)を計測して算出することができる。この場合、動力計測を動力センサ71で行い、計測結果はコントローラ70に送信される。
 膨張機6の吸入側及び吐出側の温度の計測は、それぞれ、冷媒循環ライン22の膨張機6の吸入側に設置された温度センサ72及び膨張機6の吐出側に設置された温度センサ73で行い、計測結果はコントローラ70に送信される。コントローラ70は、温度センサ72及び温度センサ73で計測された温度から膨張機6の吸入側と吐出側との冷媒温度差を計算する。
 また、抽気ライン24に設置された流量センサ74により、前記領域5からケーシング9外部の圧縮機4の吸入側に接続される冷媒循環ライン22aに抽気される漏出冷媒の抽気量が計測され、計測結果がコントローラ70に送信される。
 幾つかの実施形態では、コントローラ70は、抽気ライン24における漏出冷媒の流量、モータ2の動力、冷凍機100のCOP又は膨張機6の吸入側と吐出側との冷媒温度差などの計測に基づいて、ケーシング9内部の領域5から圧縮機4の吸入側への抽気量を調節するように構成される。なお、冷凍機COPは、例えば式(1)消費電力基準COP(COP)及び式(2)圧縮動力基準COP(COP)などから求められる。この際、式(1)及び式(2)において、Gは冷媒循環ライン22を循環する冷媒の質量流量[kg/s]であり、Pはモータ2の動力(消費電力)[W]であり、hは圧縮機4入口エンタルピ[J/kg]であり、hは圧縮機4出口エンタルピ[J/kg]であり、hは冷却部16用熱交換器入口エンタルピ[J/kg]であり、hは冷却部16用熱交換器出口エンタルピ[J/kg]である。
 一実施形態では、コントローラ70は、目標とする冷凍機COP(以下において「目標冷凍機COP」ともいう。)又は膨張機6の吸入側と吐出側の温度差の少なくとも一方を含む冷凍機100の運転条件を示す情報が記憶されたメモリを備え、動力センサ71などから算出された冷凍機COP(以下において「測定冷凍機COP」ともいう。)又は温度センサ72,73の少なくとも一方の検出結果に基づいて前記運転条件が実現されるように抽気バルブ26の開度を制御して抽気量を調節する。なお、コントローラ70は、メモリに記憶された冷凍機100の運転条件を示す情報と、測定冷凍機COP又は温度センサ72,73の少なくとも一方の検出結果との偏差に基づいて抽気バルブ26の開度指令値を決定してもよい。この場合、コントローラ70は、抽気バルブ26の開度指令値を決定するための制御器として、例えばP制御器、PI制御器、PID制御器等を含んでいてもよい。また、COPが最大となる冷凍機100の運転条件は、冷却部16における冷却負荷に応じて変化してもよい。この場合、コントローラ70は、冷却部16における冷却負荷に応じた運転条件が実現されるように、測定冷凍機COP又は温度センサ72,73の少なくとも一方の検出結果に基づいて抽気量を調節してもよい。
 なお、エンタルピh、h、h及びhは、それぞれ、各ポイントでの圧力P、P、P及びP、温度T、T、T及びTの計測値から求められる。そこで、幾つかの実施形態に係る冷凍機100には、冷媒循環ライン22を循環する冷媒の質量流量を測定するための流量計(図示しない)や、圧縮機4の入口及び出口と冷却部16の入口及び出口の温度及び圧力をそれぞれ測定するための温度センサ(図示しない)及び圧力センサ(図示しない)を設けてもよい。
 他の実施形態では、コントローラ70は、目標冷凍機COP又は膨張機6の吸入側と吐出側の温度差の最大値の少なくとも一方を示す情報が記憶されたメモリを備え、測定冷凍機COP又は温度センサ72,73の少なくとも一方の検出結果が目標冷凍機COP又は膨張機6の吸入側と吐出側の温度差の最大値に近づくように、抽気バルブ26の開度を制御して抽気量を調節する。なお、コントローラ70は、メモリに記憶された目標冷凍機COP又は膨張機6の吸入側と吐出側の温度差の最大値を示す情報と、測定冷凍機COP又は温度センサ72,73の少なくとも一方の検出結果との偏差に基づいて抽気バルブ26の開度指令値を決定してもよい。この場合、コントローラ70は、抽気バルブ26の開度指令値を決定するための制御器として、例えばP制御器、PI制御器、PID制御器等を含んでいてもよい。
 幾つかの実施形態では、コントローラ70は、スラスト磁気軸受36の負荷(スラスト荷重)の許容値を超えないように決定された抽気量の上限値を超えないように、ケーシング9内部の領域5から圧縮機4の吸入側への抽気量を調節するように構成される。
