WO2015122453A1 - 透明被膜形成用の塗布液および透明被膜付基材の製造方法 - Google Patents

透明被膜形成用の塗布液および透明被膜付基材の製造方法 Download PDF

Info

Publication number
WO2015122453A1
WO2015122453A1 PCT/JP2015/053811 JP2015053811W WO2015122453A1 WO 2015122453 A1 WO2015122453 A1 WO 2015122453A1 JP 2015053811 W JP2015053811 W JP 2015053811W WO 2015122453 A1 WO2015122453 A1 WO 2015122453A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
fine particles
resin
coating
substrate
Prior art date
Application number
PCT/JP2015/053811
Other languages
English (en)
French (fr)
Inventor
渉 二神
政幸 松田
良 村口
Original Assignee
日揮触媒化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮触媒化成株式会社 filed Critical 日揮触媒化成株式会社
Priority to KR1020167021358A priority Critical patent/KR102245165B1/ko
Priority to CN201580008556.8A priority patent/CN106029798B/zh
Priority to JP2015562851A priority patent/JP6470695B2/ja
Publication of WO2015122453A1 publication Critical patent/WO2015122453A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/006Anti-reflective coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • C09D5/028Pigments; Filters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2231Oxides; Hydroxides of metals of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • the present invention relates to a coating liquid for forming a transparent film and a method for producing a substrate with a transparent film using the same.
  • various transparent films are formed on the surface of a substrate such as glass, plastic sheet, resin film, plastic lens and the like.
  • a substrate such as glass, plastic sheet, resin film, plastic lens and the like.
  • an organic resin film or an inorganic film is formed on the surface of the substrate.
  • inorganic particles such as resin particles and silica are blended in the organic resin film and the inorganic film to improve the scratch resistance.
  • the present applicant has provided a hard coat film made of only an organic resin and an antireflection / antistatic film containing porous silica fine particles (or silica fine particles having cavities inside) coated with antimony oxide on a substrate.
  • a laminated structure is disclosed (Japanese Patent Laid-Open No. 2005-119909; Patent Document 1), the hard coat function (scratch resistance, film strength, etc.) is not sufficient.
  • tin oxide, tin oxide doped with F, Sb or P, indium oxide, indium oxide doped with Sn or F, antimony oxide, low-order titanium oxide, etc. are disclosed as conductive oxide fine particles.
  • the present applicant has disclosed a hard coat film in which antimony pentoxide fine particles are blended to impart antistatic performance to the hard coat film itself (Japanese Patent Laid-Open No. 2004-50810; Patent Document 3).
  • a transparent film containing chain antimony pentoxide fine particles is disclosed (Japanese Patent Laid-Open No. 2005-139026; Patent Document 4).
  • an antireflection coating is formed by applying a coating liquid containing low refractive index fine particles such as silica fine particles to the surface of a substrate (Japanese Patent Laid-Open No. 7-133105; Patent Document 5). Furthermore, an antireflection film is also formed on a conductive film in which a conductive film containing metal fine particles and conductive oxide fine particles is formed in order to impart antistatic performance and electromagnetic wave shielding performance to the substrate. Yes. In order to improve the scratch resistance even when such an antireflection film or conductive film is provided, a hard coat film is formed between at least one of the base material, the antireflection film and the conductive film. Has also been done.
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2007-321049
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2008-19358
  • Patent Document 8 Japanese Patent Application Laid-Open No. 2010-128309
  • the substrate is a resin film
  • a transparent film has been conventionally formed on a film substrate that has been stretched to a predetermined thickness.
  • the film before stretching Apply a coating solution for forming a transparent film to form a coating film, then stretch and then cure, or apply a coating solution for forming a transparent film while stretching the film before stretching, and then form a coating film.
  • a coating solution for forming a transparent film to form a coating film
  • stretch and then cure or apply a coating solution for forming a transparent film while stretching the film before stretching, and then form a coating film.
  • an object of the present invention is to realize a coating solution for forming a transparent coating and a method for producing a substrate with a transparent coating, which can suppress the generation of spots during stretching of the resin film after coating and the generation of film unevenness.
  • the inventor of the present application uses a coating liquid in which inorganic oxide fine particles and a resin emulsion are dispersed in a dispersion medium containing at least one of water and an organic solvent. It was found that the generation of can be suppressed.
  • the total solid concentration of the coating solution was 0.03 to 70% by weight
  • the inorganic oxide fine particle concentration (C P ) in the coating solution was 0.0009 to 56% by weight as the solid content
  • the resin emulsion concentration ( C R ) was defined as 0.006 to 68% by weight as a solid content.
  • the coating solution of the present invention even if the substrate is stretched after being coated on the substrate, or applied while the substrate is stretched, spots and unevenness (sea islands) are not generated in the coating, and the surface Can provide a flat substrate with a transparent coating.
  • the inorganic oxide fine particles are preferably surface-treated with at least one of an organosilicon compound and a polymer dispersant.
  • an organosilicon compound when expressed as R n —SiX (4 ⁇ n) / 2 , the solid content is in the range of 1 to 100 wt% with respect to the inorganic oxide fine particles, and the polymer dispersant is The solid content is in the range of 1 to 300% by weight with respect to the inorganic oxide fine particles.
  • the inorganic oxide fine particles are at least one of monodisperse inorganic oxide fine particles (A) and chain-like inorganic oxide fine particles (B) having a primary particle diameter of 3 to 30 linked in a chain,
  • the average particle diameter (D PA ) of the inorganic oxide fine particles (A) is in the range of 3 ⁇ D PA ⁇ 100 nm
  • the average primary particle diameter (D PB ) of the inorganic oxide fine particles (B) is 3 ⁇ D PB ⁇ 50 nm. The range.
  • Resin emulsion there average diameter in the range of 10 ⁇ 500 nm, the concentration ratio of the concentration of the inorganic oxide fine particles (C P) and the resin emulsion concentration (C R) (C P / C R) is 0.03 It is preferably in the range of ⁇ 4.
  • the coating liquid for forming a transparent film according to the present invention will be specifically described.
  • Transparent coating solution the inorganic oxide fine particles and the resin emulsion are dispersed in a dispersion medium containing at least one of water and an organic solvent.
  • the total solid content concentration of the coating solution is in the range of 0.03 to 70% by weight
  • the concentration (C P ) of the inorganic oxide fine particles is in the range of 0.0009 to 56% by weight as the solid content
  • the resin The emulsion concentration (C R ) is in the range of 0.006 to 68% by weight as solids.
  • the inorganic oxide fine particles having a high purity in which the solid content concentration of the alkali metal is 1000 ppm or less as a total of the oxide (Me 2 O) are used.
  • the total amount of alkali metals in the inorganic oxide fine particles exceeds 1000 ppm it is not uniformly dispersed in the coating solution, resulting in insufficient stability. For this reason, the strength and scratch resistance of the transparent coating are lowered, and the haze value is increased.
  • the inorganic oxide fine particles are preferably surface-treated with at least one of an organosilicon compound and a polymer dispersant.
  • the organosilicon compound is 1 to 100% by weight as R n —SiX (4 ⁇ n) / 2 in terms of solid content with respect to the inorganic oxide fine particles.
  • the polymer dispersant is present in the range of 1 to 300% by weight as a solid content with respect to the inorganic oxide fine particles.
  • the amount of the polymer dispersant is less than 1% by weight, the affinity with the resin emulsion or dispersion medium in the coating liquid for forming a transparent film, which will be described later, is low and the stability is insufficient, and the dispersion is not uniformly dispersed in the coating liquid. .
  • the amount of the polymer dispersant exceeds 300% by weight, the dispersibility is not further improved.
  • the inorganic oxide fine particles at least one of monodispersed inorganic oxide fine particles (A) and chain-like inorganic oxide fine particles (B) having a primary particle diameter of 3 to 30 linked in a chain form is used.
  • the average particle diameter (D PA ) of the inorganic oxide fine particles (A) is 3 ⁇ D PA ⁇ 100 nm
  • the average primary particle diameter (D PB ) of the inorganic oxide fine particles (B) is 3 ⁇ D PB ⁇ 50 nm.
  • the state of the coated film changes depending on the concentration of the inorganic oxide fine particles in the coating solution, but when the average average particle diameter (D PA ) of the inorganic oxide fine particles (A) is less than 3 nm, the inorganic oxide fine particles ( A) is irregularly aggregated and arranged, and the haze value of the transparent film becomes high, and the film strength, scratch resistance, scratch strength, etc. become insufficient. If the average particle diameter (D PA ) exceeds 100 nm, the transparency may be insufficient, or the strength of the film may be insufficient depending on the thickness of the transparent coating. When the average primary particle diameter (D PB ) of the chain inorganic oxide fine particles (B) is less than 3 nm, the particles are aggregated without being linked in a chain. When the average primary particle diameter (D PB ) exceeds 50 nm, it becomes difficult to obtain chain particles.
  • Inorganic oxide fine particles The inorganic oxide fine particles used in the present invention can be selected from conventionally known inorganic oxide fine particles according to the intended use. However, the solid content concentration of the alkali metal contained in the inorganic oxide fine particles must be 1000 ppm or less as the total of the oxides (Me 2 O). Examples of Me include sodium (Na), potassium (K), and lithium (Li).
  • the amount of mixed ions in the inorganic oxide fine particles exceeds 1000 ppm, the amount of mixed ions may increase, or it may not be uniformly dispersed in the coating solution, resulting in insufficient stability and aggregation of the inorganic oxide fine particles. There is. For this reason, the strength and scratch resistance of the transparent film may be reduced, the haze value may be increased, and the performance such as conductivity and reflectance may be insufficient.
  • a conventionally known cleaning method using an ultrafiltration membrane or an ion exchange resin can be exemplified.
  • Inorganic oxide fine particles include TiO 2 , ZrO 2 , SiO 2 , Sb 2 O 5 , ZnO 2 , SnO 2 , In 2 O 3 , antimony-doped tin oxide (ATO), tin-doped indium oxide (ITO), and F-doped. Examples thereof include at least one selected from tin oxide (FTO), phosphorus-doped tin oxide (PTO), and aluminum-doped zinc oxide (AZO), or a composite oxide or a mixture thereof. What is necessary is just to select suitably from the above-mentioned inorganic oxide fine particle according to the use of a transparent film.
  • TiO 2 , ZrO 2 , Sb 2 O 5 , ZnO 2 , SnO 2 , In 2 O 3 and the like are suitable.
  • SiO 2 is suitable.
  • silica hollow fine particles having cavities inside disclosed in Japanese Patent Application Laid-Open Nos. 2001-233611 and 2003-192994 of the present applicant are suitable for low refractive index films for the purpose of preventing reflection.
  • silica hollow fine particles have a refractive index as low as 1.10 to 1.40, are fine particles in a colloidal region, and are excellent in dispersibility.
  • Silica hollow fine particles are also suitable as a heat insulating film.
  • silica fine particles that do not have cavities inside sometimes referred to as silica solid fine particles
  • those with relatively small particles generally having a particle size of 100 nm or less
  • TiO 2 forming a high refractive index film is suitable.
  • Sb 2 O 5 , In 2 O 3 antimony-doped tin oxide (ATO), tin-doped indium oxide (ITO), F-doped tin oxide (FTO), phosphorus-doped tin oxide (PTO) ), Aluminum-doped zinc oxide (AZO) and the like are suitable because they have conductivity.
  • ATO antimony-doped tin oxide
  • ITO tin-doped indium oxide
  • FTO F-doped tin oxide
  • PTO phosphorus-doped tin oxide
  • AZO Aluminum-doped zinc oxide
  • the inorganic oxide fine particles are preferably at least one of monodisperse inorganic oxide fine particles (A) and chain inorganic oxide fine particles (B) in which primary particles are linked in a chain.
  • monodispersed means that the particles are in a non-aggregated state.
  • the average average particle diameter (D PA ) of the inorganic oxide fine particles (A) varies depending on the type of the transparent film, but 3 ⁇ D PA ⁇ 100 nm, preferably 5 ⁇ D PA ⁇ 80 nm, and further 8 ⁇ D PA ⁇ It is preferably in the range of 80 nm.
  • the state of the coated film changes depending on the concentration of the inorganic oxide fine particles in the coating solution, but when the average particle diameter (D PA ) of the inorganic oxide fine particles (A) is less than 3 nm, the inorganic oxide fine particles (A ) May be irregularly aggregated and arranged to increase the haze value of the transparent film, or the film strength, scratch resistance, scratch strength, and the like may be insufficient. Further, in the case of the silica hollow fine particles described above, the ratio of the cavities inside the silica hollow fine particles is small, the refractive index may not be 1.40 or less, and the antireflection performance may be insufficient.
  • the crystallinity is insufficient and the conductivity may be insufficient.
  • D PA average particle diameter
  • transparency may be insufficient.
  • the strength of the film may be insufficient depending on the film thickness of the transparent film.
  • high-density irregularities are formed on the surface of the transparent film, which may result in a high haze value, and inadequate scratch resistance and scratch strength.
  • the average primary particle diameter (D PB ) of the chain inorganic oxide fine particles (B) is preferably in the range of 3 ⁇ D PB ⁇ 50 nm, more preferably 5 ⁇ D PB ⁇ 30 nm.
  • the average number of connections is preferably in the range of 3 to 30, more preferably 5 to 20.
  • the state of the coated film varies depending on the concentration of the chain inorganic oxide fine particles in the coating solution, but when the average primary particle diameter (D PB ) of the chain inorganic oxide fine particles (B) is less than 3 nm, the chain In some cases, the particles become aggregated particles without being connected to each other and the haze value of the transparent film becomes high, or the film strength, scratch resistance, scratch strength, and the like become insufficient. If the average primary particle diameter (D PB ) exceeds 50 nm, it is difficult to obtain chain particles, and even if obtained, the chain particles become long chains and the haze value of the transparent coating becomes high. Strength, scratch resistance, scratch strength, etc. may be insufficient.
  • the concentration (C P ) of the inorganic oxide fine particles in the coating liquid for forming a transparent film is preferably in the range of 0.0009 to 56% by weight, more preferably 0.03 to 40% by weight as the solid content. If the concentration (C P ) is too low, adhesion to the substrate, film strength, surface flatness, scratch resistance, scratch strength, etc. may be insufficient. In addition, desired effects (conductive performance, antireflection performance, etc.) may not be sufficiently obtained. Even if the concentration (C P ) is too high, the haze value of the transparent film may increase in addition to insufficient adhesion, film strength, scratch resistance, scratch strength, etc. due to too many particles. . In addition, cracks may occur because the elongation of the coating cannot follow the stretching of the substrate during stretching.
  • the coating liquid may contain inorganic oxide fine particles (C).
  • inorganic oxide fine particles (C) may be included in place of a part of at least one of the inorganic oxide fine particles (A) and the chain inorganic oxide fine particles (B).
  • the average particle diameter (D PC ) of the inorganic oxide fine particles (C) is preferably in the range of 100 ⁇ D PC ⁇ 500 nm, preferably 100 ⁇ D PC ⁇ 400 nm, and more preferably 100 ⁇ D PC ⁇ 300 nm. Since the convex portion can be formed on the surface of the transparent coating by adding the inorganic oxide fine particles (C), sufficient anti-blocking property can be obtained.
  • the state of the coated film changes depending on the concentration of the inorganic oxide fine particles in the coating solution, it is thinner than the transparent film thickness when the average particle diameter (D PC ) of the inorganic oxide fine particles (C) is less than 100 nm. In some cases, a convex portion cannot be formed on the surface of the transparent film.
  • the transparent film-forming coating solution is applied, dried and then cured by the method for producing a substrate with a transparent film, which will be described later, the substrate with the transparent film is wound. When removed, the surface of the transparent coating and the substrate of the substrate with the transparent coating wound later may be in close contact (sometimes referred to as blocking), and peeling may be difficult when used later.
  • the average particle diameter (D PC ) exceeds 500 nm, the transparency of the film becomes low, the film haze becomes high and the transmittance becomes low, and the surface irregularities become too large. Etc., the hardness of the film may decrease.
  • the concentration (C PC ) of the inorganic oxide fine particles (C) in the coating liquid for forming a transparent film is in the range of 0.000003 to 3% by weight, further 0.000015 to 1.5% by weight as the solid content. preferable.
  • concentration (C PC ) is less than 0.000003% by weight, the density of the protrusions formed on the surface of the coating obtained using the coating solution for forming a transparent coating is too low, and sufficient anti-blocking properties are obtained. It may not be possible.
  • the concentration (C PC ) exceeds 3% by weight, the density of the convex portions formed on the surface of the coating film is too high, and the transparency, scratch resistance, and antireflection performance may be insufficient.
  • the inorganic oxide fine particles are preferably surface-treated with at least one of an organosilicon compound and a polymer dispersant.
  • the organosilicon compound improves the affinity between the inorganic oxide fine particles and the resin emulsion.
  • the polymer dispersant not only improves the affinity in the same manner as described above but also can suppress the generation of voids between the filler and the binder due to stretching, and is particularly suitable when the stretching ratio is high.
  • R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, which may be the same or different from each other.
  • X an alkoxy group having 1 to 4 carbon atoms, a silanol group
  • Halogen hydrogen
  • n an integer of 0 to 3
  • n an integer of 0 to 3
