WO2015119034A1 - シリカ系微粒子ゾル及びその製造方法 - Google Patents

シリカ系微粒子ゾル及びその製造方法 Download PDF

Info

Publication number
WO2015119034A1
WO2015119034A1 PCT/JP2015/052497 JP2015052497W WO2015119034A1 WO 2015119034 A1 WO2015119034 A1 WO 2015119034A1 JP 2015052497 W JP2015052497 W JP 2015052497W WO 2015119034 A1 WO2015119034 A1 WO 2015119034A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
silica
sol
fine particles
Prior art date
Application number
PCT/JP2015/052497
Other languages
English (en)
French (fr)
Inventor
鹿島 吉恭
高熊 紀之
拓宏 小出
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201580007252.XA priority Critical patent/CN105960378B/zh
Priority to KR1020167021737A priority patent/KR102213576B1/ko
Priority to JP2015560954A priority patent/JP6406524B2/ja
Publication of WO2015119034A1 publication Critical patent/WO2015119034A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • C01B33/142Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/146After-treatment of sols
    • C01B33/148Concentration; Drying; Dehydration; Stabilisation; Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to a sol in which silica-based fine particles containing SiO 2 , Li 2 O, R 2 O (where R represents a sodium atom or a potassium atom) and Al 2 O 3 are dispersed, and a method for producing the sol.
  • Alkali metal silicate aqueous solutions or polybasic metal salt aqueous solutions of primary phosphoric acid have been conventionally used as the main component of inorganic coating agents.
  • the coating agent mainly composed of alkali metal silicate or polyvalent metal salt of primary phosphoric acid has a problem that the water resistance of the coating film after drying is not sufficiently high.
  • the alkali metal silicate aqueous solution is usually represented by M 2 O ⁇ nSiO 2 (where M represents a sodium atom, a potassium atom or a lithium atom, and n is usually 1 to 4), and SiO 2 / M 2 It is commercially available as an aqueous solution having an O molar ratio of about 1 to 4.
  • a coating agent composed mainly of an alkali metal silicate aqueous solution in this molar ratio is used as a coating film, the alkali metal component is eluted and the coating film deteriorates under severe conditions such as immersion in hot water for a long time. To do.
  • Lithium silicate is commercially available as a high molar ratio aqueous solution having a SiO 2 / M 2 O molar ratio of 3 to 7.5.
  • lithium silicate when used as a main component of a coating agent, lithium silicate has a drawback that the film property is poor.
  • the polyvalent metal salt aqueous solution of primary phosphoric acid is usually X (H 2 PO 4 ) 2 or Z (H 2 PO 4 ) 3
  • X is a divalent metal atom such as calcium or magnesium
  • Z is aluminum, iron, etc.
  • An aqueous solution containing a component represented by a trivalent metal atom such as Of these, a primary aluminum phosphate aqueous solution having particularly good film properties is often used for the inorganic coating agent.
  • silica-based fine particles that are excellent in compatibility stability as additives and that can ensure a sufficient pot life.
  • Patent Document 1 describes that a sol obtained by mixing an aqueous silica sol having a particle size of 3 to 150 nm and an alkali metal aluminate is stable at pH 5 to 12, and aggregates and gels at pH 5 or lower. Has been.
  • the present invention provides an aqueous sol of silica-based fine particles having excellent compatibility stability when mixed with an alkali metal silicate aqueous solution or a polyvalent metal salt aqueous solution of primary phosphoric acid used as a main component of an inorganic coating agent. It is in providing the manufacturing method.
  • the present invention as a first aspect, having a primary particle diameter of 3 ⁇ 50nm, Li 2 O0.3 ⁇ 6 parts by weight with respect to SiO 2 100 parts by weight, R 2 O1 ⁇ 15 parts by weight (where, R represents An aqueous sol of silica-based fine particles containing 1 to 15 parts by mass of Al 2 O 3 ;
  • the silica-based fine particle aqueous sol according to the first aspect having a solid content concentration of 4 to 40% by mass,
  • it is an organic solvent sol of silica-based fine particles obtained by replacing the dispersion medium of the silica-based fine particle aqueous sol described in the first or second aspect with an organic solvent
  • the method for producing an aqueous sol of silica-based fine particles according to the first aspect including the following steps (a) and (b): (A) an aqueous solution of active silicic acid containing from 1 to 6 mass% as SiO 2, relative to the SiO 2 in
  • a fifth aspect is the method for producing an aqueous sol of silica-based fine particles according to the fourth aspect, comprising the step of concentrating the solid content concentration of the silica sol obtained in the step (b) to 4 to 40% by mass.
  • the present invention has a primary particle diameter of 3 to 50 nm, 0.3 to 6 parts by mass of Li 2 O with respect to 100 parts by mass of SiO 2 , and R 2 O (where R represents a sodium atom or a potassium atom).
  • An aqueous solution of alkali metal silicate which is an aqueous sol of silica-based fine particles having a composition of 1 to 15 parts by mass and 1 to 15 parts by mass of Al 2 O 3 , and has conventionally had a problem in compatibility stability with general silica sols Or, it has an effect of being excellent in compatibility stability with respect to an aqueous solution of polyvalent metal salt of primary phosphoric acid.
  • the present invention has a primary particle diameter of 3 to 50 nm, 0.3 to 6 parts by mass of Li 2 O with respect to 100 parts by mass of SiO 2 , and R 2 O (where R represents a sodium atom or a potassium atom).
  • An aqueous sol of silica-based fine particles having a composition of 1 to 15 parts by mass and 1 to 15 parts by mass of Al 2 O 3 .
  • the primary particle diameter of the silica-based fine particles is less than 3 nm
  • the SiO 2 concentration is concentrated to 20% by mass or more, the storage stability of the sol is lowered and gelation occurs.
  • the primary particle diameter of the silica-based fine particles exceeds 50 nm, the pH becomes 12 or more after heating and concentration, and the concentration of soluble silicic acid in the sol increases, so that long-term storage stability decreases.