 スラスト磁気軸受36の磁力は、出力軸3に加わるスラスト荷重に抗して出力軸3の浮上位置を維持するように電流制御することによって制御される。また、スラスト磁気軸受36には負荷の許容値(最大値)が存在する。
 出力軸3に加わるスラスト荷重は、圧縮機4側における圧縮行程区間(インペラ42外周部)の圧力に起因する力と膨張機6側における膨張行程区間(タービンロータ62外周部)の圧力に起因する力との差によって決まる。したがって、抽気バルブ26を閉じた状態での冷凍機運転時は、出力軸3に加わるスラスト荷重に応じた負荷がスラスト磁気軸受36に加わり、この負荷に抗して出力軸3の浮上位置を維持するように電流制御がされる。
 ここで、抽気バルブ26を開けると、漏出冷媒が抽気ライン24を通じて外部に抽気されることにより、ケーシング9の内部の圧力が減少する。この際、図2に示すように圧縮機4のインペラ42の径が膨張機6のタービンロータ62の径よりも大きいと、インペラ42及びタービンロータ62の表面と裏面との間に生じる力の差はインペラ42のほうが大きくなる。このため、抽気バルブ26の開度を大きくすると、それに伴って圧縮機4側から膨張機6側に向かうスラスト荷重が増加する。よって、スラスト磁気軸受36で負担できるスラスト荷重の最大値に対応した抽気量が存在する。
 したがって、上記実施形態のように、スラスト磁気軸受36の負荷が許容値を超えないように決定された上限値を抽気量が超えないように抽気バルブ26の開度制御を行うことで、冷凍機の運転に支障のない適切な範囲内で抽気量の制御をすることができる。
 他の実施形態では、コントローラ70は、スラスト磁気軸受36が負担するスラスト荷重がスラスト磁気軸受36の耐荷重を超えないように、ケーシング9内部の領域5から圧縮機4の吸入側への抽気量を調節するように構成される。
 一実施形態では、コントローラ70は、スラスト磁気軸受36の耐荷重に安全率を乗じた許容スラスト荷重にスラスト磁気軸受36で負担するスラスト荷重が一致するような抽気量が実現されるように抽気バルブ26の開度制御を行う。
 この場合、膨張機一体型圧縮機1にスラスト磁気軸受36の荷重を計測するための荷重センサを設置し、荷重センサでの計測結果がコントローラ70に送信されるようにしてもよい。
 次に、図1及び図2を用いて実施形態に係る冷凍機の運転方法を説明する。
 一実施形態に係る冷凍機の運転方法は、図1に示す膨張機一体型圧縮機1を備える冷凍機の運転方法であり、圧縮ステップと、膨張ステップと、冷却ステップと、抽気ステップとを備える。
 圧縮ステップで圧縮機4により冷媒を圧縮した後、膨張ステップでは、圧縮ステップにおいて圧縮された冷媒を膨張機6により膨張させる。その後、冷却ステップでは、膨張ステップにおいて膨張された冷媒との熱交換により冷却対象物を冷却する。幾つかの実施形態では、圧縮ステップの後、膨張ステップの前に、圧縮ステップで圧縮された冷媒を冷却するステップを設けてもよい。
 抽気ステップでは、ケーシング9の内部空間のうち圧縮機4と膨張機6との間の領域5に連通するように設けられた抽気ライン24を通じて、ケーシング9内部において圧縮機4側から膨張機6側に向かう漏出冷媒の少なくとも一部をケーシング9内部の領域5からケーシング9の外部の圧縮機4の吸入側に接続される冷媒循環ラインに22aに抽気する。
 抽気ステップにおいて、漏出冷媒の少なくとも一部をケーシング9内部の前記領域5からケーシング9の外部の圧縮機4の吸入側に接続される冷媒循環ラインに22aに抽気する。これにより、膨張機6側に流入する高温の漏出流体が低減され、高温の漏出流体から膨張機6への熱の移動が低減されることにより、圧縮機4側からの漏出流体に起因した膨張機6の断熱効率低下を改善できる。また、膨張機6側に流入する高温の漏出流体を、抽気ライン24を経由して冷媒循環ライン22に戻すので、漏出流体を冷却能力に影響を及ぼさずに適切に処理ができる。したがって冷凍機100のCOPを改善できる。
 次に、図1及び図4を用いて他の実施形態に係る冷凍機の運転方法を説明する。
 実施形態に係る冷凍機の運転方法は、図1に示す膨張機一体型圧縮機1を備える冷凍機の運転方法であり、圧縮ステップと、膨張ステップと、冷却ステップと、抽気ステップと、抽気量調節ステップとを備える。
 圧縮ステップ、膨張ステップ、冷却ステップ及び抽気ステップについては、前述の実施形態に係る冷凍機の運転方法と同様であるので、説明を省略する。
