WO2006006207A1 - シリカ系微粒子の製造方法、被膜形成用塗料および被膜付基材 - Google Patents

シリカ系微粒子の製造方法、被膜形成用塗料および被膜付基材 Download PDF

Info

Publication number
WO2006006207A1
WO2006006207A1 PCT/JP2004/009733 JP2004009733W WO2006006207A1 WO 2006006207 A1 WO2006006207 A1 WO 2006006207A1 JP 2004009733 W JP2004009733 W JP 2004009733W WO 2006006207 A1 WO2006006207 A1 WO 2006006207A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
fine particles
based fine
dispersion
coating
Prior art date
Application number
PCT/JP2004/009733
Other languages
English (en)
French (fr)
Inventor
Ryou Muraguchi
Mitsuaki Kumazawa
Toshiharu Hirai
Masafumi Hirai
Original Assignee
Catalysts & Chemicals Industries Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts & Chemicals Industries Co.,Ltd. filed Critical Catalysts & Chemicals Industries Co.,Ltd.
Priority to CN2004800433784A priority Critical patent/CN1972866B/zh
Priority to US11/631,357 priority patent/US10040943B2/en
Priority to PCT/JP2004/009733 priority patent/WO2006006207A1/ja
Priority to KR1020077000708A priority patent/KR101102115B1/ko
Publication of WO2006006207A1 publication Critical patent/WO2006006207A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/36Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
    • C01B13/363Mixtures of oxides or hydroxides by precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/146After-treatment of sols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3045Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/309Combinations of treatments provided for in groups C09C1/3009 - C09C1/3081
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]