  • the organosilicon compound when a resin having an epoxy group, a methacryl group, an acrylic group, an isocyanate group, or the like is used as the resin emulsion, the organosilicon compound includes a glycidoxy group, a methacryloxy group, an acryloxy group, a vinyl group, an isocyanate group, a ureido group, and an amino group. It is preferable to use an organosilicon compound having a functional group such as When inorganic oxide fine particles surface-treated with such an organosilicon compound are used, a transparent film excellent in film strength, scratch resistance, scratch strength and the like can be formed.
  • the surface treatment of the inorganic oxide fine particles a conventionally known method can be adopted. For example, a predetermined amount of an organosilicon compound is added to an alcohol dispersion of the inorganic oxide fine particles, water is added thereto, and water is added as necessary. Hydrolysis is performed by adding acid or alkali as a decomposition catalyst. At this time, the organosilicon compound to the inorganic oxide fine particles, in terms of solid content, R n -SiX (4 - n ) / 2 as 1 to 100%, preferably from 2 to 80 wt%, more preferably 5 ⁇ It is preferably in the range of 70% by weight.
  • the amount of the organosilicon compound is small, the affinity with the resin emulsion or dispersion medium in the coating liquid for forming a transparent film, which will be described later, is low and the stability is insufficient, and the dispersion is not uniformly dispersed in the coating liquid.
  • Inorganic oxide fine particles may agglomerate, and the strength and scratch resistance of the transparent film may decrease, resulting in an increase in haze value and insufficient performance such as conductivity and reflectance. Even if the amount of the organosilicon compound is too large, the dispersibility does not improve further.
  • the refractive index may increase and the antireflection performance may be insufficient. May have insufficient antistatic performance.
  • the dispersant used in the present invention can maintain the emulsion without dissolving the resin emulsion, and can dissolve or disperse the crosslinking agent or polymerization initiator described later and can disperse the inorganic oxide fine particles. Any polymer compound may be used.
  • polymer dispersants such as polyvinyl, polyacrylic acid, polycarboxylic acid, and polyurethane can be used. More specifically, as a polyvinyl polymer, polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl acetate, polyvinyl ester and the like and copolymers thereof, as a polyacrylic acid polymer, polyacrylic acid, sodium polyacrylate, ammonium polyacrylate, etc. And their copolymers and polycarboxylic acid polymers such as polycarboxylic acids, sodium polycarboxylates, ammonium polycarboxylates and their copolymers, polyurethane polymers such as polyurethane and their copolymers, etc. can be used. These copolymers and copolymers with sulfonic acid polymers can also be used.
  • the amount of the polymer dispersant is preferably 1 to 300% by weight, more preferably 1 to 100% by weight as a solid content with respect to the inorganic oxide fine particles.
  • the amount of the polymer dispersant is less than 1% by weight, the affinity with the resin emulsion or dispersion medium in the coating liquid for forming a transparent film described later is low and the stability is insufficient, and the polymer dispersant is uniformly dispersed in the coating liquid.
  • inorganic oxide fine particles may agglomerate, and the strength and scratch resistance of the transparent coating may decrease, resulting in an increase in haze value and insufficient performance such as conductivity and reflectance.
  • the amount of the polymer dispersant exceeds 300% by weight, the dispersibility is not further improved, and in the case of silica hollow fine particles, the refractive index is increased and the antireflection performance may be insufficient. In the case of fine particles, the antistatic performance may be insufficient.
  • the polymer dispersant of the present invention preferably has a molecular weight of 1,000 to 100,000, more preferably 5,000 to 50,000.
  • the molecular weight is less than 1000, the polymer dispersant cannot follow the stretching, so that when the stretching ratio is high, voids may be generated after stretching and haze may increase.
  • the molecular weight exceeds 100,000, the inorganic oxide fine particles may aggregate to increase the haze of the film.
  • Resin emulsion is a dispersion medium in which an organic resin is stably dispersed in a liquid droplet state, that is, in an emulsion state.
  • a resin a thermoplastic resin, a heat (including electron beam) curable resin is used.
  • a hydrophilic resin having affinity with water is dispersed in a low polarity lipophilic solvent.
  • a resin emulsion means that the resin has incompatibility to form an emulsion without dissolving in the dispersion medium.
  • the droplet state of the emulsion is maintained at the time of film formation, and in the present invention it is also maintained at the time of stretching.
  • a hydrophilic resin (A) having an affinity for water is used, and in the case of a hydrophilic dispersion medium, an lipophilic resin (B) having no affinity for water is used.
  • Examples of the resin (A) having an affinity for water include epoxy resin, polyester resin, polycarbonate resin, polyamide resin, polyphenylene oxide resin, vinyl chloride resin, fluororesin, vinyl acetate resin, silicone resin, polyurethane resin, melamine resin, butyral Resin, phenol resin, unsaturated polyester resin, at least one selected from two or more types of copolymers and modified products of these resins, and examples of the resin (B) having no affinity for water include silicone resin and polyurethane At least one selected from a resin, a thermoplastic acrylic resin, a thermosetting acrylic resin, and an ultraviolet curable acrylic resin can be used.
  • a resin emulsion using a resin (B) having no affinity for water and a hydrophilic dispersion medium is suitable.
  • the resin (B) may have a functional group such as a carboxyl group, a sulfonyl group, an amino group, a phosphonyl group, a hydroxyl group, and other derivatives in order to form an emulsion.
  • crosslinking with a surface treatment organosilicon compound for example, an epoxy group, a carbodiimide group, an isocyanate group, an acryl group, a vinyl group etc.
  • urethane resin, PVA resin, and acrylic resin can be suitably used because the obtained film is transparent and is a thermoplastic resin.
  • Urethane resin emulsions that use water as a dispersion medium such as the “IZerax” series from Daiichi Kogyo Seiyaku Co., Ltd., the “Superflex” series from Daiichi Kogyo Seiyaku Co., Ltd. Can be used.
  • Such a resin emulsion is generally spherical, but its diameter is preferably in the range of 10 to 500 nm, more preferably 20 to 300 nm. It is difficult to obtain an emulsion having a resin emulsion having a diameter smaller than 10 nm, and even if obtained, the shrinkage during curing is large and cracks may occur. If the diameter of the resin emulsion is more than 500 nm, it is difficult to uniformly disperse the inorganic oxide fine particles, and unevenness of the film may occur in the in-plane reflectance, which may deteriorate the appearance.
  • a dynamic scattering particle diameter measuring device (FPAR-1000, manufactured by Otsuka Electronics Co., Ltd.) is used.
  • the concentration (C R ) of the resin emulsion in the coating liquid for forming a transparent film is preferably in the range of 0.006 to 68% by weight, more preferably 0.2 to 49% by weight as the solid content. If the concentration (C R ) is small as a solid content, the resin strength is small and the inorganic oxide fine particles are too large, and the film strength, scratch resistance, scratch strength, etc. may be insufficient. Moreover, the elongation of the transparent coating is impure during stretching, and cracks may occur. Even if the concentration (C R ) is too large, adhesion to the substrate, film strength, surface flatness, scratch resistance, scratch strength and the like are insufficient, and inorganic oxide fine particles are reduced. In addition, there may be a case where sufficient conductive performance, antireflection performance, etc. cannot be obtained.
  • the concentration ratio (C P / C R ) between the concentration of inorganic oxide fine particles (C P ) and the concentration of resin emulsion (C R ) in the coating solution varies depending on the use and usage of the transparent coating, but is 0.03 to It is preferable that it is in the range of 4.
  • a transparent film a hard coat, antistatic, easy-adhesiveness, antireflection, antiblocking property, heat insulation, etc. are mentioned, A preferable range is set suitably according to these.
  • (C P / C R ) is preferably in the range of 0.1 to 4, more preferably 0.25 to 2.4. Within this range, a transparent hard coat film excellent in adhesion to the substrate, film strength, surface flatness, scratch resistance, scratch strength and the like can be formed.
  • C P / C R is preferably in the range of 0.03 to 2.4, more preferably 0.05 to 1. Within this range, a transparent antistatic film excellent in surface flatness, scratch resistance, scratch strength, etc. excellent in adhesion to the substrate, film strength, antistatic property (conductivity) should be formed. Can do.
  • (C P / C R ) is preferably in the range of 0.03 to 1, more preferably 0.05 to 0.25. Within this range, an easy-adhesive layer having excellent adhesion to the substrate can be formed without impairing the functions of the substrate and other functional films provided on the upper layer.
  • inorganic oxide fine particles (C) may further be included.
  • a part of at least one of the inorganic oxide fine particles (A) and the chain inorganic oxide fine particles (B) may be replaced with the inorganic oxide fine particles (C).
  • the inorganic oxide fine particles when used without being subjected to the surface treatment with the above-described organosilicon compound, the inorganic oxide fine particles exhibit an appropriately aggregated state, and interference fringes can be suppressed by scattering light.
  • interference fringes can be suppressed by selecting the particles so that the refractive index of the resulting easy-adhesive layer is close to the refractive index of the substrate as the inorganic oxide fine particles.
  • (C P / C R ) is preferably in the range of 0.1 to 4, more preferably 0.25 to 2.4. Within this range, it is possible to form a transparent antireflection film excellent in adhesion to the substrate, film strength, and antireflection performance.
  • inorganic oxide fine particles (C) may further be included.
  • a part of at least one of the inorganic oxide fine particles (A) and the chain inorganic oxide fine particles (B) may be replaced with the inorganic oxide fine particles (C).
  • An easy-adhesion layer can be formed by using inorganic oxide fine particles (C). In this case, if (C P / C R ) is in the range of 0.03 to 1, more preferably 0.05 to 0.25, the transparent antiblocking property is excellent in adhesion to the substrate, film strength, etc. A film can be formed.
  • (C P / C R ) is preferably in the range of 0.1 to 4, more preferably 0.25 to 2.4. Within this range, a transparent heat insulating film excellent in adhesion to the substrate, film strength, surface flatness, scratch resistance, scratch strength, etc. can be formed.
  • the dispersion medium must be a solvent that can be dispersed in an emulsion state without dissolving the resin emulsion. For example, water or an organic solvent is used. Further, there is no particular limitation as long as the crosslinking agent or polymerization initiator described later can be dissolved or dispersed and the inorganic oxide fine particles can be dispersed.
  • alcohols such as water, methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, hexylene glycol, isopropyl glycol; acetic acid Esters such as methyl ester, ethyl acetate, butyl acetate; ethers such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether Acetone, methyl ethyl ketone, methyl isobutyl ketone, acetylacetone, acetone Ketones such as acetate, methyl cellosolve, ethyl cellosolve, butyl cellosolve, toluene
  • a crosslinking agent can be added to the crosslinking agent coating solution as necessary.
  • the crosslinking agent is used when the resin emulsion resin is a thermoplastic resin.
  • the crosslinking agent is not particularly limited as long as it is a compound having a functional group that reacts with the reactive group of the resin emulsion, and can be appropriately selected from conventionally known crosslinking agents depending on the resin, and water is used as a dispersion medium. Epoxy compounds, amino compounds, isocyanate compounds, carbodiimide compounds, and the like can be used.
  • the addition amount of the cross-linking agent is not particularly limited and varies depending on the type of the resin emulsion. It is preferably in the range of wt%. If the addition amount of the crosslinking agent is small, the transparent film may be insufficiently cured depending on the type of the resin emulsion. Even if the addition amount of the crosslinking agent is too large, the stability of the coating solution may be insufficient, and cracks may occur in the resulting transparent film.
  • a polymerization initiator can be added to the polymerization initiator coating liquid as necessary. The polymerization initiator is not particularly limited as long as the resin emulsion can be polymerized and cured, and can be appropriately selected depending on the resin.
  • Examples include azo compounds such as azonitrile and azoamide, and organic peroxides such as benzoyl peroxide and methyl ethyl ketone peroxide.
  • the addition amount of the polymerization initiator varies depending on the type of the resin emulsion. However, when the polymerization initiator is added, it is 100 wt% with the resin emulsion as the solid content, 200 wt% or less with the polymerization initiator as the solid content, and further 10 It is preferably in the range of ⁇ 100% by weight. If the amount of the polymerization initiator used is small, curing of the transparent film may be insufficient. Even if the polymerization initiator is used in an excessive amount, the stability of the coating solution may be insufficient, and cracks may occur in the resulting transparent film.
  • the total solid concentration of the coating solution for forming the transparent film is preferably in the range of 0.03 to 70% by weight, more preferably 1 to 50% by weight.
  • the solid content concentration of the coating solution is too low, it is difficult to adjust the film thickness, and unevenness is likely to occur in the dried state. Moreover, after apply
  • the manufacturing method of the base material with a transparent film which concerns on this invention includes the process of apply
  • Step (A) Step of applying a coating solution on a resin film substrate (b) Step of biaxially (vertically and horizontally) stretching a resin film with a coating film (c) Removing (drying) the dispersion medium contained in the coating film Step (d) The step of curing is performed in order. Step (a) The above-mentioned coating solution is applied on the resin film substrate.
  • stretching is used.
  • the thickness of the base material before stretching is usually in the range of 400 to 5000 ⁇ m.
  • polyester base materials such as polyethylene terephthalate and polyethylene naphthalate
  • polyolefin base materials such as polyethylene film, polypropylene film and cyclic polyolefin film
  • polyamide base materials such as nylon-6 and nylon-66
  • polyacrylic base material examples include films, polyurethane films, polycarbonate films, polyether films, polyether sulfone films, polystyrene films, polymethylpentene films, polyether ketone films, and acrylonitrile films.
  • a polyester base material or a polyacrylic film can be suitably used because it has excellent heat resistance and high transparency.
  • a coating method of the coating liquid As a coating method of the coating liquid, a known method such as a spray method, a spinner method, a roll coating method, a bar coating method, a slit coater printing method, a gravure printing method, or a micro gravure printing method can be employed. In the present invention, a roll coating method, a slit coater printing method, a gravure printing method, and a micro gravure printing method are recommended.
  • the coating amount at this time is applied so that the film thickness of the transparent coating after stretching becomes a desired thickness.
  • the average film thickness (T F ) is 10 to 2000 nm, preferably 20 to 800 nm.
  • the average film thickness (T F ) is 80 to 400 nm, preferably 90 to 300 nm.
  • the average film thickness in the case of the hard coat film (T F) is 0.5 ⁇ 30 [mu] m, it is preferable that preferably coated to a 1 ⁇ 10 [mu] m.
  • the average film thickness (T F ) is 1 to 20 ⁇ m, preferably 3 to 15 ⁇ m. In the case of a heat insulating film, it is preferably applied so that the average film thickness (T F ) is 1 to 300 ⁇ m, preferably 5 to 100 ⁇ m.
  • Step (b) The resin film with a coating film is stretched.
  • a stretching method a biaxial stretching method is adopted. At this time, the thickness of the substrate after stretching is usually preferably in the range of 20 to 200 ⁇ m.
  • biaxial stretching means that the substrate with a coating film is stretched in the (roll) direction (longitudinal stretching) and simultaneously stretched in the vertical direction (horizontal stretching).
  • Step (c) The drying method is not particularly limited as long as the dispersion medium of the coating solution can be removed.
  • the resin film in which the coating film was formed is dried under heating.
  • the heating temperature is approximately 50 to 200 ° C., and the time is approximately 1 second to 1 hour.
  • Step (d) The method of curing the coating film depends on the type of resin emulsion used in the coating solution, but when using a thermosetting resin, it cures by heating. Conventionally known methods such as heating according to the above can be employed. In the case of a thermoplastic resin, it is cured by cooling after heating.
  • -2nd aspect In a 2nd aspect, the process of extending
  • Step (A ′) Step of applying a coating solution on a resin film substrate stretched in the vertical axis
  • (b ′) Step of horizontal stretching of the resin film with a coating film
  • (c) Removal of the dispersion medium contained in the coating film
  • Step (d) The step of curing is performed in order.
  • Step (a ′) The above-mentioned coating liquid for forming a transparent film is applied onto the resin film substrate stretched in the vertical axis.
  • the thickness of the base material stretched along the vertical axis is usually in the range of 40 to 500 ⁇ m.
  • the base material described in the first embodiment is used as the base material, and the same method is used as the coating method of the coating liquid.
  • the coating amount at this time is preferably applied so that the average film thickness (T F ) of the finally obtained transparent film is in the above range.
  • Step (b ′) The resin film with a coating film is stretched in the horizontal axis. At this time, the substrate is stretched so that the thickness of the substrate after stretching is usually in the range of 20 to 200 ⁇ m.
  • Step (c) and step (d) are the same as in the first embodiment.
  • -3rd aspect In a 3rd aspect, an application
  • (A '') A step of applying a coating liquid while stretching the substrate on the vertical axis on the resin film substrate (b ′′) A step of stretching the resin film with a coating film on the horizontal axis (c) Included in the coating film A step of removing (drying) the dispersion medium and a step of curing (d) are sequentially performed.