 抽気量調節ステップでは、冷凍機COP、又は、膨張機6の吸入側と吐出側との冷媒温度差の少なくとも一方に基づいて、ケーシング9内部の領域5から圧縮機4の吸入側への抽気量を調節する。
 幾つかの実施形態では、冷凍機COPを算出するためのモータ2の動力の計測は、モータ2の動力(消費電力)を計測するための動力センサ71で行い、計測結果はコントローラ70に送信される。
 膨張機6の吸入側及び吐出側の温度の計測は、それぞれ、冷媒循環ライン22の膨張機6の吸入側に設置された温度センサ72及び膨張機6の吐出側に設置された温度センサ73で行い、計測結果はコントローラ70に送信される。コントローラ70は、温度センサ72及び温度センサ73で計測された温度から膨張機6の吸入側と吐出側との冷媒温度差を計算する。
 また、抽気ライン24に設置された流量センサ74により、前記領域5からケーシング9外部の圧縮機4の吸入側に接続される冷媒循環ライン22aに抽気される漏出冷媒の抽気量が計測され、計測結果がコントローラ70に送信される。
 幾つかの実施形態では、コントローラ70は、抽気ライン24における漏出冷媒の流量、モータ2の動力、前記冷凍機100のCOP又は膨張機6の吸入側と吐出側との冷媒温度差などの計測に基づいて、ケーシング9内部の領域5から圧縮機4の吸入側への抽気量を調節するように構成される。
 一実施形態では、コントローラ70は、目標冷凍機COP又は膨張機6の吸入側と吐出側の温度差の少なくとも一方を含む冷凍機100の運転条件を示す情報が記憶されたメモリを備え、動力センサ71又は温度センサ72,73の少なくとも一方の検出結果に基づいて前記運転条件が実現されるように抽気バルブ26の開度を制御して抽気量を調節する。なお、コントローラ70は、メモリに記憶された冷凍機100の運転条件を示す情報と、動力センサ71又は温度センサ72,73の少なくとも一方の検出結果との偏差に基づいて抽気バルブ26の開度指令値を決定してもよい。この場合、コントローラ70は、抽気バルブ26の開度指令値を決定するための制御器として、例えばP制御器、PI制御器、PID制御器等を含んでいてもよい。また、COPが最大となる冷凍機100の運転条件は、冷却部16における冷却負荷に応じて変化してもよい。この場合、コントローラ70は、冷却部16における冷却負荷に応じた運転条件が実現されるように、動力センサ71又は温度センサ72,73の少なくとも一方の検出結果に基づいて抽気量を調節してもよい。
 他の実施形態では、コントローラ70は、目標冷凍機COP又は膨張機6の吸入側と吐出側の温度差の最大値の少なくとも一方を示す情報が記憶されたメモリを備え、測定冷凍機COP又は温度センサ72,73の少なくとも一方の検出結果が目標冷凍機COP又は膨張機6の吸入側と吐出側の温度差の最大値に近づくように、抽気バルブ26の開度を制御して抽気量を調節する。なお、コントローラ70は、メモリに記憶された目標冷凍機COP又は膨張機6の吸入側と吐出側の温度差の最大値を示す情報と、動力センサ71又は温度センサ72,73の少なくとも一方の検出結果との偏差に基づいて抽気バルブ26の開度指令値を決定してもよい。この場合、コントローラ70は、抽気バルブ26の開度指令値を決定するための制御器として、例えばP制御器、PI制御器、PID制御器等を含んでいてもよい。
 他の実施形態では、コントローラ70は、スラスト磁気軸受36が負担するスラスト荷重がスラスト磁気軸受36の耐荷重を超えないように、ケーシング9内部の領域5から圧縮機4の吸入側への抽気量を調節するように構成される。
 一実施形態では、コントローラ70は、スラスト磁気軸受36の耐荷重に安全率を乗じた許容スラスト荷重にスラスト磁気軸受36で負担するスラスト荷重が一致するような抽気量が実現されるように抽気バルブ26の開度制御を行う。
 この場合、膨張機一体型圧縮機1にスラスト磁気軸受36の荷重を計測するための荷重センサを設置し、荷重センサでの計測結果がコントローラ70に送信されるようにしてもよい。
 また、抽気量調節ステップでの抽気量の調節は、コントローラを介さずに、手動で行ってもよい。
 幾つかの実施形態では、抽気ライン24における漏出冷媒の流量、モータ2の動力、前記冷凍機100のCOP又は膨張機6の吸入側と吐出側との冷媒温度差などの計測に基づいて、ケーシング9内部の領域5から圧縮機4の吸入側への抽気量を調節する。