Definitions

  • the present invention relates to a silica-based fine particle having a cavity inside, a method for producing the same, a coating-forming coating material containing the silica-based fine particle, and a film containing the silica-based fine particle formed on the substrate surface
  • the present invention relates to a coated substrate.
  • hollow silica particles having a particle size of about 0.1 to 300 / m are known (see Patent Document 1, Patent Document 2, etc.). Also, active silica is precipitated from an aqueous alkali metal silicate solution onto a core made of a material other than silica, and the material is removed without destroying the silica shell to produce hollow particles made of a dense silica shell. The method is known (see Patent Document 3, etc.).
  • micron-sized spherical silica particles having a core-shell structure in which the outer peripheral portion is a shell and the central portion is hollow, the outer shell is denser on the outer side and has a coarser concentration gradient structure on the inner side are known (Patent Document 4). Etc.)
  • nanometer-sized composite oxide particles having a low refractive index can be obtained by completely covering the surface of porous inorganic oxide particles with silica or the like.
  • a silica coating layer is formed on the core particles of a composite oxide composed of silica and an inorganic oxide other than silica, and then inorganic oxides other than silica are removed. It is proposed that silica-based fine particles with a low refractive index having a cavity inside can be obtained by coating silica (Patent Document).
  • Patent Document 1 Japanese Patent Laid-Open No. 6-330606
  • Patent Document 2 Japanese Patent Laid-Open No. 7-0113137
  • Patent Document 3 Japanese Translation of Special Publication 2000-500113
  • Patent Document 4 Japanese Patent Application Laid-Open No. 11-029318
  • Patent Document 5 Japanese Patent Laid-Open No. 7-133105
  • Patent Document 6 Japanese Patent Laid-Open No. 2001-233611
  • the present invention has been developed based on the invention described in Patent Document 6, and is intended to obtain silica-based fine particles having a low refractive index, and is a porous composite oxide.
  • Particles primary particles
  • inorganic oxides other than silica are removed in the presence of the electrolyte salt, thereby forming a hollow, spherical shape having a cavity inside the outer shell. It aims at providing the manufacturing method of a silica type microparticle.
  • Another object of the present invention is to provide a coating material for forming a film, which contains the hollow, spherical silica-based fine particles and a matrix for forming a film, and is excellent in stability, film forming property and the like.
  • the present invention forms a coating containing the above-mentioned hollow, spherical silica-based fine particles on the surface of the base material, and has a coating having a low refractive index, excellent adhesion to a resin, strength, antireflection ability, etc. It aims at providing the base material of this.
  • the method for producing silica-based fine particles according to the present invention comprises the following steps (a) and (b).
  • aqueous solution of silicate and / or an acidic silicic acid solution and an aqueous solution of an alkali-soluble inorganic compound are simultaneously added to an alkaline aqueous solution or, if necessary, an alkaline aqueous solution in which seed particles are dispersed.
  • Silica is represented by SiO
  • inorganic oxides other than silica are represented by MO.
  • step (d) It is preferable to perform the following step (d) on the silica-based fine particle dispersion obtained in step (b).
  • step (e) is preferably performed on the silica-based fine particle dispersion obtained in step (d).
  • step (2) It is preferable to repeat step (2) a plurality of times.
  • step (c) it is preferable to carry out the following step (c) after step (b) or between step (b) and step (d).
  • Step (c) To the silica-based fine particle dispersion obtained in the step (b), an alkaline aqueous solution and an organosilicon compound represented by the following chemical formula (1) and / or a partial hydrolyzate thereof are added, Step of forming silica coating layer on fine particles
  • R an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, acrylic group, epoxy group, methacryl group, amino group, CF group, X: 1 carbon number
  • the pH of the alkaline aqueous solution or the alkaline aqueous solution in which seed particles are dispersed as required is preferably 10 or more.
  • the inorganic oxide other than silica is preferably alumina.
  • the silica-based fine particle dispersion obtained above is preferably washed, dried, and fired as necessary.
  • the average particle diameter of the silica-based fine particles is preferably in the range of 5 nm to 500 nm.
  • the content of alkali metal oxide in the silica-based fine particles or the silica-based fine particle dispersion is 5 ppm or less as M 0 (M: alkali metal element) per silica-based fine particle.
  • the content of ammonia and / or ammonium ions in the silica-based fine particles or the silica-based fine particle dispersion is 1500 ppm or less as NH per silica-based fine particles.
  • the silica-based fine particles having cavities inside the outer shell according to the present invention have an average particle diameter in the range of 5 500 nm, a refractive index in the range of 1.15-1.38, and the silica is made of SiO. Represents silica
  • the content of alkali metal oxide is 5 ppm as M 0 (M: alkali metal element).
  • the content of ammonia and / or ammonium ions in the silica-based fine particles is preferably 1500 ppm or less as NH.
  • the coating material for forming a film according to the present invention comprises the silica-based fine particles or the silica-based fine particles obtained by the production method and a film-forming matrix.
  • the substrate with a coating according to the present invention is a coating comprising the silica-based fine particles or the silica-based fine particles obtained by the production method and a film-forming matrix, either alone or together with other coatings on the surface of the substrate. It is formed.
  • the composite oxide particles (primary particles) are grown in the presence of the electrolyte salt, so that the composite oxide fine particles maintain a spherical shape even in the subsequent de-elementalization step.
  • silica-based fine particles having a very low refractive index can be obtained by an extremely simple production process that is not destroyed. It is also excellent in terms of production reproducibility and productivity of silica-based fine particles.
  • the film is aged after forming a silica coating layer or aging, hydrothermal treatment is performed at a high temperature, so that alkali metal oxides and ammonia are reduced.
  • the resulting film is excellent in strength.
  • the coating material for forming a film of the present invention has excellent stability because the content of the alkali metal oxide and ammonia in the silica-based fine particles or silica-based fine particle dispersion liquid is small, and the film obtained using this has a high strength. Is excellent.
  • the coated substrate of the present invention has a low refractive index and is excellent in adhesion to a resin, strength, transparency, anti-reflection ability, and the like.
  • FIG. 1 is a transmission electron micrograph (TEM) of silica-based fine particles obtained in Example 12.
  • TEM transmission electron micrograph
  • the method for producing silica-based fine particles according to the present invention comprises the following steps (a) and (b), which are essential steps. In addition to these steps, the following steps (c), (d) or (e) may be included. That is, the method for producing silica-based fine particles according to the present invention includes (a) + (b), (a) + (b) + (c), (a) + (b) + (d), ( a) + (b) + (c) + (d), (a) + (b) + (d) + (e), and (a) + (b) + (c) + (d) + ( and e). Each process will be described below.
  • aqueous solution of silicate and / or an acidic silicic acid solution and an aqueous solution of an alkali-soluble inorganic compound are simultaneously added to an alkaline aqueous solution or, if necessary, an alkaline aqueous solution in which seed particles are dispersed.
  • Silica is represented by SiO
  • inorganic oxides other than silica are represented by MO.
  • the electrolyte salt is converted into the ratio (M) / ( M) is 0.1-1
  • R unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, acrylic group, epoxy group, methacryl group, amino group, CF group, X: alkoxy group having 1 to 4 carbon atoms, silanol group, halogen Or hydrogen, n: an integer of 0 3)
  • silicates selected from alkali metal silicates, ammonium silicates, and organic base silicates are preferably used.
  • Al-rich metal silicates are sodium silicate (water glass) and potassium silicates.
  • Organic bases are quaternary ammonium salts such as tetraethyl ammonium salt, monoethanolamine, diethylanolamine, triethanol.
  • Ammine silicates or organic base silicates include alkaline solutions in which ammonia, quaternary ammonium hydroxide, and amine compounds are added to the silicate solution.
  • a silicic acid solution obtained by removing alkali by treating an alkali silicate aqueous solution with a cation exchange resin can be used.
  • pH 2 to pH 4 and SiO concentration is about 7% by weight.
  • the following acidic silicic acid solutions are preferred.
  • Examples of the inorganic oxide include one or more of Al 2 O 3, B 2 O, TiO, ZrO, SnO, Ce 2 O 3, P 2 O, Sb 2 O, Mo 0, Zn 0, and WO.
  • Examples of the two or more inorganic oxides include TiO-AlO and TiO-ZrO.
  • an alkali-soluble inorganic compound as a raw material for such an inorganic oxide.
  • an alkali aqueous solution of the inorganic compound is separately prepared in advance or a mixed aqueous solution is prepared, and silica for the purpose of this aqueous solution is prepared.
  • silica for the purpose of this aqueous solution is prepared.
  • it is gradually added to an alkaline aqueous solution, preferably an alkaline aqueous solution of pHIO or higher, with stirring.
  • the addition ratio of silica raw material and inorganic compound added to the alkaline aqueous solution is the molar ratio when the silica component is expressed by SiO and the inorganic compound other than silica is expressed by M ⁇ M ⁇ / SiO force SO
  • the structure of the composite oxide fine particles is mainly a structure in which silicon and elements other than silicon are alternately bonded through oxygen. That is, oxygen atoms are bonded to the four bonds of silicon atoms, and a large number of structures in which elements M other than silica are bonded to these oxygen atoms are formed, and the elements M other than silica are removed in step (b) described later. At this time, silicon atoms can be removed as silicic acid monomers and oligomers in association with the element M.
  • the seed particle dispersion when preparing the composite oxide fine particle dispersion, it is also possible to use the seed particle dispersion as a starting material.
  • seed particles inorganic oxides such as SiO, AlO, TiO, ZrO, SnO, and CeO or complex oxides thereof, for example,
  • Fine particles such as SiO 2 —Al 2 O, Ti 0 —Al 0, Ti 0 —ZrO, SiO—TiO, SiO—TiO 2 —Al 2 O, and the like can be used.
  • Such a dispersion of seed particles can be prepared by a conventionally known method. For example, it can be obtained by adding an acid or alkali to a metal salt, a mixture of metal salts, or a metal alkoxide corresponding to the inorganic oxide, hydrolyzing it, and aging as necessary.
  • the aqueous solution of the compound is preferably added to the seed particle-dispersed alkaline aqueous solution adjusted to pHIO or higher with stirring in the same manner as in the method of adding the above-mentioned alkaline aqueous solution.
  • the composite oxide using seed particles as seeds When the fine particles are grown, it is easy to control the particle size of the grown particles, and particles with uniform particle sizes can be obtained.
  • the addition ratio of the silica raw material and the inorganic oxide added to the seed particle dispersion is set in the same range as the case of adding to the aqueous alkali solution.
  • silica raw material and inorganic oxide raw material described above have high solubility on the alkali side. However, if both are mixed in this high solubility and pH range, the solubility of oxalate ions such as silicate ions and anolemate ions decreases, and these composites precipitate and grow into colloidal particles. Alternatively, the particles grow on the seed particles.
  • the organosilicon compound and z or a hydrolyzate thereof shown in (2) may be added to an alkaline aqueous solution.
  • organosilicon compound examples include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, Dimethyldiethoxysilane, phenyltriethoxysilane, diphenylmethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, butyltriethoxysilane, vinyltris (j3methoxyethoxy) silane, 3, 3, 3-trifluoro Propyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycid
  • the above-mentioned organosilicon compound having n of 1 to 13 is poor in hydrophilicity. Therefore, it is preferable that the compound be uniformly mixed in the reaction system by hydrolysis in advance.
  • a well-known method can be adopted as a hydrolysis method of these organosilicon compounds.
  • a basic catalyst such as an alkali metal hydroxide, aqueous ammonia, or amine
  • a hydrolyzate is prepared using an acidic catalyst such as an organic acid or an inorganic acid, it is preferable to remove the acidic catalyst by ion exchange or the like after the hydrolysis.
  • the obtained hydrolyzate of organosilicon compound is preferably used in the form of an aqueous solution.
  • the aqueous solution means a state where the hydrolyzate is not in a cloudy state as a gel but has transparency.
  • the electrolyte salt is added in the step (a).
  • the ratio (M / M) of the number of moles of electrolyte salt (M) to the number of moles of SiO (M) is in the range of 0.1 1 to 10, preferably 0.2 to 8.
  • electrolyte salt examples include water-soluble electrolyte salts such as sodium chloride, potassium chloride, sodium nitrate, potassium nitrate, sodium sulfate, potassium sulfate, ammonium nitrate, ammonium sulfate, magnesium chloride, and magnesium nitrate.
  • the electrolyte salt can be added continuously or intermittently while adding an inorganic compound other than alkali metal silicate or silica, which can be added in its entirety, and growing the composite oxide fine particles. Also good.
  • the amount of electrolyte salt added depends on the concentration of the composite oxide fine particle dispersion, but when the molar ratio (M ZM) is less than 0.1, the effect of controlling the electrolyte salt becomes insufficient.
  • M ZM molar ratio
  • the composite oxide fine particles when removing at least a part of the elements other than silicon constituting the composite oxide fine particles by covering the acid, the composite oxide fine particles cannot be maintained in a spherical shape and are destroyed, and the silica force system has a cavity inside. It may be difficult to obtain fine particles.
  • the reason for this is not clear, the amount of silica on the surface of the grown complex oxide particles increases, and the acid-insoluble silica protects the complex oxide particles. It also works like a membrane it is considered as.
  • the average particle size of the primary particles when the electrolyte salt is added is less than 5 nm, new fine particles are formed and the primary particles do not selectively grow, and the particle size distribution of the composite oxide particles May be non-uniform. If the average particle diameter of the primary particles when adding the electrolyte salt exceeds 300 nm, it may take time or difficulty to remove elements other than silicon in step (b).
  • the composite oxide fine particles obtained in this way have an average particle diameter in the range of 5500 nm, which is comparable to the silica fine particles finally obtained.
  • step (b) hollow spherical silica-based fine particles having cavities therein are produced by removing some or all of the elements other than silicon constituting the composite oxide fine particles from the composite oxide fine particles.
  • the complex oxide fine particle dispersion is mixed with the number of moles of electrolyte salt (M).
  • the ratio (M / M) of SiO to the number of moles (M) is in the range of 0.1-10, preferably 0.2-8.
  • the electrolyte salt after adding the electrolyte salt again as necessary, for example, it can be dissolved and removed by adding mineral acid or organic acid, or contacted with a cation exchange resin to remove ions, or these methods can be used. Are removed by combining.
  • the concentration of the composite oxide fine particles in the composite oxide fine particle dispersion is 0.1 to 50% by weight, particularly 0.5 to 25% by weight in terms of a power oxide that varies depending on the treatment temperature. It is preferable to be in the range.
  • concentration of the composite oxide fine particles is less than 0.1% by weight, the amount of silica dissolved increases, and the shape of the composite oxide fine particles may not be maintained. To do.
  • concentration of the composite oxide fine particles exceeds 50% by weight, the dispersibility of the particles becomes insufficient, and the composite oxide fine particles with a high content of elements other than silicon are uniformly or efficiently less frequently. May not be removed.
  • the removal of the above elements can be achieved by using the silica-based fine particles obtained by MO / SiO, 0.0001-0.2,
  • the same organosilicon compound as in the step (a) can be used.
  • a silica coating layer is dense, the inside is kept in a gas phase or a liquid layer having a low refractive index, and when used for forming a film, a substance having a high refractive index, such as a coating resin, etc. Thus, it is possible to form a film having a high low refractive index effect that does not enter the inside.
  • it can be used after being surface-treated with a silane coupling agent or the like, and since it is excellent in dispersibility in an organic solvent, affinity with a resin, etc., such treatment is not particularly required.
  • a fluorine-containing organic silicon compound is used for forming the silica coating layer, since the coating layer containing F atoms is formed, the resulting particles have a lower refractive index and are resistant to an organic solvent.
  • a silica-based fine particle dispersion having high affinity with a resin having good dispersibility can be obtained.
  • fluorine-containing organosilicon compounds include 3, 3, 3_trifluoropropyltrimethoxysilane, methyl-3,3,3_trifluoropropyldimethoxysilane, heptadecafluoro
  • Examples include fluorooctyltrimethoxysilane. Further, the compound represented by the chemical formula (2) as the following [Chemical Formula 2] and the compound represented by the chemical formula (3) as the following [Chemical Formula 3] have the same effect, and therefore can be preferably used.
  • R 1 and R 2 and R 1 and R 7 may be the same or different from each other, an alkyl group, a halogenated alkyl group, an aryleno group, An alkylaryl group, an arylenorequinolene group, an alkenyl group, a hydrogen atom or a halogen atom;
  • R 3 — R 6 may be the same or different from each other, and may be an alkoxy group, an alkyl group, a halogenated alkyl group, an aryleno group, an anoleno quinoa linole group, an areno eno quinole group, an alkenyl group.
  • X represents-(C H F)
  • a is an integer that is an even number of 2 or more
  • b and c are even numbers of 0 or more a b c
  • methoxysilane represented by (CH 2 O) SiC H C F C H Si (CH 2 O) is represented by (CH 2 O) SiC H C F C H Si (CH 2 O)
  • step (d) after washing as necessary, the silica-based fine particle dispersion is aged in the range of room temperature to 300 ° C.
  • the dispersion from which the element has been removed can be washed by a known washing method such as ultrafiltration, if necessary, and a part of the element other than the dissolved key is removed by washing.
  • a known washing method such as ultrafiltration, if necessary, and a part of the element other than the dissolved key is removed by washing.
  • a zonore in which silica particles with high dispersion stability are dispersed can be obtained. It is done.
  • the dispersion from which the element has been removed is a part of the element other than the dissolved element or alkali metal ion, alkaline earth metal by contact with the cation exchange resin and Z or anion exchange resin. Ions and ammonium ions can be removed The In addition, when washing, heating can be effectively performed.
  • the silica coating layer becomes uniform and denser, and as described above, substances having a high refractive index cannot enter the inside of the particle, so that it is possible to form a film having a high low refractive index effect. it can.
  • step (e) after washing as necessary, hydrothermal treatment is performed in the range of 50 to 300 ° C.
  • a conventionally known method can be adopted as in the step (d).
  • the hydrothermal treatment temperature is less than 50 ° C, the content of alkali metal oxide and / or ammonia in the finally obtained silica-based fine particles or silica-based fine particle dispersion cannot be effectively reduced.
  • the effect of improving the stability and film formation of the coating film-forming paint is insufficient, and the strength of the resulting film is insufficiently improved.
  • the silica-based fine particles may agglomerate in some cases without further improving the stability, film-forming property, film strength, etc. of the coating material for film formation. If the temperature is in the range of 150 ° C-300 ° C, silica-based fine particles are used, and the resulting film has excellent water resistance.If water drops fall on the film, they can be wiped off or immediately dried. In addition, it is possible to obtain an effect such that traces of water drops hardly remain.
  • Step (e) may be repeated a plurality of times. By repeating the step (e), the content of alkali metal oxide and Z or ammonia (including ammonium ions) in the resulting silica-based fine particles can be reduced.
  • the silica-based fine particles obtained in this way preferably have an average particle size in the range of 5 to 500 nm, more preferably 10 to 400 nm. If the average particle size is less than 5 nm, sufficient cavities cannot be obtained, and the low refractive index effect may not be sufficiently obtained.
  • the average particle size is 500nm If it exceeds, it becomes difficult to obtain a stable dispersion, and irregularities may be formed on the surface of the coating film containing the fine particles, or haze may be increased.
  • the average particle size of the silica-based fine particles of the present invention can be determined by a dynamic light scattering method.
  • the content of the alkali metal oxide in the silica-based fine particles is preferably 5 ppm or less, more preferably 2 ppm or less as M0 (M: alkali metal element).
  • M alkali metal element
  • the content of ammonia (including ammonium ions) in the silica-based fine particles is preferably 1500 ppm or less, more preferably lOOOppm or less as NH. If the content of ammonia exceeds 1500 ppm, the coating composition containing silica-based fine particles is not sufficiently stable, the viscosity is increased, and the film-forming property is lowered as in the case of the alkali metal oxide. However, the strength of the resulting film may be insufficient or the film thickness may be non-uniform.
  • the obtained silica-based fine particle dispersion is replaced with an organic solvent using an ultrafiltration membrane, a rotary evaporator, or the like. Can be obtained.
  • the ability to dry after washing and to burn as necessary can be achieved.
  • the silica-based fine particles obtained in this way have cavities inside and have a low refractive index. Therefore, a film formed using the silica-based fine particles has a low refractive index, and a film excellent in antireflection performance can be obtained.
  • the silica-based fine particles according to the present invention have cavities inside. For this reason, the refractive index of silica-based fine particles was 1.15-1.38, whereas the refractive index of silica was usually 1.45.
  • the cavity can be confirmed by observing a transmission electron micrograph (TEM) of the particle cross section.
  • FIG. 1 shows a transmission electron micrograph (TEM) of the silica-based fine particles obtained in Example 12.
  • the coating film-forming paint according to the present invention comprises the silica-based fine particles, the film-forming matrix, and an organic solvent blended as necessary.
  • the film-forming matrix refers to a component that can form a film on the surface of the base material, and can be used by selecting from a resin that conforms to conditions such as adhesion to the base material, hardness, and coatability.
  • a resin that conforms to conditions such as adhesion to the base material, hardness, and coatability.