  • Process (a '') On the resin film substrate, the above-mentioned coating solution is applied while stretching the substrate in the vertical axis direction.
  • the substrate stretching method is the same as the longitudinal axis stretching method of the second embodiment.
  • the base material described in the first embodiment is used as the base material, and the same method is used as the coating method of the coating liquid.
  • the coating amount at this time is preferably applied so that the average film thickness (T F ) of the finally obtained transparent film is in the above range.
  • Process (b '') The resin film with a coating film is stretched in the horizontal axis. At this time, the substrate is stretched so that the thickness of the substrate after stretching is usually in the range of 20 to 200 ⁇ m.
  • Step (c) and step (d) are the same as in the first and second embodiments.
  • coating process and a biaxial stretching process are performed simultaneously.
  • (A ′ ′′) A step of applying a coating solution on a substrate while biaxially (vertical and horizontal axes)
  • (c) A step of removing (drying) the dispersion medium contained in the coating film
  • (d ) The step of curing the coating film is performed in order.
  • Process (a ''') On the resin film base material, the above-mentioned coating solution is applied while biaxially stretching the base material.
  • a biaxial stretching method is adopted.
  • the thickness of the substrate after stretching is usually preferably in the range of 20 to 200 ⁇ m.
  • the base material described in the first embodiment is used as the base material, and the same method is used as the coating method of the coating liquid.
  • the coating amount at this time is preferably applied so that the average film thickness (T F ) of the finally obtained transparent film is in the above range.
  • Step (c) and step (d) are the same as in the first to third embodiments.
  • the average film thickness (T F ) of the obtained transparent film varies depending on the type of the transparent film, and is preferably in the above range.
  • the average film thickness (T F ) of the antireflection film is less than 80 nm, the strength and scratch resistance of the antireflection film may be insufficient, and a desired Reflectivity may not be obtained.
  • the average film thickness (T F ) exceeds 400 nm, the antireflection film is likely to crack, and the strength of the antireflection film may be insufficient. Also, the film is too thick and the antireflection performance is poor. May be sufficient.
  • the average film thickness (T F ) of the antireflection film is within the above range, an antireflection film having a low reflectance (bottom reflectance, luminous reflectance) and excellent film strength can be obtained.
  • the average film thickness (T F ) of the transparent coating is measured by photographing a cross section of the transparent coating with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the content of the inorganic oxide fine particles in the transparent film is preferably 3 to 80% by weight, more preferably 5 to 70% by weight. If the content of the inorganic oxide fine particles in the transparent film is less than 3% by weight, in addition to insufficient adhesion to the substrate, film strength, surface flatness, scratch resistance, scratch strength, etc. In the case of an antireflection film, the refractive index is not sufficiently lowered and the antireflection performance may be insufficient. When the content of the inorganic oxide fine particles in the transparent film exceeds 80% by weight, the amount of particles is too large, and the film strength, scratch resistance, scratch strength, etc. are insufficient. The haze value may increase. In addition, cracks may occur because the elongation of the transparent coating cannot follow the stretching of the substrate during stretching.
  • the content of the resin derived from the resin emulsion in the transparent film is preferably in the range of 20 to 97% by weight, more preferably 30 to 95% by weight.
  • the reason for this is that the present inventors maintain the resin emulsion in droplets (emulsion state) in the coating film at least before drying. Therefore, even if the substrate is stretched during stretching, the resin emulsion is coated accordingly. I think it can move and deform in the membrane.
  • the droplets are considered to be integrated into a single film by melting or curing by subsequent drying and curing processes.
  • the content of the resin derived from the resin emulsion in the transparent film is small as a solid content, the resin is small, and in addition to insufficient film strength, scratch resistance, scratch strength, etc., the number of particles increases.
  • the haze value of a transparent film may become high.
  • cracks may occur because the elongation of the transparent coating cannot follow the stretching of the substrate during stretching.
  • Even if the content of the resin derived from the resin emulsion in the transparent film is too much, there are few particles and the adhesion to the substrate, film strength, surface flatness, scratch resistance, scratch strength, etc. are insufficient.
  • the function of the transparent film may be insufficient due to a small amount of inorganic oxide fine particles.
  • Example 1 Preparation of coating solution (H-1P) for hard coat film formation Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid-SN, average particle size 12 nm, SiO 2 concentration 20% by weight, aqueous dispersion medium) was subjected to ultrafiltration An alcohol dispersion of silica fine particles (H-1V) having a solid concentration of 20% by weight was prepared by replacing the dispersion medium with ethanol using a membrane.
  • H-1P coating solution
  • Silica sol manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid-SN, average particle size 12 nm, SiO 2 concentration 20% by weight, aqueous dispersion medium
  • An alcohol dispersion of silica fine particles (H-1V) having a solid concentration of 20% by weight was prepared by replacing the dispersion medium with ethanol using a membrane.
  • a silane coupling agent (methyltrimethoxysilane) (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-13) is added to 100 g of an alcohol dispersion of silica fine particles (H-1V) having a solid content concentration of 20% by weight at 50 ° C.
  • Heat treatment was performed to prepare an alcohol dispersion of surface-treated silica fine particles (H-1VS) having a solid content concentration of 20% by weight.
  • a dispersion medium was replaced with water using a rotary evaporator to prepare an aqueous dispersion of surface-treated silica fine particles (H-1VS) having a solid concentration of 40.5% by weight.
  • the alkali concentration was 200 ppm.
  • a polyurethane resin emulsion (Daiichi Kogyo Seiyaku Co., Ltd .: Superflex 210, resin concentration 35% by weight, emulsion diameter: 50 nm, dispersion medium was added to 10.0 g of an aqueous dispersion of surface-treated silica fine particles (H-1VS). : Water) 11.4 g and isopropyl alcohol 5.3 g were mixed to prepare a coating solution (H-1P) for forming a hard coat film having a solid content concentration of 30.0% by weight.
  • the obtained polyester resin was formed into a sheet at 295 ° C. with an extruder to prepare a polyester resin film (1) for a substrate.
  • the thickness of the polyester resin film (1) was 1,125 ⁇ m.
  • the polyester resin film (1) was stretched in the vertical axis (stretched at 140 ° C. and 2.5 times), and then a coating liquid for forming a hard coat film (H-1P) was applied by the bar coater method (bar # 60).
  • the film was dried at 140 ° C. for 120 seconds, and then stretched in the transverse axis (140 ° C., stretched 4.5 times) to produce a stretched film substrate with a hard coat film (H-1F).
  • the film substrate had a thickness of 100 ⁇ m
  • the hard coat film had a thickness of 5 ⁇ m.
  • Pencil hardness Pencil hardness was measured with a pencil hardness tester in accordance with JIS K 5400. That is, a pencil was set at an angle of 45 degrees with respect to the surface of the hard coat film, a predetermined load was applied and the pencil was pulled at a constant speed, and the presence or absence of scratches was observed.
  • Adhesive hard coat film-coated substrate H-1F
  • the adhesion was evaluated by classifying the number of cells remaining without peeling off when the film was peeled into the following three stages. The results are shown in the table.
  • Uneven appearance defects on the surface cannot be confirmed. : ⁇ Uneven appearance of irregularities on the surface can hardly be confirmed. : ⁇ A slight uneven appearance was observed on the surface. : ⁇ Uneven appearance defects on the surface were clearly observed. : ⁇ The surface was observed with a crack electron microscope and evaluated according to the following criteria.
  • Ra value is less than 10 nm: ⁇ Ra value of 10 nm or more and less than 20 nm: ⁇ Ra value of 20 nm or more and less than 50 nm: ⁇ Ra value is 50 nm or more: ⁇ Measurement of scratch resistance Using # 0000 steel wool, sliding 50 times at a load of 500 g / cm 2 , visually observing the surface of the film, and evaluating according to the following criteria, the results are shown in the table.
  • Example 2 Preparation of coating liquid (H-2P) for forming a hard coat film A polyurethane resin emulsion (Daiichi Kogyo Seiyaku Co., Ltd.) was added to 5.9 g of an aqueous dispersion of surface-treated silica fine particles (H-1VS) prepared in the same manner as in Example 1.
  • a coating solution (H-2P) for film formation was prepared.
  • a stretched film substrate with a hard coat film (H-2F) was produced. At this time, the thickness of the film substrate was 100 ⁇ m, and the thickness of the hard coat film was 4.8 ⁇ m.
  • Example 3 Preparation of coating liquid (H-3P) for forming a hard coat film A polyurethane resin emulsion (Daiichi Kogyo Seiyaku Co., Ltd.) was added to 13.8 g of an aqueous dispersion of surface-treated silica fine particles (H-1VS) prepared in the same manner as in Example 1.
  • Example 4 Preparation of coating liquid (H-4P) for forming a hard coat film A polyurethane resin emulsion (Daiichi Kogyo Seiyaku Co., Ltd.) was added to 10.0 g of an aqueous dispersion of surface-treated silica fine particles (H-1VS) prepared in the same manner as in Example 1.
  • Example 1 of Stretched Film Base with Hard Coat Film (H-4F)
  • H-4P was used instead of (H-1P) as the coating liquid for forming the hard coat film.
  • a stretched film substrate with a hard coat film (H-4F) was produced. At this time, the film substrate had a thickness of 100 ⁇ m, and the hard coat film had a thickness of 3.2 ⁇ m.
  • Example 5 Preparation of coating liquid (H-5P) for forming a hard coat film A urethane resin emulsion (Daiichi Kogyo Seiyaku Co., Ltd.) was added to 10.0 g of an aqueous dispersion of surface-treated silica fine particles (H-1VS) prepared in the same manner as in Example 1.
  • Example 1 of Stretched Film Base with Hard Coat Film (H-5F)
  • (H-5P) was used instead of (H-1P) as the coating liquid for forming the hard coat film.
  • a stretched film substrate with a hard coat film (H-5F) was produced. At this time, the film substrate had a thickness of 100 ⁇ m, and the hard coat film had a thickness of 4.9 ⁇ m.
  • Example 6 Preparation of coating liquid (H-6P) for forming a hard coat film A urethane resin emulsion (Daiichi Kogyo Seiyaku Co., Ltd.) was added to 10.0 g of surface-treated silica fine particles (H-6VS) having a solid content concentration of 60% by weight in Example 1.
  • a coating solution (H-6P) for film formation was prepared.
  • Production of stretched film substrate with hard coat film (H-6F) A coating liquid (H-6P) for forming a hard coat film was placed on the polyester resin film for substrate (1) prepared in the same manner as in Example 1. Coating is performed by a coater method (bar # 72), then stretched under heating at 140 ° C. so as to be 2.5 times in the vertical axis direction and 4.5 times in the horizontal axis direction, and then at 140 ° C. for 120 seconds. By drying, a stretched film substrate with a hard coat film (H-6F) was produced. At this time, the thickness of the substrate was 100 ⁇ m, and the thickness of the hard coat film was 2 ⁇ m.
  • Example 7 Production of stretched film substrate with hard coat film (H-7F) Polyester resin film for substrate (1) prepared in the same manner as in Example 1 was heated at 140 ° C. so as to be 2.5 times in the vertical axis direction. The coating liquid for forming a hard coat film (H-1P) prepared in the same manner as in Example 1 while being stretched below was applied by the bar coater method (bar # 60), and then 4.5 times in the horizontal axis direction.
  • the film was stretched under heating at 140 ° C. and then dried at 140 ° C. for 120 seconds to produce a stretched film substrate with a hard coat film (H-7F).
  • the thickness of the base material was 100 ⁇ m
  • the thickness of the antireflection film was 5.1 ⁇ m.
  • Example 8 Production of stretched film substrate with hard coat film (H-8F) Polyester resin film for substrate (1) prepared in the same manner as in Example 1, 2.5 times in the vertical axis direction and 4.5 in the horizontal axis direction The coating liquid for forming a hard coat film (H-1P) prepared in the same manner as in Example 1 while being stretched under heating at 140 ° C.
  • Example 9 Preparation of coating solution (H-9P) for forming a hard coat film
  • a polyacrylic acid dispersant Toa Gosei ( Co., Ltd .: Aron SD-10) 2 g was added, heat-treated at 50 ° C., and the dispersion medium was replaced with ethanol again using an ultrafiltration membrane.
  • Silica fine particles having a solid content concentration of 20 wt% (H-9VS) An alcohol dispersion was prepared.
  • the dispersion medium was replaced with water using a rotary evaporator to prepare an aqueous dispersion of surface-treated silica fine particles (H-9VS) having a solid content concentration of 40.5% by weight.
  • the alkali metal concentration was 200 ppm.
  • the film was stretched under temperature, and then a coating solution for forming a hard coat film (H-9P) was applied by the bar coater method (bar # 60), dried at 80 ° C. for 120 seconds, and then irradiated with ultraviolet rays of 600 mJ / cm 2 . After being cured by irradiation, the film was stretched under heating at 140 ° C. so as to be 4.5 times in the horizontal axis direction, and then dried at 140 ° C. for 120 seconds to obtain a stretched film substrate with a hard coat film ( H-9F) was prepared. At this time, the thickness of the base material was 101 ⁇ m, and the thickness of the antireflection film was 5 ⁇ m.
  • a matrix-forming component solution (1) having a solid content concentration of 44% by weight and 30.0 g of an alcohol dispersion of silica fine particles (H-1VS) having a solid content concentration of 40% by weight prepared in the same manner as in Example 1.
  • 22.6 g of isopropyl alcohol were mixed to prepare a coating solution (RH-1P) for forming a transparent film having a solid concentration of 30% by weight.
  • RH-1F stretched film substrate with hard coat film
  • a hard coat film forming coating solution (RH-1P) was applied by the bar coater method (bar # 60), dried at 80 ° C. for 120 seconds, and then irradiated with 600 mJ / cm 2 ultraviolet rays. After being cured by irradiation, the film was stretched under heating at 140 ° C. so as to be 4.5 times in the horizontal axis direction, and then dried at 140 ° C. for 120 seconds to obtain a stretched film substrate with a hard coat film ( RH-1F) was produced. At this time, the thickness of the substrate was 100 ⁇ m, and the thickness of the antireflection film was 5 ⁇ m.
  • a stretched film substrate with a hard coat film (RH-2F) was produced by stretching under heating at 140 ° C. so as to be 4.5 times in the direction.
  • the thickness of the base material was 100 ⁇ m
  • the thickness of the hard coat film was 5 ⁇ m.
  • a coating solution (RH-1P) for forming a hard coat film having a solid content concentration of 30.0% by weight prepared in the same manner as in Comparative Example 1 was applied by the bar coater method (bar # 18), and then at 80 ° C. And dried for 120 seconds, and then cured by irradiating with 600 mJ / cm 2 ultraviolet rays to produce a stretched film substrate with hard coat film (RH-3F).
  • the thickness of the base material was 100 ⁇ m
  • the thickness of the hard coat film was 5 ⁇ m.
  • Example 10 Preparation of coating liquid (P-10P) for forming an easily adhesive layer Silica organosol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: ELCOM V) was added to 33.2 g of an aqueous dispersion of silica fine particles (H-1VS) obtained in Example 1.
  • Polyester resin film for substrate (1) prepared in the same manner as in Example 1 was subjected to longitudinal stretching (140 ° C., 2.5-fold stretching). After that, a coating solution (P-10P) for forming an easy-adhesion layer was applied by the bar coater method (bar # 4), dried at 140 ° C. for 120 seconds, and then stretched in the transverse direction (140 ° C., 4.5 times stretch). ) To produce a stretched film substrate (P-10F) with an easy adhesion layer. At this time, the thickness of the film substrate was 100 ⁇ m, and the thickness of the easy adhesion layer was 0.1 ⁇ m.
  • the obtained stretched film substrate with an easy-adhesion layer has a total light transmittance, haze, adhesion, pencil hardness, spot, film unevenness (sea island), presence of cracks, film surface flatness, and scratch resistance.
  • Properties, antiblocking properties and adhesiveness were measured, and interference fringes were observed, and the results are shown in the table.
  • antiblocking property, adhesiveness, and interference fringe were evaluated by the following methods.
  • Peeling is extremely easy: ⁇ Easy peeling: ⁇ Peeling is slightly difficult: ⁇ Can not be peeled off or difficult: ⁇ With the background of the stretched film base material (P-10F) with an interference fringe easy adhesion layer set to black, the light of the fluorescent lamp is reflected on the surface of the transparent coating, and the occurrence of a rainbow pattern due to light interference is visually observed. Evaluated by criteria.
  • Polyester resin film for substrate (1) prepared in the same manner as in Production Example 1 was subjected to longitudinal stretching (140 ° C., 2.5 times stretching). Thereafter, a coating solution (RP-4P) for forming an easy-adhesion layer was applied by the bar coater method (bar # 6), dried at 140 ° C. for 120 seconds, and then stretched laterally (140 ° C., 4.5 times stretched). Thus, a stretched film substrate with an easy adhesion layer (RP-4F) was produced. At this time, the thickness of the film substrate was 100 ⁇ m, and the thickness of the easy adhesion layer was 0.1 ⁇ m.
  • the obtained stretched film substrate with an easy adhesion layer has a total light transmittance, haze, adhesion, pencil hardness, spot, film unevenness (sea island), presence of cracks, film surface flatness, and scratch resistance. And anti-blocking properties were measured, and the results are shown in the table.
  • the adhesiveness was evaluated by forming a hard coat film in the same manner as in Example 9.
  • Example 11 Preparation of coating solution (AS-11P) for forming antistatic film Sb-doped tin oxide (ATO) fine particles (manufactured by JGC Catalysts & Chemicals Co., Ltd .: ELCOM TL-30HK, Sb 2 O 5 content 16% by weight, average particle size 8 nm) was dispersed in 140 g of a 4.3 wt% potassium hydroxide aqueous solution, and the dispersion was pulverized with a sand mill for 3 hours while maintaining the temperature at 30 ° C. to prepare a sol.
  • ATO antistatic film Sb-doped tin oxide
  • this sol is subjected to dealkalization ion treatment with an ion exchange resin until the pH reaches 3.0, and then pure water is added to add a Sb-doped tin oxide fine particle dispersion (AS) having a solid concentration of 20% by weight. -11V) was prepared.