 一実施形態では、COPが最大となる目標冷凍機COP又は膨張機6の吸入側と吐出側の温度差の少なくとも一方を含む冷凍機100の運転条件を示す情報の記録を用意しておき、この記録及び測定冷凍機COP又は温度センサ72,73の少なくとも一方の検出結果に基づいて前記運転条件が実現されるように抽気バルブ26の開度を制御して抽気量を調節する。
 また、COPが最大となる冷凍機100の運転条件は、冷却部16における冷却負荷に応じて変化してもよい。この場合、冷却部16における冷却負荷に応じた運転条件が実現されるように、測定冷凍機COP又は温度センサ72,73の少なくとも一方の検出結果に基づいて抽気量を調節してもよい。
 他の実施形態では、目標冷凍機COP又は膨張機6の吸入側と吐出側の温度差の最大値の少なくとも一方を示す情報の記録を用意しておき、測定冷凍機COP又は温度センサ72,73の少なくとも一方の検出結果が目標冷凍機COP又は膨張機6の吸入側と吐出側の温度差の最大値に近づくように、抽気バルブ26の開度を制御して抽気量を調節する。なお、記録されている目標冷凍機COP又は膨張機6の吸入側と吐出側の温度差の最大値を示す情報と、測定冷凍機COP又は温度センサ72,73の少なくとも一方の検出結果との偏差に基づいて抽気バルブ26の開度指令値を決定してもよい。
 他の実施形態では、スラスト磁気軸受36が負担するスラスト荷重がスラスト磁気軸受36の耐荷重を超えないように、ケーシング9内部の領域5から圧縮機4の吸入側への抽気量を調節する。
 一実施形態では、スラスト磁気軸受36の耐荷重に安全率を乗じた許容スラスト荷重にスラスト磁気軸受36で負担するスラスト荷重が一致するような抽気量が実現されるように抽気バルブ26の開度制御を行う。
 次に、一実施形態に係る冷凍機によるCOP改善効果について、図5~図7を用いて説明する。
 図5は一実施形態に係る冷凍機と比較例の冷凍機の膨張機断熱効率比の比較を示すグラフであり、図6は一実施形態に係る冷凍機と比較例の冷凍機の冷凍能力比の比較を示すグラフであり、図7は一実施形態に係る冷凍機と比較例の冷凍機のCOP比の比較を示すグラフのである。
 本発明の実施形態である冷凍機100によるCOPの改善効果を確認するために、抽気ライン24及び抽気バルブ26を設けた図2に示す冷凍機100を用いて、各種測定を行った。なお、冷媒としてはネオンを用いた。
 比較例の冷凍機としては、抽気ライン24及び抽気バルブ26を設けない以外は図2に示す冷凍機100と同様の構成の冷凍機を用いた。
 図2に示す冷凍機100及び上記比較例の冷凍機を構築し、圧縮機4の吸入側圧力を変化させて、モータ2の動力、膨張機6の吸入側及び吐出側温度等の測定を行い、膨張機断熱効率、冷凍能力、COPを取得した。それぞれ結果を図5~図7に示す。なお、図5~図7の膨張機断熱効率比、冷凍能力比、COP比は、それぞれ、“抽気無し”で測定した結果を1としたときの比を表す。また、図5~図7の“圧縮機入口圧力(比率表示)”の基準圧力(圧縮機入口圧力=1)は、120kPaである。
 図5に示されるように、冷凍機100(“抽気有り”)では、測定した圧縮機4の吸入側圧力範囲で膨張機断熱効率が改善され、比較例の冷凍機(“抽気無し”)の膨張機断熱効率を基準として、冷凍機100では、約18%改善された。また、図6に示されるように、冷凍能力については比較例を基準として冷凍機100では約28%改善した。また、図7に示されるように、COP(圧縮動力基準)についても比較例を基準にして冷凍機100では約37%改善することが分かった。
 この結果より、抽気ライン24及び抽気バルブ26を設けない比較例の冷凍機に比較して、抽気ライン24及び抽気バルブ26を設けた冷凍機100では、COPが大幅に改善することが示された。
 1     膨張機一体型圧縮機
 2     モータ
 3     出力軸
 4     圧縮機
 5     領域
 6     膨張機
 9     ケーシング
12     熱交換器
14     冷熱回収熱交換器
16     冷却部
18     抽気圧縮機
22     冷媒循環ライン
24     抽気ライン
26     抽気バルブ
32     ラジアル磁気軸受
34     ラジアル磁気軸受
36     スラスト磁気軸受
37     アキシャルロータディスク
70     コントローラ
71     動力計
72     温度計
73     温度計
74     流量計
100   冷凍機
 