  • the composition of the aqueous sol of silica-based fine particles to be prepared is less than 0.3 part by mass of Li 2 O, less than 1 part by mass of R 2 O, or Al 2 O 3 with respect to 100 parts by mass of SiO 2. Is less than 1 part by mass, when the obtained sol is mixed with an aqueous alkali metal silicate solution, aggregates are formed and the compatibility stability is not good. In addition, when the obtained sol is mixed with an aqueous solution of polybasic metal salt of primary phosphoric acid, aggregates are not generated, but after mixing, the viscosity rapidly increases and the pot life is extremely shortened. .
  • composition of the aqueous sol of silica-based fine particles of the present invention is such that Li 2 O is 0.3 to 6 parts by mass, preferably 0.3 to 5 parts by mass, more preferably 100 parts by mass of SiO 2. 0.3 to 4 parts by mass.
  • R 2 O is 1 to 15 parts by mass, preferably 2 to 14 parts by mass, and more preferably 2 to 12 parts by mass with respect to 100 parts by mass of SiO 2 .
  • Al 2 O 3 is 1 to 15 parts by mass, preferably 2 to 14 parts by mass, and more preferably 2 to 12 parts by mass with respect to 100 parts by mass of SiO 2 .
  • the aqueous sol of silica-based fine particles of the present invention preferably has a solid content concentration of 4 to 40% by mass.
  • the solid content concentration is less than 4% by mass, not only the efficiency when transporting as a product is bad, but also the concentration of the active ingredient is too low when other components are mixed to form a coating composition, which is not preferable.
  • the solid content concentration exceeds 40% by mass, the long-term storage stability of the sol decreases, which is not preferable.
  • the aqueous sol of silica-based fine particles of the present invention can replace water as a dispersion medium with an organic solvent such as methanol, isopropanol, ethylene glycol, or methyl ethyl ketone.
  • the solvent substitution can be performed by a known method, and examples thereof include a distillation substitution method and an ultrafiltration method.
  • the active silicic acid aqueous solution used in the step (a) is an alkali metal silicate (M 2 O ⁇ nSiO 2, where M represents a sodium atom, a potassium atom or a lithium atom, and n represents 1 to 4 And can be obtained by removing alkali metal ions from a dilute aqueous solution having a SiO 2 / M 2 O molar ratio of 1 to 4).
  • M alkali metal silicate
  • a dilute aqueous solution of alkali metal silicate having a SiO 2 concentration of about 1 to 6% by mass to a cation exchange treatment with a strongly acidic hydrogen type cation exchange resin.
  • the SiO 2 concentration of the aqueous solution of active silicic acid is preferably 1 to 6% by mass, particularly preferably 2 to 5% by mass.
  • the water-soluble alkali metal aluminate added to the active silicic acid aqueous solution in the step (a) has an R 2 O / Al 2 O 3 molar ratio (where R represents a sodium atom or a potassium atom). Those in the range of 2 to 2.0 can be used. Sodium aluminate aqueous solution is preferable because it is easily available for industrial use.
  • the water-soluble alkali metal aluminate is preferably added to the aqueous solution of active silicic acid as an aqueous solution having an Al 2 O 3 concentration of 0.5 to 5% by mass.
  • lithium hydroxide is preferably added to the aqueous solution of active silicic acid as an aqueous solution having a Li 2 O concentration of 0.5 to 3% by mass.
  • the mixing of (a) is preferably performed with stirring. Stirring is not particularly limited as long as ordinary industrial means are used.
  • the step (b) is a step of producing silica-based fine particles by heating the mixed aqueous solution obtained in the step (a) at 80 to 250 ° C. for 0.5 to 20 hours.
  • the heating temperature is 80 to 250 ° C, and 100 to 220 ° C is particularly preferable.
  • an aqueous sol of silica-based fine particles having a solid content concentration of 1 to 6% by mass is obtained.
  • the aqueous sol of silica-based fine particles obtained in the step (b) is concentrated to 4 to 40% by mass by concentration using an ultrafiltration membrane or evaporative concentration under reduced pressure or normal pressure. be able to.
  • -Solid content concentration It calculated from the mass of 800 degreeC baking residue.
  • Titration alkali content a 0.1N hydrochloric acid neutralizing amount in terms of Na 2 O.
  • -Composition of aqueous sol of silica-based fine particles measured by ICP emission spectroscopic analysis.
  • Example 1 After adding JIS3 sodium silicate aqueous solution (SiO 2 concentration 29.6 mass%, Na 2 O concentration 8.3 mass%, manufactured by Fuji Chemical Co., Ltd.) 300 g and diluting to 2540 g, hydrogen cation exchange By passing through a column packed with a resin (Amberlite (registered trademark) -120B (manufactured by Organo Corporation)), 2500 g of an aqueous solution of active silicic acid (SiO 2 concentration 3.5 mass%) was obtained.
  • a resin Amberlite (registered trademark) -120B (manufactured by Organo Corporation)
  • an aqueous sodium aluminate solution (Al 2 O 3 concentration 21.5% by mass, Na 2 O concentration 19.5% by mass, manufactured by Sumitomo Chemical Co., Ltd., trade name: NA-150) with pure water was added to Al.
  • 94.2 g of an aqueous solution diluted to a 2 O 3 concentration of 2.9% by mass was prepared. The whole amount of the diluted sodium aluminate aqueous solution was added while stirring 2500 g of the active silicic acid aqueous solution.
  • a lithium hydroxide aqueous solution having a LiOH concentration of 5% by mass and 130.9 g of pure water were added to the aqueous solution of active silicic acid, and stirring was continued for 60 minutes.
  • the obtained mixed aqueous solution had a SiO 2 concentration of 3.2% by mass and a pH of 9.4.
  • This mixed aqueous solution was charged into an autoclave container having a capacity of 3 L made of SUS316, heated at 140 ° C. for 8 hours, and then cooled.
  • the resulting solution was a colloidal dispersion and its pH was 10.6.
  • This colloidal dispersion was concentrated by a filtration apparatus equipped with an ultrafiltration membrane having a molecular weight cut off of 200,000 to obtain an aqueous sol of silica-based fine particles having a solid content concentration of 32% by mass.