  • the pH of this ATO fine particle dispersion was 3.3.
  • the average particle size was 8 nm.
  • an ATO fine particle dispersion (AS-11V) having a concentration of 20% by weight was adjusted to 25 ° C., and 1.0 g of a silane coupling agent (methyltrimethoxysilane) (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-13) was added. After the addition in 3 minutes, the mixture was stirred for 30 minutes. Thereafter, 100 g of ethanol was added over 1 minute, the temperature was raised to 50 ° C. over 30 minutes, and a heat treatment was performed for 15 hours. The solid concentration at this time was 10% by weight.
  • a silane coupling agent methyltrimethoxysilane
  • the dispersion medium was replaced with water from an ethanol / ethanol mixed solvent by an ultrafiltration membrane to prepare a surface-treated ATO fine particle aqueous dispersion (AS-11VS) having a solid content concentration of 30% by weight.
  • AS-11VS surface-treated ATO fine particle aqueous dispersion
  • the alkali metal concentration was 100 ppm.
  • a surface-treated ATO fine particle aqueous dispersion (AS-11VS) (5.0 g) and a polyurethane resin emulsion (Daiichi Kogyo Seiyaku Co., Ltd .: Superflex 210, resin concentration 35% by weight, particle size: 50 nm, dispersion medium) : Water) 38.6 g and isopropyl alcohol 6.4 g were mixed to prepare a coating solution (AS-11P) for forming an antistatic film having a solid content concentration of 30.0% by weight.
  • Polyester resin film (1) prepared in the same manner as in Production Example 1 was stretched in the vertical axis (stretched at 140 ° C., 2.5 times), and then antistatic film A coating solution for forming (AS-11P) is applied by the bar coater method (bar # 42), dried at 140 ° C. for 120 seconds, and then stretched in the horizontal axis (140 ° C., stretched 4.5 times) to form an antistatic film.
  • a stretched film substrate (AS-11F) was produced. At this time, the film substrate had a thickness of 100 ⁇ m, and the antistatic film had a thickness of 3 ⁇ m.
  • the obtained stretched film substrate with antistatic film has a total light transmittance, haze, adhesion, pencil hardness, spot, film unevenness (sea island), presence or absence of cracks, film surface flatness, scratch resistance Properties and surface resistance values were measured and the results are shown in the table.
  • the surface resistance value was measured with a surface resistance meter (manufactured by Mitsubishi Chemical Corporation: Hiresta).
  • a coating solution for forming (RAS-5P) was prepared.
  • Production of Stretched Film Base with Antistatic Film (RAS-5F) Polyester resin film (1) prepared in the same manner as in Production Example 1 was stretched in the vertical axis (stretched at 140 ° C., 2.5 times), and then antistatic film A coating solution for forming (RAS-5P) is applied by a bar coater method (bar # 48), dried at 140 ° C.
  • a stretched film substrate (RAS-5F) was produced. At this time, the thickness of the film substrate was 100 ⁇ m, and the thickness of the antistatic film was 3.1 ⁇ m.
  • the obtained stretched film substrate with antistatic film has a total light transmittance, haze, adhesion, pencil hardness, spot, film unevenness (sea island), presence or absence of cracks, film surface flatness, scratch resistance Properties and surface resistance values were measured and the results are shown in the table.
  • Example 12 Preparation of coating solution (HI-12P) for forming a heat insulating film Hollow silica organosol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Thruria 4110, solid content concentration: 20.5%, average particle size 60 nm, dispersion medium: isopropyl alcohol ) After mixing 28.0 g of polyurethane resin emulsion (Daiichi Kogyo Seiyaku Co., Ltd .: Superflex 210, resin concentration 35% by weight, particle size: 50 nm, dispersion medium: water) with 98.0 g, using a rotary evaporator The solvent was removed to prepare a coating solution (HI-12P) for forming a heat insulating film having a solid content concentration of 50.0% by weight.
  • Polyester resin film (1) prepared in the same manner as in Production Example 1 was stretched in the vertical axis (stretched at 140 ° C., 2.5 times), and then the heat insulating film A coating solution for formation (HI-12P) was applied by a spray method to 45 ⁇ m, dried at 140 ° C. for 120 seconds, and then stretched in the transverse direction (140 ° C., stretched 1.5 times) to provide a stretched film substrate with a heat insulating film ( HI-12F) was prepared.
  • the film substrate had a thickness of 300 ⁇ m
  • the heat insulating film had a thickness of 30 ⁇ m.
  • the obtained stretched film substrate with a heat insulating film has a total light transmittance, haze, adhesion, pencil hardness, spot, film unevenness (sea island), presence or absence of cracks, film surface flatness, scratch resistance And the results are shown in the table.
  • the thermal conductivity was measured by the following method. Measurement of thermal conductivity The heat conductivity of the stretched film substrate with a heat insulating film (HI-12F) was measured using a hot wire probe type thermal conductivity measuring device (manufactured by Kyoto Electronics: QTM-500).
  • Polyester resin film (1) prepared in the same manner as in Production Example 1 was stretched in the vertical axis (stretched at 140 ° C., 2.5 times), and then the heat insulating film A coating solution for forming (RHI-6P) was applied by 45 ⁇ m by a spray method, dried at 140 ° C. for 120 seconds, and then stretched laterally (140 ° C., stretched 1.5 times) to stretch a film substrate with a heat insulating film ( RHI-6F) was prepared.
  • the film substrate had a thickness of 300 ⁇ m
  • the heat insulating film had a thickness of 30 ⁇ m.
  • the obtained stretched film substrate with heat insulating film has a total light transmittance, haze, adhesion, pencil hardness, spot, film unevenness (sea island), presence or absence of cracks, film surface flatness, scratch resistance And the results are shown in the table.
  • Example 13 Preparation of Silica Hollow Fine Particle (AR-13VS) Dispersion Silica / Alumina Sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 ⁇ Al 2 O 3 concentration 20% by weight, Al 2 in solid content 3900 g of pure water was added to 100 g of O 3 content (27 wt%) and heated to 98 ° C.
  • AR-13VS Dispersion Silica / Alumina Sol
  • a mixture of 150 g of an aqueous dispersion of silica fine particles (1), 500 g of pure water, 1,750 g of ethanol and 626 g of ammonia water having a concentration of 28% by weight was heated to 35 ° C., and then ethyl silicate (SiO 2 concentration) 28 wt%) 80 g was added to form a silica coating layer, which was washed with an ultrafiltration membrane while adding 5 L of pure water to form a silica coating layer having a solid content concentration of 20 wt%. A liquid was obtained.
  • ammonia water is added to the silica hollow fine particle dispersion with the silica coating layer formed thereon to adjust the pH of the dispersion to 10.5, and after aging at 150 ° C. for 11 hours, the mixture is cooled to room temperature and positively charged.
  • Ion exchange resin Mitsubishi Chemical Co., Ltd .: Diaion SK1B
  • anion exchange resin Mitsubishi Chemical Co., Ltd .: Diaion SA20A
  • 200 g of cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B) was used for ion exchange at 80 ° C. for 3 hours for washing, and silica hollow fine particles (13T) having a solid content concentration of 20% by weight.
  • An aqueous dispersion was obtained.
  • the silica hollow fine particle (13T) dispersion was hydrothermally treated at 150 ° C. for 11 hours, then cooled to room temperature, and 400 g of cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B) was used.
  • the ion exchange was performed for 3 hours using 200 g of anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A) for 3 hours, and then cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B). 200 g was used for ion exchange at 80 ° C. for 3 hours for washing to obtain an aqueous dispersion of hollow silica fine particles (AR-13V) having a solid concentration of 20% by weight.
  • AR-13V aqueous dispersion of hollow silica fine particles having a solid concentration of 20% by weight.
  • An alcohol dispersion of silica fine particles (AR-13V) having a solid content concentration of 20% by weight in which the dispersion medium was replaced with ethanol using an ultrafiltration membrane was prepared.
  • a methylsilane coupling agent (methyltrimethoxysilane) (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-13) was added to 100 g of an alcohol dispersion of silica fine particles (AR-13V) having a solid concentration of 20% by weight.
  • An alcohol dispersion of surface-treated silica-based hollow fine particles (AR-13VS) with a solid content concentration of 20% by weight was prepared by heat treatment at a temperature of 20 ° C.
  • a dispersion medium was replaced with water using a rotary evaporator to prepare an aqueous dispersion of surface-treated silica hollow fine particles (AR-13VS) having a solid concentration of 20% by weight.
  • the concentration of alkali metal was 5 ppm.
  • Preparation of coating solution (AR-13P) for formation of antireflection film A polyurethane resin emulsion (Daiichi Kogyo Seiyaku Co., Ltd.) was added to 10.0 g of an aqueous dispersion of surface-treated silica hollow fine particles (AR-13VS) having a solid concentration of 20% by weight. Co., Ltd .: Superflex 210, resin concentration 35% by weight, particle size: 50 nm, dispersion medium: water) 3.8 g, pure water 18 g, isopropyl alcohol 1.53 g are mixed, and the solid content concentration is 10.0% by weight.
  • a coating solution (AR-13P) for forming an antireflection film was prepared.
  • Production of Stretched Film Base with Antireflective Film (AR-1) Polyester resin film (1) prepared in the same manner as in Production Example 1 was stretched in the vertical axis (140 ° C., 2.5 times stretched), and then antireflective film A coating solution for forming (AR-13P) is applied by the bar coater method (bar # 4), dried at 140 ° C. for 120 seconds, and then stretched transversely (140 ° C., stretched 4.5 times) to form an antireflection film.
  • a stretched film substrate (AR-13F) was produced. At this time, the thickness of the film substrate was 100 ⁇ m, and the thickness of the antireflection film was 100 nm.
  • the obtained stretched film substrate with antireflection film has total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, spot, film unevenness (sea island), presence or absence of cracks,
  • the film surface flatness and scratch resistance were measured, and the results are shown in the table.
  • a stretched film base material (RAR-1F) with an antireflection film was produced by stretching under heating at 140 ° C. so as to be 4.5 times in the direction.
  • the thickness of the base material was 100 ⁇ m
  • the thickness of the antireflection film was 100 nm.
  • the obtained stretched film substrate with antireflection film has a total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, spot, film unevenness (sea island), presence of cracks,
  • the flatness and scratch resistance of the film surface are shown in the table.
  • Example 14 (Use of hollow silica polymer dispersant) 2 g of a polyacrylic acid dispersant (manufactured by Toa Gosei Co., Ltd .: Aron SD-10) was added to 100 g of an alcohol dispersion of silica hollow fine particles (AR-13V) having a solid content concentration of 20% by weight as in Example 13. Heat treatment was performed at 50 ° C. to prepare an alcohol dispersion of silica hollow fine particles (AR-2) having a solid concentration of 20% by weight. The dispersion medium was replaced with water using a rotary evaporator to prepare an aqueous dispersion of surface-treated silica hollow fine particles (AR-14VS) having a solid concentration of 20% by weight.
  • a polyacrylic acid dispersant manufactured by Toa Gosei Co., Ltd .: Aron SD-10
  • a coating solution (AR-14P) for forming an antireflection film was prepared.
  • Production of Stretched Film Base with Antireflective Film (AR-14F) Polyester resin film (1) prepared in the same manner as in Production Example 1 was stretched in the vertical axis (stretched at 140 ° C., 2.5 times), and then antireflective film The coating solution for forming (AR-14P) is applied by the bar coater method (bar # 4), dried at 140 ° C. for 120 seconds, and then stretched in the transverse direction (140 ° C., stretched 4.5 times) to prevent reflection.
  • a stretched film substrate (AR-14F) was produced. At this time, the thickness of the film substrate was 100 ⁇ m, and the thickness of the antireflection film was 100 nm.
  • the obtained stretched film substrate with antireflection film has a total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, spot, film unevenness (sea island), presence or absence of cracks, The film surface flatness and scratch resistance were measured, and the results are shown in the table.
  • coating liquid (RAR-8P) for forming a polymer dispersant excessive antireflection film A surface prepared in the same manner as in Example 14 except that 80 g of polyacrylic acid dispersant was added.
  • the obtained stretched film substrate with antireflection film has a total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, spot, film unevenness (sea island), presence or absence of cracks, The flatness and scratch resistance of the film surface are shown in the table.
  • coating solution (RAR-9P) for forming a polymer-based dispersant underreflection coating [ Example 14] The same procedure as in Example 14 was conducted except that 0.1 g of a polyacrylic acid dispersant was added. The prepared surface-treated silica hollow fine particles (RAR-9VS) 10.0 g in water was added to prepare an antireflection film-forming coating solution (RAR-9P).
  • the obtained stretched film substrate with antireflection film has a total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, spot, film unevenness (sea island), presence or absence of cracks, The flatness and scratch resistance of the film surface are shown in the table.
  • Example 15 Preparation of titania fine particle (T-15VS) dispersion Titania organosol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: OPTRAIQUE 1130Z (S-25 / A8), solid content concentration: 30%, average particle diameter 20 nm, dispersion medium: methyl 30.0 g of methylsilane coupling agent (methyltrimethoxysilane) (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-13) was added to 100.0 g of alcohol), heat-treated at 50 ° C., and again using an ultrafiltration membrane.
  • T-15VS titania fine particle
  • OPTRAIQUE 1130Z S-25 / A8
  • solid content concentration 30%
  • average particle diameter 20 nm dispersion medium
  • dispersion medium methyl 30.0 g of methylsilane coupling agent (methyltrimethoxysilane) (manufactured by Shin-Etsu Chemical
  • An alcohol dispersion of surface-treated titania fine particles having a solid content concentration of 20% by weight in which the dispersion medium was replaced with ethanol was prepared. After replacing the dispersion medium with water using a rotary evaporator, dealkalized ion treatment is performed with an ion exchange resin until the pH reaches 3.0, and then pure water is added to the surface-treated titania with a solid content concentration of 20% by weight. An aqueous dispersion of fine particles (T-15VS) was prepared. At this time, the concentration of alkali metal was 50 ppm.
  • coating solution (T-15P) for easy adhesion layer formation Silica organosol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: ELCOM V-8901, average particle size 120 nm, SiO 2 concentration 20% by weight, dispersion medium: methanol) 1 .4 g, 33.2 g of surface-treated titania fine particles (T-15VS), polyurethane resin emulsion (Daiichi Kogyo Seiyaku Co., Ltd .: Superflex 210, resin concentration 35% by weight, emulsion diameter: 50 nm, dispersion medium: 88.5 g of water) and 10.1 g of isopropyl alcohol were mixed to prepare a coating solution (T-15P) for forming an easy-adhesion layer having a solid content of 10% by weight.
  • Silica organosol manufactured by JGC Catalysts & Chemicals Co., Ltd .: ELCOM V-8901, average particle size 120
  • T-15F Production of Stretched Film Base with Easy Adhesive Layer
  • the polyester resin film for substrate (1) prepared in the same manner as in Production Example 1 was stretched in the vertical axis (stretched at 140 ° C., 2.5 times), A coating solution (T-15P) for forming an easy-adhesion layer was applied by the bar coater method (bar # 6), dried at 140 ° C. for 120 seconds, and then stretched transversely (140 ° C., 4.5 times stretched).
  • a stretched film substrate (T-15F) with an easy adhesion layer was produced. At this time, the thickness of the film substrate was 100 ⁇ m, and the thickness of the easy adhesion layer was 0.6 ⁇ m.
  • the obtained stretched film substrate with an easy-adhesion layer has a total light transmittance, haze, adhesion, pencil hardness, spot, film unevenness (sea island), presence or absence of cracks, film surface flatness, scratch resistance Properties, antiblocking properties and adhesiveness were measured, and interference fringes were observed, and the results are shown in the table.
  • a coating solution (RT-10P) for forming an easy-adhesion layer was applied by the bar coater method (bar # 40), dried at 140 ° C. for 120 seconds, and then stretched transversely (140 ° C., 4.5 times stretch). ) To produce a stretched film substrate with an easy adhesion layer (RT-10F). At this time, the thickness of the film substrate was 100 ⁇ m, and the thickness of the easy adhesion layer was 0.6 ⁇ m.
  • the obtained stretched film substrate with an easy-adhesion layer has a total light transmittance, haze, adhesion, pencil hardness, spot, film unevenness (sea island), presence or absence of cracks, film surface flatness, scratch resistance Properties, antiblocking properties and adhesiveness were measured, and interference fringes were observed, and the results are shown in the table.
  • Example 11 Preparation of titania fine particles ((RT-11VS) dispersion
  • the alkali metal concentration was 1500 ppm.
  • Preparation of coating solution (RT-11P) for forming an easily adhesive layer Add 10.0 g of an aqueous dispersion of surface-treated titania fine particles (RT-11VS) to prepare a coating solution (RT-11P) for forming an antireflection film. did.
  • a polyester resin film for substrate (1) prepared in the same manner as in Production Example 1 is 140 ° C. so that it is 2.5 times in the vertical axis direction.
  • the film was stretched under heating, and a coating solution (RT-11P) for forming an antireflection film was applied by the bar coater method (bar # 18), and then dried at 140 ° C. for 120 seconds, and then the horizontal axis
  • a stretched film substrate with an antireflection film (RT-11F) was produced by stretching under heating at 140 ° C. so as to be 4.5 times in the direction.
  • the thickness of the base material was 100 ⁇ m
  • the thickness of the antireflection film was 100 nm.
  • the obtained stretched film substrate with an antireflection film has a total light transmittance, haze, reflectance, film refractive index, adhesion, pencil hardness, spot, film unevenness (sea island), presence or absence of cracks,
  • the flatness and scratch resistance of the film surface are shown in the table.
  • methyltrimethoxysilane was used as the organosilicon compound represented by the formula (1), but in addition to this, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxy Silane, phenyltrimethoxysilane, phenyltriethoxysilane, methyltriethoxysilane, isobutyltrimethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltri Ethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing & Machinery (AREA)
  • Paints Or Removers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

