WO2020179558A1 - コロイダルシリカ及びその製造方法 - Google Patents

コロイダルシリカ及びその製造方法 Download PDF

Info

Publication number
WO2020179558A1
WO2020179558A1 PCT/JP2020/007585 JP2020007585W WO2020179558A1 WO 2020179558 A1 WO2020179558 A1 WO 2020179558A1 JP 2020007585 W JP2020007585 W JP 2020007585W WO 2020179558 A1 WO2020179558 A1 WO 2020179558A1
Authority
WO
WIPO (PCT)
Prior art keywords
colloidal silica
silica
silica particles
group
particles
Prior art date
Application number
PCT/JP2020/007585
Other languages
English (en)
French (fr)
Inventor
友香 藤村
良樹 道脇
Original Assignee
扶桑化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扶桑化学工業株式会社 filed Critical 扶桑化学工業株式会社
Priority to US17/436,385 priority Critical patent/US20220144650A1/en
Priority to JP2021503995A priority patent/JP7164702B2/ja
Priority to KR1020217031436A priority patent/KR20210133285A/ko
Priority to CN202080019497.5A priority patent/CN113557215B/zh
Publication of WO2020179558A1 publication Critical patent/WO2020179558A1/ja
Priority to JP2022168516A priority patent/JP7434491B2/ja
Priority to JP2024016685A priority patent/JP2024036564A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/145Preparation of hydroorganosols, organosols or dispersions in an organic medium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present invention relates to colloidal silica and a method for producing the same, and more particularly to colloidal silica containing silica particles having surface irregularities and a method for producing the same.
  • Colloidal silica is obtained by dispersing silica fine particles in a medium such as water, and is used as a physical property improving agent in the fields of paper, fiber, steel, etc., and also as an abrasive for electronic materials such as semiconductor wafers. Has been done.
  • the silica particles dispersed in the colloidal silica used for such an application are required to have high purity and compactness.
  • a method for producing colloidal silica containing silica particles having small protrusions on the particle surface using a quaternary ammonium salt or the like as a hydrolysis catalyst is disclosed (for example, see Patent Document 2).
  • Colloidal silica can exhibit higher abradability as an abrasive when it is modified such that silica particles have protrusions on the surface.
  • the present inventors have found that the colloidal silica produced by the production method described in Patent Document 2 has a problem that the surface uneven shape cannot be maintained under basic conditions.
  • colloidal silica containing silica particles that are excellent in maintaining surface irregularities even under basic conditions. Then, he came up with the idea that such colloidal silica can be suitably used as an abrasive and can solve the above-mentioned problems brilliantly, and has reached the present invention.
  • the present invention has an object to provide a colloidal silica having excellent compactness and containing silica particles having excellent surface irregularity shape maintainability even under a basic condition, and a production method capable of producing the colloidal silica. And.
  • the present inventor contains silica particles having an uneven surface shape, the content of the alkoxy group of the silica particles is in a specific range, and the silica particles have basic conditions.
  • the inventors have found that colloidal silica, which exhibits a specific surface area reduction rate in a specific range when heat-treated under the following conditions, can achieve the above object, and completed the present invention.
  • the present invention relates to the following colloidal silica and a method for producing the same.
  • a colloidal silica containing silica particles having a surface uneven shape (1) The silica particles have an alkoxy group content of 1000 ppm or more. (2) The silica particles have a specific surface area reduction rate of 15.0% or less when heat-treated under basic conditions. Colloidal silica characterized by the following. 2. Item 2. The colloidal silica according to Item 1, wherein the silica particles have a true specific gravity of 1.95 or more. 3.
  • the silica particles contain at least 5 ⁇ mol or more of at least one amine selected from the group consisting of primary amines, secondary amines and tertiary amines (however, hydroxy groups are excluded as substituents) per 1 g of silica particles.
  • Item 3. The colloidal silica according to Item 1 or 2. 4. A method for producing colloidal silica containing silica particles having an uneven surface shape.
  • Step 1 of preparing a mother liquor containing an alkali catalyst and water (2) Step 2 of adding alkoxysilane to the mother liquor to prepare a seed particle dispersion, and (3) Step 3 of adding water, an alkali catalyst and an alkoxysilane to the seed particle dispersion liquid in this order
  • the alkali catalyst is at least one amine selected from the group consisting of primary amines, secondary amines and tertiary amines (however, hydroxy groups are excluded as substituents).
  • the molar ratio (s3 / c3) of the addition amount s3 (mol) of the alkoxysilane to the addition amount c3 (mol) of the alkali catalyst in the step 3 is more than 185 and 400 or less.
  • a method for producing colloidal silica comprising:
  • the colloidal silica of the present invention contains silica particles having excellent compactness and excellent maintainability of the surface uneven shape under basic conditions. Further, the method for producing colloidal silica of the present invention can produce the colloidal silica.
  • Example 3 is an SEM photograph of silica particles of colloidal silica produced in Example 2.
  • the colloidal silica of the present invention contains silica particles having surface irregularities, it can exhibit high polishing properties. Further, since the colloidal silica of the present invention has a content of alkoxy groups in the silica particles of 1000 ppm or more, the amount of alkoxy groups per unit weight of silica particles is high, and defects on the surface of the substrate to be polished, etc. Can be suppressed. Further, in the colloidal silica of the present invention, the reduction rate of the specific surface area of the silica particles when heat-treated under basic conditions is 15.0% or less, so that the surface uneven shape can be maintained under basic conditions. It is excellent in that it can maintain high polishing property even under basic conditions.
  • the method for producing colloidal silica of the present invention is at least one selected from the group consisting of primary amines, secondary amines and tertiary amines (however, hydroxy groups are excluded as substituents) as an alkali catalyst.
  • the sol-gel reaction is carried out by using the above amine and the molar ratio (s3/c3) between the addition amount s3 (mol) of the alkoxysilane and the addition amount c3 (mol) of the alkali catalyst in the step 3 is within a specific range. Therefore, it is possible to produce colloidal silica which has few metal impurities, is excellent in maintaining the surface uneven shape under basic conditions, and can maintain high polishability even under basic conditions.
  • colloidal silica The colloidal silica of the present invention is colloidal silica containing silica particles having an uneven surface shape, and (1) the silica particles have an alkoxy group content of 1000 ppm or more, and (2) the silica particles. Is characterized in that the reduction rate of the specific surface area when heat-treated under basic conditions is 15.0% or less.
  • the uneven surface shape of the silica particles means a shape having fine protrusions on the surface of the silica particles, and means a state in which the silica particles have a shape similar to that of Konpeito.
  • a surface uneven shape can be defined by a range of surface roughness (B1 / S1) calculated by dividing the BET specific surface area (B1) by the specific surface area (S1) calculated from the SEM minor axis. it can.
  • the specific surface area (S1) can be calculated by converting the value of 2727/SEM minor axis (nm) with the true specific gravity of silica being 2.2.
  • the surface roughness (B1/S1) is preferably 1.1 or more, more preferably 1.4 or more, and the surface roughness (B1/S1) is preferably 2.0 or less and more preferably 1.8 or less. preferable.
  • the above silica particles have an alkoxy group content of 1000 ppm or more.
  • the content of the alkoxy group is less than 1000 ppm, the colloidal silica of the present invention has poor polishing properties, and defects on the surface of the object to be polished cannot be suppressed.
  • the content of the alkoxy group is preferably 4000 ppm or more, more preferably 5000 ppm or more.
  • the content of the alkoxy group is preferably 45,000 ppm or less, more preferably 40,000 ppm or less.
  • the polishing property of the colloidal silica of the present invention is further improved.
  • the content of the above-mentioned alkoxy group can be measured by the following method.
  • the average primary particle diameter (nm) of the silica particles in colloidal silica is converted from the measured value of the BET specific surface area to the value of 2727 / BET specific surface area (m 2 / g), where the true specific surface area of silica is 2.2. And.
  • the silica particles have a specific surface area reduction rate of 15.0% or less when heat-treated under basic conditions.
  • the reduction rate of the specific surface area exceeds 15.0%, the basic resistance of the protrusions becomes low, the surface irregularity shape retention property of the silica particles under basic conditions deteriorates, and the polishing property under basic conditions decreases. Cannot be maintained.
  • the reduction rate of the specific surface area is preferably 14.5% or less, and more preferably 14.3% or less. Further, the lower limit of the reduction rate of the specific surface area is not particularly limited and may be about 0.1%.
  • the reduction rate of the specific surface area is measured by the following measuring method.
  • the pH is adjusted to 9.9 to 10.3 by adding 3-ethoxypropylamine to 800 g of colloidal silica.
  • the colloidal silica is placed in a flask with a reflux tube and heated, and the reflux state is maintained for 3 hours for base treatment.
  • the pH of the base-treated colloidal silica is adjusted to 7.6 to 7.8, and the BET specific surface area is measured according to the above method for measuring the BET specific surface area.
  • the reduction rate of the specific surface area is calculated by the following equation based on the following equation.
  • Specific surface area reduction rate (%) (BET specific surface area before base treatment-BET specific surface area after base treatment)/BET specific surface area before base treatment ⁇ 100
  • the silica particles preferably have a true specific gravity of 1.95 or more.
  • the true specific gravity of the silica particles is more preferably 2.00 or more, further preferably 2.10 or more.
  • the true specific gravity is preferably 2.20 or less, more preferably 2.16 or less.
  • the true specific gravity of the silica particles is measured by a measurement method in which colloidal silica is dried on a hot plate at 150° C., dried and held in a furnace at 300° C. for 1 hour, and then a liquid phase replacement method using ethanol is used. Can be done.
  • the silica particles preferably contain at least one amine selected from the group consisting of primary amines, secondary amines and tertiary amines.
  • the amine is not particularly limited and is represented by the following general formula (X).
  • NR a R b R c (X) (In the formula, R a , R b , and R c represent an optionally substituted alkyl group having 1 to 12 carbon atoms or hydrogen. provided that all of R a , R b , and R c are hydrogen, that is, Ammonia is excluded.)
  • R a , R b , and R c may be the same or different.
  • R a , R b , and R c may be linear, branched, or cyclic.
  • the carbon number of the linear or branched alkyl group may be 1 to 12, preferably 1 to 8 and more preferably 1 to 6.
  • Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group and the like.
  • Examples of the branched alkyl group include an isopropyl group, a 1-methylbutyl group, a 2-methylbutyl group, a 3-methylbutyl group, a 1,1-dimethylpropyl group, a 1,2-dimethylpropyl group, and a 2,2-dimethylpropyl group.
  • Preferred linear or branched alkyl groups are n-propyl group, n-hexyl group, 2-ethylhexyl group, n-octyl group and the like.
  • the carbon number of the cyclic alkyl group may be, for example, 3 to 12, and is preferably 3 to 6.
  • Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group and the like.
  • a preferred cyclic alkyl group is a cyclohexyl group.
  • Alkyl groups may be substituted in R a , R b , and R c in the above general formula (X).
  • the number of substituents may be, for example, 0, 1, 2, 3, 4, etc., preferably 0, 1 or 2, and more preferably 0 or 1. ..
  • An alkyl group having 0 substituents is an alkyl group that is not substituted.
  • the substituent is, for example, 1 substituted with an alkoxy group having 1 to 3 carbon atoms (eg, methoxy group, ethoxy group, propoxy group, isopropoxy group), amino group, or a linear alkyl group having 1 to 4 carbon atoms.
  • Examples thereof include a secondary amino group, an amino group di-substituted with a linear alkyl group having 1 to 4 carbon atoms (for example, a dimethylamino group, a din-butylamino group, etc.), an amino group not substituted, and the like.
  • a hydroxyl group is excluded as a substituent.
  • the substituents may be the same or different.
  • R a , R b and R c in the above general formula (X) are linear or branched alkyl groups having 1 to 8 carbon atoms (preferably 1 to 6 carbon atoms) which may be substituted.
  • R a , R b and R c are linear or branched alkyl groups having 1 to 8 carbon atoms (preferably 1 to 6 carbon atoms) which may be substituted with an alkoxy group having 1 to 3 carbon atoms. Is.
  • R a , R b , and R c may not be substituted.
  • R a , R b and R c are each an unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, or a linear or branched carbon atom having 1 to 12 carbon atoms substituted with an alkoxy group. It is an alkyl group of 12.
  • amines examples include 3-ethoxypropylamine, 2-methoxyethylamine, 2-2-ethoxyethylamine, 3-methoxypropylamine, 3-propoxypropylamine, 3-isopropoxypropylamine, 3-butoxypropylamine, 3 -Aliphatic ether amines such as isobutoxypropylamine, 3-(2-ethylhexyloxy)propylamine and 3-(2-methoxyethoxy)propylamine, and pentylamine, hexylamine, dipropylamine, triethylamine and the like At least one amine selected from the group consisting of aliphatic amines. Among these, aliphatic ether amines are preferable, and 3-ethoxypropyl amine is more preferable, because the content of silica particles, which is more excellent in maintaining the surface irregularities under basic conditions, can be increased. ..
  • the above amine may be used alone or in combination of two or more.
  • the content of at least one amine selected from the group consisting of primary amines, secondary amines and tertiary amines (excluding hydroxy groups as substituents) in the silica particles is per 1 g of silica particles. It is preferably 5 ⁇ mol or more, more preferably 10 ⁇ mol or more per 1 g of silica particles.
  • the lower limit of the amine content is in the above range, the content of silica particles excellent in the maintainability of the surface uneven shape under basic conditions in colloidal silica is further increased, and colloidal silica is much more sufficient. Shows excellent abrasiveness.
  • the amine content is preferably 100 ⁇ mol or less per 1 g of silica particles, and more preferably 90 ⁇ mol or less per 1 g of silica particles.