  • polyester resin acrylic resin, urethane resin, salted bull resin, epoxy resin, melamine resin, fluorine resin, silicon resin, petitanol resin, phenol resin, vinyl acetate resin, ultraviolet curable resin, electron beam Cured resins, emulsion resins, water-soluble resins, hydrophilic resins, mixtures of these resins, and coating resins such as copolymers and modified products of these resins, or hydrolyzable organic silicon such as alkoxysilanes. Examples thereof include compounds and partial hydrolysates thereof.
  • an organic solvent dispersion sol in which the dispersion medium of the silica-based fine particle dispersion is replaced with an organic solvent such as alcohol, preferably an organic silicon compound containing the organic group.
  • Silica-based fine particles having a silica coating layer formed thereon can be used. If necessary, after treating the fine particles with a known coupling agent, an organic solvent-dispersed sol dispersed in an organic solvent and a coating resin are used. It can be diluted with a suitable organic solvent to make the coating night.
  • a hydrolyzable organosilicon compound when used as a matrix, for example, by adding water and an acid or alkali as a catalyst to a mixture of alkoxysilane and alcohol, a partially hydrolyzed product of alkoxysilane. This can be mixed with the sol and diluted with an organic solvent as necessary to obtain a coating solution.
  • the coated substrate according to the present invention includes the silica-based fine particles and a film-forming matrix.
  • the coating is formed on the substrate surface alone or together with other coatings.
  • the substrate is made of glass, polycarbonate, acrylic resin, plastic sheet such as PET, TAC, plastic film, plastic lens, plastic panel, etc., substrate surface such as cathode ray tube, fluorescent display tube, liquid crystal display board, etc.
  • a coating is formed on the substrate.
  • the coating may be used alone or on a substrate as a protective film, hard coat film, or planarized film.
  • the film is formed in combination with a high refractive index film, an insulating film, a conductive resin film, a conductive metal fine particle film, a conductive metal oxide fine particle film, and a primer film used as necessary.
  • the coating of the present invention is not necessarily formed on the outermost surface.
  • Such a coating is applied to the substrate by a known method such as a dipping method, a spray method, a spinner method, or a mouth coat method, dried, and heated or heated as necessary. It can be obtained by curing by ultraviolet irradiation or the like.
  • the refractive index of the coating film formed on the surface of the base material is a force that is different depending on the mixing ratio of silica-based fine particles and matrix components and the refractive index of the matrix used. Become a rate.
  • the refractive index of the silica-based fine particle itself of the present invention was 1.15-1.38. This is because the silica-based fine particles of the present invention have cavities inside, matrix forming components such as resins remain outside the particles, and the cavities inside the silica-based fine particles are retained.
  • the refractive index of the substrate when the refractive index of the substrate is 1.60 or less, a coating having a refractive index of 1.60 or more (hereinafter referred to as an intermediate coating) is formed on the surface of the substrate. It is recommended to form a film containing the silica-based fine particles of the present invention after the formation. If the refractive index of the intermediate coating is 1.60 or more, a coated substrate having a large difference from the refractive index of the coating containing the silica-based fine particles of the present invention and excellent antireflection performance can be obtained.
  • the refractive index of the intermediate coating can be adjusted by the refractive index of the metal oxide fine particles used to increase the refractive index of the intermediate coating, the mixing ratio of the metal oxide fine particles and the resin, and the refractive index of the resin used.
  • the coating solution for forming an intermediate coating is a mixed solution of metal oxide particles and a matrix for forming a coating, and an organic solvent is mixed as necessary.
  • a film forming matrix The same coating film containing silica-based fine particles of the present invention can be used, and by using the same coating film forming matrix, a coated substrate having excellent adhesion between both coating films can be obtained.
  • a primary particle dispersion was prepared.
  • Purified water 125 g was added to 500 g of the dispersion of composite oxide fine particles (1) that had been washed with a filtration membrane to a solid content of 13 wt%, and concentrated hydrochloric acid (concentration 35.5 wt%) was further added dropwise. It was adjusted to pHl.O and dealuminated. Next, separate the aluminum salt dissolved in the ultrafiltration membrane while adding 10 L of pH 3 hydrochloric acid solution and 5 L of pure water, and wash the silica-based fine particles (P-1-1) with a solid content of 20% by weight. A dispersion was obtained. The Na O content and NH content of the aqueous dispersion of this silica fine particle (P-1-1) were less than ⁇ m and lOppm per silica fine particle, respectively.
  • aqueous ammonia is added to the dispersion of silica-based fine particles (P-1-1) to adjust the pH of the dispersion to 10.5, and after aging at 150 ° C for 11 hours, After cooling and ion exchange using 400 g of cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B) for 3 hours, Then, 200g of anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A) was used for 3 hours of ion exchange, and then 200g of cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B) was used. Washing was performed by ion exchange at 80 ° C.
  • an aqueous dispersion of silica-based fine particles (P-to 2) having a solid content concentration of 20% by weight.
  • the Na 2 O content and NH content of the aqueous dispersion of silica-based fine particles (P-1-2) were 6 ppm and 1200 ppm, respectively, per silica-based fine particle.
  • the silica-based fine particle (P-1-2) dispersion was again hydrothermally treated at 150 ° C for 11 hours, and then washed with an ultrafiltration membrane while holding 5 L of pure water to obtain a solid content.
  • An aqueous dispersion of silica-based fine particles (P-to 3) having a concentration of 20% by weight was obtained.
  • the Na 2 O content and NH content of the aqueous dispersion of silica-based fine particles (P-1-3) were 0.5 ppm and 600 ppm per silica-based fine particle, respectively, and then an ultrafiltration membrane was used.
  • An alcohol dispersion of silica-based fine particles (P-1) having a solid content concentration of 20% by weight in which the solvent was replaced with ethanol was prepared.
  • Table 1 shows the preparation conditions.
  • the average particle diameter was measured by a dynamic light scattering method
  • the refractive index was measured by the following method using Series A and AA made by CARGILL as a standard refractive liquid.
  • This coating solution was applied to a PET film by a bar coater method and dried at 80 ° C. for 1 minute to obtain a transparent coated substrate (A-1) having a film thickness of SlOOnm.
  • Table 2 shows the total light transmittance, haze, reflectance of light having a wavelength of 550 nm, refractive index of the film, and pencil hardness of the substrate with transparent coating (A-1).
  • the total light transmittance and haze were measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.), and the reflectance was measured with a spectrophotometer (JASCO Corporation, Ubest-55).
  • the refractive index of the film was measured with an ellipsometer (manufactured by ULVAC, EMS-1).
  • the uncoated PET film had a total light transmittance of 90.7%, a haze of 2.0%, and a reflectance of light having a wavelength of 550 nm of 7.0%.
  • the pencil hardness was measured with a pencil hardness tester according to JIS K 5400. That is, a pencil was set at an angle of 45 degrees with respect to the surface of the coating, and a predetermined load was applied and the film was pulled at a constant speed to observe the presence or absence of scratches.
  • Echirushirike one MSi_ ⁇ concentration of 28 weight 0/0) 20g was added a small amount of hydrochloric acid in a mixed solution of ethanol 45g and pure water 5 ⁇ 33 g, to obtain a matrix dispersion containing the partial hydrolyzate of E chill silicate .
  • the matrix dispersion was mixed with 16.7 g of an alcohol dispersion of silica-based fine particles (P-1) (solid content concentration: 18% by weight) to prepare a coating solution.
  • This coating solution is applied to the surface of a transparent glass plate by a spinner method under conditions of 500 rpm for 10 seconds, and then heat-treated at 160 ° C for 30 minutes to form a transparent film substrate with a transparent film thickness of 200 nm.
  • (B-1) was obtained.
  • Table 3 shows the total light transmittance, haze, reflectance of light having a wavelength of 550 ⁇ m, refractive index of the coating, and pencil hardness of the substrate with transparent coating (B-1).
  • An uncoated glass substrate has a total light transmittance of 92.0%, a haze of 0.1%, and reflection of light having a wavelength of 550 nm. The rate was 4.5%.
  • the NH content was 1 ppm and 2500 ppm for each silica-based fine particle.
  • the silica-based fine particle (P-2-2) dispersion was again hydrothermally treated at 150 ° C for 11 hours, then washed with an ultrafiltration membrane while holding 5 L of pure water, and the solid content concentration was 20 wt. % Aqueous dispersion of silica-based fine particles (P-2-3) was obtained.
  • the Na 2 O content and NH content of the aqueous dispersion of silica-based fine particles (P-2-3) were 0.5 ppm and 900 ppm, respectively, per silica-based fine particle, and then an ultrafiltration membrane was used to disperse the dispersion medium.
  • An alcohol dispersion of silica-based fine particles (P-2) with a solid content concentration of 20% by weight was substituted with ethanol.
  • a substrate with a transparent coating (A-2) was prepared in the same manner as in Example 1 except that an alcohol dispersion of silica-based fine particles (P-2) was used instead of an alcohol dispersion of silica-based fine particles (P-1). ) was obtained.
  • a substrate with a transparent coating (B-2) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica-based fine particles (P-2) was used instead of an alcohol dispersion of silica-based fine particles (P-1). ) was obtained.
  • Example 2 silica fine particles having a solid content of 20% by weight (P-3) except that 0.5% by weight of sodium sulfate 50,400 g was used instead of 0.5% by weight of potassium nitrate 30, OOOg. An alcohol dispersion was prepared.
  • a substrate with a transparent coating (A-3) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica fine particles (P-3) was used instead of the alcohol dispersion of silica fine particles (P-1). ) was obtained.
  • a substrate with a transparent coating (B-3) was prepared in the same manner as in Example 1 except that an alcohol dispersion of silica-based fine particles (P-3) was used instead of an alcohol dispersion of silica-based fine particles (P-1). ) was obtained.
  • Example 2 silica-based fine particles having a solid content concentration of 20 wt% (P-) were used in the same manner except that 53,200 g of 0.5 wt% ammonium sulfate was used instead of 50,400 g of 0.5 wt% sodium sulfate.
  • the alcohol dispersion of 4) was prepared.
  • a substrate with a transparent coating (A-4) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica-based fine particles (P-4) was used instead of an alcohol dispersion of silica-based fine particles (P-1). ) was obtained.
  • a substrate with a transparent coating (B-4) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica-based fine particles (P-4) was used instead of an alcohol dispersion of silica-based fine particles (P-1). ) Obtained.
  • Example 2 silica-based fine particles having a solid content of 20% by weight (P-) were used in the same manner except that 50,400 g of sodium sulfate having a concentration of 0.5% by weight was replaced with 41,100 g of ammonium nitrate having a concentration of 0.5% by weight.
  • the alcohol dispersion of 5) was prepared.
  • a substrate with a transparent coating (A-5) was prepared in the same manner as in Example 1 except that an alcohol dispersion of silica-based fine particles (P-5) was used instead of an alcohol dispersion of silica-based fine particles (P-1). ) was obtained.
  • a substrate with a transparent coating (B-5) was prepared in the same manner as in Example 1 except that an alcohol dispersion of silica-based fine particles (P-5) was used instead of an alcohol dispersion of silica-based fine particles (P-1). ) was obtained.
  • Example 2 ethyl silicate 1 HSiO concentration 28 wt%) vinyl instead of 104 ⁇
  • Silane manufactured by Shin-Etsu Chemical Co., Ltd .: KBE-1003, concentration 62.7% by weight
  • an alcohol dispersion of silica-based fine particles (P-6) with a solid content of 20% by weight was prepared. did.
  • a substrate with a transparent coating was prepared in the same manner as in Example 1 except that an alcohol dispersion of silica-based fine particles (P-6) was used instead of an alcohol dispersion of silica-based fine particles (P-1). ) was obtained.
  • a substrate with a transparent coating (B-6) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica fine particles (P-6) was used instead of the alcohol dispersion of silica fine particles (P-1). ) was obtained.
  • Example 2 Yore , Echirushirike one MSiO concentration of 28 weight 0/0 concentration 0.2 wt% of sodium sulfate 50, 400 g instead of concentration 0.5 wt% of sodium sulfate 50, 400 g)
  • Silica fine particles (P-7) with a solid content of 20% by weight were used in the same manner except that 34.3g of epoxy silane (Shin-Etsu Chemical Co., Ltd .: KMB-403, concentration 84.9% by weight) was used instead of 104g.
  • a lecol dispersion was prepared.
  • the Na O content and NH content of the aqueous dispersion of silica-based fine particles (P-7-3) are
  • a substrate with a transparent coating was prepared in the same manner as in Example 1 except that an alcohol dispersion of silica-based fine particles (P-7) was used instead of an alcohol dispersion of silica-based fine particles (P-1). ) was obtained.
  • a substrate with a transparent coating (B-7) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica fine particles (P-7) was used instead of the alcohol dispersion of silica fine particles (P-1). ) was obtained.
  • Example 2 ethylsilicic acid HSiO concentration 28 wt%) 104 ⁇ instead of fluorine
  • Alkyl Silane (Shin-Etsu Chemical Co., Ltd .: KMB-7083, concentration 83.8% by weight)
  • Alcohol dispersion of silica-based fine particles (P-8) with a solid content of 20% by weight, except that 34.75g was used. was prepared.
  • the Na O content and NH content of the aqueous dispersion of silica-based fine particles are They were 0.9 ppm and 800 ppm, respectively, for the force type fine particles.
  • a substrate with a transparent coating (A-8) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica-based fine particles (P-8) was used instead of an alcohol dispersion of silica-based fine particles (P-1). ) was obtained.
  • a substrate with a transparent coating (B-8) was prepared in the same manner as in Example 1 except that an alcohol dispersion of silica-based fine particles (P-8) was used instead of an alcohol dispersion of silica-based fine particles (P-1). ) was obtained.
  • step (a) of Example 2 a 0.76 wt% sodium silicate aqueous solution as SiO 900
  • Silica fine particles with a solid content of 20% by weight except that 50% and 400g of sodium sulfate with a concentration of 2.0% by weight were used instead of 50 and 400g of sodium sulfate with a concentration of 0.5% by weight (P- The alcohol dispersion of 9) was prepared.
  • the Na O content and NH content of the aqueous dispersion of silica-based fine particles were 1 ppm and 800 ppm per silica-based fine particle, respectively.
  • a substrate with a transparent coating (A-9) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica-based fine particles (P-9) was used instead of an alcohol dispersion of silica-based fine particles (P-1). ) was obtained.
  • a substrate with a transparent coating (B-9) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica-based fine particles (P-9) was used instead of an alcohol dispersion of silica-based fine particles (P-1). ) was obtained.
  • a substrate with a transparent coating was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica-based fine particles (P-10) was used instead of the alcohol dispersion of silica-based fine particles (P-1). )
  • a substrate with a transparent coating (B-10) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica-based fine particles (P-10) was used instead of an alcohol dispersion of silica-based fine particles (P-1). )
  • Example 1 an aqueous dispersion of silica-based fine particles (P-1-2) having a solid concentration of 20% by weight was similarly treated except that hydrothermal treatment was not performed. An alcohol dispersion of silica-based fine particles (P-11) was prepared.
  • a substrate with a transparent coating (A-11) was prepared in the same manner as in Example 1 except that an alcohol dispersion of silica-based fine particles (P-11) was used instead of an alcohol dispersion of silica-based fine particles (P-1). )
  • a substrate with a transparent coating (B-11) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica-based fine particles (P-11) was used instead of an alcohol dispersion of silica-based fine particles (P-1). )
  • Example 2 an aqueous dispersion of silica-based fine particles (P-2-2) having a solid content concentration of 20% by weight was similarly treated except that hydrothermal treatment was not performed.
  • Silica An alcohol dispersion of the system fine particles (P-12) was prepared.
  • Example 1 a substrate with a transparent coating (A-12) was used in the same manner except that the alcohol dispersion of silica-based fine particles (P-12) was used instead of the alcohol dispersion of silica-based fine particles (P-1). )
  • Example 1 a substrate with a transparent coating (B-12) was used in the same manner except that an alcohol dispersion of silica-based fine particles (P-12) was used instead of an alcohol dispersion of silica-based fine particles (P-1). )
  • Example 11 silica-based fine particles having a solid concentration of 20% by weight (except for using 0.5% by weight of sodium sulfate 50,400 g instead of 0.5% by weight of potassium nitrate 30, OOOg) An alcohol dispersion of P-13) was prepared.
  • a substrate with a transparent coating (A-13) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica fine particles (P-13) was used instead of the alcohol dispersion of silica fine particles (P-1). )
  • a substrate with a transparent coating (B-13) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica fine particles (P-13) was used instead of the alcohol dispersion of silica fine particles (P-1). )
  • Example 11 a silica system having a solid content of 20% by weight was used in the same manner except that 53,200 g of 0.5% by weight ammonium sulfate was used instead of 50,400 g of 0.5% by weight sodium sulfate.
  • An alcohol dispersion of fine particles (P-14) was prepared.
  • a substrate with a transparent coating (A-14) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica fine particles (P-14) was used instead of the alcohol dispersion of silica fine particles (Pl). Obtained.
  • a substrate with a transparent coating (B-14) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica-based fine particles (P-14) was used instead of an alcohol dispersion of silica-based fine particles (P-1). )
  • Example 11 a silica system having a solid content of 20% by weight was used in the same manner except that 50,400 g of sodium sulfate having a concentration of 0.5% by weight was replaced by 41,100 g of ammonium nitrate having a concentration of 0.5% by weight.
  • An alcohol dispersion of fine particles (P-15) was prepared.
  • a substrate with a transparent coating was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica-based fine particles (P-15) was used instead of an alcohol dispersion of silica-based fine particles (P-1). )
  • a substrate with a transparent coating (B-15) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica-based fine particles (P-15) was used instead of an alcohol dispersion of silica-based fine particles (P-1). )
  • Example 11 Echirushirike one HSiO concentration: 28 wt%) 104 vinyl instead of ⁇
  • Rusilane manufactured by Shin-Etsu Chemical Co., Ltd .: KBE-1003, concentration 62.7% by weight
  • an alcohol dispersion of silica-based fine particles (P-16) with a solid concentration of 20% by weight was prepared in the same manner. did.
  • Example 1 silica-based fine particles (P-1) were replaced by silica-based fine particles instead of the alcohol dispersion.
  • a substrate with a transparent coating (A-16) was obtained in the same manner except that the alcohol dispersion of particles (P-16) was used.
  • a substrate with a transparent coating (B-16) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica-based fine particles (P-16) was used instead of an alcohol dispersion of silica-based fine particles (P-1). )
  • An alcohol dispersion of silica-based fine particles (P-17) having a solid concentration of 20 wt% was prepared in the same manner except that 34.3 g of xysilane (Shin-Etsu Chemical Co., Ltd .: KMB_403, concentration 84.9 wt%) was used.
  • a substrate with a transparent coating (A-17) was prepared in the same manner as in Example 1 except that the alcohol dispersion of silica fine particles (P-17) was used instead of the alcohol dispersion of silica fine particles (P-1). )
  • a substrate with a transparent coating (B-17) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica fine particles (P-17) was used instead of the alcohol dispersion of silica fine particles (P-1). )
  • Example 11 Echirushirike one HSiO concentration: 28 wt%) 104 fluoride instead of ⁇
  • Alcohol-based alkylsilane (Shin-Etsu Chemical Co., Ltd .: KMB-7083, concentration 83.8% by weight) Alcohol dispersion of silica-based fine particles (P-18) with a solid content of 20% by weight, except that 34.75g was used. A liquid was prepared.
  • Example 1 silica-based fine particles (P-1) were replaced by silica-based fine particles instead of the alcohol dispersion.
  • a substrate with a transparent coating (A-18) was obtained in the same manner except that the alcohol dispersion of particles (P-18) was used.
  • a substrate with a transparent coating (B-18) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica-based fine particles (P-18) was used instead of an alcohol dispersion of silica-based fine particles (P-1). )
  • step (a) of Example 11 a 76% by weight aqueous sodium silicate solution as SiO 90
  • a substrate with a transparent coating (A-19) was prepared in the same manner as in Example 1, except that the alcohol dispersion of silica fine particles (P-19) was used instead of the alcohol dispersion of silica fine particles (P-1). )
  • a substrate with a transparent coating (B-19) was prepared in the same manner as in Example 1, except that an alcohol dispersion of silica-based fine particles (P-19) was used instead of an alcohol dispersion of silica-based fine particles (P-1). )
  • Silica sol (Catalyst Kasei Kogyo Co., Ltd .: SI-45P, average particle size 45 nm, SiO concentration: 20% by weight) is used as silica-based fine particles, and the dispersion medium is replaced with ethanol by an ultrafiltration membrane.
  • silica-based fine particles RP-1
  • Na O content and NH content of silica sol are 20500 per silica particle, respectively.
  • Example 1 Observation of moon grass ⁇ t (RA-l)
  • a substrate with a transparent coating (RA-1) was prepared in the same manner except that an alcohol dispersion of silica fine particles (RP-1) was used instead of the alcohol dispersion of silica fine particles (Pl). Obtained.
  • Example 1 a substrate with a transparent coating (RB-1) was used in the same manner except that an alcohol dispersion of silica fine particles (RP-1) was used instead of the alcohol dispersion of silica fine particles (P-1). )
  • the average particle diameter of the silica-based fine particles was measured and found to be about 5 nm and the refractive index was 1.43. Further, when a transmission electron micrograph (TEM) was taken and observed, most were fine particles, and there were almost no hollow particles.
  • TEM transmission electron micrograph
  • An alcohol dispersion of silica-based fine particles (RP-3) having a solid content of 20 wt% was prepared in the same manner except that 0.5 wt% sodium aluminate aqueous solution was used as Al 2 O 3.
  • the Na 2 O content and NH content of the aqueous dispersion of silica-based fine particles (RP-1-1) were less than 1200 ppm and lO ppm, respectively, per silica-based fine particle.
  • Example 1 a substrate with a transparent coating (RA-3) was similarly used except that an alcohol dispersion of silica fine particles (RP-3) was used instead of the alcohol dispersion of silica fine particles (P-1). )
  • Example 1 a substrate with a transparent coating (RB-3) was used in the same manner except that an alcohol dispersion of silica fine particles (RP-3) was used instead of the alcohol dispersion of silica fine particles (P-1). )