 本発明の透明被膜形成用の塗布液は、無機酸化物微粒子と樹脂エマルジョンが、水と有機溶媒の少なくとも一つを含む分散媒に分散している。塗布液は、全固形分濃度が0.03~70重量%であり、塗布液中の無機酸化物微粒子の濃度(CP)は固形分として0.0009~56重量%、樹脂エマルジョンの濃度(CR)は固形分として0.006~68重量%の範囲である。また、無機酸化物微粒子に含まれるアルカリ金属の固形分濃度の合計は、酸化物(Me2O、Me=Li、Na、K)として1000ppm以下である。この塗布液を、基材上に塗布した後に基材を延伸しても、あるいは基材を延伸しながら塗布しても、スポット、膜ムラ(海島)がなく、表面が平坦となる透明被膜付基材を提供することができる。

Description

透明被膜形成用の塗布液および透明被膜付基材の製造方法
 本発明は、透明被膜形成用の塗布液、およびこれを用いた透明被膜付基材の製造方法に関する。
 従来から、ガラス、プラスチックシート、樹脂フィルム、プラスチックレンズ等の基材表面に各種透明被膜が形成されて用いられている。例えば、ハードコート膜として、有機樹脂膜あるいは無機膜が基材の表面に形成されている。さらに、有機樹脂膜や無機膜中に、樹脂粒子やシリカ等の無機粒子を配合して耐擦傷性を向上させている。
 本出願人は、有機樹脂のみからなるハードコート膜と、酸化アンチモンで被覆された多孔質シリカ微粒子(または内部に空洞を有するシリカ微粒子)を含む反射防止・帯電防止膜とを、基材上に積層する構成を開示しているが(特開2005-119909号公報;特許文献1)、ハードコート機能(耐擦傷性、膜強度等)が充分ではなかった。また、表示装置等の基材上に金属微粒子、導電性の酸化物微粒子を含む導電性被膜を形成して、帯電防止性能、電磁波遮蔽性能を付与にすることも知られている(特開2003-105268号公報;特許文献2)。このとき、導電性の酸化物微粒子として、酸化錫、F、SbまたはPをドープした酸化錫、酸化インジウム、SnまたはFをドープした酸化インジウム、酸化アンチモン、低次酸化チタン等が開示されている。また、本出願人は、ハードコート膜自体に帯電防止性能を付与するために五酸化アンチモン微粒子を配合したハードコート膜を開示している(特開2004-50810号公報;特許文献3)。さらに、鎖状五酸化アンチモン微粒子を配合した透明被膜を開示している(特開2005-139026号公報;特許文献4)。
 また、シリカ微粒子等の低屈折率微粒子を含む塗布液を基材表面に塗布して、反射防止被膜を形成することが知られている(特開平7-133105号公報;特許文献5)。さらに、基材に帯電防止性能、電磁波遮蔽性能を付与するために金属微粒子、導電性の酸化物微粒子を含む導電性被膜を形成した導電性被膜上に反射防止膜を形成することも行われている。このような、反射防止膜、導電性被膜を設ける場合においても耐擦傷性を向上させるために、基材と反射防止膜と導電性被膜との少なくとも一方との間にハードコート膜を形成することも行われている。本出願人は、反射防止膜形成用塗布液を、例えば、特開2007-321049号公報(特許文献6)、特開2008-19358号公報(特許文献7)、特開2010-128309号公報(特許文献8)等に開示している。
 特に、基材が樹脂フィルムの場合、従来、所定の厚みに延伸したフィルム基材に透明被膜が形成されていたが、近年、生産性、安全性、環境配慮等の観点から、延伸前のフィルムに透明被膜形成用塗布液を塗布して塗膜を形成し、ついで延伸した後に硬化するか、延伸前のフィルムを延伸しながら透明被膜形成用塗布液を塗布して塗膜を形成し、ついで硬化するといった製造方法が求められている。
 しかしながら、従来の塗布液を用いた場合、延伸時に配合粒子が原因でスポットを生じたり、塗布液の不安定性あるいは不均一性等により膜ムラを生じ、平坦性が損なわれたり、外観が悪化し、透明性、ヘーズが不充分な透明被膜付延伸フィルムとなり、これらの改善が求められていた。
特開2005-119909号公報 特開2003-105268号公報 特開2004-50810号公報 特開2005-139026号公報 特開平7-133105号公報 特開2007-321049号公報 特開2008-19358号公報 特開2010-128309号公報
 そこで、本発明は、塗布後の樹脂フィルムの延伸時のスポットの生成、膜ムラの生成を抑制できる透明被膜形成用塗布液および透明被膜付基材の製造方法を実現することを目的とする。
 本願発明者は、無機酸化物微粒子と樹脂エマルジョンが、水と有機溶媒の少なくとも一つを含む分散媒に分散した塗布液を使用すると、塗布後の樹脂フィルムの延伸時のスポットの生成、膜ムラの生成を抑制できることを見出した。このとき、塗布液の全固形分濃度を0.03~70重量%、塗布液中の無機酸化物微粒子の濃度(CP)を固形分として0.0009~56重量%、樹脂エマルジョンの濃度(CR)を固形分として0.006~68重量%とした。また、無機酸化物微粒子に含まれるアルカリ金属の固形分濃度の合計を、酸化物(Me2O、Me=Li、Na、K)として1000ppm以下とした。
 本発明の塗布液によれば、基材上に塗布した後に基材を延伸しても、あるいは基材を延伸しながら塗布しても、スポットやムラ(海島)が被膜に発生せず、表面が平坦な透明被膜付基材を提供することができる。
 ここで、無機酸化物微粒子を、有機珪素化合物とポリマー分散剤の少なくとも一つで表面処理することが好ましい。この時、有機珪素化合物については、Rn-SiX(4n)/2として表したとき、無機酸化物微粒子に対して、固形分として1~100重量%の範囲で、ポリマー分散剤については、無機酸化物微粒子に対して、固形分として1~300重量%の範囲である。
 さらに、無機酸化物微粒子が、単分散の無機酸化物微粒子(A)と、一次粒子径が3~30個鎖状に連結した鎖状の無機酸化物微粒子(B)の少なくとも一方であって、無機酸化物微粒子(A)の平均粒子径(DPA)を3≦DPA≦100nmの範囲とし、無機酸化物微粒子(B)の平均一次粒子径(DPB)を3≦DPB≦50nmの範囲とした。
 樹脂エマルジョンは、平均直径が10~500nmの範囲にあって、前記無機酸化物微粒子の濃度(CP)と樹脂エマルジョンの濃度(CR)の濃度比(CP/CR)が0.03~4の範囲にあることが好ましい。
 以下、先ず、本発明に係る透明被膜形成用の塗布液について具体的に説明する。
[透明被膜形成用塗布液]
 本発明に係る透明被膜形成用の塗布液では、無機酸化物微粒子と樹脂エマルジョンが、水と有機溶媒の少なくとも一つを含む分散媒に分散している。この時、塗布液の全固形分濃度は0.03~70重量%の範囲であり、無機酸化物微粒子の濃度(CP)が固形分として0.0009~56重量%の範囲であり、樹脂エマルジョンの濃度(CR)が固形分として0.006~68重量%の範囲である。この時、無機酸化物微粒子は、アルカリ金属の固形分濃度が、酸化物(Me2O)の合計として1000ppm以下の高純度ものを使用する。無機酸化物微粒子中のアルカリ金属の合計が1000ppmを超える場合、塗布液中で均一に分散せず、安定性が不充分となる。このため、透明被膜の強度、耐擦傷性が低下し、ヘーズ値が高くなる。
 さらに、無機酸化物微粒子は、有機珪素化合物とポリマー分散剤の少なくとも一つで表面処理されていることが好ましい。この時、有機珪素化合物は、無機酸化物微粒子に対して、固形分換算で、Rn-SiX(4n)/2として1~100重量%である。有機ケイ素化合物の量が少ないと、後述する塗布液中の樹脂エマルジョンあるいは分散媒との親和性が低く安定性が不充分で、塗布液中で均一に分散しない。ポリマー分散剤が、無機酸化物微粒子に対して、固形分として1~300重量%の範囲に存在する。ポリマー分散剤の量が1重量%未満であると、後述する透明被膜形成用塗布液中の樹脂エマルジョンあるいは分散媒との親和性が低く安定性が不充分で、塗布液中で均一に分散しない。ポリマー分散剤の量が300重量%を超える場合は、さらに分散性が向上することもない。
 無機酸化物微粒子には、単分散の無機酸化物微粒子(A)と、一次粒子径が3~30個鎖状に連結した鎖状の無機酸化物微粒子(B)の少なくとも一方を用いる。このとき、無機酸化物微粒子(A)の平均粒子径(DPA)を3≦DPA≦100nmとし、無機酸化物微粒子(B)の平均一次粒子径(DPB)を3≦DPB≦50nmとする。
 塗布液中の無機酸化物微粒子の濃度によっても塗布した被膜の状態は変化するが、無機酸化物微粒子(A)の平均均粒子径(DPA)が3nm未満の場合は、無機酸化物微粒子(A)が不規則に凝集して配列し、透明被膜のヘーズ値が高くなったり、膜の強度、耐擦傷性、スクラッチ強度等が不充分となったりする。平均均粒子径(DPA)が100nmを超えると、透明性が不十分になったり、透明被膜の膜厚によっては膜の強度も不充分になったりする。鎖状無機酸化物微粒子(B)の平均一次粒子径(DPB)が3nm未満の場合は、鎖状に連結することなく凝集粒子となる。平均一次粒子径(DPB)が50nmを超えると、鎖状粒子を得ることが困難となる。
 以下、塗布液を構成する要素について詳細に説明する。
無機酸化物微粒子
 本発明に用いる無機酸化物微粒子は、従来公知の無機酸化物微粒子から用途に応じて選択することができる。ただし、無機酸化物微粒子に含まれるアルカリ金属の固形分濃度は、酸化物(Me2O)の合計として1000ppm以下でなければならない。Meとしては、ナトリウム(Na)やカリウム(K)やリチウム(Li)が例示される。
 無機酸化物微粒子中のアルカリ金属の合計が1000ppmを超える場合、共雑イオンが多くなるためか、塗布液中で均一に分散せず、安定性が不充分となり、無機酸化物微粒子が凝集する場合がある。このため、透明被膜の強度や耐擦傷性が低下したり、ヘーズ値が高くなったり、導電性、反射率等の性能が不充分となったりする場合がある。アルカリ金属を低減させる方法としては、限外濾過膜やイオン交換樹脂等を用いた従来公知の洗浄方法が例示できる。
 無機酸化物微粒子としては、TiO2、ZrO2、SiO2、Sb25、ZnO2、SnO2、In23、アンチモンドープ酸化錫(ATO)、錫ドープ酸化インジウム(ITO)、Fドープ酸化錫(FTO)、リンドープ酸化錫(PTO)、アルミニウムドープ酸化亜鉛(AZO)から選ばれる少なくとも1種またはこれらの複合酸化物または混合物が例示される。透明被膜の用途に合わせて上述の無機酸化物微粒子から、適宜選択すればよい。具体的には、高屈折率膜等を形成する場合は、TiO2、ZrO2、Sb25、ZnO2、SnO2、In23等が適している。ハードコート膜、低屈折率膜、易接着性膜、アンチブロッキング性膜等を形成する場合は、SiO2が適している。
 特に、反射防止を目的とした低屈折率膜には、本出願人の特開2001-233611号公報、特開2003-192994号公報に開示した内部に空洞を有するシリカ中空微粒子が適している。シリカ中空微粒子は屈折率が概ね1.10~1.40と低く、コロイド領域の微粒子であり、分散性等に優れているためである。また、シリカ中空微粒子は断熱性膜としても適している。また、内部に空洞を有さないシリカ微粒子(シリカ中実微粒子ということがある)の内、比較的小粒子(概ね粒子径が100nm以下)のものは硬度を向上、これよりも粒子径の大きいものはアンチブロック性を付与するのに適している。
 干渉縞を防止する場合は、高屈折率膜を形成するTiO2が適している。また、帯電防止膜を形成する場合は、Sb25、In23、アンチモンドープ酸化錫(ATO)、錫ドープ酸化インジウム(ITO)、Fドープ酸化錫(FTO)、リンドープ酸化錫(PTO)、アルミニウムドープ酸化亜鉛(AZO)等が導電性を有するため適している。
 無機酸化物微粒子は、単分散の無機酸化物微粒子(A)と一次粒子が鎖状に連結した鎖状無機酸化物微粒子(B)の少なくとも一方であることが好ましい。ここで、単分散とは粒子が非凝集状態であることを意味している。
 無機酸化物微粒子(A)の平均均粒子径(DPA)は、透明被膜の種類によっても異なるが、3≦DPA≦100nm、好ましくは5≦DPA≦80nm、さらには8≦DPA≦80nmの範囲にあることが好ましい。
 塗布液中の無機酸化物微粒子の濃度によっても塗布した被膜の状態は変化するが、無機酸化物微粒子(A)の平均粒子径(DPA)が3nm未満の場合は、無機酸化物微粒子(A)が不規則に凝集して配列し、透明被膜のヘーズ値が高くなる場合や、膜の強度、耐擦傷性、スクラッチ強度等が不充分となる場合がある。また、前記したシリカ中空微粒子の場合はシリカ系中空微粒子内部の空洞の割合が小さく、屈折率が1.40以下とならない場合があり、反射防止性能が不充分となる場合がある。また、ATOやITOなどの結晶性導電粒子の場合は結晶性が不十分となり、導電性が不十分になることがある。平均粒子径(DPA)が100nmを超えると、透明性が不十分になることがある。また、透明被膜の膜厚によっては膜の強度も不充分になる場合がある。さらに、透明被膜の表面に高密度の凹凸ができ、このためヘーズ値が高くなる場合や、耐擦傷性、スクラッチ強度が不充分となる場合がある。
 また、鎖状無機酸化物微粒子(B)の平均一次粒子径(DPB)は3≦DPB≦50nm、さらには5≦DPB≦30nmの範囲にあることが好ましく、このような一次粒子の平均連結数が3~30個、さらには5~20個の範囲にあることが好ましい。
 塗布液中の鎖状無機酸化物微粒子の濃度によっても塗布した被膜の状態は変化するが、鎖状無機酸化物微粒子(B)の平均一次粒子径(DPB)が3nm未満の場合は、鎖状に連結することなく凝集粒子となり、透明被膜のヘーズ値が高くなる場合や、膜の強度、耐擦傷性、スクラッチ強度等が不充分となる場合がある。平均一次粒子径(DPB)が50nmを超えると、鎖状粒子を得ることが困難であり、得られたとしても、鎖状粒子が長鎖となり透明被膜のヘーズ値が高くなる場合や、膜の強度、耐擦傷性、スクラッチ強度等が不十分となる場合がある。
 透明被膜形成用塗布液中の無機酸化物微粒子の濃度(CP)は、固形分として0.0009~56重量%、さらには0.03~40重量%の範囲にあることが好ましい。濃度(CP)が低すぎると、基材との密着性、膜強度、表面平坦性、耐擦傷性、スクラッチ強度等が不充分となることがある。また、所望の効果(導電性能、反射防止性能等)が充分得られない場合がある。濃度(CP)が高すぎても、粒子が多すぎるため密着性、膜強度、耐擦傷性、スクラッチ強度等が不充分となることに加えて、透明被膜のヘーズ値が高くなる場合がある。また、延伸時に塗膜の伸びが基材の延伸に追随できないためにクラックが発生することがある。
 さらに、塗布液中に無機酸化物微粒子(C)を含んでいてもよい。また、無機酸化物微粒子(A)と鎖状無機酸化物微粒子(B)の少なくとも一方の一部に代えて無機酸化物微粒子(C)を含んでいてもよい。
 無機酸化物微粒子(C)の平均粒子径(DPC)は100<DPC≦500nm、好ましくは100<DPC≦400nm、さらには100<DPC≦300nmの範囲にあることが好ましい。無機酸化物微粒子(C)の添加により、透明被膜表面に凸部を形成できるため、充分なアンチブロッキング性が得られる。
 塗布液中の無機酸化物微粒子の濃度によっても塗布した被膜の状態は変化するが、無機酸化物微粒子(C)の平均粒子径(DPC)が100nm未満の場合は透明被膜の膜厚より薄くなり、透明被膜表面に凸部を形成できない場合があり、後述する透明被膜付基材の製造方法により、透明被膜形成用塗布液を塗布、乾燥、ついで硬化した後、透明被膜付基材を巻き取った場合、透明被膜の表面と、後に巻き取られた透明被膜付基材の基材とが密着し(ブロッキングということがある)、後に使用する際に剥離が困難になる場合がある。平均粒子径(DPC)が500nmを超えると膜の透明性が低くなり、膜ヘーズが高くなったり透過率が低くなったりすることに加えて、表面の凹凸が大きくなりすぎるため、耐擦傷性等の膜の硬度が低下することがある。
 透明被膜形成用塗布液中の無機酸化物微粒子(C)の濃度(CPC)は固形分として0.000003~3重量%、さらには0.000015~1.5重量%の範囲にあることが好ましい。濃度(CPC)が0.000003重量%未満の場合は透明被膜形成用塗布液を用いて得られる塗膜の表面に形成される凸部の密度が低すぎて、充分なアンチブロッキング性が得られない場合がある。濃度(CPC)が3重量%を超えると塗膜の表面に形成される凸部の密度が高すぎて透明性、耐擦傷性、反射防止性能が不充分となる場合がある。