  • the upper limit of the amine content is within the above range, silica particles having surface irregularities are more easily generated.
  • the above amine content can be measured by the following method. That is, after centrifuging the colloidal silica at 215000 G for 90 minutes, the supernatant is discarded and the solid content is vacuum dried at 60 ° C. for 90 minutes. 0.50 g of the obtained dried silica product is weighed and put into 50 ml of a 1 M aqueous sodium hydroxide solution, and the silica is dissolved by heating at 50° C. for 24 hours while stirring. Silica solution is analyzed by ion chromatography to determine the amine content. Ion chromatographic analysis is performed according to JIS K0127.
  • the boiling point of the amine is preferably 85 ° C. or higher, more preferably 90 ° C. or higher.
  • the boiling point is preferably 500° C. or lower, more preferably 300° C. or lower.
  • the colloidal silica of the present invention preferably contains 20% or more of silica particles having a surface uneven shape, and preferably 30% or more, based on the number of particles in an arbitrary field of view at 200,000 times observed with a scanning electron microscope. More preferred.
  • the upper limit of the content is not particularly limited, and may be 100% or 70%.
  • the content of the silica particles having the above-mentioned surface unevenness can be measured by the following measuring method. That is, particles having a surface uneven shape are counted from the number of particles in an arbitrary field of view at 200,000 times observed with a scanning electron microscope (SEM), and the ratio of these particles is defined as the content (%).
  • SEM scanning electron microscope
  • the SEM minor diameter of silica particles in colloidal silica is preferably 8 nm or more, more preferably 15 nm or more.
  • the polishing property of the colloidal silica of the present invention is further improved.
  • the SEM minor axis of the silica particles is preferably 100 nm or less, more preferably 80 nm or less.
  • the upper limit of the SEM minor axis of the silica particles is within the above range, the scratches on the object to be polished are further reduced.
  • the SEM minor axis can be measured by the following method. An image of silica particles photographed with a scanning electron microscope was subjected to elliptic approximation of 1,000 particles with image analysis software (“WinRoof2015” manufactured by Mitani Corporation) to measure the ellipse minor axis. The number frequency distribution of the ellipse minor axis was taken, and the ellipse minor axis with a number frequency of 50% was taken as the SEM minor axis (nm).
  • the average secondary particle size of the silica particles in colloidal silica is preferably 8 nm or more, more preferably 15 nm or more.
  • the average secondary particle size of the silica particles is preferably 400 nm or less, more preferably 300 nm or less.
  • the upper limit of the average secondary particle diameter of the silica particles is within the above range, the scratches on the object to be polished are further reduced.
  • the average secondary particle size of the silica particles in the colloidal silica can be measured by the following measuring method. That is, as a sample for measurement of the dynamic light scattering method, colloidal silica is added to a 0.3 wt% citric acid aqueous solution to prepare a homogenized sample. Using the measurement sample, the secondary particle size is measured by the dynamic light scattering method (“ELSZ-2000S” manufactured by Otsuka Electronics Co., Ltd.).
  • the aspect ratio of silica particles in the colloidal silica is preferably 1.0 or more, more preferably 1.1 or more. When the lower limit of the aspect ratio is within the above range, the polishing property is further improved.
  • the aspect ratio of the silica particles is preferably 4.0 or less, more preferably 3.0 or less. When the lower limit of the aspect ratio is within the above range, scratches on the object to be polished are further suppressed.
  • the aspect ratio of silica particles in the colloidal silica can be measured by the following measuring method. That is, an image of silica particles photographed with a scanning electron microscope was elliptic-approximated with 1000 particles using image analysis software (“WinRoof2015” manufactured by Mitani Corporation), and the ellipse major axis and the ellipse minor axis were calculated for each particle. measure. The ellipse major axis/minor axis ratio (ellipse major axis/ellipse minor axis) of each particle is calculated, and the average value is taken as the aspect ratio.
  • image analysis software (“WinRoof2015” manufactured by Mitani Corporation
  • the colloidal silica of the present invention has a content of metal impurities such as sodium, potassium, iron, aluminum, calcium, magnesium, titanium, nickel, chromium, copper, zinc, lead, silver, manganese, and cobalt of 1 ppm or less. Is preferred. When the content of metal impurities is 1 ppm or less, it can be suitably used for polishing electronic materials and the like.
  • the content of the above metal impurities is a value measured using an atomic absorption spectrometer.
  • the association ratio of silica particles in colloidal silica is preferably 1.5 or more, more preferably 1.7 or more.
  • the association ratio of the silica particles is preferably 5.5 or less, more preferably 5.0 or less.
  • the upper limit of the association ratio of the silica particles is within the above range, the occurrence of scratches on the object to be polished is further reduced.
  • the association ratio of the silica particles in the colloidal silica is a value obtained by calculating the average secondary particle diameter / average primary particle diameter of the silica particles in the colloidal silica.
  • the silanol group density of the silica particles in the colloidal silica is preferably 1.5/nm 2 or more, more preferably 1.6/nm 2 or more.
  • the silanol density of the silica particles 5.0 pieces / nm 2 or less is preferably 4.0 pieces / nm 2 or less is more preferable.
  • the colloidal silica of the present invention is further improved in polishability.
  • the silanol group density of silica particles in colloidal silica can be obtained by the Sears method.
  • the Sears method is based on G.I. W. Sears, Jr. , "Determination of Specific Surface Area of Colloidal Silica by Titration with Sodium Hydroxide", Analytical Chemistry, 28(12), 1981 (1956). It was carried out with reference to the description of.
  • a 1 wt% silica dispersion was used for the measurement, titration was performed with a 0.1 mol / L aqueous sodium hydroxide solution, and the silanol group density was calculated based on the following formula.
  • (a ⁇ f ⁇ 6022) ⁇ (c ⁇ S)
  • silanol group density (pieces / nm 2 )
  • a dropping amount (mL) of 0.1 mol / L sodium hydroxide aqueous solution of pH 4-9
  • f 0.1 mol / L sodium hydroxide aqueous solution.
  • Factor, c mass (g) of silica particles
  • S BET specific surface area (m 2 / g), respectively.
  • the method for producing colloidal silica of the present invention is a method for producing colloidal silica containing silica particles having surface irregularities, (1) Step 1 of preparing a mother liquor containing an alkali catalyst and water, (2) Step 2 of adding alkoxysilane to the mother liquor to prepare a seed particle dispersion, and (3) Step 3 of adding water, an alkali catalyst and an alkoxysilane to the seed particle dispersion liquid in this order,
  • the alkali catalyst is at least one amine selected from the group consisting of primary amines, secondary amines and tertiary amines (however, hydroxy groups are excluded as substituents).
  • the molar ratio (s3 / c3) of the addition amount s3 (mol) of the alkoxysilane to the addition amount c3 (mol) of the alkali catalyst is more than 185 and 400 or less.
  • Step 1 is a step of preparing a mother liquor containing an alkaline catalyst and water.
  • the alkaline catalyst is at least one amine selected from the group consisting of primary amines, secondary amines and tertiary amines (provided that hydroxy groups are excluded as substituents).
  • the amine the same amine as that described in the colloidal silica may be used.
  • the amine content in the mother liquor is preferably 0.30 mmol / kg or more, more preferably 0.50 mmol / kg or more.
  • the content of amine in the mother liquor is preferably 20.0 mmol/kg or less, more preferably 15.0 mmol/kg or less.
  • the method for preparing the mother liquor is not particularly limited, and an alkaline catalyst may be added to water by a conventionally known method and stirred.
  • the pH of the mother liquor is not particularly limited and is preferably 9.5 or higher, more preferably 10.0 or higher.
  • the pH of the mother liquor is preferably 12.0 or less, more preferably 11.5 or less.
  • the upper limit of the pH of the mother liquor is within the above range, it becomes easier to control the average secondary particle diameter of the silica particles having an uneven surface shape, and the seeds in the seed particle dispersion obtained in step 2 described later The aggregation of particles is suppressed, and the storage stability of colloidal silica is further improved.
  • Step 2 is a step of adding alkoxysilane to the mother liquor to prepare a seed particle dispersion.
  • the alkoxysilane is not particularly limited, and the following general formula (2) Si(OR 1 ) 4 (2) (In the formula, R 1 represents an alkyl group.)
  • R 1 represents an alkyl group.
  • R 1 is not particularly limited as long as it is an alkyl group, and is preferably a lower alkyl group having 1 to 8 carbon atoms, and more preferably a lower alkyl group having 1 to 4 carbon atoms.
  • Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group and the like.
  • Examples of the alkoxysilane represented by the general formula (2) include tetramethoxysilane (tetramethylorthosilicate) in which R 1 is a methyl group, tetraethoxysilane (tetraethylorthosilicate) in which R 1 is an ethyl group, R 1 There tetraisopropoxysilane preferably an isopropyl group, tetramethoxysilane R 1 is a methyl group, tetraethoxysilane is more preferably R 1 is an ethyl group, tetramethoxysilane is more preferable.
  • the alkoxysilane represented by the above general formula (2) may be a derivative.
  • Examples of the alkoxysilane derivative include a low condensate obtained by partially hydrolyzing the alkoxysilane represented by the general formula (2).
  • the alkoxysilane represented by the general formula (2) may be used alone or in combination of two or more.
  • the addition amount of the alkoxysilane represented by the above general formula (2) in the seed particle dispersion is not particularly limited, and the addition amount s2 (mol) of the alkoxysilane in step 2 and the amount c1 of the alkali catalyst in the mother liquor (
  • the molar ratio (s2/c1) of (mol) is preferably 10 or more, more preferably 100 or more, still more preferably 150 or more.
  • s2 / c1 is preferably 8500 or less, more preferably 8000 or less.
  • gelation is difficult during the reaction.
  • the addition time of alkoxysilane in step 2 is preferably 5 minutes or longer, more preferably 10 minutes or longer. Since the lower limit of the addition time is within the above range, it is difficult to gel during the reaction.
  • the addition time of the alkoxysilane is preferably 1000 minutes or less, more preferably 600 minutes or less. When the upper limit of the addition time is within the above range, the productivity can be further improved and the manufacturing cost can be further suppressed.
  • the pH of the seed particle dispersion liquid is preferably 8.5 or less, more preferably 8.0 or less.
  • the pH of the seed particle dispersion is preferably 4.5 or higher, more preferably 4.9 or higher.
  • the lower limit of the pH of the seed particle dispersion is in the above range, gelation is further suppressed.
  • the temperature of the seed particle dispersion in step 2 is preferably 70°C or higher, more preferably 75°C or higher.
  • the temperature of the seed particle dispersion is preferably 95 ° C. or lower, more preferably 90 ° C. or lower.
  • the upper limit of the temperature of the seed particle dispersion liquid is within the above range, vaporization of the alkoxysilane is further suppressed.
  • Step 3 is a step of adding water, an alkaline catalyst and an alkoxysilane to the seed particle dispersion.
  • the alkaline catalyst is at least one amine selected from the group consisting of primary amines, secondary amines and tertiary amines (provided that hydroxy groups are excluded as substituents).
  • the amine the same amine as that described in the colloidal silica may be used.
  • the alkaline catalyst used in step 3 may be the same as or different from the alkaline catalyst used in step 1.
  • step 3 silica particles having surface irregularities are formed in the colloidal silica.
  • the mechanism of this action is not clear, but it is presumed as follows. That is, in step 3, the pH of the seed particle dispersion liquid decreases due to the addition of the alkoxysilane. In the reaction in which silica particles are formed in step 3, under basic and relatively high pH conditions, new seed particles are not generated, and alkoxylan is consumed so that the silica particles simply grow on the surface. It is considered that silica particles having an uneven shape cannot be generated.
  • step 3 it is preferable that the pH of the seed particle dispersion is lowered while being controlled to an appropriate pH from strongly basic to around neutral. Therefore, as the alkali catalyst used in step 3, an alkali catalyst that maintains a high pH or an alkali catalyst that has a sharp decrease in pH is not suitable, and has a buffering capacity that gradually decreases while controlling the pH within an appropriate range. Alkaline catalysts are preferably used.
  • the alkali catalyst used in Step 3 is preferably an amine represented by the general formula (X) having a pKa value of 8.5 or more and less than 11, and represented by the general formula (X) having a pKa value of 9 or more and less than 10. Amine is more preferred.
  • the amine represented by the general formula (X) and its pKa value are 3-ethoxypropylamine (7.99), 2-methoxyethylamine (9.89), and 3-methoxypropyl as aliphatic ether amines. These are amine (9.73), 3-propoxypropylamine (9.78), 3-isopropoxypropylamine (9.82) and 3-butoxypropylamine (9.77).
  • the aliphatic amines are pentylamine (10.63), hexylamine (10.56), dipropylamine (10.91) and triethylamine (10.75).
  • the alkoxysilane used in step 3 is not particularly limited, and the same alkoxysilane as described in step 2 above can be used.
  • the alkoxysilane used in step 3 may be the same as or different from the alkoxysilane used in step 2, but the same alkoxysilane used in step 2 should be used. Is preferable.
  • step 3 the molar ratio (s3/c3) between the addition amount s3 (mol) of the alkoxysilane and the addition amount c3 (mol) of the alkali catalyst exceeds 185.
  • the lower limit of s3/c3 exceeds 185, the uneven shape of the surface is more easily formed.
  • 200 or more is preferable and, as for s3/c3, 220 or more is more preferable.
  • the above s3/c3 is 400 or less.
  • s3/c3 is 400 or less, gelation of colloidal silica is further suppressed.
  • s3/c3 is preferably 380 or less, more preferably 350 or less.
  • step 3 alcohol may be added to the seed particle dispersion liquid in addition to the above-mentioned water, alkali catalyst and alkoxysilane.
  • the alcohol is not particularly limited as long as it is soluble in water, and the same alcohol as the by-product alcohol when the alkoxysilane used is hydrolyzed is preferable.