  • the physical properties of the aqueous sol of the obtained silica-based fine particles were specific gravity 1.225, pH 10.3, viscosity 9.1 mPa ⁇ s, primary particle diameter 8 nm, titration alkali amount (Na 2 O conversion) 0.43% by mass. It was.
  • the composition of the obtained aqueous sol of silica-based fine particles was as follows: SiO 2 30.1 mass%, Li 2 O 0.2 mass% (Li 2 O 0.7 mass part relative to SiO 2 100 mass parts), Na 2 O 0. 7 wt% (Na 2 O2.3 parts by weight with respect to SiO 2 100 parts by weight), Al 2 O 3 1.0 wt% (Al 2 O 3 3.3 parts by mass with respect to SiO 2 100 parts by weight) there were.
  • This aqueous sol showed good storage stability with no change in physical properties even when stored in a thermostat at 60 ° C. for 3 months.
  • Example 2 To the colloidal aqueous solution of active silicic acid obtained in the same manner as in Example 1, 188.4 g of an aqueous sodium aluminate solution having an Al 2 O 3 concentration of 2.9% by mass was added, and further an aqueous lithium hydroxide solution having an LiOH concentration of 5% by mass. 50.6 g and 11.4 g of pure water were added, and after stirring for 60 minutes, the same heating and concentration as in Example 1 were performed.
  • the properties of the aqueous sol of the silica-based fine particles obtained were as follows: solid content concentration 30% by mass, specific gravity 1.222, pH 11.1, viscosity 4.1 mPa ⁇ s, primary particle diameter 12 nm, titration alkali amount (Na 2 O conversion) It was 0.62 mass%.
  • the composition of the obtained aqueous sol of silica-based fine particles was SiO 2 26.7% by mass, Li 2 O 0.2% by mass (Li 2 O 0.8 part by mass with respect to SiO 2 100 parts by mass), Na 2 O 1. 3 mass% (Na 2 O 4.9 mass parts relative to 100 mass parts of SiO 2 ), Al 2 O 3 1.8 mass% (Al 2 O 3 6.7 mass parts relative to 100 mass parts of SiO 2 ) there were.
  • Example 3 282.6 g of an aqueous sodium aluminate solution having an Al 2 O 3 concentration of 2.9% by mass was added to 2500 g of an aqueous colloidal solution of active silicic acid obtained in the same manner as in Example 1, and an aqueous lithium hydroxide solution having an LiOH concentration of 5% by mass. After adding 75.9 g and stirring for 60 minutes, the same heating and concentration as in Example 1 were performed.
  • the properties of the aqueous sol of the silica-based fine particles obtained are as follows: solid content concentration 32% by mass, specific gravity 1.242, pH 11.4, viscosity 3.3 mPa ⁇ s, primary particle diameter 30 nm, titration alkali amount (Na 2 O conversion) It was 0.79 mass%.
  • the composition of the obtained aqueous sol of silica-based fine particles was as follows: SiO 2 26.9% by mass, Li 2 O 0.3% by mass (Li 2 O 1.1 parts by mass with respect to SiO 2 100 parts by mass), Na 2 O 1. 9 mass% (Na 2 O 7.1 mass parts with respect to 100 mass parts of SiO 2 ), Al 2 O 3 2.9 mass% (Al 2 O 3 10.8 mass parts with respect to 100 mass parts of SiO 2 ) there were.
  • Example 4 The mixed aqueous solution was heated in the same manner as in Example 1 except that the heating step (b) was performed at 100 ° C. for 18 hours.
  • the physical properties of the silica-based fine particle aqueous sol after concentration are: solid content concentration 32% by mass, specific gravity 1.224, pH 10.2, viscosity 9.8 mPa ⁇ s, primary particle diameter 7 nm, titration alkali amount (Na 2 O conversion) It was 0.41 mass%.
  • the composition of the obtained aqueous sol of silica-based fine particles was as follows: SiO 2 30.1 mass%, Li 2 O 0.2 mass% (Li 2 O 0.7 mass part relative to SiO 2 100 mass parts), Na 2 O 0. 7 wt% (Na 2 O2.3 parts by weight with respect to SiO 2 100 parts by weight), Al 2 O 3 1.0 wt% (Al 2 O 3 3.3 parts by mass with respect to SiO 2 100 parts by weight), Met.
  • Example 5 The mixed solution was heated in the same manner as in Example 1 except that the heating step (b) was performed at 220 ° C. for 3 hours.
  • Physical properties of the concentrated colloidal dispersion are as follows: solid content concentration 31% by mass, specific gravity 1.223, pH 10.5, viscosity 3.8 mPa ⁇ s, primary particle diameter 27 nm, titration alkali amount (Na 2 O conversion) 0.45 It was mass%.
  • the composition of the obtained silica-based fine particle aqueous sol was as follows: SiO 2 28.2 mass%, Li 2 O 0.2 mass% (Li 2 O 0.7 mass part with respect to SiO 2 100 mass parts), Na 2 O 0. 8 mass% (Na 2 O 2.8 mass parts with respect to 100 mass parts of SiO 2 ), Al 2 O 3 1.0 mass% (Al 2 O 3 3.5 mass parts with respect to 100 mass parts of SiO 2 ). there were.
  • Example 6 The concentration step was carried out in the same manner as in Example 1 except that the concentration step was carried out under reduced pressure concentration (30 Torr, internal temperature about 30 ° C.) using a rotary evaporator instead of an ultrafiltration device.
  • the physical properties of the concentrated colloidal dispersion are as follows: solid content concentration 32% by mass, specific gravity 1.226, pH 10.8, viscosity 6.0 mPa ⁇ s, primary particle diameter 8 nm, titration alkali amount (Na 2 O conversion) 0.86 It was mass%.
  • composition of the obtained aqueous sol of silica-based fine particles was as follows: SiO 2 29.9 mass%, Li 2 O 0.3 mass% (Li 2 O 1.0 mass part with respect to SiO 2 100 mass parts), Na 2 O 0. 8 mass% (Na 2 O 2.7 mass parts relative to 100 mass parts of SiO 2 ), Al 2 O 3 1.0 mass% (Al 2 O 3 3.3 mass parts relative to 100 mass parts of SiO 2 ). there were.
  • Example 7 A SUS316 container was charged with 717 g of a 48 mass% potassium hydroxide aqueous solution (manufactured by Kanto Chemical Co., Ltd.) and heated to 85 ° C. While stirring this solution, 367 g of a chemical reagent aluminum hydroxide (manufactured by Pure Chemical Co., Ltd.) was added over 10 minutes, and further heated for 90 minutes to dissolve. After cooling and allowing to stand overnight, analysis was performed by ICP emission spectroscopy. The results were Al 2 O 3 22.1% by mass and K 2 O 26.7% by mass.
  • the properties of the aqueous sol of the obtained silica-based fine particles were as follows: solid content concentration 32% by mass, specific gravity 1.128, pH 11.4, viscosity 8.9 mPa ⁇ s, primary particle diameter 8 nm, titrated alkali amount (Na 2 O conversion) It was 0.80 mass%.
