WO2015087965A1 - シリカ粒子及びその製造方法並びにシリカゾル - Google Patents

シリカ粒子及びその製造方法並びにシリカゾル Download PDF

Info

Publication number
WO2015087965A1
WO2015087965A1 PCT/JP2014/082817 JP2014082817W WO2015087965A1 WO 2015087965 A1 WO2015087965 A1 WO 2015087965A1 JP 2014082817 W JP2014082817 W JP 2014082817W WO 2015087965 A1 WO2015087965 A1 WO 2015087965A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
silica particles
particles
base
moisture absorption
Prior art date
Application number
PCT/JP2014/082817
Other languages
English (en)
French (fr)
Inventor
桂子 吉武
愛 梅田
一太郎 菊永
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020167018323A priority Critical patent/KR102269433B1/ko
Priority to EP14870123.8A priority patent/EP3081531B1/en
Priority to US15/101,154 priority patent/US10173901B2/en
Priority to JP2015552506A priority patent/JP6447831B2/ja
Priority to CN201480066913.1A priority patent/CN105813977A/zh
Publication of WO2015087965A1 publication Critical patent/WO2015087965A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • C01B33/1415Preparation of hydrosols or aqueous dispersions by suspending finely divided silica in water
    • C01B33/1417Preparation of hydrosols or aqueous dispersions by suspending finely divided silica in water an aqueous dispersion being obtained
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/145Preparation of hydroorganosols, organosols or dispersions in an organic medium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to silica particles, a method for producing the same, and silica sol.
  • a method for obtaining silica sol by neutralization or ion exchange using water glass as a raw material is known.
  • a method for obtaining silica fine powder by a thermal decomposition method of silicon tetrachloride is also known.
  • a method for producing a high-purity silica sol a method in which an alkoxysilane is hydrolyzed in an alcohol-water solution containing a basic catalyst is also known.
  • a peak signal area appearing at a chemical shift of ⁇ 94 ppm to ⁇ 103 ppm is defined as Q3, and a chemical shift is expressed at ⁇ 103 ppm to ⁇ 115 ppm.
  • the peak signal area is Q4
  • a method of hydrothermally treating an untreated silica having a Q4 / Q3 value of 0.5 to 5.0 has been proposed (see, for example, Patent Document 1).
  • an untreated silica material having a median particle size of 58 nm measured by a dynamic light scattering method and an average particle size of 44 nm obtained by TEM observation is used. .
  • silica-based hollow particles silicic acid or silicate is hydrolyzed and condensed in the presence of a basic catalyst to form a silica-based coating layer covering core particles such as calcium carbonate.
  • a basic catalyst for example, see Patent Document 2.
  • the method of obtaining silica sol by neutralization or ion exchange using water glass as a raw material cannot completely remove impurities such as metals.
  • the thermal decomposition method of silicon tetrachloride the silica fine powder obtained is aggregated particles, and even when dispersed in water or the like, a monodispersed sol cannot be obtained.
  • chlorine ions remain as impurities, the purity of the silica sol is low, and it cannot be used for applications requiring high purity.
  • Non-Patent Document 1 many unhydrolyzed alkoxy groups remain in the silica particles, and alcohol is eliminated by heating or hydrolysis. For this reason, it is difficult to obtain highly dense silica particles, and it is difficult to produce a silica sol having excellent moisture absorption resistance.
  • pores and silanol groups may remain inside the silica particles after the alkoxy groups are removed by hydrolysis, and there is a possibility that the properties of the resin may be impaired when silica is used as a resin filler. It was.
  • an object of the present invention is to provide high-purity silica particles excellent in denseness and moisture absorption resistance, a method for producing silica particles, and a silica sol.
  • Silica particles according to an embodiment of the present invention for solving the above-mentioned problems are characterized by satisfying the following requirements (a) to (c) using alkoxysilane as a raw material.
  • (A) Content of alkali metal element with respect to silica solid content is 5 ppm or less.
  • B) The moisture absorption at a relative humidity of 50% is 0.25 mg / m 2 or less, and the refractive index by the immersion method is 1.450 to 1.460.
  • C The average primary particle size converted from the specific surface area measured by the nitrogen adsorption method is 10 to 100 nm.
  • the aspect ratio of the particles obtained from the transmission electron micrograph is 1.0 to 2.0. Note that the closer the aspect ratio is to 1, the closer to a true sphere.
  • the method for producing silica particles which is another aspect of the present invention that solves the above problems, is characterized by having the following steps (A) and (B).
  • B A step of hydrothermally treating the silica particle aqueous dispersion at 150 to 350 ° C.
  • the amount of at least one selected base is preferably adjusted so that the molar ratio (base / SiO 2 ) is 0.002 to 0.20.
  • a silica sol which is still another embodiment of the present invention for solving the above-mentioned problems is characterized by containing the above silica particles.
  • high-purity silica particles excellent in denseness and moisture absorption resistance a method for producing silica particles, and a silica sol can be provided.
  • the silica particles of the present embodiment are based on alkoxysilane as a raw material and satisfy the following requirements (a) to (c).
  • the silica particles of this embodiment will be described.
  • This embodiment uses alkoxysilane as a raw material. According to this, compared with the conventional method using water glass, it becomes easy to obtain highly purified silica particles. That is, in the conventional method using water glass, metal impurities derived from the natural product raw material remain inside the particles, so that it is difficult to obtain high-purity silica particles. In addition, additional processes may be required to remove metal impurities. On the other hand, according to the present embodiment, it is possible to avoid mixing of the metal impurities as described above, and the need for an additional process for removing the metal impurities is eliminated.
  • this embodiment using alkoxysilane as a raw material does not substantially contain a metal species that becomes a metal impurity by a conventional method using water glass.
  • the metal species here include sodium, iron, aluminum, and the like, but typically an alkali metal element such as sodium. Moreover, it is 5 ppm or less with respect to a silica solid content that it does not contain substantially.
  • this embodiment includes the requirement (a) that the content of alkali metal element with respect to the silica solid content is 5 ppm or less.
  • the alkali metal element is not limited to sodium.
  • a plurality of alkali metal elements may be contained, but the total content thereof needs to be 5 ppm or less with respect to the silica solid content.
  • the silica particles of this embodiment are excellent in applicability to various uses and can be applied to electronic materials that require high purity.
  • the moisture absorption resistance is also excellent, there is little possibility of impairing the moisture absorption resistance of the resin when, for example, it is highly filled as a resin filler.
  • An alkoxysilane is an alkyl ester of a silicic acid monomer or a silicic acid oligomer having a polymerization degree of 2 to 3 and having an alkyl group having 1 to 2 carbon atoms from the viewpoint of solubility in a medium and availability.
  • TMOS tetramethyl silicate
  • TEOS tetraethyl silicate
  • methyl triethyl silicate dimethyl diethyl silicate, trimethyl ethyl silicate, trialkyl silicate having 1 to 2 carbon atoms in the alkyl group, and the like are preferably used.
  • Alkoxysilane may be used alone or in combination of two or more.
  • the alkoxysilane mixed esters having different alkyl groups in the molecule and mixtures thereof can also be used.
  • the present embodiment includes requirement (b) that the amount of moisture absorption at 50% relative humidity is 0.25 mg / m 2 or less and the refractive index by the immersion method is 1.450 to 1.460.
  • the silica particles are used in resin composite materials, etc. due to the low density and moisture absorption resistance of the silica particles. Tends to decrease.
  • the value of the moisture absorption amount of requirement (b) corresponds to the moisture adsorption amount per unit surface area of the silica particles, and can be measured by the means shown in the examples as an example. Such a value can eliminate the influence of moisture adsorption other than the inside of the particles, that is, the influence of the particle diameter, among the moisture absorption of the silica particles. That is, the value of the moisture absorption amount of requirement (b) can be grasped as an index of moisture absorption characteristics inside the particles.
  • such a value of moisture absorption assumes a predetermined condition, for example, that all of the moisture reaches the inside of the particle or that one or two layers of moisture are adsorbed on the particle surface.
  • moisture that can be adsorbed inside may not be sufficiently detected by measuring the amount of moisture absorption.
  • the refractive index by the immersion method is 1.450 to 1.460.
  • the moisture absorption characteristics inside the particle can be determined by the refractive index by the immersion method, in addition to the moisture absorption amount.
  • the refractive index can be measured by the means shown in the examples as an example.
  • the above-mentioned moisture absorption and refractive index can both evaluate the characteristics related to the denseness inside the silica particles, and a correlation is recognized to some extent.
  • the above-mentioned moisture absorption amount is obtained on the assumption of the above-mentioned predetermined conditions, a complete correlation between them is not recognized.
  • the requirement (b) is satisfied by satisfying any of the requirements of the moisture absorption amount and the refractive index, but the requirement (b) is not satisfied when it is recognized that at least one of the requirements is not satisfied.
  • the refractive index by the immersion method is within the above range, it can be determined that the silica particles are excellent in denseness and moisture absorption resistance. Such silica particles rarely adversely affect the moisture absorption resistance of the resin composite when used in resin composite materials and the like.
  • the refractive index is measured by the following method using the fact that when the dry powder is immersed in a liquid, the particles appear to be transparent when the refractive index of the particles is equal to the liquid.
  • the mixing ratio of the two organic solvents is adjusted and mixed so as to have a refractive index equivalent to that of the sample, and a simple method is used in which the refractive index of the mixed solution is measured with an Abbe refractometer.
  • the refractive index measurement method is not limited to the above example.
  • the present embodiment includes requirement (c) that the average primary particle diameter converted from the specific surface area measured by the nitrogen adsorption method is 10 to 100 nm.
  • the specific surface area by the nitrogen adsorption method is a surface area per unit mass of the silica particles, and the average primary particle diameter is an average value of the primary particle diameters of the silica particles calculated from the specific surface area.
  • Such an average primary particle diameter can be measured by the method shown in an Example as an example.
  • the average primary particle diameter is larger than the above range, the characteristics as nanoparticles are hardly exhibited, and when silica particles are contained in the resin, it is difficult to obtain various improvement effects of the resin by including the silica particles. Become. In addition, transparency may be lost when a sol of silica particles is used as a resin composite material.
  • the average primary particle size is smaller than the above range, the dispersibility of the silica particles in the medium or the resin is lowered, and it becomes difficult to blend the silica particles at a high concentration.
  • moisture adsorption on the surface of the silica particles tends to increase, and in order to prevent this, many modifiers are required when the particle surface is modified with an organic substance.
  • the average primary particle size of the silica particles produced depends on various factors such as the average primary particle size of the silica particles used as a raw material and the degree of particle growth.
  • silica particles with a large average primary particle size silica particles with a small average primary particle size are used as raw materials, and a highly basic catalyst is used to increase the silica concentration, increase the reaction temperature, extend the heating time. What is necessary is just to make the particle growth property of a silica large by various processes, such as.
  • large particles can be obtained by a method in which the particles obtained in the present invention are partially mixed with the raw material and further grown as core particles.
  • silica raw materials having a uniform particle size distribution may be used so that the silica particle growth property is not increased by various processes.
  • silica particles with a large average primary particle size are used as the raw material, particles that cannot be dissolved remain as nuclei depending on the added base species, and particles around the remaining nuclei. May be easier to grow. Therefore, it is preferable to select the average primary particle diameter of the silica particles used as a raw material in consideration of the base species, production conditions, and the like.
  • the silica particles of the present embodiment described above are made of alkoxysilane as a raw material and satisfy the above-mentioned requirements (a) to (c), so that the silica particles have high density and excellent moisture absorption resistance. Therefore, it can be suitably applied to various applications, and can be applied to, for example, electronic materials that require high purity.
