WO2006009132A1 - シリカ系微粒子、その製造方法、被膜形成用塗料および被膜付基材 - Google Patents

シリカ系微粒子、その製造方法、被膜形成用塗料および被膜付基材 Download PDF

Info

Publication number
WO2006009132A1
WO2006009132A1 PCT/JP2005/013228 JP2005013228W WO2006009132A1 WO 2006009132 A1 WO2006009132 A1 WO 2006009132A1 JP 2005013228 W JP2005013228 W JP 2005013228W WO 2006009132 A1 WO2006009132 A1 WO 2006009132A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
fine particles
based fine
dispersion
group
Prior art date
Application number
PCT/JP2005/013228
Other languages
English (en)
French (fr)
Inventor
Ryou Muraguchi
Mitsuaki Kumazawa
Toshiharu Hirai
Original Assignee
Catalysts & Chemicals Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts & Chemicals Industries Co., Ltd. filed Critical Catalysts & Chemicals Industries Co., Ltd.
Priority to US11/632,900 priority Critical patent/US20070275257A1/en
Priority to KR1020077003982A priority patent/KR101186732B1/ko
Priority to JP2006529216A priority patent/JP5328101B2/ja
Priority to EP05766252.0A priority patent/EP1787959B1/en
Priority to CN2005800243394A priority patent/CN1989070B/zh
Publication of WO2006009132A1 publication Critical patent/WO2006009132A1/ja
Priority to US14/607,394 priority patent/US10239759B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/187Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
    • C01B33/193Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates of aqueous solutions of silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31935Ester, halide or nitrile of addition polymer