  • methanol is preferably used when the alkoxysilane is tetramethyl orthosilicate, and ethanol is preferably used when the alkoxysilane is tetraethyl orthosilicate.
  • the content of alcohol is preferably 25% by mass or less, and more preferably 20% by mass or less, based on 100% by mass of the mixed liquid obtained by mixing the seed particle dispersion liquid, water, the alkali catalyst, and the alcohol.
  • the upper limit of the content of alcohol is within the above range, the temperature of the mixed liquid in the step 3 can be more easily raised.
  • the lower limit of the content of alcohol is not particularly limited and may be 0% by mass or 2% by mass.
  • the amount of alkoxysilane added in step 3 is not particularly limited, and the amount of seed particles sp3 in the mixed solution obtained by mixing the amount of alkoxysilane added s3 (mol) in step 3 with the seed particle dispersion, water, an alkali catalyst, and alcohol.
  • the molar ratio (s3/sp3) of (mol) is preferably 0 or more and 30 or less. When the upper limit of s3/sp3 is within the above range, it is difficult to generate new core particles during the reaction, and the growth of the main particles is further promoted.
  • the molar ratio is a value defined by setting the molecular weight of the seed particles to 60.08 g / mol.
  • the temperature of the mixed solution in step 3 is preferably 70°C or higher, more preferably 75°C or higher.
  • the temperature of the mixed solution is preferably 95 ° C. or lower, more preferably 90 ° C. or lower.
  • the upper limit of the temperature of the seed particle dispersion liquid is within the above range, vaporization of the alkoxysilane is further suppressed.
  • the addition time of the alkoxysilane in step 3 is preferably 5 minutes or longer, more preferably 10 minutes or longer. Since the lower limit of the addition time is within the above range, it is difficult to gel during the reaction.
  • the addition time of the alkoxysilane is preferably 1000 minutes or less, more preferably 600 minutes or less. When the upper limit of the addition time is within the above range, the productivity can be further improved and the manufacturing cost can be further suppressed.
  • the colloidal silica of the present invention can be produced by the production method described above.
  • the pH of colloidal silica is preferably 11.0 or less, more preferably 10.0 or less.
  • the pH of colloidal silica is preferably 5.8 or higher, more preferably 6.0 or higher.
  • the lower limit of pH of colloidal silica is within the above range, gelation is further suppressed.
  • the method for producing colloidal silica of the present invention may further include a step of concentrating the colloidal silica after the above step 3.
  • the method of concentration is not particularly limited, and the concentration can be performed by a conventionally known method. Examples of such a concentration method include a method of concentrating by heating at a temperature of about 65 to 100°C.
  • the concentration of the silica particles of the colloidal silica after concentration is not particularly limited, and is preferably about 1 to 50% by mass based on 100% by mass of the colloidal silica.
  • the method for producing colloidal silica of the present invention may further include a step of distilling off the methanol by-produced during the reaction out of the system after the above step 3.
  • the method for distilling off methanol is not particularly limited, and examples thereof include a method in which pure water is added dropwise while heating colloidal silica to keep the volume constant, thereby replacing the dispersion medium with pure water.
  • a method of separating colloidal silica from a solvent by precipitation/separation, centrifugation, or the like and then redispersing it in water can be exemplified.
  • the colloidal silica of the present invention and the colloidal silica produced by the production method of the present invention can be used for various purposes such as an abrasive and a paper coating agent.
  • An abrasive containing the above colloidal silica is also one aspect of the present invention.
  • the colloidal silica of the present invention can be highly purified with a content of metallic impurities such as sodium of 1 ppm or less, and thus can be suitably used as a polishing agent for chemical mechanical polishing of semiconductor wafers.
  • Example 1 (Step 1) 6767 g of pure water as a solvent and 6.98 g of 3-ethoxypropylamine (3-EOPA) as an alkali catalyst were put in a flask to prepare a mother liquor. The pH of the mother liquor was 11.0. (Step 2) After heating the mother liquor to an internal temperature of 80 ° C., 2472 g of tetramethyl orthosilicate was added dropwise to the mother liquor at a constant speed over 210 minutes while adjusting the temperature so that the internal temperature did not fluctuate, to prepare a seed particle dispersion. ..
  • Step 3 5704 g of pure water as a solvent, 6.50 g of 3-ethoxypropylamine (3-EOPA) as an alkali catalyst, and 1075 g of the seed particle dispersion prepared in Step 2 were placed in a flask. Then, after heating to an internal temperature of 80° C., 2397 g of tetramethyl orthosilicate was added dropwise at a constant rate over 180 minutes while controlling the temperature so that the internal temperature did not change. Stirring was maintained for 15 minutes after the completion of the dropping to prepare a colloidal silica dispersion. Next, the colloidal silica dispersion was adjusted to a base amount of 800 mL under normal pressure and heated and concentrated until the silica concentration became 20 wt %. Next, in order to distill off the methanol produced as a by-product during the reaction, the colloidal silica was prepared by replacing the dispersion medium with 500 mL of pure water while keeping the volume constant.
  • 3-EOPA 3-ethoxypropylamine
  • Example 1 the molar ratio (s3/mol) between the addition amount s3 (mol) of the alkoxysilane (tetramethylorthosilicate) and the addition amount c3 (mol) of the alkali catalyst (3-ethoxypropylamine) in step 3 was determined. c3) was 250.
  • Example 2 (Step 1) 6767 g of pure water as a solvent and 10.47 g of 3-ethoxypropylamine (3-EOPA) as an alkali catalyst were put in a flask to prepare a mother liquor. The pH of the mother liquor was 11.3. (Step 2) After heating the mother liquor to an internal temperature of 85° C., 2472 g of tetramethyl orthosilicate was added dropwise to the mother liquor at a constant rate over 210 minutes while controlling the internal temperature so that the seed temperature was not changed. ..
  • Step 3 5704 g of pure water as a solvent, 6.50 g of 3-ethoxypropylamine (3-EOPA) as an alkali catalyst, 242 g of methanol, and 667 g of the seed particle dispersion liquid prepared in Step 2 were placed. Then, after heating to an internal temperature of 80° C., 2397 g of tetramethyl orthosilicate was added dropwise at a constant rate over 180 minutes while controlling the temperature so that the internal temperature did not change. After completion of dropping, stirring was maintained for 15 minutes to prepare a colloidal silica dispersion liquid.
  • 3-EOPA 3-ethoxypropylamine
  • the colloidal silica dispersion was heated and concentrated under normal pressure to a base amount of 9000 mL and a silica concentration of 20 wt%.
  • the colloidal silica was prepared by replacing the dispersion medium with 5680 mL of pure water while keeping the volume constant.
  • Example 2 the molar ratio (s3/mol) between the addition amount s3 (mol) of the alkoxysilane (tetramethyl orthosilicate) and the addition amount c3 (mol) of the alkali catalyst (3-ethoxypropylamine) in step 3 was determined. c3) was 250.
  • Comparative Example 1 7500 g of pure water as a solvent and 1.35 g of 3-ethoxypropylamine (3-EOPA) as an alkali catalyst were put in a flask to prepare a mother liquor.
  • the pH of the mother liquor was 10.3.
  • Step 2 After heating the mother liquor to an internal temperature of 85° C., 2740 g of tetramethyl orthosilicate was added to the mother liquor at a constant rate dropwise over 60 minutes while controlling the internal temperature so as not to fluctuate, and the mixture was stirred for 15 minutes to seed particles. A dispersion was prepared.
  • Step 3 50 g of 3-ethoxypropylamine (3-EOPA) was added as an alkali catalyst to the seed particle dispersion to prepare a mixed solution.
  • 5379 g of pure water was placed as a solvent, and 2382 g of a mixed solution of the above-mentioned 3-ethoxypropylamine and seed particle dispersion was added.
  • 1712.5 g of tetramethyl orthosilicate was added dropwise at a constant rate over 180 minutes while controlling the temperature so that the internal temperature did not change. After completion of dropping, stirring was maintained for 15 minutes to prepare a colloidal silica dispersion liquid.
  • the colloidal silica dispersion was adjusted to a base amount of 800 mL under normal pressure and heated and concentrated until the silica concentration became 20 wt %.
  • the colloidal silica was prepared by replacing the dispersion medium with 500 mL of pure water while keeping the volume constant. The obtained particles did not have surface irregularities.
  • Comparative example 2 (Step 1) 9492 g of pure water as a solvent and 3.28 g of triethanolamine (TEA) as an alkali catalyst were put in a flask to prepare a mother liquor. The pH of the mother liquor was 9.4. (Step 2) After heating the mother liquor to an internal temperature of 80 ° C., 1704 g of tetramethyl orthosilicate was added dropwise to the mother liquor at a constant speed over 180 minutes while adjusting the temperature so that the internal temperature did not fluctuate. After the supply of tetramethylsilicate into the reaction vessel is completed, the reaction solution in the reaction vessel is heated to distill methanol from the distillate with a condenser, and the reaction solution prepared under the same conditions is placed in the reaction vessel.
  • TSA triethanolamine
  • Step 3 The flask was charged with 5582 g of pure water as a solvent, 9.43 g of triethanolamine (TEA) as an alkali catalyst, and 857 g of the seed particle dispersion liquid prepared in Step 2. Next, after heating to an internal temperature of 80° C., 3878 g of tetramethyl orthosilicate was added dropwise at a constant rate over 180 minutes while controlling the temperature so that the internal temperature did not change. Stirring was maintained for 15 minutes after the completion of the dropping to prepare a colloidal silica dispersion.
  • TSA triethanolamine
  • the colloidal silica dispersion was adjusted to a base amount of 4500 mL under normal pressure, and heated and concentrated until the silica concentration became 20 wt %.
  • the colloidal silica was prepared by replacing the dispersion medium with 5680 mL of pure water while keeping the volume constant.
  • BET specific surface area (m 2 /g) Colloidal silica was pre-dried on a hot plate and then heat-treated at 800 ° C. for 1 hour to prepare a sample for measurement. Using the prepared measurement sample, the BET specific surface area was measured by the following nitrogen gas adsorption method (BET method). Nitrogen gas adsorption method Pretreatment device: BELPREP-vacII (manufactured by Microtrac Bell Co., Ltd.) Pretreatment method: Vacuum deaeration was performed at 120° C. for 8 hours. Measuring device: BELSORP-miniII (manufactured by Microtrac Bell Co., Ltd.) Measurement method: The adsorption isotherm by nitrogen was measured using the constant volume method.
  • Average secondary particle size As a sample for measurement of the dynamic light scattering method, colloidal silica was added to a 0.3 wt% citric acid aqueous solution to prepare a homogenized sample. Using the measurement sample, the average secondary particle size was measured by a dynamic light scattering method (“ELSZ-2000S” manufactured by Otsuka Electronics Co., Ltd.).
  • Reduction rate of specific surface area The pH was adjusted to 9.9 to 10.3 by adding 3-ethoxypropylamine to 800 g of colloidal silica.
  • the colloidal silica was placed in a flask equipped with a reflux tube, heated, and maintained at reflux for 3 hours for base treatment.
  • the pH of the base-treated colloidal silica was adjusted to 7.6 to 7.8, and the BET specific surface area was measured according to the above method for measuring the BET specific surface area.
  • SEM minor axis An image of silica particles taken with a scanning electron microscope was approximated by an ellipse with 1000 particles using image analysis software (“WinRoof2015” manufactured by Mitani Shoji Co., Ltd.), and the minor axis of the ellipse was measured. The number frequency distribution of the ellipse minor axis was taken, and the ellipse minor axis with a number frequency of 50% was taken as the SEM minor axis (nm).
  • the images of silica particles taken with a scanning electron microscope were elliptical-approxed to 1000 particles using image analysis software (“WinRoof2015” manufactured by Mitani Shoji Co., Ltd.), and the elliptical major axis and elliptical minor axis were measured for each particle. ..
  • the ellipse major axis/minor axis ratio (ellipse major axis/ellipse minor axis) of each particle was calculated, and the average value was used as the aspect ratio.
  • the surface roughness was defined as (B1 / S1) calculated by dividing the BET specific surface area (B1) by the specific surface area (S1) calculated from the SEM minor axis.
  • the specific surface area (S1) was calculated by converting the value of 2727/SEM minor axis (nm) with the true specific gravity of silica being 2.2.
  • the colloidal silica was dried on a hot plate at 150 ° C., held in a furnace at 300 ° C. for 1 hour, and then the true specific gravity was measured by a measuring method using a liquid phase replacement method using ethanol.
  • the colloidal silica was centrifuged at 215000 G for 90 minutes, the supernatant was discarded, and the solid content was vacuum dried at 60 ° C. for 90 minutes. 0.50 g of the obtained dry silica product was weighed, placed in 50 ml of a 1 M aqueous sodium hydroxide solution, and heated at 50 ° C. for 24 hours with stirring to dissolve the silica. The silica solution was analyzed by ion chromatography to determine the amine content. The ion chromatographic analysis was performed according to JIS K0127.
  • silanol group density The silanol group density of silica particles was determined by the Sears method. The Sears method is based on G.I. W. Sears, Jr. , "Determination of Specific Surface Area of Colloidal Silica by Titration with Sodium Hydroxide", Analytical Chemistry, 28(12), 1981 (1956). It was carried out with reference to the description of. A 1 wt% silica dispersion was used for the measurement, titration was performed with a 0.1 mol / L aqueous sodium hydroxide solution, and the silanol group density was calculated based on the following formula.
  • (a ⁇ f ⁇ 6022) ⁇ (c ⁇ S)
  • silanol group density (pieces / nm 2 )
  • a dropping amount (mL) of 0.1 mol / L sodium hydroxide aqueous solution of pH 4-9
  • f 0.1 mol / L sodium hydroxide aqueous solution.
  • Factor, c mass (g) of silica particles
  • S BET specific surface area (m 2 / g), respectively.
  • the content of metal impurities was measured using an atomic absorption spectrometer. The sum of the contents of sodium, potassium, iron, aluminum, calcium, magnesium, titanium, nickel, chromium, copper, zinc, lead, silver, manganese, and cobalt in colloidal silica was defined as the content of metal impurities.
  • Comparative Example 2 does not use an amine selected from the group consisting of primary amine, secondary amine, and tertiary amine (provided that the hydroxy group is excluded as a substituent), so the amine content is detected. Was not done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