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

 低屈折率のシリカ系微粒子を得るために、外殻内部に空洞を有する中空で球状のシリカ系微粒子とする。珪酸塩の水溶液および/または酸性珪酸液と、アルカリ可溶の無機化合物水溶液とをアルカリ水溶液中に同時に添加して複合酸化物微粒子分散液を調製する際に、電解質塩を電解質塩のモル数(ME)とSiO2 のモル数(MS)との比(ME/MS)が0.1~10の範囲となるように添加した上で粒子成長させ、次いで、前記複合酸化物微粒子分散液に、必要に応じてさらに電解質塩を加えた後、酸を加えて前記複合酸化物微粒子を構成する珪素以外の元素の少なくとも一部を除去することによりシリカ系微粒子を製造する。

Description

明 細 書
シリカ系微粒子の製造方法、被膜形成用塗料および被膜付基材 技術分野
[0001] 本発明は、内部に空洞を有するシリカ系微粒子およびその製造方法と、該シリカ系 微粒子を含む被膜形成用塗料と、該シリカ系微粒子を含む被膜が基材表面上に形 成された被膜付基材に関するものである。
背景技術
[0002] 従来、粒径が 0. 1— 300 / m程度の中空シリカ粒子は公知である(特許文献 1、特 許文献 2など参照)。また、珪酸アルカリ金属水溶液から活性シリカをシリカ以外の材 料からなるコア上に沈殿させ、該材料をシリカシェルを破壊させることなく除去するこ とによって、稠密なシリカシェルからなる中空粒子を製造する方法が公知である(特許 文献 3など参照)。
さらに、外周部が殻、中心部が中空で、殻は外側が緻密で内側ほど粗な濃度傾斜 構造をもったコア 'シェル構造であるミクロンサイズの球状シリカ粒子が公知である(特 許文献 4など参照)。
[0003] また、本願出願人は先に、多孔性の無機酸化物微粒子の表面をシリカ等で完全に 被覆することにより、低屈折率のナノメーターサイズの複合酸化物微粒子が得られる ことを提案すると共に(特許文献 5参照)、さらに、シリカとシリカ以外の無機酸化物か らなる複合酸化物の核粒子にシリカ被覆層を形成し、ついでシリカ以外の無機酸化 物を除去し、必要に応じてシリカを被覆することによって、内部に空洞を有する低屈 折率のナノメーターサイズのシリカ系微粒子が得られることを提案してレ、る(特許文献
6参照)。
し力、しながら、上記本願出願人の提案に係る粒子では、粒子の使用目的および用 途によっては充分な低屈折率効果が得られない場合があった。また、特許文献 6記 載の製造方法では、前記シリカ以外の無機酸化物の除去に先立ってシリカ被覆層を 形成するなど、製造工程が複雑となり、再現性や生産性の点が隘路となっていた。 さらに、前記した従来の微粒子では被膜付基材の製造に用いる被膜形成用塗料の 安定性が不充分で、該被膜形成用塗料を用いて得られる被膜は厚さが不均一であ つたり膜強度が不充分となることがあった。
[0004] 特許文献 1 :特開平 6— 330606号公報
特許文献 2 :特開平 7— 013137号公報
特許文献 3:特表 2000— 500113号公報
特許文献 4 :特開平 11一 029318号公報
特許文献 5:特開平 7— 133105号公報
特許文献 6 :特開 2001— 233611号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、前記特許文献 6記載の発明に基づきこれを発展させたものであり、低屈 折率のシリカ系微粒子を得ることを目的とするものであって、多孔質の複合酸化物粒 子(一次粒子)を、電解質塩の存在下で粒子成長させ、ついで電解質塩の存在下で シリカ以外の無機酸化物を除去することにより、外殻内部に空洞を有する中空で球 状のシリカ系微粒子の製造方法を提供することを目的としている。
また、本発明は前記中空で球状のシリカ系微粒子と被膜形成用マトリックスとを含 有し、安定性、膜形成性等に優れた被膜形成用塗料を提供することを目的とするも のである。
また、本発明は前記中空で球状のシリカ系微粒子を含有する被膜を基材の表面に 形成して、低屈折率で、樹脂等との密着性、強度、反射防止能等に優れた被膜付き の基材を提供することを目的とするものである。
課題を解決するための手段
[0006] 本発明に係るシリカ系微粒子の製造方法は、 下記工程 (a)および工程 (b)からな る。
(a)珪酸塩の水溶液および/または酸性珪酸液と、アルカリ可溶の無機化合物水溶 液とをアルカリ水溶液中に、または、必要に応じて種粒子が分散したアルカリ水溶液 中に同時に添カ卩して、シリカを SiOで表し、シリカ以外の無機酸化物を MOで表し
2 X たときのモル比 M〇 /SiO力 SO.3— 1.0の範囲にある複合酸化物微粒子分散液を 調製する際に、複合酸化物微粒子の平均粒子径が 5— 50nmになった時点で電解 質塩を電解質塩のモル数(M )と SiOのモル数(M )との比(M /M )が 0.1— 10
E 2 S E S
の範囲で添加する工程
(b)前記複合酸化物微粒子分散液に、必要に応じてさらに電解質塩を加えた後、酸 を加えて前記複合酸化物微粒子を構成する珪素以外の元素の少なくとも一部を除 去してシリカ系微粒子分散液とする工程
[0007] 工程 (b)で得たシリカ系微粒子分散液について下記工程(d)を実施することが好ま しい。
(d)必要に応じて洗浄した後、シリカ系微粒子分散液を常温一 300°Cの範囲で熟成 する工程
工程 (d)で得たシリカ系微粒子分散液について下記工程(e)を実施することが好ま しい。
(e)必要に応じて洗浄した後、 50— 300°Cの範囲で水熱処理する工程
工程 )は複数回繰り返すことが好ましい。
[0008] 工程 (b)の後で、または、工程 (b)と工程(d)の間で下記工程(c)を実施することが 好ましい。
(c)前記工程 (b)で得られたシリカ系微粒子分散液に、アルカリ水溶液と、下記化学 式(1)で表される有機珪素化合物および/またはその部分加水分解物とを添加し、 該微粒子にシリカ被覆層を形成する工程
R SiX · · · (1)
n (4-n)
〔但し、 R:炭素数 1一 10の非置換または置換炭化水素基、アクリル基、エポキシ基、 メタクリル基、アミノ基、 CF基、 X:炭素数 1
2 一 4のアルコキシ基、シラノール基、ハロ ゲンまたは水素、 n: 0 3の整数〕
[0009] 前記アルカリ水溶液または、必要に応じて種粒子が分散したアルカリ水溶液の pH は、 10以上であることが好ましい。
前記シリカ以外の無機酸化物はアルミナであることが好ましい。
前記で得られたシリカ系微粒子分散液を洗浄し、乾燥し、必要に応じて焼成するこ とが好ましい。 前記シリカ系微粒子の平均粒子径は 5nm— 500nmの範囲にあることが好ましレ、。 前記シリカ系微粒子または前記シリカ系微粒子分散液におけるアルカリ金属酸化 物の含有量は、シリカ系微粒子当たり M 0 (M :アルカリ金属元素)として 5ppm以下
2
であることが好ましい。
前記シリカ系微粒子または前記シリカ系微粒子分散液におけるアンモニア及び/ 又はアンモニゥムイオンの含有量は、シリカ系微粒子当たり NHとして 1500ppm以
3
下であることが好ましい。
[0010] 本発明に係る外殻内部に空洞を有するシリカ系微粒子は、平均粒子径が 5 500 nmの範囲にあり、屈折率が 1. 15- 1. 38の範囲にあり、シリカを SiOで表し、シリカ
2
以外の無機酸化物を MOで表したときのモル比 MO /SiO力 0001— 0.2の範
X X 2
囲にあり、アルカリ金属酸化物の含有量が M 0 (M :アルカリ金属元素)として 5ppm
2
以下であることを特徴とするものである。前記シリカ系微粒子におけるアンモニアおよ び/またはアンモニゥムイオンの含有量は NHとして 1500ppm以下であることが好
3
ましい。
本発明に係る被膜形成用塗料は、前記シリカ系微粒子または前記製造方法によつ て得られたシリカ系微粒子と、被膜形成用マトリックスとを含んでなるものである。 本発明に係る被膜付基材は、前記シリカ系微粒子または前記製造方法によって得 られたシリカ系微粒子と被膜形成用マトリックスとを含んでなる被膜が、単独でまたは 他の被膜とともに基材表面上に形成されたものである。
発明の効果
[0011] 本発明方法によれば、電解質塩の存在下で複合酸化物粒子(一次粒子)を粒子成 長させるので、後続する脱元素工程においても当該複合酸化物微粒子が球状を維 持して、破壊されることがなぐ極めて簡易な製造工程により非常に低屈折率のシリカ 系微粒子を得ることができる。また、シリカ系微粒子の製造再現性や生産性の点でも 優れている。
さらに、脱元素工程あるいはシリカ被覆層を形成して熟成した後、高温で水熱処理 するのでアルカリ金属酸化物とアンモニア等が低減され、得られるシリカ系微粒子を 配合した被膜形成用塗料は安定性が高ぐ得られる被膜は強度に優れている。 本発明の被膜形成用塗料は、配合するシリカ系微粒子あるいはシリカ系微粒子分 散液中のアルカリ金属酸化物とアンモニアの含有量が少ないので、安定性に優れ、 これを用いて得られる被膜は強度に優れている。
また、本発明の被膜付基材は、低屈折率で、樹脂等との密着性、強度、透明性、反 射防止能等に優れている。
図面の簡単な説明
[0012] [図 1]実施例 12で得られたシリカ系微粒子の透過型電子顕微鏡写真 (TEM)である 発明を実施するための最良の形態
[0013] 以下、本発明の好適な実施形態を説明する。
〔シリカ系微粒子の製造方法〕
本発明に係るシリカ系微粒子の製造方法は下記工程(a)および工程 (b)からなり、 これらの工程は必須工程である。また、これらの工程に加えて、下記の工程 (c)、 (d) または(e)を含むこともある。即ち、本発明に係るシリカ系微粒子の製造方法は、 (a) + (b)と、 (a) + (b) + (c)と、(a) + (b) + (d)と、(a) + (b) + (c) + (d)と、(a) + (b) + (d) + (e)と、(a) + (b) + (c) + (d) + (e)と、の各工程からなる。以下、各工程を 説明する。
[0014] (a)珪酸塩の水溶液および/または酸性珪酸液と、アルカリ可溶の無機化合物水溶 液とをアルカリ水溶液中に、または、必要に応じて種粒子が分散したアルカリ水溶液 中に同時に添加して、シリカを SiOで表し、シリカ以外の無機酸化物を MOで表し
2 X たときのモル比 MO /SiO力 3— 1.0の範囲にある複合酸化物微粒子分散液を
X 2
調製する際に、複合酸化物微粒子の平均粒子径が 5— 300nmになった時点で電解 質塩を電解質塩のモル数(M )と SiOのモル数(M )との比(M ) / (M )が 0.1— 1
E 2 S E S
0の範囲で添加する工程
(b)前記複合酸化物微粒子分散液に、必要に応じてさらに電解質塩を加えた後、酸 をカ卩えて前記複合酸化物微粒子を構成する珪素以外の元素の少なくとも一部を除 去してシリカ系微粒子分散液とする工程
(c)前記工程 (b)で得られたシリカ系微粒子分散液に、アルカリ水溶液と、下記化学 式(1)で表される有機珪素化合物および/またはその部分加水分解物とを添加し、 該微粒子にシリカ被覆層を形成する工程
R SiX · · · (1)
〔但し、 R:炭素数 1一 10の非置換または置換炭化水素基、アクリル基、エポキシ基、 メタクリル基、アミノ基、 CF基、 X:炭素数 1一 4のアルコキシ基、シラノール基、ハロ ゲンまたは水素、 n: 0 3の整数〕
(d)必要に応じて洗浄した後、シリカ系微粒子分散液を常温一 300°Cの範囲で熟成 する工程
(e)必要に応じて洗浄した後、 50— 300°Cの範囲で水熱処理する工程
[0015] 工程(a)
珪酸塩としては、アルカリ金属珪酸塩、アンモニゥム珪酸塩および有機塩基の珪酸 塩から選ばれる 1種または 2種以上の珪酸塩が好ましく用いられる。アル力リ金属珪 酸塩としては、珪酸ナトリウム (水ガラス)ゃ珪酸カリウム力 有機塩基としては、テトラ ェチルアンモニゥム塩などの第 4級アンモニゥム塩、モノエタノールァミン、ジエタノー ノレアミン、トリエタノールァミンなどのアミン類を挙げることができ、アンモニゥムの珪酸 塩または有機塩基の珪酸塩には、珪酸液にアンモニア、第 4級アンモニゥム水酸化 物、ァミン化合物などを添加したアルカリ性溶液も含まれる。
酸性珪酸液としては、珪酸アルカリ水溶液を陽イオン交換樹脂で処理すること等に よって、アルカリを除去して得られる珪酸液を用いることができ、特に、 pH2— pH4、 SiO濃度が約 7重量%以下の酸性珪酸液が好ましレ、。
[0016] 無機酸化物としては、 Al O、 B O、 TiO、 ZrO、 SnO、 Ce O、 P O、 Sb O、 M o〇、 Zn〇、 WO等の 1種または 2種以上を挙げることができる。 2種以上の無機酸 化物として、 Ti〇 -Al〇、 TiO -ZrO等を例示することができる。
このような無機酸化物の原料として、アルカリ可溶の無機化合物を用いることが好ま しぐ前記した無機酸化物を構成する金属または非金属のォキソ酸のアルカリ金属塩 またはアルカリ土類金属塩、アンモニゥム塩、第 4級アンモニゥム塩を挙げることがで き、より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジノレコニルアンモ 二ゥム、アンチモン酸カリウム、錫酸カリウム、アルミノ珪酸ナトリウム、モリブデン酸ナ トリウム、硝酸セリウムアンモニゥム、燐酸ナトリウム等が好適である。
[0017] 複合酸化物微粒子分散液を調製するためには、予め、前記無機化合物のアルカリ 水溶液を個別に調製するか、または、混合水溶液を調製しておき、この水溶液を目 的とするシリカとシリカ以外の無機酸化物の複合割合に応じて、アルカリ水溶液中に 、好ましくは pHIO以上のアルカリ水溶液中に攪拌しながら徐々に添加する。
アルカリ水溶液中に添加するシリカ原料と無機化合物の添加割合は、シリカ成分を SiO で表し、シリカ以外の無機化合物を M〇で表したときのモル比 M〇 /SiO力 SO
. 3- 1. 0、特に、 0. 35— 0. 85の範囲となるようにすることカ^子ましレ、。 MO /SiO が 0. 3未満では、最終的に得られるシリカ系微粒子の空洞容積が十分大きくならず、 他方、 MO /SiOが 1. 0を越えると、球状の複合酸化物微粒子を得ることが困難と
X 2
なり、この結果、得られる中空微粒子中の空洞容積の割合が低下する。
モル比 MO /SiOが 0. 3-1. 0の範囲にあれば、複合酸化物微粒子の構造は主 として、珪素と珪素以外の元素が酸素を介在して交互に結合した構造となる。即ち、 珪素原子の 4つの結合手に酸素原子が結合し、この酸素原子にはシリカ以外の元素 Mが結合した構造が多く生成し、後述の工程 (b)でシリカ以外の元素 Mを除去する 際、元素 Mに随伴させて珪素原子も珪酸モノマーやオリゴマーとして除去することが できるようになる。
[0018] 本発明の製造方法では、複合酸化物微粒子分散液を調製する際に種粒子の分散 液を出発原料とすることも可能である。この場合には、種粒子として、 Si〇、 Al O、 T i〇、 ZrO、 SnOおよび Ce〇等の無機酸化物またはこれらの複合酸化物、例えば、
SiO -Al O、 Ti〇 -Al〇、 Ti〇 -ZrO、 SiO—TiO、 SiO—TiO -Al O等の微 粒子が用いられ、通常、これらのゾノレを用いることができる。このような種粒子の分散 液は、従来公知の方法によって調製することができる。例えば、上記無機酸化物に 対応する金属塩、金属塩の混合物あるいは金属アルコキシド等に酸またはアルカリ を添加して加水分解し、必要に応じて熟成することによって得ることができる。
この種粒子分散アルカリ水溶液中に、好ましくは pHIO以上に調整した種粒子分散 アルカリ水溶液中に前記化合物の水溶液を、上記したアルカリ水溶液中に添加する 方法と同様にして、攪拌しながら添加する。このように、種粒子を種として複合酸化物 微粒子を成長させると、成長粒子の粒径コントロールが容易であり、粒度の揃ったも のを得ることができる。種粒子分散液中に添加するシリカ原料および無機酸化物の 添加割合は、前記したアルカリ水溶液に添加する場合と同じ範囲とする。
上記したシリカ原料および無機酸化物原料はアルカリ側で高い溶解度をもっている 。し力、しながら、この溶解度の高レ、 pH領域で両者を混合すると、珪酸イオンおよびァ ノレミン酸イオンなどのォキソ酸イオンの溶解度が低下し、これらの複合物が析出して コロイド粒子に成長し、あるいは、種粒子上に析出して粒子成長が起こる。
上記複合酸化物微粒子分散液の調製に際し、シリカ原料として後述する化学式(1
)に示す有機珪素化合物および zまたはその加水分解物をアルカリ水溶液中に添 加しても良い。
該有機珪素化合物としては、具体的に、テトラメトキシシラン、テトラエトキシシラン、 テトライソプロポキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フエ二 ルトリメトキシシラン、ジフエ二ルジメトキシシラン、メチルトリエトキシシラン、ジメチルジ エトキシシラン、フエニルトリエトキシシラン、ジフエ二ルジェトキシシラン、イソブチルト リメトキシシラン、ビニルトリメトキシシラン、ビュルトリエトキシシラン、ビニルトリス(j3メ トキシエトキシ)シラン、 3, 3, 3-トリフルォロプロピルトリメトキシシラン、メチルー 3, 3, 3—トリフルォロプロピルジメトキシシラン、 β -(3, 4エポキシシクロへキシル)ェチルト リメトキシシラン、 γ -グリシドキシトリプロピルトリメトキシシラン、 γ -グリシドキシプロピ ルメチルジェトキシシラン、 γ—グリシドキシプロピルトリエトキシシラン、 γ—メタクリロ メタクリロキシプロピルメチルジェトキシシラン、 γ—メタクリロキシプロピルトリエトキシ シラン、 N_ j3 (アミノエチル) γ—アミノプロピルメチルジメトキシシラン、 Ν—/3 (ァミノ ェチル) γ—ァミノプロピルトリメトキシシラン、 N— j3 (アミノエチル) γ—ァミノプロピノレト リエトキシシラン、 γ—アミノプロピルトリメトキシシラン、 γ—アミノプロピルトリエトキシシ キシシラン、トリメチルシラノール、メチルトリクロロシラン、メチルジクロロシラン、ジメチ ノレジクロロシラン、トリメチルクロロシラン、フエニルトリクロロシラン、ジフエニルジクロ口 シラン、ビュルトリクロルシラン、トリメチルブロモシラン、ジェチルシラン等が挙げられ る。