Definitions

  • Silica-based fine particles production method thereof, coating material for coating film formation, and coated substrate
  • the present invention relates to silica-based fine particles having a porous substance and Z or voids therein, a method for producing the same, a coating forming coating containing the silica-based fine particles, and a coating containing the silica-based fine particles.
  • the present invention relates to a coated substrate formed thereon.
  • hollow silica particles having a particle size of about 0.1 to 300 ⁇ m are known (see Patent Document 1, Patent Document 2, etc.). Also, active silica is precipitated from an aqueous alkali metal silicate solution onto a core having a material strength other than silica, and the material is removed without destroying the silica shell, thereby producing hollow particles having a dense silica shell strength. The method is known (see Patent Document 3, etc.).
  • micron-sized spherical silica particles having a core-shell structure in which the outer peripheral portion is a shell and the central portion is hollow, and the shell is denser on the outer side and has a coarser concentration gradient structure on the inner side are known (Patent Document 4). Etc.)
  • the applicant of the present application first obtains nanometer-sized composite oxide fine particles having a low refractive index by completely covering the surface of porous inorganic oxide fine particles with silica or the like. (See Patent Document 5), and further, a silica coating layer is formed on the core particles of the composite oxide composed of silica and an inorganic acid other than silica, so that an inorganic acid other than silica is formed. It is proposed that nanometer-sized silica-based fine particles with a low refractive index having cavities inside can be obtained by removing particles and coating silica if necessary (see Patent Document 6). ).
  • the particles according to the above-mentioned proposal by the applicant of the present application may not have a sufficiently low refractive index effect depending on the purpose and application of the particles.
  • the production process becomes complicated, such as forming a silica coating layer prior to the removal of inorganic oxides other than silica, and the reproducibility and productivity are considered to be a bottleneck. It was.
  • a coating-forming paint used for the production of a coated substrate The dispersibility of fine particles and the stability of the coating material were insufficient, and the coating film obtained using the coating material for coating film formation had a non-uniform thickness and insufficient film strength. Further, the film may be whitened due to moisture adsorption, that is, the water resistance may be insufficient.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-330606
  • Patent Document 2 Japanese Patent Laid-Open No. 7-0113137
  • Patent Document 3 Japanese Translation of Special Publication 2000-500113
  • Patent Document 4 Japanese Patent Application Laid-Open No. 11-0129318
  • Patent Document 5 JP-A-7-133105
  • Patent Document 6 Japanese Patent Laid-Open No. 2001-233611
  • the present invention has been developed based on the invention described in Patent Document 6, and aims to obtain silica-based fine particles having a low refractive index. Particles (primary particles) are grown while adjusting the addition ratio of the silica source and the inorganic acid source other than silica, and then the inorganic oxide other than silica is removed.
  • the object of the present invention is to provide hollow spherical silica-based fine particles containing a porous material or having cavities, and a method for producing the same.
  • the present invention also includes a coating material for coating film formation, which contains the porous substance and spherical silica-based fine particles having Z or voids therein and a coating film forming matrix, and is excellent in stability, film forming property, and the like. Is intended to provide.
  • the present invention provides a coating containing a porous substance and spherical silica-based fine particles having Z or voids in the interior, and has a low refractive index and adhesion to a resin, etc.
  • the object is to provide a substrate with a coating excellent in strength, antireflection ability, water resistance and the like.
  • the method for producing silica-based fine particles according to the present invention is characterized by comprising the following steps (a), (b), (c) and (e).
  • MO 2 represents a molar ratio when the inorganic oxide other than silica is represented by MO.
  • the average particle diameter (D) is in the range of 3 to 300 nm.
  • step (b) Next, in step (a), the molar ratio MO / SiO is smaller than the molar ratio MO / SiO.
  • the value BZA of the O 2 / SiO molar ratio (B) is preferably 0.8 or less.
  • PI P2 PI P2 is preferably in the range of 0.4 to 0.98.
  • Steps (b) and Z or step (c) are carried out in the number of moles of electrolyte salt (M)
  • step (d) is performed between step (c) and step (e).
  • R unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, acrylic group, epoxy group, methacryl group, amino group, CF group, X: alkoxy group having 1 to 4 carbon atoms, silanol group, halo
  • n integer from 0 to 3
  • step (f) To the silica-based fine particle dispersion obtained in the step (e), an organic silicon compound represented by the following chemical formula (1) and Z or a partial hydrolyzate thereof, and an alkaline aqueous solution as necessary. Adding and forming a silica coating layer on the fine particles
  • R unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, acrylic group, epoxy group, methacryl group, amino group, CF group, X: alkoxy group having 1 to 4 carbon atoms, silanol group, halo
  • n integer from 0 to 3
  • the alkaline aqueous solution or the alkaline aqueous solution in which seed particles are dispersed as required has a pH of 10 or more.
  • step (e) or the step (f) it is preferable to carry out the following step (g).
  • step (g) it is preferable to perform the following step (h).
  • R unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, acrylic group, epoxy group, methacryl group, amino group, CF group, X: alkoxy group having 1 to 4 carbon atoms, silanol group, halo
  • n integer from 0 to 3
  • the hydrothermal treatment step is repeated a plurality of times.
  • the inorganic oxide other than silica is preferably alumina.
  • the obtained silica-based fine particle dispersion is preferably washed, dried, and fired as necessary.
  • the average particle diameter of the obtained silica-based fine particles is preferably in the range of 5 nm to 500 nm.
  • the content of the alkali metal oxide in the silica-based fine particles or the silica-based fine particle dispersion is 5 ppm or less as M 2 O (M: alkali metal element) per silica-based fine particle.
  • the content of ammonia and z or ammonia ions in the silica-based fine particles or silica-based fine particle dispersion is preferably 1500 ppm or less as NH.
  • the silica-based fine particles according to the present invention are silica-based fine particles having a porous material and Z or a cavity inside the outer shell layer, and the specific surface area (S) of the fine particles measured by the BET method and
  • the ratio (S ZS) to the specific surface area (S) represented by the following formula is in the range of 1.1 to 5:
  • the silica-based fine particles preferably have an average particle size in the range of 5 to 500 nm.
  • the thickness of the outer shell layer is preferably in the range of 0.5 to 20 nm.
  • the silica-based fine particles preferably have a refractive index in the range of 1.15 to 1.38.
  • the coating film-forming paint according to the present invention is characterized by comprising the silica-based fine particles obtained by the production method or any one of the silica-based fine particles and a film-forming matrix.
  • the coating film-forming coating material preferably further comprises oxide-based fine particles other than the silica-based fine particles.
  • the coated substrate according to the present invention is a silica-based fine particle obtained by the production method described above, or any one of the above-mentioned silica-based fine particles and a film-forming matrix, alone or in another film And formed on the substrate surface.
  • a composite acid containing a large amount of inorganic oxide other than silica is prepared.
  • the surface of the particle is rich in silica and the complex oxidation is also performed in the subsequent de-elementalization process.
  • the fine particles remain spherical and are not destroyed.
  • silica-based fine particles having a very low refractive index can be obtained by an extremely simple manufacturing process. Furthermore, it is excellent in terms of production reproducibility and productivity of silica-based fine particles.
  • silica-based fine particles obtained by forming a silica layer after aging through a cocoon removal element process for forming a silica coating layer after the deelementization process will be described later.
  • SZSc is in the range of 1.1 to 5, preferably 1.2 to 3, and such silica-based fine particles have excellent stability in paints that have good dispersibility in the coating composition.
  • the film obtained by using the coating has excellent strength and water resistance.
  • the coating material for forming a film of the present invention has excellent stability because the content of the alkali metal oxide and ammonia in the silica-based fine particles to be blended is small, and the film obtained by using this has excellent strength. .
  • the coated substrate of the present invention has a low refractive index and is excellent in adhesion with a resin, strength, transparency, anti-reflection ability, and the like.
  • the method for producing silica-based fine particles of the present invention comprises the following steps ( a ), (b), (c) and (e).
  • step (d) may be performed between step (c) and step (e), or step (g) may be performed after step (e).
  • step (f) may be performed after step (e).
  • aqueous solution of silicate and Z or acidic silicate solution and an aqueous solution of an alkali-soluble inorganic compound are simultaneously added to an alkaline aqueous solution or, if necessary, an alkaline aqueous solution in which seed particles are dispersed.
  • silica is made of SiO.
  • MO 2 represents a molar ratio when the inorganic oxide other than silica is represented by MO.
  • the average particle diameter (D) is in the range of 3 to 300 nm.
  • step (b) Next, in step (a), the molar ratio MO / SiO is smaller than the molar ratio MO / SiO.
  • step (C) A step of adding an acid to the composite oxide fine particle dispersion to remove at least a part of elements other than silicon constituting the composite oxide fine particles to obtain a silica-based fine particle dispersion (d) )
  • an organic silicon compound represented by the following chemical formula (1) and Z or a partial hydrolyzate thereof, and an alkaline aqueous solution as necessary are added.
  • R unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, acrylic group, epoxy group, methacryl group, amino group, CF group, X: alkoxy group having 1 to 4 carbon atoms, silanol group, halo
  • n integer from 0 to 3
  • R unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, acrylic group, epoxy group, methacryl group, amino group, CF group, X: alkoxy group having 1 to 4 carbon atoms, silanol group, halo
  • n integer from 0 to 3
  • R unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, acrylic group, epoxy group, methacryl group, amino group, CF group, X: alkoxy group having 1 to 4 carbon atoms, silanol group, halo
  • alkali metal silicates include sodium silicate (water glass) and potassium silicate.
  • Organic bases include quaternary ammonium salts such as tetraethyl ammonium salt, monoethanolamine, diethylanolamine, and triethanol. Amines such as amines can be used. Ammonic silicates or organic base silicates include ammonia, quaternary ammonium hydroxides, and amines. An alkaline solution to which is added is also included.
  • a silicic acid solution obtained by removing alkali by treating an alkali silicate aqueous solution with a cation exchange resin can be used.
  • pH 2 to pH 4 and SiO concentration is about 7% by weight.
  • the following acidic silicic acid solutions are preferred.
  • Inorganic oxides include Al 2 O 3, B 2 O 3, TiO 2, ZrO 2, SnO, Ce 2 O 3, P 2 O 3 and Sb 2 O 3.
  • MoO 2, ZnO 2, WO or the like can be used. 2 or more kinds
  • machine oxide examples include TiO—Al 2 O 3 and TiO 2 —ZrO.
  • an alkali-soluble inorganic compound as a raw material for such an inorganic acid compound.
  • An alkali metal salt or an alkaline earth metal or nonmetal oxo acid constituting the inorganic acid compound described above is preferred.
  • Metal salts, ammonium salts, and quaternary ammonium salts can be mentioned, and more specifically, sodium aluminate, sodium tetraborate, zirconyl ammonium carbonate, potassium antimonate, stannic acid Potassium, sodium aluminosilicate, sodium molybdate, cerium nitrate ammonium, sodium phosphate and the like are suitable.
  • an alkali aqueous solution of the inorganic compound is separately prepared in advance, or a mixed aqueous solution is prepared, and silica for the purpose of this aqueous solution is prepared.
  • silica for the purpose of this aqueous solution is prepared.
  • it is gradually added with stirring to an aqueous alkaline solution, preferably an aqueous alkaline solution of pHIO or higher.
  • the addition may be continuous or intermittent, but it is preferable to add both simultaneously.
  • the addition ratio of the silica raw material and the inorganic compound raw material to be added to the alkaline aqueous solution is such that the average particle size of the composite oxide fine particles is approximately 3 to 300 nm, and further 5 to: LOOnm (hereinafter referred to as the composite at this time). Oxidized fine particles are sometimes referred to as primary particles.) And the molar ratio MO / SiO when the inorganic compound other than silica is represented by MO is 0.01 to
  • silica-based fine particles do not have a sufficiently large cavity volume.
  • the mole ratio exceeds 2
  • silica-based fine particles having a porous substance and Z or cavities inside cannot be obtained.
  • the molar ratio can be added while gradually changing.
  • the structure of the composite oxide fine particles is mainly a structure in which silicon and elements other than silicon are alternately bonded through oxygen. That is, oxygen atoms are bonded to the four bonds of the silicon atom, and many oxygen M elements other than silica are bonded to these oxygen atoms, and the element M other than silicon is formed in step (c) described later.
  • the silicon atom can be removed as a silicate monomer or oligomer in association with the element M without destroying the shape of the composite oxide fine particles.
  • the ratio of the final silica-based fine particle shell increases, the void volume of the silica-based fine particle is not sufficiently large, and the average particle size of the composite oxide fine particles (primary particles) is 300 nm. If it exceeds, the element M other than silicon is insufficiently removed in the step (c), and the void volume of the silica-based fine particles is not sufficiently increased, making it difficult to obtain particles having a low refractive index.
  • the seed particle dispersion when preparing the composite oxide fine particle dispersion, can be used as a starting material.
  • seed particles SiO 2, Al 2 O 3,
  • Inorganic acids such as TiO, ZrO, SnO and CeO, or their complex acids, for example
  • Fine particles such as Al 2 O 3 are used, and usually these sols can be used. like this
  • the dispersion of seed particles can be prepared by a conventionally known method. For example, it can be obtained by adding an acid or alkali to a metal salt, a mixture of metal salts, a metal alkoxide or the like corresponding to the above inorganic oxide, hydrolyzing, and aging as necessary.
  • aqueous solution of the compound is added to the seed particle-dispersed alkaline aqueous solution adjusted to pHIO or higher with stirring in the same manner as in the method of adding the above-mentioned alkaline aqueous solution. To do.
  • the composite oxide fine particles are grown using the seed particles as seeds, it is easy to control the particle size of the grown particles, and particles with uniform particle sizes can be obtained.
  • the addition ratio of the silica raw material and the inorganic oxide added to the seed particle dispersion is in the same range as the case of adding to the alkaline aqueous solution.
  • silica raw material and the inorganic oxide raw material described above are high on the alkali side and have high solubility. However, when both are mixed in this highly soluble pH region, the solubility of oxalate ions such as silicate ions and aluminate ions decreases, and these composites precipitate and grow into colloidal particles, or The particles grow on the seed particles.
  • an organosilicon compound represented by the following chemical formula (1) and Z or a hydrolyzate thereof may be added to an alkaline aqueous solution as a silica raw material.
  • organosilicon compound examples include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, and methyltrimethoxysilane.
  • the organic silicon compound having n of 1 to 3 is poor in hydrophilicity, it is preferable that the compound be uniformly mixed with the reaction system by hydrolysis in advance.
  • hydrolysis a well-known method can be adopted as a hydrolysis method of these organosilicon compounds.
  • a basic catalyst such as an alkali metal hydroxide, aqueous ammonia, or amine
  • these basic catalysts can be removed after hydrolysis and used as an acidic solution.
  • a hydrolyzate is prepared using an acidic catalyst such as an organic acid or an inorganic acid, it is preferable to remove the acidic catalyst by ion exchange or the like after the hydrolysis.
  • the obtained hydrolyzate of the organosilicon compound is desirably used in the form of an aqueous solution.
  • the aqueous solution means a state where the hydrolyzate is not in a cloudy state as a gel but has transparency.
  • step (a) the molar ratio MO until the average particle diameter (D) reaches a maximum of 500 nm.
  • an aqueous silicate solution and Z or acidic silicate solution and an alkali-soluble inorganic compound aqueous solution are added to perform primary particle growth.
  • the added calories may be continuous or intermittent as in step (a), but it is preferable to add both at the same time.
  • the molar ratio MO / SiO in step (b) is gradually reduced.
  • the value BZA of the molar ratio (B) of X 2 X is preferably 0.8 or less.
  • step (c) When the value of BZA is 1 or more, it is difficult to form a shell containing a large amount of silica component, so it becomes difficult to obtain spherical composite oxide fine particles, and even if obtained, other than silicon in step (c) When removing these elements, the spherical composite oxide fine particles are destroyed, and as a result, silica-based fine particles having a porous material and Z or cavities inside cannot be obtained.
  • the surface of the composite oxide fine particles is rich in silica, and the shell shape As a result, the spherical composite oxide fine particles are not destroyed even if elements other than silicon are removed in step (C). Force-based fine particles can be obtained stably.
  • P2 PI P2 is preferably in the range of 0.4 to 0.98, more preferably 0.5 to 0.96.
  • step (c) If D / ⁇ is less than 0.4, removal of element M other than silicon is insufficient in step (c).
  • the void volume of the silica-based fine particles may not be sufficiently large, and it may be difficult to obtain particles having a low refractive index. Also, if D ZD exceeds 0.98, depending on the particle size (specifically,
  • P2 is 20 nm or less, particularly below), and silica-based fine particles having a porous substance and Z or cavities inside may not be obtained.
  • the electrolyte salt is changed to the number of moles (M) of the electrolyte salt. Number of moles of SiO 2 (
  • (M / M)) (M / M) can be added in the range of 0.1 to 10, preferably 0.2 to 8.
  • Examples of the electrolyte salt include sodium chloride salt, potassium salt salt, sodium nitrate, potassium nitrate, sodium sulfate, potassium sulfate, ammonium nitrate, ammonium sulfate, and magnesium chloride.
  • water-soluble electrolyte salts such as magnesium nitrate.
  • the electrolyte salt may be added in its entirety at this point, or it may be added continuously or intermittently while adding inorganic compounds other than alkali metal silicates and growing composite oxide fine particles. It may be attached to
  • the amount of the electrolyte salt added depends on the concentration of the composite oxide fine particle dispersion, but the molar ratio is
  • the composite oxide fine particles When removing at least a part of the elements other than silicon constituting the composite oxide fine particles, the composite oxide fine particles cannot be maintained in a spherical shape and are destroyed, and have a porous substance and Z or cavity inside. It may be difficult to obtain silica-based fine particles.
  • the reason for the effect of adding such an electrolyte salt is not clear, but the silica on the surface of the composite oxide fine particles on which the particles are grown increases, and the silica insoluble in the acid is a protective film for the composite oxide fine particles. It is thought that it is working.
  • the average particle size of the primary particles when the electrolyte salt is added is less than 3 nm, new fine particles are formed and the primary particles do not selectively grow, and the particle size distribution of the composite oxide particles May be non-uniform. If the average particle size of the primary particles when adding the electrolyte salt exceeds 300 nm, it may take time to remove elements other than silicon in step (c), which may be difficult.
  • the composite oxide fine particles (secondary particles) thus obtained have an average particle diameter in the range of 5 to 500 nm, which is about the same as the silica fine particles finally obtained.
  • step (c) a part or all of the elements other than silicon constituting the composite oxide fine particles are removed from the composite oxide fine particles.
  • removing the element for example, it is removed by dissolving it by adding an organic acid or mineral acid, removing it by contact with a cation exchange resin, or by combining these methods.
  • the molar ratio M / M force is in the range of 0.1 to 10, preferably 0.2 to 8.
  • the concentration of the composite oxide fine particles in the composite oxide fine particle dispersion varies depending on the treatment temperature, but is 0.1 to 50% by weight, particularly 0.5 to 5% in terms of acid oxide. It is preferably in the range of 25% by weight. If the concentration of the composite oxide fine particle is less than 0.1% by weight, the amount of silica dissolved increases, and the shape of the composite oxide fine particle may not be maintained. Decreases. In addition, if the concentration of the composite oxide fine particles exceeds 50% by weight, the dispersibility of the particles becomes insufficient, and the composite oxide fine particles with a high content of elements other than silicon are uniformly or efficiently less frequently. In some cases, it cannot be removed.
  • the removal of the above elements is performed by the MO / SiO force of the silica-based fine particles obtained from 0.0001 to 0.2, In particular, it is preferable to carry out until it becomes from 0.0001 to 0.1.
  • This step (d) is optional.
  • the same organosilicon compound as in the step (a) can be used.
  • silica coating layer is dense, the inside is kept in a gas phase or a liquid layer having a low refractive index, and when used for forming a film, a substance having a high refractive index, for example, a coating resin. And the like can be formed with a low refractive index effect. Further, since the silica coating layer is dense, when the inside is a gas phase, water molecules do not enter the inside, that is, the water resistance is high and whitening of the coating can be suppressed.
  • the ratio (S ZS) between the specific surface area (actually measured) of the silica-based fine particles and the specific surface area (S) calculated from the average particle diameter is small.
  • Paints that have good dispersibility in coating resin due to the low surface activity of liquor particles are excellent in stability.
  • a silica-based fine particle dispersion having a high affinity with a resin having a good dispersibility in an organic solvent can be obtained.
  • it can be used after being surface-treated with a silane coupling agent, etc. Since it is excellent in dispersibility in organic solvents, affinity with rosin, etc., such treatment is not particularly required. .
  • fluorine-containing organic silicon compound when used for forming the silica coating layer, since the coating layer containing F atoms is formed, the resulting particles have a lower refractive index and are resistant to an organic solvent. A silica-based fine particle dispersion having high affinity with a resin having good dispersibility can be obtained.
  • fluorine-containing organosilicon compounds include 3,3,3-trifluoropropyltrimethoxysilane, methyl 3,3,3-trifluoropropyldimethoxysilane, heptadecafluorodecylmethyldimethoxysilane, heptadecafluoro.
  • R 1 and R 2 and R 1 and R 7 may be the same or different from each other, and may be an alkyl group, a halogenated alkyl group, an aryl group, An alkylaryl group, an arylalkyl group, an alkyl group, a hydrogen atom or a halogen atom;
  • R 3 to R 6 may be the same or different from each other, and may be an alkoxy group, an alkyl group, a halogenated alkyl group, an aryl group, an alkylaryl group, an arylalkyl group, an alkenyl group, a hydrogen atom or a halogen atom. Indicates an atom.
  • X represents one (C H F) —, a is an integer that is an even number of 2 or more, b and c are even numbers of 0 or more, and a c
  • methoxysilane represented by (CH 2 O) SiC H C F C H Si (CH 2 O)
  • step (e) after washing as necessary, the silica-based fine particle dispersion is aged in the range of room temperature to 300 ° C.
  • the dispersion from which the elements have been removed can be washed by a known washing method such as ultrafiltration if necessary. A part of the elements other than dissolved silicon is removed by washing.
  • a sol in which silica-based fine particles with high dispersion stability are dispersed can be obtained by removing a part of alkali metal ions, alkaline earth metal ions, ammonium ions, etc. in the dispersion in advance and then performing ultrafiltration. It is done.
  • the dispersion from which the element has been removed may be a part of an element other than the dissolved element or alkali metal ion by contacting with a cation exchange resin and Z or anion exchange resin, Alkaline earth metal ions and amorphous ions can be removed. In addition, when washing, heating can be effectively performed.
  • the mixture is aged at room temperature to 300 ° C, preferably 50 to 250 ° C, usually for about 1 to 24 hours.
  • the silica coating layer becomes uniform and denser, and, as described above, substances having a high refractive index cannot enter the inside of the particle, so that a film having a high low refractive index effect can be formed. .
  • step (f) is optional, and the contents other than those performed after step (e) are the same as those in step (d).
  • Step (g) is an optional step, and after washing as necessary, it is hydrothermally treated in the range of 50 to 300 ° C.
  • a conventionally known method can be adopted as the cleaning method.
  • the hydrothermal treatment temperature is less than 50 ° C, the content of alkali metal oxides and Z or ammonia in the finally obtained silica-based fine particles or silica-based fine particle dispersion can be effectively reduced. Therefore, the stability of the coating film-forming paint and the effect of improving the film formation are insufficient, and the strength of the resulting film is insufficiently improved.
  • the silica-based fine particles may agglomerate in some cases, and if the hydrothermal treatment temperature is in the range of 150 ° C to 300 ° C, the film obtained using the silica-based fine particles Excellent water resistance. When water drops fall on the film, it can be wiped off, or even when the water drops dries, the effect that the traces of water drops hardly remain is obtained.
  • the hydrothermal treatment can be further performed by repeating the step (g) one or more times.
  • the content of alkali metal oxides and Z or ammonia in the silica-based fine particles or silica-based fine particle dispersion obtained by repeating the step (g) can be reduced.
  • step (h) is optional, and the contents other than those performed after step (g) are the same as those in step (d).
  • the silica-based fine particles obtained in this way have an average particle size of 5 to 500 nm, more preferably 10
  • the average particle size is less than 5 nm, sufficient cavities cannot be obtained, and the low refractive index effect may not be sufficiently obtained.
  • the average particle diameter exceeds 500 nm, a stable dispersion can be obtained, and the surface of the coating film containing the fine particles may be uneven or have a high haze.
  • the average particle diameter of the silica-based fine particles of the present invention can be obtained as an average value obtained by photographing a transmission electron microscope photograph (TEM) of the silica-based fine particles, measuring the particle diameter of 100 particles. I'll do it.
  • TEM transmission electron microscope photograph
  • the average thickness of the outer shell layer of the silica-based fine particles is preferably in the range of 0.5 to 20 nm, more preferably 1 to 15 nm.
  • the thickness of the outer shell is less than 0.5 nm, it is difficult to obtain because the shape of the particles cannot be maintained.
  • the thickness exceeds 20 nm the porous portion inside the outer shell and the Z or Z In some cases, the effect of the low refractive index may not be sufficiently obtained because the ratio of the cavities decreases.
  • the content of the alkali metal oxide in the silica-based fine particles or the silica-based fine particle dispersion is 5 ppm or less as M 0 (M: alkali metal element) per silica-based fine particle.
  • the content of the alkali metal oxide exceeds 5 ppm, the stability of the coating film-forming coating compounded with silica-based fine particles is insufficient, the viscosity increases, the film-forming property decreases, and the resulting coating film The strength may be insufficient or the film thickness may be uneven.
  • the content power of ammonia and Z or ammonium ions in the silica-based fine particles or the silica-based fine particle dispersion is 1500 ppm as NH per silica-based fine particles.
  • the content is 10 ppm or less. If the ammonia content exceeds 15 OOppm, the coating film coating composition containing silica-based fine particles is not sufficiently stable and has a high viscosity and film-forming properties as in the case of the alkali metal oxides. The strength of the resulting film may be insufficient or the film thickness may be non-uniform.
  • an organic solvent-dispersed sol can be obtained by substituting the obtained silica-based fine particle dispersion with an organic solvent using an ultrafiltration membrane, a rotary evaporator, or the like. .
  • the obtained silica-based fine particles can be used after being treated with a silane coupling agent by a conventionally known method.
  • the silica-based fine particles obtained in this manner have a porous material and Z or voids inside, and have a low refractive index. Accordingly, a film formed using the silica-based fine particles has a low refractive index, and a film excellent in antireflection performance can be obtained.
  • the silica-based fine particles according to the present invention are silica-based fine particles having a porous material and Z or voids in the outer shell layer, and the specific surface area (S) of the fine particles measured by the BET method and
  • the ratio (S ZS) to the specific surface area (S 2) represented by the following formula is in the range of 1.1 to 5, preferably 1.2 to 3.
  • the specific surface area (S) is determined by the BET method after heat-treating silica-based fine particles at 100 ° C for 2 hours.
  • the specific surface area (S) is a sphere of silica-based fine particles.
  • the density of fine particles is the silica density p (gZml) 2.2, that is, it is obtained by calculation as spherical non-porous silica particles.
  • the pore volume or cavity volume is small, the effect of low refractive index becomes insufficient.
  • the ratio ZS exceeds 5
  • the outer shell layer is porous and the dispersibility in the coating resin is insufficient.
  • the resulting coating may have insufficient stability, and the coating strength may be insufficient.
  • water molecules may enter the silica-based fine particles and the coating may whiten, resulting in insufficient water resistance.
  • the ratio (S ZS) is preferably in the range of 1.2 to 3.
  • the silica-based fine particles of the present invention preferably have an average particle size in the range of 5 to 500 nm, more preferably 10 to 400 nm. If the average particle size is less than 5 nm, the effect of low refractive index with a high outer shell ratio may not be obtained. When the average particle diameter exceeds 500 nm, it is difficult to obtain a stable dispersion or paint, and the surface of the coating film containing the fine particles may be uneven or have a high haze.