本発明は、緻密性に優れ、塩基性条件下での表面凹凸形状の維持性に優れたシリカ粒子を含有するコロイダルシリカ、及び、当該コロイダルシリカを製造することができる製造方法を提供する。 本発明は、表面凹凸形状を有するシリカ粒子を含有するコロイダルシリカであって、 (1)前記シリカ粒子は、アルコキシ基の含有量が1000ppm以上であり、 (2)前記シリカ粒子は、塩基性条件下で加熱処理した際の比表面積の減少率が15.0%以下である、 ことを特徴とするコロイダルシリカを提供する。

Description

コロイダルシリカ及びその製造方法
 本発明は、コロイダルシリカ及びその製造方法に関し、特に、表面凹凸形状を有するシリカ粒子を含有するコロイダルシリカ及びその製造方法に関する。
 コロイダルシリカは、シリカ微粒子を水等の媒体に分散させたものであり、紙、繊維、鉄鋼等の分野で物性改良剤として使用されている他、半導体ウエハ等の電子材料の研磨剤としても使用されている。このような用途に用いられるコロイダルシリカに分散されているシリカ粒子には、高純度性や緻密性が要求される。
 上記要求に応え得るコロイダルシリカの製造方法として、例えば、特定の範囲のアルカリ濃度の反応媒体にアルキルシリケートを添加する水性シリカゾルの製造方法が開示されている(例えば、特許文献1参照)。
 しかしながら、特許文献1に記載の製造方法によれば、球状粒子が製造されており、シリカ粒子の形状については検討されていない。
 加水分解触媒として第四級アンモニウム塩等を用い、粒子表面に小突起を有するシリカ粒子を含有するコロイダルシリカの製造方法が開示されている(例えば、特許文献2参照)。コロイダルシリカは、シリカ粒子が表面に突起を有する等、異形化されている方が研磨剤としてより高い研磨性を示すことができる。
特開平6-316407号公報 特開2007-153732号公報
 本発明者等は、特許文献2に記載の製造方法により製造されたコロイダルシリカは、塩基性条件下で表面凹凸形状が維持できないという問題があることを見出した。
 本発明者等は、鋭意検討の結果、塩基性条件下においても表面凹凸形状の維持性に優れたシリカ粒子を含有するコロイダルシリカの製造に成功した。そして、このようなコロイダルシリカは、研磨剤として好適に用いることができ、上記問題をみごとに解決することができることに想到し、本発明に到達したものである。
 本発明は、緻密性に優れ、塩基性条件下でも表面凹凸形状の維持性に優れたシリカ粒子を含有するコロイダルシリカ、及び、当該コロイダルシリカを製造することができる製造方法を提供することを目的とする。
 本発明者は上記目的を達成すべく鋭意研究を重ねた結果、表面凹凸形状を有するシリカ粒子を含有し、シリカ粒子のアルコキシ基の含有量が特定の範囲であり、シリカ粒子が、塩基性条件下で加熱処理した際に特定の範囲の比表面積の減少率を示すコロイダルシリカによれば、上記目的を達成できることを見出し、本発明を完成するに至った。
 即ち、本発明は、下記のコロイダルシリカ及びその製造方法に関する。
1.表面凹凸形状を有するシリカ粒子を含有するコロイダルシリカであって、
(1)前記シリカ粒子は、アルコキシ基の含有量が1000ppm以上であり、
(2)前記シリカ粒子は、塩基性条件下で加熱処理した際の比表面積の減少率が15.0%以下である、
ことを特徴とするコロイダルシリカ 。
2.前記シリカ粒子の真比重は、1.95以上である、項1に記載のコロイダルシリカ。
3.前記シリカ粒子は、1級アミン、2級アミン及び3級アミン(ただし、置換基として、ヒドロキシ基は除外する)からなる群より選択される少なくとも1種のアミンをシリカ粒子1gあたり5μmol以上含有する、項1又は2に記載のコロイダルシリカ。
4.表面凹凸形状を有するシリカ粒子を含有するコロイダルシリカの製造方法であって、
(1)アルカリ触媒及び水を含む母液を調製する工程1、
(2)アルコキシシランを前記母液に添加して種粒子分散液を調製する工程2、及び、
(3)前記種粒子分散液に、水、アルカリ触媒及びアルコキシシランを添加する工程3をこの順に有し、
 前記アルカリ触媒は、1級アミン、2級アミン及び3級アミンからなる群(ただし、置換基として、ヒドロキシ基は除外する)より選択される少なくとも1種のアミンであり、
 前記工程3における、前記アルコキシシランの添加量s3(mol)と、前記アルカリ触媒の添加量c3(mol)とのモル比(s3/c3)は、185を超え400以下である、
ことを特徴とする、コロイダルシリカの製造方法。
 本発明のコロイダルシリカは、緻密性に優れ、塩基性条件下での表面凹凸形状の維持性に優れたシリカ粒子を含有する。また、本発明のコロイダルシリカの製造方法は、当該コロイダルシリカを製造することができる。
実施例2で製造されたコロイダルシリカのシリカ粒子のSEM写真である。
 以下、本発明のコロイダルシリカ及びその製造方法について詳細に説明する。
 本発明のコロイダルシリカは、表面凹凸形状を有するシリカ粒子を含有するので、高い研磨性を示すことができる。また、本発明のコロイダルシリカは、シリカ粒子のアルコキシ基の含有量が1000ppm以上であるので、シリカ粒子の単位重量あたりのアルコキシ基量が高く、被研磨物である基板等の表面上の欠陥を抑制できる。更に、本発明のコロイダルシリカは、シリカ粒子の、塩基性条件下で加熱処理した際の比表面積の減少率が15.0%以下であるので、塩基性条件下での表面凹凸形状の維持性に優れており、塩基性条件下でも高い研磨性を維持することができる。また、本発明のコロイダルシリカの製造方法は、アルカリ触媒として、1級アミン、2級アミン及び3級アミンからなる群(ただし、置換基として、ヒドロキシ基は除外する)より選択される少なくとも1種のアミンを用い、かつ、工程3における、アルコキシシランの添加量s3(mol)と、アルカリ触媒の添加量c3(mol)とのモル比(s3/c3)を特定の範囲としてゾルゲル反応を行うことで、金属不純物が少なく、且つ、塩基性条件下での表面凹凸形状の維持性に優れており、塩基性条件下でも高い研磨性を維持することができるコロイダルシリカを製造することができる。
1.コロイダルシリカ
 本発明のコロイダルシリカは、表面凹凸形状を有するシリカ粒子を含有するコロイダルシリカであって、(1)前記シリカ粒子は、アルコキシ基の含有量が1000ppm以上であり、(2)前記シリカ粒子は、塩基性条件下で加熱処理した際の比表面積の減少率が15.0%以下であることを特徴とする 。
 本明細書において、シリカ粒子の表面凹凸形状とは、シリカ粒子の表面に微小な突起を有する形状であり、シリカ粒子が金平糖に類似した形状となっている状態を意味する。このような表面凹凸形状は、BET比表面積(B1)を、SEM短径から算出される比表面積(S1)で除して算出される表面粗度(B1/S1)の範囲により規定することができる。なお、比表面積(S1)はシリカの真比重を2.2として、2727/SEM短径(nm)の値を換算して求めることができる。表面粗度(B1/S1)は、1.1以上が好ましく、1.4以上がより好ましい、また、表面粗度(B1/S1)は、2.0以下が好ましく、1.8以下がより好ましい。
 上記シリカ粒子は、アルコキシ基の含有量が1000ppm以上である。アルコキシ基の含有量が1000ppm未満であると、本発明のコロイダルシリカの研磨性が低下し、且つ、被研磨物の表面上の欠陥が抑制できない。上記アルコキシ基の含有量は、4000ppm以上が好ましく、5000ppm以上がより好ましい。また、上記アルコキシ基の含有量は、45000ppm以下が好ましく、40000ppm以下がより好ましい。アルコキシ基の含有量の上限が上記範囲であることにより、本発明のコロイダルシリカの研磨性がより一層向上する。
 なお、上記アルコキシ基の含有量は、以下の方法により測定することができる。
(アルコキシ基の含有量(ppm))
 コロイダルシリカを215000G、90分の条件で遠心分離後、上澄みを廃棄して、固形分を60℃、90分の条件で真空乾燥させる。得られたシリカ乾固物0.50gを秤量し、1M水酸化ナトリウム水溶液50mlに入れ、撹拌させながら50℃で24時間加熱することでシリカを溶解させる。前記シリカ溶解液をガスクロマトグラフにより分析し、アルコール含有量を求め、シリカ1g当たりのアルコキシ量を算出する。ガスクロマトグラフの検出器は水素炎イオン化検出器(FID)を用いる。ガスクロマトグラフ分析は、JIS K0114に従って行う。
(BET比表面積(m/g))
 コロイダルシリカをホットプレートの上で予備乾燥後、800℃で1時間熱処理して測定用サンプルを調製する。調製した測定用サンプルを窒素ガス吸着法(BET法)により測定した。
(平均一次粒子径(nm))
 シリカの真比重を2.2として、上記BET比表面積の測定値から2727/BET比表面積(m/g)の値を換算して、コロイダルシリカ中のシリカ粒子の平均一次粒子径(nm)とする。
 上記シリカ粒子は、塩基性条件下で加熱処理した際の比表面積の減少率が15.0%以下である。比表面積の減少率が15.0%を超えると、突起の耐塩基性が低くなり、塩基性条件下でのシリカ粒子の表面凹凸形状の維持性が低下し、塩基性条件下での研磨性を維持できない。比表面積の減少率は、14.5%以下が好ましく、14.3%以下がより好ましい。また、比表面積の減少率の下限は特に限定されず、0.1%程度であればよい。
 なお、上記比表面積の減少率は、以下の測定方法により測定される。
(比表面積の減少率)
 コロイダルシリカ800gに3-エトキシプロピルアミンを添加して、pHを9.9~10.3に調整する。上記コロイダルシリカを還流管付きフラスコに入れて加熱し、3時間還流状態を維持して塩基処理を行う。塩基処理したコロイダルシリカのpHを7.6~7.8に調整し、上記BET比表面積の測定方法に準じて、BET比表面積を測定する。塩基処理前後のBET比表面積により、下記式に基づいて比表面積の減少率を次式により算出する。
比表面積の減少率(%)=
(塩基処理前のBET比表面積-塩基処理後のBET比表面積)/塩基処理前のBET比表面積×100
 シリカ粒子は、真比重が1.95以上であることが好ましい。真比重が1.95以上であることにより、シリカ粒子の硬度がより一層向上し、コロイダルシリカの研磨性がより一層向上する。シリカ粒子の真比重は2.00以上がより好ましく、2.10以上が更に好ましい。また、上記真比重は、2.20以下が好ましく、2.16以下がより好ましい。
 上記シリカ粒子の真比重は、コロイダルシリカを150℃のホットプレート上で乾固後、300℃炉内で1時間保持した後、エタノールを用いた液相置換法で測定する測定方法により測定することができる。
 上記シリカ粒子は、1級アミン、2級アミン及び3級アミンからなる群より選択される少なくとも1種のアミンを含有することが好ましい。上記アミンとしては特に限定されず、下記一般式(X)で表される。
NR  (X)
(式中、R、R、Rは置換されてもよい炭素数1~12のアルキル基、又は水素を示す。ただし、R、R、Rのすべてが水素の場合、つまりアンモニアは除外する。)
、R、Rは、同一でも異なっていてもよい。R、R、Rは直鎖状、分岐状、環状のいずれであってもよい。
 直鎖状又は分岐状のアルキル基の炭素数は、1~12であってもよく、好ましくは1~8 、より好ましくは1~6である。直鎖状のアルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基などが挙げられる。分岐状のアルキル基としては、イソプロピル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、1-メチル-1-エチルプロピル基、2-メチル-2-エチルプロピル基、1-エチルブチル基、2-エチルブチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、5-エチルヘキシル基などが挙げられる。好ましい直鎖状又は分岐状のアルキル基は、n-プロピル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基などである。