[0020] 上記有機珪素化合物で nが 1一 3の化合物は親水性に乏しいので、予め加水分解 しておくことにより、反応系に均一に混合できるようにすることが好ましい。加水分解に は、これら有機珪素化合物の加水分解法として周知の方法を採用することができる。 加水分解触媒として、アルカリ金属の水酸化物や、アンモニア水、ァミン等の塩基性 のものを用いた場合、加水分解後これらの塩基性触媒を除去して、酸性溶液にして 用レ、ることもできる。また、有機酸や無機酸などの酸性触媒を用いて加水分解物を調 製した場合、加水分解後、イオン交換等によって酸性触媒を除去することが好ましい 。なお、得られた有機珪素化合物の加水分解物は、水溶液の形態で使用することが 望ましレ、。ここで水溶液とは加水分解物がゲルとして白濁した状態になく透明性を有 している状態を意味する。
[0021] 本発明では、上記工程(a)において、複合酸化物微粒子の平均粒子径が概ね 5 300nmになった時点(このときの複合酸化物微粒子を一次粒子ということがある)で 電解質塩を電解質塩のモル数(M )と SiO のモル数(M )との比(M /M )が 0.1 一 10、好ましくは 0.2— 8の範囲で添加する。
電解質塩としては、塩化ナトリウム、塩ィ匕カリウム、硝酸ナトリウム、硝酸カリウム、硫 酸ナトリウム、硫酸カリウム、硝酸アンモニゥム、硫酸アンモニゥム、塩化マグネシウム 、硝酸マグネシウムなどの水溶性の電解質塩が挙げられる。
なお、電解質塩はこの時点で全量を添加してもよぐアルカリ金属珪酸塩やシリカ 以外の無機化合物を添加して複合酸化物微粒子の粒子成長を行いながら連続的に あるいは断続的に添加してもよい。
[0022] 電解質塩の添加量は、複合酸化物微粒子分散液の濃度にもよるが、前記モル比( M ZM )が 0.1未満の場合は、電解質塩をカ卩えた効果が不充分となり、工程 (b)で 酸をカ卩えて複合酸化物微粒子を構成する珪素以外の元素の少なくとも一部を除去 する際に複合酸化物微粒子が球状を維持できず破壊され、内部に空洞を有するシリ 力系微粒子を得ることが困難となることがある。このような電解質塩をカ卩える効果につ レ、てその理由は明らかではないが、粒子成長した複合酸化物微粒子の表面にシリカ が多くなり、酸に不溶性のシリカが複合酸化物微粒子の保護膜的な作用をしているも のと考えられる。
[0023] 前記モル比(M /M )が 10を越えても、前記電解質を添加する効果が向上するこ
E S
ともなぐ新たな微粒子が生成するなど、経済性が低下する。
また、電解質塩を添加する際の一次粒子の平均粒子径が 5nm未満の場合は、新 たな微粒子が生成して一次粒子の選択的な粒子成長が起きず、複合酸化物微粒子 の粒子径分布が不均一となることがある。電解質塩を添加する際の一次粒子の平均 粒子径が 300nmを越えると、工程 (b)での珪素以外の元素の除去に時間を要したり 、困難となることがある。このようにして得られる複合酸化物微粒子は、最終的に得ら れるシリカ系微粒子と同程度の、平均粒子径が 5 500nmの範囲にある。
[0024] 工程 (b)
工程 (b)では前記複合酸化物微粒子から、該複合酸化物微粒子を構成する珪素 以外の元素の一部または全部を除去することにより内部に空洞を有する中空球状の シリカ系微粒子を製造する。
元素の除去に際しては、複合酸化物微粒子分散液に、電解質塩のモル数 (M )と
E
SiOのモル数(M )との比(M /M )が 0.1— 10、好ましくは 0·2— 8の範囲となるよ
2 S E S
うに、必要に応じて再び電解質塩を添加した後、例えば、鉱酸ゃ有機酸を添加する ことによって溶解除去したり、陽イオン交換樹脂と接触させてイオン交換除去したり、 あるいは、これらの方法を組み合わせることによって除去する。
[0025] このとき、複合酸化物微粒子分散液中の複合酸化物微粒子の濃度は処理温度に よっても異なる力 酸化物に換算して 0. 1— 50重量%、特に 0. 5— 25重量%の範 囲にあることが好ましい。複合酸化物微粒子の濃度が 0. 1重量%未満では、シリカ の溶解量が多くなり、複合酸化物微粒子の形状を維持できないことがあり、できたとし ても低濃度のために処理効率が低下する。また、複合酸化物微粒子の濃度が 50重 量%を越えると、粒子の分散性が不充分となり、珪素以外の元素の含有量が多い複 合酸化物微粒子では均一に、あるいは効率的に少ない回数で除去できないことがあ る。
上記元素の除去は、得られるシリカ系微粒子の MO /SiO 、 0. 0001-0. 2、
X 2
特に、 0. 0001— 0. 1となるまで行うこと力 s好ましレ、。 [0026] 工程(c)
前記化学式(1)に示す有機珪素化合物としては、前記工程 (a)と同様の有機珪素 化合物を用いることができ、化学式(1)において、 n=0の有機珪素化合物を用いる 場合はそのまま用いることができるが、 n= 1— 3の有機珪素化合物を用いる場合は 前記工程 (a)と同様の有機珪素化合物の部分加水分解物を用いることが好ましい。
[0027] このようなシリカ被覆層は緻密であるために、内部が屈折率の低い気相あるいは液 層に保たれ、被膜の形成等に用いる場合、屈折率の高い物質、例えば塗料用樹脂 等が内部に進入することがなぐ低屈折率効果の高い被膜を形成することができる。 また、上記において、シリカ被覆層の形成に n= l— 3の有機珪素化合物を用いる 場合は有機溶媒への分散性が良ぐ樹脂との親和性の高いシリカ系微粒子分散液 を得ることができる。さらに、シランカップリング剤等で表面処理して用いることもできる 、有機溶媒への分散性、樹脂との親和性等に優れているため、このような処理を特 別に必要とすることもない。
[0028] また、シリカ被覆層の形成に含フッ素有機珪素化合物を用いる場合は、 F原子を含 む被覆層が形成されるために、得られる粒子はより低屈折率となると共に有機溶媒へ の分散性が良ぐ樹脂との親和性の高いシリカ系微粒子分散液を得ることができる。 このような含フッ素有機珪素化合物としては、 3, 3, 3_トリフルォロプロピルトリメトキ シシラン、メチルー 3, 3, 3_トリフルォロプロピルジメトキシシラン、ヘプタデカフルォロ
フルォロォクチルトリメトキシシラン等が挙げられる。また、下記〔化 2〕として化学式(2 )で表される化合物、下記〔化 3〕として化学式 (3)で表される化合物も同様の効果を 有することから好適に用いることができる。
[0029] [化 2]
R3 R5
I I
R'O-Si- (X) -Si-OR2 · · · (2)
I I R4 R6
[0030] [化 3]
R3
I
I^O—Si— (X)— R7 · · · (3)
I
R4
[0031] 上記化学式(2)と(3)中、 R1と R2および R1と R7とは互いに同一であっても異なって いてもよぐアルキル基、ハロゲン化アルキル基、ァリーノレ基、アルキルァリール基、 ァリーノレァノレキノレ基、アルケニル基、水素原子またはハロゲン原子を示す。
R3— R6は互いに同一であっても異なっていてもよぐアルコキシ基、アルキル基、ハ ロゲン化アルキル基、ァリーノレ基、ァノレキノレアリーノレ基、ァリーノレァノレキノレ基、ァルケ ニル基、水素原子またはハロゲン原子を示す。
Xは、 - (C H F )一を示し、 aは 2以上の偶数である整数、 bと cは 0以上の偶数であ a b c
る整数とする。
例えば、(CH O) SiC H C F C H Si (CH O)で表されるメトキシシランは上記
3 3 2 4 6 12 2 4 3 3
化学式(2)で表される化合物の 1つである。
[0032] 工程(d)
工程 (d)では必要に応じて洗浄した後、シリカ系微粒子分散液を常温一 300°Cの 範囲で熟成する。
元素を除去した分散液は、必要に応じて限外濾過等の公知の洗浄方法により洗浄 することができ、洗浄によって溶解したケィ素以外の元素の一部を除去する。この場 合、予め分散液中のアルカリ金属イオン、アルカリ土類金属イオンおよびアンモニゥ ムイオン等の一部を除去した後に限外濾過すれば、分散安定性の高いシリカ系微粒 子が分散したゾノレが得られる。
また、元素を除去した分散液は、陽イオン交換樹脂および Zまたは陰イオン交換樹 脂と接触させることによつても溶解したケィ素以外の元素の一部あるいはアルカリ金 属イオン、アルカリ土類金属イオンおよびアンモニゥムイオン等を除去することができ る。また、洗浄する際、加温して行うと効果的に洗浄することができる。
このように洗浄することによって、後述する水熱処理して得られるシリカ系微粒子中 のアルカリ金属酸化物、アンモニアの含有量を効果的に低減することができ、このた め、後述するシリカ系微粒子を用いて得られる被膜形成用塗料の安定性、膜形成等 が向上し、得られる被膜は強度に優れている。
ついで、常温一 300°C、好ましくは 50— 250°Cで通常 1一 24時間程度熟成する。 熟成を行うとシリカ被覆層が均一でより緻密になり、前述したように屈折率の高い物 質が粒子内部に進入することができなくなるため、低屈折率効果の高い被膜を形成 すること力 Sできる。
[0033] 工程 (e)
工程(e)では、必要に応じて洗浄した後、 50 300°Cの範囲で水熱処理する。 洗浄方法は工程 (d)と同様、従来公知の方法を採用することができる。 水熱処理温度が 50°C未満の場合は最終的に得られるシリカ系微粒子またはシリカ 系微粒子分散液中のアルカリ金属酸化物および/またはアンモニアの含有量を効 果的に低減することができず、被膜形成用塗料の安定性、膜形成等の向上効果が 不充分となり、得られる被膜の強度の向上も不充分となる。
水熱処理温度が 300°Cを超えても被膜形成用塗料の安定性、膜形成性、膜強度 等がさらに向上することもなぐ場合によってはシリカ系微粒子が凝集することがある なお、前記水熱処理温度が 150°C— 300°Cの範囲にあれば、シリカ系微粒子を用 レ、て得られる被膜は耐水性に優れ、被膜上に水滴が落ちた場合に拭き取りやすぐ 水滴が乾燥した場合にも水滴の跡形が残り難い等の効果が得られる。
[0034] 工程 (e)は複数回繰り返しても良レ、。工程 (e)を繰り返すことによって、得られるシリ 力系微粒子中のアルカリ金属酸化物および Zまたはアンモニア(アンモニゥムイオン を含む)の含有量を低減することができる。
このようにして得られたシリカ系微粒子は、平均粒子径が 5— 500nm、さらには 10 一 400nmの範囲にあることが好ましレ、。平均粒子径が 5nm未満では、充分な空洞 が得られず、低屈折率の効果が充分得られないことがある。平均粒子径が 500nmを 越えると、安定した分散液が得にくくなり、また、該微粒子を含有する塗膜の表面に 凹凸が生じたりヘーズが高くなることがある。なお、本発明のシリカ系微粒子の平均 粒子径は動的光散乱法によって求めることができる。
[0035] 前記シリカ系微粒子中のアルカリ金属酸化物の含有量は、 M〇(M :アルカリ金属 元素)として 5ppm以下、さらには 2ppm以下であることが好ましい。前記アルカリ金属 酸化物の含有量が 5ppmを超えると、シリカ系微粒子を配合した被膜形成用塗料の 安定性が不充分で、粘度が高くなり、膜形成性が低下し、得られる被膜の強度が不 充分であったり、膜厚が不均一となることがある。
また、前記シリカ系微粒子中のアンモニア(アンモニゥムイオンを含む)の含有量は 、 NHとして 1500ppm以下、さらには lOOOppm以下であることが好ましレ、。前記ァ ンモユアの含有量が 1500ppmを超えると、前記アルカリ金属酸化物の場合と同様に シリカ系微粒子を配合した被膜形成用塗料の安定性が不充分で、粘度が高くなり、 膜形成性が低下し、得られる被膜の強度が不充分であったり、膜厚が不均一となるこ とがある。
[0036] なお、本発明のシリカ系微粒子の製造方法では、得られたシリカ系微粒子分散液 を限外濾過膜、ロータリーエバポレーター等を用いて有機溶媒で置換することによつ て有機溶媒分散ゾルを得ることができる。
また、本発明のシリカ系微粒子の製造方法では、洗浄後、乾燥し、必要に応じて焼 成すること力 Sできる。
このようにして得られたシリカ系微粒子は、内部に空洞を有し、低屈折率となる。従 つて、該シリカ系微粒子を用いて形成される被膜は低屈折率となり、反射防止性能に 優れた被膜が得られる。
[0037] 本発明に係るシリカ系微粒子は、内部に空洞を有している。このため、通常シリカの 屈折率が 1.45であるのに対し、シリカ系微粒子の屈折率は、 1. 15-1. 38であった 。なお、空洞については、粒子断面の透過型電子顕微鏡写真 (TEM)を観察するこ とによって確認すること力できる。図 1に、実施例 12で得られたシリカ系微粒子の透 過型電子顕微鏡写真 (TEM)を示す。
[0038] 〔被膜形成用塗料〕 続いて、本発明に係る被膜形成用塗料について説明する。
本発明に係る被膜形成用塗料は、前記シリカ系微粒子と、被膜形成用マトリックスと 、必要に応じて配合される有機溶媒とからなつている。
被膜形成用マトリックスとは、基材の表面に被膜を形成し得る成分をいい、基材との 密着性や硬度、塗工性等の条件に適合する樹脂等から選択して用いることができ、 例えば、従来から用いられているポリエステル樹脂、アクリル樹脂、ウレタン樹脂、塩 化ビュル樹脂、エポキシ樹脂、メラミン樹脂、フッ素樹脂、シリコン樹脂、プチラーノレ 樹脂、フエノール樹脂、酢酸ビニル樹脂、紫外線硬化樹脂、電子線硬化樹脂、エマ ルジョン樹脂、水溶性樹脂、親水性樹脂、これら樹脂の混合物、さらにはこれら樹脂 の共重合体や変性体などの塗料用樹脂、または、前記アルコキシシラン等の加水分 解性有機珪素化合物およびこれらの部分加水分解物等が挙げられる。
[0039] マトリックスとして塗料用樹脂を用いる場合には、例えば、シリカ系微粒子分散液の 分散媒をアルコール等の有機溶媒で置換した有機溶媒分散ゾル、好ましくは前記有 機基を含む有機ケィ素化合物によりシリカ被覆層を形成したシリカ系微粒子を用いる ことができ、必要に応じて前記微粒子を公知のカップリング剤で処理した後、有機溶 媒に分散させた有機溶媒分散ゾルと塗料用樹脂とを適当な有機溶剤で希釈して、塗 布 ί夜とすることができる。
[0040] 一方、マトリックスとして加水分解性有機珪素化合物を用いる場合には、例えば、ァ ルコキシシランとアルコールの混合液に、水および触媒としての酸またはアルカリを 加えることにより、アルコキシシランの部分加水分解物を得、これに前記ゾルを混合し 、必要に応じて有機溶剤で希釈して、塗布液とすること力 Sできる。
[0041] 被膜形成用塗布液中のシリカ系微粒子とマトリックスの重量割合は、シリカ系微粒 子/マトリックス = 1Ζ99 9Z1の範囲が好ましい。重量比が 9Z1を越えると被膜 の強度ゃ基材との密着性が低下して実用性に欠ける一方、 1Z99未満では当該シリ 力系微粒子の添カ卩による被膜の低屈折率化、基材との密着性向上、被膜強度向上 等の効果が不充分となる。
[0042] 〔被膜付基材〕
本発明に係る被膜付基材は、前記シリカ系微粒子と被膜形成用マトリックスとを含 む被膜が単独でまたは他の被膜とともに基材表面上に形成されている。 当該基材は、ガラス、ポリカーボネート、アクリル樹脂、 PET、 TAC等のプラスチック シート、プラスチックフィルム、プラスチックレンズ、プラスチックパネル等の基材、陰極 線管、蛍光表示管、液晶表示板等の基材の表面に被膜を形成したものであり、用途 によって異なるが被膜が単独であるいは基材上に保護膜、ハードコート膜、平坦化膜
、高屈折率膜、絶縁膜、導電性樹脂膜、導電性金属微粒子膜、導電性金属酸化物 微粒子膜、その他必要に応じて用いるプライマー膜等と組み合わせて形成されてい る。なお、組み合わせて用いる場合、本発明の被膜が必ずしも最外表面に形成され ている必要はない。
このような被膜は、前記被膜形成用塗料をディップ法、スプレー法、スピナ一法、口 ールコート法などの周知の方法で基材に塗布し、乾燥し、更に必要に応じて、加熱あ るいは紫外線照射等により硬化して得ることができる。
[0043] 上記基材の表面に形成される被膜の屈折率は、シリカ系微粒子とマトリックス成分 等の混合比率および使用するマトリックスの屈折率によっても異なる力 1. 15-1. 4 2と低屈折率となる。なお、本発明のシリカ系微粒子自体の屈折率は、 1. 15— 1. 38 であった。これは、本発明のシリカ系微粒子が内部に空洞を有し、樹脂等のマトリック ス形成成分は粒子外部に止まり、シリカ系微粒子内部の空洞が保持されるからであ る。
[0044] さらに、上記した被膜付基材において、基材の屈折率が 1. 60以下の場合には、基 材表面に屈折率が 1. 60以上の被膜 (以下、中間被膜という。)を形成した上で、前 記本発明のシリカ系微粒子を含む被膜を形成することが推奨される。中間被膜の屈 折率が 1. 60以上であれば前記本発明のシリカ系微粒子を含む被膜の屈折率との 差が大きく反射防止性能に優れた被膜付基材が得られる。中間被膜の屈折率は、中 間被膜の屈折率を高めるために用いる金属酸化物微粒子の屈折率、金属酸化物微 粒子と樹脂等の混合比率および使用する樹脂の屈折率によって調整することができ る。
中間被膜の被膜形成用塗布液は、金属酸化物粒子と被膜形成用マトリックスとの 混合液であり、必要により有機溶媒が混合される。被膜形成用マトリックスとしては前 記本発明のシリカ系微粒子を含む被膜と同様のものを用いることができ、同一の被膜 形成用マトリックスを用いることにより、両被膜間の密着性に優れた被膜付基材が得 られる。
続いて、以下実施例を示して、本発明を更に具体的に説明する。
実施例 1
[0045] シリカ系微粒子 (P-1)の調奥
平均粒径 5nm、 Si〇濃度 20重量0 /0のシリカゾル 100gと純水 1900gの混合物を 8