  • the average particle size of the silica-based fine particles of the present invention can be obtained as an average value obtained by taking a transmission electron micrograph (TEM), measuring the particle size of 100 particles, and measuring the particle size.
  • TEM transmission electron micrograph
  • the average thickness of the outer shell layer of the silica-based fine particles is preferably in the range of 0.5 to 20 nm, more preferably 1 to 15 nm. If the thickness of the outer shell is less than 0.5 nm, it may be difficult to obtain silica-based fine particles because the shape of the particles cannot be maintained. If the thickness exceeds 20 nm, the porous material portion and Z in the outer shell may be difficult. Or, since the ratio of the hollow portion decreases, the effect of the low refractive index may not be sufficiently obtained.
  • the average thickness of the outer shell layer of the silica-based fine particles can be obtained as an average value by measuring the thickness of the shell portion determined by the difference in contrast in the TEM image.
  • the refractive index of the silica-based fine particles is in the range of 1.15 to L38, and further 1.15 to L35. It is preferable.
  • the resulting coating may have a refractive index of over 1.42, resulting in antireflection performance. It may be insufficient.
  • the refractive index of silica-based fine particles was measured by the following method using Series A and AA manufactured by CARGILL as the standard refractive liquid.
  • the coating film-forming paint according to the present invention comprises the silica-based fine particles, the film-forming matrix, and, if necessary, an organic solvent.
  • the film-forming matrix is a component that can form a film on the surface of the base material, and is selected and used with a grease isotonic force that meets conditions such as adhesion to the base material, hardness, and coatability.
  • a grease isotonic force that meets conditions such as adhesion to the base material, hardness, and coatability.
  • polyester resin acrylic resin, urethane resin, salted resin resin, epoxy resin, melamine resin, fluorine resin, silicon resin, petital resin, Phenolic resin, vinyl acetate resin, UV curable resin, electron beam curable resin, emulsion resin, water-soluble resin, hydrophilic resin, mixture of these resins, Examples thereof include resin for coatings such as polymers and modified products, hydrolyzable organosilicon compounds such as alkoxysilanes, and partial hydrolysates thereof.
  • an organic solvent-dispersed sol obtained by replacing the dispersion medium of the silica-based fine particle dispersion with an organic solvent such as alcohol, preferably an organic cage containing the organic group.
  • Silica-based fine particles in which a silica coating layer is formed with a compound can be used, and if necessary, the fine particles are treated with a known coupling agent and then dispersed in an organic solvent, and a coating resin and an organic solvent dispersion sol are used. Dilute with an appropriate organic solvent and apply It can be used as a cloth liquid.
  • a hydrolyzable organosilicon compound for example, partially hydrolyzing alkoxysilane by refining water and an acid or alkali as a catalyst in a mixture of alkoxysilane and alcohol.
  • a product can be obtained, and the sol can be mixed therewith and diluted with an organic solvent as necessary to obtain a coating solution.
  • the coating containing the silica-based fine particles and the coating-forming matrix is formed on the surface of the substrate alone or together with another coating.
  • the substrate is made of glass, polycarbonate, acrylic resin, PET, TAC, or other plastic sheet, plastic film, plastic lens, plastic panel, or other substrate, cathode ray tube, fluorescent display tube, liquid crystal display plate, or other substrate.
  • a film is formed on the surface. Depending on the application, the film may be used alone or on a substrate, protective film, hard coat film, planarizing film, high refractive index film, insulating film, conductive resin film, conductive film It may be formed in combination with a metal fine particle film, a conductive metal oxide fine particle film, or a primer film used as necessary. When used in combination, the coating of the present invention is not necessarily formed on the outermost surface.
  • a coating solution for forming a coating which will be described later, is applied to a substrate by a known method such as a dipping method, a spray method, a spinner method, or a roll coating method, dried, and further if necessary. It can be obtained by curing by heating or ultraviolet irradiation.
  • the refractive index of the film formed on the surface of the base material is different depending on the mixing ratio of silica-based fine particles and matrix components and the refractive index of the matrix used. Become a rate.
  • the refractive index of the silica-based fine particle itself of the present invention was 1.15 to L 38. This is because the silica-based fine particles of the present invention contain a porous substance and Z or cavity inside. This is because the matrix-forming components such as greaves remain outside the particles and the voids inside the silica-based fine particles are retained.
  • a coating having a refractive index of 1.60 or more (hereinafter referred to as an intermediate coating) is formed on the surface of the substrate. It is recommended to form a film containing the silica-based fine particles of the present invention after the formation. If the refractive index of the intermediate coating is 1.60 or more, a coated substrate having a large difference from the refractive index of the coating containing the silica-based fine particles of the present invention and excellent antireflection performance can be obtained.
  • the refractive index of the intermediate coating is adjusted by the refractive index of the metal oxide fine particles used to increase the refractive index of the intermediate coating, the mixing ratio of the metal oxide fine particles and the resin, and the refractive index of the resin used. can do.
  • the coating solution for forming an intermediate coating film is a mixed solution of metal oxide particles and a matrix for film formation, and an organic solvent is mixed as necessary.
  • the film-forming matrix the same film as the film containing silica-based fine particles of the present invention can be used.
  • a film-coated substrate having excellent adhesion between the two films can be used. The material is obtained.
  • Silica Alumina Sol (Catalyst Kosei Kogyo Co., Ltd .: USBB-120, average particle size 25 nm, Si ⁇ 1 ⁇ concentration 20 wt%, solid content Al O content 27 wt%) 100 g and pure water 3900 g
  • the mixture was heated to 98 ° C, and while maintaining this temperature, the SiO concentration was 1.5% by weight.
  • the MO / SiO molar ratio (A) at this time was 0 ⁇ 2.
  • ⁇ of the reaction solution at this time is
  • Dispersion liquid of composite oxide fine particles (1) (secondary particles) (average particle diameter 40 nm) was obtained by adding lOOg of a sodium aluminate aqueous solution having a concentration of 0.53 wt%.
  • the MO / SiO molar ratio (B) at this time was 0.07. Also, the pH of the reaction solution at this time
  • the aqueous dispersion of silica-based fine particles (P-1-1) having a silica coating layer was added with aqueous ammonia to adjust the pH of the dispersion to 10.5, and then at 150 ° C. After aging for 11 hours, the mixture was cooled to room temperature, ion-exchanged for 3 hours using 400 g of cation-exchanged resin (Mitsubishi Chemical Corporation: Diaion SKI B), and then anion-exchanged resin (Mitsubishi Chemical).
  • the silica-based fine particle (P-1-2) dispersion was again hydrothermally treated at 150 ° C for 11 hours, cooled to room temperature, and cation exchange resin (Mitsubishi Chemical Co., Ltd.). Ion-exchanged using 400 g of Diaion SKlB) for 3 hours, and then ion-exchanged for 3 hours using 200 g of anion-exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A). Exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) 200g was used for ion exchange at 80 ° C for 3 hours for cleaning. An aqueous dispersion of 3) was obtained. At this time, the Na O content and NH content of the aqueous dispersion of silica fine particles (P-1-3) 0.5 ppm and 800 ppm per child. [Process (g)]
  • an alcohol dispersion of silica-based fine particles (P-1) having a solid concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
  • Table 1 shows the preparation conditions for silica-based fine particles (P-1).
  • average particle diameter of silica-based fine particles (P-1) thickness of outer shell layer, MO / SiO (molar ratio), Na 2 O content and NH content,
  • Table 2 shows properties such as refractive index, specific surface area (S), specific surface area (S), and water resistance.
  • the average particle diameter and the thickness of the outer shell layer were measured by the TEM method, and the refractive index was measured using Series A and AA manufactured by CARGILL as the standard refractive liquid.
  • TEOS Orthoethyl silicate
  • One component was prepared. This was mixed with 1.75 g of an alcohol dispersion of silica-based fine particles (P-1) with a solid content concentration of 20% by weight, applied to a glass substrate by spin coating, and dried at 120 ° C for 5 hours. A transparent film was formed. After dropping one drop of distilled water on the transparent film and wiping it off, it was visually observed and evaluated according to the following criteria.
  • This coating solution was applied to a PET film by a bar coater method and dried at 80 ° C. for 1 minute to obtain a substrate with a transparent coating (A-1) having a transparent coating thickness of lOOnm.
  • Table 3 shows the total light transmittance, haze, reflectance of light having a wavelength of 550 nm, refractive index of the coating, adhesion, and pencil hardness of this substrate with transparent coating (A-1).
  • the total light transmittance and haze were measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.), and the reflectance was measured with a spectrophotometer (JASCO Corporation, Ubest-55).
  • the refractive index of the coating was measured with an ellipsometer (manufactured by UL VAC, EMS-1).
  • the uncoated PET film had a total light transmittance of 90.7%, a haze of 2.0%, and a reflectance of light having a wavelength of 550 nm of 7.0%.
  • the pencil hardness was measured with a pencil hardness tester according to JIS K 5400. That is, a pencil was set at an angle of 45 degrees with respect to the coating surface, and a predetermined load was applied and pulled at a constant speed to observe the presence or absence of scratches.
  • Silica sol (catalyst I ⁇ Kogyo KK: USBB- 120, average particle diameter 25nm, Si ⁇ ⁇ ⁇ 1 ⁇ concentration of 20 weight 0/0, Al O content 27 wt 0/0 in solids) to 100g Pure water 3900g
  • the silica While heating to 98 ° C and maintaining this temperature, the silica has a concentration of 1.5% by weight as SiO
  • the MO / SiO molar ratio (A) was 0.2.
  • ⁇ of the reaction solution at this time is 1
  • a dispersion of composite oxide fine particles (2) (secondary particles) (average particle size 50 nm) was obtained by adding 2,100 g of a 0.5 wt% sodium aluminate aqueous solution having a concentration of 2 2 3.
  • the silica-based fine particle (P-2-2) dispersion was again hydrothermally treated at 150 ° C for 11 hours, cooled to room temperature, and cation exchange resin (Mitsubishi Chemical Co., Ltd.). Ion-exchanged using 400 g of Diaion SKlB) for 3 hours, and then ion-exchanged for 3 hours using 200 g of anion-exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A). Exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) 200g was used for ion exchange at 80 ° C for 3 hours for cleaning. Silica fine particles (P-2 -3) was obtained. At this time, the Na O content and NH content of the aqueous dispersion of silica fine particles (P-2-3) are the same as silica fine particles.
  • Example 1 a substrate with a transparent film was prepared in the same manner except that an alcohol dispersion of silica-based fine particles (P-2) was used instead of the alcohol dispersion of silica-based fine particles (P-1). A-2) was obtained.
  • Silica sol (catalyst I ⁇ Kogyo KK: USBB- 120, average particle diameter 25nm, Si ⁇ ⁇ ⁇ 1 ⁇ concentration of 20 weight 0/0, Al O content 27 wt 0/0 in solids) to 100g Pure water 3900g
  • the MO / SiO molar ratio (B) at this time was 0.07. Also, the pH of the reaction solution at this time
  • the silica-based fine particle (P-3-2) dispersion was again hydrothermally treated at 150 ° C for 11 hours, cooled to room temperature, and cation exchange resin (Mitsubishi Chemical Co., Ltd.). Ion-exchanged using 400 g of Diaion SKlB) for 3 hours, and then ion-exchanged for 3 hours using 200 g of anion-exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A). Exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SKIB) 200g was used for ion exchange at 80 ° C for 3 hours for cleaning, and silica-based fine particles (P-3 -3) was obtained. At this time, the Na O content and NH content of the aqueous dispersion of silica fine particles (P-3-3)
  • a silica-based fine particle (P-3) alcohol dispersion having a solid content of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
  • Example 1 a substrate with a transparent film was prepared in the same manner except that an alcohol dispersion of silica-based fine particles (P-3) was used instead of an alcohol dispersion of silica-based fine particles (P-1). A-3) was obtained.
  • the aqueous dispersion of silica-based fine particles (P-4-1) having a silica coating layer was added with aqueous ammonia to adjust the pH of the dispersion to 10.5, and then at 150 ° C. After aging for 11 hours, the mixture was cooled to room temperature, ion-exchanged for 3 hours using 400 g of cation-exchanged resin (Mitsubishi Chemical Corporation: Diaion SKI B), and then anion-exchanged resin (Mitsubishi Chemical).
  • the silica-based fine particle (P-4-2) dispersion was again hydrothermally treated at 150 ° C for 11 hours. , Cooled to room temperature, ion-exchanged for 3 hours using 400 g of cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SKIB), then anion exchange resin (Mitsubishi Chemical Co., Ltd.) (Product: Diaion SA20A) Ion exchange using 200 g for 3 hours, and ion exchange at 80 ° C for 3 hours using 200 g of cation exchange resin (Made by Mitsubishi Igaku Co., Ltd .: Diaion SKIB).
  • cation exchange resin Mitsubishi Igaku Co., Ltd .: Diaion SKIB
  • washing was performed to obtain an aqueous dispersion of silica-based fine particles (P-4-3) having a solid concentration of 20% by weight.
  • the Na O content and NH content of the silica-based fine particles (P-4-3) aqueous dispersion are silica fine particles.
  • an alcohol dispersion of silica-based fine particles (P-4) having a solid concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
  • Example 1 a substrate with a transparent film was prepared in the same manner except that the alcohol dispersion of silica fine particles (P-4) was used instead of the alcohol dispersion of silica fine particles (P-1). A-4) was obtained.
  • a dispersion of composite oxide fine particles (5) (secondary particles) (average particle size 50 nm) was obtained by adding 2, lOOg of 5% by weight aqueous sodium aluminate solution.
  • the aqueous dispersion of silica-based fine particles (P-5-1) having a silica coating layer was added with aqueous ammonia to adjust the pH of the dispersion to 10.5, and then at 150 ° C. After aging for 11 hours, the mixture was cooled to room temperature, ion-exchanged for 3 hours using 400 g of cation-exchanged resin (Mitsubishi Chemical Corporation: Diaion SKI B), and then anion-exchanged resin (Mitsubishi Chemical).
  • the silica-based fine particle (P-5-2) dispersion was again hydrothermally treated at 150 ° C for 11 hours, cooled to room temperature, and cation exchange resin (Mitsubishi Chemical Co., Ltd.). Ion-exchanged using 400 g of Diaion SKlB) for 3 hours, and then ion-exchanged for 3 hours using 200 g of anion-exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A). Exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) 200g was used for ion exchange at 80 ° C for 3 hours for cleaning, and silica fine particles (P-5 -3) was obtained. At this time, the Na O content and NH content of the aqueous dispersion of silica fine particles (P-5-3) are the silica fine particles.
  • an alcohol dispersion of silica-based fine particles (P-5) having a solid concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
  • Example 1 a substrate with a transparent film was prepared in the same manner except that an alcohol dispersion of silica fine particles (P-5) was used instead of the alcohol dispersion of silica fine particles (P-1). A-5) Obtained.
  • Example 5 the silica-based fine particle (P-5-2) dispersion was washed with an ultrafiltration membrane while adding 5 L of pure water without hydrothermal treatment at 150 ° C for 11 hours, and the solid content concentration An aqueous dispersion of 20% by weight of silica-based fine particles (P-6-3) was obtained. At this time, the Na O content and NH content of the aqueous dispersion of silica-based fine particles (P-6-3) were 0.8 ppm and 1200 ppm per silica-based fine particle.
  • an alcohol dispersion of silica-based fine particles (P-6) having a solid content of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
  • Example 1 a substrate with a transparent film was prepared in the same manner except that an alcohol dispersion of silica fine particles (P-6) was used instead of the alcohol dispersion of silica fine particles (P-1). A-6) was obtained.
  • the silica-based fine particle (P-7-2) dispersion was again hydrothermally treated at 150 ° C for 11 hours, cooled to room temperature, and cation exchange resin (Mitsubishi Chemical Co., Ltd.). Ion-exchanged using 400 g of Diaion SKlB) for 3 hours, and then ion-exchanged for 3 hours using 200 g of anion-exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A). Exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) 200g was used for ion exchange at 80 ° C for 3 hours for cleaning. Silica fine particles (P-7 -3) was obtained. At this time, the Na O content and NH content of the aqueous dispersion of silica fine particles (P-7-3) are the silica fine particles.
  • an alcohol dispersion of silica-based fine particles (P-7) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
  • Example 1 a substrate with a transparent film was prepared in the same manner except that an alcohol dispersion of silica fine particles (P-7) was used instead of the alcohol dispersion of silica fine particles (P-1). A-7) Obtained.
  • ammonia water is added to the dispersion of silica-based fine particles (P-5-1) to adjust the pH of the dispersion to 10.5, and then at 150 ° C without forming a silica coating layer.
  • it was cooled to room temperature, ion-exchanged for 3 hours using 400 g of cation-exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B), and then anion-exchanged resin ( Mitsubishi Igaku Co., Ltd. (Diaion SA20A) 200g was used for ion exchange for 3 hours, and cation exchange resin (Mitsubishi Igaku Co., Ltd .: Diaion SK1B) 200g was used.
  • the mixture was washed by ion exchange for 3 hours to obtain an aqueous dispersion of silica-based fine particles (P-8-2) having a solid content concentration of 20% by weight.
  • the Na O content and NH content of the silica-based fine particles (P-8-2) aqueous dispersion are silica fine particles.
  • the silica-based fine particle (P-8-2) dispersion was again hydrothermally treated at 150 ° C for 11 hours, cooled to room temperature, and cation exchange resin (Mitsubishi Chemical Co., Ltd.). Ion-exchanged using 400 g of Diaion SKlB) for 3 hours, and then ion-exchanged for 3 hours using 200 g of anion-exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A). Exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) 200g was used for ion exchange at 80 ° C for 3 hours for cleaning, and silica-based fine particles (P-8 -3) was obtained. At this time, the Na O content and NH content of the silica-based fine particles (P-8-3) aqueous dispersion are silica fine particles.
  • an alcohol dispersion of silica-based fine particles (P-8) having a solid content of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
  • Example 9 a substrate with a transparent film was prepared in the same manner except that an alcohol dispersion of silica fine particles (P-8) was used instead of the alcohol dispersion of silica fine particles (P-1). A-8) was obtained.
  • P-8 an alcohol dispersion of silica fine particles
  • concentration 0.5 wt 0/0 of sulfuric acid was added sodium 6, 600 g (molar ratio 1.0), followed by concentration of 0.5 as Si O as the concentration 1.5 wt% aqueous solution of sodium silicate 33, OOOg and Al O
  • a dispersion of composite oxide fine particles (9) (secondary particles) (average particle size 78 nm) was obtained by adding 1 000 g of a sodium aluminate aqueous solution of 1% by weight.
  • the aqueous dispersion of silica-based fine particles (P-9-1) with a silica coating layer was added with aqueous ammonia to adjust the pH of the dispersion to 10.5, and then at 150 ° C. After aging for 11 hours, the mixture was cooled to room temperature, ion-exchanged for 3 hours using 400 g of cation-exchanged resin (Mitsubishi Chemical Corporation: Diaion SKI B), and then anion-exchanged resin (Mitsubishi Chemical).
  • the silica-based fine particle (P-9-2) dispersion was again hydrothermally treated at 150 ° C for 11 hours, cooled to room temperature, and cation exchange resin (Mitsubishi Chemical Co., Ltd.). Ion-exchanged using 400 g of Diaion SKlB) for 3 hours, and then ion-exchanged for 3 hours using 200 g of anion-exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A). Use 200g of exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SKIB) and wash by ion exchange at 80 ° C for 3 hours to obtain silica-based fine particles (P-9 -3) was obtained. At this time, the Na O content and NH content of the aqueous dispersion of silica fine particles (P-9-3) are the silica fine particles.
  • an alcohol dispersion of silica-based fine particles (P-9) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
  • Example 1 a substrate with a transparent film was prepared in the same manner except that an alcohol dispersion of silica fine particles (P-9) was used instead of the alcohol dispersion of silica fine particles (P-1). A-9) was obtained.
  • aqueous ammonia was added to the dispersion of silica-based fine particles (P-10-1) having a silica coating layer to adjust the pH of the dispersion to 10.5, and then at 150 ° C, 11 After aging for a while, it was cooled to normal temperature, ion-exchanged for 3 hours using 400 g of cation-exchanged resin (Mitsubishi Chemical Corporation: Diaion SK1B), and then anion-exchanged resin (Mitsubishi Chemical) Ion-exchanged using 200 g of Diaion S A20A) for 3 hours, and further using 200 g of cation exchange resin (Mitsubishi Igaku Co., Ltd .: Diaion SKlB) for 3 hours at 80 ° C.
  • cation-exchanged resin Mitsubishi Chemical Corporation: Diaion SK1B
  • anion-exchanged resin Mitsubishi Chemical Ion-exchanged using 200 g of Diaion S A20A
  • cation exchange resin Mitsubishi Ig
  • washing was performed by ion exchange to obtain an aqueous dispersion of silica-based fine particles (P-10-2) having a solid concentration of 20% by weight.
  • P-10-2 aqueous dispersion of silica-based fine particles having a solid concentration of 20% by weight.
  • the silica-based fine particle (P-10-2) dispersion was again hydrothermally treated at 150 ° C for 11 hours, cooled to room temperature, and cation exchange resin (Mitsubishi Chemical Co., Ltd.). Ion-exchanged using 400 g of Diaion SKlB) for 3 hours, and then ion-exchanged for 3 hours using 200 g of anion-exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A). Exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) 200g was used for ion exchange at 80 ° C for 3 hours for cleaning, and silica-based fine particles (P-10 -3) was obtained. At this time, the Na O content and NH content of the aqueous dispersion of silica-based fine particles (P-10-3)
  • an alcohol dispersion of silica-based fine particles (P-10) having a solid content of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
  • Example 1 silica-based fine particles (P-1) were replaced by silica-based fine particles instead of the alcohol dispersion.
  • a substrate with a transparent film (A-10) was obtained in the same manner except that the alcohol dispersion of particles (P-10) was used.
  • SiO a sodium silicate aqueous solution with a concentration of 1.5% by weight (16,740g) and AlO was used.
  • Ammonia water is added to the silica-based fine particle (P-11-1) dispersion to adjust the pH of the dispersion to 10.
  • the Na O content and NH content of the aqueous dispersion of silica-based fine particles (P-11-2) are 8 ppm and lOOO ppm per silica-based fine particle. It was. [Process (e)]
  • the silica-based fine particle (P-11-2) dispersion was again hydrothermally treated at 150 ° C for 11 hours, cooled to room temperature, and cation exchange resin (Mitsubishi Chemical Co., Ltd.). Ion-exchanged using 400 g of Diaion SKlB) for 3 hours, and then ion-exchanged for 3 hours using 200 g of anion-exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A). Exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) 200g was used for ion exchange at 80 ° C for 3 hours for cleaning, and silica-based fine particles (P-11 -3) was obtained. At this time, the Na O content and NH content of the aqueous dispersion of silica-based fine particles (P-11-3)
  • an alcohol dispersion of silica-based fine particles (P-11) having a solid content of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
  • Example 1 a substrate with a transparent film was prepared in the same manner except that an alcohol dispersion of silica-based fine particles (P-11) was used instead of the alcohol dispersion of silica-based fine particles (P-1). A-11) was obtained.
  • Example 1 a substrate with a transparent film was prepared in the same manner except that an alcohol dispersion of silica-based fine particles (P-12) was used instead of an alcohol dispersion of silica-based fine particles (P-1). A-12) was obtained.
  • Silica sol (catalyst I ⁇ Kogyo KK: USBB- 120, average particle diameter 25nm, Si ⁇ ⁇ ⁇ 1 ⁇ concentration of 20 weight 0/0, Al O content 27 wt 0/0 in solids) to 100g Pure water 3, 900
  • the MO / SiO molar ratio (A) at this time was 0.2.
  • the pH of the reaction solution at this time is
  • a dispersion of composite oxide fine particles (R1) (secondary particles) (average particle size of 50 nm) was obtained by adding 5,270 g of an aqueous solution of sodium aluminate having a concentration of 2 wt. At this time, MO / SiO
  • the X 2 ratio (B) was 0.2. At this time, the pH of the reaction solution was 12.0.
  • the average particle size of the silica-based fine particles (RP-1) was measured and found to be about 5 nm.
  • TEM transmission electron micrograph
  • Silica sol (catalyst I ⁇ Kogyo KK: USBB- 120, average particle diameter 25nm, Si ⁇ ⁇ ⁇ 1 ⁇ concentration of 20 weight 0/0, Al O content 27 wt 0/0 in solids) to 100g Pure water 3, 900
  • the MO / SiO molar ratio (A) at this time was 0 ⁇ 03.
  • ⁇ of the reaction solution at this time is
  • a dispersion of composite oxide fine particles (RP2) (secondary particles) (average particle size 50 nm) was obtained by adding 1,055 g of an aqueous solution of sodium aluminate having a concentration of 2 2 3 of 0.5% by weight. At this time, MO / SiO
  • the X 2 ratio (B) was 0.03. At this time, the pH of the reaction solution was 12.0.
  • Ammonia water is added to the above silica-based fine particle (RP-2-1) dispersion to adjust the pH of the dispersion to 10.
  • the silica-based fine particle (R-2-2) dispersion was again hydrothermally treated at 150 ° C for 11 hours, cooled to room temperature, and cation exchange resin (Mitsubishi Chemical Co., Ltd.). Ion-exchanged using 400 g of Diaion SKlB) for 3 hours, and then ion-exchanged for 3 hours using 200 g of anion-exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A). Exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) 200g was used for ion exchange at 80 ° C for 3 hours for cleaning. Silica fine particles (RP-2 -3) was obtained. At this time, the Na O content and NH content of the aqueous dispersion of silica-based fine particles (RP-2-3) They were 0.5 ppm and 900 ppm per particle.
  • an alcohol dispersion of silica-based fine particles (RP-2) having a solid concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
  • Example 1 a substrate with a transparent film was prepared in the same manner except that an alcohol dispersion of silica fine particles (RP-2) was used instead of the alcohol dispersion of silica fine particles (P-1). RA-2) was obtained.
  • Silica sol (catalyst I ⁇ Kogyo KK: USBB- 120, average particle diameter 25nm, Si ⁇ ⁇ ⁇ 1 ⁇ concentration of 20 weight 0/0, Al O content 27 wt 0/0 in solids) to 100g Pure water 3, 900
  • the MO / SiO molar ratio (A) was 0 ⁇ 005.
  • ⁇ of the reaction solution at this time is
  • a dispersion of composite oxide fine particles (RP3) (secondary particles) (average particle size 50 nm) was obtained by adding 135 g of a 0.5 wt% sodium aluminate aqueous solution having a concentration of 2 2 3. MO / SiO mole at this time
  • Ammonia water was added to the above silica-based fine particle (RP-3-1) dispersion to adjust the pH of the dispersion to 10.
  • the silica-based fine particle (RP-3-2) dispersion was again hydrothermally treated at 150 ° C for 11 hours, cooled to room temperature, and cation exchange resin (Mitsubishi Chemical Co., Ltd.). Ion-exchanged using 400 g of Diaion SKlB) for 3 hours, and then ion-exchanged for 3 hours using 200 g of anion-exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SA20A). Exchanged resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) 200g was used for ion exchange at 80 ° C for 3 hours for cleaning. Silica fine particles (RP-3 -3) was obtained. At this time, the Na O content and NH content of the aqueous dispersion of silica fine particles (RP-3-3)
  • an alcohol dispersion of silica-based fine particles (RP-3) having a solid content concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
  • Example 1 a substrate with a transparent film was prepared in the same manner except that an alcohol dispersion of silica fine particles (RP-3) was used instead of the alcohol dispersion of silica fine particles (P-1). RA-3).
  • Silica sol (catalyst I ⁇ Kogyo KK: USBB- 120, average particle diameter 25nm, Si ⁇ ⁇ ⁇ 1 ⁇ concentration of 20 wt 0/0, Al O content 27 wt 0/0 in solids) to 100g Pure water 3, 900
  • a dispersion of composite oxide fine particles (RP4) (secondary particles) (average particle size 50 nm) was obtained by adding 18,860 g of an aqueous solution of sodium aluminate having a concentration of 0.53 wt%. At this time, MO / SiO
  • the average particle diameter of the silica-based fine particles (RP-4-1) was measured and found to be about 5 nm.
  • Example 2 In the same manner as in Example 1, an aqueous dispersion of silica-based fine particles (P-1-1) having a solid content concentration of 20% by weight was prepared.
  • cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) was used for ion exchange for 3 hours and then anion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion).
  • SA 20A Ion exchange using 200g for 3 hours, and then using 200g of cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SKlB) for ion exchange at 80 ° C for 3 hours for cleaning.
  • An aqueous dispersion of silica-based fine particles (RP-5-2) having a solid content concentration of 20% by weight and a solid content concentration of 20% by weight was obtained.
  • Example 1 a substrate with a transparent film was prepared in the same manner except that an alcohol dispersion of silica fine particles (RP-5) was used instead of the alcohol dispersion of silica fine particles (P-1). RA-5).
  • Example 2 In the same manner as in Example 1, an aqueous dispersion of silica-based fine particles (P-1-1) having a silica coating layer having a solid content concentration of 20% by weight was obtained.
  • cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) was used for ion exchange for 3 hours and then anion exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion).
  • SA 20A Ion exchange using 200g for 3 hours, and then using 200g of cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SKlB) for ion exchange at 80 ° C for 3 hours for cleaning.
  • an alcohol dispersion of silica-based fine particles (RP-6) having a solid concentration of 20% by weight was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
  • Example 1 a substrate with a transparent film was prepared in the same manner except that an alcohol dispersion of silica fine particles (RP-6) was used instead of the alcohol dispersion of silica fine particles (P-1). RA-6).
  • Silica sol (catalyzed by Kosei Kogyo Co., Ltd .: SI-45P, average particle size: 45 nm, refractive index 1.43, SiO concentration: 40 wt%) was replaced with ethanol using an ultrafiltration membrane.
  • An alcohol dispersion of silica fine particles (RP-7) having a degree of 20% by weight was prepared.
  • silica-based fine particles (P-1) were replaced by silica-based fine particles instead of the alcohol dispersion.
  • a substrate with transparent coating (RA-7) was obtained in the same manner except that the alcohol dispersion of particles (RP-7) was used.
  • Example 1 96.3 0.3 0.6 1.36 ⁇ 4H
  • Example 2 96.5 0.2 0.4 1.31 ⁇ 3H
  • Example 3 96.1 0.3 0.5 1.32 ⁇ 3H
  • Example 4 96.5 0.2 0.5 1.31 ⁇ 3H
  • Example 5 96.3 0.2 0.6 1.35 ⁇ 3H
  • Example 6 96.2 0.3 0.5 1.32 ⁇ H
  • Example 7 96.4 0.2 0.5 1.31 ⁇ 3H
  • Example 8 96.1 0.3 0.5 1.31 ⁇ 3H
  • Example 9 96.3 0.3 0.3 1.39 ⁇ 3H
  • Example 1 0 96.1 0.3 0.6 1.30 ⁇ 3H
  • Example 1 96.1 0.3 0.6 1.30 ⁇ 3H
  • Example 1 96.1 0.3 0.6 1.30 ⁇ 3H
  • Example 1 96.1 0.3 0.6 1.30 ⁇ 3H
  • Example 1 96.1 0.3 0.6 1.30 ⁇ 3H
  • Example 1 96.1 0.3 0.6 1.30 ⁇ 3H
  • Example 1 96.1 0.3 0.6 1.30 ⁇ 3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Silicon Compounds (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