  • the silica particle of this embodiment uses alkoxysilane as a raw material, there is a possibility that an alkoxy group derived from alkoxysilane may remain in the particle. Therefore, if it is possible to measure the amount of alkoxy groups remaining due to the use of alkoxysilane as a raw material, based on this residual amount, the silica particles are obtained using alkoxysilane as a raw material. It becomes possible to specify.
  • the aspect ratio of the particles obtained from a transmission electron micrograph is preferably 1.0 to 2.0. Note that the closer the aspect ratio is to 1, the closer to a true sphere. Since such silica particles have high sphericity, they can be filled with high density as, for example, a resin filler.
  • a known transmission electron microscope (TEM) can be used, and the aspect ratio of the particles is that the longest part of the particle is the major axis D L , the longest part is perpendicular to the line connecting the major axis, and the longest part is the minor axis D. It can be measured as S. (D L / D S ) is evaluated as an aspect ratio, and about 300 particles can be evaluated for each aspect ratio to obtain an arithmetic average.
  • TEM transmission electron microscope
  • silica particles described above are contained, a high-purity silica sol having excellent denseness and moisture absorption resistance can be provided.
  • a silica sol has little adverse effect on the moisture absorption resistance of the resin composite when used in a resin composite material or the like. And it is excellent in applicability to various uses and can be applied to electronic materials that require high purity.
  • the manufacturing method of this embodiment has the following processes (A) and (B).
  • A) Hydrolysis of alkoxysilane in the presence of at least one base selected from the group consisting of ammonia, primary amine, secondary amine and cyclic tertiary amine, and the specific surface area measured by the nitrogen adsorption method A step of obtaining an aqueous dispersion of silica particles having a converted average primary particle diameter of 3 to 20 nm.
  • B A step of hydrothermally treating the silica particle aqueous dispersion at 150 to 350 ° C.
  • alkoxysilane is hydrolyzed in the presence of at least one base selected from the group consisting of ammonia, primary amine, secondary amine, and cyclic tertiary amine, and measured by a nitrogen adsorption method.
  • the silica particles in this aqueous dispersion serve as a raw material for producing silica particles having the above requirements (a) to (c).
  • the silica particles used as the raw material have a relatively small particle diameter, specifically, an average primary particle diameter calculated from a specific surface area measured by a nitrogen adsorption method is 3 to 20 nm. According to this, the dissolution precipitation property of silica particles can be improved and the particles can be efficiently grown. Furthermore, it can be avoided that particles that cannot be completely dissolved remain as large nuclei, and the particles can be prevented from growing around the remaining large nuclei, so that silica particles having excellent internal density can be obtained. become.
  • silica particles having an average primary particle diameter of 3 to 20 nm as described above can be used as a raw material to produce silica particles having an average primary particle diameter of, for example, 10 to 100 nm.
  • the average primary particle size is basically larger than the average primary particle size of the silica particles used as a raw material. That is, when the average primary particle diameter of the silica particles used as a raw material is, for example, 20 nm, the average primary particle diameter of the silica particles after production is basically larger than 20 nm.
  • the denseness of the silica particles used as a raw material is not limited as long as the gist of the present invention is not changed. If the silica particles are sufficiently dissolved and precipitated, and this is repeated, silica particles excellent in denseness up to the inside can be obtained.
  • the aqueous dispersion can be obtained from a liquid mainly composed of water.
  • the water here may be pure water or ultrapure water such as ion exchange water, ultrafiltration water, reverse osmosis water, or distilled water.
  • ion exchange water such as ion exchange water
  • ultrafiltration water such as ion exchange water
  • reverse osmosis water such as distilled water
  • distilled water such as distilled water
  • the present invention is not limited to the above examples.
  • various additives and hydrophilic organic solvents may be contained.
  • hydrophilic organic solvent examples include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, ethylene glycol, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, acetone, tetrahydrofuran, and diethylene glycol. Not limited. These hydrophilic organic solvents may be used alone or in combination of two or more.
  • alkoxide method in which alkoxysilane is hydrolyzed and subjected to condensation polymerization, high-purity silica particles can be easily obtained as described above.
  • Alkoxysilanes similar to those described above can be used, and may be added as a stock solution or diluted with an organic solvent.
  • step (A) it is desirable to include a step of adjusting the amount of at least one base selected from the group consisting of ammonia, primary amine, secondary amine, and cyclic tertiary amine in the aqueous dispersion.
  • This step is a step of adjusting the molar ratio (base / SiO 2 ) of the total amount of base added to the raw material silica sol to be 0.002 to 0.20. Accordingly, when an appropriate amount of ammonia or amine used for hydrolysis of alkoxysilane in step (A) remains in the silica dispersion, the addition of this base can be omitted.
  • step (A) when an excess of a basic catalyst is used in step (A), it is preferable to reduce this amount so that it is less than an appropriate amount.
  • the reduction method include a distillation method, washing by ultrafiltration, and an ion exchange method, but are not particularly limited.
  • the molar ratio (base / SiO 2 ) of the total amount of base added to the raw material silica sol by adding the base is 0.002 to 0. It is preferable to adjust so that.
  • the base at this time may be the same as or different from that used in step (A).
  • the amount of the base By adjusting the amount of the base, the balance between dissolution and precipitation of the silica particles can be brought into a state suitable for particle growth.
  • this type of weak base is used to provide a high-purity silica excellent in denseness and moisture absorption resistance. Particles can be obtained.
  • the use of a strong base containing an alkali metal or the like can be omitted, so that it is possible to avoid mixing of a base species such as an alkali metal inside the particle.
  • the above requirement (a) that the content of the alkali metal element with respect to the silica solid content is 5 ppm or less is also easily satisfied.
  • the base catalyst that can be used in step (A) is ammonia, primary amine, secondary amine, or cyclic tertiary amine.
  • primary amines include methylamine, ethylamine, propylamine, isopropylamine, butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, hexylamine, aminocyclohexane, methoxyethylamine, ethoxyethylamine, and 3-methoxypropyl.
  • Aliphatic amines such as amine, 3-ethoxypropylamine, ethylenediamine, hexamethylenediamine, N, N-dimethylethylenediamine, 3- (diethylamino) propylamine, 3- (dibutylamino) propylamine; unsaturated alkyls such as allylamine
  • amines include aromatic amines such as benzylamine, phenethylamine, and xylylenediamine.
  • secondary amines include aliphatic monoamines such as dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, dipentylamine, dihexylamine and dicyclohexylamine; aromatic monoamines such as diphenylamine and dibenzylamine; N -Benzylamines such as methylbenzylamine, N-ethylbenzylamine, N-butylbenzylamine, N-pentylbenzylamine, N-hexylbenzylamine, and cyclics such as pyrrolidine, methylpyrrolidine, piperidine, methylpiperidine, piperazine, morpholine Examples include amines.
  • cyclic tertiary amine examples include N-methylpyrrolidine, N-ethylpyrrolidine, N-methylpiperidine, N-methylmorpholine, quinuclidine, diazabicycloundenecene and diazabicyclononene.
  • the reason why these amines can be used among the tertiary amines is that they are relatively strong bases because of the cyclic structure, and it is possible to prevent silica from being gelled during heating in the subsequent step (B).
  • ammonia and water-soluble amines are preferable, and amines having a boiling point of 120 ° C. or lower are more preferable.
  • ammonia, methylamine, dimethylamine, ethylamine, diethylamine, propylamine, dipropylamine, Isopropylamine and diisopropylamine are particularly preferred. Since these bases have a relatively low boiling point (for example, approximately 120 ° C. or less), they can be easily removed by distillation or the like, and hardly remain in the aqueous dispersion and adversely affect the purity of the silica sol.
  • Said base may be used individually by 1 type, and may use 2 or more types together.
  • the method of mixing the base and the molar ratio (base / SiO 2 ) of the total addition amount of the base to the alkoxysilane-derived silicon can also be adjusted as appropriate without departing from the scope of the present invention.
  • the temperature range of the aqueous dispersion is 150 to 350 ° C., preferably 170 to 350 ° C., more preferably 190 to 350 ° C.
  • the denseness of a silica particle is grasped
  • the time for hydrothermal treatment of the aqueous dispersion within the above temperature range varies depending on the treatment temperature, and the target particles can be obtained in a shorter time as the temperature increases.
  • the apparatus for hydrothermal treatment is not particularly limited, and a known apparatus may be used as long as it does not adversely affect the denseness, moisture absorption resistance and purity of the silica particles.
  • silica particles of the present embodiment high-purity silica excellent in denseness and moisture absorption resistance is obtained using alkoxysilane, which is advantageous in that high-purity silica particles are easily obtained. Particles can be produced. If the silica particles after production are contained, a high-purity silica sol excellent in denseness and moisture absorption resistance can be produced.
  • Step (A) is a step of obtaining an aqueous dispersion of silica particles having an average primary particle size of 3 to 20 nm by hydrolysis of alkoxysilane as described above.
  • an aqueous dispersion of such silica particles can be obtained. If necessary, by-produced alcohol, excess organic solvent, base Obtained by removing catalyst and the like.
  • Water used in the aqueous medium may be pure water or ultrapure water such as ion exchange water, ultrafiltration water, reverse osmosis water, or distilled water.
  • ultrapure water such as ion exchange water, ultrafiltration water, reverse osmosis water, or distilled water.
  • hydrophilic organic solvent examples include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, ethylene glycol, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, acetone, tetrahydrofuran, and diethylene glycol. Not limited. These hydrophilic organic solvents may be used alone or in combination of two or more. Preferred organic solvents are methanol, ethanol, propanol, acetone and the like which have a low boiling point and can be easily removed in a later step.
  • An alkoxysilane is an alkyl ester of a silicic acid monomer or a silicic acid oligomer having a polymerization degree of 2 to 3 and having an alkyl group having 1 to 2 carbon atoms from the viewpoint of solubility in a medium and availability.
  • TMOS tetramethyl silicate
  • TEOS tetraethyl silicate
  • methyl triethyl silicate dimethyl diethyl silicate, trimethyl ethyl silicate, trialkyl silicate having 1 to 2 carbon atoms in the alkyl group, and the like
  • An alkoxysilane may be used individually by 1 type, and may use 2 or more types together.
  • mixed esters having different alkyl groups in the molecule and mixtures thereof can also be used.
  • the base catalyst is preferably ammonia, primary amine, or secondary amine, more preferably ammonia or an amine having a boiling point of 100 ° C. or lower.
  • the hydrolyzed silica sol dispersion can be concentrated by a known method such as distillation or ultrafiltration. At this time, it is possible to remove part or most of the base used as a catalyst and the alcohol produced by the reaction.
  • the silica sol obtained by hydrolysis of alkoxysilane in this embodiment has a relatively small particle size, specifically, an average primary particle size of 3 converted from the specific surface area measured by the nitrogen adsorption method. Those with ⁇ 20 nm are used.
  • dissolution and precipitation are improved by increasing the surface area, and silica particles can be efficiently grown.
  • large particles that cannot be completely dissolved remain as nuclei, and particle growth is prevented from being promoted around the remaining large nuclei, thereby obtaining silica particles having excellent compactness not only on the surface but also inside. Be able to.
  • the hydrothermal treatment in the step (B) from the group consisting of ammonia, primary amine, secondary amine and cyclic tertiary amine in an aqueous dispersion of silica particles having an average primary particle size of 3 to 20 nm. It is preferable to adjust the amount of at least one base selected so that the molar ratio (base / SiO 2 ) is 0.002 to 0.20.
  • the preferred range of the molar ratio (base / SiO 2 ) here varies depending on the type of base. For example, when ammonia is used as the base, the molar ratio (base / SiO 2 ) is 0. It is preferably in the range of .005 to 0.20.
  • the molar ratio (base / SiO 2 ) is preferably in the range of 0.002 to 0.10.
  • the silica solubility is lowered, so that particle growth is difficult to occur, and as a result, it is difficult to obtain dense particles. Further, when a part of silica is dissolved during heating and the pH is lowered, an unstable region is formed, and the whole may be gelled or a part of particles may be fused to generate a gel-like material. On the other hand, if the molar ratio (base / SiO 2 ) is larger than the above range, the solubility of silica in the system is too high and particles are likely to be fused, and is unnecessary from the inside of the silica particles and the aqueous dispersion. It may take time to remove the base.