 環状のアルキル基の炭素数は、例えば3~12などであってもよく、好ましくは3~6である。環状のアルキル基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基などが挙げられる。好ましい環状のアルキル基は、シクロヘキシル基である。
 上記一般式(X)中のR、R、Rにおいてアルキル基は置換されていてもよい。置換基の数としては、例えば0個、1個、2個、3個、4個などであってもよく、好ましくは0個、1個又は2個、より好ましくは0個又は1個である。なお、置換基の数が0個のアルキル基とは置換されていないアルキル基である。置換基としては、例えば炭素数1~3のアルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基)、アミノ基、炭素数1~4の直鎖状アルキル基で置換された1級アミノ基、炭素数1~4の直鎖状アルキル基でジ置換されたアミノ基(例えばジメチルアミノ基、ジn-ブチルアミノ基など)、置換されていないアミノ基などが挙げられる。ただし、置換基として、ヒドロキシル基は除外する。複数の置換基を有するアルキル基において、置換基は、同一であっても異なっていてもよい。
 上記一般式(X)中のR、R、Rは、置換されてもよい炭素数1~8(好ましくは炭素数1~6 )の直鎖状又は分岐状のアルキル基である。また、R、R、Rは、炭素数1~3のアルコキシ基で置換されてもよい炭素数1~8(好ましくは炭素数1~6)の直鎖状又は分岐状のアルキル基である。
 また、R、R、Rは、置換されていなくともよい。好ましくはR、R、Rは、置換されていない直鎖状又は分岐状の炭素数1~12のアルキル基、またはアルコキシ基で置換された直鎖状又は分岐状の炭素数1~12のアルキル基である。
 上述のアミンとしては、3-エトキシプロピルアミン、2-メトキシエチルアミン、2-2-エトキシエチルアミン、3-メトキシプロピルアミン、3-プロポキシプロピルアミン、3-イソプロポキシプロピルアミン、3-ブトキシプロピルアミン、3-イソブトキシプロピルアミン、3-(2-エチルヘキシロキシ)プロピルアミン、3-(2-メトキシエトキシ)プロピルアミン等の脂肪族エーテルアミン、及び、ペンチルアミン、ヘキシルアミン、ジプロピルアミン、トリエチルアミン等の脂肪族アミンからなる群から選択される少なくとも1種のアミンが挙げられる。これらの中でも、より一層塩基性条件下での表面凹凸形状の維持性に優れたシリカ粒子の含有量を増加させることができる点で、脂肪族エーテルアミンが好ましく、3-エトキシプロピルアミンがより好ましい。
 上記アミンは、単独で用いてもよいし、二種以上を混合して用いてもよい。
 シリカ粒子中の、1級アミン、2級アミン及び3級アミンからなる群(ただし、置換基として、ヒドロキシ基は除外する)より選択される少なくとも1種のアミンの含有量は、シリカ粒子1g当たり5μmol以上が好ましく、シリカ粒子1g当たり10μmol以上がより好ましい。上記アミン含有量の下限が上記範囲であることにより、コロイダルシリカ中の塩基性条件下での表面凹凸形状の維持性に優れたシリカ粒子の含有量がより一層増加し、コロイダルシリカがより一層十分な研磨性を示す。また、上記アミン含有量は、シリカ粒子1g当たり100μmol以下が好ましく、シリカ粒子1g当たり90μmol以下がより好ましい。上記アミン含有量の上限が上記範囲であることにより、表面凹凸形状を有するシリカ粒子がより一層生成し易くなる。
 なお、上記アミン含有量は、以下の方法により測定することができる。すなわち、コロイダルシリカを215000G、90分の条件で遠心分離後、上澄みを廃棄して、固形分を60℃、90分の条件で真空乾燥させる。得られたシリカ乾固物0.50gを秤量し、1M水酸化ナトリウム水溶液50mlに入れ、撹拌させながら50℃で24時間加熱することでシリカを溶解させる。シリカ溶解液イオンクロマトグラフにより分析し、アミン含有量を求める。イオンクロマトグラフ分析は、JIS K0127に従って行う。
 上記アミンの沸点は、85℃以上が好ましく、90℃以上がより好ましい。沸点の下限が上記範囲であることにより、反応途中での気化がより一層抑制され、触媒として好適に用いることができる。また、上記沸点は、500℃以下が好ましく、300℃以下がより好ましい。
 本発明のコロイダルシリカは、走査型電子顕微鏡で観察した20万倍での任意の視野内の粒子個数中、表面凹凸形状を有するシリカ粒子を20%以上含むことが好ましく、30%以上含むことがより好ましい。上記シリカ粒子の含有量の下限が上記範囲であると、コロイダルシリカの研磨性がより一層向上する。含有量の上限は特に限定されず、100%であってもよいし、70%であってもよい。
 本明細書において、上記表面凹凸形状を有するシリカ粒子の含有量は、以下の測定方法により測定することができる。すなわち、走査型電子顕微鏡(SEM)で観察した20万倍での任意の視野内の粒子個数中から表面凹凸形状を有する粒子を数え、それら粒子の割合を含有量(%)とする。
 コロイダルシリカ中のシリカ粒子のSEM短径は8nm以上が好ましく15nm以上がより好ましい。シリカ粒子のSEM短径の下限が上記範囲であることにより、本発明のコロイダルシリカの研磨性がより一層向上する。また、シリカ粒子のSEM短径は、100nm以下が好ましく、80nm以下がより好ましい。シリカ粒子のSEM短径の上限が上記範囲であることにより、被研磨物の傷の発生がより一層低減される。
 なお、上記SEM短径は、以下の方法により測定することができる。走査型電子顕微鏡で撮影したシリカ粒子の画像を、画像解析ソフト(三谷商事株式会社製「WinRoof2015」)で粒子1000個をそれぞれ楕円近似し、楕円短軸を計測した。楕円短軸の個数頻度分布をとり、個数頻度50%の楕円短軸をSEM短径(nm)とした。
 コロイダルシリカ中のシリカ粒子の平均二次粒子径は、8nm以上が好ましく、15nm以上がより好ましい。シリカ粒子の平均二次粒子径の下限が上記範囲であることにより、本発明のコロイダルシリカの研磨性がより一層向上する。また、シリカ粒子の平均二次粒子径は、400nm以下が好ましく、300nm以下がより好ましい。シリカ粒子の平均二次粒子径の上限が上記範囲であることにより、被研磨物の傷の発生がより一層低減される。
 本明細書において、上記コロイダルシリカ中のシリカ粒子の平均二次粒子径は、以下の測定方法により測定することができる。すなわち、動的光散乱法の測定用サンプルとして、コロイダルシリカを0.3重量%クエン酸水溶液に加えて均一化したものを調製する。当該測定用サンプルを用いて、動的光散乱法(大塚電子株式会社製「ELSZ-2000S」)により二次粒子径を測定する。
 コロイダルシリカ中のシリカ粒子のアスペクト比は、1.0以上が好ましく、1.1以上がより好ましい。アスペクト比の下限が上記範囲であることにより、研磨性がより一層向上する。また、シリカ粒子のアスペクト比は、4.0以下が好ましく、3.0以下がより好ましい。アスペクト比の下限が上記範囲であることにより、被研磨物の傷の発生がより一層抑制される。
 本明細書において、上記コロイダルシリカ中のシリカ粒子のアスペクト比は、以下の測定方法により測定することができる。すなわち、走査型電子顕微鏡で撮影したシリカ粒子の画像を、画像解析ソフト(三谷商事株式会社製「WinRoof2015」)で粒子1000個をそれぞれ楕円近似し、楕円長軸および楕円短軸をそれぞれの粒子について計測する。各粒子の楕円長短軸比(楕円長軸/楕円短軸)を算出し、平均値をアスペクト比とする。
 本発明のコロイダルシリカは、ナトリウム、カリウム、鉄、アルミニウム、カルシウム、マグネシウム、チタン、ニッケル、クロム、銅、亜鉛、鉛、銀、マンガン、コバルト等の金属不純物の含有量が、1ppm以下であることが好ましい。金属不純物の含有量が1ppm以下であることにより、電子材料等の研磨に好適に用いることができる。
 本明細書において、上記金属不純物の含有量は、原子吸光測定装置を用いて測定される値である。
 コロイダルシリカ中のシリカ粒子の会合比は、1.5以上が好ましく、1.7以上がより好ましい。シリカ粒子の会合比の下限が上記範囲であることにより、本発明のコロイダルシリカの研磨性がより一層向上する。また、シリカ粒子の会合比は、5.5以下が好ましく、5.0以下がより好ましい。シリカ粒子の会合比の上限が上記範囲であることにより、被研磨物の傷の発生がより一層低減される。
 本明細書において、上記コロイダルシリカ中のシリカ粒子の会合比は、コロイダルシリカ中のシリカ粒子の平均二次粒子径/平均一次粒子径を算出することにより得られる値である。
 コロイダルシリカ中のシリカ粒子のシラノール基密度は1.5個/nm以上が好ましく、1.6個/nm以上がより好ましい。シラノール基密度の下限が上記範囲であると、被研磨物の傷の発生がより一層低減される。また、シリカ粒子のシラノール密度は5.0個/nm以下が好ましく4.0個/nm以下がより好ましい。シラノール基密度の上限が上記範囲であると本発明のコロイダルシリカの研磨性がより一層向上する。
 なお、コロイダルシリカ中のシリカ粒子のシラノール基密度はシアーズ法により求めることができる。シアーズ法は、G.W.Sears,Jr.,“Determination of Specific Surface Area of Colloidal Silica by Titration with Sodium Hydroxide”,Analytical Chemistry,28(12),1981(1956).の記載を参照して実施した。測定には1wt%シリカ分散液を使用し、0.1mol/Lの水酸化ナトリウム水溶液で滴定を行い、下記式に基づき、シラノール基密度を算出した。
 ρ=(a×f×6022)÷(c×S)
 上記式中、ρ:シラノール基密度(個/nm)、a:pH4-9の0.1mol/L水酸化ナトリウム水溶液の滴下量(mL)、f: 0.1mol/L水酸化ナトリウム水溶液のファクター、c:シリカ粒子の質量(g)、S:BET比表面積(m/g)をそれぞれ表す。
2.コロイダルシリカの製造方法
 本発明のコロイダルシリカの製造方法は、表面凹凸形状を有するシリカ粒子を含有するコロイダルシリカの製造方法であって、
(1)アルカリ触媒及び水を含む母液を調製する工程1、
(2)アルコキシシランを前記母液に添加して種粒子分散液を調製する工程2、及び、
(3)前記種粒子分散液に、水、アルカリ触媒及びアルコキシシランを添加する工程3をこの順に有し、
 前記アルカリ触媒は、1級アミン、2級アミン及び3級アミンからなる群(ただし、置換基として、ヒドロキシ基は除外する)より選択される少なくとも1種のアミンであり、
 前記工程3における、前記アルコキシシランの添加量s3(mol)と、前記アルカリ触媒の添加量c3(mol)とのモル比(s3/c3)は、185を超え400以下である製造方法である。
(工程1)
 工程1は、アルカリ触媒及び水を含む母液を調製する工程である。
 アルカリ触媒は、1級アミン、2級アミン及び3級アミンからなる群(ただし、置換基として、ヒドロキシ基は除外する)より選択される少なくとも1種のアミンである。当該アミンとしては、上記コロイダルシリカにおいて説明したアミンと同一のものを用いればよい。
 母液中のアミンの含有量は、0.30mmol/kg以上が好ましく、0.50mmol/kg以上がより好ましい。アミンの含有量の下限が上記範囲であることにより、粒子径を制御しやすくなる。また、母液中のアミンの含有量は、20.0mmol/kg以下が好ましく、15.0mmol/kg以下がより好ましい。アミンの含有量が上記範囲であることにより反応中にゲル化し難い。
 母液を調製する方法としては特に限定されず、水にアルカリ触媒を従来公知の方法により添加して撹拌すればよい。