 低屈折率のシリカ系微粒子を得るために、外殻内部に多孔質物質及び/又は空洞を有する中空で球状のシリカ系微粒子とする。多孔質の複合酸化物粒子(一次粒子)を、シリカ源とシリカ以外の無機酸化物源の添加比率を調整しながら粒子成長させ、ついでシリカ以外の無機酸化物を除去することにより、外殻内部に空洞を有する中空で球状のシリカ系微粒子の分散液を製造する。ついで、シリカ系微粒子分散液を必要に応じて洗浄した後、常温~300°Cの範囲で熟成し、さらに50~300°Cの範囲で水熱処理する。

Description

明 細 書
シリカ系微粒子、その製造方法、被膜形成用塗料および被膜付基材 技術分野
[oooi] 本発明は、内部に多孔質物質及び Z又は空洞を有するシリカ系微粒子およびその 製造方法と、該シリカ系微粒子を含む被膜形成用塗料と、該シリカ系微粒子を含む 被膜が基材表面上に形成された被膜付基材に関するものである。
背景技術
[0002] 従来、粒径が 0. 1〜300 μ m程度の中空シリカ粒子は公知である(特許文献 1、特 許文献 2など参照)。また、珪酸アルカリ金属水溶液から活性シリカをシリカ以外の材 料力 なるコア上に沈殿させ、該材料をシリカシェルを破壊させることなく除去するこ とによって、稠密なシリカシェル力もなる中空粒子を製造する方法が公知である(特許 文献 3など参照)。
さらに、外周部が殻、中心部が中空で、殻は外側が緻密で内側ほど粗な濃度傾斜 構造をもったコア'シェル構造であるミクロンサイズの球状シリカ粒子が公知である(特 許文献 4など参照)。
[0003] また、本願出願人は先に、多孔性の無機酸ィ匕物微粒子の表面をシリカ等で完全に 被覆することにより、低屈折率のナノメーターサイズの複合酸化物微粒子が得られる ことを提案すると共に (特許文献 5参照)、さらに、シリカとシリカ以外の無機酸ィ匕物か らなる複合酸ィ匕物の核粒子にシリカ被覆層を形成し、っ 、でシリカ以外の無機酸ィ匕 物を除去し、必要に応じてシリカを被覆することによって、内部に空洞を有する低屈 折率のナノメーターサイズのシリカ系微粒子が得られることを提案して ヽる(特許文献 6参照)。
[0004] し力しながら、上記本願出願人の提案に係る粒子では、粒子の使用目的および用 途によっては充分な低屈折率効果が得られない場合があった。また、特許文献 6記 載の製造方法では、前記シリカ以外の無機酸ィ匕物の除去に先立ってシリカ被覆層を 形成するなど、製造工程が複雑となり、再現性や生産性の点が隘路となっていた。 さらに、前記した従来の微粒子では被膜付基材の製造に用いる被膜形成用塗料 中での微粒子の分散性、塗料の安定性が不充分で、該被膜形成用塗料を用いて得 られる被膜は厚さが不均一であったり膜強度が不充分となることがあった。また、水分 の吸着に起因して被膜が白化すること、即ち耐水性が不充分な場合があった。
[0005] 特許文献 1 :特開平 6— 330606号公報
特許文献 2:特開平 7— 013137号公報
特許文献 3:特表 2000— 500113号公報
特許文献 4:特開平 11一 029318号公報
特許文献 5 :特開平 7— 133105号公報
特許文献 6:特開 2001— 233611号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、前記特許文献 6記載の発明に基づきこれを発展させたものであり、低屈 折率のシリカ系微粒子を得ることを目的とするものであって、多孔質の複合酸化物粒 子 (一次粒子)を、シリカ源とシリカ以外の無機酸ィ匕物源の添加比率を調整しながら 粒子成長させ、ついでシリカ以外の無機酸ィ匕物を除去することにより、外殻内部に多 孔質物質を含むか空洞を有する、中空で球状のシリカ系微粒子とその製造方法を提 供することを目的としている。
[0007] また、本発明は前記内部に多孔質物質及び Z又は空洞を有する球状のシリカ系微 粒子と被膜形成用マトリックスとを含有し、安定性、膜形成性等に優れた被膜形成用 塗料を提供することを目的とするものである。
また、本発明は前記内部に多孔質物質及び Z又は空洞を有する球状のシリカ系微 粒子を含有する被膜を基材の表面に形成して、低屈折率で、榭脂等との密着性、強 度、反射防止能、耐水性等に優れた被膜付きの基材を提供することを目的とするも のである。
課題を解決するための手段
[0008] 本発明に係るシリカ系微粒子の製造方法は、下記工程 (a)、 (b)、 (c)および (e)か らなることを特徴とする。
(a)珪酸塩の水溶液および Zまたは酸性珪酸液と、アルカリ可溶の無機化合物水溶 液とをアルカリ水溶液中に、または、必要に応じて種粒子が分散したアルカリ水溶液 中に同時に添加して複合酸ィ匕物微粒子の分散液を調製する際に、シリカを SiOで
2 表し、シリカ以外の無機酸化物を MOで表したときのモル比 MO /SiOが 0. 01〜
X X 2
2の範囲となるように添カ卩して、平均粒子径(D )が 3〜300nmの範囲にある複合酸
P1
化物微粒子の分散液を調製する工程
(b)ついで、前記工程(a)のモル比 MO /SiOより小さいモル比 MO /SiOで、珪
X 2 X 2 酸塩の水溶液および zまたは酸性珪酸液と、アルカリ可溶の無機化合物水溶液とを 添加して、平均粒子径 (D )が最大 500nmの複合酸化物微粒子の分散液を調製す
P2
る工程
(c)前記複合酸化物微粒子分散液に酸を加えて、前記複合酸化物微粒子を構成す る珪素以外の元素の少なくとも一部を除去してシリカ系微粒子分散液とする工程 (e)ついで、必要に応じて洗浄した後、シリカ系微粒子分散液を常温〜 300°Cの範 囲で熟成する工程
[0009] 前記工程(a)における MO /SiOのモル比(A)に対する前記工程 (b)における M
X 2
O /SiOのモル比(B)の値 BZAは、 0. 8以下であることが好ましい。
X 2
前記複合酸化物微粒子の平均粒子径 (D )と平均粒子径 (D )との比 (D ZD )
PI P2 PI P2 は 0. 4〜0. 98の範囲にあることが好ましい。
前記工程 (b)および Zまたは工程 (c)を、電解質塩のモル数 (M )
Eと SiO
2のモル数
(M )との比(M ZM )が 10以下となる電解質塩の存在下で行うことが好ましい。
S E S
[0010] 工程 (c)と工程 (e)の間で下記工程 (d)を実施することが好ま 、。
(d)前記工程 (c)で得られたシリカ系微粒子分散液に、下記化学式(1)で表される有 機珪素化合物および Zまたはその部分加水分解物と、必要に応じてアルカリ水溶液 とを添加し、該微粒子にシリカ被覆層を形成する工程
R SiX · · · (1)
n (4-n)
〔但し、 R:炭素数 1〜10の非置換または置換炭化水素基、アクリル基、エポキシ基、 メタクリル基、アミノ基、 CF基、 X:炭素数 1〜4のアルコキシ基、シラノール基、ハロ
2
ゲンまたは水素、 n: 0〜3の整数〕
[0011] 工程 (e)の後、下記工程 (f)を実施することが好ましい。 (f )前記工程 (e)で得られたシリカ系微粒子分散液に、下記化学式(1)で表される有 機珪素化合物および Zまたはその部分加水分解物と、必要に応じてアルカリ水溶液 とを添加し、該微粒子にシリカ被覆層を形成する工程
R SiX · · · (1)
n (4-n)
〔但し、 R:炭素数 1〜10の非置換または置換炭化水素基、アクリル基、エポキシ基、 メタクリル基、アミノ基、 CF基、 X:炭素数 1〜4のアルコキシ基、シラノール基、ハロ
2
ゲンまたは水素、 n: 0〜3の整数〕
[0012] 前記アルカリ水溶液または、必要に応じて種粒子が分散したアルカリ水溶液の pH が 10以上であることが好まし 、。
前記工程 (e)または工程 (f)につ 、で、下記工程 (g)を実施することが好ま 、。
(g)必要に応じて洗浄した後、 50〜300°Cの範囲で水熱処理する工程
[0013] 前記工程 (g)につ 、で、下記工程 (h)を実施することが好ま U、。
(h)前記工程 (g)で得られたシリカ系微粒子分散液に、下記化学式(1)で表される有 機珪素化合物および Zまたはその部分加水分解物と、必要に応じてアルカリ水溶液 とを添加し、該微粒子にシリカ被覆層を形成する工程
R SiX · · · (1)
n (4-n)
〔但し、 R:炭素数 1〜10の非置換または置換炭化水素基、アクリル基、エポキシ基、 メタクリル基、アミノ基、 CF基、 X:炭素数 1〜4のアルコキシ基、シラノール基、ハロ
2
ゲンまたは水素、 n: 0〜3の整数〕
[0014] 前記水熱処理工程は複数回繰り返すことが好ま U、。
前記シリカ以外の無機酸ィ匕物がアルミナであることが好ましい。
前記得られたシリカ系微粒子分散液を洗浄し、乾燥し、必要に応じて焼成すること が好ましい。
前記得られたシリカ系微粒子の平均粒子径は、 5nm〜500nmの範囲にあることが 好ましい。
[0015] 前記シリカ系微粒子またはシリカ系微粒子分散液中のアルカリ金属酸ィ匕物の含有 量がシリカ系微粒子当たり M O (M:アルカリ金属元素)として 5ppm以下であることが
2
好ましい。 前記シリカ系微粒子またはシリカ系微粒子分散液中のアンモニアおよび zまたはァ ンモ -ゥムイオンの含有量が NHとして 1500ppm以下であることが好ましい。
3
[0016] 本発明に係るシリカ系微粒子は、外殻層の内部に多孔質物質及び Z又は空洞を 有するシリカ系微粒子であって、 BET法により測定した該微粒子の比表面積 (S )と
B
次式で表される比表面積 (S )との比(S ZS )が 1. 1〜5の範囲にあることを特徴と
C B C
する。
Figure imgf000006_0001
(但し、 Dp :シリカ系微粒子の平均粒子径 (nm)、 p:密度 (gZml)である。 )
[0017] 前記シリカ系微粒子の平均粒子径は 5〜500nmの範囲にあることが好ましい。
前記外殻層の厚さは 0. 5〜20nmの範囲にあることが好ましい。
前記シリカ系微粒子の屈折率が 1. 15〜1. 38の範囲にあることが好ましい。
[0018] 本発明に係る被膜形成用塗料は、前記製造方法によって得られたシリカ系微粒子 、または前記いずれかのシリカ系微粒子と、被膜形成用マトリックスとを含んでなるこ とを特徴とする。該被膜形成用塗料は、さらに前記シリカ系微粒子以外の酸化物系 微粒子を含んでなることが好まし 、。
本発明に係る被膜付基材は、前記製造方法によって得られたシリカ系微粒子、ま たは前記いずれかのシリカ系微粒子と、被膜形成用マトリックスとを含んでなる被膜 力 単独でまたは他の被膜とともに基材表面上に形成されたものである。
発明の効果
[0019] 本発明方法によれば、シリカとシリカ以外の無機酸ィ匕物とからなる複合酸ィ匕物粒子 を調製する際に、まず、シリカ以外の無機酸ィ匕物分の多い複合酸ィ匕物 (一次粒子)を 調製し、ついでシリカ分の多い複合酸ィ匕物(二次粒子)を調製するので、粒子の表層 がシリカ分に富み、後続する脱元素工程においても当該複合酸化物微粒子が球状 を維持して、破壊されることがない。このため、極めて簡易な製造工程により非常に低 屈折率のシリカ系微粒子を得ることができる。更に、シリカ系微粒子の製造再現性や 生産性の点でも優れて 、る。
[0020] 脱元素工程を経て熟成した後、あるいは脱元素工程後必要に応じてシリカ被覆層 を形成する力または熟成した後、必要に応じてシリカ被覆層を形成した後、高温で水 熱処理して得られるシリカ系微粒子は、アルカリ金属酸化物、アンモニア等が低減さ れ、該シリカ系微粒子を配合した被膜形成用塗料は安定性が高ぐ得られる被膜は 強度に優れている。
[0021] また、前記水熱処理をしない場合であっても、脱元素工程後にシリカ被覆層を形成 するカゝ脱元素工程を経て熟成した後シリカ層を形成して得られるシリカ系微粒子は 後述する SZScが 1. 1〜5、好ましくは 1. 2〜3の範囲にあり、このようなシリカ系微 粒子は被膜形成用塗料中での分散性がよぐ得られる塗料は安定性に優れ、この塗 料を用 、て得られる被膜は強度に優れるとともに耐水性に優れて 、る。
[0022] 本発明の被膜形成用塗料は、配合されるシリカ系微粒子のアルカリ金属酸化物、 アンモニアの含有量が少な 、ので安定性に優れ、これを用いて得られる被膜は強度 に優れている。
また、本発明の被膜付基材は、低屈折率で、榭脂等との密着性、強度、透明性、反 射防止能等に優れている。
発明を実施するための最良の形態
[0023] 以下、本発明の好適な実施形態を説明する。
〔シリカ系微粒子の製造方法〕
本発明のシリカ系微粒子の製造方法は、下記工程 (a)、(b)、(c)および (e)からな る。また、工程 (c)と工程 (e)の間に工程 (d)を実施したり、工程 (e)の後に工程 (g)を 実施することもある。また、工程 (e)の後、工程 (f)を実施することもある。
以下、工程順に説明する。
[0024] (a)珪酸塩の水溶液および Zまたは酸性珪酸液と、アルカリ可溶の無機化合物水溶 液とをアルカリ水溶液中に、または、必要に応じて種粒子が分散したアルカリ水溶液 中に同時に添加して複合酸ィ匕物微粒子の分散液を調製する際に、シリカを SiOで
2 表し、シリカ以外の無機酸化物を MOで表したときのモル比 MO /SiOが 0. 01〜
X X 2
2の範囲となるように添カ卩して、平均粒子径(D )が 3〜300nmの範囲にある複合酸
P1
化物微粒子の分散液を調製する工程
(b)ついで、前記工程(a)のモル比 MO /SiOより小さいモル比 MO /SiOで、珪
X 2 X 2 酸塩の水溶液および zまたは酸性珪酸液と、アルカリ可溶の無機化合物水溶液とを 添加して、平均粒子径 (D )が最大 500nmの複合酸化物微粒子の分散液を調製す
P2
る工程
[0025] (c)前記複合酸化物微粒子分散液に酸を加えて、前記複合酸化物微粒子を構成す る珪素以外の元素の少なくとも一部を除去してシリカ系微粒子分散液とする工程 (d)前記工程 (c)で得られたシリカ系微粒子分散液に、下記化学式(1)で表される有 機珪素化合物および Zまたはその部分加水分解物と、必要に応じてアルカリ水溶液 とを添加し、該微粒子にシリカ被覆層を形成する工程
R SiX · · · (1)
n (4-n)
〔但し、 R:炭素数 1〜10の非置換または置換炭化水素基、アクリル基、エポキシ基、 メタクリル基、アミノ基、 CF基、 X:炭素数 1〜4のアルコキシ基、シラノール基、ハロ
2
ゲンまたは水素、 n: 0〜3の整数〕
[0026] (e)必要に応じて洗浄した後、シリカ系微粒子分散液を常温〜 300°Cの範囲で熟成 する工程
(f )前記工程 (e)で得られたシリカ系微粒子分散液に、下記化学式(1)で表される有 機珪素化合物および Zまたはその部分加水分解物と、必要に応じてアルカリ水溶液 とを添加し、該微粒子にシリカ被覆層を形成する工程
R SiX · · · (1)
n (4-n)
〔但し、 R:炭素数 1〜10の非置換または置換炭化水素基、アクリル基、エポキシ基、 メタクリル基、アミノ基、 CF基、 X:炭素数 1〜4のアルコキシ基、シラノール基、ハロ
2
ゲンまたは水素、 n: 0〜3の整数〕
[0027] (g)必要に応じて洗浄した後、 50〜300°Cの範囲で水熱処理する工程
(h)前記工程 (g)で得られたシリカ系微粒子分散液に、下記化学式(1)で表される有 機珪素化合物および Zまたはその部分加水分解物と、必要に応じてアルカリ水溶液 とを添加し、該微粒子にシリカ被覆層を形成する工程
R SiX · · · (1)
n (4-n)
〔但し、 R:炭素数 1〜10の非置換または置換炭化水素基、アクリル基、エポキシ基、 メタクリル基、アミノ基、 CF基、 X:炭素数 1〜4のアルコキシ基、シラノール基、ハロ
2
ゲンまたは水素、 n: 0〜3の整数〕 [0028] 工程(a)
珪酸塩としては、アルカリ金属珪酸塩、アンモニゥム珪酸塩および有機塩基の珪酸 塩力 選ばれる 1種または 2種以上の珪酸塩が好ましく用いられる。アルカリ金属珪 酸塩としては、珪酸ナトリウム (水ガラス)ゃ珪酸カリウム力 有機塩基としては、テトラ ェチルアンモ -ゥム塩などの第 4級アンモ-ゥム塩、モノエタノールァミン、ジエタノー ルァミン、トリエタノールァミンなどのアミン類を挙げることができ、アンモ-ゥムの珪酸 塩または有機塩基の珪酸塩には、珪酸液にアンモニア、第 4級アンモ-ゥム水酸ィ匕 物、アミンィ匕合物などを添加したアルカリ性溶液も含まれる。
酸性珪酸液としては、珪酸アルカリ水溶液を陽イオン交換樹脂で処理すること等に よって、アルカリを除去して得られる珪酸液を用いることができ、特に、 pH2〜pH4、 SiO濃度が約 7重量%以下の酸性珪酸液が好ま ヽ。
2
[0029] 無機酸化物としては、 Al O 、 B O 、 TiO 、 ZrO 、 SnO、 Ce O 、 P O 、 Sb O
2 3 2 3 2 2 2 2 3 2 5 2
、MoO 、ZnO 、WO等の 1種または 2種以上を挙げることができる。 2種以上の無
3 3 2 3
機酸化物として、 TiO — Al O 、 TiO -ZrO等を例示することができる。
2 2 3 2 2
このような無機酸ィ匕物の原料として、アルカリ可溶の無機化合物を用いることが好ま しぐ前記した無機酸ィヒ物を構成する金属または非金属のォキソ酸のアルカリ金属塩 またはアルカリ土類金属塩、アンモ-ゥム塩、第 4級アンモ-ゥム塩を挙げることがで き、より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコ二ルアンモ ユウム、アンチモン酸カリウム、錫酸カリウム、アルミノ珪酸ナトリウム、モリブデン酸ナ トリウム、硝酸セリウムアンモ-ゥム、燐酸ナトリウム等が好適である。
[0030] 複合酸化物微粒子分散液を調製するためには、予め、前記無機化合物のアルカリ 水溶液を個別に調製するか、または、混合水溶液を調製しておき、この水溶液を目 的とするシリカとシリカ以外の無機酸ィ匕物の複合割合に応じて、アルカリ水溶液中に 、好ましくは pHIO以上のアルカリ水溶液中に攪拌しながら徐々に添加する。添加は 連続であっても断続的であってもよいが、両者を同時に添加することが好ましい。
[0031] アルカリ水溶液中に添加するシリカ原料と無機化合物原料の添加割合は、複合酸 化物微粒子の平均粒子径が概ね 3〜300nm、さらには 5〜: LOOnmになるまで(以下 、このときの複合酸ィ匕物微粒子を一次粒子ということがある。)、シリカ成分を SiOで 表し、シリカ以外の無機化合物を MO で表したときのモル比 MO /SiOが 0.01〜
X X 2
2、特に、 0. 1〜1. 5の範囲となるようにすることが好ましい。このモル比が 0.01未満 では、最終的に得られるシリカ系微粒子の空洞容積が十分大きくならない。他方、モ ル比が 2を越えると、球状の複合酸ィ匕物微粒子を得ることが困難となり、得られたとし ても珪素以外の元素を除去する際に球状の複合酸化物微粒子が破壊され、この結 果、内部に多孔質物質及び Z又は空洞を有するシリカ系微粒子が得られない。この モル比は漸次小さくなるように変更しながら添加することもできる。
[0032] 前記モル比が 0. 01〜2の範囲にあれば、複合酸化物微粒子の構造は主として、 珪素と珪素以外の元素が酸素を介在して交互に結合した構造となる。即ち、珪素原 子の 4つの結合手に酸素原子が結合し、この酸素原子にはシリカ以外の元素 Mが結 合した構造が多く生成し、後述する工程 (c)で珪素以外の元素 Mを除去する際、複 合酸ィ匕物微粒子の形状を破壊することなぐ元素 Mに随伴させて珪素原子も珪酸モ ノマーやオリゴマーとして除去することができるようになる。
[0033] 前記モル比が前記範囲にあっても複合酸化物微粒子 (一次粒子)の平均粒子径が
3nm未満の場合は、最終的に得られるシリカ系微粒子の殻の割合が多くなり、シリカ 系微粒子の空洞容積が十分大きくならず、また、複合酸化物微粒子 (一次粒子)の 平均粒子径が 300nmを越えると、工程 (c)で珪素以外の元素 Mの除去が不充分と なり、シリカ系微粒子の空洞容積が十分大きくならず低屈折率の粒子を得ることが困 難になる。
[0034] 本発明の製造方法では、複合酸化物微粒子分散液を調製する際に種粒子の分散 液を出発原料とすることも可能である。この場合には、種粒子として、 SiO 、 Al O 、
2 2 3
TiO 、 ZrO 、 SnOおよび CeO等の無機酸ィ匕物またはこれらの複合酸ィ匕物、例え
2 2 2 2
ば、 SiO -Al O 、 TiO -Al O 、 TiO -ZrO 、 SiO —TiO 、 SiO —TiO -
2 2 3 2 2 3 2 2 2 2 2 2
Al O等の微粒子が用いられ、通常、これらのゾルを用いることができる。このような
2 3
種粒子の分散液は、従来公知の方法によって調製することができる。例えば、上記 無機酸化物に対応する金属塩、金属塩の混合物あるいは金属アルコキシド等に酸ま たはアルカリを添加して加水分解し、必要に応じて熟成することによって得ることがで きる。 [0035] この種粒子分散アルカリ水溶液中に、好ましくは pHIO以上に調整した種粒子分散 アルカリ水溶液中に前記化合物の水溶液を、上記したアルカリ水溶液中に添加する 方法と同様にして、攪拌しながら添加する。このように、種粒子を種として複合酸ィ匕物 微粒子を成長させると、成長粒子の粒径コントロールが容易であり、粒度の揃ったも のを得ることができる。種粒子分散液中に添加するシリカ原料および無機酸ィ匕物の 添加割合は、前記したアルカリ水溶液に添加する場合と同じ範囲とする。
[0036] 上記したシリカ原料および無機酸ィ匕物原料はアルカリ側で高 、溶解度をもって!/、る 。し力しながら、この溶解度の高い pH領域で両者を混合すると、珪酸イオンおよびァ ルミン酸イオンなどのォキソ酸イオンの溶解度が低下し、これらの複合物が析出して コロイド粒子に成長し、あるいは、種粒子上に析出して粒子成長が起こる。
上記複合酸化物微粒子分散液の調製に際し、シリカ原料として後述する化学式(1 )に示す有機珪素化合物および Zまたはその加水分解物をアルカリ水溶液中に添 加しても良い。
[0037] 該有機珪素化合物としては、具体的に、テトラメトキシシラン、テトラエトキシシラン、 テトライソプロポキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フエ二 ルトリメトキシシラン、ジフエ二ルジメトキシシラン、メチルトリエトキシシラン、ジメチルジ エトキシシラン、フエニルトリエトキシシラン、ジフエ二ルジェトキシシラン、イソブチルト リメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(j8メ トキシエトキシ)シラン、 3, 3, 3—トリフルォロプロピルトリメトキシシラン、メチル 3, 3 , 3—トリフルォロプロピルジメトキシシラン、 j8 (3, 4エポキシシクロへキシル)ェチ ルトリメトキシシラン、 γ—グリシドキシトリプロピルトリメトキシシラン、 γ—グリシドキシ プロピルメチルジェトキシシラン、 γ—グリシドキシプロピルトリエトキシシラン、 γ—メ タクリロキシプロピルメチルジメトキシシラン、 Ί—メタクリロキシプロピルトリメトキシシラ ン、 Ίーメタクリロキシプロピルメチルジェトキシシラン、 γ—メタクリロキシプロピルトリ エトキシシラン、 Ν- β (アミノエチル) γーァミノプロピルメチルジメトキシシラン、 Ν— β (アミノエチル) y—ァミノプロピルトリメトキシシラン、 N- β (アミノエチル) γ アミ ノプロピルトリエトキシシラン、 γ—ァミノプロピルトリメトキシシラン、 γ—ァミノプロピル トリエトキシシラン、 Ν—フエ二ルー yーァミノプロピルトリメトキシシラン、 Ύ メルカプ トプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、メチルジクロ ロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フエニルトリクロロシラン、ジ フエニルジクロロシラン、ビニルトリクロルシラン、トリメチルブロモシラン、ジェチルシラ ン等が挙げられる。
[0038] 上記有機珪素化合物で nが 1〜3の化合物は親水性に乏しいので、予め加水分解 しておくことにより、反応系に均一に混合できるようにすることが好ましい。加水分解に は、これら有機珪素化合物の加水分解法として周知の方法を採用することができる。 加水分解触媒として、アルカリ金属の水酸化物や、アンモニア水、ァミン等の塩基性 のものを用いた場合、加水分解後これらの塩基性触媒を除去して、酸性溶液にして 用いることもできる。また、有機酸や無機酸などの酸性触媒を用いて加水分解物を調 製した場合、加水分解後、イオン交換等によって酸性触媒を除去することが好ましい 。なお、得られた有機珪素化合物の加水分解物は、水溶液の形態で使用することが 望ましい。ここで水溶液とは加水分解物がゲルとして白濁した状態になく透明性を有 している状態を意味する。
[0039] 工程 (b)
つ!、で、平均粒子径(D )が最大 500nmになるまで、前記工程(a)のモル比 MO
P2 X
/SiO
2より小さいモル比 MO /SiO
X 2で、珪酸塩の水溶液および Zまたは酸性珪酸 液と、アルカリ可溶の無機化合物水溶液とを添加して、一次粒子の粒子成長を行う。 添カロは工程 (a)同様に連続であっても断続的であってもよいが、両者を同時に添カロ することが好ましい。また、工程 (b)におけるモル比 MO /SiOは漸次小さくなるよう
X 2
に変更しながら添加しても良い。
工程(a)における MO /SiOのモル比(A)に対する工程(b)における MO /SiO
X 2 X のモル比(B)の値 BZAは、 0. 8以下とすることが好ましい。
2
[0040] BZAの値が 1以上になるとシリカ成分の多い殻の生成ができないために、球状の 複合酸ィ匕物微粒子を得ることが困難となり、得られたとしても工程 (c)で珪素以外の 元素を除去する際に球状の複合酸化物微粒子が破壊し、この結果、内部に多孔質 物質及び Z又は空洞を有するシリカ系微粒子が得られない。
BZAの値が 1未満であれば、複合酸ィ匕物微粒子の表層がシリカに富み、殻の形 成が容易となり、工程 (C)で珪素以外の元素を除去しても球状の複合酸ィ匕物微粒子 が破壊されることが無ぐこの結果、内部に多孔質物質及び Z又は空洞を有するシリ 力系微粒子を安定的に得ることができる。
[0041] 前記した複合酸化物微粒子 (一次粒子)の平均粒子径 (D )と、これを粒子成長さ
P1
せた粒子(以下、二次粒子ということがある。)の平均粒子径 (D )との比(D /Ό )
P2 PI P2 は、 0. 4〜0. 98、さらには 0. 5〜0. 96の範囲にあること力好ましい。
D /Ό が 0. 4未満の場合は、工程 (c)で珪素以外の元素 Mの除去が不充分とな
PI P2
り、シリカ系微粒子の空洞容積が十分大きくならず低屈折率の粒子を得ることが困難 となることがある。また、 D ZD が 0. 98を超えると粒子径によっては(具体的には、
PI P2
D lOnm
P2が 20nm以下、特に 以下)、内部に多孔質物質及び Z又は空洞を有する シリカ系微粒子が得られな 、ことがある。
[0042] 本発明では、工程 (b)にお ヽて、複合酸化物微粒子 (一次粒子)の平均粒子径が 概ね 3〜300nmになった後、電解質塩を電解質塩のモル数(M )と SiO のモル数(
E 2
M )との比(M /M )が 0.1〜10、好ましくは 0.2〜8の範囲で添加することができる
S E S
[0043] 電解質塩としては、塩ィ匕ナトリウム、塩ィ匕カリウム、硝酸ナトリウム、硝酸カリウム、硫 酸ナトリウム、硫酸カリウム、硝酸アンモ-ゥム、硫酸アンモ-ゥム、塩化マグネシウム
、硝酸マグネシウムなどの水溶性の電解質塩が挙げられる。
なお、電解質塩はこの時点で全量を添加しても良いし、アルカリ金属珪酸塩ゃシリ 力以外の無機化合物を添加して複合酸ィ匕物微粒子の粒子成長を行いながら連続的 にあるいは断続的に添カ卩しても良い。
[0044] 電解質塩の添加量は、複合酸ィ匕物微粒子分散液の濃度にもよるが、前記モル比
M /Mが 0.1未満の場合は、電解質塩を加えた効果が不充分となり、工程 (c)で酸
E S
を加えて複合酸ィヒ物微粒子を構成する珪素以外の元素の少なくとも一部を除去する 際に複合酸化物微粒子が球状を維持できず破壊され、内部に多孔質物質及び Z又 は空洞を有するシリカ系微粒子を得ることが困難となることがある。このような電解質 塩を加える効果についてその理由は明らかではないが、粒子成長した複合酸ィ匕物微 粒子の表面にシリカが多くなり、酸に不溶性のシリカが複合酸ィ匕物微粒子の保護膜 的な作用をしているものと考えられる。
[0045] 前記モル比 M /M力 S10を越えても、前記電解質を添加する効果が向上すること
E S
もなぐ新たな微粒子が生成するなど、経済性が低下する。
また、電解質塩を添加する際の一次粒子の平均粒子径が 3nm未満の場合は、新 たな微粒子が生成して一次粒子の選択的な粒子成長が起きず、複合酸化物微粒子 の粒子径分布が不均一となることがある。電解質塩を添加する際の一次粒子の平均 粒子径が 300nmを越えると、工程 (c)での珪素以外の元素の除去に時間を要し、困 難となることがある。このようにして得られる複合酸ィ匕物微粒子(二次粒子)は、最終 的に得られるシリカ系微粒子と同程度の、平均粒子径が 5〜500nmの範囲にある。