  • a more preferable range of the amount of the base is that when ammonia is used as the base, the molar ratio (base / SiO 2 ) is preferably in the range of 0.009 to 0.20.
  • the molar ratio (base / SiO 2 ) is preferably in the range of 0.006 to 0.10. Within these ranges, spherical particles are obtained, which are useful as nanofillers that can be highly filled into resins and the like.
  • FIG. 1 is a graph showing the relationship between the average primary particle diameter of the silica particles after production, the amount of moisture absorbed at a relative humidity of 50%, and the molar ratio (base / SiO 2 ).
  • the average primary particle diameter of silica particles as a raw material is 11 nm
  • the concentration of silica particles in the aqueous dispersion is 10% by mass
  • the temperature at which the aqueous dispersion is hydrothermally treated is 250 ° C.
  • the hydrothermal treatment An example in which the time to perform is 5 hours is shown.
  • the solid line when changing the molar ratio (base / SiO 2), the average primary particle size of the silica particles after preparation, the molar ratio (base / SiO 2), are shown relationships of. Further, the dotted line shows the relationship between the moisture absorption amount at a relative humidity of 50% and the molar ratio (base / SiO 2 ) when the molar ratio (base / SiO 2 ) is changed. Further, an example using ammonia as a base is shown by a round plot, and an example using a secondary amine such as diisopropylamine is shown by a triangular plot.
  • a high-purity silica particle excellent in denseness and moisture absorption resistance can be obtained using a weak base such as ammonia. Can be manufactured.
  • the particle diameter is smaller even in the range of a small molar ratio (base / SiO 2 ) than in the example shown by the solid line using ammonia.
  • Large silica particles can be obtained. This is because secondary amines such as diisopropylamine are generally stronger bases than ammonia, so that the solubility of silica particles in the medium is promoted and dissolution precipitation is promoted.
  • the medium can be appropriately stirred. Further, the above base remains in the medium from which the silica particles are obtained, and the active silicic acid is dissolved. Therefore, in this embodiment, a part of the base can be removed from the medium. According to this, the pH in the system can be lowered, and the active silicic acid remaining in the medium can be deposited on the surface of the silica particles. Therefore, it is possible to reduce the active silicic acid and prevent an adverse effect on the stability of the aqueous dispersion of silica particles.
  • Examples of the method for removing the base include a distillation method, an ion exchange method, and an ultrafiltration method, and are not particularly limited, but a method of volatilizing the base by heating so that the temperature of the medium is equal to or higher than the boiling point is preferable. According to this, all or a part of the base can be reliably removed from the medium.
  • the entire amount of the liquid in the container was taken out of the vessel and concentrated to 970 g under a reduced pressure of 100 Torr using a rotary evaporator.
  • ammonia determined by titration with an SiO 2 concentration of 10.2% by mass, pH 7.5, acid.
  • a silica sol having a concentration of 0.001% by mass, a dynamic scattering method particle size of 10.8 nm, and an average primary particle size (hereinafter referred to as a BET method particle size) of 10 nm converted from a specific surface area measured by a nitrogen adsorption method was obtained. .
  • the silica powder obtained by drying this silica sol had a moisture absorption per surface area of 0.42 mg / m 2 and a particle refractive index of 1.447.
  • Raw material silica sol [2] was prepared as follows. In the same reaction vessel as in Production Example 1, 2244 g of pure water and 3.4 g of 28% by mass ammonia water were charged, and the liquid temperature in the vessel was kept at 80 ° C. by an oil bath. Next, 253 g of commercially available tetramethyl silicate (TMOS) was continuously fed into the liquid over 0.9 hours in this vessel under stirring. After completion of this supply, stirring was continued for 1 hour while maintaining the liquid temperature in the container at 80 ° C., then the liquid temperature was raised to 90 ° C., and stirring was continued at this temperature for 1 hour to obtain a dispersion of silica particles. It was.
  • TMOS tetramethyl silicate
  • the liquid in the container was evaporated in the same manner as in Production Example 1, and the liquid was concentrated to 99 ° C. by discharging the vapor out of the vessel.
  • the entire amount of the solution was taken out of the vessel and concentrated to 970 g under a reduced pressure of 100 Torr by a rotary evaporator.
  • the ammonia concentration determined by titration with an SiO 2 concentration of 10.2% by mass, pH 7.4 and acid was 0.0075%.
  • a silica sol having a dynamic scattering particle diameter of 15 nm and a BET particle diameter of 11 nm was obtained.
  • the moisture absorption per surface area of the silica powder obtained by drying the silica sol was 0.43 mg / m 2 , and the refractive index of the silica particles was 1.446.
  • Raw material silica sol [3] was prepared as follows. In the same reaction vessel as in Production Example 1, 2214 g of pure water and 25.3 g of 28 mass% ammonia water were charged, and the liquid temperature in the vessel was kept at 80 ° C. by an oil bath. Next, 260.5 g of commercially available tetraethyl silicate (TEOS) was continuously added dropwise to this stirred vessel over 3 hours. After completion of this supply, stirring was continued for 1 hour while maintaining the liquid temperature in the container at 80 ° C., then the liquid temperature was raised to 90 ° C., and stirring was continued at this temperature for 1 hour to obtain a dispersion of silica particles. It was.
  • TEOS tetraethyl silicate
  • the liquid in the container was evaporated in the same manner as in Production Example 1, and the liquid was concentrated to 99 ° C. by discharging the vapor out of the vessel.
  • the entire amount of the solution was taken out of the vessel and concentrated to 980 g under a reduced pressure of 100 Torr by a rotary evaporator.
  • the residual ammonia amount determined by titration with an SiO 2 concentration of 10% by mass, pH 7.8 and acid was 0.0068% by mass.
  • a silica sol having a dynamic scattering particle diameter of 23 nm and a BET particle diameter of 16 nm was obtained.
  • the silica powder obtained by drying this silica sol had a moisture absorption per surface area of 0.21 mg / m 2 and a refractive index of 1.446.
  • Raw material silica sol [4] was prepared as follows. In the same reaction vessel as in Production Example 1, 2229 g of pure water and 10.1 g of 28 mass% ammonia water were charged, and the liquid temperature in the vessel was kept at 90 ° C. by an oil bath. Next, 260.5 g of commercially available tetraethyl silicate (TEOS) was continuously added dropwise to the stirred vessel over 2.5 hours. After completion of the supply, stirring was continued for 2 hours while maintaining the liquid temperature in the container at 90 ° C. to obtain a dispersion of silica particles. Next, the liquid in the container was evaporated in the same manner as in Production Example 1, and the liquid was concentrated to 99 ° C. by discharging the vapor out of the vessel.
  • TEOS tetraethyl silicate
  • the entire amount of the solution was taken out of the vessel and concentrated to 980 g under a reduced pressure of 100 Torr using a rotary evaporator.
  • the residual ammonia amount determined by titration with an SiO 2 concentration of 10 mass%, pH 7.7 and acid was 0.0049 mass%.
  • a silica sol having a dynamic scattering particle diameter of 26.7 nm and a BET particle diameter of 19 nm was obtained.
  • a commercially available silica sol (trade name “Quartron (registered trademark) PL-06L” manufactured by Fuso Chemical Industry Co., Ltd.) has a residual ammonia content determined by titration with an SiO 2 concentration of 6.3% by mass and pH 7.5. The amount used was 0.0054% by mass and the BET particle diameter was 8 nm. The hygroscopic amount per surface area of the silica powder obtained by drying this commercially available silica sol was 0.48 mg / m 2 , and the refractive index of the silica particles was 1.440.
  • a commercially available silica sol (trade name “Quartron (registered trademark) PL-3” manufactured by Fuso Chemical Industry Co., Ltd.) has a residual ammonia concentration determined by titration with an acid having a SiO 2 concentration of 19.5 mass% and a pH of 7.3. The amount used was 0.0026% by mass and the BET particle size was 35 nm.
  • the moisture absorption per surface area of the silica powder obtained by drying this commercially available silica sol was 1.08 mg / m 2 , and the refractive index of the silica particles was 1.390.
  • Example 1 180 g of silica sol (raw material silica sol [1]) produced in Production Example 1 (SiO 2 concentration 10.2 mass%, BET method particle diameter 10 nm) has a molar ratio of (total amount of base added) / (silica) of 0.0125. As a result, 0.253 g of 25% aqueous ammonia was added and sufficiently mixed to obtain a mixed solution.
  • the total amount of base added refers to the total amount of ammonia remaining in the raw material silica sol and the newly added base species.
  • this mixed solution was put into a 300 mL stainless steel autoclave, heated to 250 ° C. with a dryer, and held for 5 hours.
  • silica sol has a dynamic light scattering particle size of 49.5 nm and a BET method particle size of 32 nm.
  • the moisture absorption per surface area of the silica powder from which this silica sol is dried is 0.19 mg / m 2 ,
  • the refractive index was 1.454.
  • the amount of sodium contained in the silica particles was 1 ppm.
  • Example 2 to 13 Using the same apparatus as in Example 1, silica sol was prepared in the same manner by changing the conditions such as the BET method particle diameter, base species, molar ratio, and autoclave treatment temperature as shown in Table 1, and the silica particles were prepared. evaluated.
  • Example 3 A silica sol was prepared using the same apparatus and method as in Example 1 except that 0.609 g of 10% sodium hydroxide solution was added as a base species, and the molar ratio of (total amount of base added) / (silica) was 0.0053. Produced. The moisture absorption per surface area of the silica powder obtained by drying this silica sol was 0.14 mg / m 2 , and the refractive index of the silica particles was 1.456. However, when metal impurities were analyzed after cation exchange of the obtained silica sol, the amount of sodium contained in the silica particles was 80 ppm. From this, it was found that when sodium was used, sodium was taken into the particles during particle growth, and high-purity silica particles could not be obtained.
  • Example 4 A silica sol was prepared in the same container and method as in Example 1 except that the SiO 2 concentration of the raw material silica sol [6] was adjusted to 10% by mass and 0.236 g of 25% aqueous ammonia was added.
  • the silica powder obtained by drying the silica sol had a moisture absorption amount per surface area of 0.50 mg / m 2 and a refractive index of 1.390. The moisture absorption amount was not low, and the particles could not be densified.
  • the average primary particle diameter was measured by the nitrogen adsorption method (BET method) as follows for the silica particles used as raw materials in the above Examples and Comparative Examples and the silica particles obtained by the above Examples and Comparative Examples. That is, the silica sol was subjected to cation exchange to remove the base, and the silica gel obtained by drying in an 80 ° C. vacuum dryer was pulverized in a mortar and further dried at 180 ° C. for 3 hours to obtain a silica dry powder. The specific surface area (m 2 / g) of this powder by the nitrogen adsorption method was measured, and the average primary particle size was determined by the following formula (1). The measurement was performed using Monosorb (manufactured by Quantachrome Corporation). As described above, in Comparative Examples 1 and 2, gelation of the silica particles was confirmed, and the average primary particle size could not be calculated.
  • the hygroscopic property was measured as follows. That is, the same 180 g dry powder as that used for measurement of the specific surface area was collected in 0.2 g weighing bottles, and the weight was measured. The bottle was allowed to stand for 48 hours in an atmosphere of 23 ° C. and 50% relative humidity with the lid open, and then the lid was capped and the weight was measured again. And based on the BET method specific surface area, the amount of moisture absorption per specific surface area was calculated from the following formula (2).
  • the refractive index was measured as follows. That is, for the silica sols of Examples 1 to 13 and Comparative Examples 1 to 4, 0.1 g of the same dry powder used for the measurement of the specific surface area was placed in a 10 cc glass bottle, and then the ratio of special grade 2-propanol and special grade toluene was determined. When the powder in the container became transparent, the supernatant was measured with an Abbe refractometer to obtain the refractive index of the silica particles.
  • silica particle shape after hydrothermal treatment About the silica particle obtained by said Example and comparative example, the shape was measured as follows using the transmission electron micrograph. That is, for about 300 particles, the longest part of the particle is measured as the major axis D L , the longest part is perpendicular to the line connecting the major axes, and the longest part is measured as the minor axis D S , and (D L / D S ) Was evaluated as an aspect ratio, and an arithmetic average was obtained.
  • Examples 1 to 13 were produced by the method having the steps (A) to (B) described above, whereby high-purity silica particles and silica sols excellent in denseness and moisture absorption resistance were obtained. Was found to be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