 ここで、無機酸化物微粒子は、有機珪素化合物とポリマー分散剤の少なくとも一方で表面処理することが好ましい。有機珪素化合物は、無機酸化物微粒子と樹脂エマルジョンとの親和性を向上させる。一方、ポリマー分散剤は、上記と同様に親和性を向上させるだけでなく、延伸によるフィラー、バインダー間のボイド発生を抑制することができ、特に延伸倍率が高い時に適している。
 表面処理時に水を用いている場合、表面処理した後で有機溶媒に置換して、表面処理された無機酸化物微粒子の有機溶媒分散液とすることが好ましい。これにより、塗膜中で無機酸化物微粒子の樹脂への分散性が向上する。有機溶媒としては、後述する透明被膜形成用の塗布液と同様の有機溶媒を用いることが好ましい。

 以下に、無機酸化物微粒子を(i)有機珪素化合物、(ii)ポリマー分散剤、で表面処理する場合について説明する。

(i)有機珪素化合物
 下記式(1)で表される有機珪素化合物を用いることができる。
n-SiX4-n (1)
(但し、式中、Rは炭素数1~10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1~4のアルコキシ基、シラノール基、ハロゲン、水素、n:0~3の整数)
 式(1)で、nが1~3の場合には、後述する樹脂エマルジョンの官能基と反応する有機官能基を有する有機珪素化合物を用いることが好ましい。例えば、樹脂エマルジョンとして、エポキシ基、メタクリル基、アクリル基、イソシアネート基等を有する樹脂を用いる場合、有機珪素化合物としてはグリシドキシ基、メタクリロキシ基、アクリロキシ基、ビニル基、イソシアネート基、ウレイド基、アミノ基等の官能基を有する有機珪素化合物を用いることが好ましい。このような有機珪素化合物で表面処理した無機酸化物微粒子を用いると、膜強度、耐擦傷性、スクラッチ強度等に優れた透明被膜を形成することができる。
 無機酸化物微粒子の表面処理は、従来公知の方法を採用することができ、例えば、無機酸化物微粒子のアルコール分散液に有機ケイ素化合物を所定量加え、これに水を加え、必要に応じて加水分解用触媒として酸またはアルカリを加えて加水分解する。この時、有機ケイ素化合物は、無機酸化物微粒子に対し、固形分換算で、Rn-SiX(4n)/2として1~100重量%、好ましくは2~80重量%、さらには5~70重量%の範囲にあることが好ましい。
 有機ケイ素化合物の量が少ないと、後述する透明被膜形成用塗布液中の樹脂エマルジョンあるいは分散媒との親和性が低く安定性が不充分で、塗布液中で均一に分散せず、場合によっては無機酸化物微粒子が凝集する場合があり、透明被膜の強度、耐擦傷性が低下し、ヘーズ値が高くなったり、導電性、反射率等の性能が不充分となったりする場合がある。有機ケイ素化合物の量が多すぎても、さらに分散性が向上することもなく、シリカ中空微粒子の場合は屈折率が上昇し、反射防止性能が不充分になる場合があり、導電性微粒子の場合は帯電防止性能が不充分になる場合がある。

(ii)ポリマー分散剤
 本発明に用いる分散剤としては、樹脂エマルジョンを溶解することなくエマルジョンを維持でき、また、後述する架橋剤あるいは重合開始剤を溶解あるいは分散できるとともに無機酸化物微粒子を分散できるポリマー化合物であればよい。
 具体的には、ポリビニル、ポリアクリル酸、ポリカルボン酸、ポリウレタン等の公知のポリマー分散剤を使用できる。さらに具体的には、ポリビニルポリマーとして、ポリビニルアルコール、ポリビニルピロリドン、ポリ酢酸ビニル、ポリビニルエステル等及びそれらの共重合体、ポリアクリル酸ポリマーとして、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸アンモニウム等及びそれらの共重合体、ポリカルボン酸ポリマーとして、ポリカルボン酸、ポリカルボン酸ナトリウム、ポリカルボン酸アンモニウム等及びそれらの共重合体、ポリウレタンポリマーとして、ポリウレタン等及びそれらの共重合体などが使用でき、またこれらの共重合体やスルホン酸ポリマーとの共重合体なども使用できる。
 ポリマー分散剤を使用すると、延伸後のヘーズを低減させることができる。ポリマー分散剤の量は、無機酸化物微粒子に対して固形分として1~300重量%さらには1~100重量%であることが好ましい。ポリマー分散剤の量が1重量%未満であると、後述する透明被膜形成用塗布液中の樹脂エマルジョンあるいは分散媒との親和性が低く安定性が不充分で、塗布液中で均一に分散せず、場合によっては無機酸化物微粒子が凝集する場合があり、透明被膜の強度、耐擦傷性が低下し、ヘーズ値が高くなったり、導電性、反射率等の性能が不充分となったりする場合がある。ポリマー分散剤の量が300重量%を超える場合は、さらに分散性が向上することもなく、シリカ中空微粒子の場合は屈折率が上昇し、反射防止性能が不充分になる場合があり、導電性微粒子の場合は帯電防止性能が不充分になる場合がある。
 また、本発明のポリマー分散剤は、分子量が1000~100000さらには5000~50000のものが好ましい。分子量が1000未満の場合、ポリマー分散剤が延伸に追随できないため、延伸倍率が高い時に延伸後にボイドが発生し、ヘーズが高くなることがある。分子量が100000を超える場合、無機酸化物微粒子が凝集して、膜のヘーズを上昇させることがある。

樹脂エマルジョン
 樹脂エマルジョンは、分散媒に、有機樹脂が液体の小滴状態、すなわちエマルジョン状態で安定に分散したものであり、樹脂としては、熱可塑性樹脂、熱(電子線も含む)硬化型樹脂のいずれでもよく、溶媒も水やアルコールなどの親水性溶媒に、親油性樹脂が分散したものであっても、極性の低い親油性溶媒に、水と親和性がある親水性樹脂が分散したものであってもよい。このような樹脂エマルジョンは、樹脂が分散媒中で溶解することなくエマルジョンを形成するにたる非相溶性を有することを意味している。なお、エマルジョンの小滴状態は被膜形成時に維持され、本発明では延伸時にも維持される。
 親油性の分散媒の場合は、水と親和性のある親水性樹脂(A)を用い、親水性の分散媒の場合は、水と親和性のない親油性樹脂(B)を用いる。
 水と親和性のある樹脂(A)としては、エポキシ樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーン樹脂、ポリウレタン樹脂、メラミン樹脂、ブチラール樹脂、フェノール樹脂、不飽和ポリエステル樹脂、これら樹脂の2種以上の共重合体や変性体から選ばれる少なくとも1種が挙げられ、水と親和性のない樹脂(B)としては、シリコーン樹脂、ポリウレタン樹脂、熱可塑性アクリル樹脂、熱硬化性アクリル樹脂、紫外線硬化型アクリル樹脂から選ばれる少なくとも1種を用いることができる。
 環境負荷の観点から、水と親和性のない樹脂(B)と親水性の分散媒を用いた樹脂エマルジョンが適している。
 また、樹脂(B)はエマルジョンを形成するために、それ自体にカルボキシル基、スルホニル基、アミノ基、ホスホニル基、ヒドロキシル基及びその他誘導体などの官能基を有していてもよく、また、樹脂同士あるいは表面処理有機珪素化合物と架橋するための任意の官能基、例えばエポキシ基、カルボジイミド基、イソシアネート基、アクリル基、ビニル基等を有していてもよい。なかでも、ウレタン樹脂、PVA樹脂、アクリル樹脂は得られる膜が透明でかつ、熱可塑性樹脂なので好適に用いることができる。
 具体的にはADEKA(株)製の「アデカボンタイター」シリーズ、DIC(株)製の「ボンディック」シリーズ、「ハイドラン」シリーズ、日本ポリウレタン工業(株)製の「ミラクトラン」シリーズ、バイエル社製「インプラニール」シリーズ、日本ソフラン(株)製の「ソフラネート」シリーズ、花王(株)製の「ポイズ」シリーズ、三洋化成工業(株)製の「サンプレン」シリーズ、保土谷化学工業(株)製の「アイゼラックス」シリーズ、第一工業製薬(株)製の「スーパーフレックス」シリーズ、「エラストロン」シリーズ、ゼネカ(株)製の「ネオレッツ」シリーズ等の水を分散媒とするウレタン樹脂エマルジョンは好適に用いることができる。
 このような樹脂エマルジョンは概ね球状を呈しているが、その直径が10~500nm、さらには20~300nmの範囲にあることが好ましい。樹脂エマルジョンの径が10nmよりも小さいエマルジョンは得ることが難しく、また、得られたとしても、硬化の際の収縮が大きく、クラックが発生することがある。樹脂エマルジョンの径が500nmよりも大きすぎると、無機酸化物微粒子の均一分散が難しくなり、面内反射率に膜ムラが発生し、外観が悪化することがある。
 樹脂エマルジョンの径(直径)の測定には、動的散乱粒子径測定装置(FPAR-1000、大塚電子社製)を用いる。
 透明被膜形成用塗布液中の樹脂エマルジョンの濃度(CR)は固形分として0.006~68重量%、さらには0.2~49重量%の範囲にあることが好ましい。濃度(CR)が固形分として少ないと、樹脂が少なく無機酸化物微粒子が多すぎて膜強度、耐擦傷性、スクラッチ強度等が不充分となる場合がある。また、延伸時に透明被膜の伸びが不純分で、クラックが発生する場合がある。濃度(CR)が多すぎても、基材との密着性、膜強度、表面平坦性、耐擦傷性、スクラッチ強度等が不充分となることに加えて、無機酸化物微粒子が少なくなるために、導電性能、反射防止性能等が充分得られない場合がある。
 塗布液中の無機酸化物微粒子の濃度(CP)と樹脂エマルジョンの濃度(CR)の濃度比(CP/CR)は、透明被膜の用途・用法によっても異なるが、0.03~4の範囲にあることが好ましい。なお、透明被膜の用途としては、ハードコート、帯電防止、易接着性、反射防止、アンチブロッキング性、断熱性などが挙げられ、これらに応じて、適宜好ましい範囲が設定される。
 具体的に、ハードコート膜の場合は、(CP/CR)は0.1~4、さらには0.25~2.4の範囲にあることが好ましい。この範囲内であれば、基材との密着性、膜強度、表面平坦性、耐擦傷性、スクラッチ強度等に優れた透明性ハードコート膜を形成することができる。
 帯電防止膜の場合は、(CP/CR)は0.03~2.4、さらには0.05~1の範囲にあることが好ましい。この範囲内であれば、基材との密着性、膜強度、帯電防止性(導電性)に優れた表面平坦性、耐擦傷性、スクラッチ強度等に優れた透明性帯電防止膜を形成することができる。
 易接着性層の場合は、(CP/CR)は0.03~1、さらには0.05~0.25の範囲にあることが好ましい。この範囲内であれば、基材および上層に設ける他の機能性膜の機能を損なうことなく基材との密着性に優れた易接着性層を形成することができる。
 なお、易接着性層の場合、さらに無機酸化物微粒子(C)を含んでもよい。また無機酸化物微粒子(A)と鎖状無機酸化物微粒子(B)の少なくとも一方の粒子の一部を無機酸化物微粒子(C)に代えてもよい。無機酸化物微粒子(C)を用いることによってアンチブロッキング性に優れた易接着性層を形成することができる。
 また、無機酸化物微粒子として、上述の有機珪素化合物による表面処理をすることなく用いると、無機酸化物微粒子が適度に凝集状態を呈し、光を散乱することによって干渉縞を抑制することができる。あるいは、無機酸化物微粒子として、得られる易接着性層の屈折率が基材の屈折率と近接するように粒子を選択することによっても干渉縞を抑制することができる。
 反射防止膜の場合は、(CP/CR)は0.1~4、さらには0.25~2.4の範囲にあることが好ましい。この範囲内であれば、基材との密着性、膜強度、反射防止性能に優れた透明性反射防止膜を形成することができる。
 アンチブロッキング性膜の場合は、さらに無機酸化物微粒子(C)を含んでもよい。また無機酸化物微粒子(A)と鎖状無機酸化物微粒子(B)の少なくとも一方の粒子の一部を無機酸化物微粒子(C)に代えてもよい。無機酸化物微粒子(C)を用いることによって易接着性層を形成することができる。この場合、(CP/CR)は0.03~1、さらには0.05~0.25の範囲にあれば、基材との密着性、膜強度等に優れた透明性アンチブロッキング性膜を形成することができる。
 断熱性膜の場合は(CP/CR)は0.1~4さらには、0.25~2.4の範囲にあることが好ましい。この範囲内であれば、基材との密着性、膜強度、表面平坦性、耐擦傷性、スクラッチ強度等に優れた透明性断熱性膜を形成することができる。