0°Cに加温した。この反応母液の pHは 10. 5であり、同母液に Si〇として 1. 17重量
%の珪酸ナトリウム水溶液 9000gと A1〇として 0. 83重量0 /0のアルミン酸ナトリウム 水溶液 9000gとを同時に添加した。その間、反応液の温度を 80°Cに保持した。反応 液の pHは添カ卩直後、 12. 5に上昇し、その後、殆ど変化しなかった。添加終了後、 反応液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度 20重量%の Si〇 ·Α1
Ο一次粒子分散液を調製した。
[0046] この一次粒子分散液 500gに純水 1, 700gを加えて 98°Cに加温し、この温度を保 持しながら、濃度 0.5重量%の硫酸ナトリウム 50,400gを添加し、ついで SiOとして 濃度 1.17重量%の珪酸ナトリウム水溶液 3, OOOgと AI Oとしての濃度 0.5重量%の アルミン酸ナトリウム水溶液 9, OOOgを添加して複合酸化物微粒子 (1)の分散液を得た ついで、限外濾過膜で洗浄して固形分濃度 13重量%になった複合酸化物微粒子 (1)の分散液 500gに純水 l , 125gをカ卩え、さらに濃塩酸 (濃度 35.5重量%)を滴下し て pHl.Oとし、脱アルミニウム処理を行った。次いで、 pH3の塩酸水溶液 10Lと純水 5Lをカ卩えながら限外濾過膜で溶解したアルミニウム塩を分離 ·洗浄して固形分濃度 20重量%のシリカ系微粒子 (P-1-1)の水分散液を得た。このシリカ系微粒子 (P-1-1) の水分散液の Na O含有量および NH含有量はシリカ系微粒子当たり各々 ΙΟΟΟρρ m、 lOppm未満でめった。
[0047] つぎに、シリカ系微粒子 (P-1-1)分散液にアンモニア水を加えて分散液の pHを 10 . 5に調整し、ついで 150°Cにて 11時間熟成した後、常温に冷却し、陽イオン交換榭 脂(三菱化学 (株)製:ダイヤイオン SK1B) 400gを用いて 3時間イオン交換し、っレヽ で、陰イオン交換樹脂(三菱化学 (株)製:ダイヤイオン SA20A) 200gを用いて 3時 間イオン交換し、さらに陽イオン交換樹脂(三菱化学 (株)製:ダイヤイオン SK1B) 20 0gを用い、 80°Cで 3時間イオン交換して洗浄を行い、固形分濃度 20重量%のシリカ 系微粒子 (P-ト 2)の水分散液を得た。このとき、シリカ系微粒子 (P-1-2)の水分散液の Na O含有量および NH含有量はシリカ系微粒子当たり各々 6ppm、 1200ppmであ つた。
[0048] ついで、再び、シリカ系微粒子 (P-1-2)分散液を 150°Cにて 11時間水熱処理した後 、純水 5Lをカ卩えながら限外濾過膜で洗浄して固形分濃度 20重量%のシリカ系微粒 子 (P-ト 3)の水分散液を得た。このとき、シリカ系微粒子 (P-1-3)の水分散液の Na O 含有量および NH含有量はシリカ系微粒子当たり各々 0. 5ppm、 600ppmであった ついで限外濾過膜を用レ、て溶媒をエタノールに置換した固形分濃度 20重量%の シリカ系微粒子 (P-1)のアルコール分散液を調製した。
このシリカ系微粒子(P-1)の平均粒子径、 MO /SiO (モル比)、および屈折率を
、調製条件と共に表 1に示す。ここで、平均粒子径は動的光散乱法により測定し、屈 折率は標準屈折液として CARGILL製の SeriesA、 AAを用い、以下の方法で測定し た。
[0049] 粒子の屈折率の測定方法
(1)シリカ系微粒子分散液をエバポレーターに採り、分散媒を蒸発させる。
(2)これを 120°Cで乾燥し、粉末とする。
(3)屈折率が既知の標準屈折液を 2、 3滴ガラス板上に滴下し、これに上記粉末を混 合する。
(4)上記(3)の操作を種々の標準屈折液で行い、混合液が透明になったときの標準 屈折液の屈折率を微粒子の屈折率とする。
[0050] 诱明被 付某材 (A-1)の製诰
シリカ系微粒子(P-1)のアルコール分散液をエタノールで固形分濃度 5重量%に希 釈した分散液 50gと、アクリル樹脂(ヒタロイド 1007、 日立化成 (株)製) 3gおよびイソ プロパノールと n—ブタノールの 1/1 (重量比)混合溶媒 47gとを充分に混合して塗布 液を調製した。
この塗布液を PETフィルムにバーコ一ター法で塗布し、 80°Cで、 1分間乾燥させて 、透明被膜の膜厚力 SlOOnmの透明被膜付基材 (A-1)を得た。この透明被膜付基材 (A-1)の全光線透過率、ヘイズ、波長 550nmの光線の反射率、被膜の屈折率、およ び鉛筆硬度を表 2に示す。全光線透過率およびヘイズは、ヘーズメーター (スガ試験 機 (株)製)により、反射率は分光光度計(日本分光社、 Ubest-55)により夫々測定し た。また、被膜の屈折率は、エリプソメーター(ULVAC社製、 EMS— 1)により測定し た。なお、未塗布の PETフィルムは全光線透過率が 90. 7%,ヘイズが 2. 0%,波長 550nmの光線の反射率が 7. 0%であった。鉛筆硬度は、 JIS K 5400に準じて、鉛筆 硬度試験器で測定した。即ち、被膜表面に対して 45度の角度に鉛筆をセットし、所 定の加重を負荷して一定速度で引つ張り、傷の有無を観察した。
[0051] また、透明被膜付基材 (A-1)の表面にナイフで縦横 lmmの間隔で 11本の平行な 傷を付け 100個の升目を作り、これにセロファンテープを接着し、次いで、セロファン テープを剥離したときに被膜が剥離せず残存している升目の数を、以下の 3段階に 分類することによって密着性を評価した。結果を表 2に示す。
残存升目の数 90個以上 :◎
残存升目の数 85— 89個:〇
残存升目の数 84個以下 :△
[0052] 诱明棚草付 材(13-1)の製造
ェチルシリケ一 MSi〇濃度 28重量0 /0) 20g、エタノール 45gおよび純水 5· 33gの 混合溶液に少量の塩酸を添加して、ェチルシリケートの部分加水分解物を含有した マトリックス分散液を得た。このマトリックス分散液に、シリカ系微粒子 (P-1)のアルコ ール分散液(固形分濃度 18重量%) 16. 7gを混合して塗布液を調製した。
この塗布液を透明ガラス板の表面に 500rpm、 10秒の条件でスピナ一法により塗 布した後、 160°Cで 30分間、加熱処理して透明被膜の膜厚が 200nmの透明被膜付 基材 (B-1)を得た。この透明被膜付基材 (B-1)の全光線透過率、ヘイズ、波長 550η mの光線の反射率、被膜の屈折率および鉛筆硬度を表 3に示す。なお、未塗布のガ ラス基板は、全光線透過率が 92. 0%、ヘイズが 0. 1%、波長 550nmの光線の反射 率が 4. 5%であった。
実施例 2
[0053] シリカ系微粒子 (P-2)の調奥
実施例 1と同様にして調製した固形分濃度 20重量%のシリカ系微粒子 (P-1-1)の 水分散 ί夜 1500gと、純水 500g、エタノーノレ 1 , 750gおよび 28%アンモニア水 626g との混合液を 35°Cに加温した後、ェチルシリケート(Si〇濃度 28重量%) 104gを添 カロしてシリカ被膜を形成し、純水 5Lをカ卩えながら限外濾過膜で洗浄して固形分濃度 20重量%のシリカ系微粒子 (P-2-1)の水分散液を得た。
つぎに、シリカ系微粒子 (P-2-1)分散液を 200°Cにて 1時間熟成した後、純水 5Lを 加えながら限外濾過膜で洗浄して固形分濃度 20重量%のシリカ系微粒子 (P-2-2)の 水分散液を得た。このとき、シリカ系微粒子 (P-2-2)の水分散液の Na O含有量および
NH含有量はシリカ系微粒子当たり各々 lppm、 2500ppmであった。
ついで、再び、シリカ系微粒子 (P-2-2)分散液を 150°Cにて 11時間水熱処理した後 、純水 5Lをカ卩えながら限外濾過膜で洗浄して固形分濃度 20重量%のシリカ系微粒 子 (P-2-3)の水分散液を得た。このとき、シリカ系微粒子 (P-2-3)の水分散液の Na O 含有量および NH含有量はシリカ系微粒子当たり各々 0. 5ppm、 900ppmであった ついで限外濾過膜を用いて分散媒をエタノールに置換した固形分濃度 20重量% のシリカ系微粒子 (P-2)のアルコール分散液を調製した。
[0054] 诱明ネ刺草付某材 (A-2)の製诰
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-2)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-2)を 得た。
月 草 才(13-2)の観告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-2)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (B-2)を 得た。
実施例 3 [0055] シリカ系微粒子 (P-3)の調製
実施例 2において、濃度 0.5重量%の硫酸ナトリウム 50,400gの代わりに濃度 0.5 重量%の硝酸カリウム 30, OOOgを用いた以外は同様にして固形分濃度 20重量%の シリカ系微粒子 (P-3)のアルコール分散液を調製した。
なお、シリカ系微粒子 (P-3-3)の水分散液の Na O含有量および NH含有量はシリ
2 3
力系微粒子当たり各々 0. 4ppm、 800ppmであった。
;秀3月ネ刺草 (A-3)の 1¾告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-3)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-3)を 得た。
月 草 才(13-3)の観告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-3)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (B-3)を 得た。
実施例 4
[0056] シリカ系微粒子 (P-4)の調奥
実施例 2において、濃度 0.5重量%の硫酸ナトリウム 50,400gの代わりに濃度 0.5 重量%の硫酸アンモニゥム 53, 200gを用いた以外は同様にして固形分濃度 20重 量%のシリカ系微粒子 (P-4)のアルコール分散液を調製した。
なお、シリカ系微粒子 (P-4-3)の水分散液の Na O含有量および NH含有量はシリ
2 3
力系微粒子当たり各々 0. 5ppm、 800ppmであった。
月 草 才(八-4)の観告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-4)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-4)を 得た。
诱明被膜付某材 (B-4)の製造
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-4)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (B-4)を 得た。
実施例 5
[0057] シリカ系微粒子 (P_5)の調奥
実施例 2において、濃度 0.5重量%の硫酸ナトリウム 50,400gの代わりに濃度 0.5 重量%の硝酸アンモニゥム 41 , 100gを用いた以外は同様にして固形分濃度 20重 量%のシリカ系微粒子 (P-5)のアルコール分散液を調製した。
なお、シリカ系微粒子 (P-5-3)の水分散液の Na O含有量および NH含有量はシリ
2 3
力系微粒子当たり各々 0. 8ppm、 700ppmであった。
诱明被膜付某材 (A-5)の製造
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-5)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-5)を 得た。
诱明被膜付某材 (B-5)の製造
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-5)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (B-5)を 得た。
実施例 6
[0058] シリカ系微粒子 (P-6)の調奥
実施例 2において、ェチルシリケ一 HSiO濃度 28重量%) 104§の代わりにビニル
2
シラン (信越化学 (株)製: KBE-1003、濃度 62.7重量%) 46.4gを用いた以外は同 様にして固形分濃度 20重量%のシリカ系微粒子 (P-6)のアルコール分散液を調製し た。
なお、シリカ系微粒子 (P-6-3)の水分散液の Na O含有量および NH含有量はシリ
2 3
力系微粒子当たり各々 lppm、 900ppmであった。
诱明被膜付某材 (A-6)の製造
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-6)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-6)を 得た。 诱明被膜付某材 (B-6)の製造
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-6)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (B-6)を 得た。
実施例 7
[0059] シリカ系微粒子 (P-7)の調奥
実施例 2において、濃度 0. 5重量%の硫酸ナトリウム 50, 400gの代わりに濃度 0. 2重量%の硫酸ナトリウム 50, 400gを用レ、、ェチルシリケ一 MSiO濃度 28重量0 /0)
2
104gの代わりにエポキシシラン (信越化学 (株)製: KMB-403、濃度 84.9重量%) 34.3gを用いた以外は同様にして固形分濃度 20重量%のシリカ系微粒子 (P-7)のァ ルコール分散液を調製した。
なお、シリカ系微粒子 (P-7-3)の水分散液の Na O含有量および NH含有量はシリ
2 3
力系微粒子当たり各々 0. 8ppm、 800ppmであった。
诱明被膜付某材 (A-7)の製造
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-7)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-7)を 得た。
月 草 才(13-7)の観告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-7)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (B-7)を 得た。
実施例 8
[0060] シリカ系微粒子 (P-8)の調製
実施例 2において、ェチルシリケ一 HSiO濃度 28重量%) 104§の代わりにフッ素
2
系アルキルシラン (信越化学 (株)製: KMB— 7083、濃度 83.8重量%) 34.75gを用 いた以外は同様にして固形分濃度 20重量%のシリカ系微粒子 (P-8)のアルコール分 散液を調製した。
なお、シリカ系微粒子 (P-8-3)の水分散液の Na O含有量および NH含有量はシリ 力系微粒子当たり各々 0. 9ppm、 800ppmであった。
诱明被膜付某材 (A-8)の製造
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-8)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-8)を 得た。
月 草 才(13-8)の観告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-8)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (B-8)を 得た。
実施例 9
[0061] シリカ系微粒子 (P-9)の調製
実施例 2の工程 (a)において、 SiOとして 0. 76重量%の珪酸ナトリウム水溶液 900
Ogと 〇として 1 · 25重量0 /0の レミン酸ナトリウム水溶?夜 9000gとを同 B寺に添カロし
、濃度 0. 5重量%の硫酸ナトリウム 50, 400gの代わりに濃度 2. 0重量%の硫酸ナト リウム 50, 400gを用いた以外は同様にして固形分濃度 20重量%のシリカ系微粒子 (P-9)のアルコール分散液を調製した。
なお、シリカ系微粒子 (P-9-3)の水分散液の Na O含有量および NH含有量はシリ 力系微粒子当たり各々 lppm、 800ppmであった。
;秀3月ネ刺草 (A-9)の 1¾告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-9)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-9)を 得た。
月 草 才(13-9)の観告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-9)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (B-9)を 得た。
実施例 10
[0062] シリカ系微粒子 (P- 10)の調奥 実施例 1において、固形分濃度 20重量%のシリカ系微粒子 (P-l-1)の水分散液に ついて、熟成と水熱処理を行わなかった以外は同様にして固形分濃度 20重量%の シリカ系微粒子 (P-10)のアルコール分散液を調製した。
月 草 才(八-10)の観告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-10)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A- 10) を得た。