[0046] 工程(c)
工程 (c)では前記複合酸化物微粒子から、該複合酸化物微粒子を構成する珪素 以外の元素の一部または全部を除去する。
元素の除去に際しては、例えば、鉱酸ゃ有機酸を添加することによって溶解除去し たり、陽イオン交換樹脂と接触させてイオン交換除去したり、あるいは、これらの方法 を組み合わせることによって除去する。
[0047] 工程(c)でも、前記モル比 M /M力 0.1〜10、好ましくは 0.2〜8の範囲となるよう
E S
に、必要に応じて前記同様に電解質塩を添加した後、前記同様に鉱酸ゃ有機酸を 添加することによって溶解除去したり、陽イオン交換樹脂と接触させてイオン交換除 去したり、あるいは、これらの方法を組み合わせることによって除去しても良い。
[0048] このとき、複合酸化物微粒子分散液中の複合酸化物微粒子の濃度は処理温度に よっても異なるが、酸ィ匕物に換算して 0. 1〜50重量%、特に 0. 5〜25重量%の範 囲にあることが好ましい。複合酸化物微粒子の濃度が 0. 1重量%未満では、シリカ の溶解量が多くなり、複合酸ィ匕物微粒子の形状を維持できないことがあり、できたとし ても低濃度のために処理効率が低下する。また、複合酸化物微粒子の濃度が 50重 量%を越えると、粒子の分散性が不充分となり、珪素以外の元素の含有量が多い複 合酸化物微粒子では均一に、あるいは効率的に少ない回数で除去できな 、ことがあ る。
上記元素の除去は、得られるシリカ系微粒子の MO /SiO力 0. 0001〜0. 2、 特に、 0. 0001〜0. 1となるまで行うこと力好まし ヽ。
[0049] 工程(d)
本工程 (d)は任意である。
前記化学式(1)に示す有機珪素化合物としては、前記工程 (a)と同様の有機珪素 化合物を用いることができ、化学式(1)において、 n=0の有機珪素化合物を用いる 場合は前記工程 (a)と同様の有機珪素化合物の部分加水分解物を用いることが好ま しい。
[0050] このようなシリカ被覆層は緻密であるために、内部が屈折率の低い気相あるいは液 層に保たれ、被膜の形成等に用いる場合、屈折率の高い物質、例えば塗料用榭脂 等が内部に進入することがなく、低屈折率効果の高 、被膜を形成することができる。 また、シリカ被覆層が緻密であるために、内部が気相である場合に内部に水分子が 進入することがなぐ即ち耐水性が高く被膜の白化を抑制することができる。
[0051] さらに、シリカ被覆層が緻密であるために、シリカ系微粒子の実際に測定される比 表面積 )と平均粒子径から計算される比表面積 (S )との比 (S ZS )が小さぐシ
B C B C
リカ系微粒子の表面活性が低いためか塗料用榭脂への分散性がよぐ得られる塗料 は安定性に優れている。
また、上記において、シリカ被覆層の形成に n= l〜3の有機珪素化合物を用いる 場合は有機溶媒への分散性が良ぐ樹脂との親和性の高いシリカ系微粒子分散液 を得ることができる。さらに、シランカップリング剤等で表面処理して用いることもできる 力 有機溶媒への分散性、榭脂との親和性等に優れているため、このような処理を特 別に必要とすることもない。
[0052] また、シリカ被覆層の形成に含フッ素有機珪素化合物を用いる場合は、 F原子を含 む被覆層が形成されるために、得られる粒子はより低屈折率となると共に有機溶媒へ の分散性が良ぐ樹脂との親和性の高いシリカ系微粒子分散液を得ることができる。 このような含フッ素有機珪素化合物としては、 3, 3, 3—トリフルォロプロピルトリメトキ シシラン、メチル 3, 3, 3—トリフルォロプロピルジメトキシシラン、ヘプタデカフルォ 口デシルメチルジメトキシシラン、ヘプタデカフルォロデシルトリクロロシシラン、ヘプタ デカフルォロデシルトリメトキシシラン、トリフルォロプロピルトリメトキシシラン、トリデカ フルォロォクチルトリメトキシシラン等が挙げられる。また、下記〔化 2〕として化学式(2 )で表される化合物、下記〔化 3〕として化学式 (3)で表される化合物も同様の効果を 有することから好適に用いることができる。
[0053] [化 2]
R3 R5
I I
R'O-Si- (X) - Si- OR2 …(2)
I I
R4 R6
[0054] [化 3]
R3
I
I^O - Si - (X) - R7 · · · (3)
I
R4
[0055] 上記化学式(2)と(3)中、 R1と R2および R1と R7とは互いに同一であっても異なって いてもよく、アルキル基、ハロゲン化アルキル基、ァリール基、アルキルァリール基、 ァリールアルキル基、ァルケ-ル基、水素原子またはハロゲン原子を示す。
R3〜R6は互いに同一であっても異なっていてもよぐアルコキシ基、アルキル基、 ハロゲン化アルキル基、ァリール基、アルキルァリール基、ァリールアルキル基、アル ケニル基、水素原子またはハロゲン原子を示す。
Xは、一(C H F )—を示し、 aは 2以上の偶数である整数、 bと cは 0以上の偶数で a c
ある整数とする。
例えば、(CH O) SiC H C F C H Si (CH O) で表されるメトキシシランは上
3 3 2 4 6 12 2 4 3 3
記化学式(2)で表される化合物の 1つである。
[0056] 工程(e)
工程 (e)では必要に応じて洗浄した後、シリカ系微粒子分散液を常温〜 300°Cの 範囲で熟成する。 元素を除去した分散液は、必要に応じて限外濾過等の公知の洗浄方法により洗浄 することができる。洗浄によって溶解したケィ素以外の元素の一部を除去する。この 場合、予め分散液中のアルカリ金属イオン、アルカリ土類金属イオンおよびアンモ- ゥムイオン等の一部を除去した後に限外濾過すれば、分散安定性の高いシリカ系微 粒子が分散したゾルが得られる。
[0057] また、元素を除去した分散液は、陽イオン交換榭脂および Zまたは陰イオン交換榭 脂と接触させることによつても溶解したケィ素以外の元素の一部あるいはアルカリ金 属イオン、アルカリ土類金属イオンおよびアンモ-ゥムイオン等を除去することができ る。また、洗浄する際、加温して行うと効果的に洗浄することができる。
このように洗浄することによって、後述する水熱処理して得られるシリカ系微粒子中 のアルカリ金属酸化物、アンモニアの含有量を効果的に低減することができ、このた め、後述するシリカ系微粒子を用いて得られる被膜形成用塗料の安定性、膜形成等 が向上し、得られる被膜は強度に優れている。
[0058] ついで、常温〜 300°C、好ましくは 50〜250°Cで通常 1〜24時間程度熟成する。
熟成を行うとシリカ被覆層が均一でより緻密になり、前述したように屈折率の高い物 質が粒子内部に進入することができなくなるため、低屈折率効果の高い被膜を形成 することができる。
[0059] 工程 (f)
本工程 (f)は任意であり、工程 (e)の後に行うこと以外の内容は工程 (d)と同様であ る。
[0060] 工程 (g)
工程 (g)は任意工程であり、必要に応じて洗浄した後、 50〜300°Cの範囲で水熱 処理する。洗浄方法は工程 (e)と同様、従来公知の方法を採用することができる。 水熱処理温度が 50°C未満の場合は最終的に得られるシリカ系微粒子またはシリカ 系微粒子分散液中のアルカリ金属酸ィ匕物および Zまたはアンモニアの含有量を効 果的に低減することができず、被膜形成用塗料の安定性、膜形成等の向上効果が 不充分となり、得られる被膜の強度の向上も不充分となる。
[0061] 水熱処理温度が 300°Cを超えても被膜形成用塗料の安定性、膜形成性、膜強度 等がさらに向上することもなぐ場合によってはシリカ系微粒子が凝集することがある なお、前記水熱処理温度が 150°C〜300°Cの範囲にあれば、シリカ系微粒子を用 いて得られる被膜は耐水性に優れ、被膜上に水滴が落ちた場合に拭き取りやすぐ 水滴が乾燥した場合にも水滴の跡形が残り難い等の効果が得られる。
[0062] 本発明では、さらに前記工程 (g)を 1回以上繰り返して水熱処理することができる。
工程 (g)を繰り返すことによって得られるシリカ系微粒子またはシリカ系微粒子分散 液中のアルカリ金属酸ィ匕物および Zまたはアンモニアの含有量を低減することがで きる。
[0063] 工程 (h)
本工程 (h)は任意であり、工程 (g)の後に行うこと以外の内容は工程 (d)と同様であ る。
[0064] 上記工程 (c)以降のノリエーシヨンを確認のために示せば、次のようなフローになる 工程 (c) :脱元素 → 工程 (e) :熟成 → 工程 (g) :水熱処理 →
† † †
工程 (d):シリカ被覆 工程 (f):シリカ被覆 工程 (h):シリカ被覆
[0065] このようにして得られたシリカ系微粒子は、平均粒子径が 5〜500nm、さらには 10
〜400nmの範囲にあることが好ましい。平均粒子径が 5nm未満では、充分な空洞 が得られず、低屈折率の効果が充分得られないことがある。平均粒子径が 500nmを 越えると、安定した分散液が得に《なり、また、該微粒子を含有する塗膜の表面に 凹凸が生じたり、ヘーズが高くなることがある。
[0066] 本発明のシリカ系微粒子の平均粒子径はシリカ系微粒子の透過型電子顕微鏡写 真 (TEM)を撮影し、 100個の粒子について粒子径を測定し、この平均値として求め ることがでさる。
また、シリカ系微粒子の外殻層の平均厚さは 0. 5〜20nm、さらには l〜15nmの 範囲にあることが好ましい。外殻の厚さが 0. 5nm未満のものは粒子の形状を維持で きないために得ることが困難であり、 20nmを超えると外殻内部の多孔質部及び Z又 は空洞の割合が減少するために低屈折率の効果が充分得られないことがある。
[0067] さらに、前記シリカ系微粒子またはシリカ系微粒子分散液中のアルカリ金属酸ィ匕物 の含有量は、シリカ系微粒子当たりに M 0 (M :アルカリ金属元素)として 5ppm以下
2
、さらには 2ppm以下であることが好ましい。前記アルカリ金属酸化物の含有量が 5p pmを超えると、シリカ系微粒子を配合した被膜形成用塗料の安定性が不充分で、粘 度が高くなり、膜形成性が低下し、得られる被膜の強度が不充分であったり、膜厚が 不均一となることがある。
[0068] また、前記シリカ系微粒子またはシリカ系微粒子分散液中のアンモニアおよび Zま たはアンモ-ゥムイオンの含有量力 シリカ系微粒子当たりに NHとして 1500ppm
3
以下、さらには lOOOppm以下であることが好ましい。前記アンモニアの含有量が 15 OOppmを超えると、前記アルカリ金属酸ィ匕物の場合と同様にシリカ系微粒子を配合 した被膜形成用塗料の安定性が不充分で、粘度が高くなり、膜形成性が低下し、得 られる被膜の強度が不充分であったり、膜厚が不均一となることがある。
[0069] 本発明のシリカ系微粒子の製造方法では、得られたシリカ系微粒子分散液を限外 濾過膜、ロータリーエバポレーター等を用いて有機溶媒で置換することによって有機 溶媒分散ゾルを得ることができる。
また、得られたシリカ系微粒子は従来公知の方法によりシランカップリング剤で処理 して用いることちでさる。
[0070] また、本発明のシリカ系微粒子の製造方法では、洗浄後、乾燥し、必要に応じて焼 成することができる。
このようにして得られたシリカ系微粒子は、内部に多孔質物質及び Z又は空洞を有 し、低屈折率となる。従って、該シリカ系微粒子を用いて形成される被膜は低屈折率 となり、反射防止性能に優れた被膜が得られる。
[0071] 〔シリカ系微粒子〕
本発明に係るシリカ系微粒子は、外殻層の内部に多孔質物質及び Z又は空洞を 有するシリカ系微粒子であって、 BET法により測定した該微粒子の比表面積 (S )と
B
次式で表される比表面積 (S )との比(S ZS )が 1. 1〜5、好ましくは 1. 2〜3の範
C B C
囲にあることを特徴とする。
Figure imgf000020_0001
(但し、 Dp :シリカ系微粒子の平均粒子径 (nm)、 p:密度 (gZml)である。 )
[0072] ここで、比表面積 (S )は、シリカ系微粒子を 100°Cで 2時間加熱処理した後 BET法
B
(N吸着法)により測定したものである。また、比表面積 (S )はシリカ系微粒子を球体
2 C
と仮定し、微粒子の密度をシリカの密度 p (gZml)である 2. 2、即ち、真球状の無孔 質シリカ粒子として、計算によって求めたものである。
[0073] 比表面積 (S )と比表面積 (S )との比(S ZS )が 1. 1未満の場合は多孔質物質
B C B C
の細孔容積または空洞容積が少なぐ低屈折率の効果が不充分となる。他方、比 ZS )が 5を超えると外殻層が多孔質であり、塗料用榭脂への分散性が不充分とな
B C
り、得られる塗料の安定性も不充分となるために被膜の強度が不充分となることがあ る。さらに、シリカ系微粒子内部に水分子が進入して被膜が白化することがあり、耐水 性が不充分となることがある。
前記比(S ZS )は 1. 2〜3の範囲にあることが好ましい。
B C
[0074] 本発明のシリカ系微粒子は、平均粒子径が 5〜500nm、さらには 10〜400nmの 範囲にあることが好ましい。平均粒子径が 5nm未満では、外殻の割合が高ぐ低屈 折率の効果が充分得られないことがある。平均粒子径が 500nmを越えると、安定し た分散液あるいは塗料が得にくくなり、また、該微粒子を含有する塗膜の表面に凹凸 が生じたり、ヘーズが高くなることがある。なお、本発明のシリカ系微粒子の平均粒子 径は透過型電子顕微鏡写真 (TEM)を撮影し、 100個の粒子にっ ヽて粒子径を測 定し、この平均値として求めることができる。
[0075] また、シリカ系微粒子の外殻層の平均厚さは 0. 5〜20nm、さらには l〜15nmの 範囲にあることが好ましい。外殻の厚さが 0. 5nm未満のものは粒子の形状を維持で きないためにシリカ系微粒子を得ることが困難場合があり、 20nmを超えると外殻内 部の多孔質物質部及び Z又は空洞部の割合が減少するために低屈折率の効果が 充分得られないことがある。
シリカ系微粒子の外殻層の平均厚さは前記 TEM像において、コントラストの違いに よって判別される殻の部分の厚みを測定し、この平均値として求めることができる。
[0076] シリカ系微粒子の屈折率は、 1. 15〜: L 38、さらには 1. 15〜: L . 35の範囲にある ことが好ましい。
シリカ系微粒子の屈折率が 1. 15未満のものは得ることが困難であり、屈折率が 1. 38を超えると得られる被膜の屈折率が 1. 42を超える場合があり、反射防止性能が 不充分となることがある。
[0077] シリカ系微粒子の屈折率は標準屈折液として CARGILL製の SeriesA、 AAを用い、 以下の方法で測定した。
(1)シリカ系微粒子の分散液をエバポレーターに採り、分散媒を蒸発させる。
(2)これを 120°Cで乾燥し、粉末とする。
(3)屈折率が既知の標準屈折液を 2、 3滴ガラス板上に滴下し、これに上記粉末を混 合する。
(4)上記 (3)の操作を種々の標準屈折液で行!ヽ、混合液が透明になったときの標準 屈折液の屈折率を微粒子の屈折率とする。
[0078] 〔被膜形成用塗料〕
本発明に係る被膜形成用塗料は、前記シリカ系微粒子と被膜形成用マトリックスと 必要に応じて有機溶媒とからなつて 、る。
[0079] 被膜形成用マトリックスとは、基材の表面に被膜を形成し得る成分を ヽ、基材との 密着性や硬度、塗工性等の条件に適合する榭脂等力 選択して用いることができ、 例えば、従来力も用いられているポリエステル榭脂、アクリル榭脂、ウレタン榭脂、塩 化ビュル榭脂、エポキシ榭脂、メラミン榭脂、フッ素榭脂、シリコン榭脂、プチラール 榭脂、フエノール榭脂、酢酸ビニル榭脂、紫外線硬化榭脂、電子線硬化榭脂、エマ ルジョン榭脂、水溶性榭脂、親水性榭脂、これら榭脂の混合物、さら〖こはこれら榭脂 の共重合体や変性体などの塗料用榭脂、または、前記アルコキシシラン等の加水分 解性有機珪素化合物およびこれらの部分加水分解物等が挙げられる。
[0080] マトリックスとして塗料用榭脂を用いる場合には、例えば、シリカ系微粒子分散液の 分散媒をアルコール等の有機溶媒で置換した有機溶媒分散ゾル、好ましくは前記有 機基を含む有機ケィ素化合物によりシリカ被覆層を形成したシリカ系微粒子を用いる ことができ、必要に応じて前記微粒子を公知のカップリング剤で処理した後、有機溶 媒に分散させた有機溶媒分散ゾルど塗料用樹脂とを適当な有機溶剤で希釈して、塗 布液とすることができる。
[0081] 一方、マトリックスとして加水分解性有機珪素化合物を用いる場合には、例えば、ァ ルコキシシランとアルコールの混合液に、水および触媒としての酸またはアルカリを カロえることにより、アルコキシシランの部分加水分解物を得、これに前記ゾルを混合し 、必要に応じて有機溶剤で希釈して、塗布液とすることができる。
[0082] 被膜形成用塗布液中のシリカ系微粒子とマトリックスの重量割合は、シリカ系微粒 子/マトリックス = 1/99〜9/1の範囲が好ましい。重量比が 9/1を越えると被膜 の強度ゃ基材との密着性が低下して実用性に欠ける一方、 1Z99未満では当該シリ 力系微粒子の添カ卩による被膜の低屈折率化、基材との密着性向上、被膜強度向上 等の効果が不充分となる。
[0083] 〔被膜付基材〕
本発明に係る被膜付基材は、前記シリカ系微粒子と被膜形成用マトリックスとを含 む被膜が単独でまたは他の被膜とともに基材表面上に形成されている。
当該基材は、ガラス、ポリカーボネート、アクリル榭脂、 PET、 TAC等のプラスチック シート、プラスチックフィルム、プラスチックレンズ、プラスチックパネル等の基材、陰極 線管、蛍光表示管、液晶表示板等の基材の表面に被膜を形成したものであり、用途 によって異なるが被膜が単独であるいは基材上に保護膜、ハードコート膜、平坦化膜 、高屈折率膜、絶縁膜、導電性榭脂膜、導電性金属微粒子膜、導電性金属酸化物 微粒子膜、その他必要に応じて用いるプライマー膜等と組み合わせて形成されて ヽ る。なお、組み合わせて用いる場合、本発明の被膜が必ずしも最外表面に形成され ている必要はない。
[0084] このような被膜は、後述する被膜形成用塗布液をディップ法、スプレー法、スピナ一 法、ロールコート法などの周知の方法で基材に塗布し、乾燥し、更に必要に応じて、 加熱あるいは紫外線照射等により硬化して得ることができる。
[0085] 上記基材の表面に形成される被膜の屈折率は、シリカ系微粒子とマトリックス成分 等の混合比率および使用するマトリックスの屈折率によっても異なる力 1. 15〜: L 4 2と低屈折率となる。なお、本発明のシリカ系微粒子自体の屈折率は、 1. 15〜: L 38 であった。これは、本発明のシリカ系微粒子が内部に多孔質物質及び Z又は空洞を 有し、榭脂等のマトリックス形成成分は粒子外部に止まり、シリカ系微粒子内部の空 洞が保持されるからである。
[0086] さらに、上記した被膜付基材において、基材の屈折率が 1. 60以下の場合には、基 材表面に屈折率が 1. 60以上の被膜 (以下、中間被膜という。)を形成した上で、前 記本発明のシリカ系微粒子を含む被膜を形成することが推奨される。中間被膜の屈 折率が 1. 60以上であれば前記本発明のシリカ系微粒子を含む被膜の屈折率との 差が大きく反射防止性能に優れた被膜付基材が得られる。中間被膜の屈折率は、中 間被膜の屈折率を高めるために用いる金属酸ィ匕物微粒子の屈折率、金属酸化物微 粒子と榭脂等の混合比率および使用する榭脂の屈折率によって調整することができ る。
[0087] 中間被膜の被膜形成用塗布液は、金属酸化物粒子と被膜形成用マトリックスとの 混合液であり、必要により有機溶媒が混合される。被膜形成用マトリックスとしては前 記本発明のシリカ系微粒子を含む被膜と同様のものを用いることができ、同一の被膜 形成用マトリックスを用いることにより、両被膜間の密着性に優れた被膜付基材が得 られる。
以下に示す実施例により、本発明を更に具体的に説明する。
実施例 1
[0088] シリカ系微粒子 (P-1)の調製
シリカ ·アルミナゾル (触媒ィ匕成工業 (株)製: USBB— 120、平均粒子径 25nm、 Si Ο ·Α1 Ο濃度 20重量%、固形分中 Al O含有量 27重量%) 100gと純水 3900g
2 2 3 2 3
の混合物を 98°Cに加温し、この温度を保持しながら、 SiOとして濃度 1.5重量%の
2
珪酸ナトリウム水溶液 405gと Al Oとしての濃度 0.5重量0 /0のアルミン酸ナトリウム水
2 3
溶液 405gを添加して、 SiO ·Α1 Ο—次粒子分散液 (平均粒子径 28nm)を得た。
2 2 3
このときの MO /SiOモル比(A) 0· 2、であった。また、このときの反応液の ρΗは
X 2
12. 0であった。 [工程(a) ]
[0089] ついで、 SiOとして濃度 1.5重量%の珪酸ナトリウム水溶液 3250gと AI Oとしての
2 2 3 濃度 0.5重量%のアルミン酸ナトリウム水溶液 l lOOgを添加して複合酸ィ匕物微粒子( 1) (二次粒子)(平均粒子径 40nm)の分散液を得た。 このときの MO /SiOモル比(B) =0. 07であった。また、このときの反応液の pH
X 2
は 12. 0であった。 [工程 (b) ]
[0090] ついで、限外濾過膜で洗浄して固形分濃度 13重量%になった複合酸化物微粒子 (1)の分散液 500gに純水 l,125gを加え、さらに濃塩酸 (濃度 35.5重量%)を滴下し て pHl.Oとし、脱アルミニウム処理を行った。次いで、 pH3の塩酸水溶液 10Lと純水 5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離 '洗浄して固形分濃度 20重量%のシリカ系微粒子 (P-ト 1)の水分散液を得た。 [工程 (c) ]
[0091] ついで、シリカ系微粒子 (P- 1-1)の水分散液 150gと、純水 500g、エタノール 1, 75 Ogおよび濃度 28重量%のアンモニア水 626gとの混合液を 35°Cに加温した後、ェ チルシリケート(SiO濃度 28重量%) 190gを添加してシリカ被覆層を形成し、純水 5
2
Lを加えながら限外濾過膜で洗浄して固形分濃度 20重量%のシリカ被覆層を形成し たシリカ系微粒子 (P-1-1)の水分散液を得た。 [工程 (d) ]
[0092] つぎに、シリカ被覆層を形成したシリカ系微粒子 (P-1-1)分散液にアンモニア水を添 カロして分散液の pHを 10. 5に調整し、ついで 150°Cにて 11時間熟成した後、常温 に冷却し、陽イオン交換榭脂(三菱化学 (株)製:ダイヤイオン SKI B) 400gを用 、て 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤイオン S A 20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂 (三菱ィ匕学 (株)製 :ダイヤイオン SKlB) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行い、固形 分濃度 20重量%のシリカ系微粒子 (P-ト 2)の水分散液を得た。このとき、シリカ系微 粒子 (P-1-2)の水分散液の Na O含有量および NH含有量はシリカ系微粒子当たり 6
2 3
ppm、 1200ppmであった。 [工程(e) ]
[0093] ついで、再び、シリカ系微粒子 (P-1-2)分散液を 150°Cにて 11時間水熱処理した後 、常温に冷却し、陽イオン交換榭脂(三菱ィ匕学 (株)製:ダイヤイオン SKlB) 400gを 用いて 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤィ オン SA20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂(三菱ィ匕 学 (株)製:ダイヤイオン SK1B) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行 い、固形分濃度 20重量%のシリカ系微粒子 (P-ト 3)の水分散液を得た。このとき、シ リカ系微粒子 (P-1-3)の水分散液の Na O含有量および NH含有量はシリカ系微粒 子当たり 0. 5ppm、 800ppmであった。 [工程 (g) ]
[0094] っ 、で限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度 20重量%の シリカ系微粒子 (P-1)のアルコール分散液を調製した。
シリカ系微粒子 (P-1)の調製条件を表 1に示す。また、シリカ系微粒子 (P-1)の平均 粒子径、外殻層の厚さ、 MO /SiO (モル比)、 Na O含有量および NH含有量、
2 2 3 屈折率、比表面積 (S )、比表面積 (S )、および耐水性等の性状を表 2に示す。ここ
B C
で、平均粒子径および外殻層の厚さは前記 TEM法により測定し、屈折率は前記し た標準屈折液として CARGILL製の SeriesA、 AAを用いて測定した。
[0095] 耐水性は、以下の方法により評価した。
正珪酸ェチル (TEOS) (SiO濃度: 28重量%) 5g、エタノール 19. 5g、濃硝酸 0.
2
14gおよび純水 3. 4gの混合溶液を室温で 5時間撹拌して SiO濃度 5重量%のバイ
2
ンダ一成分を調製した。これに固形分濃度 20重量%のシリカ系微粒子 (P-1)のアル コール分散液 1. 75gを混合し、これをガラス基板上にスピンコート法で塗布し、 120 °Cで 5時間乾燥して透明被膜を形成した。透明被膜上に蒸留水を一滴滴下して拭き 取った後の滴下後を目視観察し、以下の基準で評価した。
滴下跡が見られない :◎
滴下跡が見られるが 5分内に消失した :〇
滴下跡が 5〜20分で消失した :△
滴下跡が 20分以上見られた : X
[0096] 诱明被膜付某材 (A-1)の製诰
シリカ系微粒子 (P-1)のアルコール分散液をエタノールで固形分濃度 5重量%に 希釈した分散液 50gと、アクリル榭脂 (ヒタロイド 1007、日立化成 (株)製) 3gおよびィ ソプロパノールと n—ブタノールの 1Z1 (重量比)混合溶媒 47gとを充分に混合して 塗布液を調製した。
この塗布液を PETフィルムにバーコ一ター法で塗布し、 80°Cで、 1分間乾燥させて 、透明被膜の膜厚が lOOnmの透明被膜付基材 (A-1)を得た。この透明被膜付基材 (A-1)の全光線透過率、ヘイズ、波長 550nmの光線の反射率、被膜の屈折率、密 着性および鉛筆硬度を表 3に示す。 [0097] 全光線透過率およびヘイズは、ヘーズメーター (スガ試験機 (株)製)により、反射率 は分光光度計(日本分光社、 Ubest-55)により夫々測定した。また、被膜の屈折率は 、エリプソメーター(UL VAC社製、 EMS— 1)により測定した。なお、未塗布の PET フィルムは全光線透過率が 90. 7%、ヘイズが 2. 0%、波長 550nmの光線の反射率 が 7. 0%であった。
鉛筆硬度は、 JIS K 5400に準じて、鉛筆硬度試験器で測定した。即ち、被膜表面に 対して 45度の角度に鉛筆をセットし、所定の加重を負荷して一定速度で引っ張り、傷 の有無を観察した。
[0098] また、透明被膜付基材 (A-1)の表面にナイフで縦横 lmmの間隔で 11本の平行な 傷を付け 100個の升目を作り、これにセロファンテープを接着し、次いで、セロファン テープを剥離したときに被膜が剥離せず残存している升目の数を、以下の 3段階に 分類することによって密着性を評価した。結果を表 3に示す。
残存升目の数 90個以上 :◎
残存升目の数 85〜89個:〇
残存升目の数 84個以下 :△
実施例 2
[0099] シリカ系微粒子 (P-2)の調製
シリカ ·アルミナゾル (触媒ィ匕成工業 (株)製: USBB— 120、平均粒子径 25nm、 Si Ο ·Α1 Ο濃度 20重量0 /0、固形分中 Al O含有量 27重量0 /0) 100gに純水 3900g
2 2 3 2 3
をカロえて 98°Cに加温し、この温度を保持しながら、 SiOとして濃度 1.5重量%の珪酸
2
ナトリウム水溶液 1750gと Al O としての濃度 0.5重量0 /0のアルミン酸ナトリウム水溶
2 3
液 1750gを添カ卩して、 SiO ·Α1 Ο一次粒子分散液(平均粒子径 35nm)を得た。こ
2 2 3
のときの MO /SiOモル比(A) 0· 2、であった。また、このときの反応液の ρΗは 1
X 2
2. 0であった。 [工程(a) ]
[0100] ついで、 SiO として濃度 1.5重量%の珪酸ナトリウム水溶液 6, 300gと AI Oとして
2 2 3 の濃度 0.5重量%のアルミン酸ナトリウム水溶液 2, 100gを添加して複合酸ィ匕物微粒 子 (2) (二次粒子)(平均粒子径 50nm)の分散液を得た。
このときの MO /SiOモル比(B) =0. 07であった。また、このときの反応液の pH は 12. 0であった。 [工程 (b) ]
[0101] ついで、限外濾過膜で洗浄して固形分濃度 13重量%になった複合酸ィ匕物微粒子 (2)の分散液 500gに純水 l,125gを加え、さらに濃塩酸 (濃度 35.5重量%)を滴下し て pHl.Oとし、脱アルミニウム処理を行った。次いで、 pH3の塩酸水溶液 10Lと純水 5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離 '洗浄して固形分濃度 20重量%のシリカ系微粒子 (P-2-1)の水分散液を得た。 [工程 (c) ]