アルコキシシランを原料とし、下記の要件(a)~(c)を満たす。 (a)シリカ固形分に対するアルカリ金属元素の含有量が5ppm以下である。 (b)相対湿度50%における吸湿量が0.25mg/m2以下、かつ液浸法による屈折率が1.450~1.460である。 (c)窒素吸着法により測定される比表面積から換算される平均一次粒子径が10~100nmである。

Description

シリカ粒子及びその製造方法並びにシリカゾル
 本発明は、シリカ粒子及びその製造方法並びにシリカゾルに関する。
 従来、水ガラスを原料に用いて中和又はイオン交換によりシリカゾルを得る方法が知られている。また、四塩化珪素の熱分解法によりシリカ微粉末を得る方法も知られている。高純度のシリカゾルの製法として、塩基性触媒を含有するアルコール-水溶液中でアルコキシシランを加水分解させる方法も知られている。例えば、数モル/リットルのアンモニア及び数モル/リットル~15モル/リットルの水を含むアルコール溶液に、0.28モル/リットルのテトラエチルシリケートを添加して加水分解することにより、50~900nmのシリカ粒子が得られることが報告されている(例えば非特許文献1参照)。
 また、シリカ粒子分散液の製造方法として、29Si-NMRスペクトル法により測定されたスペクトルにおいて、化学シフト-94ppm~-103ppmに発現するピークのシグナル面積をQ3とし、化学シフト-103ppm~-115ppmに発現するピークのシグナル面積をQ4とした場合、Q4/Q3の値が0.5~5.0であるシリカ未処理体を水熱処理する方法が提案されている(例えば特許文献1参照)。特許文献1では、その実施例によると、動的光散乱法により測定した分散粒径がメジアン径58nm、TEM観察で求めた粒子径が平均44nmであるシリカ未処理体を用いるようになっている。
 また、シリカ系中空粒子の製造方法として、塩基性触媒の存在下で珪酸や珪酸塩を加水分解縮合させ、炭酸カルシウム等のコア粒子を被覆するシリカ系被覆層を形成し、このシリカ系被覆層を水熱処理する方法が提案されている(例えば特許文献2参照)。
 また、研磨用シリカゾルの製造方法として、NaOH、KOH及び第四級アミン等のアルカリ種を添加して水熱処理する方法が提案されている(例えば特許文献3参照)。
特開2010-83744号公報 特開2009-234854号公報 特開2012-111869号公報
ジャーナル・オブ・コロイド・アンド・インターフェース・サイエンス(J. Colloid and Interface Sci.) 第26巻(1968年)第62~69頁
 しかしながら、水ガラスを原料に用いて中和又はイオン交換によりシリカゾルを得る方法では、金属等の不純物を完全に除去することができない。また、四塩化珪素の熱分解法では、得られるシリカ微粉末が凝集粒子であり、水等に分散させても単分散のゾルを得ることができない。更に、塩素イオンが不純物として残存する場合、シリカゾルの純度が低くなり、高純度が要求される用途に用いることができない。
 また、非特許文献1に記載の方法では、シリカ粒子内部に未加水分解のアルコキシ基が多く残存し、加熱又は加水分解によってアルコールの脱離が起きる。このため、緻密性の高いシリカ粒子が得られにくく、耐吸湿性に優れたシリカゾルを製造することが困難であった。また、加水分解によってアルコキシ基を脱離させた後、シリカ粒子内部に細孔やシラノール基が残存する場合があり、シリカを樹脂のフィラーとして用いた際に、樹脂の特性が損なわれるおそれもあった。
 また、特許文献1に記載の方法では、加熱処理後も見かけの粒子径は殆ど変わらず、未処理体の外殻部でのみシリカの緻密化が起きることとなる。このため、粒子内部は多孔質となり、耐吸湿性に優れたシリカを製造できなかった。
 また、特許文献2に記載の方法では、酸に可溶な微粒子の外部に珪酸や珪酸塩を加水分解縮合してシリカ系被覆層を形成した後、内部の粒子を除去するものであるため、製造原理上、やはり緻密化されたシリカ粒子を得ることができず、耐吸湿性に優れたシリカを製造できなかった。
 更に、特許文献3に記載の方法では、原料として珪酸アルカリを使用し、NaOH、KOH及び第四級アミン等のアルカリ種を添加するため、該アルカリ種が粒子内部に取り込まれやすく、また粒子内部から該アルカリ種を除去するのも困難であった。このため、緻密性に優れ、かつ高純度なシリカ粒子を製造できなかった。
 本発明はこのような事情に鑑み、緻密性及び耐吸湿性に優れた高純度なシリカ粒子及びシリカ粒子の製造方法並びにシリカゾルを提供することを目的とする。
 上記課題を解決する本発明の態様であるシリカ粒子は、アルコキシシランを原料とし、下記の要件(a)~(c)を満たすことを特徴とする。
(a)シリカ固形分に対するアルカリ金属元素の含有量が5ppm以下である。
(b)相対湿度50%における吸湿量が0.25mg/m以下、かつ液浸法による屈折率が1.450~1.460である。
(c)窒素吸着法により測定される比表面積から換算される平均一次粒子径が10~100nmである。
 また、透過型電子顕微鏡写真から求められる粒子のアスペクト比が1.0~2.0であることが好ましい。尚、アスペクト比は1に近くなるほど真球に近いことを示す。
 上記課題を解決する本発明の他の態様であるシリカ粒子の製造方法は、下記の工程(A)及び(B)を有することを特徴とする。
(A)アルコキシシランをアンモニア、1級アミン、2級アミン及び環状3級アミンからなる群から選ばれる少なくとも1種の塩基の共存下で加水分解して、窒素吸着法により測定される比表面積から換算される平均一次粒子径が3~20nmであるシリカ粒子の水分散液を得る工程。
(B)前記シリカ粒子の水分散液を150~350℃で水熱処理する工程。
 また、前記(B)工程の水熱処理を行う前に平均一次粒子径が3~20nmであるシリカ粒子の水分散液中のアンモニア、1級アミン、2級アミン及び環状3級アミンからなる群から選ばれる少なくとも1種の前記塩基の量をモル比(塩基/SiO)が0.002~0.20となるように、調節することが好ましい。
 上記課題を解決する本発明の更に他の態様であるシリカゾルは、上記のシリカ粒子を含有することを特徴とする。
 本発明によれば、緻密性及び耐吸湿性に優れた高純度なシリカ粒子及びシリカ粒子の製造方法並びにシリカゾルを提供できる。
塩基種とその添加量との関係等を説明するための図である。
 本実施形態のシリカ粒子は、アルコキシシランを原料とし、下記の要件(a)~(c)を満たすものである。
(a)シリカ固形分に対するアルカリ金属元素の含有量が5ppm以下である。
(b)相対湿度50%における吸湿量が0.25mg/m以下、かつ液浸法による屈折率が1.450~1.460である。
(c)窒素吸着法により測定される比表面積から換算される平均一次粒子径が10~100nmである。
 以下、本実施形態のシリカ粒子について説明する。
 本実施形態はアルコキシシランを原料とするものである。これによれば、水ガラスを用いる従来の方法と比較して、高純度なシリカ粒子を容易に得やすくなる。すなわち、水ガラスを用いる従来の方法では、その天然物原料に由来する金属不純物が粒子内部に残存するため、高純度なシリカ粒子を得にくくなる。また、金属不純物を取り除くための追加プロセスが必要となる場合もある。これに対し、本実施形態によれば、上記のような金属不純物が混入するのを回避でき、それを取り除く追加プロセスの必要性もなくなる。
 つまり、アルコキシシランを原料とする本実施形態は、水ガラスを用いる従来の方法で金属不純物となる金属種を実質的に含有しないものである。ここでの金属種としては、ナトリウム、鉄、アルミニウム等が挙げられるが、代表的にはナトリウムをはじめとするアルカリ金属元素である。また、実質的に含有しないとは、シリカ固形分に対して5ppm以下である。
 言い換えれば、本実施形態は、要件(a)シリカ固形分に対するアルカリ金属元素の含有量が5ppm以下であることを具備する。アルカリ金属元素はナトリウムに限定されない。複数のアルカリ金属元素が含まれていてもよいが、その含有量の総量は、シリカ固形分に対して5ppm以下である必要がある。
 上記のように本実施形態では、アルコキシシランを原料とするため、高純度なシリカ粒子を容易に得やすくなる。従って、本実施形態のシリカ粒子は多様な用途への適用性に優れ、高純度が要求される電子材料にも適用可能となる。加えて、耐吸湿性にも優れるため、例えば樹脂のフィラーとして高充填した際に樹脂の耐吸湿性を損ねる可能性も少ない。
 尚、高純度なシリカ粒子を得る点からすれば、高純度の珪素化合物を原料として気相反応によってシリカ粒子を成長させるような他の従来の方法でも、水ガラスを用いる上記の従来の方法に比べて一般に有利になりやすい。しかし、この種の従来の方法では焼成工程が必要であり、かかる焼成工程を経ることでシリカ粒子が二次的に凝集し、分散性が悪くなる。その結果、シリカ粒子を水等に分散させても単分散のシリカゾルを得ることができず、本実施形態のように、シリカを多様な用途に容易に用いることができない。特に樹脂中に高濃度で充填するような用途には適していない。
 アルコキシシランは、媒体への溶解性や入手容易性等の観点から、珪酸モノマー又は重合度2~3の珪酸オリゴマーのアルキルエステルであって、かつ、アルキル基が1~2の炭素数を有するものを用いることができ、好ましくは、テトラメチルシリケート(TMOS)、テトラエチルシリケート(TEOS)、メチルトリエチルシリケート、ジメチルジエチルシリケート、トリメチルエチルシリケート、及びアルキル基の炭素数が1~2のトリアルキルシリケート等を用いることができる。
 アルコキシシランは、1種単独で用いてもよく2種以上を併用してもよい。アルコキシシランとして、分子内に異なったアルキル基を有する混合エステルや、これらの混合物も用いることができる。
 次に本実施形態は、要件(b)相対湿度50%における吸湿量が0.25mg/m以下、かつ液浸法による屈折率が1.450~1.460であることを具備する。
 相対湿度50%における吸湿量が上記の範囲より大きいと、シリカ粒子の緻密性や耐吸湿性が低いことに起因して、シリカ粒子を樹脂コンポジット材料等に用いた場合、樹脂コンポジットの耐吸湿性が低下しやすくなる。
 要件(b)の吸湿量の値は、シリカ粒子の単位表面積あたりの水分の吸着量に相当するものであり、一例として実施例で示す手段によって測定できる。このような値は、シリカ粒子の吸湿のうち、粒子内部以外への水分吸着の影響、すなわち粒子径の影響を排除し得るものである。つまり、要件(b)の吸湿量の値は、粒子内部の吸湿特性の指標として把握され得るものである。
 ただし、このような吸湿量の値は、所定条件、例えば粒子内部に水分がすべて到達することや、粒子表面に水分が一~二層吸着することを仮定したものである。粒子の性状によっては、この吸湿量の測定で内部に吸着し得る水分の検出が充分行われないことがある。例えば、粒子内部が多孔質であっても、粒子の外郭が緻密な状態になった場合に水蒸気の内部への浸透が遅くなり、この吸湿量の測定では評価しきれないことがある。そこで本実施形態の要件(b)では、吸湿量に加えて、液浸法による屈折率が1.450~1.460であることを規定している。屈折率は粒子が緻密であるほど高い値を示すため、このような要件(b)によれば、吸湿量とは別に、液浸法による屈折率によっても粒子内部の吸湿特性を判断できる。屈折率は、一例として実施例で示す手段によって測定できる。
 上記の吸湿量と屈折率とは、何れもシリカ粒子内部の緻密性に関する特性を評価し得るものであり、ある程度は相関関係が認められる。一方、上記の吸湿量は、上記の所定条件を仮定して得られるものであるため、両者に完全な相関関係は認められない。上記の吸湿量と屈折率との何れの要件を満たすことで要件(b)が満たされるが、少なくとも何れか一方を満たさないと認められる場合には要件(b)は満たされない。
 液浸法による屈折率が上記の範囲内であれば、シリカ粒子が緻密性や耐吸湿性に優れたものであると判断できる。このようなシリカ粒子は、樹脂コンポジット材料等に用いたときに、樹脂コンポジットの耐吸湿性に悪影響を与えることが少ない。
 尚、屈折率は、乾燥粉末を液体に浸漬した際に粒子と液体の屈折率が等しくなった場合に粒子が透明に見えることを利用し、以下の方法で測定したものである。本出願の実施例では2種の有機溶媒の混合比を試料と同等の屈折率になるように調節して混合し、この混合液の屈折率をアッベの屈折計で測定する簡易法を用いているが、屈折率の測定方法は前記の例に制限されない。
 更に本実施形態は、要件(c)窒素吸着法により測定される比表面積から換算される平均一次粒子径が10~100nmであることを具備する。この窒素吸着法による比表面積は、シリカ粒子の単位質量あたりの表面積であり、平均一次粒子径は、この比表面積から計算されたシリカ粒子の一次粒子径の平均値である。このような平均一次粒子径は、一例として実施例に示す方法によって測定できる。
 平均一次粒子径が上記の範囲より大きいと、ナノ粒子としての特性が発揮されにくくなり、シリカ粒子を樹脂に含有させる場合、シリカ粒子を含有させることによる樹脂の各種特の改善効果が得られにくくなる。また、シリカ粒子のゾルを樹脂コンポジット材料等に用いたときに透明性が失われることがある。
 一方、平均一次粒子径が上記の範囲より小さいと、媒体や樹脂へのシリカ粒子の分散性が低下し、シリカ粒子を高濃度に配合することが困難になる。また、シリカ粒子表面への水分吸着が増加しやすく、これを防止するために粒子表面を有機物で修飾する場合には、多くの修飾剤が必要となる。
 製造されるシリカ粒子の平均一次粒子径は、原料となるシリカ粒子の平均一次粒子径や、粒子を成長させる程度等、種々の要因に依存する。平均一次粒子径が大きいシリカ粒子を製造する場合には平均一次粒子径が小さいシリカ粒子を原料に用い、シリカ濃度を上げる、反応温度を上げる、加熱時間を延長する、塩基性の強い触媒を用いる等の種々の工程によってシリカの粒子成長性が大きくなるようにすればよい。また本発明で得られた粒子を原料に一部混合して、これを核粒子として更に成長させる方法で、大きい粒子を得ることができる。一方、平均一次粒子径が小さいシリカ粒子を製造する場合には、粒度分布の揃ったシリカ原料を用い、種々の工程によってシリカの粒子成長性が大きくならないようにすればよい。
 ただし、原料となるシリカ粒子として平均一次粒子径が大きいものを用いる場合、添加される塩基種にもよるが、溶解しきらない粒子が核となって残存し、その残存する核の周りで粒子が成長しやすくなることがある。従って、原料となるシリカ粒子の平均一次粒子径は、塩基種や製造条件等を考慮して選択することが好ましい。
 以上説明した本実施形態のシリカ粒子は、アルコキシシランを原料とし、上記の要件(a)~(c)を満たすため、緻密性及び耐吸湿性に優れた高純度なものとなる。よって、種々の用途に好適に適用できるようになり、例えば高純度が要求される電子材料にも適用可能となる。