;,月 草 ^^ B-10)の観告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-10)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (B-10) を得た。
実施例 11
[0063] シリカ系微粒子 (P-11)の調製
実施例 1におレ、て、固形分濃度 20重量%のシリカ系微粒子 (P-1-2)の水分散液に ついて、水熱処理を行わなかった以外は同様にして固形分濃度 20重量%のシリカ 系微粒子 (P-11)のアルコール分散液を調製した。
月 草 の観告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-11)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A- 11) を得た。
月 草 ^†(B-11)の観告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-11)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (B-11) を得た。
実施例 12
[0064] シリカ系微粒子 (P-12)の調製
実施例 2におレ、て、固形分濃度 20重量%のシリカ系微粒子 (P-2-2)の水分散液に ついて、水熱処理を行わなかった以外は同様にして固形分濃度 20重量%のシリカ 系微粒子 (P-12)のアルコール分散液を調製した。
诱明被膜付某材 (A-12)の製造
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-12)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A- 12) を得た。
月 草 才(13-12)の齟告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-12)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (B-12) を得た。
実施例 13
[0065] シリカ系微粒子 (P-13)の調製
実施例 11におレ、て、濃度 0.5重量%の硫酸ナトリウム 50,400gの代わりに濃度 0.5 重量%の硝酸カリウム 30, OOOgを用いた以外は同様にして固形分濃度 20重量%の シリカ系微粒子 (P-13)のアルコール分散液を調製した。
诱明被膜付某材 (A-13)の製造
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-13)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A- 13) を得た。
月 草 才(13-13)の観告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-13)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (B-13) を得た。
実施例 14
[0066] シリカ系微粒子 (P-14)の調製
実施例 11におレ、て、濃度 0.5重量%の硫酸ナトリウム 50,400gの代わりに濃度 0.5 重量%の硫酸アンモニゥム 53, 200gを用いた以外は同様にして固形分濃度 20重 量%のシリカ系微粒子 (P-14)のアルコール分散液を調製した。
月 草 才(八-14)の観告 実施例 1において、シリカ系微粒子 (P-l)のアルコール分散液の代わりにシリカ系微 粒子 (P-14)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-14) を得た。
;,月 草 ^^ B-14)の観告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-14)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (B-14) を得た。
実施例 15
[0067] シリカ系微粒子 (P-15)の調製
実施例 11におレ、て、濃度 0.5重量%の硫酸ナトリウム 50,400gの代わりに濃度 0.5 重量%の硝酸アンモニゥム 41 , 100gを用いた以外は同様にして固形分濃度 20重 量%のシリカ系微粒子 (P-15)のアルコール分散液を調製した。
诱明被膜付某材 (A-15)の製造
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-15)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-15) を得た。
月 草 才(13-15)の観告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-15)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (B-15) を得た。
実施例 16
[0068] シリカ系微粒子 (P-16)の調製
実施例 11において、ェチルシリケ一 HSiO濃度: 28重量%) 104§の代わりにビニ
2
ルシラン (信越化学 (株)製: KBE-1003、濃度 62.7重量%) 46.4gを用いた以外は 同様にして固形分濃度 20重量%のシリカ系微粒子 (P-16)のアルコール分散液を調 製した。
;,月 草 木 A- 16)の觀告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-16)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-16) を得た。
诱明被膜付某材 (B-16)の製造
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-16)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (B-16) を得た。
実施例 17
[0069] シリカ系微粒子 (P-17)の調製
実施例 11において、ェチルシリケ一 HSiO濃度: 28重量%) 104§の代わりにェポ
2
キシシラン (信越化学 (株)製: KMB_403、濃度 84.9重量%) 34.3gを用いた以外 は同様にして固形分濃度 20重量%のシリカ系微粒子 (P-17)のアルコール分散液を 調製した。
诱明被膜付某材 (A-17)の製造
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-17)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-17) を得た。
月 草 才(13-17)の観告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-17)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (B-17) を得た。
実施例 18
[0070] シリカ系微粒子 (P-18)の調製
実施例 11において、ェチルシリケ一 HSiO濃度: 28重量%) 104§の代わりにフッ
2
素系アルキルシラン (信越化学 (株)製: KMB— 7083、濃度 83.8重量%) 34.75gを 用いた以外は同様にして固形分濃度 20重量%のシリカ系微粒子 (P-18)のアルコー ル分散液を調製した。
;,月 草 木 A- 18)の觀告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-18)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-18) を得た。
诱明被膜付某材 (B-18)の製造
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-18)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (B-18) を得た。
実施例 19
[0071] シリカ系微粒子 (P-19)の調製
実施例 11の工程 (a)において、 SiOとして 0. 76重量%の珪酸ナトリウム水溶液 90
2
OOgと 〇として 1 · 25重量0 /0の レミン酸ナトリウム水溶?夜 9000gとを同 B寺に添カロ
2 3
した以外は同様にして固形分濃度 20重量%のシリカ系微粒子 (P-19)のアルコール 分散液を調製した。
诱明被膜付某材 (A-19)の製造
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-19)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (A-19) を得た。
;,月 草 ^^ B-19)の観告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (P-19)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (B-19) を得た。
比較例 1
[0072] シリカ系微粒子(RP-1)
シリカ系微粒子としてシリカゾル (触媒化成工業 (株)製: SI-45P、平均粒子径 45nm 、 SiO濃度: 20重量%)を用レ、、これを限外濾過膜にてエタノールに分散媒を置換し
2
、固形分濃度 20重量%のシリカ系微粒子(RP-1)のアルコール分散液として用いた。 なお、シリカゾルの Na O含有量および NH含有量はシリカ粒子当たり各々 20500
2 3
ppm、 lOOppmであつに。
月 草 ^t (RA-l)の観告 実施例 1において、シリカ系微粒子 (P-l)のアルコール分散液の代わりにシリカ系微 粒子 (RP-1)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (RA-1) を得た。
;,月 草 ^^ RB-1)の観告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (RP-1)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (RB-1) を得た。
比較例 2
[0073] シリカ系微粒子 (RP-2)の調製
実施例 1と同様にして固形分濃度 20重量%の SiO ·Α1 Ο一次粒子分散液を調製 した。
この一次粒子分散液 500gに純水 1, 700gを加えて 98°Cに加温し、この温度を保 持しながら、 SiOとして濃度 1.17重量%の珪酸ナトリウム水溶液 3, OOOgと Al Oとし ての濃度 0.5重量%のアルミン酸ナトリウム水溶液 9,000gを添加して複合酸化物微 粒子 (RP-2-1)の分散液を得た。
ついで、限外濾過膜で洗浄して固形分濃度 13重量%になった複合酸化物微粒子 (RP-2-1)の分散液 500gに純水 l, 125gをカ卩え、さらに濃塩酸 (濃度 35.5重量%)を 滴下して pHl.Oとし、脱アルミニウム処理を行った。次いで、 pH3の塩酸水溶液 10L と純水 5Lをカ卩えながら限外濾過膜で溶解したアルミニウム塩を分離 ·洗浄して固形 分濃度 20重量%のシリカ系微粒子 (RP-2)の水分散液を得た。
シリカ系微粒子 (RP-2)について平均粒子径を測定したところ、約 5nmであり、屈折 率は 1. 43であった。また、透過型電子顕微鏡写真 (TEM)を撮影して観察したとこ ろ、殆どが微小粒子であり、中空粒子は殆ど存在しなかった。
比較例 3
[0074] シリカ系微粒子 (RP-3)の調製
実施例 10の工程 (a)において、 SiOとして 1. 5重量%の珪酸ナトリウム水溶液と、
Al Oとして 0. 5重量%のアルミン酸ナトリウム水溶液とを使用した以外は同様にして 固形分濃度 20重量%のシリカ系微粒子 (RP-3)のアルコール分散液を調製した。 なお、シリカ系微粒子 (RP-1-1)の水分散液の Na O含有量および NH含有量はシリ 力系微粒子当たり各々 1200ppm、 lOppm未満であった。
诱明被膜付某材 (RA-3)の製造
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (RP-3)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (RA-3) を得た。
;,月 草 ^^ RB-3)の観告
実施例 1において、シリカ系微粒子 (P-1)のアルコール分散液の代わりにシリカ系微 粒子 (RP-3)のアルコール分散液を用いた以外は同様にして透明被膜付基材 (RB-3) を得た。
[表 1]
一次粒子 mwrn シリカ被霜 シリカ ¾¾粒 微量成分
符号 のモル比 镌類 M /M 種厘 層厘 モル比平均粒径屈折率. Na 0 NH
(MO /SiO ) (nm) (MO /SiO ) (nm) (ppm)(ppm)
p- - 1 0.35 Na SO 1.09 ― ― 0.0097 40 1.30 0.5 600
p- -2 0.35 Na SO 1.09 ET 8 0.0019 46 1.28 0.5 900
p- -3 0.35 KNO 0.91 ET 8 0.0019 46 1.27 0.4 800
p- -4 0.35 (NH ) SO 1.24 ET 8 0.0019 46 1.28 0.5 800
p- -5 0.35 NH NO 1.58 ET 8 0.0017 47 1.30 0.8 700 p- -6 0.35 Na SO 1.09 V 8 0.0017 47 1.27 1.0 900
p- -7 0.35 Na SO 0.44 EP 8 0.0017 47 1.27 0.8 800
p- -8 0.35 Na SO 1.09 F 8 0.0012 53 1.25 0.9 800
p- -9 0.75 Na SO 5.39 ET 8 0.0023 60 1.30 1.0 800
p- -10 0.35 Na SO 1.09 - - 0.0097 40 1.30 1000 10〉 p- -11 0.35 Na SO 1.09 - - 0.0097 40 1.30 6 1200
p- -12 0.35 Na SO 1.09 ET 8 0.0019 46 1.28
p- -13 0.35 KNO 0.91 ET 8 0.0019 46 1.27
p- -14 0.35 (NH ) SO 1.24 ET 8 0.0019 46 1.28 p-■15 0.35 NH NO 1.58 ET 8 0.0017 47 1.30
4 3
p- 16 0.35 Na SO 1.09 V 8 0.0017 47 1.27
2 4
p- ■17 0.35 Na SO 1.09 EP 8 0.0017 47 1.28
2 4
p- .18 0.35 Na SO 1.09 F 8 0.0012 53 1.25
2 4
p- .19 0.75 Na SO 1.35 ET 8 0.0023 60 1.26
RP-1 0.000 - - - 0.000 45 1.46 20500 100
RP-2 0.35 - - - - 0.0097 5 1.43 - - RP-3 0.171 Na SO 0.94 - - 0.0005 30 1.42 1200 10〉
2 4
[表 2]
m u (有機■旨マトリックス)
符 全光線 ヘイズ 反射率 靈
诱渦率 屈折率
(%) (%) (%)
A- - 1 96. .5 0.3 0.5 1.35 ◎ 4H
A- -2 95. .5 0.3 0.4 1.33 ◎ 3H
A- -3 96. .1 0.2 0.3 1.32 ◎ 3H
A- -4 96. .2 0.2 0.4 1.33 ◎ 3H
A- -5 95. .9 0.3 0.5 1.34 ◎ 3H
A- -6 96. .8 0.1 0.3 1.32 ◎ 3H
A- -7 96. .5 0.1 0.4 1.31 ◎ 3H
A- -8 96. ,7 0.1 0.2 1.31 ◎ 3H
A- -9 96. ,7 0.1 0.3 1.34 ◎ 3H
A- -10 96.5 0.3 0.5 1.35 Δ H
A- -11 95.4 0.3 0.5 1.33 Δ H
A- -12 95.5 0.3 0.4 1.33 〇
A- -13 96.1 0.2 0.3 1.32 〇
A- -14 96.2 0.2 0.4 1.33 〇 A-■15 95.9 0.3 0.5 1.34 ◎
A- 16 96.8 0.1 0.3 1.32 ◎
A- ■17 96.5 0.1 0.4 1.33 ◎
A- .18 96.7 0.1 0.2 1.31 ◎
A- .19 96.7 0.1 0.3 1.32 ◎
RA-1 94.3 0.3 1.5 1.46 O H RA-3 94.3 1.8 1.0 1.45 O H 3]
曰月 草ィ寸 (シリコン綱旨マトリックス) 符 全光線 ヘイズ 反射率 靈 鉛肇硬度 诱辩 屈折率
(%) (%) (%)
B- -1 96.1 0.3 0.5 1.35 8H
B- -2 96.4 0.3 0.2 1.31 7H
B- -3 96.2 0.2 0.3 1.33 7H
B- -4 96.2 0.2 0.3 1.33 7H
B- -5 96.5 0.1 0.4 1.34 7H
B- -6 96.7 0.1 0.2 1.31 7H
B- -7 96.0 0.1 0.3 1.31 7H
B- -8 97.0 0.1 0.3 1.32 7H
B- -9 96.5 0.1 0.1 1.34 7H
B- -10 96.2 0.3 0.5 1.35 H
B- -11 96.1 0.3 0.5 1.35 H
B- -12 96.4 0.3 0.2 1.31
B- -13 96.2 0.2 0.3 1.33
B- -14 96.2 0.2 0.3 1.33
B- -15 96.5 0.1 0.4 1.34 /vD/ O εεζ-600さ oifcId z-osooizAV
CO
Figure imgf000036_0001
o o o o o o o o
Figure imgf000036_0002