Claims (7)

  1.  モータと、
     前記モータの出力軸に接続され、前記モータによって駆動されて流体を圧縮するように構成された圧縮機と、
     前記モータの前記出力軸に接続され、前記流体を膨張させて前記流体から前記出力軸の動力を回収するように構成された膨張機と、
     前記圧縮機と前記膨張機の間に配置され、前記出力軸を非接触で支持するための少なくとも一つの非接触型軸受と、
     前記モータ、前記圧縮機、前記膨張機及び前記少なくとも一つの非接触型軸受を収容するケーシングと、
     前記ケーシングの内部空間のうち前記圧縮機と前記膨張機との間の領域に連通するように設けられ、前記ケーシング内部において前記圧縮機側から前記膨張機側に向かう漏出流体の少なくとも一部を前記領域から前記ケーシングの外部の前記圧縮機の吸入側又は吐出側に接続される流体ラインに抽気するための抽気ラインと、を備え、
     前記ケーシングは、前記領域と前記ケーシングの外部との間の流体の流れが前記抽気ラインを介した前記漏出流体の少なくとも一部の流れのみとなるように、前記領域を前記ケーシングの外部から密閉するように構成された膨張機一体型圧縮機。
  2.  前記圧縮機とは異なる少なくとも一つの第2圧縮機をさらに備え、
     前記第2圧縮機は前記モータの前記出力軸に接続される請求項1に記載の膨張機一体型圧縮機。
  3.  前記圧縮機とは異なる少なくとも一つの第2圧縮機をさらに備え、
     前記第2圧縮機は前記モータとは別の第2出力軸に接続される請求項1に記載の膨張機一体型圧縮機。
  4.  冷却対象物を冷媒との熱交換により冷却するための冷却部と、
     前記冷媒を圧縮するための圧縮機、及び、前記冷媒を膨張させるための膨張機が一体化された膨張機一体型圧縮機と、
     前記圧縮機、前記膨張機及び前記冷却部を通して前記冷媒を循環させるように構成された冷媒循環ラインと、を備える冷凍機であって、
     前記膨張機一体型圧縮機は、
      モータと、
      前記モータの出力軸に接続され、前記モータによって駆動されて前記冷媒を圧縮するように構成された前記圧縮機と、
      前記モータの前記出力軸に接続され、前記冷媒を膨張させて前記冷媒から前記出力軸の動力を回収するように構成された前記膨張機と、
      前記圧縮機と前記膨張機の間に配置され、前記出力軸を非接触で支持するための少なくとも一つの非接触型軸受と、
      前記モータ、前記圧縮機、前記膨張機及び前記少なくとも一つの非接触型軸受を収容するケーシングと、
      前記ケーシングの内部空間のうち前記圧縮機と前記膨張機との間の領域に連通するように設けられ、前記ケーシング内部において前記圧縮機側から前記膨張機側に向かう漏出冷媒の少なくとも一部を前記領域から前記ケーシングの外部の前記圧縮機の吸入側又は吐出側に接続される冷媒循環ラインに抽気するための抽気ラインと、を備え、
     前記ケーシングは、前記領域と前記ケーシングの外部との間の流体の流れが前記抽気ラインを介した前記漏出流体の少なくとも一部の流れのみとなるように、前記領域を前記ケーシングの外部から密閉するように構成された冷凍機。
  5.  前記膨張機一体型圧縮機は、前記抽気ラインに設けられ、前記漏出冷媒の抽気量を調節するための抽気バルブと、前記抽気バルブを制御するためのコントローラと、をさらに備え、
     前記コントローラは、前記冷凍機のCOP、又は、前記膨張機の吸入側と吐出側との冷媒温度差の少なくとも一方に基づいて、前記抽気バルブの開度を制御するように構成された請求項4に記載の冷凍機。