 分散媒
 分散媒としては、樹脂エマルジョンを溶解することなくエマルジョン状態で分散できる溶媒でなければならない。例えば、水や有機溶媒が用いられる。また、後述する架橋剤あるいは重合開始剤を溶解あるいは分散できるとともに無機酸化物微粒子を分散することができれば特に制限はない。
 具体的には、水、メタノール、エタノール、プロパノール、2-プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコール、イソプロピルグリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステル、酢酸ブチルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、トルエン、シクロヘキサノン、イソホロン、N,N-ジメチルホルムアミド等が挙げられる。この内、水やアルコール類が適している。

 架橋剤
 塗布液には必要に応じて架橋剤を添加することができる。架橋剤は、樹脂エマルジョンの樹脂が熱可塑性樹脂の場合に使用される。架橋剤としては樹脂エマルジョンが持つ反応性基と反応する官能基を有する化合物であれば特に制限はなく、樹脂によって従来公知の架橋剤から適宜選択して用いることができ、水を分散媒とするエポキシ化合物、アミノ化合物、イソシアネート化合物、カルボジイミド化合物等を使用することができる。
 架橋剤の添加量は、特に限定されず、樹脂エマルジョンの種類によっても異なるが、樹脂エマルジョンを固形分として100重量%に対して、架橋剤を固形分として200重量%以下、さらには10~100重量%の範囲にあることが好ましい。架橋剤の添加量が少ないと、樹脂エマルジョンの種類によっては、透明被膜の硬化が不充分となることがある。架橋剤の添加量が多すぎても、塗布液の安定性が不充分となる場合があり、得られる透明被膜にクラックが発生する場合がある。

 重合開始剤
 塗布液には、硬化型樹脂の場合に、必要に応じて重合開始剤を添加することができる。重合開始剤としては、樹脂エマルジョンを重合、硬化させることができれば特に制限はなく、樹脂によって適宜選択することができる。
 例えば、アゾニトリルやアゾアミド等のアゾ化合物、過酸化ベンゾイルやメチルエチルケトンペルオキシド等の有機過酸化物が挙げられる。
 重合開始剤の添加量は、樹脂エマルジョンの種類によっても異なるが、添加する場合は、樹脂エマルジョンを固形分として100重量%に対して、重合開始剤を固形分として200重量%以下、さらには10~100重量%の範囲にあることが好ましい。重合開始剤の使用量が少ないと、透明被膜の硬化が不充分となることがある。重合開始剤の使用量が多すぎても、塗布液の安定性が不充分となる場合があり、得られる透明被膜にクラックが発生する場合がある。

 透明被膜形成用の塗布液の全固形分濃度は0.03~70重量%、さらには1~50重量%の範囲にあることが好ましい。
 塗布液の固形分濃度が低すぎると、膜厚の調整が難しく、乾燥状態にムラが生じ易い。また、塗布液を塗布後、基材フィルムを延伸する場合に所望の膜厚を得ることが困難な場合があり、またクラックの発生を伴う場合がある。透明被膜形成用塗布液の固形分濃度が高すぎると、安定性が低下し、塗工性が低下することから得られる透明被膜の基材との密着性、膜強度、耐擦傷性、スクラッチ強度等が不充分となる場合がある。特に塗布液の粘度が高くなることから基材の延伸に追随して均一に塗布することが困難であったり、塗布後の延伸時に塗膜を均一に延伸することが困難となる場合があり、スポットあるいは膜ムラ(海島)が発生したり、クラックが発生する場合がある。

 次に、上述した塗布液を用いて膜付基材を製造する方法について説明する。
 [透明被膜付基材の製造方法]
 本発明に係る透明被膜付基材の製造方法は、塗布液を塗布する工程と基材フィルムを延伸する工程を含んでいる。具体的には、(1)基材に塗布液を塗布した後、塗膜付基材を塗膜が乾燥する前に延伸する方法と、(2)基材を延伸しながら塗布液を塗布する方法であれば、塗布液を塗布する回数や延伸の方向や回数は特に問わない。さらに具体的に方法を挙げると、以下の4態様があげられる。
第1の態様
 第1の態様では、塗布工程の後に二軸延伸する工程を行う。
 すなわち、
(a)樹脂フィルム基材上に塗布液を塗布する工程
(b)塗膜付樹脂フィルムを二軸(縦および横)延伸する工程
(c)塗膜に含まれる分散媒を除去(乾燥)する工程
(d)硬化する工程
を順に行う。

工程(a)
 樹脂フィルム基材上に上述の塗布液を塗布する。ここでは、延伸前の基材が用いられる。延伸前の基材の厚みは、通常400~5000μmの範囲である。具体的には、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル基材、ポリエチレンフィルム、ポリプロピレンフィルム、環状ポリオレフィンフィルム等のポリオレフィン基材、ナイロン-6、ナイロン-66等のポリアミド基材等の他、ポリアクリルフィルム、ポリウレタンフィルム、ポリカーボネートフィルム、ポリエーテウフィルム、ポリエーテルサルホンフィルム、ポリスチレンフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、アクリロニトリルフィルム等の基材が挙げられる。特に、ポリエステル基材やポリアクリルフィルムは、耐熱性に優れ、透明性が高いので好適に用いることができる。
 塗布液の塗布方法は、スプレー法、スピナー法、ロールコート法、バーコート法、スリットコーター印刷法、グラビア印刷法、マイクログラビア印刷法等の周知の方法を採用することができる。本発明ではロールコート法、スリットコーター印刷法、グラビア印刷法、マイクログラビア印刷法が推奨される。
 このときの塗布量は、延伸後の透明被膜の膜厚が所望の厚みとなるように塗布する。例えば、易接着層やアンチブロッキング性膜の場合は平均膜厚(TF)が10~2000nm、好ましくは20~800nmとなるように塗布することが好ましい。反射防止膜の場合は平均膜厚(TF)が80~400nm、好ましくは90~300nmとなるように塗布することが好ましい。ハードコート膜の場合は平均膜厚(TF)が0.5~30μm、好ましくは1~10μmとなるように塗布することが好ましい。帯電防止膜の場合は平均膜厚(TF)が1~20μm、好ましくは3~15μmとなるように塗布することが好ましい。断熱性膜の場合は平均膜厚(TF)が1~300μm、好ましくは5~100μmとなるように塗布することが好ましい。

工程(b)
 塗膜付樹脂フィルムを延伸する。延伸方法としては、二軸延伸法が採用される。このとき、延伸後の基材の厚みは通常20~200μmの範囲にあることが好ましい。ここで、二軸延伸とは、塗膜付基材を巻き取る(ロール)方向に延伸(縦軸延伸)すると同時に、これと垂直方向に延伸(横軸延伸)することを意味している。

工程(c)
 乾燥方法としては、塗布液の分散媒を除去できれば特に制限はない。例えば、風乾することもできるが、塗膜を形成した樹脂フィルムを加熱下で乾燥する。加熱温度は概ね50~200℃で、時間は概ね1秒~1時間である。

工程(d)
 塗膜を硬化する方法としては、塗布液に用いた樹脂エマルジョンの種類によっても異なるが、加熱硬化性樹脂を用いた場合は加熱硬化し、紫外線硬化性樹脂を用いた場合は紫外線照射し、必要に応じて加熱する等従来公知の方法を採用することができる。熱可塑性樹脂の場合は加熱後の冷却により硬化する。

第2の態様
 第2の態様では、縦軸延伸された基材への塗布工程の後に横軸延伸する工程を行う。
 すなわち、
(a')縦軸延伸された樹脂フィルム基材上に塗布液を塗布する工程
(b')塗膜付樹脂フィルムを横軸延伸する工程
(c)塗膜に含まれる分散媒を除去(乾燥)する工程
(d)硬化する工程
を順に行う。

工程(a')
 縦軸延伸された樹脂フィルム基材上に上述の透明被膜形成用の塗布液を塗布する。縦軸延伸した基材の厚みは通常40~500μmの範囲である。基材は、第1の態様で記載した基材が用いられ、塗布液の塗布方法も同様の方法が用いられる。このときの塗布量は、最終的に得られる透明被膜の平均膜厚(TF)が上述の範囲となるように塗布することが好ましい。

工程(b')
 塗膜付樹脂フィルムを横軸延伸する。このとき、延伸後の基材の厚みが通常20~200μmの範囲となるように延伸する。

 工程(c)および工程(d)については、第1の態様と同様である。

第3の態様
 第3の態様では、塗布工程と縦軸延伸工程を同時に行う。
 すなわち、
(a'')樹脂フィルム基材上に、基材を縦軸延伸しながら塗布液を塗布する工程
(b'')塗膜付樹脂フィルムを横軸延伸する工程
(c)塗膜に含まれる分散媒を除去(乾燥)する工程
(d)硬化する工程
を順に行う。

工程(a'')
 樹脂フィルム基材上に、基材を縦軸延伸しながら上述の塗布液を塗布する。
 基材の延伸方法としては、第2の態様の縦軸延伸方法と同様である。基材は、第1の態様で記載した基材が用いられ、塗布液の塗布方法も同様の方法が用いられる。このときの塗布量は、最終的に得られる透明被膜の平均膜厚(TF)が上述の範囲となるように塗布することが好ましい。

工程(b'')
 塗膜付樹脂フィルムを横軸延伸する。このとき、延伸後の基材の厚みが通常20~200μmの範囲となるように延伸する。

 工程(c)および工程(d)については、第1および第2の態様と同様である。

第4の態様
 第4の態様では、塗布工程と二軸延伸工程を同時に行う。
 すなわち、
(a’’’)基材上に、基材を二軸(縦軸および横軸)しながら塗布液を塗布する工程
(c)塗膜に含まれる分散媒を除去(乾燥)する工程
(d)塗膜を硬化する工程
を順に行う。

工程(a''')
 樹脂フィルム基材上に、基材を二軸延伸しながら上述の塗布液を塗布する。延伸方法としては、二軸延伸法が採用される。このとき、延伸後の基材の厚みは通常20~200μmの範囲にあることが好ましい。基材は、第1の態様で記載した基材が用いられ、塗布液の塗布方法も同様の方法が用いられる。このときの塗布量は、最終的に得られる透明被膜の平均膜厚(TF)が上述の範囲となるように塗布することが好ましい。

 工程(c)および工程(d)については、第1~第3の態様と同様である。
 このようにして本発明に係る透明被膜付基材を製造することができる。

 得られた透明被膜の平均膜厚(TF)は透明被膜の種類によって異なり、上述の範囲にあることが好ましい。例えば、反射防止膜付基材の場合、反射防止膜の平均膜厚(TF)が80nm未満の場合は、反射防止膜の強度、耐擦傷性が不充分となる場合があり、また所望の反射率が得られないことがある。平均膜厚(TF)が400nmを超えると、反射防止膜にクラックが入りやすく、このため反射防止膜の強度が不充分となる場合があり、また、膜が厚すぎて反射防止性能が不充分となる場合がある。反射防止膜の平均膜厚(TF)が前記範囲にあれば反射率(ボトム反射率、視感反射率)が低く、且つ、膜強度等に優れた反射防止膜を得ることができる。
 本発明では、透明被膜の平均膜厚(TF)の測定は、透過型電子顕微鏡(TEM)で透明被膜の断面を撮影して求める。
 透明被膜中の無機酸化物微粒子の含有量は3~80重量%、さらには5~70重量%の範囲にあることが好ましい。透明被膜中の無機酸化物微粒子の含有量が3重量%未満の場合は、基材との密着性、膜強度、表面平坦性、耐擦傷性、スクラッチ強度等が不充分となることに加えて、反射防止膜の場合、屈折率の低下が不充分となり反射防止性能が不充分となる場合がある。透明被膜中の無機酸化物微粒子の含有量が80重量%を超えると、粒子が多すぎて膜強度、耐擦傷性、スクラッチ強度等が不充分となることに加えて、反射防止膜の場合、ヘーズ値が高くなる場合がある。また、延伸時に透明被膜の伸びが基材の延伸に追随できないためにクラックが発生することがある。
 透明被膜中の樹脂エマルジョンに由来する樹脂の含有量は20~97重量%、さらには30~95重量%の範囲にあることが好ましい。この理由として、本発明者らは、樹脂エマルジョンは少なくとも乾燥前までは塗膜中で小滴状(エマルジョン状態)を維持し、このため、延伸時に基材が引き伸ばされても、それに応じて塗膜中で動いたり変形したりすることができると考えている。そして、この小滴状は、その後の乾燥、硬化処理によって、溶融したり硬化したりすることで、一体膜化すると考えている。
 透明被膜中の樹脂エマルジョンに由来する樹脂の含有量が固形分として少ないと、樹脂が少なく、膜強度、耐擦傷性、スクラッチ強度等が不充分となることに加えて、粒子が多くなるために透明被膜のヘーズ値が高くなる場合がある。また、延伸時に透明被膜の伸びが基材の延伸に追随できないためにクラックが発生することがある。透明被膜中の樹脂エマルジョンに由来する樹脂の含有量が多すぎても、粒子が少なく、基材との密着性、膜強度、表面平坦性、耐擦傷性、スクラッチ強度等が不充分となることに加えて、無機酸化物微粒子が少なく、透明被膜の機能が不充分となる場合がある。


 以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。

[実施例1]
 ハードコート膜形成用の塗布液(H‐1P)の調製
 シリカゾル(日揮触媒化成(株)製:カタロイド-SN、平均粒子径12nm、SiO2濃度20重量%、水分散媒)を、限外濾過膜を用いて分散媒をエタノールに置換した固形分濃度20重量%のシリカ微粒子(H-1V)のアルコール分散液を調製した。
 固形分濃度20重量%のシリカ微粒子(H-1V)のアルコール分散液100gにシランカップリング剤(メチルトリメトキシシラン)(信越化学(株)製:KBM-13)4gを添加し、50℃で加熱処理を行い、固形分濃度20重量%の表面処理シリカ微粒子(H-1VS)のアルコール分散液を調製した。ロータリーエバポレーターを用いて分散媒を水に置換して、固形分濃度40.5重量%の表面処理シリカ微粒子(H-1VS)の水分散液を調製した。このときアルカリ濃度は、200ppmであった。
 ついで、表面処理シリカ微粒子(H-1VS)の水分散液10.0gにポリウレタン樹脂エマルジョン(第一工業製薬社(株)製:スーパーフレックス210、樹脂濃度35重量%、エマルジョン直径:50nm、分散媒:水)11.4g、イソプロピルアルコール5.3gを混合して、固形分濃度30.0重量%のハードコート膜形成用の塗布液(H-1P)を調製した。
ハードコート膜付延伸フィルム基材(H-1F)の製造
 ジメチルテレフタレート100重量%に対して、エチレングリコール70重量%、およびエステル交換触媒として、酢酸カルシウム0.01重量%、重縮合触媒として三酸化アンチモン0.03重量%を加えて220℃まで昇温して理論上のメタノールを留去し、エステル交換反応を終了した。つづいて、系内にリン酸トリメチル0.04重量%を添加した。系内を減圧し1mmHgの減圧下、温度290℃で4時間重縮合反応を行い、ポリエステル樹脂を調製した。
 得られたポリエステル樹脂を押出し機で295℃にてシート化して基材用ポリエステル樹脂フィルム(1)を調製した。ポリエステル樹脂フィルム(1)の厚さは1,125μmであった。このポリエステル樹脂フィルム(1)に縦軸延伸(140℃、2.5倍延伸)を行った後、ハードコート膜形成用の塗布液(H-1P)をバーコーター法(バー#60)で塗布し、140℃で120秒間乾燥した後、横軸延伸(140℃、4.5倍延伸)してハードコート膜付延伸フィルム基材(H-1F)を製造した。このとき、フィルム基材の厚さは100μm、ハードコート膜の膜厚は5μmであった。
 得られたハードコート膜付延伸フィルム基材(H-1F)の全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性および耐擦傷性を測定し、結果を表に示す。全光線透過率およびヘーズは、ヘーズメーター(スガ試験機(株)製)により測定した。
 なお、基材用ポリエステル樹脂フィルム(1)のみを同様に延伸した厚さは100μmであり、全光線透過率が93.14%、ヘーズが0.27%であった。