 尚、本実施形態のシリカ粒子は、アルコキシシランを原料とするため、少なからず粒子内部にアルコキシシラン由来のアルコキシ基が残存する可能性がある。従って、アルコキシシランを原料とすることに起因して残存するアルコキシ基の量を測定可能であるならば、この残存量に基づいて、シリカ粒子がアルコキシシランを原料として得られたものであることを特定することが可能となる。
 ここで、製造後のシリカ粒子について、透過型電子顕微鏡写真から求められる粒子のアスペクト比が1.0~2.0であることが好ましい。尚、アスペクト比は1に近くなるほど真球に近いことを示す。このようなシリカ粒子は真球度が高いものであるため、例えば樹脂のフィラーとして高密度に充填できる。
 透過型電子顕微鏡(TEM)は公知のものを用いることができ、粒子のアスペクト比は粒子の一番長い部分を長径D、長径を結ぶ線と直行していて一番長い部分を短径Dとして測定できる。(D/D)をアスペクト比として評価し、およそ300個程度の粒子について、それぞれのアスペクト比を評価して算術平均を求めることができる。
 以上説明したシリカ粒子を含有すれば、緻密性及び耐吸湿性に優れた高純度なシリカゾルを提供できる。かかるシリカゾルは、樹脂コンポジット材料等に用いたときに、樹脂コンポジットの耐吸湿性に悪影響を与えることが少ない。そして、多様な用途への適用性に優れ、高純度が要求される電子材料にも適用可能となる。
 次に、本実施形態のシリカ粒子の製造方法について詳述する。本実施形態の製造方法は、下記の工程(A)及び(B)を有するものである。
(A)アルコキシシランをアンモニア、1級アミン、2級アミン及び環状3級アミンからなる群から選ばれる少なくとも1種の塩基の共存下で加水分解して、窒素吸着法により測定される比表面積から換算される平均一次粒子径が3~20nmであるシリカ粒子の水分散液を得る工程。
(B)前記シリカ粒子の水分散液を150~350℃で水熱処理する工程。
 まず本実施形態では、アルコキシシランをアンモニア、1級アミン、2級アミン及び環状3級アミンからなる群から選ばれる少なくとも1種の塩基の共存下で加水分解して、窒素吸着法により測定される比表面積から換算される平均一次粒子径が3~20nmであるシリカ粒子の水分散液を得る工程(A)を有する。この水分散液中のシリカ粒子は、上記の要件(a)~(c)を具備するシリカ粒子を製造するための原料となるものである。
 この原料となるシリカ粒子は、粒子径が比較的小さい、具体的には窒素吸着法により測定される比表面積から換算される平均一次粒子径が3~20nmのものである。これによれば、シリカ粒子の溶解析出性を向上させ、効率よく粒子成長させることができる。更に、溶解しきらない粒子が大きな核となって残存することも回避でき、残存する大きな核の周りで粒子が成長することを防止して、内部まで緻密性に優れたシリカ粒子が得られるようになる。
 尚、本実施形態では、原料として平均一次粒子径が上記の3~20nmであるシリカ粒子を用い、平均一次粒子径が例えば10~100nmであるシリカ粒子を製造できるが、製造後のシリカ粒子の平均一次粒子径は、基本的には原料となるシリカ粒子の平均一次粒子径よりも大きくなる。つまり、原料となるシリカ粒子の平均一次粒子径として例えば20nmのものを用いた場合には、製造後のシリカ粒子の平均一次粒子径は基本的には20nmよりも大きくなる。
 原料となるシリカ粒子の緻密性も、本発明の要旨を変更しない範囲において制限されない。シリカ粒子が十分に溶解析出し、これが繰り返されれば、内部まで緻密性に優れたシリカ粒子が得られるようになる。
 水分散液は、水を主成分とする液体により得ることができる。ここでの水は、イオン交換水、限外ろ過水、逆浸透水、蒸留水等の純水又は超純水を用いることができる。電子材料に利用可能な高純度なシリカゾルを製造する場合には、特に不純物の少ない純水や超純水を好適に用いることができるが、前記の例に制限されない。本発明の要旨を変更しない範囲において、各種の添加剤や親水性の有機溶媒が含まれていても構わない。
 親水性の有機溶媒としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、エチレングリコール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、アセトン、テトラヒドロフラン及びジエチレングリコール等が挙げられるが、前記の例に制限されない。これらの親水性の有機溶媒は、1種単独で用いてもよく2種以上を併用してもよい。
 アルコキシシランを加水分解して縮重合するアルコキシド法によれば、上記のように、高純度なシリカ粒子を容易に得やすくなる。アルコキシシランは上記と同様のものを用いることができ、原液として添加してもよく有機溶媒で希釈して添加してもよい。
 また本実施形態では、上記の水分散液中のアンモニア、1級アミン、2級アミン及び環状3級アミンからなる群から選ばれる少なくとも1種の塩基の量を調整する工程を含むことが望ましい。この工程は原料シリカゾルに対する塩基の総添加量のモル比(塩基/SiO)が0.002~0.20となるように調節する工程である。従って(A)工程においてアルコキシシランの加水分解に使用したアンモニア又はアミンがシリカ分散液中に適切な量残っている場合にはこの塩基の添加は省略することが可能である。一方で(A)工程で過剰の塩基触媒を用いた場合にはこの量が適量以下になるように減少させることが好ましい。減少させる方法としては蒸留法、限外ろ過による洗浄、及びイオン交換法等が挙げられるが、特に限定されるものではない。
 また(A)工程で得られたシリカゾル中の塩基の含有量が少ない場合には、塩基を添加して原料シリカゾルに対する塩基の総添加量のモル比(塩基/SiO)が0.002~0.20となるように調節することが好ましい。このときの塩基は(A)工程で用いたものと同じであっても、異なっても良い。このような塩基の量の調節により、シリカ粒子の溶解と析出のバランスを粒子成長に適した状態にすることができる。特に本実施形態では、原料のシリカ粒子の平均一次粒子径や水熱処理の温度を所定範囲に調節することで、この種の弱塩基を用いて緻密性及び耐吸湿性に優れた高純度なシリカ粒子が得られるようになっている。
 従って、本実施形態では、アルカリ金属等を含む強塩基の使用を省略できるので、粒子内部に塩基種、例えばアルカリ金属が混入することを回避できる。シリカ固形分に対するアルカリ金属元素の含有量が5ppm以下であるとする上記の要件(a)も満たされやすくなる。
 (A)工程で使用可能な塩基触媒はアンモニア、1級アミン、2級アミン、環状3級アミンである。1級アミンとしては、例えばメチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、ペンチルアミン、ヘキシルアミン、アミノシクロヘキサン、メトキシエチルアミン、エトキシエチルアミン、3-メトキシプロピルアミン、3-エトキシプロピルアミン、エチレンジアミン、ヘキサメチレンジアミン、N,N-ジメチルエチレンジアミン、3-(ジエチルアミノ)プロピルアミン、3-(ジブチルアミノ)プロピルアミン等の脂肪族アミン類;アリルアミン等の不飽和アルキルアミン類;ベンジルアミン、フェネチルアミン、キシリレンジアミン等の芳香族アミン類が例示される。
 2級アミンとしては、例えばジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン等の脂肪族モノアミン類;ジフェニルアミン、ジベンジルアミン等の芳香族モノアミン類;N-メチルベンジルアミン、N-エチルベンジルアミン、N-ブチルベンジルアミン、N-ペンチルベンジルアミン、N-ヘキシルベンジルアミン等のベンジルアミン類、ピロリジン、メチルピロリジン、ピペリジン、メチルピペリジン、ピペラジン、モルホリン等の環状アミン類が挙げられる。
 環状3級アミンとしては、例えばN-メチルピロリジン、N-エチルピロリジン、N-メチルピペリジン、N-メチルモルホリン、キヌクリジン、ジアザビシクロウンデンセン、ジアザビシクロノネンが挙げられる。3級アミンのうち、これらのものが使用できる理由は、環状構造のため比較的強塩基であり、続く(B)工程において加熱中にシリカがゲル状になるのを防止できるためである。
 上記の塩基のうち、アンモニア、水溶性アミンが好ましく、沸点が120℃以下の低沸点のアミンがより好ましく、これらの中でもアンモニア、メチルアミン、ジメチルアミン、エチルアミン、ジエチルアミン、プロピルアミン、ジプロピルアミン、イソプロピルアミン、及びジイソプロピルアミンが特に好ましい。これらの塩基は、比較的沸点が低い(例えば概ね120℃以下である)ために蒸留等による除去が容易であり、水分散液に残留してシリカゾルの純度に悪影響を与えることが少ない。
 上記の塩基は1種単独で用いてもよく2種以上を併用してもよい。塩基を混合する方法や、上記のアルコキシシラン由来の珪素に対する上記の塩基の総添加量のモル比(塩基/SiO)についても、本発明の要旨を変更しない範囲において適宜調節が可能である。
 更に本実施形態では、(A)工程で得られたシリカの水分散液を150~350℃で水熱処理する工程(B)を有する。
 このような温度範囲内で水熱処理することにより、反応系内の珪酸の溶解度を向上させて粒子の表面の溶解及び核となる粒子への析出を促進させて粒子を成長させることができる。このときに溶解した珪酸の核粒子への結合が高温で行われることによって縮合度が高く、粒子内部に残存するシラノール基を少なくできるため、緻密性に優れたシリカ粒子が得られるようになる。従って、水分散液の温度範囲は150~350℃であり、170~350℃が好ましく、190~350℃がより好ましい。尚、シリカ粒子の緻密性は、上記の要件(b)に示すように、相対湿度50%における吸湿量や液浸法による屈折率によって把握される。
 上記の温度範囲内で水分散液を水熱処理する時間は、処理温度により異なり高温ほど短時間で目的とする粒子を得られる。
 水熱処理ための装置は特に制限されず、シリカ粒子の緻密性、耐吸湿性及び純度に悪影響を及ぼさないものである限り、公知の装置を用いて構わない。
 このように、本実施形態のシリカ粒子の製造方法によれば、高純度なシリカ粒子を容易に得る点で有利となるアルコキシシランを原料とし、緻密性及び耐吸湿性に優れた高純度なシリカ粒子を製造できる。製造後のシリカ粒子を含有すれば、緻密性及び耐吸湿性に優れた高純度なシリカゾルも製造できるようになる。
 更に、本実施形態のシリカ粒子の製造方法の一例について詳述する。
 (A)工程は、上記のようにアルコキシシランの加水分解により平均一次粒子径が3~20nmであるシリカ粒子の水分散液を得る工程である。アルコキシシランを塩基性の水性媒体若しくは水を含む親水性有機溶媒中で加水分解することによってそのようなシリカ粒子の水分散液が得られ、必要に応じ副生したアルコールや余剰の有機溶媒、塩基触媒等を除去して得られる。
 水性媒体で用いる水は、イオン交換水、限外ろ過水、逆浸透水、蒸留水等の純水又は超純水を用いることができる。電子材料に利用可能な高純度なシリカゾルを製造する場合には、特に不純物の少ない純水や超純水を好適に用いることができるが、前記の例に制限されない。本発明の要旨を変更しない範囲において、各種の添加剤や親水性の有機溶媒が含まれていても構わない。
 親水性の有機溶媒としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、エチレングリコール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、アセトン、テトラヒドロフラン及びジエチレングリコール等が挙げられるが、前記の例に制限されない。これらの親水性の有機溶媒は、1種単独で用いてもよく2種以上を併用してもよい。好ましい有機溶媒は沸点が低く、後の工程で除去が容易なメタノール、エタノール、プロパノール及びアセトン等である。
 アルコキシシランは、媒体への溶解性や入手容易性等の観点から、珪酸モノマー又は重合度2~3の珪酸オリゴマーのアルキルエステルであって、かつ、アルキル基が1~2の炭素数を有するものを用いることができ、好ましくは、テトラメチルシリケート(TMOS)、テトラエチルシリケート(TEOS)、メチルトリエチルシリケート、ジメチルジエチルシリケート、トリメチルエチルシリケート、及びアルキル基の炭素数が1~2のトリアルキルシリケート等を用いることができる。アルコキシシランは、1種単独で用いてもよく2種以上を併用してもよい。アルコキシシランとして、分子内に異なったアルキル基を有する混合エステルや、これらの混合物も用いることができる。
 塩基触媒はアンモニア、1級アミン、2級アミンが好ましく、アンモニア及び沸点が100℃以下のアミンが更に好ましい。加水分解を終えたシリカゾル分散液は蒸留、限外ろ過等の公知の方法で濃縮することが可能である。このときに触媒として用いた塩基及び反応で生成したアルコールの一部又は大部分を取り除くことも可能である。
 このようにしてアルコキシシランの加水分解で得るシリカゾルとして、本実施形態では、粒子径が比較的小さいもの、具体的には窒素吸着法により測定される比表面積から換算される平均一次粒子径が3~20nmであるものが用いられる。これにより続く(B)工程に於いて、表面積の増大により溶解析出性が向上され、シリカ粒子を効率よく成長させることができる。更に、溶解しきらない大きな粒子が核となって残存し、残存する大きな核の周りで粒子成長が促進されることを防止して、表面のみならず内部まで緻密性に優れたシリカ粒子が得られるようになる。
 ここで、(B)工程の水熱処理を行う前に平均一次粒子径が3~20nmであるシリカ粒子の水分散液中のアンモニア、1級アミン、2級アミン及び環状3級アミンからなる群から選ばれる少なくとも1種の塩基の量をモル比(塩基/SiO)が0.002~0.20となるように、調節することが好ましい。
 ここでのモル比(塩基/SiO)の好ましい範囲は、塩基の種類に応じて異なってくるが、一例として、塩基としてアンモニアを用いた場合には、モル比(塩基/SiO)は0.005~0.20の範囲内であることが好ましい。
 また、塩基としてプロピルアミンやジイソプロピルアミン等の1級アミンや2級アミンを用いた場合には、モル比(塩基/SiO)は0.002~0.10の範囲内であることが好ましい。
 モル比(塩基/SiO)が上記範囲より小さいと、シリカの溶解度が低下するため粒子成長が起き難くなり、結果として緻密な粒子が得られにくい。また加熱中にシリカの一部が溶解してpHが低下すると不安定な領域となり、全体がゲル化したり一部の粒子が融合してゲル状物が発生することがある。一方、モル比(塩基/SiO)が上記範囲より大きいと、系内のシリカの溶解度が高すぎて粒子の融着等がおきやすく、また、シリカ粒子の内部や水分散液から不必要な塩基を除去する作業に手間がかかることがある。
 また塩基の量として更に好ましい範囲は、塩基としてアンモニアを用いた場合には、モル比(塩基/SiO)は0.009~0.20の範囲内であることが好ましい。また、塩基としてプロピルアミンやジイソプロピルアミン等の1級アミンや2級アミンを用いた場合には、モル比(塩基/SiO)は0.006~0.10の範囲内であることが好ましい。これらの範囲では球状の粒子が得られ、樹脂等へ高充填できるナノフィラーとして有用である。