Claims

請求の範囲
[1] 下記工程 (a)および工程 (b)からなるシリカ系微粒子の製造方法。
(a)珪酸塩の水溶液および/または酸性珪酸液と、アルカリ可溶の無機化合物水溶 液とをアルカリ水溶液中に、または、必要に応じて種粒子が分散したアルカリ水溶液 中に同時に添カ卩して、シリカを SiOで表し、シリカ以外の無機酸化物を MOで表し
2 X たときのモル比 M〇 /SiO力 SO.3— 1.0の範囲にある複合酸化物微粒子分散液を
X 2
調製する際に、複合酸化物微粒子の平均粒子径が 5— 50nmになった時点で電解 質塩を電解質塩のモル数(M )と SiOのモル数(M )との比(M /M )が 0.1— 10
E 2 S E S
の範囲で添加する工程
(b)前記複合酸化物微粒子分散液に、必要に応じてさらに電解質塩を加えた後、酸 をカ卩えて前記複合酸化物微粒子を構成する珪素以外の元素の少なくとも一部を除 去してシリカ系微粒子分散液とする工程
[2] 工程 (b)で得たシリカ系微粒子分散液について下記工程 (d)を実施する請求項 1 記載のシリカ系微粒子の製造方法。
(d)必要に応じて洗浄した後、シリカ系微粒子分散液を常温一 300°Cの範囲で熟成 する工程
[3] 工程 (d)で得たシリカ系微粒子分散液について下記工程 (e)を実施する請求項 1ま たは 2記載のシリカ系微粒子の製造方法。
(e)必要に応じて洗浄した後、 50— 300°Cの範囲で水熱処理する工程
[4] 工程 )を複数回繰り返すことを特徴とする請求項 3記載のシリカ系微粒子の製造 方法。
[5] 工程 (b)の後で、または、工程 (b)と工程(d)の間で下記工程 (c)を実施する請求 項 1一 4のいずれか記載のシリカ系微粒子の製造方法。
(c)前記工程 (b)で得られたシリカ系微粒子分散液に、アルカリ水溶液と、下記化学 式(1)で表される有機珪素化合物および/またはその部分加水分解物とを添加し、 該微粒子にシリカ被覆層を形成する工程
R SiX · · · (1)
n (4-n)
〔但し、 R:炭素数 1一 10の非置換または置換炭化水素基、アクリル基、エポキシ基、 メタクリル基、アミノ基、 CF基、 X:炭素数 1一 4のアルコキシ基、シラノール基、ハロ
2
ゲンまたは水素、 n: 0— 3の整数〕
[6] 前記アルカリ水溶液または、必要に応じて種粒子が分散したアルカリ水溶液の pH が 10以上である請求項 1一 5のいずれか記載のシリカ系微粒子の製造方法。
[7] 前記シリカ以外の無機酸化物がアルミナである請求項 1一 6のいずれか記載のシリ 力系微粒子の製造方法。
[8] 請求項 1一 7で得られたシリカ系微粒子分散液を洗浄し、乾燥し、必要に応じて焼 成することを特徴とする請求項 1一 7のいずれか記載のシリカ系微粒子の製造方法。
[9] 平均粒子径が 5nm— 500nmの範囲にあることを特徴とする請求項 1一 8のいずれ か記載のシリカ系微粒子の製造方法。
[10] 前記シリカ系微粒子または前記シリカ系微粒子分散液におけるアルカリ金属酸化 物の含有量が、シリカ系微粒子当たり M〇(M :アルカリ金属元素)として 5ppm以下
2
である請求項 3— 9のいずれか記載のシリカ系微粒子の製造方法。
[11] 前記シリカ系微粒子または前記シリカ系微粒子分散液におけるアンモニア及び/ 又はアンモニゥムイオンの含有量力 シリカ系微粒子当たり NHとして 1500ppm以
3
下である請求項 3— 9のいずれか記載のシリカ系微粒子の製造方法。
[12] 平均粒子径が 5— 500nmの範囲にあり、屈折率が 1. 15—1. 38の範囲にあり、シ リカを SiOで表し、シリカ以外の無機酸化物を MOで表したときのモル比 MO /Si
2 X X
O力 0001— 0.2の範囲にあり、アルカリ金属酸化物の含有量が M〇(M :アルカリ
2 2
金属元素)として 5ppm以下であることを特徴とする外殻内部に空洞を有するシリカ系 微粒子。
[13] 前記シリカ系微粒子におけるアンモニアおよび/またはアンモニゥムイオンの含有 量が NHとして 1500ppm以下である請求項 11に記載のシリカ系微粒子。
3
[14] 請求項 1一 11のいずれかに記載のシリカ系微粒子の製造方法によって得られたシ リカ系微粒子または請求項 12— 13のいずれかに記載のシリカ系微粒子と、被膜形 成用マトリックスとを含んでなる被膜形成用塗料。
[15] 請求項 1一 11のいずれかに記載のシリカ系微粒子の製造方法によって得られたシ リカ系微粒子または請求項 12— 13のいずれかに記載のシリカ系微粒子と被膜形成 用マトリックスとを含んでなる被膜が、単独でまたは他の被膜とともに基材表面上に形 成された被膜付基材。
PCT/JP2004/009733 2004-07-08 2004-07-08 シリカ系微粒子の製造方法、被膜形成用塗料および被膜付基材 WO2006006207A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2004800433784A CN1972866B (zh) 2004-07-08 2004-07-08 二氧化硅类微粒的制备方法、涂膜形成用涂料及覆有涂膜的基材
US11/631,357 US10040943B2 (en) 2004-07-08 2004-07-08 Method of producing silica-based particles
PCT/JP2004/009733 WO2006006207A1 (ja) 2004-07-08 2004-07-08 シリカ系微粒子の製造方法、被膜形成用塗料および被膜付基材
KR1020077000708A KR101102115B1 (ko) 2004-07-08 2004-07-08 실리카계 미립자의 제조방법, 피막 형성용 도료 및피막부착 기재

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/009733 WO2006006207A1 (ja) 2004-07-08 2004-07-08 シリカ系微粒子の製造方法、被膜形成用塗料および被膜付基材

Publications (1)

Publication Number Publication Date
WO2006006207A1 true WO2006006207A1 (ja) 2006-01-19

Family

ID=35783573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009733 WO2006006207A1 (ja) 2004-07-08 2004-07-08 シリカ系微粒子の製造方法、被膜形成用塗料および被膜付基材

Country Status (4)

Country Link
US (1) US10040943B2 (ja)
KR (1) KR101102115B1 (ja)
CN (1) CN1972866B (ja)
WO (1) WO2006006207A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348267A (ja) * 2005-05-16 2006-12-28 Nof Corp 含フッ素硬化性塗液、含フッ素硬化皮膜及び含フッ素硬化皮膜を用いた減反射材
US8435475B2 (en) 2007-06-26 2013-05-07 Denki Kagaku Kogyo Kabushiki Kaisha Spherical organic polymer-silicon compound composite particles, hollow particles and their production methods
CN103468030A (zh) * 2013-08-23 2013-12-25 确成硅化学股份有限公司 一种高分散性二氧化硅的制备方法
JPWO2013073475A1 (ja) * 2011-11-15 2015-04-02 国立大学法人 名古屋工業大学 ナノ中空粒子およびその製造方法
CN107099173A (zh) * 2017-04-01 2017-08-29 上海宜瓷龙新材料股份有限公司 用于室内墙面的水性无机防涂鸦陶瓷涂料及其制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1972866B (zh) * 2004-07-08 2010-12-01 日挥触媒化成株式会社 二氧化硅类微粒的制备方法、涂膜形成用涂料及覆有涂膜的基材
CN1989070B (zh) * 2004-07-21 2010-08-18 触媒化成工业株式会社 二氧化硅类微粒、其制备方法、涂膜形成用涂料及覆有涂膜的基材
JP4636869B2 (ja) * 2004-12-21 2011-02-23 日揮触媒化成株式会社 多孔質シリカ系粒子の製造方法および該方法から得られる多孔質シリカ系粒子
JP5096233B2 (ja) * 2008-05-30 2012-12-12 信越化学工業株式会社 有機酸化ケイ素系微粒子及びその製造方法、多孔質膜形成用組成物、多孔質膜及びその形成方法、並びに半導体装置
US20100285611A1 (en) * 2009-05-06 2010-11-11 Ostafin Agnes E Photobleaching resistant ph sensitive dye nanoreactors with dual wavelength emission
JP5839993B2 (ja) * 2009-11-16 2016-01-06 日揮触媒化成株式会社 シリカ・アルミナゾルの製造方法、シリカ・アルミナゾル、該ゾルを含む透明被膜形成用塗料および透明被膜付基材
WO2011109302A2 (en) * 2010-03-01 2011-09-09 Cabot Corporation Coating comprising multipopulation fumed silica particles
EP2407505A1 (de) * 2010-07-12 2012-01-18 Bayer MaterialScience AG Polymermaterial mit organisch modifizierten Schichtsilikaten
CN102633265B (zh) * 2012-03-29 2013-12-25 中国科学院山西煤炭化学研究所 一种可控中空介孔二氧化硅纳米球的制备方法
CN102838924B (zh) * 2012-09-19 2014-06-25 山西三益强磁业股份有限公司 一种铁基纳米晶软磁合金带材用涂料及其制备方法
WO2015087965A1 (ja) * 2013-12-12 2015-06-18 日産化学工業株式会社 シリカ粒子及びその製造方法並びにシリカゾル
JP7360294B2 (ja) * 2019-09-30 2023-10-12 日揮触媒化成株式会社 シリカを含む外殻の内側に空洞を有する粒子とその製造方法、該粒子を含む塗布液、及び該粒子を含む透明被膜付基材
CN114318858B (zh) * 2022-01-13 2023-02-28 西安交通大学 一种二氧化硅/超高分子量聚乙烯无纬布的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233611A (ja) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd シリカ系微粒子、該微粒子分散液の製造方法、および被膜付基材
JP2003026417A (ja) * 2001-07-13 2003-01-29 Catalysts & Chem Ind Co Ltd シリカゾルおよびシリカ系複合酸化物ゾルの製造方法
JP2004203683A (ja) * 2002-12-25 2004-07-22 Catalysts & Chem Ind Co Ltd シリカ系微粒子の製造方法および該シリカ系微粒子を含む被膜付基材

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382383A (en) * 1988-08-24 1995-01-17 Catalysts & Chemicals Industries Co., Ltd. Coating solutions for forming transparent conductive ceramic coatings, substrates coated with transparent conductive ceramic coatings and process for preparing same, and uses of substrates coated with transparent conductive ceramic coatings
JPH05153701A (ja) * 1991-07-31 1993-06-18 Shinko Electric Co Ltd モータ駆動車両のブレーキ制御装置
JPH06330606A (ja) 1993-05-24 1994-11-29 Soda Koryo Kk 香気性畳
JPH0713137A (ja) 1993-06-29 1995-01-17 Suzuki Yushi Kogyo Kk 液晶内包無機中空微粒子とそれを用いた液晶表示装置
JP3761189B2 (ja) 1993-11-04 2006-03-29 触媒化成工業株式会社 複合酸化物ゾル、その製造方法および基材
CN1050817C (zh) * 1995-03-14 2000-03-29 中国科学院固体物理研究所 一种尺寸可控纳米二氧化硅粉体的制备方法
FR2747669B1 (fr) * 1996-04-22 1998-05-22 Rhone Poulenc Chimie Procede de preparation de particules creuses de silice
FR2747668B1 (fr) * 1996-04-22 1998-05-22 Rhone Poulenc Chimie Procede de preparation de silice comprenant une ecorce de silice et un coeur en un materiau autre
JPH1129318A (ja) 1997-05-06 1999-02-02 Nippon Millipore Kk ミクロンサイズの球状シリカ粒子とその製造法
JP4521993B2 (ja) * 1998-12-21 2010-08-11 日揮触媒化成株式会社 微粒子分散ゾルの製造方法
CN100478292C (zh) * 2000-06-20 2009-04-15 日挥触媒化成株式会社 无机化合物颗粒及其制备方法
CN1167616C (zh) * 2001-12-31 2004-09-22 天津大学 制备二氧化硅介孔微粒材料的方法
JP4592274B2 (ja) * 2003-10-17 2010-12-01 日揮触媒化成株式会社 酸化アンチモン被覆シリカ系微粒子、該微粒子の製造方法および該微粒子を含む被膜付基材
CN1972866B (zh) * 2004-07-08 2010-12-01 日挥触媒化成株式会社 二氧化硅类微粒的制备方法、涂膜形成用涂料及覆有涂膜的基材
CN1989070B (zh) * 2004-07-21 2010-08-18 触媒化成工业株式会社 二氧化硅类微粒、其制备方法、涂膜形成用涂料及覆有涂膜的基材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233611A (ja) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd シリカ系微粒子、該微粒子分散液の製造方法、および被膜付基材
JP2003026417A (ja) * 2001-07-13 2003-01-29 Catalysts & Chem Ind Co Ltd シリカゾルおよびシリカ系複合酸化物ゾルの製造方法
JP2004203683A (ja) * 2002-12-25 2004-07-22 Catalysts & Chem Ind Co Ltd シリカ系微粒子の製造方法および該シリカ系微粒子を含む被膜付基材

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348267A (ja) * 2005-05-16 2006-12-28 Nof Corp 含フッ素硬化性塗液、含フッ素硬化皮膜及び含フッ素硬化皮膜を用いた減反射材
US8435475B2 (en) 2007-06-26 2013-05-07 Denki Kagaku Kogyo Kabushiki Kaisha Spherical organic polymer-silicon compound composite particles, hollow particles and their production methods
JPWO2013073475A1 (ja) * 2011-11-15 2015-04-02 国立大学法人 名古屋工業大学 ナノ中空粒子およびその製造方法
CN103468030A (zh) * 2013-08-23 2013-12-25 确成硅化学股份有限公司 一种高分散性二氧化硅的制备方法
CN107099173A (zh) * 2017-04-01 2017-08-29 上海宜瓷龙新材料股份有限公司 用于室内墙面的水性无机防涂鸦陶瓷涂料及其制备方法

Also Published As

Publication number Publication date
US20080090070A1 (en) 2008-04-17
US10040943B2 (en) 2018-08-07
KR20070030893A (ko) 2007-03-16
KR101102115B1 (ko) 2012-01-02
CN1972866A (zh) 2007-05-30
CN1972866B (zh) 2010-12-01

Similar Documents

Publication Publication Date Title
JP5700458B2 (ja) シリカ系微粒子、被膜形成用塗料および被膜付基材
JP4046921B2 (ja) シリカ系微粒子、該微粒子分散液の製造方法、および被膜付基材
JP4428923B2 (ja) シリカ系中空微粒子の製造方法
JP5247753B2 (ja) 微粒子、微粒子分散ゾルおよび被膜付基材
WO2006006207A1 (ja) シリカ系微粒子の製造方法、被膜形成用塗料および被膜付基材
JP5757673B2 (ja) 透明被膜付基材および透明被膜形成用塗料
JP5686604B2 (ja) 鎖状シリカ系中空微粒子とその製造方法、該微粒子を含む透明被膜形成用塗布液および透明被膜付基材
JP4592274B2 (ja) 酸化アンチモン被覆シリカ系微粒子、該微粒子の製造方法および該微粒子を含む被膜付基材
JP7360294B2 (ja) シリカを含む外殻の内側に空洞を有する粒子とその製造方法、該粒子を含む塗布液、及び該粒子を含む透明被膜付基材
JP2009066965A (ja) 透明被膜付基材および透明被膜形成用塗料
JP6895760B2 (ja) シリカ系粒子分散液の製造方法、シリカ系粒子分散液、透明被膜形成用塗布液及び透明被膜付基材
JP5480743B2 (ja) 透明被膜付基材および透明被膜形成用塗料
JP5642535B2 (ja) 新規シリカ系中空微粒子、透明被膜付基材および透明被膜形成用塗料
JP4731137B2 (ja) シリカ系微粒子の製造方法
JP5680372B2 (ja) 透明被膜付基材および透明被膜形成用塗布液
JP4979876B2 (ja) ハードコート膜付基材
JP5404568B2 (ja) シリカ系微粒子、被膜形成用塗料および被膜付基材
JP3955971B2 (ja) 反射防止膜付基材
JP5766251B2 (ja) 透明被膜形成用塗料の製造方法
JP2004204173A (ja) 赤外線遮蔽膜形成用塗料および赤外線遮蔽膜付基材
JP2005290149A (ja) 透明被膜形成用塗布液および透明被膜付基材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480043378.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11631357

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077000708

Country of ref document: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWP Wipo information: published in national office

Ref document number: 11631357

Country of ref document: US