  • the composition of the obtained aqueous sol of silica-based fine particles was as follows: SiO 2 25.8% by mass, Li 2 O 0.3% by mass (Li 2 O 1.1 parts by mass with respect to SiO 2 100 parts by mass), K 2 O 2. 6 mass% (K 2 O10.1 parts by weight with respect to SiO 2 100 parts by weight), Al 2 O 3 2.6 wt% (Al 2 O 3 9.7 parts by mass with respect to SiO 2 100 parts by weight) there were.
  • Example 1 The same procedure as in Example 1 was performed except that the sodium aluminate aqueous solution was not added.
  • the properties of the aqueous sol of silica-based fine particles after heating and concentration are as follows: solid content concentration 31 mass%, specific gravity 1.207, pH 10.1, viscosity 7.9 mPa ⁇ s, primary particle diameter 11 nm, titration alkali amount (Na 2 O Conversion) was 0.32% by mass.
  • the composition of the obtained aqueous sol of silica-based fine particles was as follows: SiO 2 30.6% by mass, Li 2 O 0.2% by mass (Li 2 O 0.7 parts by mass with respect to SiO 2 100 parts by mass), Na 2 O 0.
  • Example 2 The same procedure as in Example 1 was carried out except that LiOH was not added and the same molar amount of NaOH was used instead.
  • the physical properties of the aqueous sol after heating and concentration are as follows: solid content concentration 31% by mass, specific gravity 1.221, pH 9.8, viscosity 10.0 mPa ⁇ s, primary particle diameter 9 nm, titration alkali amount (Na 2 O conversion) 0. It was 33% by mass.
  • composition of the obtained aqueous sol of silica-based fine particles was as follows: SiO 2 29.1% by mass, Li 2 O less than 0.1% by mass (less than Li 2 O 0.3 parts by mass with respect to SiO 2 100 parts by mass), Na 2 O1.0 wt% (Na 2 O3.4 parts by weight with respect to SiO 2 100 parts by weight), Al 2 O 3 1.0 wt% (Al 2 O 3 3.4 parts by mass with respect to SiO 2 100 parts by weight )Met.
  • Example 8 The aqueous sols obtained in Examples 1 to 7 and Comparative Examples 1 and 2 and commercially available aqueous silica sols [Snowtex (registered trademark) XS (SiO 2 concentration 20 mass%, pH 9.5, primary particle size 6 nm, Nissan Chemical Industries, Ltd.] (Manufactured by Co., Ltd.), Snowtex (registered trademark) S (SiO 2 30% by mass, pH 9.5, primary particle size 9 nm, manufactured by Nissan Chemical Industries, Ltd.), neither contains Li. And was adjusted to a SiO 2 concentration of 20% by mass using pure water.
  • potassium silicate aqueous solution [Snowtex (registered trademark) K2 (SiO 2 concentration 20 mass%, K 2 O 8 mass%, manufactured by Nissan Chemical Industries, Ltd.)] with stirring for 50 g of each of these aqueous sols 50 g was added over 5 minutes and stirred for 60 minutes. The state of the mixed solution after stirring was observed, and the results are shown in Table 1. O mark is given to those that are excellent in compatibility stability without generation of agglomerates even after 24 hours of mixing, and agglomerates are generated during mixing or within 24 hours after mixing, resulting in turbidity. Those with poor properties are marked with a cross.
  • Example 9 The aqueous sols obtained in Examples 1 to 7 and Comparative Examples 1 and 2 and commercially available aqueous silica sols [Snowtex (registered trademark) XS (SiO 2 concentration 20 mass%, pH 9.5, primary particle size 6 nm, Nissan Chemical Industries, Ltd.] (Manufactured by Co., Ltd.), Snowtex (registered trademark) S (SiO 2 30% by mass, pH 9.5, primary particle size 9 nm, manufactured by Nissan Chemical Industries, Ltd.), neither contains Li. ] Was adjusted to a SiO 2 concentration of 20% by mass using pure water.
  • Pure water is added to a commercially available aqueous solution of primary aluminum phosphate (33% by mass of P 2 O 5, 8% by mass of Al 2 O 3 , trade name: Yonefos AL-508, manufactured by Yoneyama Chemical Co., Ltd.).
  • the 2 O 5 concentration was diluted to 22% by weight. While stirring 75 g of this diluted aqueous solution of primary aluminum phosphate, 25 g of each of the aqueous sols was added over 5 minutes, and the mixture was stirred for 10 minutes and mixed. After mixing, the samples were stored in a constant temperature bath at 40 ° C., and the number of days until gelation was observed for comparison. The results are shown in Table 2.
  • Example 10 A 3 L eggplant-shaped flask containing 100 g of the concentrated silica-based aqueous sol obtained in Example 1 was attached to a rotary evaporator, and 130 g of ethylene glycol was gradually added while heating in a 210 ° C. oil bath. The water of the dispersion medium was removed under normal pressure. After the temperature inside the flask reached 200 ° C., heating was continued for 10 minutes, and then the flask was removed from the oil bath. The obtained sol was an ethylene glycol sol having a solid concentration of 20.1% by mass.
  • Example 11 After diluting 100 g of the concentrated silica-based aqueous sol obtained in Example 1 with pure water to a solid content concentration of 5 mass%, a strongly acidic hydrogen ion exchange resin (Amberlite (registered trademark) 120B (organo ( Cation exchange was carried out through a column packed with 100 g. 620 g of the obtained aqueous sol of acidic silica-based fine particles was put into a 3 L eggplant-shaped flask, attached to a rotary evaporator, and gradually heated with a water bath at 50 ° C., and 300 g of methanol was gradually added under a reduced pressure of 0.02 MPa. Then, the water of the dispersion medium was removed. The obtained sol was a methanol sol having a solid concentration of 20.1% by mass.
  • Amberlite (registered trademark) 120B organo ( Cation exchange was carried out through a column packed with 100 g. 620 g of the obtained aqueous sol of acidic silica-
  • the aqueous sol of silica-based fine particles of the present invention has extremely good compatibility stability compared with existing silica sols even when mixed with an alkali metal silicate aqueous solution or a polyvalent metal salt aqueous solution of primary phosphoric acid, It can be used for paints and coating agents. Further, it is also suitable for a chemical conversion treatment agent or a metal surface treatment agent such as an electrical steel sheet in which an aqueous polyvalent metal salt solution of primary phosphoric acid is used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