 ここで、所定条件下における、媒体に添加される塩基種と、その添加量と、の関係等について図1を用いて説明する。図1は、製造後のシリカ粒子の平均一次粒子径と、相対湿度50%における吸湿量と、モル比(塩基/SiO)と、の関係が示された図である。
 図1では、所定条件下、例えば原料となるシリカ粒子の平均一次粒子径が11nm、水分散液中のシリカ粒子の濃度が10質量%、水分散液を水熱処理する温度が250℃、水熱処理する時間が5時間である場合の例が示されている。
 図中、実線により、モル比(塩基/SiO)を変更したときの、製造後のシリカ粒子の平均一次粒子径と、モル比(塩基/SiO)と、の関係が示されている。また点線により、モル比(塩基/SiO)を変更したときの、相対湿度50%における吸湿量と、モル比(塩基/SiO)と、の関係が示されている。更に、丸いプロットにより、塩基としてアンモニアを用いた例が示されており、三角のプロットにより、ジイソプロピルアミン等の二級アミンを用いた例が示されている。
 実線に示されるように、特にアンモニアを用いた例では、モル比(塩基/SiO)が大きくなると、製造後のシリカ粒子の平均一次粒子径が大きくなり、相対湿度50%における吸湿量が低くなる。これは、モル比(塩基/SiO)が大きくなるにつれ、シリカ粒子の溶解析出を好適に促進させることができるためである。
 このように、本実施形態によれば、原料のシリカ粒子の平均一次粒子径等を調節することで、アンモニア等の弱塩基を用い、緻密性及び耐吸湿性に優れた高純度なシリカ粒子を製造できる。
 また、点線に示されるように、ジイソプロピルアミン等の二級アミンを用いた例では、アンモニアを用いた実線で示される例と比較して、小さいモル比(塩基/SiO)の範囲でも粒子径の大きなシリカ粒子が得られる。これは、ジイソプロピルアミン等の二級アミンは、アンモニアよりも一般に強塩基であるため、シリカ粒子の媒体への溶解性が促進され、溶解析出が促されるためである。
 水熱処理を行う際に媒体は適宜攪拌することができる。また、シリカ粒子が得られる媒体には、上記の塩基が残存しており、活性珪酸が溶解している。このため本実施形態では、媒体から塩基の一部を除去することができる。これによれば、系内のpHを低下させ、媒体に残存していた活性珪酸をシリカ粒子の表面に析出させることができる。よって、活性珪酸を減少させ、シリカ粒子の水分散液の安定性等に悪影響が生じることを防止できる。
 塩基の除去方法としては、蒸留法、イオン交換法、限外ろ過法等が挙げられ、特に制限されないが、媒体の温度が沸点以上となるように加熱し、塩基を揮発させる方法が好ましい。これによれば、媒体から、塩基の全部又は一部を確実に除去できる。
 以下、実施例に基づいて更に詳述するが、本発明はこの実施例により何ら限定されるものではない。
 <シリカゾルの作製>
 〔製造例1〕
 原料シリカゾル[1]を以下のように作製した。攪拌機及びコンデンサー付き3リットルのステンレス製反応容器に、純水2244gと28質量%のアンモニア水3.4gを仕込み、オイルバスにより容器内液温を80℃に保った。次いで、攪拌下のこの容器内に、253gの市販テトラメチルシリケート(TMOS)を、1.8時間かけて連続的に液中に供給した。この供給の終了後、容器内液温を80℃に保ったまま1時間攪拌を続けた後、液温を90℃まで上昇させ、この温度で1時間攪拌を続けてシリカ粒子の分散液を得た。次いで、容器につけたコンデンサーを枝付き管につけ替え、枝付き管の先に冷却管をつけてから反応液の温度を沸点まで上昇させ、容器内の液を蒸発させ、蒸気を器外に排出させることにより、液温が99℃になるまで濃縮した。
 次いで、容器内の液全量を器外に取り出し、これをロータリーエバポレーターにより100Torrの減圧下に970gまで濃縮したところ、SiO濃度10.2質量%、pH7.5、酸による滴定法で求めたアンモニア濃度は0.001質量%、動的散乱法粒子径10.8nm、窒素吸着法により測定される比表面積から換算される平均一次粒子径(以下、BET法粒子径)10nmを有するシリカゾルを得た。このシリカゾルを乾燥して得られるシリカ粉末の表面積当たりの吸湿量は0.42mg/m、粒子の屈折率は1.447であった。
 〔製造例2〕
 原料シリカゾル[2]を以下のように作製した。製造例1と同じ反応容器に、純水2244gと28質量%のアンモニア水3.4gを仕込み、オイルバスにより容器内液温を80℃に保った。次いで、攪拌下のこの容器内に、253gの市販テトラメチルシリケート(TMOS)を、0.9時間かけて連続的に液中に供給した。この供給の終了後、容器内液温を80℃に保ったまま1時間攪拌を続けた後、液温を90℃まで上昇させ、この温度で1時間攪拌を続けてシリカ粒子の分散液を得た。
 次いで、製造例1と同様に容器内の液を蒸発させ、蒸気を器外に排出させることにより、液温が99℃になるまで濃縮した。次いで液全量を器外に取り出し、ロータリーエバポレーターにより100Torrの減圧下に970gまで濃縮したところ、SiO濃度10.2質量%、pH7.4、酸による滴定法で求めたアンモニア濃度は0.0075質量%、動的散乱法粒子径15nm、BET法粒子径11nmを有するシリカゾルを得た。このシリカゾルを乾燥して得られるシリカ粉末の表面積当たりの吸湿量は0.43mg/m、シリカ粒子の屈折率は1.446であった。
 〔製造例3〕
 原料シリカゾル[3]を以下のように作製した。製造例1と同じ反応容器に、純水2214gと28質量%のアンモニア水25.3gを仕込み、オイルバスにより容器内液温を80℃に保った。次いで、攪拌下のこの容器内に、260.5gの市販テトラエチルシリケート(TEOS)を、3時間かけて連続的に滴下し供給した。この供給の終了後、容器内液温を80℃に保ったまま1時間攪拌を続けた後、液温を90℃まで上昇させ、この温度で1時間攪拌を続けてシリカ粒子の分散液を得た。
 次いで、製造例1と同様に容器内の液を蒸発させ、蒸気を器外に排出させることにより、液温が99℃になるまで濃縮した。次いで液全量を器外に取り出し、ロータリーエバポレーターにより100Torrの減圧下に980gまで濃縮したところ、SiO濃度10質量%、pH7.8、酸による滴定法で求めた残存アンモニア量は0.0068質量%、動的散乱法粒子径23nm、BET法粒子径16nmを有するシリカゾルを得た。このシリカゾルを乾燥して得られるシリカ粉末の表面積当たりの吸湿量は0.21mg/m、屈折率は1.446であった。
 〔製造例4〕
 原料シリカゾル[4]を以下のように作製した。製造例1と同じ反応容器に、純水2229gと28質量%のアンモニア水10.1gを仕込み、オイルバスにより容器内液温を90℃に保った。次いで、攪拌下のこの容器内に、260.5gの市販テトラエチルシリケート(TEOS)を、2.5時間かけて連続的に滴下し供給した。この供給の終了後、容器内液温を90℃に保ったまま2時間攪拌を続けてシリカ粒子の分散液を得た。次いで、製造例1と同様に容器内の液を蒸発させ、蒸気を器外に排出させることにより、液温が99℃になるまで濃縮した。
 次いで液全量を器外に取り出し、ロータリーエバポレーターにより100Torrの減圧下に980gまで濃縮したところ、SiO濃度10質量%、pH7.7、酸による滴定法で求めた残存アンモニア量は0.0049質量%、動的散乱法粒子径26.7nm、BET法粒子径19nmを有するシリカゾルを得た。
 〔原料シリカゾル5〕
 市販品であるシリカゾル(扶桑化学工業株式会社製、商品名「クォートロン(登録商標)PL-06L」)は、SiO濃度6.3質量%、pH7.5、酸による滴定法で求めた残存アンモニア量は0.0054質量%、BET法粒子径8nmのものを使用した。この市販品シリカゾルを乾燥して得られるシリカ粉末の表面積当たりの吸湿量は0.48mg/m、シリカ粒子の屈折率は1.440であった。
 〔原料シリカゾル6〕
 市販品であるシリカゾル(扶桑化学工業株式会社製、商品名「クォートロン(登録商標)PL-3」)は、SiO濃度19.5質量%、pH7.3、酸による滴定法で求めた残存アンモニア量は0.0026質量%、BET法粒子径35nmのものを使用した。この市販品シリカゾルを乾燥して得られるシリカ粉末の表面積当たりの吸湿量は1.08mg/m、シリカ粒子の屈折率は1.390であった。
 〔実施例1〕 
 製造例1で作製したシリカゾル(原料シリカゾル[1])180g(SiO濃度10.2質量%、BET法粒子径10nm)に(塩基の総添加量)/(シリカ)のモル比が0.0125となるように25%アンモニア水を0.253g添加し、十分に撹拌することで混合液を得た。ここで、塩基の総添加量とは、原料シリカゾル中に残存するアンモニアと新たに添加した塩基種の総量をいう。次いでこの混合液を300mLのステンレス製のオートクレーブに入れ、乾燥器で250℃まで昇温した後、5時間保持した。その後室温まで冷却し、容器より取り出してシリカゾルを得た。このゾルは動的光散乱法粒子径49.5nmであり、BET法粒子径32nmであり、このシリカゾルを乾燥していられるシリカ粉末の表面積当たりの吸湿量は0.19mg/m、シリカ粒子の屈折率は1.454であった。また、シリカ粒子に含有されるナトリウム量は1ppmであった。
 〔実施例2~13〕
 実施例1と同様の装置を用いて、表1に示すようなBET法粒子径、塩基種、モル比、及びオートクレーブ処理温度等の条件を変えて同様の方法でシリカゾルを作製し、シリカ粒子を評価した。
 〔比較例1〕
 塩基種としてトリエチルアミンを0.306g添加した以外は実施例1と同様の装置及び方法でオートクレーブ処理を行なったが、ゲル化したためシリカゾルを得ることができず、シリカ粒子の評価が不可能であった。
 〔比較例2〕
 塩基種として35%テトラメチルアンモニウムヒドロキシドを1.562g添加した以外は実施例1と同様の装置及び方法でオートクレーブ処理を行なったが、ゲル化したため、シリカゾルを得ることができず、シリカ粒子の評価が不可能であった。
 〔比較例3〕
 塩基種として10%水酸化ナトリウム溶液を0.609g添加し、(塩基の総添加量)/(シリカ)のモル比を0.0053とした以外は実施例1と同様の装置及び方法でシリカゾルを作製した。このシリカゾルを乾燥して得られるシリカ粉末の表面積当たりの吸湿量は0.14mg/m、シリカ粒子の屈折率は1.456であった。しかし、得られたシリカゾルを陽イオン交換した後に金属不純物分析をしたところ、シリカ粒子に含有されるナトリウム量は80ppmであった。このことから、ナトリウムを用いた場合、粒子成長時に粒子内部にナトリウムが取り込まれてしまい、高純度のシリカ粒子を得られないことが分かった。
 〔比較例4〕
 原料シリカゾル[6]のSiO濃度を10質量%に濃度調整し、25%アンモニア水を0.236g添加した以外は、実施例1と同様の容器及び方法でシリカゾルを作製した。このシリカゾルを乾燥して得られるシリカ粉末の表面積当たりの吸湿量は0.50mg/m、屈折率は1.390であり、吸湿量は低くならず、粒子内部まで緻密化できていなかった。
 〔窒素吸着法(BET法)による平均一次粒子径〕
 上記の実施例及び比較例で原料としたシリカ粒子や、上記の実施例及び比較例により得られたシリカ粒子につき、以下のように窒素吸着法(BET法)により平均一次粒子径を測定した。すなわち、シリカゾルを陽イオン交換して塩基を除去し、80℃真空乾燥器で乾燥して得られたシリカゲルを乳鉢で粉砕した後、更に180℃で3時間乾燥してシリカ乾燥粉末を得た。この粉末の窒素吸着法による比表面積(m/g)を測定し、平均一次粒子径は以下の式(1)で求めた。測定は、Monosorb(Quantachrome Corporation 製)を用いて行った。尚、上記のように比較例1~2ではシリカ粒子のゲル化が確認され、平均一次粒子径を算出できなかった。
 [式1]
 平均一次粒子径=2720/比表面積(m/g)   (1)
 〔動的光散乱法粒子径〕
 動的光散乱法測定装置:Zetasizer Nano(Malvern Instruments Ltd 製)を用いて公知の方法により測定した。
 〔相対湿度50%における吸湿性〕
 上記の実施例及び比較例により得られたシリカ粒子につき、以下のように吸湿性を測定した。すなわち、比表面積の測定に用いたものと同じ180℃乾燥粉を各0.2g秤量瓶に採取し、重量を測定した。この瓶を、蓋を開けた状態で23℃相対湿度50%の雰囲気下に48時間静置した後、蓋をして再び重量を測定した。そして、BET法比表面積を基に、以下の式(2)より、比表面積あたりの吸湿量を計算した。
 [式2]
 吸湿量(mg/m2)=増加重量(mg)/(サンプル量(g)×比表面積(m2/g))   (2)
 〔屈折率〕
 上記の実施例及び比較例により得られたシリカ粒子につき、以下のように屈折率を測定した。すなわち、実施例1~13及び比較例1~4のシリカゾルについて、比表面積の測定に用いたものと同じ乾燥粉0.1gを10ccのガラス瓶に入れ、次いで特級2-プロパノール及び特級トルエンの比率を変えて添加し、容器内の粉体が透明になったときの上澄みをアッベ屈折計で測定し、シリカ粒子の屈折率とした。
 〔アルカリ金属元素の含有量〕
 本発明の実施例1及びアルカリ金属を含む強塩基である水酸化ナトリウム(NaOH)を用いた上記の比較例3につき、得られたシリカ粒子に対して以下のように測定した。すなわち、実施例1及び比較例3のシリカゾルについて、ナトリウムはシリカゾルを白金皿中で希硝酸とフッ酸で溶解後乾固し、ついで白金皿に希硝酸を添加して得た水溶液を原子吸光分析法で測定した。
 〔水熱処理後のシリカ粒子形状〕
 上記の実施例及び比較例により得られたシリカ粒子につき、透過型電子顕微鏡写真を用い以下のように形状を測定した。すなわち、およそ300個程度の粒子について、その粒子の一番長い部分を長径D、長径を結ぶ線と直行していて一番長い部分を短径Dとして測定し、(D/D)をアスペクト比として評価し、算術平均を求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3に示すように、所定の環状3級アミンではない3級アミンを用いた比較例1と、4級アミンを用いた比較例2とでは、水熱処理後にシリカ粒子のゲル化が確認された。アルカリ金属を含む強塩基である水酸化ナトリウム(NaOH)を用いた比較例3では、シリカ固形分に対するアルカリ金属元素の含有量が80ppm程度となり、高純度なシリカ粒子を得ることができないことが分かった。
 表1~3に示すように、水熱処理を実施しない比較例4では、屈折率が比較的小さな値となり、実施例1~13に比べ緻密性に優れたシリカ粒子が得られないことが分かった。
 これに対し、実施例1~13では、上記の工程(A)~(B)を有する方法により製造されたものであり、これにより緻密性及び耐吸湿性に優れた高純度なシリカ粒子やシリカゾルが得られることが分かった。