[0102] ついで、シリカ系微粒子 (P-2-1)の水分散液 150gと、純水 500g、エタノール 1, 75 Ogおよび濃度 28重量%のアンモニア水 626gとの混合液を 35°Cに加温した後、ェ チルシリケー HSiO濃度 28重量%) 140gを添加してシリカ被覆層を形成し、純水 5
2
Lを加えながら限外濾過膜で洗浄して固形分濃度 20重量%のシリカ被覆層を形成し たシリカ系微粒子 (P-2-1)の水分散液を得た。 [工程 (d) ]
[0103] つぎに、シリカ被覆層を形成したシリカ系微粒子 (P-2-1)分散液にアンモニア水を添 カロして分散液の pHを 10. 5に調整し、ついで 200°Cにて 11時間熟成した後、常温 に冷却し、陽イオン交換榭脂(三菱化学 (株)製:ダイヤイオン SKI B) 400gを用 、て 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤイオン S A 20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂 (三菱ィ匕学 (株)製 :ダイヤイオン SKlB) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行い、固形 分濃度 20重量%のシリカ系微粒子 (P-2-2)の水分散液を得た。このとき、シリカ系微 粒子 (P-2-2)の水分散液の Na O含有量および NH含有量はシリカ系微粒子当たり 8
2 3
ppm、 1500ppmであった。 [工程(e) ]
[0104] ついで、再び、シリカ系微粒子 (P-2-2)分散液を 150°Cにて 11時間水熱処理した後 、常温に冷却し、陽イオン交換榭脂(三菱ィ匕学 (株)製:ダイヤイオン SKlB) 400gを 用いて 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤィ オン SA20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂(三菱ィ匕 学 (株)製:ダイヤイオン SK1B) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行 い、固形分濃度 20重量%のシリカ系微粒子 (P-2-3)の水分散液を得た。このとき、シ リカ系微粒子 (P-2-3)の水分散液の Na O含有量および NH含有量はシリカ系微粒
2 3
子当たり 0· 4pm、 60ppmであった。 [工程 (g) ] ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度 20重量%の シリカ系微粒子 (P-2)アルコール分散液を調製した。
[0105] 诱明被膜付某材 (A-2)の製诰
実施例 1にお 、て、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-2)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-2)を 得た。
実施例 3
[0106] シリカ 微粒早 (P- 3)の調製
シリカ ·アルミナゾル (触媒ィ匕成工業 (株)製: USBB— 120、平均粒子径 25nm、 Si Ο ·Α1 Ο濃度 20重量0 /0、固形分中 Al O含有量 27重量0 /0) 100gに純水 3900g
2 2 3 2 3
をカロえて 98°Cに加温し、この温度を保持しながら、 SiO として濃度 1.5重量%の珪
2
酸ナトリウム水溶液 109, 800gと Al O としての濃度 0.5重量0 /0のアルミン酸ナトリウ
2 3
ム水溶液 109, 800gを添加して、 SiO ·Α1 Ο一次粒子分散液(平均粒子径 120η
2 2 3
m)を得た。このときの MO /SiOモル比(A) =0. 2、であった。また、このときの反
X 2
応液の pHは 12. 0であった。 [工程(a) ]
[0107] ついで、 SiO として濃度 1.5重量%の珪酸ナトリウム水溶液 251, 700gと Al Oとし
2 2 3 ての濃度 0.5重量%のアルミン酸ナトリウム水溶液 83, 900gを添加して複合酸ィ匕物 微粒子 (3) (二次粒子)(平均粒子径 171nm)の分散液を得た。
このときの MO /SiOモル比(B) =0. 07であった。また、このときの反応液の pH
X 2
は 12. 0であった。 [工程 (b) ]
[0108] ついで、限外濾過膜で洗浄して固形分濃度 13重量%になった複合酸ィ匕物微粒子 (3)の分散液 500gに純水 l,125gを加え、さらに濃塩酸 (濃度 35.5重量%)を滴下し て pHl.Oとし、脱アルミニウム処理を行った。次いで、 pH3の塩酸水溶液 10Lと純水 5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離 '洗浄して固形分濃度 20重量%のシリカ系微粒子 (P-3-1)の水分散液を得た。 [工程 (c) ]
[0109] ついで、シリカ系微粒子 (P- 3-1)の水分散液 150gと、純水 500g、エタノール 1, 75 Ogおよび濃度 28重量%のアンモニア水 626gとの混合液を 35°Cに加温した後、ェ チルシリケート(SiO濃度 28重量%) 33gを添加してシリカ被覆層を形成し、純水 5L を加えながら限外濾過膜で洗浄して固形分濃度 20重量%のシリカ被覆層を形成し たシリカ系微粒子 (P-3-1)の水分散液を得た。 [工程 (d) ]
[0110] つぎに、シリカ被覆層を形成したシリカ系微粒子 (P-3-1)分散液にアンモニア水を添 カロして分散液の pHを 10. 5に調整し、ついで 150°Cにて 11時間熟成した後、常温 に冷却し、陽イオン交換榭脂(三菱化学 (株)製:ダイヤイオン SKI B) 400gを用 、て 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤイオン S A 20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂 (三菱ィ匕学 (株)製 :ダイヤイオン SKlB) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行い、固形 分濃度 20重量%のシリカ系微粒子 (P-3-2)の水分散液を得た。このとき、シリカ系微 粒子 (P-3-2)の水分散液の Na O含有量および NH含有量はシリカ系微粒子当たり 1
2 3
Oppm、 1200ppmであった。 [工程(e) ]
[0111] ついで、再び、シリカ系微粒子 (P-3-2)分散液を 150°Cにて 11時間水熱処理した後 、常温に冷却し、陽イオン交換榭脂(三菱ィ匕学 (株)製:ダイヤイオン SKlB) 400gを 用いて 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤィ オン SA20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂(三菱ィ匕 学 (株)製:ダイヤイオン SKIB) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行 い、固形分濃度 20重量%のシリカ系微粒子 (P-3-3)の水分散液を得た。このとき、シ リカ系微粒子 (P-3-3)の水分散液の Na O含有量および NH含有量はシリカ系微粒
2 3
子当たり 0. 4pm、 600ppmであった。 [工程 (g) ]
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度 20重量%の シリカ系微粒子 (P-3)アルコール分散液を調製した。
[0112] 诱明被膜付某材 (A-3)の製诰
実施例 1にお 、て、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-3)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-3)を 得た。
実施例 4
[0113] シリカ 微粒早 (P- 4)の 製
実施例 2と同様にして固形分濃度 20重量%の SiO ·Α1 Ο一次粒子分散液 (平均 粒子径 35nm)を調製した。 [工程 (a) ]
ついで、濃度 1. 5重量%の硫酸ナトリウム 3300gを添カ卩し(モル比 0. 5)、ついで Si Oとして濃度 1.5重量%の珪酸ナトリウム水溶液 6, 300gと Al Oとしての濃度 0.5
2 2 3
重量%のアルミン酸ナトリウム水溶液 2, 100gを添加して複合酸ィ匕物微粒子 (4) (二次 粒子)(平均粒子径 50nm)の分散液を得た。
このとき、反応液の ρΗは 12であった。また、このときの MO /SiOモル比(B) =0
X 2
. 15であった。 [工程 (b) ]
[0114] ついで、限外濾過膜で洗浄して固形分濃度 13重量%になった複合酸ィ匕物微粒子 (4)の分散液 500gに純水 l,125g、濃度 0. 5重量%の硫酸ナトリウム 100gを添カロし( モル比 0. 004)をカ卩え、さらに濃塩酸 (濃度 35.5重量%)を滴下して pHl.Oとし、脱 アルミニウム処理を行った。次いで、 pH3の塩酸水溶液 10Lと純水 5Lをカ卩えながら 限外濾過膜で溶解したアルミニウム塩を分離 ·洗浄して固形分濃度 20重量%のシリ 力系微粒子 (P-4-1)の水分散液を得た。 [工程 (c) ]
[0115] ついで、シリカ系微粒子 (P-4-1)の水分散液 150gと、純水 500g、エタノール 1, 75 0gおよび濃度 28重量%のアンモニア水 626gとの混合液を 35°Cに加温した後、ェ チルシリケート(SiO濃度 28重量%) 140gを添加してシリカ被覆層を形成し、純水 5
2
Lを加えながら限外濾過膜で洗浄して固形分濃度 20重量%のシリカ被覆層を形成し たシリカ系微粒子 (P-4-1)の水分散液を得た。 [工程 (d) ]
[0116] つぎに、シリカ被覆層を形成したシリカ系微粒子 (P-4-1)分散液にアンモニア水を添 カロして分散液の pHを 10. 5に調整し、ついで 150°Cにて 11時間熟成した後、常温 に冷却し、陽イオン交換榭脂(三菱化学 (株)製:ダイヤイオン SKI B) 400gを用 、て 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤイオン S A 20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂 (三菱ィ匕学 (株)製 :ダイヤイオン SKlB) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行い、固形 分濃度 20重量%のシリカ系微粒子 (P-4-2)の水分散液を得た。このとき、シリカ系微 粒子 (P-4-2)の水分散液の Na O含有量および NH含有量はシリカ系微粒子当たり 7
2 3
ppm、 900ppmであった。 [工程(e) ]
[0117] ついで、再び、シリカ系微粒子 (P-4-2)分散液を 150°Cにて 11時間水熱処理した後 、常温に冷却し、陽イオン交換榭脂(三菱ィ匕学 (株)製:ダイヤイオン SKIB) 400gを 用いて 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤィ オン SA20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂(三菱ィ匕 学 (株)製:ダイヤイオン SKIB) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行 い、固形分濃度 20重量%のシリカ系微粒子 (P-4-3)の水分散液を得た。このとき、シ リカ系微粒子 (P-4-3)の水分散液の Na O含有量および NH含有量はシリカ系微粒
2 3
子当たり 0. 3ppm、 700ppmであった。 [工程 (g) ]
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度 20重量%の シリカ系微粒子 (P-4)のアルコール分散液を調製した。
[0118] 诱明被蹬付某材 (A-4)の製诰
実施例 1にお 、て、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-4)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-4)を 得た。
実施例 5
[0119] シリカ系微粒早 (P- 5)の調製
実施例 2と同様にして固形分濃度 20重量%の SiO ·Α1 Ο 一次粒子分散液 (平均
2 2 3
粒子径 35nm)を調製した。 [工程 (a) ]
ついで、濃度 1. 5重量%の硫酸ナトリウム 6, 600gを添加し(モル比 1. 0)、ついで SiOとして濃度 1.5重量%の珪酸ナトリウム水溶液 6, 300gと Al O としての濃度 0.
2 2 3
5重量%のアルミン酸ナトリウム水溶液 2, lOOgを添加して複合酸ィ匕物微粒子 (5) (二 次粒子)(平均粒子径 50nm)の分散液を得た。
このとき、反応液の ρΗは 11. 0であった。また、このときの MO /SiOモル比(B)
X 2
=0. 07であった。 [工程 (b) ]
[0120] ついで、限外濾過膜で洗浄して固形分濃度 13重量%になった複合酸ィ匕物微粒子 (5)の分散液 500gに純水 l,125g、濃度 0. 5重量%の硫酸ナトリウム lOOgを添加し( モル比 0. 004)をカ卩え、さらに濃塩酸 (濃度 35.5重量%)を滴下して pHl.Oとし、脱 アルミニウム処理を行った。次いで、 pH3の塩酸水溶液 10Lと純水 5Lをカ卩えながら 限外濾過膜で溶解したアルミニウム塩を分離 ·洗浄して固形分濃度 20重量%のシリ 力系微粒子 (P- 5-1)の水分散液を得た。 [工程 (c) ]
[0121] ついで、シリカ系微粒子 (P- 5-1)の水分散液 150gと、純水 500g、エタノール 1, 75 Ogおよび濃度 28重量%のアンモニア水 626gとの混合液を 35°Cに加温した後、ェ チルシリケー HSiO濃度 28重量%) 140gを添加してシリカ被覆層を形成し、純水 5
2
Lを加えながら限外濾過膜で洗浄して固形分濃度 20重量%のシリカ被覆層を形成し たシリカ系微粒子 (P-5-1)の水分散液を得た。 [工程 (d) ]
[0122] つぎに、シリカ被覆層を形成したシリカ系微粒子 (P-5-1)分散液にアンモニア水を添 カロして分散液の pHを 10. 5に調整し、ついで 150°Cにて 11時間熟成した後、常温 に冷却し、陽イオン交換榭脂(三菱化学 (株)製:ダイヤイオン SKI B) 400gを用 、て 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤイオン S A 20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂 (三菱ィ匕学 (株)製 :ダイヤイオン SKlB) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行い、固形 分濃度 20重量%のシリカ系微粒子 (P-5-2)の水分散液を得た。このとき、シリカ系微 粒子 (P-5-2)の水分散液の Na O含有量および NH含有量はシリカ系微粒子当たり 6
2 3
ppm、 l lOOppmであった。 [工程(e) ]
[0123] ついで、再び、シリカ系微粒子 (P-5-2)分散液を 150°Cにて 11時間水熱処理した後 、常温に冷却し、陽イオン交換榭脂(三菱ィ匕学 (株)製:ダイヤイオン SKlB) 400gを 用いて 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤィ オン SA20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂(三菱ィ匕 学 (株)製:ダイヤイオン SK1B) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行 い、固形分濃度 20重量%のシリカ系微粒子 (P-5-3)の水分散液を得た。このとき、シ リカ系微粒子 (P-5-3)の水分散液の Na O含有量および NH含有量はシリカ系微粒
2 3
子当たり 0. 5ppm、 600ppmであった。 [工程 (g) ]
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度 20重量%の シリカ系微粒子 (P-5)のアルコール分散液を調製した。
[0124] 诱明被膜付某材 (A-5)の製诰
実施例 1にお 、て、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-5)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-5)を 得た。
実施例 6
[0125] シリカ 微粒早 (P- 6)の調製
実施例 5にお 、て、シリカ系微粒子 (P-5-2)分散液を 150°Cにて 11時間水熱処理 することなぐ純水 5Lを加えながら限外濾過膜で洗浄して固形分濃度 20重量%のシ リカ系微粒子 (P-6-3)の水分散液を得た。このとき、シリカ系微粒子 (P-6-3)の水分散 液の Na O含有量および NH含有量はシリカ系微粒子当たり 0. 8ppm、 1200ppm
2 3
であった。
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度 20重量%の シリカ系微粒子 (P-6)のアルコール分散液を調製した。
[0126] 诱明被蹬付某材 (A-6)の製诰
実施例 1にお 、て、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-6)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-6)を 得た。
実施例 7
[0127] シリカ 微粒早 (P- 7)の調製
実施例 5と同様にして一次粒子分散液を調製し、ついで、濃度 0. 5重量%の硫酸 ナトリウム 6, 600gを添カ卩し (モル比 1. 0)、ついで SiOとして濃度 1.5重量0 /0の珪酸
2
ナトリウム水溶液 6, 670gと Al O としての濃度 0.5重量%のアルミン酸ナトリウム水
2 3
溶液 l,050gを添加して複合酸ィ匕物微粒子 (7) (二次粒子)(平均粒子径 50nm)の分 散液を得た。
このとき、反応液の pHは 11. 2であり、 MO /SiOモル比(B) =0. 03であった。 [
X 2
工程 (a)ゝ (b) ]
[0128] ついで、限外濾過膜で洗浄して固形分濃度 13重量%になった複合酸ィ匕物微粒子 (7)の分散液 500gに純水 l,125g、濃度 0. 5重量%の硫酸ナトリウム lOOgを添加し( モル比 0. 004)をカ卩え、さらに濃塩酸 (濃度 35.5重量%)を滴下して pHl.Oとし、脱 アルミニウム処理を行った。次いで、 pH3の塩酸水溶液 10Lと純水 5Lをカ卩えながら 限外濾過膜で溶解したアルミニウム塩を分離 ·洗浄して固形分濃度 20重量%のシリ 力系微粒子 (P- 7-1)の水分散液を得た。 [工程 (c) ]
[0129] ついで、シリカ系微粒子 (P- 7-1)の水分散液 150gと、純水 500g、エタノール 1, 75 Ogおよび濃度 28重量%のアンモニア水 626gとの混合液を 35°Cに加温した後、ェ チルシリケー HSiO濃度 28重量%) 140gを添加してシリカ被覆層を形成し、純水 5
2
Lを加えながら限外濾過膜で洗浄して固形分濃度 20重量%のシリカ被覆層を形成し たシリカ系微粒子 (P-7-1)の水分散液を得た。 [工程 (d) ]
[0130] つぎに、シリカ被覆層を形成したシリカ系微粒子 (P-7-1)分散液にアンモニア水を添 カロして分散液の pHを 10. 5に調整し、ついで 150°Cにて 11時間熟成した後、常温 に冷却し、陽イオン交換榭脂(三菱化学 (株)製:ダイヤイオン SKI B) 400gを用 、て 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤイオン S A 20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂 (三菱ィ匕学 (株)製 :ダイヤイオン SKlB) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行い、固形 分濃度 20重量%のシリカ系微粒子 (P-7-2)の水分散液を得た。このとき、シリカ系微 粒子 (P-7-2)の水分散液の Na O含有量および NH含有量はシリカ系微粒子当たり 8
2 3
ppm、 1200ppmであった。 [工程(e) ]
[0131] ついで、再び、シリカ系微粒子 (P-7-2)分散液を 150°Cにて 11時間水熱処理した後 、常温に冷却し、陽イオン交換榭脂(三菱ィ匕学 (株)製:ダイヤイオン SKlB) 400gを 用いて 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤィ オン SA20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂(三菱ィ匕 学 (株)製:ダイヤイオン SK1B) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行 い、固形分濃度 20重量%のシリカ系微粒子 (P-7-3)の水分散液を得た。このとき、シ リカ系微粒子 (P-7-3)の水分散液の Na O含有量および NH含有量はシリカ系微粒
2 3
子当たり 0. 9ppm、 700ppmであった。 [工程 (g) ]
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度 20重量%の シリカ系微粒子 (P-7)のアルコール分散液を調製した。
[0132] 诱明被膜付某材 (A-7)の製诰
実施例 1にお 、て、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-7)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-7)を 得た。
実施例 8
[0133] シリカ 微粒早 (P- 8)の調製
実施例 5と同様にして固形分濃度 20重量%のシリカ系微粒子 (P-5-1)の水分散液 を得た。 [工程 (c) ]
つぎに、シリカ系微粒子 (P-5-1)分散液にアンモニア水を添加して分散液の pHを 1 0. 5に調整し、ついで、シリカ被覆層を形成することなぐ 150°Cにて 11時間熟成し た後、常温に冷却し、陽イオン交換榭脂(三菱ィ匕学 (株)製:ダイヤイオン SK1B) 400 gを用いて 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤ イオン SA20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂(三菱ィ匕 学 (株)製:ダイヤイオン SK1B) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行 い、固形分濃度 20重量%のシリカ系微粒子 (P-8-2)の水分散液を得た。このとき、シ リカ系微粒子 (P-8-2)の水分散液の Na O含有量および NH含有量はシリカ系微粒
2 3
子当たり 10ppm、 1400ppmであった。 [工程(e) ]
[0134] ついで、再び、シリカ系微粒子 (P-8-2)分散液を 150°Cにて 11時間水熱処理した後 、常温に冷却し、陽イオン交換榭脂(三菱ィ匕学 (株)製:ダイヤイオン SKlB) 400gを 用いて 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤィ オン SA20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂(三菱ィ匕 学 (株)製:ダイヤイオン SK1B) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行 い、固形分濃度 20重量%のシリカ系微粒子 (P-8-3)の水分散液を得た。このとき、シ リカ系微粒子 (P-8-3)の水分散液の Na O含有量および NH含有量はシリカ系微粒
2 3
子当たり 1. Oppm、 700ppmであった。 [工程 (g) ]
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度 20重量%の シリカ系微粒子 (P-8)のアルコール分散液を調製した。
[0135] 诱明被蹬付某材 (A-8)の製诰
実施例 1にお 、て、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-8)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-8)を 得た。 実施例 9
[0136] シリカ系微粒子 (P-9)の調製
実施例 2と同様にして固形分濃度 20重量%の SiO ·Α1 Ο一次粒子分散液 (平均
2 2 3
粒子径 35nm)を調製した。 [工程 (a) ]
ついで濃度 0. 5重量0 /0の硫酸ナトリウム 6, 600gを添加し(モル比 1. 0)、ついで Si Oとして濃度 1.5重量%の珪酸ナトリウム水溶液 33, OOOgと Al Oとしての濃度 0.5
2 2 3
重量%のアルミン酸ナトリウム水溶液 l l,000gを添加して複合酸ィ匕物微粒子 (9) (二 次粒子)(平均粒子径 78nm)の分散液を得た。
このとき、反応液の pHは 11. 0であり、 MO /SiOモル比(B) =0. 07であった。 [
X 2
工程 (b) ]
[0137] ついで、限外濾過膜で洗浄して固形分濃度 13重量%になった複合酸ィ匕物微粒子 (9)の分散液 500gに純水 l,125gを加え、さらに濃塩酸 (濃度 35.5重量%)を滴下し て pHl.Oとし、脱アルミニウム処理を行った。次いで、 pH3の塩酸水溶液 10Lと純水 5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離 '洗浄して固形分濃度 20重量%のシリカ系微粒子 (P-9-1)の水分散液を得た。 [工程 (c) ]
[0138] ついで、シリカ系微粒子 (P- 9-1)の水分散液 150gと、純水 500g、エタノール 1, 75 Ogおよび濃度 28重量%のアンモニア水 626gとの混合液を 35°Cに加温した後、ェ チルシリケート(SiO濃度 28重量%) 80gを添加してシリカ被覆層を形成し、純水 5L
2
を加えながら限外濾過膜で洗浄して固形分濃度 20重量%のシリカ被覆層を形成し たシリカ系微粒子 (P-9-1)の水分散液を得た。 [工程 (d) ]
[0139] つぎに、シリカ被覆層を形成したシリカ系微粒子 (P-9-1)分散液にアンモニア水を添 カロして分散液の pHを 10. 5に調整し、ついで 150°Cにて 11時間熟成した後、常温 に冷却し、陽イオン交換榭脂(三菱化学 (株)製:ダイヤイオン SKI B) 400gを用 、て 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤイオン S A 20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂 (三菱ィ匕学 (株)製 :ダイヤイオン SKlB) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行い、固形 分濃度 20重量%のシリカ系微粒子 (P-9-2)の水分散液を得た。このとき、シリカ系微 粒子 (P-9-2)の水分散液の Na O含有量および NH含有量はシリカ系微粒子当たり 1 2ppm、 1500ppmであった。 [工程(e) ]
[0140] ついで、再び、シリカ系微粒子 (P-9-2)分散液を 150°Cにて 11時間水熱処理した後 、常温に冷却し、陽イオン交換榭脂(三菱ィ匕学 (株)製:ダイヤイオン SKlB) 400gを 用いて 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤィ オン SA20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂(三菱ィ匕 学 (株)製:ダイヤイオン SKIB) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行 い、固形分濃度 20重量%のシリカ系微粒子 (P-9-3)の水分散液を得た。このとき、シ リカ系微粒子 (P-9-3)の水分散液の Na O含有量および NH含有量はシリカ系微粒