 3~50nmの一次粒子径を有し、SiO100質量部に対してLiO0.3~6質量部、RO1~15質量部(但し、Rはナトリウム原子又はカリウム原子を表す。)、Al1~15質量部を含有するシリカ系微粒子の水性ゾルによる。

Description

シリカ系微粒子ゾル及びその製造方法
 本発明は、SiO、LiO、RO(但し、Rはナトリウム原子又はカリウム原子を表わす。)及びAlを含有するシリカ系微粒子が分散されたゾル及びその製造方法に関する。
 アルカリ金属珪酸塩水溶液又は第一リン酸の多価金属塩水溶液は、従来から無機系コート剤の主成分として使用されている。ところが、アルカリ金属珪酸塩又は第一リン酸の多価金属塩を主成分とするコート剤は乾燥後の塗膜の耐水性が十分高くないという課題があった。
 アルカリ金属珪酸塩水溶液は、通常MO・nSiO(但し、Mはナトリウム原子、カリウム原子又はリチウム原子を表わし、nは通常1~4である。)で表わされ、SiO/MOモル比1~4程度の水溶液として市販されている。このモル比の範囲のアルカリ金属珪酸塩水溶液を主成分としたコート剤を塗膜にした場合、熱水に長時間浸漬する等の過酷な条件では、アルカリ金属成分が溶出して塗膜が劣化する。珪酸リチウムは、SiO/MOモル比が3~7.5の高モル比の水溶液が市販されているが、コート剤の主成分として用いた場合、皮膜性が悪いという欠点がある。
 一方、塗膜のアルカリ金属成分の溶出を抑制する対策が講じられている。一手段としてアルカリ金属珪酸塩にシリカゾルを加え、SiO/MOモル比を更に高くして耐水性を向上させる検討が行なわれている。但し、アルカリ金属珪酸塩にシリカゾルを混合する際に凝集物が生成する場合や、混合後の相溶安定性が悪く、可使時間が短過ぎるという問題が存在する。
 また、第一リン酸の多価金属塩水溶液は、通常X(HPO又はZ(HPO(Xはカルシウム、マグネシウム等の2価金属原子、Zはアルミニウム、鉄等の3価金属原子)で表わされる成分を含有する水溶液である。中でも特に皮膜性が良好な第一リン酸アルミニウム水溶液が無機系コート剤に使用される場合が多い。
 皮膜の耐水性を向上させるために、リン酸と化合物を形成する金属イオン等を添加する方法が多く提案されているが、別な方法としてシリカゾルを加えることにより、リン酸珪素を生成させて耐水性を向上させるという方法がある。この方法においてもシリカゾルの添加量が多くなり過ぎると混合後の可使時間が短過ぎて極端に作業性が悪いという問題が存在する。
 無機系コート剤の耐水性を向上させるためには、添加剤として相溶安定性に優れ、コート剤の可使時間が十分に確保できるシリカ系微粒子を開発することが求められてきた。
 安定なシリカゾルを作製する方法は以前から報告されている。例えば特許文献1には、粒子径3~150nmを有する水性シリカゾルとアルカリ金属のアルミン酸塩を混合したゾルはpH5~12で安定であり、pH5以下では凝集が起こり、またゲル化することが記載されている。
米国特許第2892797号公報
 本発明は、無機系コート剤の主成分として使用されるアルカリ金属珪酸塩水溶液又は第一リン酸の多価金属塩水溶液と混合した場合の相溶安定性に優れる、シリカ系微粒子の水性ゾルとその製造方法を提供することにある。
 本発明は、第一観点として、3~50nmの一次粒子径を有し、SiO100質量部に対してLiO0.3~6質量部、RO1~15質量部(但し、Rはナトリウム原子又はカリウム原子を表す。)、Al1~15質量部を含有するシリカ系微粒子の水性ゾルであり、
 第二観点として、固形分濃度は4~40質量%である第一観点に記載のシリカ系微粒子の水性ゾルであり、
 第三観点として、第一観点又は第二観点に記載のシリカ系微粒子の水性ゾルの分散媒を有機溶媒に置換して得られるシリカ系微粒子の有機溶媒ゾルであり、
 第四観点として、下記(a)及び(b)の工程を含む第一観点に記載のシリカ系微粒子の水性ゾルの製造方法:
(a)SiOとして1~6質量%を含有する活性珪酸の水溶液に、前記活性珪酸のSiOに対して、水溶性のアルミン酸アルカリ金属塩をAlとして1~15質量%、水酸化リチウムを、LiOとして0.3~6質量%を加えて混合する工程、
(b)(a)工程により得られた混合水溶液を80~250℃で0.5~20時間加熱する工程、であり、
 第五観点として、前記(b)工程で得られたシリカゾルの固形分濃度を4~40質量%に濃縮する工程を含む第四観点に記載のシリカ系微粒子の水性ゾルの製造方法、である。
 本発明は、3~50nmの一次粒子径を有し、SiO100質量部に対してLiO0.3~6質量部、RO(但し、Rはナトリウム原子又はカリウム原子を表わす。)、1~15質量部、Al1~15質量部の組成からなるシリカ系微粒子の水性ゾルであり、従来、一般のシリカゾルとの相溶安定性に問題があったアルカリ金属珪酸塩水溶液、又は第一リン酸の多価金属塩水溶液に対して、相溶安定性に優れるという効果を有する。
 本発明は、3~50nmの一次粒子径を有し、SiO100質量部に対してLiO0.3~6質量部、RO(但し、Rはナトリウム原子又はカリウム原子を表わす。)、1~15質量部、Al1~15質量部の組成からなるシリカ系微粒子の水性ゾルである。
 シリカ系微粒子の一次粒子径D(nm)は、窒素吸着法により測定される比表面積S(m/g)を用いて、D=2720/Sの式により算出することができる。
 本発明においてシリカ系微粒子の一次粒子径が3nm未満の場合、SiO濃度を20質量%以上に濃縮するとゾルの保存安定性が低下し、ゲル化が起きる。
 また、前記シリカ系微粒子の一次粒子径が50nmを超える場合には、加熱、濃縮後に、pHが12以上となり、ゾル中の可溶性珪酸濃度が高くなるため、長期保存安定性が低下する。
 調製されるシリカ系微粒子の水性ゾルの組成が、SiO100質量部に対して、LiOが0.3質量部未満の場合、又はRO1質量部未満の場合、若しくはAlが1質量部未満の場合は、得られたゾルをアルカリ金属珪酸塩水溶液と混合した場合に凝集物が生成し、相溶安定性が良好ではない。また、得られたゾルを第一リン酸の多価金属塩水溶液と混合した場合には、凝集物は生成しないが、混合後、急激に粘度の上昇が起こり、可使時間が極端に短くなる。
 また、SiO100質量部に対して、LiOが6質量部を超える場合、又はROが15質量部を超える場合、若しくはAlが15質量部を超える組成の場合には、シリカ系微粒子の水性ゾルのpHが高くなりすぎるか、又は電解質濃度が高くなりすぎるため、当該ゾルの保存安定性が悪くなる。
 本発明のシリカ系微粒子の水性ゾルの組成は、SiO100質量部に対してLiOは0.3~6質量部であり、好ましくは0.3~5質量部であり、より好ましくは0.3~4質量部である。また、SiO100質量部に対してROは、1~15質量部であり、好ましくは2~14質量部であり、より好ましくは2~12質量部である。また、SiO100質量部に対してAlは、1~15質量部であり、好ましくは2~14質量部であり、より好ましくは2~12質量部である。
 本発明のシリカ系微粒子の水性ゾルは、その固形分濃度が4~40質量%であることが好ましい。該固形分濃度が4質量%未満では、製品として輸送する際の効率が悪いだけではなく、他の成分を混合してコート剤組成物としたときの有効成分の濃度が低くなり過ぎるため好ましくない。また、固形分濃度が40質量%を超えるとゾルの長期保存安定性が低下するため好ましくない。