 母液のpHは特に限定されず、9.5以上が好ましく、10.0以上がより好ましい。母液のpHの下限が上記範囲であることにより、より一層粒子径を制御しやすくなる。また、母液のpHは12.0以下が好ましく、11.5以下がより好ましい。母液のpHの上限が上記範囲であることにより、表面凹凸形状を有するシリカ粒子の平均二次粒子径の制御がより一層容易となり、且つ、後述する工程2で得られる種粒子分散液中の種粒子の凝集が抑制され、コロイダルシリカの保管安定性がより一層向上する。
(工程2)
 工程2は、アルコキシシランを上記母液に添加して種粒子分散液を調製する工程である。
 アルコキシシランとしては特に限定されず、下記一般式(2)
Si(OR   (2)
(式中、Rはアルキル基を示す。)
で表されるアルコキシシランが挙げられる。
 上記一般式(2)において、Rはアルキル基を示す。Rはアルキル基であれば特に限定されず、炭素数1~8の低級アルキル基であることが好ましく、炭素数1~4の低級アルキル基であることがより好ましい。上記アルキル基としては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基等を例示することができる。上記一般式(2)で表されるアルコキシシランとしては、Rがメチル基であるテトラメトキシシラン(テトラメチルオルトシリケート)、Rがエチル基であるテトラエトキシシラン(テトラエチルオルトシリケート)、Rがイソプロピル基であるテトライソプロポキシシランが好ましく、Rがメチル基であるテトラメトキシシラン、Rがエチル基であるテトラエトキシシランがより好ましく、テトラメトキシシランが更に好ましい。
 上記一般式(2)で表されるアルコキシシランは、誘導体であってもよい。当該アルコキシシランの誘導体としては、上記一般式(2)で表されるアルコキシシランを部分的に加水分解して得られる低縮合物を例示することができる。
 上記一般式(2)で表されるアルコキシシランは、単独で用いてもよいし、二種以上を混合して用いてもよい。
 種粒子分散液中の上記一般式(2)で表されるアルコキシシランの添加量は特に限定されず、工程2におけるアルコキシシランの添加量s2(mol)と、母液中のアルカリ触媒の量c1(mol)のモル比(s2/c1)は、10以上が好ましく、100以上がより好ましく、150以上がさらに好ましい。s2/c1の下限が上記範囲であることにより、コロイダルシリカ中のシリカ粒子の含有量をより一層高められる。また、s2/c1は8500以下が好ましく、8000以下がより好ましい。s2/c1の上限が上記範囲であることにより、反応中にゲル化し難い。
 工程2におけるアルコキシシランの添加時間は、5分以上が好ましく、10分以上がより好ましい。添加時間の下限が上記範囲であることにより、反応途中にゲル化し難い。また、アルコキシシランの添加時間は、1000分以下が好ましく、600分以下がより好ましい。添加時間の上限が上記範囲であると生産性がより一層向上し、製造コストをより一層抑制できる。
 種粒子分散液のpHは、8.5以下が好ましく、8.0以下がより好ましい。種粒子分散液のpHの上限が上記範囲であることにより、表面凹凸形状を有するシリカ粒子をより一層形成し易くなる。また、種粒子分散液のpHは、4.5以上が好ましく、4.9以上がより好ましい。種粒子分散液のpHの下限が上記範囲であることにより、より一層ゲル化が抑制される。
 工程2における種粒子分散液の温度は、70℃以上が好ましく、75℃以上がより好ましい。種粒子分散液の温度の下限が上記範囲であることにより、反応時のゲル化がより一層抑制される。また、種粒子分散液の温度は95℃以下が好ましく、90℃以下がより好ましい。種粒子分散液の温度の上限が上記範囲であることにより、アルコキシシランの気化がより一層抑制される。
(工程3)
 工程3は、種粒子分散液に、水、アルカリ触媒及びアルコキシシラン添加する工程である。
 アルカリ触媒は、1級アミン、2級アミン及び3級アミンからなる群(ただし、置換基として、ヒドロキシ基は除外する)より選択される少なくとも1種のアミンである。当該アミンとしては、上記コロイダルシリカにおいて説明したアミンと同一のものを用いればよい。また、工程3において用いられるアルカリ触媒は、工程1において用いられるアルカリ触媒と同一のものであってもよいし、異なるものであってもよい。
 工程3により、コロイダルシリカ中に、表面凹凸形状を有するシリカ粒子が形成される。この作用機序としては明確ではないが、以下のように推定される。すなわち、工程3においては、アルコキシシランの添加によって種粒子分散液のpHが低下する。工程3におけるシリカ粒子が形成される反応において、塩基性で比較的高いpHの条件下では、新たな種粒子は生成せず、シリカ粒子が単純に成長するようにアルコキシランが消費されて、表面凹凸形状を有するシリカ粒子が生成できないと考えられる。これに対し、pHが徐々に低下して種粒子分散液が弱塩基性になると、アルコキシシランの加水分解物の縮合速度が増大し、且つ、種粒子の前駆体であるエンブリオの溶解が生じなくなるので、新たな種粒子が生成するようになると予測される。更に、pHが低下して中性付近になると弱塩基性で生成した種粒子が、工程2で生成した元からある種粒子と結合し、粒子表面に凹凸が形成されると考えられる。このため、本発明の製造方法により表面凹凸形状を含有するコロイダルシリカを製造することができると考えられる。
 上述の予想される作用機序から、工程3では、種粒子分散液のpHは、強塩基性から中性付近まで適切なpHに制御されながら低下していることが好ましい。このため、工程3で用いるアルカリ触媒としては、高いpHを維持するアルカリ触媒や、pHが急激に低下するアルカリ触媒は好適ではなく、適切なpH範囲に制御しながら徐々に低下する緩衝能を有するアルカリ触媒が好適に用いられる。
 以上の作用機序より、酸や塩基の物性を表すpKa値は緩衝領域の中心値であることから、工程3において、適切なpH範囲に制御しながら徐々に低下する緩衝能を有する物質であるかどうかの基準となる。すなわち、工程3で用いられるアルカリ触媒は、pKa値が8.5以上11未満の上記一般式(X)で表わされるアミンが好ましく、pKa値が9以上10未満の上記一般式(X)で表わされるアミンがより好ましい。
 なお、上記一般式(X)で表わされるアミン及びそのpKa値としては、脂肪族エーテルアミンでは、3-エトキシプロピルアミン(9.79)、2-メトキシエチルアミン(9.89)、3-メトキシプロピルアミン(9.73)、3-プロポキシプロピルアミン(9.78)、3-イソプロポキシプロピルアミン(9.82)、3-ブトキシプロピルアミン(9.77)である。また、脂肪族アミンでは、ペンチルアミン(10.63)、ヘキシルアミン(10.56)、ジプロピルアミン(10.91)、トリエチルアミン(10.75)である。
 工程3において用いられるアルコキシシランとしては特に限定されず、上記工程2において説明したアルコキシシランと同様のものを用いることができる。工程3において用いられるアルコキシシランは、工程2において用いられるアルコキシシランと同一のものであってもよいし、異なるものであってもよいが、工程2において用いられるアルコキシシランと同一のものを用いることが好ましい。
 工程3における、アルコキシシランの添加量s3(mol)と、アルカリ触媒の添加量c3(mol)とのモル比(s3/c3)は、185を超える。s3/c3の下限が185を超えることで表面の凹凸形状が一層形成されやすくなる。s3/c3は、200以上が好ましく、220以上がより好ましい。また、上記s3/c3は、400以下である。s3/c3が400以下であることでコロイダルシリカのゲル化が一層抑制される。s3/c3は、380以下が好ましく、350以下がより好ましい。
 工程3では、種粒子分散液に、上述の水、アルカリ触媒及びアルコキシシランの他に、アルコールを添加してもよい。
 アルコールとしては水に可溶であれば特に限定されず、使用されるアルコキシシランが加水分解された際の副生成物であるアルコールと同一のアルコールが好ましい。例えば、アルコキシシランがテトラメチルオルトシリケートの場合はメタノールを用いることが好ましく、アルコキシシランがテトラエチルオルトシリケートの場合はエタノールを用いることが好ましい。
 工程3において、種粒子分散液、水、アルカリ触媒、及びアルコールを混合した混合液100質量%に対するアルコールの含有量は、25質量%以下が好ましく、20質量%以下がより好ましい。アルコールの含有量の上限が上記範囲であることにより、工程3において混合液の温度をより一層上昇させ易くなる。また、アルコールの含有量の下限は特に限定されず、0質量%であってもよいし、2質量%であってもよい。
 工程3におけるアルコキシシランの添加量は特に限定されず、工程3におけるアルコキシシランの添加量s3(mol)と種粒子分散液、水、アルカリ触媒、及びアルコールを混合した混合液中の種粒子量sp3(mol)のモル比(s3/sp3)が0以上30以下が好ましい。s3/sp3の上限が上記範囲であることにより、反応途中で新たな核粒子が生成し難く、主粒子の成長がより一層促進される。なお、上記モル比は、種粒子の分子量を60.08g/molとし規定した値である。
 工程3における混合液の温度は、70℃以上が好ましく、75℃以上がより好ましい。混合液の温度の下限が上記範囲であることにより、反応時のゲル化がより一層抑制される。また、混合液の温度は95℃以下が好ましく、90℃以下がより好ましい。種粒子分散液の温度の上限が上記範囲であることにより、アルコキシシランの気化がより一層抑制される。
 工程3におけるアルコキシシランの添加時間は、5分以上が好ましく、10分以上がより好ましい。添加時間の下限が上記範囲であることにより、反応途中にゲル化し難い。また、アルコキシシランの添加時間は、1000分以下が好ましく、600分以下がより好ましい。添加時間の上限が上記範囲であると生産性がより一層向上し、製造コストをより一層抑制できる。
 以上説明した製造方法により、本発明のコロイダルシリカを製造することができる。
 コロイダルシリカのpHは、11.0以下が好ましく、10.0以下がより好ましい。コロイダルシリカのpHの上限が上記範囲であることにより、シリカ粒子の溶解がより一層抑制される。また、コロイダルシリカのpHは、5.8以上が好ましく、6.0以上がより好ましい。コロイダルシリカのpHの下限が上記範囲であることにより、より一層ゲル化が抑制される。
 本発明のコロイダルシリカの製造方法は、上記工程3の後に、更に、コロイダルシリカを濃縮する工程を有していてもよい。濃縮の方法としては特に限定されず、従来公知の方法により濃縮することができる。このような濃縮方法としては、例えば、65~100℃程度の温度で加熱濃縮する方法が挙げられる。
 濃縮後のコロイダルシリカのシリカ粒子の濃度は特に限定されず、コロイダルシリカを100質量%として1~50質量%程度であることが好ましい。
 本発明のコロイダルシリカの製造方法は、上記工程3の後に、更に、反応時に副生したメタノールを系外留去する工程を有していてもよい。メタノールを系外留去する方法としては特に限定されず、例えば、コロイダルシリカを加熱しながら純水を滴下し、容量を一定に保つことにより、純水で分散媒を置換する方法が挙げられる。また、他の方法としては、コロイダルシリカを沈殿・分離、遠心分離等により溶媒と分離した後に、水に再分散させる方法を例示することができる。
 本発明のコロイダルシリカ、及び、本発明の製造方法により製造されるコロイダルシリカは、研磨剤、紙のコーティング剤などの様々な用途に使用することができる。上記コロイダルシリカを含む研磨剤も、本発明の一つである。本発明のコロイダルシリカは、ナトリウムなどの金属不純物の含有量を1ppm以下と高純度にすることができるので、特に半導体ウエハの化学機械研磨の研磨剤として好適に用いることができる。
 以下に実施例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。