2 3
子当たり 0. 9ppm、 800ppmであった。 [工程 (g) ]
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度 20重量%の シリカ系微粒子 (P-9)のアルコール分散液を調製した。
[0141] 诱明被蹬付某材 (A-9)の製诰
実施例 1にお 、て、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-9)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-9)を 得た。
実施例 10
[0142] シリカ系微粒子 (P-10)の調製
実施例 2と同様にして固形分濃度 20重量%の SiO ·Α1 Ο 一次粒子分散液 (平均
2 2 3
粒子径 35nm)を調製した。 [工程 (a) ]
ついで、濃度 0. 5重量%の硫酸ナトリウム 6, 600gを添加し(モル比 1. 0)、ついで SiOとして濃度 1.5重量%の珪酸ナトリウム水溶液 600gと Al O としての濃度 0.5重
2 2 3
0 /0のアルミン酸ナトリウム水溶液 200gを添加して複合酸ィ匕物微粒子 (10) (二次粒 子)(平均粒子径 37nm)の分散液を得た。 [工程 (b) ]
このとき、反応液の ρΗは 11. 1であった。また、このときの MO /SiOモル比(B)
X 2
=0. 07であった。
[0143] ついで、限外濾過膜で洗浄して固形分濃度 13重量%になった複合酸ィ匕物微粒子 (10)の分散液 500gに純水 l,125gをカ卩え、さらに濃塩酸 (濃度 35.5重量%)を滴下し て pHl.Oとし、脱アルミニウム処理を行った。次いで、 pH3の塩酸水溶液 10Lと純水 5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離 '洗浄して固形分濃度 20重量%のシリカ系微粒子 (P-10-1)の水分散液を得た。 [工程 (c) ]
[0144] ついで、シリカ系微粒子 (P- 10- 1)の水分散液 150gと、純水 500g、エタノール 1, 7 50gおよび濃度 28重量%のアンモニア水 626gとの混合液を 35°Cに加温した後、ェ チルシリケー HSiO濃度 28重量%) 208gを添加してシリカ被覆層を形成し、純水 5
2
Lを加えながら限外濾過膜で洗浄して固形分濃度 20重量%のシリカ被覆層を形成し たシリカ系微粒子 (P-10-1)の水分散液を得た。 [工程 (d) ]
[0145] つぎに、シリカ被覆層を形成したシリカ系微粒子 (P-10-1)分散液にアンモニア水を 添加して分散液の pHを 10. 5に調整し、ついで 150°Cにて 11時間熟成した後、常 温に冷却し、陽イオン交換榭脂(三菱化学 (株)製:ダイヤイオン SK1B) 400gを用い て 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤイオン S A20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂(三菱ィ匕学 (株) 製:ダイヤイオン SKlB) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行い、固 形分濃度 20重量%のシリカ系微粒子 (P-10-2)の水分散液を得た。このとき、シリカ系 微粒子 (P-10-2)の水分散液の Na O含有量および NH含有量はシリカ系微粒子当
2 3
たり 8ppm、 lOOOppmであった。 [工程 )]
[0146] ついで、再び、シリカ系微粒子 (P-10- 2)分散液を 150°Cにて 11時間水熱処理した 後、常温に冷却し、陽イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤイオン SKlB) 400g を用いて 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤィ オン SA20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂(三菱ィ匕 学 (株)製:ダイヤイオン SK1B) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行 い、固形分濃度 20重量%のシリカ系微粒子 (P-10-3)の水分散液を得た。このとき、 シリカ系微粒子 (P-10-3)の水分散液の Na O含有量および NH含有量はシリカ系微
2 3
粒子当たり 0. 8ppm、 700ppmであった。 [工程 (g) ]
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度 20重量%の シリカ系微粒子 (P-10)のアルコール分散液を調製した。
[0147] 诱明被膜付某材 (A-10)の製诰
実施例 1にお 、て、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-10)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-10) を得た。
実施例 11
[0148] シリカ系微粒子 (P-1 1)の調製
平均粒子径 5nmのシリカゾル lOOgと純水 3, 900gの混合物を 98°C〖こカロ温した。こ のときの反応母液の pHは 10. 5であった。ついで、この温度を保持しながら、 SiO と
2 して濃度 1.5重量%の珪酸ナトリウム水溶液 7, OOOgと Al O としての濃度 0.5重量
2 3
%のアルミン酸ナトリウム水溶液 7, OOOgを添カ卩して、 SiO ·Α1 Ο一次粒子分散液
2 2 3
(平均粒子径 10nm)を得た。このときの MO /SiOモル比(A) 0· 2、であった。
X 2
また、このときの反応液の pHは 12· 0であった。 [工程(a) ]
[0149] ついで、 SiO として濃度 1.5重量%の珪酸ナトリウム水溶液 16, 740gと Al Oとし
2 2 3 ての濃度 0.5重量%のアルミン酸ナトリウム水溶液 5, 580gを添加して複合酸ィ匕物微 粒子 (11) (二次粒子)(平均粒子径 14nm)の分散液を得た。このときの MO /SiO
X 2 モル比(B) =0. 07であった。また、このときの反応液の pHは 12. 0であった。 [工程 (b) ]
[0150] ついで、限外濾過膜で洗浄して固形分濃度 13重量%になった複合酸ィ匕物微粒子 (11)の分散液 500gに純水 l,125gを加え、さらに濃塩酸 (濃度 35.5重量%)を滴下し て pHl.Oとし、脱アルミニウム処理を行った。次いで、 pH3の塩酸水溶液 10Lと純水 5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離 '洗浄して固形分濃度 20重量%のシリカ系微粒子 (P-11-1)の水分散液を得た。 [工程 (c) ]
[0151] 前記シリカ系微粒子 (P-11-1)分散液にアンモニア水を添加して分散液の pHを 10.
5に調整し、ついで 150°Cにて 11時間熟成した後、常温に冷却し、陽イオン交換榭 脂(三菱化学 (株)製:ダイヤイオン SK1B) 400gを用いて 3時間イオン交換し、っ ヽ で、陰イオン交換榭脂(三菱化学 (株)製:ダイヤイオン SA20A) 200gを用いて 3時 間イオン交換し、さらに陽イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤイオン SK1B) 20 Ogを用い、 80°Cで 3時間イオン交換して洗浄を行い、固形分濃度 20重量%のシリカ 系微粒子 (P-11-2)の水分散液を得た。このとき、シリカ系微粒子 (P-11-2)の水分散液 の Na O含有量および NH含有量はシリカ系微粒子当たり 8ppm、 lOOOppmであつ た。 [工程 (e) ]
[0152] ついで、再び、シリカ系微粒子 (P-11-2)分散液を 150°Cにて 11時間水熱処理した 後、常温に冷却し、陽イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤイオン SKlB) 400g を用いて 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤィ オン SA20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂(三菱ィ匕 学 (株)製:ダイヤイオン SK1B) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行 い、固形分濃度 20重量%のシリカ系微粒子 (P-11-3)の水分散液を得た。このとき、 シリカ系微粒子 (P-11-3)の水分散液の Na O含有量および NH含有量はシリカ系微
2 3
粒子当たり 0. 9ppm、 lOOOppmであった。 [工程(g) ]
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度 20重量%の シリカ系微粒子 (P-11)のアルコール分散液を調製した。
[0153] 诱明被蹬付某材 (A-1 1 )の製诰
実施例 1にお 、て、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-11)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-11) を得た。
実施例 12
[0154] シリカ系微粒子 (P-12)の調製
実施例 8と同様にして、固形分濃度 20重量%のシリカ系微粒子 (P-8)のアルコー ル分散液を調製した。 [工程 (g) ]
固形分濃度 20重量%のシリカ系微粒子 (P-8)のアルコール分散液 lOOgにアタリ ルシランカップリング剤 (信越ィ匕学 (株)製: KBM-5103) 15gを添加し、 50°Cで加熱処 理を行 、、再び限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度 20重 量%のシリカ系微粒子 (P-12)のアルコール分散液を調製した。 [工程 (h) ]
[0155] 诱明被蹬付某材 (A-12)の製诰
実施例 1にお 、て、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-12)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-12) を得た。
比較例 1 [0156] シリカ系微粒子 (RP-1)の調製
シリカ ·アルミナゾル (触媒ィ匕成工業 (株)製: USBB— 120、平均粒子径 25nm、 Si Ο ·Α1 Ο濃度 20重量0 /0、固形分中 Al O含有量 27重量0 /0) 100gに純水 3, 900
2 2 3 2 3
gをカ卩えて 98°Cに加温し、この温度を保持しながら、 SiOとして濃度 1.5重量%の珪
2
酸ナトリウム水溶液 1, 750gと Al O としての濃度 0.5重量0 /0のアルミン酸ナトリウム
2 3
水溶液 l,750gを添カ卩して SiO ·Α1 Ο—次粒子分散液(平均粒子径 35nm)を得た
2 2 3
。このときの MO /SiOモル比(A) =0. 2であった。また、このときの反応液の pHは
X 2
12. 0であった。
[0157] ついで、 SiOとして濃度 1.5重量%の珪酸ナトリウム水溶液 5, 270gと Al Oとして
2 2 3 の濃度 0.5重量%のアルミン酸ナトリウム水溶液 5, 270gを添加して複合酸ィ匕物微粒 子 (R1) (二次粒子)(平均粒子径 50nm)の分散液を得た。このときの MO /SiOモ
X 2 ル比(B) =0. 2であった。また、このときの反応液の pHは 12. 0であった。
[0158] ついで、限外濾過膜で洗浄して固形分濃度 13重量%になった複合酸ィ匕物微粒子 (R1)の分散液 500gに純水 l,125gをカ卩え、さらに濃塩酸 (濃度 35.5重量%)を滴下 して pHl.Oとし、脱アルミニウム処理を行った。次いで、 pH3の塩酸水溶液 10Lと純 水 5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離 '洗浄して固形分濃 度 20重量%のシリカ系微粒子 (RP-1)の水分散液を得た。このとき、シリカ系微粒子 (R P-1)の水分散液の Na O含有量および NH含有量はシリカ系微粒子当たり ΙΟΟΟρρ
2 3
m、 lOppm未満であった。
シリカ系微粒子 (RP-1)について平均粒子径を測定したところ、約 5nmであった。ま た、透過型電子顕微鏡写真 (TEM)を撮影して観察したところ、殆どが空洞を持たな い微粒子であった。また、透明被膜付基材の製造は実施しな力つた。
比較例 2
[0159] シリカ系微粒子 (RP-2)の調製
シリカ ·アルミナゾル (触媒ィ匕成工業 (株)製: USBB— 120、平均粒子径 25nm、 Si Ο ·Α1 Ο濃度 20重量0 /0、固形分中 Al O含有量 27重量0 /0) 100gに純水 3, 900
2 2 3 2 3
gをカ卩えて 98°Cに加温し、この温度を保持しながら、 SiOとして濃度 1.5重量%の珪
2
酸ナトリウム水溶液 2, 215gi:Al Oとしての濃度 0.5重量0 /0のアルミン酸ナトリウム 水溶液 350gを添加して SiO ·Α1 Ο—次粒子分散液 (平均粒子径 35nm)を得た。
2 2 3
このときの MO /SiOモル比(A) 0· 03であった。また、このときの反応液の ρΗは
X 2
12. 0であった。
[0160] ついで、 SiOとして濃度 1.5重量%の珪酸ナトリウム水溶液 6, 670gと AI Oとして
2 2 3 の濃度 0.5重量%のアルミン酸ナトリウム水溶液 1, 055gを添加して複合酸ィ匕物微粒 子 (RP2) (二次粒子)(平均粒子径 50nm)の分散液を得た。このときの MO /SiOモ
X 2 ル比(B) =0. 03であった。また、このときの反応液の pHは 12. 0であった。
[0161] ついで、限外濾過膜で洗浄して固形分濃度 13重量%になった複合酸ィ匕物微粒子 (RP2)の分散液 500gに純水 l,125gを加え、さらに濃塩酸 (濃度 35.5重量%)を滴下 して pHl.Oとし、脱アルミニウム処理を行った。次いで、 pH3の塩酸水溶液 10Lと純 水 5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離 '洗浄して固形分濃 度 20重量%のシリカ系微粒子 (RP-2-1)の水分散液を得た。
[0162] 上記シリカ系微粒子 (RP-2-1)分散液にアンモニア水を添カ卩して分散液の pHを 10.
5に調整し、ついで 150°Cにて 11時間熟成した後、常温に冷却し、陽イオン交換榭 脂(三菱化学 (株)製:ダイヤイオン SK1B) 400gを用いて 3時間イオン交換し、っ ヽ で、陰イオン交換榭脂(三菱化学 (株)製:ダイヤイオン SA20A) 200gを用いて 3時 間イオン交換し、さらに陽イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤイオン SK1B) 20 Ogを用い、 80°Cで 3時間イオン交換して洗浄を行い、固形分濃度 20重量%のシリカ 系微粒子 (RP-2-2)の水分散液を得た。このとき、シリカ系微粒子 (RP-2-2)の水分散 液の Na O含有量および NH含有量はシリカ系微粒子当たり 6ppm、 1500ppmであ
2 3
つた o
[0163] ついで、再び、シリカ系微粒子 (R-2-2)分散液を 150°Cにて 11時間水熱処理した 後、常温に冷却し、陽イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤイオン SKlB) 400g を用いて 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤィ オン SA20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂(三菱ィ匕 学 (株)製:ダイヤイオン SK1B) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行 い、固形分濃度 20重量%のシリカ系微粒子 (RP-2-3)の水分散液を得た。このとき、 シリカ系微粒子 (RP-2-3)の水分散液の Na O含有量および NH含有量はシリカ系微 粒子当たり 0. 5ppm、 900ppmであった。
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度 20重量%の シリカ系微粒子 (RP-2)のアルコール分散液を調製した。
[0164] 诱明被膜付某材 (RA-2)の製诰
実施例 1にお 、て、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (RP-2)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (RA-2) を得た。
比較例 3
[0165] シリカ系微粒子 (RP-3)の調製
シリカ ·アルミナゾル (触媒ィ匕成工業 (株)製: USBB— 120、平均粒子径 25nm、 Si Ο ·Α1 Ο濃度 20重量0 /0、固形分中 Al O含有量 27重量0 /0) 100gに純水 3, 900
2 2 3 2 3
gをカ卩えて 98°Cに加温し、この温度を保持しながら、 SiO として濃度 1.5重量%の珪
2
酸ナトリウム水溶液 2, 310gと Al O としての濃度 0.5重量0 /0のアルミン酸ナトリウム
2 3
水溶液 60gを添加して SiO ·Α1 Ο—次粒子分散液 (平均粒子径 35nm)を得た。こ
2 2 3
のときの MO /SiOモル比(A) 0· 005であった。また、このときの反応液の ρΗは
X 2
12. 0であった。
[0166] ついで、 SiO として濃度 1.5重量%の珪酸ナトリウム水溶液 6, 980gと AI Oとして
2 2 3 の濃度 0.5重量%のアルミン酸ナトリウム水溶液 135gを添加して複合酸ィ匕物微粒子 ( RP3) (二次粒子)(平均粒子径 50nm)の分散液を得た。このときの MO /SiOモル
X 2 比(B) =0. 0038であった。また、このときの反応液の pHは 12. 0であった。
[0167] ついで、限外濾過膜で洗浄して固形分濃度 13重量%になった複合酸ィ匕物微粒子 (RP3)の分散液 500gに純水 l,125gを加え、さらに濃塩酸 (濃度 35.5重量%)を滴下 して pHl.Oとし、脱アルミニウム処理を行った。次いで、 pH3の塩酸水溶液 10Lと純 水 5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離 '洗浄して固形分濃 度 20重量%のシリカ系微粒子 (RP-3-1)の水分散液を得た。
[0168] 上記シリカ系微粒子 (RP-3-1)分散液にアンモニア水を添カ卩して分散液の pHを 10.
5に調整し、ついで 150°Cにて 11時間熟成した後、常温に冷却し、陽イオン交換榭 脂(三菱化学 (株)製:ダイヤイオン SK1B) 400gを用いて 3時間イオン交換し、っ ヽ で、陰イオン交換榭脂(三菱化学 (株)製:ダイヤイオン SA20A) 200gを用いて 3時 間イオン交換し、さらに陽イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤイオン SK1B) 20 Ogを用い、 80°Cで 3時間イオン交換して洗浄を行い、固形分濃度 20重量%のシリカ 系微粒子 (RP-3-2)の水分散液を得た。このとき、シリカ系微粒子 (RP-3-2)の水分散 液の Na O含有量および NH含有量はシリカ系微粒子当たり 12ppm、 lOOOppmで
2 3
めつに。
[0169] ついで、再び、シリカ系微粒子 (RP-3-2)分散液を 150°Cにて 11時間水熱処理した 後、常温に冷却し、陽イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤイオン SKlB) 400g を用いて 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤィ オン SA20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂(三菱ィ匕 学 (株)製:ダイヤイオン SK1B) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行 い、固形分濃度 20重量%のシリカ系微粒子 (RP-3-3)の水分散液を得た。このとき、 シリカ系微粒子 (RP-3-3)の水分散液の Na O含有量および NH含有量はシリカ系微
2 3
粒子当たり lppm、 800ppmであった。
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度 20重量%の シリカ系微粒子 (RP-3)のアルコール分散液を調製した。
[0170] 诱明被蹬付某材 (RA-3)の製诰
実施例 1にお 、て、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (RP-3)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (RA-3) を得た。
比較例 4
[0171] シリカ系微粒子 (RP-4-1)の調製
シリカ ·アルミナゾル (触媒ィ匕成工業 (株)製: USBB— 120、平均粒子径 25nm、 Si Ο ·Α1 Ο濃度 20重量0 /0、固形分中 Al O含有量 27重量0 /0) 100gに純水 3, 900
2 2 3 2 3
gをカ卩えて 98°Cに加温し、この温度を保持しながら、 SiO として濃度 1.5重量%の珪
2
酸ナトリウム水溶液 245gと Al O としての濃度 0.5重量0 /0のアルミン酸ナトリウム水溶
2 3
液 6,250gを添カ卩して SiO ·Α1 Ο—次粒子分散液(平均粒子径 35nm)を得た。こ
2 2 3
のときの MO /SiOモル比(A) = 5であった。また、このときの反応液の pHは 12. 0 であった。
[0172] ついで、 SiOとして濃度 1.5重量%の珪酸ナトリウム水溶液 740gと Al Oとしての
2 2 3 濃度 0.5重量%のアルミン酸ナトリウム水溶液 18, 860gを添加して複合酸ィ匕物微粒 子 (RP4) (二次粒子)(平均粒子径 50nm)の分散液を得た。このときの MO /SiOモ
X 2 ル比(B) = 5であった。また、このときの反応液の pHは 12. 0であった。
[0173] ついで、限外濾過膜で洗浄して固形分濃度 13重量%になった複合酸ィ匕物微粒子 (RP4)の分散液 500gに純水 l,125gを加え、さらに濃塩酸 (濃度 35.5重量%)を滴下 して pHl.Oとし、脱アルミニウム処理を行った。次いで、 pH3の塩酸水溶液 10Lと純 水 5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離 '洗浄して固形分濃 度 20重量%のシリカ系微粒子 (R-4-1)の水分散液を得た。このとき、シリカ系微粒子( RP-4-1)の水分散液の Na O含有量および NH含有量はシリカ系微粒子当たり 1200
2 3
ppm、 lOppm未満であった。
[0174] シリカ系微粒子 (RP-4-1)について平均粒子径を測定したところ、約 5nmであった。
また、透過型電子顕微鏡写真 (TEM)を撮影して観察したところ、殆どが空洞を持た ない微粒子であった。また、透明被膜付基材の製造は実施しな力つた。
比較例 5
[0175] シリカ系微粒子 (RP-5)の調製
実施例 1と同様にして、固形分濃度 20重量%のシリカ系微粒子 (P-1-1)の水分散 液を調製した。
っ 、で、陽イオン交換榭脂(三菱化学 (株)製:ダイヤイオン SK1B) 400gを用いて 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤイオン S A 20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂 (三菱ィ匕学 (株)製 :ダイヤイオン SKlB) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行い、固形 分濃度 20重量%固形分濃度 20重量%のシリカ系微粒子 (RP-5-2)の水分散液を得 た。このとき、シリカ系微粒子 (RP-5-2)の水分散液の Na O含有量および NH含有量
2 3 はシリカ系微粒子当たり 8ppm、 1300ppmであった。
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度 20重量%の シリカ系微粒子 (RP-5)のアルコール分散液を調製した。 [0176] 诱明被膜付某材 (RA-5)の製诰
実施例 1にお 、て、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (RP-5)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (RA-5) を得た。
比較例 6
[0177] シリカ 微粒早 (RP-6)の調製
実施例 1と同様にして、固形分濃度 20重量%のシリカ被覆層を形成したシリカ系微 粒子 (P- 1-1)の水分散液を得た。
っ 、で、陽イオン交換榭脂(三菱化学 (株)製:ダイヤイオン SK1B) 400gを用いて 3時間イオン交換し、ついで、陰イオン交換榭脂 (三菱ィ匕学 (株)製:ダイヤイオン S A 20A) 200gを用いて 3時間イオン交換し、さらに陽イオン交換榭脂 (三菱ィ匕学 (株)製 :ダイヤイオン SKlB) 200gを用い、 80°Cで 3時間イオン交換して洗浄を行い、固形 分濃度 20重量%のシリカ系微粒子 (RP-6-2)の水分散液を得た。このとき、シリカ系 微粒子 (RP-6-2)の水分散液の Na O含有量および NH含有量はシリカ系微粒子当
2 3
たり 9ppm、 1400ppmであった。
ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度 20重量%の シリカ系微粒子 (RP-6)のアルコール分散液を調製した。
[0178] 诱明被膜付某材 (RA-6)の製诰
実施例 1にお 、て、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (RP-6)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (RA-6) を得た。
比較例 7
[0179] シリカ 微粒早 (RP-7)の調製
シリカゾル (触媒ィ匕成工業 (株)製: SI-45P、平均粒子径: 45nm、屈折率 1. 43、 S iO濃度: 40重量%)を限外濾過膜を用いて溶媒をエタノールに置換した固形分濃
2
度 20重量%のシリカ微粒子 (RP-7)のアルコール分散液を調製した。
[0180] 诱明被膜付某材 (RA-7)の製诰
実施例 1にお 、て、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (RP-7)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (RA-7) を得た。
[0181] [表 1]
Figure imgf000047_0001
[0182] [表 2]
Figure imgf000048_0001
表 3]
¾ 明 被 膜 付 * 材
光 ヘイズ 反射率 被膜 密着性 透過率 屈折率
% % %
実施例 1 96.3 0.3 0.6 1.36 ◎ 4H 実施例 2 96.5 0.2 0.4 1.31 ◎ 3H 実施例 3 96.1 0.3 0.5 1.32 ◎ 3H 実施例 4 96.5 0.2 0.5 1.31 ◎ 3H 実施例 5 96.3 0.2 0.6 1.35 ◎ 3H 実施例 6 96.2 0.3 0.5 1.32 〇 H 実施例 7 96.4 0.2 0.5 1.31 ◎ 3H 実施例 8 96.1 0.3 0.5 1.31 ◎ 3H 実施例 9 96.3 0.3 0.3 1.39 ◎ 3H 実施例 1 0 96.1 0.3 0.6 1.30 ◎ 3H 実施例 1 1 96.1 0.3 0.8 1.38 ◎ 3H 実施例 1 2 96.2 0.2 0.6 1.31 ◎ 3H 比較例 1
比較例 2 96.3 0.3 1.5 1.45 ◎ 3H 比較例 3 96.1 0.3 1.7 1.45 ◎ 3H 比較例 4
比較例 5 96.2 0.3 1.5 1.45 〇 3H 比較例 6 96.3 0.3 1.5 1.45 〇 3H 比較例 7 96.3 0.3 2.0 1.45 ◎ 3H