 本発明のシリカ系微粒子の水性ゾルは、分散媒である水をメタノール、イソプロパノール、エチレングリコール、メチルエチルケトン等の有機溶媒に置換することが可能である。溶媒置換は公知の方法により行うことができ、例えば、蒸留置換法や限外ろ過法が挙げられる。
 次に本発明のシリカ系微粒子の水性ゾルの製造方法について説明する。本発明では、(a)工程において使用される活性珪酸の水溶液は、アルカリ金属珪酸塩(MO・nSiO(但し、Mはナトリウム原子、カリウム原子又はリチウム原子を表わし、nは1~4である。)で表わされ、SiO/MOモル比1~4)の希薄水溶液からアルカリ金属イオンを除去することにより得ることができる。例えば、アルカリ金属珪酸塩のSiO濃度1~6質量%程度の希薄水溶液を強酸性水素型陽イオン交換樹脂で陽イオン交換処理することにより容易に得られる。活性珪酸の水溶液のSiO濃度は、1~6質量%が好ましく、2~5質量%が特に好ましい。
 前記(a)工程において活性珪酸の水溶液に添加される水溶性のアルミン酸アルカリ金属塩は、RO/Alモル比(但し、Rはナトリウム原子又はカリウム原子を表す。)が1.2~2.0の範囲のものを使用することができる。アルミン酸ナトリウム水溶液は工業用として入手が容易であり好ましい。水溶性のアルミン酸アルカリ金属塩は、Al濃度0.5~5質量%の水溶液として、活性珪酸の水溶液に添加されることが好ましい。
 前記(a)工程において水酸化リチウムは、LiO濃度0.5~3質量%の水溶液として活性珪酸の水溶液に添加されることが好ましい。
 前記(a)の混合は、撹拌下で行われることが好ましい。撹拌は通常の工業的手段を用いればよく、特に限定されない。
 前記(b)工程は、前記(a)工程で得られた混合水溶液を80~250℃で0.5~20時間加熱することによりシリカ系微粒子を生成させる工程である。加熱温度は80~250℃であり、100~220℃が特に好ましい。(b)工程の加熱により、固形分濃度1~6質量%のシリカ系微粒子の水性ゾルが得られる。
 前記(b)工程において得られたシリカ系微粒子の水性ゾルは、限外ろ過膜を使用した濃縮、又は減圧下若しくは常圧下での蒸発濃縮により、固形分濃度を4~40質量%に濃縮することができる。
 以下の実施例及び比較例において諸物性は以下の方法により測定した。
・固形分濃度:800℃焼成残分の質量より算出した。
・シリカ系微粒子の一次粒子径D(nm):窒素吸着法により測定される比表面積S(m/g)を用いて、D=2720/Sの式により算出した。
・滴定アルカリ量:0.1N塩酸中和量をNaOに換算した。
・シリカ系微粒子の水性ゾルの組成:ICP発光分光分析により測定した。
〔実施例1〕
 JIS3号珪酸ナトリウム水溶液(SiO濃度29.6質量%、NaO濃度8.3質量%、富士化学(株)製)300gに純水を加えて2540gに希釈した後、水素型陽イオン交換樹脂(アンバーライト(登録商標)-120B(オルガノ(株)製))の充填されたカラムに通液することにより、活性珪酸の水溶液(SiO濃度3.5質量%)2500gを得た。また、アルミン酸ナトリウム水溶液(Al濃度21.5質量%、NaO濃度19.5質量%、住友化学(株)製、商品名:NA-150)12.7gを純水でAl濃度2.9質量%に希釈した水溶液94.2gを調製した。前記活性珪酸の水溶液2500gを撹拌しながら、前記希釈アルミン酸ナトリウム水溶液の全量を添加した。更にLiOH濃度5質量%の水酸化リチウム水溶液25.3g、純水130.9gを前記活性珪酸の水溶液に添加し、60分撹拌を続けた。得られた混合水溶液は、SiO濃度3.2質量%、pH9.4であった。この混合水溶液をSUS316製容量3Lのオートクレーブ容器に仕込み、温度140℃、8時間の加熱を行なった後、冷却した。得られた溶液はコロイド分散液であり、そのpHは10.6であった。このコロイド分散液を分画分子量20万の限外ろ過膜を装着したろ過装置で濃縮し、固形分濃度32質量%のシリカ系微粒子の水性ゾルを得た。得られたシリカ系微粒子の水性ゾルの物性は、比重1.225、pH10.3、粘度9.1mPa・s、一次粒子径8nm、滴定アルカリ量(NaO換算)0.43質量%であった。得られたシリカ系微粒子の水性ゾルの組成は、SiO30.1質量%、LiO0.2質量%(SiO100質量部に対してLiO0.7質量部)、NaO0.7質量%(SiO100質量部に対してNaO2.3質量部)、Al1.0質量%(SiO100質量部に対してAl3.3質量部)であった。この水性ゾルは、60℃の恒温槽で3ヶ月間保管しても物性に変化は見られず、良好な保存安定性を示した。
〔実施例2〕
 実施例1と同様にして得た活性珪酸のコロイド水溶液2500gに、Al濃度2.9質量%のアルミン酸ナトリウム水溶液188.4gを添加し、更にLiOH濃度5質量%の水酸化リチウム水溶液50.6gと純水11.4gを加え、60分間撹拌後、実施例1と同様の加熱と濃縮を行なった。得られたシリカ系微粒子の水性ゾルの物性は、固形分濃度30質量%、比重1.222、pH11.1、粘度4.1mPa・s、一次粒子径12nm、滴定アルカリ量(NaO換算)0.62質量%であった。得られたシリカ系微粒子の水性ゾルの組成は、SiO26.7質量%、LiO0.2質量%(SiO100質量部に対してLiO0.8質量部)、NaO1.3質量%(SiO100質量部に対してNaO4.9質量部)、Al1.8質量%(SiO100質量部に対してAl6.7質量部)であった。
〔実施例3〕
 実施例1と同様にして得た活性珪酸のコロイド水溶液2500gに、Al濃度2.9質量%のアルミン酸ナトリウム水溶液282.6gを添加し、更にLiOH濃度5質量%の水酸化リチウム水溶液75.9gを加えて、60分撹拌後、実施例1と同様の加熱と濃縮を行なった。得られたシリカ系微粒子の水性ゾルの物性は、固形分濃度32質量%、比重1.242、pH11.4、粘度3.3mPa・s、一次粒子径30nm、滴定アルカリ量(NaO換算)0.79質量%であった。得られたシリカ系微粒子の水性ゾルの組成は、SiO26.9質量%、LiO0.3質量%(SiO100質量部に対してLiO1.1質量部)、NaO1.9質量%(SiO100質量部に対してNaO7.1質量部)、Al2.9質量%(SiO100質量部に対してAl10.8質量部)であった。
〔実施例4〕
 混合水溶液の加熱工程(b)を100℃で18時間とした以外は実施例1と同様に行った。濃縮後のシリカ系微粒子の水性ゾルの物性は、固形分濃度32質量%、比重1.224、pH10.2、粘度9.8mPa・s、一次粒子径7nm、滴定アルカリ量(NaO換算)0.41質量%であった。得られたシリカ系微粒子の水性ゾルの組成は、SiO30.1質量%、LiO0.2質量%(SiO100質量部に対してLiO0.7質量部)、NaO0.7質量%(SiO100質量部に対してNaO2.3質量部)、Al1.0質量%(SiO100質量部に対してAl3.3質量部)、であった。
〔実施例5〕