 実施例1
(工程1)フラスコに、溶媒として純水6767g、アルカリ触媒として3-エトキシプロピルアミン(3-EOPA)6.98gを入れ、母液を調製した。母液のpHは11.0であった。
(工程2)母液を内温 80℃まで加熱した後、当該母液にテトラメチルオルトシリケート2472gを内温変動しないよう温調しつつ、210分かけて定速滴下し、種粒子分散液を調製した。
(工程3)フラスコに、溶媒として純水5704g、アルカリ触媒として3-エトキシプロピルアミン(3-EOPA)6.50g、及び、工程2により調製された種粒子分散液1075gを入れた。次いで、内温80℃まで加熱した後、テトラメチルオルトシリケート2397gを内温変動しないよう温調しつつ、180分かけて定速滴下した。滴下終了後 15分間撹拌を維持し、コロイダルシリカ分散液を調製した。次いで、コロイダルシリカ分散液を常圧下にて、ベース量800mLとし、シリカ濃度が20wt%になるまで加熱濃縮した。次いで、反応時に副生したメタノールを系外留去するために、容量を一定に保ちながら、純水500mLにて分散媒を置換して、コロイダルシリカを調製した。
 なお、実施例1において、工程3におけるアルコキシシラン(テトラメチルオルトシリケート)の添加量s3(mol)と、アルカリ触媒(3-エトキシプロピルアミン)の添加量c3(mol)とのモル比(s3/c3)は、250であった。
 実施例2
(工程1)フラスコに、溶媒として純水6767g、アルカリ触媒として3-エトキシプロピルアミン(3-EOPA)10.47gを入れ、母液を調製した。母液のpHは11.3であった。
(工程2)母液を内温 85℃まで加熱した後、当該母液にテトラメチルオルトシリケート2472gを内温変動しないよう温調しつつ、210分かけて定速滴下し、種粒子分散液を調製した。
(工程3)フラスコに、溶媒として純水5704g、アルカリ触媒として3-エトキシプロピルアミン(3-EOPA)6.50g、メタノール242g、及び、工程2により調製された種粒子分散液667gを入れた。次いで、内温80℃まで加熱した後、テトラメチルオルトシリケート2397gを内温変動しないよう温調しつつ、180分かけて定速滴下した。滴下終了後 15分間撹拌を維持し、コロイダルシリカ分散液を調製した。次いで、コロイダルシリカ分散液を常圧下にて、ベース量9000mLとし、シリカ濃度が20wt%になるまで加熱濃縮した。次いで、反応時に副生したメタノールを系外留去するために、容量を一定に保ちながら、純水5680mLにて分散媒を置換して、コロイダルシリカを調製した。
 なお、実施例2において、工程3におけるアルコキシシラン(テトラメチルオルトシリケート)の添加量s3(mol)と、アルカリ触媒(3-エトキシプロピルアミン)の添加量c3(mol)とのモル比(s3/c3)は、250であった。
 比較例1
(工程1)フラスコに、溶媒として純水7500g、アルカリ触媒として3-エトキシプロピルアミン(3-EOPA)1.35gを入れ、母液を調製した。母液のpHは10.3であった。
(工程2)母液を内温 85℃まで加熱した後、当該母液にテトラメチルオルトシリケート2740gを内温変動しないよう温調しつつ、60分かけて定速滴下し、15分間撹拌して種粒子分散液を調製した。
(工程3)種粒子分散液にアルカリ触媒として3-エトキシプロピルアミン(3-EOPA)50gを添加して、混合液を調製した。別途フラスコに、溶媒として純水5379gを入れ、上述の3-エトキシプロピルアミンと種粒子分散液との混合液2382gを添加した。次いで、内温80℃まで加熱した後、テトラメチルオルトシリケート1712.5gを内温変動しないよう温調しつつ、180分かけて定速滴下した。滴下終了後 15分間撹拌を維持し、コロイダルシリカ分散液を調製した。次いで、コロイダルシリカ分散液を常圧下にて、ベース量800mLとし、シリカ濃度が20wt%になるまで加熱濃縮した。次いで、反応時に副生したメタノールを系外留去するために、容量を一定に保ちながら、純水500mLにて分散媒を置換して、コロイダルシリカを調製した。得られた粒子には、表面凹凸形状が形成されていなかった。
 なお、比較例1において、工程3におけるアルコキシシラン(テトラメチルオルトシリケート)の添加量s3(mol)と、アルカリ触媒(3-エトキシプロピルアミン)の添加量c3(mol)とのモル比(s3/c3)は、100であった。
 比較例2
(工程1)フラスコに、溶媒として純水9492g、アルカリ触媒としてトリエタノールアミン(TEA)3.28gを入れ、母液を調製した。母液のpHは9.4であった。
(工程2)母液を内温80℃まで加熱した後、当該母液にテトラメチルオルトシリケート1704gを内温変動しないよう温調しつつ、180分かけて定速滴下した。反応容器内へのテトラメチルシリケートの供給を終了した後、反応容器内の反応液を加熱し、メタノールをコンデンサー付留出管から留出させつつ、同条件で作製した反応液を反応容器内にフィードしていくことで濃縮し、シリカ濃度12.2wt%の種粒子分散液を調製した。
(工程3)フラスコに、溶媒として純水5582g、アルカリ触媒としてトリエタノールアミン(TEA)9.43g、及び、工程2により調製された種粒子分散液857gを入れた。次いで、内温80℃まで加熱した後、テトラメチルオルトシリケート3878gを内温変動しないよう温調しつつ、180分かけて定速滴下した。滴下終了後 15分間撹拌を維持し、コロイダルシリカ分散液を調製した。次いで、コロイダルシリカ分散液を常圧下にて、ベース量4500mLとし、シリカ濃度が20wt%になるまで加熱濃縮した。次いで、反応時に副生したメタノールを系外留去するために、容量を一定に保ちながら、純水5680mLにて分散媒を置換して、コロイダルシリカを調製した。
 なお、比較例2において、工程3におけるアルコキシシラン(テトラメチルオルトシリケート)の添加量s3(mol)と、アルカリ触媒(トリエタノールアミン)の添加量c3(mol)とのモル比(s3/c3)は、403であった。
 上述のようにして得られた実施例及び比較例のコロイダルシリカの特性は、以下の方法により評価した。
(アルコキシ基の含有量(ppm))
 コロイダルシリカを215000G、90分の条件で遠心分離後、上澄みを廃棄して、固形分を60℃、90分の条件で真空乾燥させた。得られたシリカ乾固物0.50gを秤量し、1M水酸化ナトリウム水溶液50mlに入れ、撹拌させながら50℃で24時間加熱することでシリカを溶解させた。前記シリカ溶解液をガスクロマトグラフにより分析し、アルコール含有量を求め、アルコキシ量とした。ガスクロマトグラフの検出器は水素炎イオン化検出器(FID)を用いた。ガスクロマトグラフ分析は、JIS K0114に従い行った。
(BET比表面積(m/g))
 コロイダルシリカをホットプレートの上で予備乾燥後、800℃で1時間熱処理して測定用サンプルを調製した。調製した測定用サンプルを用いて、以下の窒素ガス吸着法(BET法)によりBET比表面積を測定した。
窒素ガス吸着法
前処理装置:BELPREP-vacII(マイクロトラック・ベル株式会社製)
前処理方法:120℃で8時間真空脱気を行った。
測定装置:BELSORP-miniII(マイクロトラック・ベル株式会社製)
測定方法:定容法を用いて、窒素による吸着等温線を測定した。
測定条件:吸着温度 77K;吸着質 窒素;飽和蒸気圧 実測;吸着質断面積 0.162nm;平衡待ち時間(吸着平衡状態(吸脱着の際の圧力変化が所定の値以下になる状態)に達してからの待ち時間) 500sec
測定結果から、比表面積をBET法により算出した。
(平均一次粒子径(nm))
 シリカの真比重を2.2として、上記BET比表面積の測定値から2727/BET比表面積(m/g)の値を換算して、コロイダルシリカ中のシリカ粒子の平均一次粒子径(nm)とした。
(平均二次粒子径)
 動的光散乱法の測定用サンプルとして、コロイダルシリカを0.3重量%クエン酸水溶液に加えて均一化したものを調製した。当該測定用サンプルを用いて、動的光散乱法(大塚電子株式会社製「ELSZ-2000S」)により平均二次粒子径を測定した。
(比表面積の減少率)
 コロイダルシリカ800gに3-エトキシプロピルアミンを添加して、pHを9.9~10.3に調整した。上記コロイダルシリカを還流管付きフラスコに入れて加熱し、3時間還流状態を維持して塩基処理を行った。塩基処理したコロイダルシリカのpHを7.6~7.8に調整し、上記BET比表面積の測定方法に準じて、BET比表面積を測定した。塩基処理前後のBET比表面積により、下記式に基づいて比表面積の減少率を次式により算出した。
比表面積の減少率(%)=
(塩基処理前のBET比表面積-塩基処理後のBET比表面積)/塩基処理前のBET比表面積×100
(SEM短径)
 走査型電子顕微鏡で撮影したシリカ粒子の画像を、画像解析ソフト(三谷商事株式会社製「WinRoof2015」)で粒子1000個をそれぞれ楕円近似し、楕円短軸を計測した。楕円短軸の個数頻度分布をとり、個数頻度50%の楕円短軸をSEM短径(nm)とした。
(アスペクト比)
 走査型電子顕微鏡で撮影したシリカ粒子の画像を、画像解析ソフト(三谷商事株式会社製「WinRoof2015」)で粒子1000個をそれぞれ楕円近似し、楕円長軸および楕円短軸をそれぞれの粒子について計測した。各粒子の楕円長短軸比(楕円長軸/楕円短軸)を算出し、平均値をアスペクト比とした。
(表面粗度)
 BET比表面積(B1)を、SEM短径から算出される比表面積(S1)で除して算出される(B1/S1)を表面粗度とした。なお、比表面積(S1)はシリカの真比重を2.2として、2727/SEM短径(nm)の値を換算して求めた。
 (真比重)
 コロイダルシリカを150℃のホットプレート上で乾固後、300℃炉内で1時間保持した後、エタノールを用いた液相置換法で測定する測定方法により真比重を測定した。
(アミン含有量)
 コロイダルシリカを215000G、90分の条件で遠心分離後、上澄みを廃棄して、固形分を60℃、90分の条件で真空乾燥させた。得られたシリカ乾固物0.50gを秤量し、1M水酸化ナトリウム水溶液50mlに入れ、撹拌させながら50℃で24時間加熱することでシリカを溶解させた。シリカ溶解液をイオンクロマトグラフにより分析し、アミン含有量を求めた。イオンクロマトグラフ分析は、JIS K0127に従い行った。
(シラノール基密度)
 シリカ粒子のシラノール基密度は、シアーズ法により求めた。シアーズ法は、G.W.Sears,Jr.,“Determination of Specific Surface Area of Colloidal Silica by Titration with Sodium Hydroxide”,Analytical Chemistry,28(12),1981(1956).の記載を参照して実施した。測定には1wt%シリカ分散液を使用し、0.1mol/Lの水酸化ナトリウム水溶液で滴定を行い、下記式に基づき、シラノール基密度を算出した。
 ρ=(a×f×6022)÷(c×S)
 上記式中、ρ:シラノール基密度(個/nm)、a:pH4-9の0.1mol/L水酸化ナトリウム水溶液の滴下量(mL)、f: 0.1mol/L水酸化ナトリウム水溶液のファクター、c:シリカ粒子の質量(g)、S:BET比表面積(m/g)をそれぞれ表す。
(金属不純物の含有量)
 金属不純物の含有量は、原子吸光測定装置を用いて測定した。コロイダルシリカ中のナトリウム、カリウム、鉄、アルミニウム、カルシウム、マグネシウム、チタン、ニッケル、クロム、銅、亜鉛、鉛、銀、マンガン、コバルトの含有量の和を金属不純物の含有量とした。
Figure JPOXMLDOC01-appb-T000001
 ※1:比較例2は1級アミン、2級アミン及び3級アミン(ただし、置換基として、ヒドロキシ基は除外する)からなる群より選択されるアミンを使用していないためアミン含有量が検出されなかった。