  6.  モータと、前記モータの出力軸に接続される圧縮機と、前記モータの前記出力軸に接続される膨張機と、前記圧縮機と前記膨張機の間に配置され、前記出力軸を非接触で支持するための少なくとも一つの非接触型軸受と、前記モータ、前記圧縮機、前記膨張機及び前記少なくとも一つの非接触型軸受を収容するケーシングと、を含み、
     前記ケーシングは、前記領域と前記ケーシングの外部との間の流体の流れが前記抽気ラインを介した前記漏出流体の少なくとも一部の流れのみとなるように、前記領域を前記ケーシングの外部から密閉するように構成された膨張機一体型圧縮機を備える冷凍機の運転方法であって、
     前記圧縮機により冷媒を圧縮する圧縮ステップと、
     前記圧縮ステップにおいて圧縮された前記冷媒を前記膨張機により膨張させる膨張ステップと、
     前記膨張ステップにおいて膨張された前記冷媒との熱交換により冷却対象物を冷却する冷却ステップと、
     前記ケーシングの内部空間のうち前記圧縮機と前記膨張機との間の領域に連通するように設けられた抽気ラインを通じて、前記ケーシング内部において前記圧縮機側から前記膨張機側に向かう漏出冷媒の少なくとも一部を前記ケーシング内部の前記領域から前記ケーシングの外部の前記圧縮機の吸入側又は吐出側に接続される冷媒循環ラインに抽気する抽気ステップと、を備える冷凍機の運転方法。
  7.  前記冷凍機のCOP、又は、前記膨張機の吸入側と吐出側との冷媒温度差の少なくとも一方に基づいて、前記ケーシング内部の前記領域から前記圧縮機の吸入側への抽気量を調節する抽気量調節ステップをさらに備える請求項6に記載の冷凍機の運転方法。
PCT/JP2014/077109 2013-11-11 2014-10-09 膨張機一体型圧縮機及び冷凍機並びに冷凍機の運転方法 WO2015068522A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2016122892A RU2652462C2 (ru) 2013-11-11 2014-10-09 Детандер-компрессор, холодильное устройство и способ эксплуатации холодильного устройства
KR1020167013567A KR101818872B1 (ko) 2013-11-11 2014-10-09 팽창기 일체형 압축기, 냉동기 및 냉동기의 운전 방법
US15/034,179 US9970449B2 (en) 2013-11-11 2014-10-09 Expander-integrated compressor, refrigerator and operating method for refrigerator
EP14860246.9A EP3056744B1 (en) 2013-11-11 2014-10-09 Expander-integrated compressor, freezer, and freezer operation method
CN201480061097.5A CN105765234B (zh) 2013-11-11 2014-10-09 膨胀机一体型压缩机与冷冻机及冷冻机的运转方法
ES14860246.9T ES2652674T3 (es) 2013-11-11 2014-10-09 Compresor con expansor integrado, refrigerador y procedimiento operativo para el refrigerador