 混合溶液の加熱工程(b)を220℃、3時間とした以外は実施例1と同様に行なった。濃縮後のコロイド分散液の物性は、固形分濃度31質量%、比重1.223、pH10.5、粘度3.8mPa・s、一次粒子径27nm、滴定アルカリ量(NaO換算)0.45質量%であった。得られたシリカ系微粒子の水性ゾルの組成は、SiO28.2質量%、LiO0.2質量%(SiO100質量部に対してLiO0.7質量部)、NaO0.8質量%(SiO100質量部に対してNaO2.8質量部)、Al1.0質量%(SiO100質量部に対してAl3.5質量部)であった。
〔実施例6〕
 濃縮工程を限外ろ過装置でなく、ロータリーエバポレータによる減圧濃縮(30Torr、内温約30℃)で行なった以外は実施例1と同様に行なった。濃縮後のコロイド分散液の物性は、固形分濃度32質量%、比重1.226、pH10.8、粘度6.0mPa・s、一次粒子径8nm、滴定アルカリ量(NaO換算)0.86質量%であった。得られたシリカ系微粒子の水性ゾルの組成は、SiO29.9質量%、LiO0.3質量%(SiO100質量部に対してLiO1.0質量部)、NaO0.8質量%(SiO100質量部に対してNaO2.7質量部)、Al1.0質量%(SiO100質量部に対してAl3.3質量部)であった。
〔実施例7〕
 48質量%水酸化カリウム水溶液(関東化学(株)製)717gをSUS316製容器に仕込み、85℃に加熱した。この溶液を撹拌しながら化学用試薬水酸化アルミニウム(純正化学(株)製)367gを10分間かけて添加し、更に90分加熱を行って溶解させた。冷却後1晩放置した後、ICP発光分光分析法で分析を行なったところ、Al22.1質量%、KO26.7質量%であった。この水溶液37.1gを純水でAl濃度2.9質量%に希釈したアルミン酸カリウム水溶液282.4gを調製した。実施例1と同様にして得た活性珪酸の水溶液2500gを撹拌しながら、前記希釈アルミン酸カリウム水溶液の全量を添加し、更にLiOH濃度5質量%の水酸化リチウム水溶液75.9gを加えて、更に60分撹拌後、実施例1と同様の加熱と濃縮を行った。得られたシリカ系微粒子の水性ゾルの物性は、固形分濃度32質量%、比重1.128、pH11.4、粘度8.9mPa・s、一次粒子径8nm、滴定アルカリ量(NaO換算)0.80質量%であった。得られたシリカ系微粒子の水性ゾルの組成は、SiO25.8質量%、LiO0.3質量%(SiO100質量部に対してLiO1.1質量部)、KO2.6質量%(SiO100質量部に対してKO10.1質量部)、Al2.6質量%(SiO100質量部に対してAl9.7質量部)であった。
〔比較例1〕
 アルミン酸ナトリウム水溶液を添加しなかったこと以外は実施例1と同様に行った。加熱、濃縮後のシリカ系微粒子の水性ゾルの物性は、固形分濃度31質量%、比重1.207、pH10.1、粘度7.9mPa・s、一次粒子径11nm、滴定アルカリ量(NaO換算)0.32質量%であった。得られたシリカ系微粒子の水性ゾルの組成は、SiO30.6質量%、LiO0.2質量%(SiO100質量部に対してLiO0.7質量部)、NaO0.1質量%未満(SiO100質量部に対してNaO0.3質量部未満)、Al0.1質量%未満(SiO100質量部に対してAl0.3質量部未満)であった。
〔比較例2〕
 LiOHを添加せず、代わりに同モル量のNaOHを用いた以外は実施例1と同様に行なった。加熱、濃縮後の水性ゾルの物性は、固形分濃度31質量%、比重1.221、pH9.8、粘度10.0mPa・s、一次粒子径9nm、滴定アルカリ量(NaO換算)0.33質量%であった。得られたシリカ系微粒子の水性ゾルの組成は、SiO29.1質量%、LiO0.1質量%未満(SiO100質量部に対してLiO0.3質量部未満)、NaO1.0質量%(SiO100質量部に対してNaO3.4質量部)、Al1.0質量%(SiO100質量部に対してAl3.4質量部)であった。
〔実施例8〕
 実施例1~7及び比較例1、2で得られた水性ゾル及び市販の水性シリカゾル〔スノーテックス(登録商標)XS(SiO濃度20質量%、pH9.5、一次粒子径6nm、日産化学工業(株)製)、スノーテックス(登録商標)S(SiO30質量%、pH9.5、一次粒子径9nm、日産化学工業(株)製)、いずれもLiは含有しない。〕を準備し、純水を用いてSiO濃度20質量%に調整した。これらの水性ゾルの各々50gに対して、撹拌下に市販の珪酸カリウム水溶液〔スノーテックス(登録商標)K2(SiO濃度20質量%、KO8質量%、日産化学工業(株)製)〕50gを5分間かけて添加し、60分の撹拌を行った。撹拌終了後の混合溶液の状態を観察し、その結果を表1に記載した。混合の24時間後も凝集物が発生せずに相溶安定性に優れていたものには〇印を、混合時又は混合後24時間以内に凝集物が発生して濁りが生じ、相溶安定性が悪いものには×印を付した。
Figure JPOXMLDOC01-appb-T000001
 〇印のついた混合溶液は、いずれも室温で30日以上相溶安定性を良好に維持した。
〔実施例9〕
 実施例1~7及び比較例1、2で得られた水性ゾル及び市販の水性シリカゾル〔スノーテックス(登録商標)XS(SiO濃度20質量%、pH9.5、一次粒子径6nm、日産化学工業(株)製)、スノーテックス(登録商標)S(SiO30質量%、pH9.5、一次粒子径9nm、日産化学工業(株)製)、いずれもLiは含有しない。〕を純水を用いてSiO濃度20質量%に調整した。市販の第一リン酸アルミ二ウム水溶液(P33質量%、Al8質量%、商品名:ヨネホスAL-508、米山化学工業(株)製)に純水を加え、P濃度を22質量%に希釈した。この希釈された第一リン酸アルミ二ウム水溶液75gを撹拌した状態で、前記の水性ゾルの各々25gを5分間かけて添加し、10分間撹拌を行なって混合した。混合後、40℃の恒温槽に保管し、ゲル化するまでの日数を観察して比較を行った。結果を表2に記載した。
Figure JPOXMLDOC01-appb-T000002
〔実施例10〕
 実施例1で得られた濃縮後のシリカ系微粒子の水性ゾル100gを入れた3Lのナス型フラスコをロータリーエバポレータに取り付け、210℃のオイルバスで加熱しながらエチレングルコール130gを徐々に添加して、常圧下で分散媒の水を除去した。フラスコ内部の液温が200℃となってから更に10分間加熱を続けた後、フラスコをオイルバスから外した。得られたゾルは、固形分濃度20.1質量%のエチレングリコールゾルであった。
〔実施例11〕
 実施例1で得られた濃縮後のシリカ系微粒子の水性ゾル100gを固形分濃度5質量%に純水で希釈した後、強酸性水素型イオン交換樹脂(アンバーライト(登録商標)120B(オルガノ(株)製))100gを充填したカラムに通して陽イオン交換を行った。得られた酸性のシリカ系微粒子の水性ゾル620gを3Lのナス型フラスコに入れ、ロータリーエバポレータに取り付けて、50℃のウォーターバスで加熱しながら、0.02MPaの減圧下でメタノール300gを徐々に添加して分散媒の水を除去した。得られたゾルは、固形分濃度20.1質量%のメタノールゾルであった。
 本発明のシリカ系微粒子の水性ゾルは、アルカリ金属珪酸塩水溶液、又は第一リン酸の多価金属塩水溶液と混合しても、既存のシリカゾルに比べて相溶安定性が極めて良好であり、塗料、コート剤に用いることができる。また、第一リン酸の多価金属塩水溶液が使用される化成処理剤や電磁鋼板のような金属表面処理剤にも好適である。