Claims

請求の範囲
[1] 下記工程 (a)、 (b)、 (c)および (e)力もなるシリカ系微粒子の製造方法。
(a)珪酸塩の水溶液および Zまたは酸性珪酸液と、アルカリ可溶の無機化合物水溶 液とをアルカリ水溶液中に、または、必要に応じて種粒子が分散したアルカリ水溶液 中に同時に添加して複合酸ィ匕物微粒子の分散液を調製する際に、シリカを SiOで
2 表し、シリカ以外の無機酸化物を MOで表したときのモル比 MO /SiOが 0. 01〜
X X 2
2の範囲となるように添カ卩して、平均粒子径(D )が 3〜300nmの範囲にある複合酸
P1
化物微粒子の分散液を調製する工程
(b)ついで、前記工程(a)のモル比 MO /SiOより小さいモル比 MO /SiOで、珪
X 2 X 2 酸塩の水溶液および zまたは酸性珪酸液と、アルカリ可溶の無機化合物水溶液とを 添加して、平均粒子径 (D )が最大 500nmの複合酸化物微粒子の分散液を調製す
P2
る工程
(c)前記複合酸化物微粒子分散液に酸を加えて、前記複合酸化物微粒子を構成す る珪素以外の元素の少なくとも一部を除去してシリカ系微粒子分散液とする工程 (e)ついで、必要に応じて洗浄した後、シリカ系微粒子分散液を常温〜 300°Cの範 囲で熟成する工程
[2] 前記工程 (a)における MO /SiOのモル比 (A)に対する前記工程 (b)における M
X 2
O /SiOのモル比(B)の値 BZAが 0. 8以下である請求項 1記載のシリカ系微粒子
X 2
の製造方法。
[3] 前記複合酸化物微粒子の平均粒子径 (D )と平均粒子径 (D )との比 (D ZD )
PI P2 PI P2 が 0. 4〜0. 98の範囲にある請求項 1または 2記載のシリカ系微粒子の製造方法。
[4] 前記工程 (b)および Zまたは工程 (c)を、電解質塩のモル数 (M )と SiOのモル数
E 2
(M )との比(M ZM )が 10以下となる電解質塩の存在下で行う請求項 1〜3のいず
S E S
れかに記載のシリカ系微粒子の製造方法。
[5] 工程 (c)と工程 (e)の間で下記工程 (d)を実施する請求項 1〜4の ヽずれかに記載 のシリカ系微粒子の製造方法。
(d)前記工程 (c)で得られたシリカ系微粒子分散液に、下記化学式(1)で表される有 機珪素化合物および Zまたはその部分加水分解物と、必要に応じてアルカリ水溶液 とを添加し、該微粒子にシリカ被覆層を形成する工程
R SiX · · · (1)
n (4-n)
〔但し、 R:炭素数 1〜10の非置換または置換炭化水素基、アクリル基、エポキシ基、 メタクリル基、アミノ基、 CF基、 X:炭素数 1〜4のアルコキシ基、シラノール基、ハロ
2
ゲンまたは水素、 n: 0〜3の整数〕
[6] 工程 (e)の後、下記工程 (f)を実施する請求項 1〜5のいずれかに記載のシリカ系 微粒子の製造方法。
(f )前記工程 (e)で得られたシリカ系微粒子分散液に、下記化学式(1)で表される有 機珪素化合物および Zまたはその部分加水分解物と、必要に応じてアルカリ水溶液 とを添加し、該微粒子にシリカ被覆層を形成する工程
R SiX · · · (1)
n (4-n)
〔但し、 R:炭素数 1〜10の非置換または置換炭化水素基、アクリル基、エポキシ基、 メタクリル基、アミノ基、 CF基、 X:炭素数 1〜4のアルコキシ基、シラノール基、ハロ
2
ゲンまたは水素、 n: 0〜3の整数〕
[7] 前記アルカリ水溶液または、必要に応じて種粒子が分散したアルカリ水溶液の pH が 10以上であることを特徴とする請求項 1〜6のいずれかに記載のシリカ系微粒子の 製造方法。
[8] 前記工程 (e)または工程 (f)についで、下記工程 (g)を実施する請求項 1〜7のい ずれかに記載のシリカ系微粒子の製造方法。
(g)必要に応じて洗浄した後、 50〜300°Cの範囲で水熱処理する工程
[9] 前記工程 (g)についで、下記工程 (h)を実施する請求項 1〜8のいずれかに記載の シリカ系微粒子の製造方法。
(h)前記工程 (g)で得られたシリカ系微粒子分散液に、下記化学式(1)で表される有 機珪素化合物および Zまたはその部分加水分解物と、必要に応じてアルカリ水溶液 とを添加し、該微粒子にシリカ被覆層を形成する工程
R SiX · · · (1)
n (4-n)
〔但し、 R:炭素数 1〜10の非置換または置換炭化水素基、アクリル基、エポキシ基、 メタクリル基、アミノ基、 CF基、 X:炭素数 1〜4のアルコキシ基、シラノール基、ハロ ゲンまたは水素、 n: 0〜3の整数〕
[10] 前記水熱処理工程を複数回繰り返すことを特徴とする請求項 1〜9のいずれかに 記載のシリカ系微粒子の製造方法。
[11] 前記シリカ以外の無機酸ィ匕物がアルミナである請求項 1〜: LOのいずれか記載のシ リカ系微粒子の製造方法。
[12] 請求項 1〜11で得られたいずれかのシリカ系微粒子分散液を洗浄し、乾燥し、必 要に応じて焼成するシリカ系微粒子の製造方法。
[13] 平均粒子径が 5nm〜500nmの範囲にあることを特徴とする請求項 1〜12のいず れかに記載のシリカ系微粒子の製造方法。
[14] 前記シリカ系微粒子またはシリカ系微粒子分散液中のアルカリ金属酸ィ匕物の含有 量がシリカ系微粒子当たり M O (M:アルカリ金属元素)として 5ppm以下である請求
2
項 1〜13のいずれかに記載のシリカ系微粒子の製造方法。
[15] 前記シリカ系微粒子またはシリカ系微粒子分散液中のアンモニアおよび Zまたはァ ンモ -ゥムイオンの含有量が NHとして 1500ppm以下である請求項 1〜14のいず
3
れかに記載のシリカ系微粒子の製造方法。
[16] 外殻層の内部に多孔質物質及び Z又は空洞を有するシリカ系微粒子であって、 B ET法により測定した該微粒子の比表面積 (S )と次式で表される比表面積 (S )との
B C
比(S ZS )が 1. 1〜5の範囲にあることを特徴とするシリカ系微粒子。
Figure imgf000052_0001
(但し、 Dp :シリカ系微粒子の平均粒子径 (nm)、 p:密度 (gZml)である。 )
[17] 前記平均粒子径が 5〜500nmの範囲にある請求項 16記載のシリカ系微粒子。
[18] 前記外殻層の厚さが 0. 5〜20nmの範囲にある請求項 16または 17記載のシリカ 系微粒子。
[19] 屈折率が 1. 15-1. 38の範囲にある請求項 16〜18のいずれか記載のシリカ系微 粒子。
[20] 請求項 1〜15のいずれか記載の製造方法によって得られたシリカ系微粒子、また は請求項 16〜19のいずれか記載のシリカ系微粒子と、被膜形成用マトリックスとを 含んでなる被膜形成用塗料。
[21] さらに、前記シリカ系微粒子以外の酸ィ匕物系微粒子を含んでなる請求項 20記載の 被膜形成用塗料。
[22] 請求項 1〜15のいずれか記載の製造方法によって得られたシリカ系微粒子、また は請求項 16〜19のいずれか記載のシリカ系微粒子と、被膜形成用マトリックスとを 含んでなる被膜が、単独でまたは他の被膜とともに基材表面上に形成された被膜付 基材。
PCT/JP2005/013228 2004-07-21 2005-07-19 シリカ系微粒子、その製造方法、被膜形成用塗料および被膜付基材 WO2006009132A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/632,900 US20070275257A1 (en) 2004-07-21 2005-07-19 Silica-Based Particles, Method of Producing the Same, Paint for Forming Coating Film and Coated
KR1020077003982A KR101186732B1 (ko) 2004-07-21 2005-07-19 실리카계 미립자, 그 제조방법, 피막형성용 도료 및피막부착 기재
JP2006529216A JP5328101B2 (ja) 2004-07-21 2005-07-19 シリカ系微粒子の製造方法
EP05766252.0A EP1787959B1 (en) 2004-07-21 2005-07-19 Method for producing silica-based fine particles
CN2005800243394A CN1989070B (zh) 2004-07-21 2005-07-19 二氧化硅类微粒、其制备方法、涂膜形成用涂料及覆有涂膜的基材
US14/607,394 US10239759B2 (en) 2004-07-21 2015-01-28 Method of producing silica-based particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-213053 2004-07-21
JP2004213053 2004-07-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/632,900 A-371-Of-International US20070275257A1 (en) 2004-07-21 2005-07-19 Silica-Based Particles, Method of Producing the Same, Paint for Forming Coating Film and Coated
US14/607,394 Division US10239759B2 (en) 2004-07-21 2015-01-28 Method of producing silica-based particles

Publications (1)

Publication Number Publication Date
WO2006009132A1 true WO2006009132A1 (ja) 2006-01-26

Family

ID=35785241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013228 WO2006009132A1 (ja) 2004-07-21 2005-07-19 シリカ系微粒子、その製造方法、被膜形成用塗料および被膜付基材

Country Status (7)

Country Link
US (2) US20070275257A1 (ja)
EP (1) EP1787959B1 (ja)
JP (2) JP5328101B2 (ja)
KR (1) KR101186732B1 (ja)
CN (1) CN1989070B (ja)
TW (1) TW200607759A (ja)
WO (1) WO2006009132A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108155A (ja) * 2007-10-29 2009-05-21 Jgc Catalysts & Chemicals Ltd 繊維状中空シリカ微粒子分散液、繊維状中空シリカ微粒子ならびに該微粒子を含有する反射防止被膜形成用組成物および反射防止被膜付基材
EP2128090A1 (en) * 2007-03-16 2009-12-02 Asahi Glass Company, Limited Hollow microparticle, method for production thereof, coating composition, and article having coating film formed thereon
EP2128091A1 (en) * 2007-03-16 2009-12-02 Asahi Glass Company, Limited Hollow microparticle, method for production thereof, coating composition, and article having coating film formed thereon
JP2010018447A (ja) * 2008-07-08 2010-01-28 Sumitomo Osaka Cement Co Ltd 表面被覆多孔質酸化物粒子及び多孔質酸化物粒子の表面被覆方法
WO2010074063A1 (ja) 2008-12-25 2010-07-01 電気化学工業株式会社 複合粒子及びその製造方法、中空粒子、その製造方法及び用途
WO2011059081A1 (ja) * 2009-11-16 2011-05-19 日揮触媒化成株式会社 シリカ・アルミナゾルの製造方法、シリカ・アルミナゾル、該ゾルを含む透明被膜形成用塗料および透明被膜付基材
JP2011201715A (ja) * 2010-03-25 2011-10-13 Jgc Catalysts & Chemicals Ltd 金平糖状のシリカ系微粒子の分散ゾル、該分散ゾルを含む塗料組成物、および金平糖状のシリカ系微粒子分散ゾルの製造方法。
JP2012140286A (ja) * 2010-12-28 2012-07-26 Jgc Catalysts & Chemicals Ltd 新規シリカ系中空微粒子、透明被膜付基材および透明被膜形成用塗料
JP2013014506A (ja) * 2005-11-25 2013-01-24 Jgc Catalysts & Chemicals Ltd 中空シリカ微粒子、それを含む透明被膜形成用組成物、および透明被膜付基材
JP2013123696A (ja) * 2011-12-16 2013-06-24 Jgc Catalysts & Chemicals Ltd 多孔質酸化物被覆粒子、担持触媒およびこれらの製造方法
JP2013127065A (ja) * 2011-12-16 2013-06-27 Eternal Chemical Co Ltd 反射防止コーティング組成物及びその調製方法
JP2014058683A (ja) * 2013-10-30 2014-04-03 Jgc Catalysts & Chemicals Ltd 透明被膜形成用塗料の製造方法
WO2015122453A1 (ja) * 2014-02-14 2015-08-20 日揮触媒化成株式会社 透明被膜形成用の塗布液および透明被膜付基材の製造方法
JP2016190769A (ja) * 2015-03-31 2016-11-10 日揮触媒化成株式会社 シリカ粒子の製造方法
JP2016190770A (ja) * 2015-03-31 2016-11-10 日揮触媒化成株式会社 シリカ粒子の製造方法
JP2017168840A (ja) * 2017-03-11 2017-09-21 日揮触媒化成株式会社 半導体装置実装用ペ−ストの製造方法
JP2019028196A (ja) * 2017-07-28 2019-02-21 株式会社サンリッツ 偏光板および画像表示装置
CN109956479A (zh) * 2017-12-25 2019-07-02 北京化工大学 一种中空微球及其制备方法
CN116239905A (zh) * 2022-06-21 2023-06-09 青岛科技大学 一种海洋用防腐防污多效涂层材料的制备方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964031B2 (en) * 2000-06-06 2011-06-21 Dow Corning Corporation Compositions for treating materials and methods of treating same
EP1985181A3 (en) * 2000-06-06 2013-01-23 Dow Corning Corporation Preservative compositions for wood products
US8721783B2 (en) * 2000-06-06 2014-05-13 Dow Corning Corporation Compositions for treating materials and methods of treating same
US7192470B2 (en) * 2003-05-27 2007-03-20 Woodholdings Environmental, Inc. Preservative compositions for materials and method of preserving same
WO2006006207A1 (ja) * 2004-07-08 2006-01-19 Catalysts & Chemicals Industries Co.,Ltd. シリカ系微粒子の製造方法、被膜形成用塗料および被膜付基材
CN1989070B (zh) * 2004-07-21 2010-08-18 触媒化成工业株式会社 二氧化硅类微粒、其制备方法、涂膜形成用涂料及覆有涂膜的基材
EP1818694A1 (en) * 2006-02-14 2007-08-15 DSMIP Assets B.V. Picture frame with an anti reflective glass plate
JP4905656B2 (ja) * 2006-04-14 2012-03-28 信越化学工業株式会社 複合樹脂、それを含むコーティング剤組成物、及び被覆物品、並びに複合樹脂の製造方法
US8106229B2 (en) * 2006-05-30 2012-01-31 Nalco Company Organically modifid silica and use thereof
WO2008079242A1 (en) 2006-12-19 2008-07-03 Nanogram Corporation Hollow silica nanoparticles as well as synthesis processes and applications thereof
US20080276970A1 (en) * 2007-05-09 2008-11-13 John Christopher Cameron Apparatus and method for treating materials with compositions
KR101194180B1 (ko) * 2007-08-01 2012-10-25 다이니폰 인사츠 가부시키가이샤 반사 방지 적층체
JP4623191B2 (ja) * 2008-09-26 2011-02-02 富士ゼロックス株式会社 静電荷像現像用トナー、静電荷像現像用現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置
US8557877B2 (en) * 2009-06-10 2013-10-15 Honeywell International Inc. Anti-reflective coatings for optically transparent substrates
DE102010031184A1 (de) * 2010-07-09 2012-01-12 Evonik Degussa Gmbh Verfahren zur Herstellung einer Siliciumdioxidpartikel und Kationisierungsmittel aufweisenden Dispersion
US9157190B2 (en) 2011-01-18 2015-10-13 Petra International Holdings, Llc Method for treating substrates with halosilanes
US9452406B2 (en) * 2013-05-17 2016-09-27 L'oreal Bubble encapsulation via silicilic acid complexation
US10028895B2 (en) 2013-05-17 2018-07-24 L'oreal Emulsion stabilization via silicilic acid complexation
US9433578B2 (en) 2013-05-17 2016-09-06 L'oreal Stable bubbles via particle absorption by electrostatic interaction
BR112016013531A8 (pt) 2013-12-20 2020-05-19 Colgate Palmolive Co composição de cuidado oral
AU2014369061B2 (en) 2013-12-20 2017-03-02 Colgate-Palmolive Company Tooth whitening oral care product with core shell silica particles
EP3116957B1 (en) 2014-03-11 2019-06-12 The Chemours Company FC, LLC Tailored dispersion and formation of integrated particle systems via ph responsive groups
EP3445735A1 (en) * 2016-04-18 2019-02-27 Basf Se Silica-coated expanding agents and their use in cementitious systems
JP7360294B2 (ja) * 2019-09-30 2023-10-12 日揮触媒化成株式会社 シリカを含む外殻の内側に空洞を有する粒子とその製造方法、該粒子を含む塗布液、及び該粒子を含む透明被膜付基材
CN115799244B (zh) * 2021-09-08 2024-08-09 荣耀终端有限公司 一种介质材料层、表面处理方法、封装基板及电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995033787A1 (fr) * 1994-06-06 1995-12-14 Catalysts & Chemicals Industries Co., Ltd. Film de resine thermoplastique et procede de production de ce film
JP2001233611A (ja) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd シリカ系微粒子、該微粒子分散液の製造方法、および被膜付基材

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2601352A (en) * 1950-01-16 1952-06-24 Du Pont Silica sols and method of making same
JP2718431B2 (ja) * 1990-06-18 1998-02-25 触媒化成工業株式会社 シリカオルガノゾルおよびその製造方法
JPH0454403A (ja) * 1990-06-22 1992-02-21 Mitsubishi Heavy Ind Ltd リニアモータの空隙計測装置
JPH06330606A (ja) * 1993-05-24 1994-11-29 Soda Koryo Kk 香気性畳
JP3338720B2 (ja) * 1993-06-17 2002-10-28 触媒化成工業株式会社 複合酸化物ゾルの製造方法
JPH0713137A (ja) * 1993-06-29 1995-01-17 Suzuki Yushi Kogyo Kk 液晶内包無機中空微粒子とそれを用いた液晶表示装置
JP3761189B2 (ja) * 1993-11-04 2006-03-29 触媒化成工業株式会社 複合酸化物ゾル、その製造方法および基材
JP3228650B2 (ja) * 1994-12-09 2001-11-12 触媒化成工業株式会社 帯電防止塗料および帯電防止被膜付基材
FR2747669B1 (fr) * 1996-04-22 1998-05-22 Rhone Poulenc Chimie Procede de preparation de particules creuses de silice
US5880201A (en) * 1996-12-05 1999-03-09 Catalysts & Chemicals Industries Co., Ltd. Thermoplastic resin film and method of manufacturing the same
JPH1129318A (ja) * 1997-05-06 1999-02-02 Nippon Millipore Kk ミクロンサイズの球状シリカ粒子とその製造法
EP1188716B1 (en) * 1998-12-21 2013-02-20 JGC Catalysts and Chemicals Ltd. Fine particle, sol having fine particles dispersed, method for preparing said sol and substrate having coating thereon
JP4211115B2 (ja) * 1999-02-05 2009-01-21 Jsr株式会社 中空粒子の製造方法
JP3973330B2 (ja) * 1999-12-10 2007-09-12 触媒化成工業株式会社 透明被膜付基材、透明被膜形成用塗布液、および表示装置
CN1200902C (zh) * 2000-06-20 2005-05-11 株式会社东芝 透明涂膜基片、形成透明膜用的涂液及显示装置
JP2002132478A (ja) * 2000-10-26 2002-05-10 Dainippon Screen Mfg Co Ltd 印刷システム、印刷システムのコントローラ、および印刷システムの印刷機、並びに印刷システムのコントローラ制御方法、記録媒体並びにプログラム
JP2002144715A (ja) * 2000-11-10 2002-05-22 Asahi Kasei Corp インクジェット記録媒体及び塗工液
JP4918743B2 (ja) * 2001-02-16 2012-04-18 凸版印刷株式会社 反射防止フィルム
JP3993993B2 (ja) * 2001-07-13 2007-10-17 触媒化成工業株式会社 シリカゾルおよびシリカ系複合酸化物ゾルの製造方法
US6913825B2 (en) * 2001-09-20 2005-07-05 University Of Notre Dame Du Lac Process for making mesoporous silicate nanoparticle coatings and hollow mesoporous silica nano-shells
JP4428923B2 (ja) * 2002-12-25 2010-03-10 日揮触媒化成株式会社 シリカ系中空微粒子の製造方法
JPWO2004110930A1 (ja) * 2003-06-12 2006-07-20 松下電器産業株式会社 ナノ粒子含有複合多孔体およびその製造方法
WO2006006207A1 (ja) * 2004-07-08 2006-01-19 Catalysts & Chemicals Industries Co.,Ltd. シリカ系微粒子の製造方法、被膜形成用塗料および被膜付基材
CN1989070B (zh) * 2004-07-21 2010-08-18 触媒化成工业株式会社 二氧化硅类微粒、其制备方法、涂膜形成用涂料及覆有涂膜的基材

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995033787A1 (fr) * 1994-06-06 1995-12-14 Catalysts & Chemicals Industries Co., Ltd. Film de resine thermoplastique et procede de production de ce film
JP2001233611A (ja) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd シリカ系微粒子、該微粒子分散液の製造方法、および被膜付基材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1787959A4 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014506A (ja) * 2005-11-25 2013-01-24 Jgc Catalysts & Chemicals Ltd 中空シリカ微粒子、それを含む透明被膜形成用組成物、および透明被膜付基材
EP2128090A1 (en) * 2007-03-16 2009-12-02 Asahi Glass Company, Limited Hollow microparticle, method for production thereof, coating composition, and article having coating film formed thereon
EP2128091A1 (en) * 2007-03-16 2009-12-02 Asahi Glass Company, Limited Hollow microparticle, method for production thereof, coating composition, and article having coating film formed thereon
EP2128091A4 (en) * 2007-03-16 2010-05-26 Asahi Glass Co Ltd HOLLOW MICROPARTICLES, METHOD FOR THE PRODUCTION THEREOF, COATING COMPOSITION AND ARTICLES WITH THE COATING FILM MADE THEREFROM
EP2128090A4 (en) * 2007-03-16 2010-05-26 Asahi Glass Co Ltd HOLLOW MICROPARTICLES, PROCESS FOR PRODUCING THE SAME, COATING COMPOSITION, AND ARTICLE HAVING A COATING FILM FORMED THEREON
TWI423922B (zh) * 2007-03-16 2014-01-21 Asahi Glass Co Ltd Hollow microparticles, a method for producing the same, a coating composition, and articles forming a coating film
US8480989B2 (en) 2007-03-16 2013-07-09 Asahi Glass Company, Limited Hollow fine particles, production process thereof, coating composition and article having coating film formed
JP2009108155A (ja) * 2007-10-29 2009-05-21 Jgc Catalysts & Chemicals Ltd 繊維状中空シリカ微粒子分散液、繊維状中空シリカ微粒子ならびに該微粒子を含有する反射防止被膜形成用組成物および反射防止被膜付基材
JP2010018447A (ja) * 2008-07-08 2010-01-28 Sumitomo Osaka Cement Co Ltd 表面被覆多孔質酸化物粒子及び多孔質酸化物粒子の表面被覆方法
WO2010074063A1 (ja) 2008-12-25 2010-07-01 電気化学工業株式会社 複合粒子及びその製造方法、中空粒子、その製造方法及び用途
WO2011059081A1 (ja) * 2009-11-16 2011-05-19 日揮触媒化成株式会社 シリカ・アルミナゾルの製造方法、シリカ・アルミナゾル、該ゾルを含む透明被膜形成用塗料および透明被膜付基材
JP5839993B2 (ja) * 2009-11-16 2016-01-06 日揮触媒化成株式会社 シリカ・アルミナゾルの製造方法、シリカ・アルミナゾル、該ゾルを含む透明被膜形成用塗料および透明被膜付基材
JP2011201715A (ja) * 2010-03-25 2011-10-13 Jgc Catalysts & Chemicals Ltd 金平糖状のシリカ系微粒子の分散ゾル、該分散ゾルを含む塗料組成物、および金平糖状のシリカ系微粒子分散ゾルの製造方法。
JP2012140286A (ja) * 2010-12-28 2012-07-26 Jgc Catalysts & Chemicals Ltd 新規シリカ系中空微粒子、透明被膜付基材および透明被膜形成用塗料
JP2013127065A (ja) * 2011-12-16 2013-06-27 Eternal Chemical Co Ltd 反射防止コーティング組成物及びその調製方法
JP2013123696A (ja) * 2011-12-16 2013-06-24 Jgc Catalysts & Chemicals Ltd 多孔質酸化物被覆粒子、担持触媒およびこれらの製造方法
JP2014058683A (ja) * 2013-10-30 2014-04-03 Jgc Catalysts & Chemicals Ltd 透明被膜形成用塗料の製造方法
JPWO2015122453A1 (ja) * 2014-02-14 2017-03-30 日揮触媒化成株式会社 透明被膜形成用の塗布液および透明被膜付基材の製造方法
WO2015122453A1 (ja) * 2014-02-14 2015-08-20 日揮触媒化成株式会社 透明被膜形成用の塗布液および透明被膜付基材の製造方法
KR20160121522A (ko) * 2014-02-14 2016-10-19 닛키 쇼쿠바이카세이 가부시키가이샤 투명 피막 형성용 도포액 및 투명 피막 부착 기재의 제조방법
KR102245165B1 (ko) * 2014-02-14 2021-04-26 닛키 쇼쿠바이카세이 가부시키가이샤 투명 피막 형성용 도포액 및 투명 피막 부착 기재의 제조방법
JP2016190769A (ja) * 2015-03-31 2016-11-10 日揮触媒化成株式会社 シリカ粒子の製造方法
JP2016190770A (ja) * 2015-03-31 2016-11-10 日揮触媒化成株式会社 シリカ粒子の製造方法
JP2017168840A (ja) * 2017-03-11 2017-09-21 日揮触媒化成株式会社 半導体装置実装用ペ−ストの製造方法
JP2019028196A (ja) * 2017-07-28 2019-02-21 株式会社サンリッツ 偏光板および画像表示装置
CN109956479A (zh) * 2017-12-25 2019-07-02 北京化工大学 一种中空微球及其制备方法
CN116239905A (zh) * 2022-06-21 2023-06-09 青岛科技大学 一种海洋用防腐防污多效涂层材料的制备方法
CN116239905B (zh) * 2022-06-21 2024-01-26 青岛科技大学 一种海洋用防腐防污多效涂层材料的制备方法

Also Published As

Publication number Publication date
US20150147469A1 (en) 2015-05-28
TW200607759A (en) 2006-03-01
US10239759B2 (en) 2019-03-26
TWI351384B (ja) 2011-11-01
JPWO2006009132A1 (ja) 2008-05-01
KR101186732B1 (ko) 2012-09-28
US20070275257A1 (en) 2007-11-29
CN1989070B (zh) 2010-08-18
EP1787959A1 (en) 2007-05-23
KR20070034122A (ko) 2007-03-27
EP1787959B1 (en) 2022-06-22
EP1787959A4 (en) 2015-09-16
CN1989070A (zh) 2007-06-27
JP2013121911A (ja) 2013-06-20
JP5328101B2 (ja) 2013-10-30
JP5700458B2 (ja) 2015-04-15

Similar Documents

Publication Publication Date Title
WO2006009132A1 (ja) シリカ系微粒子、その製造方法、被膜形成用塗料および被膜付基材
JP5247753B2 (ja) 微粒子、微粒子分散ゾルおよび被膜付基材
JP4428923B2 (ja) シリカ系中空微粒子の製造方法
JP4046921B2 (ja) シリカ系微粒子、該微粒子分散液の製造方法、および被膜付基材
KR101365382B1 (ko) 중공 실리카 미립자, 그것을 포함한 투명 피막 형성용조성물, 및 투명 피막 부착 기재
JP4592274B2 (ja) 酸化アンチモン被覆シリカ系微粒子、該微粒子の製造方法および該微粒子を含む被膜付基材
JP5757673B2 (ja) 透明被膜付基材および透明被膜形成用塗料
JP5686604B2 (ja) 鎖状シリカ系中空微粒子とその製造方法、該微粒子を含む透明被膜形成用塗布液および透明被膜付基材
KR101102115B1 (ko) 실리카계 미립자의 제조방법, 피막 형성용 도료 및피막부착 기재
JP2018123043A (ja) シリカ系粒子分散液の製造方法、シリカ系粒子分散液、透明被膜形成用塗布液及び透明被膜付基材
JP4731137B2 (ja) シリカ系微粒子の製造方法
JP5404568B2 (ja) シリカ系微粒子、被膜形成用塗料および被膜付基材
JP3955971B2 (ja) 反射防止膜付基材
JP7557354B2 (ja) 改質中空粒子及びその製造方法
JP5766251B2 (ja) 透明被膜形成用塗料の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006529216

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11632900

Country of ref document: US

Ref document number: 200580024339.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005766252

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077003982

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020077003982

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005766252

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11632900

Country of ref document: US