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013233149A JP6276000B2 (ja) 2013-11-11 2013-11-11 膨張機一体型圧縮機及び冷凍機並びに冷凍機の運転方法
JP2013-233149 2013-11-11

Publications (1)

Publication Number Publication Date
WO2015068522A1 true WO2015068522A1 (ja) 2015-05-14

Family

ID=53041305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077109 WO2015068522A1 (ja) 2013-11-11 2014-10-09 膨張機一体型圧縮機及び冷凍機並びに冷凍機の運転方法

Country Status (8)

Country Link
US (1) US9970449B2 (ja)
EP (1) EP3056744B1 (ja)
JP (1) JP6276000B2 (ja)
KR (1) KR101818872B1 (ja)
CN (1) CN105765234B (ja)
ES (1) ES2652674T3 (ja)
RU (1) RU2652462C2 (ja)
WO (1) WO2015068522A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016178272A1 (ja) * 2015-05-01 2016-11-10 株式会社前川製作所 冷凍機及び冷凍機の運転方法
JP2020133500A (ja) * 2019-02-20 2020-08-31 株式会社豊田自動織機 ターボ式流体機械

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10753655B2 (en) * 2015-03-30 2020-08-25 William A Kelley Energy recycling heat pump
JP6650754B2 (ja) * 2015-12-25 2020-02-19 株式会社前川製作所 膨張機一体型圧縮機及び冷凍機
ITUA20161513A1 (it) * 2016-03-09 2017-09-09 Nuovo Pignone Tecnologie Srl Motocompressore - espantore integrato
JP6799946B2 (ja) 2016-05-26 2020-12-16 Ntn株式会社 電動式直動アクチュエータ
JP6747878B2 (ja) * 2016-06-07 2020-08-26 株式会社Ihi 回転機械
KR101835338B1 (ko) 2016-08-30 2018-03-07 엘지전자 주식회사 압축기 및 그것을 포함하는 칠러 시스템
CN106766373A (zh) * 2016-12-20 2017-05-31 江苏大学 一种高温泵轴承冷却余热回收系统
JP2018141708A (ja) 2017-02-28 2018-09-13 三菱重工サーマルシステムズ株式会社 温度予測装置、磁気軸受搭載圧縮機、温度予測方法及びプログラム
US10227990B2 (en) * 2017-05-05 2019-03-12 Borgwarner Inc. Bearing and method of making and using the same
FR3072429B1 (fr) * 2017-10-16 2020-06-19 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif et procede de compression
FR3072428B1 (fr) * 2017-10-16 2019-10-11 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif et procede de compression et machine de refrigeration
WO2020025135A1 (de) * 2018-08-01 2020-02-06 Bitzer Kühlmaschinenbau Gmbh Kältemittelkreislauf
JP7380303B2 (ja) 2020-02-19 2023-11-15 中国電力株式会社 発電設備の冷却装置
JP7413825B2 (ja) 2020-02-19 2024-01-16 中国電力株式会社 発電設備の冷却装置
JP6861922B1 (ja) * 2021-01-14 2021-04-21 大陽日酸株式会社 冷凍機の制御方法、冷凍機の制御プログラム及び冷凍機
FR3119012A1 (fr) * 2021-01-18 2022-07-22 Gilles BRULE Pompe à chaleur
KR20230100184A (ko) * 2021-12-28 2023-07-05 ㈜티앤이코리아 냉각 기로를 구비한 기체 사이클 히트 펌프

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791760A (ja) 1993-09-17 1995-04-04 Hitachi Ltd 磁気軸受式タービンコンプレッサ
JP2005098604A (ja) * 2003-09-25 2005-04-14 Mitsubishi Electric Corp 冷凍空調装置
WO2006011248A1 (ja) * 2004-07-30 2006-02-02 Mitsubishi Heavy Industries, Ltd. 空気冷媒式冷却装置および空気冷媒式冷却装置を用いた空気冷媒冷熱システム
WO2006011297A1 (ja) * 2004-07-30 2006-02-02 Mitsubishi Heavy Industries, Ltd. 空気冷媒式冷却装置
JP2006118772A (ja) * 2004-10-20 2006-05-11 Kajima Corp 空気冷媒式冷凍装置
JP2008298322A (ja) * 2007-05-29 2008-12-11 Mayekawa Mfg Co Ltd 空気冷媒式冷凍装置
JP2010043780A (ja) * 2008-08-12 2010-02-25 Ntn Corp 空気サイクル冷凍ユニット