Claims (5)

  1.  3~50nmの一次粒子径を有し、SiO100質量部に対してLiO0.3~6質量部、RO1~15質量部(但し、Rはナトリウム原子又はカリウム原子を表す。)、Al1~15質量部を含有するシリカ系微粒子の水性ゾル。
  2.  固形分濃度は4~40質量%である請求項1に記載のシリカ系微粒子の水性ゾル。
  3.  請求項1又は2に記載のシリカ系微粒子の水性ゾルの分散媒を有機溶媒に置換して得られるシリカ系微粒子の有機溶媒ゾル。
  4.  下記(a)及び(b)の工程を含む請求項1に記載のシリカ系微粒子の水性ゾルの製造方法:
    (a)SiOとして1~6質量%を含有する活性珪酸の水溶液に、前記活性珪酸のSiOに対して水溶性のアルミン酸アルカリ金属塩をAlとして1~15質量%、水酸化リチウムを、LiOとして0.3~6質量%を加えて混合する工程、
    (b)(a)工程により得られた混合水溶液を80~250℃で0.5~20時間加熱する工程。
  5.  前記(b)工程で得られたシリカゾルの固形分濃度を4~40質量%に濃縮する工程を含む請求項4に記載のシリカ系微粒子の水性ゾルの製造方法。
PCT/JP2015/052497 2014-02-06 2015-01-29 シリカ系微粒子ゾル及びその製造方法 WO2015119034A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580007252.XA CN105960378B (zh) 2014-02-06 2015-01-29 二氧化硅系微粒溶胶及其制造方法
KR1020167021737A KR102213576B1 (ko) 2014-02-06 2015-01-29 실리카계 미립자 졸 및 그 제조 방법
JP2015560954A JP6406524B2 (ja) 2014-02-06 2015-01-29 シリカ系微粒子ゾル及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-021556 2014-02-06
JP2014021556 2014-02-06

Publications (1)

Publication Number Publication Date
WO2015119034A1 true WO2015119034A1 (ja) 2015-08-13

Family

ID=53777841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052497 WO2015119034A1 (ja) 2014-02-06 2015-01-29 シリカ系微粒子ゾル及びその製造方法

Country Status (4)

Country Link
JP (1) JP6406524B2 (ja)
KR (1) KR102213576B1 (ja)
CN (1) CN105960378B (ja)
WO (1) WO2015119034A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107805413A (zh) * 2017-11-22 2018-03-16 五河县绍峰电器有限公司 一种塑料灯罩用防污涂料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302995A (en) * 1963-05-01 1967-02-07 Thomas D Oulton Synthetic swelling lithium aluminum silicate hydrate product
JP2001224957A (ja) * 2000-02-15 2001-08-21 Natl Inst Of Advanced Industrial Science & Technology Meti 選択的リチウム分離剤及びその製造方法
JP2003104715A (ja) * 2002-08-09 2003-04-09 Nippon Chem Ind Co Ltd シリカゾル及びシリカ粉末

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2892797A (en) 1956-02-17 1959-06-30 Du Pont Process for modifying the properties of a silica sol and product thereof
NO300125B1 (no) * 1988-03-16 1997-04-14 Nissan Chemical Ind Ltd Stabil væskeformig silikasol, samt fremgangsmåte ved fremstilling derav
JP5591530B2 (ja) * 2009-06-24 2014-09-17 日揮触媒化成株式会社 シリカ系微粒子分散ゾルの製造方法、シリカ系微粒子分散ゾル、該分散ゾルを含む塗料組成物、硬化性塗膜および硬化性塗膜付き基材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302995A (en) * 1963-05-01 1967-02-07 Thomas D Oulton Synthetic swelling lithium aluminum silicate hydrate product
JP2001224957A (ja) * 2000-02-15 2001-08-21 Natl Inst Of Advanced Industrial Science & Technology Meti 選択的リチウム分離剤及びその製造方法
JP2003104715A (ja) * 2002-08-09 2003-04-09 Nippon Chem Ind Co Ltd シリカゾル及びシリカ粉末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIA,L. ET AL.: "Sol-gel synthesis and crystallization behaviour of beta-spodumene", JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, vol. 52, no. 1, 30 July 2009 (2009-07-30), pages 134 - 139, XP019731930 *

Also Published As

Publication number Publication date
KR20160118270A (ko) 2016-10-11
CN105960378B (zh) 2020-07-24
JPWO2015119034A1 (ja) 2017-03-23
CN105960378A (zh) 2016-09-21
KR102213576B1 (ko) 2021-02-05
JP6406524B2 (ja) 2018-10-17

Similar Documents

Publication Publication Date Title
US10173901B2 (en) Silica particles, manufacturing method for the same, and silica sol
TWI520904B (zh) 由鹼金屬矽酸鹽溶液製備高純度水性膠體矽石溶膠的方法
JP5221517B2 (ja) アルミ改質コロイダルシリカ及びその製造方法
JP7206695B2 (ja) シリカゾル、研磨組成物、シリコンウェーハの研磨方法、シリコンウェーハの製造方法、化学的機械的研磨組成物及び半導体デバイスの製造方法
JP5019076B2 (ja) 細長い形状を有するシリカゾルの製造方法
JP2015166456A (ja) 防食粒子
JP6756423B1 (ja) シリカ粒子とその製造方法、シリカゾル、研磨組成物、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP6406524B2 (ja) シリカ系微粒子ゾル及びその製造方法
EP3425086B1 (en) Silica sol containing phenylphosphonic acid, and application for same
CN103589344A (zh) 一种氧化铝抛光液的制备方法
JP2011105580A (ja) Zr−O系粒子を分散質とするゾル及びその製造方法
JP3362793B2 (ja) シリカゾルの製造方法
JP2013220976A (ja) 中性コロイダルシリカ分散液の分散安定化方法及び分散安定性に優れた中性コロイダルシリカ分散液
JP5505900B2 (ja) 高濃度シリカゾル
JP5341613B2 (ja) コロイダルシリカおよびその製造方法
JP7225898B2 (ja) シリカ粒子の製造方法、シリカゾルの製造方法及び研磨方法
JP5554094B2 (ja) 粉末状のシリカコンポジット粒子及びその製造方法
JP2011042546A (ja) カチオン化シリカゾルの製造方法
JP2023043023A (ja) シリカゾルの製造方法、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP2023043024A (ja) シリカゾルの製造方法、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP3478394B2 (ja) シリカゾル及びシリカ粉末
JP2023007711A (ja) シリカゾルの製造方法、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法
JP2003104714A (ja) シリカゾル及びシリカ粉末
JP2013227177A (ja) コロイダルシリカおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560954

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167021737

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15746283

Country of ref document: EP

Kind code of ref document: A1