Claims (4)

  1.  表面凹凸形状を有するシリカ粒子を含有するコロイダルシリカであって、
    (1)前記シリカ粒子は、アルコキシ基の含有量が1000ppm以上であり、
    (2)前記シリカ粒子は、塩基性条件下で加熱処理した際の比表面積の減少率が15.0%以下である、
    ことを特徴とするコロイダルシリカ 。
  2.  前記シリカ粒子の真比重は、1.95以上である、請求項1に記載のコロイダルシリカ。 
  3.  前記シリカ粒子は、1級アミン、2級アミン及び3級アミンからなる群(ただし、置換基として、ヒドロキシル基は除外する)より選択される少なくとも1種のアミンをシリカ粒子1g当たり5μmol以上含有する、請求項1又は2に記載のコロイダルシリカ。
  4.  表面凹凸形状を有するシリカ粒子を含有するコロイダルシリカの製造方法であって、
    (1)アルカリ触媒及び水を含む母液を調製する工程1、
    (2)アルコキシシランを前記母液に添加して種粒子分散液を調製する工程2、及び、
    (3)前記種粒子分散液に、水、アルカリ触媒及びアルコキシシランを添加する工程3をこの順に有し、
     前記アルカリ触媒は、1級アミン、2級アミン及び3級アミンからなる群(ただし、置換基として、ヒドロキシル基は除外する)より選択される少なくとも1種のアミンであり、
     前記工程3における、前記アルコキシシランの添加量s3(mol)と、前記アルカリ触媒の添加量c3(mol)とのモル比(s3/c3)は、185を超え400以下である、
    ことを特徴とする、コロイダルシリカの製造方法。
PCT/JP2020/007585 2019-03-06 2020-02-26 コロイダルシリカ及びその製造方法 WO2020179558A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/436,385 US20220144650A1 (en) 2019-03-06 2020-02-26 Colloidal silica and method for producing same
JP2021503995A JP7164702B2 (ja) 2019-03-06 2020-02-26 コロイダルシリカ及びその製造方法
KR1020217031436A KR20210133285A (ko) 2019-03-06 2020-02-26 콜로이달 실리카 및 그의 제조 방법
CN202080019497.5A CN113557215B (zh) 2019-03-06 2020-02-26 胶体二氧化硅及其制造方法
JP2022168516A JP7434491B2 (ja) 2019-03-06 2022-10-20 コロイダルシリカ及びその製造方法
JP2024016685A JP2024036564A (ja) 2019-03-06 2024-02-06 コロイダルシリカ及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-040723 2019-03-06
JP2019040723 2019-03-06

Publications (1)

Publication Number Publication Date
WO2020179558A1 true WO2020179558A1 (ja) 2020-09-10

Family

ID=72338649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007585 WO2020179558A1 (ja) 2019-03-06 2020-02-26 コロイダルシリカ及びその製造方法

Country Status (5)

Country Link
US (1) US20220144650A1 (ja)
JP (3) JP7164702B2 (ja)
KR (1) KR20210133285A (ja)
CN (1) CN113557215B (ja)
WO (1) WO2020179558A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112978735A (zh) * 2021-02-04 2021-06-18 石家庄优士科电子科技有限公司 一种二氧化硅胶粒及包含其的分散液和制备方法
WO2022123820A1 (ja) * 2020-12-09 2022-06-16 日揮触媒化成株式会社 異形シリカ系微粒子分散液およびその製造方法、粒子連結型シリカ微粒子分散液およびその製造方法、並びに研磨用砥粒分散液
JP7170944B1 (ja) * 2022-05-31 2022-11-14 扶桑化学工業株式会社 コロイダルシリカおよびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI815246B (zh) * 2021-12-16 2023-09-11 臺灣塑膠工業股份有限公司 矽基粉體及其製造方法
KR20230164889A (ko) * 2022-05-26 2023-12-05 한국과학기술연구원 고농도 콜로이달 실리카의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052945A1 (ja) * 2008-11-07 2010-05-14 日揮触媒化成株式会社 非球状シリカゾル、その製造方法および研磨用組成物
JP2011201719A (ja) * 2010-03-25 2011-10-13 Fuso Chemical Co Ltd コロイダルシリカの二次粒子径調整方法
JP2018090798A (ja) * 2016-12-02 2018-06-14 日揮触媒化成株式会社 研磨用シリカ系粒子および研磨材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1251638A (fr) * 1959-03-18 1961-01-20 Du Pont Nouveaux hydrosols de silice et leur préparation
JP3584485B2 (ja) 1993-03-03 2004-11-04 日産化学工業株式会社 シリカゾルの製造方法
JP4221498B2 (ja) * 2003-06-06 2009-02-12 独立行政法人産業技術総合研究所 多孔性アルミナ結晶性粒子及びその製造方法
JP5080061B2 (ja) 2005-11-10 2012-11-21 多摩化学工業株式会社 中性コロイダルシリカの製造方法
KR101484795B1 (ko) * 2007-03-27 2015-01-20 후소카가쿠코교 가부시키가이샤 콜로이달 실리카 및 그의 제조 방법
JP5808106B2 (ja) * 2008-09-26 2015-11-10 扶桑化学工業株式会社 屈曲構造及び/又は分岐構造を持つシリカ二次粒子を含有するコロイダルシリカ及びその製造方法
US20120276290A1 (en) * 2011-04-28 2012-11-01 University Of North Dakota Silica nanoparticles with rough surface
JP6447831B2 (ja) * 2013-12-12 2019-01-09 日産化学株式会社 シリカ粒子及びその製造方法並びにシリカゾル
JP6284443B2 (ja) * 2014-06-25 2018-02-28 扶桑化学工業株式会社 コアシェル型シリカ粒子を含有するコロイダルシリカの製造方法
CN112875710B (zh) * 2021-01-26 2022-07-19 石家庄优士科电子科技有限公司 一种硅溶胶及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052945A1 (ja) * 2008-11-07 2010-05-14 日揮触媒化成株式会社 非球状シリカゾル、その製造方法および研磨用組成物
JP2011201719A (ja) * 2010-03-25 2011-10-13 Fuso Chemical Co Ltd コロイダルシリカの二次粒子径調整方法
JP2018090798A (ja) * 2016-12-02 2018-06-14 日揮触媒化成株式会社 研磨用シリカ系粒子および研磨材

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123820A1 (ja) * 2020-12-09 2022-06-16 日揮触媒化成株式会社 異形シリカ系微粒子分散液およびその製造方法、粒子連結型シリカ微粒子分散液およびその製造方法、並びに研磨用砥粒分散液
CN112978735A (zh) * 2021-02-04 2021-06-18 石家庄优士科电子科技有限公司 一种二氧化硅胶粒及包含其的分散液和制备方法
CN112978735B (zh) * 2021-02-04 2022-04-12 石家庄优士科电子科技有限公司 一种二氧化硅胶粒及包含其的分散液和制备方法
JP7170944B1 (ja) * 2022-05-31 2022-11-14 扶桑化学工業株式会社 コロイダルシリカおよびその製造方法
WO2023233512A1 (ja) * 2022-05-31 2023-12-07 扶桑化学工業株式会社 コロイダルシリカおよびその製造方法

Also Published As

Publication number Publication date
TW202039368A (zh) 2020-11-01
JP2024036564A (ja) 2024-03-15
JPWO2020179558A1 (ja) 2020-09-10
CN113557215A (zh) 2021-10-26
JP7164702B2 (ja) 2022-11-01
KR20210133285A (ko) 2021-11-05
JP7434491B2 (ja) 2024-02-20
JP2022186848A (ja) 2022-12-15
CN113557215B (zh) 2024-05-31
US20220144650A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
WO2020179558A1 (ja) コロイダルシリカ及びその製造方法
JP5808106B2 (ja) 屈曲構造及び/又は分岐構造を持つシリカ二次粒子を含有するコロイダルシリカ及びその製造方法
EP3081531B1 (en) Silica particles, manufacturing method for same, and silica sol
JP5892882B2 (ja) コロイダルシリカの製造方法
JP6284443B2 (ja) コアシェル型シリカ粒子を含有するコロイダルシリカの製造方法
JP2005060217A (ja) シリカゾル及びその製造方法
WO2019189610A1 (ja) シリカ粒子分散液、研磨組成物及びシリカ粒子分散液の製造方法
JP6011804B2 (ja) シリカゾルの製造方法
JP5717462B2 (ja) 表面処理無機酸化物粒子の製造方法
TWI837321B (zh) 膠質氧化矽及其製造方法
JPH11510782A (ja) 多孔質単分散SiO▲下2▼粒子
JP7457762B2 (ja) コロイダルシリカ及びその製造方法
JP7430700B2 (ja) シリカ粉末、樹脂組成物および分散体
JP7119209B2 (ja) コロイダルシリカ及びその製造方法
TWI837320B (zh) 膠質氧化矽及其製造方法
JP2011236094A (ja) 高濃度シリカゾル
JP7393912B2 (ja) ベーマイトおよびその製造方法
JP2023005414A (ja) 水分散表面処理コロイダルシリカの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503995

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217031436

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20765976

Country of ref document: EP

Kind code of ref document: A1