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791160A (ja) 1993-09-28 1995-04-04 Sanwa Shutter Corp 建築用電動開閉装置の作動回路構造
US6310414B1 (en) * 1994-06-21 2001-10-30 Rotoflow Corporation Shaft bearing system
JPH10148408A (ja) 1996-11-20 1998-06-02 Daikin Ind Ltd 冷凍装置
JPH11211244A (ja) 1997-11-20 1999-08-06 Adtex:Kk 冷却方法とその装置
JP2001123997A (ja) 1999-10-21 2001-05-08 Hitachi Ltd 磁気軸受搭載遠心圧縮機
RU26254U1 (ru) 2002-03-01 2002-11-20 Курский государственный технический университет Компрессорная установка
FR2884303B1 (fr) 2005-04-11 2009-12-04 Technip France Procede de sous-refroidissement d'un courant de gnl par refroidissement au moyen d'un premier cycle de refrigeration et installation associee.
WO2007011155A1 (en) 2005-07-19 2007-01-25 Shinyoung Heavy Industries Co., Ltd. Lng bog reliquefaction apparatus
RU2330994C2 (ru) 2006-05-16 2008-08-10 Открытое акционерное общество "Климов" Центробежный компрессор
JP2010516994A (ja) 2007-01-25 2010-05-20 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 炭化水素流の冷却方法及び装置
KR101544929B1 (ko) 2008-11-04 2015-08-17 대우조선해양 주식회사 증발가스 재액화 장치용 냉각 시스템의 성능 유지 장치 및 방법
WO2010073586A1 (ja) * 2008-12-22 2010-07-01 パナソニック株式会社 冷凍サイクル装置
JP2013155972A (ja) 2012-01-31 2013-08-15 Panasonic Corp 冷凍装置
JP2014001916A (ja) 2012-06-21 2014-01-09 Sanden Corp 冷凍サイクル装置
JP2014126284A (ja) 2012-12-26 2014-07-07 Daikin Ind Ltd 冷凍装置
JP5782065B2 (ja) 2013-05-02 2015-09-24 株式会社前川製作所 冷凍システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791760A (ja) 1993-09-17 1995-04-04 Hitachi Ltd 磁気軸受式タービンコンプレッサ
JP2005098604A (ja) * 2003-09-25 2005-04-14 Mitsubishi Electric Corp 冷凍空調装置
WO2006011248A1 (ja) * 2004-07-30 2006-02-02 Mitsubishi Heavy Industries, Ltd. 空気冷媒式冷却装置および空気冷媒式冷却装置を用いた空気冷媒冷熱システム
WO2006011297A1 (ja) * 2004-07-30 2006-02-02 Mitsubishi Heavy Industries, Ltd. 空気冷媒式冷却装置
JP2006118772A (ja) * 2004-10-20 2006-05-11 Kajima Corp 空気冷媒式冷凍装置
JP2008298322A (ja) * 2007-05-29 2008-12-11 Mayekawa Mfg Co Ltd 空気冷媒式冷凍装置
JP2010043780A (ja) * 2008-08-12 2010-02-25 Ntn Corp 空気サイクル冷凍ユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3056744A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016178272A1 (ja) * 2015-05-01 2016-11-10 株式会社前川製作所 冷凍機及び冷凍機の運転方法
JPWO2016178272A1 (ja) * 2015-05-01 2017-09-28 株式会社前川製作所 冷凍機及び冷凍機の運転方法
US10415857B2 (en) 2015-05-01 2019-09-17 Mayekawa Mfg. Co., Ltd. Refrigerator and operation method for refrigerator
JP2020133500A (ja) * 2019-02-20 2020-08-31 株式会社豊田自動織機 ターボ式流体機械
JP7103263B2 (ja) 2019-02-20 2022-07-20 株式会社豊田自動織機 ターボ式流体機械

Also Published As

Publication number Publication date
ES2652674T3 (es) 2018-02-05
US9970449B2 (en) 2018-05-15
JP6276000B2 (ja) 2018-02-07
RU2652462C2 (ru) 2018-04-26
KR101818872B1 (ko) 2018-01-15
US20160265545A1 (en) 2016-09-15
CN105765234B (zh) 2018-01-30
EP3056744A1 (en) 2016-08-17
EP3056744B1 (en) 2017-11-22
RU2016122892A (ru) 2017-12-19
KR20160070187A (ko) 2016-06-17
JP2015094259A (ja) 2015-05-18
EP3056744A4 (en) 2016-11-02
CN105765234A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
WO2015068522A1 (ja) 膨張機一体型圧縮機及び冷凍機並びに冷凍機の運転方法
US10415857B2 (en) Refrigerator and operation method for refrigerator
CN103089339B (zh) 用于燃气涡轮机的主动间隙控制系统和方法
Cho et al. Influence of liquid refrigerant injection on the performance of an inverter-driven scroll compressor
US20080199326A1 (en) Two-stage vapor cycle compressor
JP2014159923A (ja) ターボ冷凍機
US10968919B2 (en) Two-stage centrifugal compressor
TW200422522A (en) Screw pump
JP2015187525A (ja) ブレイトンサイクル冷凍機、及びターボ圧縮機の発熱部の冷却方法
CN209840448U (zh) 一种基于压缩机的高温介质温控制冷系统
Ivlev et al. Testing a scroll machine in pneumatic motor-expander modes
US20240068382A1 (en) Rotary machine and refrigeration device using same
CN116007214A (zh) 离心式压缩机储能热管理系统
JP6091077B2 (ja) 冷凍装置
JP2009162464A (ja) 空気サイクル冷凍装置
CN218817170U (zh) 离心式压缩机储能热管理装置
US20240011673A1 (en) Refrigeration system
JP6150907B2 (ja) 冷凍サイクル装置
Liu et al. Transient Analysis Of Startup Characteristics Of A Water-lubricated Twin-screw Air Compressor System
Petrecca et al. Facilities: Gas Compressors
JP2009109057A (ja) 冷却システム及びその起動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860246

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15034179

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014860246

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014860246

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167013567

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016122892

Country of ref document: RU

Kind code of ref document: A