Claims (5)

  1.  アルコキシシランを原料とし、下記の要件(a)~(c)を満たすことを特徴とするシリカ粒子。
    (a)シリカ固形分に対するアルカリ金属元素の含有量が5ppm以下である。
    (b)相対湿度50%における吸湿量が0.25mg/m2以下、かつ液浸法による屈折率が1.450~1.460である。
    (c)窒素吸着法により測定される比表面積から換算される平均一次粒子径が10~100nmである。
  2.  透過型電子顕微鏡写真から求められる粒子のアスペクト比が1.0~2.0であることを特徴とする請求項1に記載のシリカ粒子。
  3.  下記の工程(A)及び(B)を有することを特徴とするシリカ粒子の製造方法。
    (A)アルコキシシランをアンモニア、1級アミン、2級アミン及び環状3級アミンからなる群から選ばれる少なくとも1種の塩基の共存下で加水分解して、窒素吸着法により測定される比表面積から換算される平均一次粒子径が3~20nmであるシリカ粒子の水分散液を得る工程。
    (B)前記シリカ粒子の水分散液を150~350℃で水熱処理する工程。
  4.  前記(B)工程の水熱処理を行う前に平均一次粒子径が3~20nmであるシリカ粒子の水分散液中のアンモニア、1級アミン、2級アミン及び環状3級アミンからなる群から選ばれる少なくとも1種の前記塩基の量をモル比(塩基/SiO)が0.002~0.20となるように、調節することを特徴とする請求項3に記載のシリカ粒子の製造方法。
  5.  請求項1又は2に記載のシリカ粒子を含有することを特徴とするシリカゾル。
PCT/JP2014/082817 2013-12-12 2014-12-11 シリカ粒子及びその製造方法並びにシリカゾル WO2015087965A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167018323A KR102269433B1 (ko) 2013-12-12 2014-12-11 실리카 입자 및 그 제조 방법 그리고 실리카 졸
EP14870123.8A EP3081531B1 (en) 2013-12-12 2014-12-11 Silica particles, manufacturing method for same, and silica sol
US15/101,154 US10173901B2 (en) 2013-12-12 2014-12-11 Silica particles, manufacturing method for the same, and silica sol
JP2015552506A JP6447831B2 (ja) 2013-12-12 2014-12-11 シリカ粒子及びその製造方法並びにシリカゾル
CN201480066913.1A CN105813977A (zh) 2013-12-12 2014-12-11 二氧化硅粒子及其制造方法以及二氧化硅溶胶

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-257440 2013-12-12
JP2013257440 2013-12-12

Publications (1)

Publication Number Publication Date
WO2015087965A1 true WO2015087965A1 (ja) 2015-06-18

Family

ID=53371264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082817 WO2015087965A1 (ja) 2013-12-12 2014-12-11 シリカ粒子及びその製造方法並びにシリカゾル

Country Status (7)

Country Link
US (1) US10173901B2 (ja)
EP (1) EP3081531B1 (ja)
JP (1) JP6447831B2 (ja)
KR (1) KR102269433B1 (ja)
CN (2) CN113651335A (ja)
TW (1) TWI690489B (ja)
WO (1) WO2015087965A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521242A (ja) * 2013-04-17 2016-07-21 シルボンド・コーポレイションSilbond Corporation コロイドゾルとその製造方法
JP2018080331A (ja) * 2016-11-07 2018-05-24 日揮触媒化成株式会社 研磨用シリカ系粒子および研磨材
JP2018090798A (ja) * 2016-12-02 2018-06-14 日揮触媒化成株式会社 研磨用シリカ系粒子および研磨材
JP2020012078A (ja) * 2018-07-20 2020-01-23 信越化学工業株式会社 シリカ分散液及びその製造方法並びにそれを用いた光硬化性組成物及びその硬化物
JP2021147267A (ja) * 2020-03-18 2021-09-27 三菱ケミカル株式会社 シリカ粒子の製造方法、シリカゾルの製造方法、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
EP3929154A4 (en) * 2019-02-21 2022-04-06 Mitsubishi Chemical Corporation SILICA PARTICLES AND METHOD FOR PRODUCTION THEREOF, SILICA SOL, POLISHING COMPOSITION, POLISHING METHOD, SEMICONDUCTOR WAFER PRODUCTION METHOD AND SEMICONDUCTOR DEVICE PRODUCTION METHOD
EP3929155A4 (en) * 2019-02-21 2022-04-06 Mitsubishi Chemical Corporation SILICA PARTICLES AND METHOD FOR PRODUCTION THEREOF, SILICA SOL, POLISHING COMPOSITION, POLISHING METHOD, SEMICONDUCTOR WAFER PRODUCTION METHOD AND SEMICONDUCTOR DEVICE PRODUCTION METHOD
TWI769157B (zh) * 2016-05-10 2022-07-01 日商住友化學股份有限公司 光學膜、具備該光學膜之可撓性裝置構件、及樹脂組成物
WO2023248951A1 (ja) * 2022-06-20 2023-12-28 三菱ケミカル株式会社 シリカ粒子とその製造方法、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
WO2023248949A1 (ja) * 2022-06-20 2023-12-28 三菱ケミカル株式会社 シリカ粒子とその製造方法、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199903A1 (ja) * 2013-06-10 2014-12-18 日産化学工業株式会社 シリカゾル及びシリカゾルの製造方法
US9705077B2 (en) * 2015-08-31 2017-07-11 International Business Machines Corporation Spin torque MRAM fabrication using negative tone lithography and ion beam etching
US20180094166A1 (en) * 2016-09-30 2018-04-05 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Cmp polishing composition comprising positive and negative silica particles
US10910304B2 (en) 2019-01-24 2021-02-02 Globalfoundries U.S. Inc. Tight pitch wirings and capacitor(s)
CN113544092A (zh) * 2019-03-06 2021-10-22 扶桑化学工业株式会社 胶体二氧化硅及其制造方法
TWI726724B (zh) * 2020-05-18 2021-05-01 國立臺灣大學 製造二氧化矽顆粒之方法
CN113511879B (zh) * 2021-09-09 2021-11-30 长沙科航特种织造有限公司 一种石英纤维增强石英基复合材料及其制造方法
WO2023136331A1 (ja) * 2022-01-13 2023-07-20 日産化学株式会社 粒度分布を有するシリカゾル及びその製造方法
CN117730055A (zh) * 2022-01-28 2024-03-19 日产化学株式会社 低介质损耗角正切二氧化硅溶胶及低介质损耗角正切二氧化硅溶胶的制造方法
CN114804128B (zh) * 2022-04-18 2023-08-29 蚌埠壹石通电子通信材料有限公司 一种球形二氧化硅处理方法
CN115504762A (zh) * 2022-09-09 2022-12-23 南通福美新材料有限公司 一种高性能二氧化硅真空绝热板芯材
CN115620935A (zh) * 2022-10-11 2023-01-17 西北大学 一种2-乙氧基乙胺修饰气相二氧化硅有机载体的制备方法和应用
KR102619614B1 (ko) * 2023-07-14 2023-12-28 선유규 실리카졸 코팅제 제조방법 및 실리카졸 코팅제가 코팅된 스테인레스 보강핀을 이용한 치장벽돌의 내력 보강 공법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227809A (ja) * 1993-01-29 1994-08-16 Agency Of Ind Science & Technol シリカエアロゲル表面への金属酸化物被覆方法及びその方法により得られた金属酸化物で被覆されたシリカエアロゲル
JPH10279328A (ja) * 1997-03-31 1998-10-20 Agency Of Ind Science & Technol ガラス表面に接合したエアロゲル及びその作製方法
JPH1161043A (ja) * 1997-08-07 1999-03-05 Catalysts & Chem Ind Co Ltd 多孔質シリカ系被膜形成用塗布液、被膜付基材および短繊維状シリカ
JP2009234854A (ja) 2008-03-27 2009-10-15 Jsr Corp シリカ系中空粒子の製造方法
JP2010032996A (ja) * 2008-06-27 2010-02-12 Jgc Catalysts & Chemicals Ltd シリカ系塗膜のパターニング方法および該方法から得られるシリカ系塗膜
JP2010083744A (ja) 2008-09-05 2010-04-15 Jsr Corp シリカ粒子分散液およびその製造方法
JP2012111869A (ja) 2010-11-25 2012-06-14 Jgc Catalysts & Chemicals Ltd 研磨用シリカゾル、研磨用組成物及び研磨用シリカゾルの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101304381B1 (ko) * 2003-08-28 2013-09-11 다이니폰 인사츠 가부시키가이샤 반사 방지 적층체의 제조방법
US10040943B2 (en) * 2004-07-08 2018-08-07 Jgc Catalysts And Chemicals Ltd. Method of producing silica-based particles
JP5330644B2 (ja) * 2006-12-01 2013-10-30 株式会社日本触媒 表面処理されたシリカ粒子
JP5132193B2 (ja) 2007-06-02 2013-01-30 日揮触媒化成株式会社 多孔質シリカ粒子およびその製造方法
JP5574111B2 (ja) * 2008-11-18 2014-08-20 日産化学工業株式会社 シリカ粒子を含有する重合性有機化合物の組成物の製造方法
CN102002120A (zh) * 2010-09-20 2011-04-06 中国海洋石油总公司 一种大孔容大比表面积特种硅胶载体的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227809A (ja) * 1993-01-29 1994-08-16 Agency Of Ind Science & Technol シリカエアロゲル表面への金属酸化物被覆方法及びその方法により得られた金属酸化物で被覆されたシリカエアロゲル
JPH10279328A (ja) * 1997-03-31 1998-10-20 Agency Of Ind Science & Technol ガラス表面に接合したエアロゲル及びその作製方法
JPH1161043A (ja) * 1997-08-07 1999-03-05 Catalysts & Chem Ind Co Ltd 多孔質シリカ系被膜形成用塗布液、被膜付基材および短繊維状シリカ
JP2009234854A (ja) 2008-03-27 2009-10-15 Jsr Corp シリカ系中空粒子の製造方法
JP2010032996A (ja) * 2008-06-27 2010-02-12 Jgc Catalysts & Chemicals Ltd シリカ系塗膜のパターニング方法および該方法から得られるシリカ系塗膜
JP2010083744A (ja) 2008-09-05 2010-04-15 Jsr Corp シリカ粒子分散液およびその製造方法
JP2012111869A (ja) 2010-11-25 2012-06-14 Jgc Catalysts & Chemicals Ltd 研磨用シリカゾル、研磨用組成物及び研磨用シリカゾルの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 26, 1968, pages 62 - 69

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521242A (ja) * 2013-04-17 2016-07-21 シルボンド・コーポレイションSilbond Corporation コロイドゾルとその製造方法
TWI769157B (zh) * 2016-05-10 2022-07-01 日商住友化學股份有限公司 光學膜、具備該光學膜之可撓性裝置構件、及樹脂組成物
JP2018080331A (ja) * 2016-11-07 2018-05-24 日揮触媒化成株式会社 研磨用シリカ系粒子および研磨材
US10190023B2 (en) * 2016-11-07 2019-01-29 Jgc Catalysts And Chemicals Ltd. Silica-based polishing particle and abrasive
JP2018090798A (ja) * 2016-12-02 2018-06-14 日揮触媒化成株式会社 研磨用シリカ系粒子および研磨材
US10184069B2 (en) * 2016-12-02 2019-01-22 Jgc Catalysts And Chemicals Ltd. Silica-based polishing particle and abrasive
WO2020017277A1 (ja) * 2018-07-20 2020-01-23 信越化学工業株式会社 シリカ分散液及びその製造方法並びにそれを用いた光硬化性組成物及びその硬化物
JP2020012078A (ja) * 2018-07-20 2020-01-23 信越化学工業株式会社 シリカ分散液及びその製造方法並びにそれを用いた光硬化性組成物及びその硬化物
EP3929154A4 (en) * 2019-02-21 2022-04-06 Mitsubishi Chemical Corporation SILICA PARTICLES AND METHOD FOR PRODUCTION THEREOF, SILICA SOL, POLISHING COMPOSITION, POLISHING METHOD, SEMICONDUCTOR WAFER PRODUCTION METHOD AND SEMICONDUCTOR DEVICE PRODUCTION METHOD
EP3929155A4 (en) * 2019-02-21 2022-04-06 Mitsubishi Chemical Corporation SILICA PARTICLES AND METHOD FOR PRODUCTION THEREOF, SILICA SOL, POLISHING COMPOSITION, POLISHING METHOD, SEMICONDUCTOR WAFER PRODUCTION METHOD AND SEMICONDUCTOR DEVICE PRODUCTION METHOD
US11862470B2 (en) 2019-02-21 2024-01-02 Mitsubishi Chemical Corporation Silica particle and production method therefor, silica sol, polishing composition, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
JP2021147267A (ja) * 2020-03-18 2021-09-27 三菱ケミカル株式会社 シリカ粒子の製造方法、シリカゾルの製造方法、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
WO2023248951A1 (ja) * 2022-06-20 2023-12-28 三菱ケミカル株式会社 シリカ粒子とその製造方法、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
WO2023248949A1 (ja) * 2022-06-20 2023-12-28 三菱ケミカル株式会社 シリカ粒子とその製造方法、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法

Also Published As

Publication number Publication date
TW201534562A (zh) 2015-09-16
CN113651335A (zh) 2021-11-16
KR102269433B1 (ko) 2021-06-24
JPWO2015087965A1 (ja) 2017-03-16
KR20160097287A (ko) 2016-08-17
US20170001870A1 (en) 2017-01-05
JP6447831B2 (ja) 2019-01-09
EP3081531B1 (en) 2021-03-10
CN105813977A (zh) 2016-07-27
TWI690489B (zh) 2020-04-11
EP3081531A4 (en) 2017-06-14
US10173901B2 (en) 2019-01-08
EP3081531A1 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
JP6447831B2 (ja) シリカ粒子及びその製造方法並びにシリカゾル
US10160894B2 (en) Non-spherical silica sol, process for producing the same, and composition for polishing
JP4828032B2 (ja) 疎水性シリカ粉末およびその製造方法
JP6536821B2 (ja) シリカ含有樹脂組成物及びその製造方法並びにシリカ含有樹脂組成物の成形品
JP6284443B2 (ja) コアシェル型シリカ粒子を含有するコロイダルシリカの製造方法
KR20090069187A (ko) 영구적 소수성을 갖는 에어로겔의 제조 방법 및 이로부터 제조된 영구적 소수성을 갖는 에어로겔
US11279622B2 (en) Method for producing silica aerogel and silica aerogel produced thereby
JP6035380B2 (ja) シリカゲル系触媒担体
JP6011804B2 (ja) シリカゾルの製造方法
JP2005162533A (ja) 変性コロイダルシリカの製造方法
WO2020179558A1 (ja) コロイダルシリカ及びその製造方法
US20210380844A1 (en) Silica particle and production method therefor, silica sol, polishing composition, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
EP3385225B1 (en) Method for manufacturing silica aerogel
JP7021194B2 (ja) シリカ粒子分散液の製造方法
US20240051834A1 (en) Method of producing layered silicate, and application thereof in production of silica nanosheet and so on
JP5505900B2 (ja) 高濃度シリカゾル
JP2001002411A (ja) 水性シリカゾルの製造方法
JP2013220976A (ja) 中性コロイダルシリカ分散液の分散安定化方法及び分散安定性に優れた中性コロイダルシリカ分散液
TWI833391B (zh) 經表面處理之二氧化矽粒子分散溶膠及其製造方法
WO2023058745A1 (ja) 鎖状のコロイダルシリカ粒子分散ゾル及びその製造方法
WO2015119034A1 (ja) シリカ系微粒子ゾル及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552506

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15101154

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167018323

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014870123

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014870123

Country of ref document: EP