鉛筆硬度
 鉛筆硬度は、JIS K 5400に準じて、鉛筆硬度試験器で測定した。即ち、ハードコート膜表面に対して45度の角度に鉛筆をセットし、所定の加重を負荷して一定速度で引っ張り、傷の有無を観察した。

密着性
 ハードコート膜付基材(H-1F)の表面にナイフで縦横1mmの間隔で11本の平行な傷を付け100個の升目を作り、これにセロファンテープを接着し、次いで、セロファンテープを剥離したときに被膜が剥離せず残存している升目の数を、以下の3段階に分類することによって密着性を評価した。結果を表に示す。
  残存升目の数90個以上   :  ◎
  残存升目の数85~89個   :  ○
  残存升目の数84個以下     :  △

膜ムラ(海島)
 表面を目視で観察し、以下の基準で評価した。
  表面にムラ状の外観不良が確認できない。    :  ◎
  表面にムラ状の外観不良がほぼ確認できない。  :  ○
  表面にムラ状の外観不良が僅かに観察された。  :  △
  表面にムラ状の外観不良が明らかに観察された。 :  ×

クラック
 電子顕微鏡で表面を観察し、以下の基準で評価した。
  クラックが全く観察されなかった。         :  ◎
  微細なクラックが僅かに観察された。        :  ○
  微細なクラックが明らかに観察された。       :  △
  微細なクラックおよび大きなクラックが観察された。 :  ×

膜表面の平坦性
 表面の平坦性(Ra)を(株)日立ハイテクサイエンス社製:原子間力顕微鏡(AFM)で測定し、以下の基準で評価した。
  Ra値が10nm未満       :  ◎
  Ra値が10nm以上20nm未満 :  ○
  Ra値が20nm以上50nm未満 :  △
  Ra値が50nm以上       :  ×

 耐擦傷性の測定
 #0000スチールウールを用い、荷重500g/cm2で50回摺動し、膜の表面を目視観察し、以下の基準で評価し、結果を表に示した。
  筋条の傷が認められない     :  ◎
  筋条の傷が僅かに認められる   :  ○
  筋条の傷が多数認められる    :  △
  面が全体的に削られている    :  ×


[実施例2]
 ハードコート膜形成用の塗布液(H-2P)の調製
 実施例1と同様にして調製した表面処理シリカ微粒子(H-1VS)の水分散液5.9gにポリウレタン樹脂エマルジョン(第一工業製薬社(株)製:スーパーフレックス210、樹脂濃度35重量%、エマルジョン直径:50nm、分散媒:水)16.0g、イソプロピルアルコール4.7gを混合して、固形分濃度30.0重量%のハードコート膜形成用の塗布液(H-2P)を調製した。

 ハードコート膜付延伸フィルム基材(H-2F)の製造
 ハードコート膜形成用の塗布液として、(H-1P)の代わりに(H-2P)を用いた以外は実施例1と同様にして、ハードコート膜付延伸フィルム基材(H-2F)を製造した。このとき、フィルム基材の厚さは100μm、ハードコート膜の膜厚は4.8μmであった。
 得られたハードコート膜付延伸フィルム基材(H-2F)について、全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性および耐擦傷性を測定し、結果を表に示す。


[実施例3]
 ハードコート膜形成用の塗布液(H-3P)の調製
 実施例1と同様にして調製した表面処理シリカ微粒子(H-1VS)の水分散液13.8gにポリウレタン樹脂エマルジョン(第一工業製薬社(株)製:スーパーフレックス210、樹脂濃度35重量%、エマルジョン直径:50nm、分散媒:水)6.9g、イソプロピルアルコール6.0gを混合して、固形分濃度30.0重量%のハードコート膜形成用の塗布液(H-3P)を調製した。

 ハードコート膜付延伸フィルム基材(H-3F)の製造
 実施例1で、ハードコート膜形成用の塗布液として、(H-1P)の代わりに(H-3P)を用いた以外は同様にして、ハードコート膜付延伸フィルム基材(H-3F)を製造した。このとき、フィルム基材の厚さは100μm、ハードコート膜の膜厚は5.4μmであった。
 得られたハードコート膜付延伸フィルム基材(H-3F)について、全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性および耐擦傷性を測定し、結果を表に示す。


[実施例4]
 ハードコート膜形成用の塗布液(H-4P)の調製
 実施例1と同様にして調製した表面処理シリカ微粒子(H-1VS)の水分散液10.0gにポリウレタン樹脂エマルジョン(第一工業製薬社(株)製:スーパーフレックス210、樹脂濃度35重量%、エマルジョン直径:50nm、分散媒:水)11.4g、純水10.6g、イソプロピルアルコール8.0gを混合して、固形分濃度20.0重量%のハードコート膜形成用の塗布液(H-4P)を調製した。

 ハードコート膜付延伸フィルム基材(H-4F)の製造
 実施例1で、ハードコート膜形成用の塗布液として、(H-1P)の代わりに(H-4P)を用いた以外は実施例1と同様にして、ハードコート膜付延伸フィルム基材(H-4F)を製造した。このとき、フィルム基材の厚さは100μm、ハードコート膜の膜厚は3.2μmであった。
 得られたハードコート膜付延伸フィルム基材(H-4F)について、全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性および耐擦傷性を測定し、結果を表に示す。


[実施例5]
 ハードコート膜形成用の塗布液(H-5P)の調製
 実施例1と同様にして調製した表面処理シリカ微粒子(H-1VS)の水分散液10.0gにウレタン樹脂エマルジョン(第一工業製薬(株)製:スーパーフレックス150、樹脂濃度30重量%、粒子径:70nm、分散媒:水)13.5g、イソプロピルアルコール3.5gを混合して、固形分濃度30.0重量%のハードコート膜形成用の塗布液(H-5)を調製した。

 ハードコート膜付延伸フィルム基材(H-5F)の製造
 実施例1で、ハードコート膜形成用の塗布液として、(H-1P)の代わりに(H-5P)を用いた以外は実施例1と同様にして、ハードコート膜付延伸フィルム基材(H-5F)を製造した。このとき、フィルム基材の厚さは100μm、ハードコート膜の膜厚は4.9μmであった。
 得られたハードコート膜付延伸フィルム基材(H-5F)について、全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性および耐擦傷性を測定し、結果を表に示す。


[実施例6]
 ハードコート膜形成用の塗布液(H-6P)の調製
 実施例1の固形分濃度を60重量%にした表面処理シリカ微粒子(H-6VS)10.0gにウレタン樹脂エマルジョン(第一工業製薬社(株)製:スーパーフレックス210、樹脂濃度35重量%、エマルジョン直径:50nm、分散媒:水)17.1g、イソプロピルアルコール6.8gを混合して、固形分濃度35.3重量%のハードコート膜形成用の塗布液(H-6P)を調製した。

 ハードコート膜付延伸フィルム基材(H-6F)の製造
 実施例1と同様にして調製した基材用ポリエステル樹脂フィルム(1)上にハードコート膜形成用の塗布液(H-6P)をバーコーター法(バー#72)で塗布し、ついで、縦軸方向に2.5倍、横軸方向に4.5倍となるように140℃加温下で延伸し、ついで、140℃で120秒間乾燥して、ハードコート膜付延伸フィルム基材(H-6F)を製造した。このとき基材の厚さは100μm、ハードコート膜の膜厚は2μmであった。
 得られたハードコート膜付延伸フィルム基材(H-6F)について、全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性および耐擦傷性を測定し、結果を表に示す。


[実施例7]
 ハードコート膜付延伸フィルム基材(H-7F)の製造
 実施例1と同様にして調製した基材用ポリエステル樹脂フィルム(1)を縦軸方向に2.5倍となるように140℃加温下で延伸しながら実施例1と同様にして調製したハードコート膜形成用の塗布液(H-1P)をバーコーター法(バー#60)で塗布し、ついで、横軸方向に4.5倍となるように140℃加温下で延伸し、ついで、140℃で120秒間乾燥してハードコート膜付延伸フィルム基材(H-7F)を製造した。このとき基材の厚さは100μm、反射防止膜の膜厚は5.1μmであった。
 得られたハードコート膜付延伸フィルム基材(H-7F)について、全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性および耐擦傷性を測定し、結果を表に示す。


[実施例8]
 ハードコート膜付延伸フィルム基材(H-8F)の製造
 実施例1と同様にして調製した基材用ポリエステル樹脂フィルム(1)を縦軸方向に2.5倍、横軸方向に4.5倍となるように、140℃加温下で延伸しながら実施例1と同様にして調製したハードコート膜形成用の塗布液(H-1P)をバーコーター法(バー#16)で塗布し、ついで、140℃で120秒間乾燥してハードコート膜付延伸フィルム基材(H-8F)を製造した。このとき基材の厚さは100μm、反射防止膜の膜厚は5μmであった。
 得られたハードコート膜付延伸フィルム基材(H-8F)について、全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性および耐擦傷性を測定し、結果を表に示す。


[実施例9]
 ハードコート膜形成用の塗布液(H-9P)の調製
 実施例1で得た固形分濃度20重量%のシリカ微粒子(H-1V)のアルコール分散液100gにポリアクリル酸分散剤(東亜合成(株)製:アロンSD-10)2gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて分散媒をエタノールに置換した固形分濃度20重量%のシリカ微粒子(H-9VS)のアルコール分散液を調製した。ロータリーエバポレーターを用いて分散媒を水に置換して、固形分濃度40.5重量%の表面処理シリカ微粒子(H-9VS)の水分散液を調製した。このときアルカリ金属の濃度は、200ppmであった。
 ついで、表面処理シリカ微粒子(H-9VS)の水分散液10.0gにポリウレタン樹脂エマルジョン(第一工業製薬社(株)製:スーパーフレックス210、樹脂濃度35重量%、エマルジョン直径:50nm、分散媒:水)11.4g、イソプロピルアルコール5.3gを混合して、固形分濃度30.0重量%のハードコート膜形成用の塗布液(H-9P)を調製した。

 ハードコート膜付延伸フィルム基材(H-9F)の製造
 実施例1と同様にして調製した基材用ポリエステル樹脂フィルム(1)を縦軸方向に2.5倍となるように、140℃加温下で延伸し、ついで、ハードコート膜形成用の塗布液(H-9P)をバーコーター法(バー#60)で塗布し、80℃で120秒間乾燥した後、600mJ/cm2の紫外線を照射して硬化させた後、横軸方向に4.5倍となるように、140℃加温下で延伸し、ついで、140℃で120秒間乾燥して、ハードコート膜付延伸フィルム基材(H-9F)を製造した。このとき基材の厚さは101μm、反射防止膜の膜厚は5μmであった。
 得られたハードコート膜付延伸フィルム基材(H-9F)について、全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性および耐擦傷性を測定し、結果を表に示す。


[比較例1]
 ハードコート膜形成用の塗布液(RH-1P)の調製
 ジペンタエリスリトールヘキサアクリレート(共栄社化学(株)製:ライトアクリレートDPE-6A)53gと、1、6-ヘキサンジオールジアクリレート(日本化薬(株)製:カヤラッドKS-HDDA)5.9gと、片端末メタクリルシリコンオイル(信越化学工業(株)製:X-22-174DX)0.4gと、プロピレングリコールモノメチルエーテル75.5gと、光重合開始剤2.4.6-トリメチルベンゾイルジフェニルフォスフィンオキサイド(ビ-エーエスジャパン(株)製:ルシリンTPO)3.5gとを混合して固形分濃度44重量%のマトリックス形成成分溶液(1)を調製した。
 ついで、固形分濃度44重量%のマトリックス形成成分溶液(1)30.0gと実施例1と同様にして調製した固形分濃度40重量%のシリカ微粒子(H-1VS)のアルコール分散液30.0gとイソプロピルアルコール22.6gを混合して固形分濃度30重量%の透明被膜形成用の塗布液(RH-1P)を調製した。

 ハードコート膜付延伸フィルム基材(RH-1F)の製造
 実施例1と同様にして調製した基材用ポリエステル樹脂フィルム(1)を縦軸方向に2.5倍となるように、140℃加温下で延伸し、ついで、ハードコート膜形成用の塗布液(RH-1P)をバーコーター法(バー#60)で塗布し、80℃で120秒間乾燥した後、600mJ/cm2の紫外線を照射して硬化させた後、横軸方向に4.5倍となるように、140℃加温下で延伸し、ついで、140℃で120秒間乾燥して、ハードコート膜付延伸フィルム基材(RH-1F)を製造した。このとき基材の厚さは100μm、反射防止膜の膜厚は5μmであった。
 得られたハードコート膜付延伸フィルム基材(RH-1F)について、全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性および耐擦傷性を測定し、結果を表に示す。


[比較例2]
 ハードコート膜形成用の塗布液(RH-2P)の調製
 ポリウレタン樹脂エマルジョン(第一工業製薬社(株)製:スーパーフレックス210、樹脂濃度35重量%、粒子径:50nm、分散媒:水)3.8g、イソプロピルアルコール17.4g、メチルイソブチルケトン1.8g、イソプロピルグリコール1.7gを混合し、エマルジョン希釈液を調合した。
 エマルジョン希釈液について観察した結果、目視で透明になり、また、粒子径が測定できなくなったことから樹脂エマルジョンは消失していたと推察される。
 ついで、実施例1と同様にして調製した表面処理シリカ微粒子(H-1VS)の水分散液3.28gを添加し、固形分濃度9.5重量%のハードコート膜形成用の塗布液(RH-2P)を調製した。

 ハードコート膜付延伸フィルム基材(RH-2F)の製造
 実施例1と同様にして調製した基材用ポリエステル樹脂フィルム(1)を、縦軸方向に2.5倍となるように、140℃で加温下、延伸を行った後、ハードコート膜形成用の塗布液(RH-2P)をバーコーター法(バー#50)で塗布し、ついで、140℃で120秒間乾燥した後、横軸方向に4.5倍となるように140℃で加温下延伸してハードコート膜付延伸フィルム基材(RH-2F)を製造した。このとき、基材の厚さは100μm、ハードコート膜の膜厚は5μmであった。
 得られたハードコート膜付延伸フィルム基材(RH-2F)について、全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性および耐擦傷性を測定し、結果を表に示す。


[比較例3]
 ハードコート膜付延伸フィルム基材(RH-3F)の製造
 実施例1と同様にして調製した基材用ポリエステル樹脂フィルム(1)を二軸延伸して厚さは100μmのポリエステル樹脂フィルム基材を調製した。
 ついで、比較例1と同様にして調製した固形分濃度30.0重量%のハードコート膜形成用の塗布液(RH-1P)をバーコーター法(バー#18)で塗布し、ついで、80℃で120秒間乾燥した後、600mJ/cm2の紫外線を照射して硬化させて、ハードコート膜付延伸フィルム基材(RH-3F)を製造した。このとき、基材の厚さは100μm、ハードコート膜の膜厚は5μmであった。
 得られたハードコート膜付延伸フィルム基材(RH-3F)について、全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性および耐擦傷性を測定し、結果を表に示す。


[実施例10]
 易接着層形成用の塗布液(P-10P)の調製
 実施例1で得たシリカ微粒子(H-1VS)の水分散液33.2gにシリカオルガノゾル(日揮触媒化成(株)製:ELCOM V-8901、平均粒子径120nm、SiO2濃度20重量%、分散媒:メタノール)1.4gにポリウレタン樹脂エマルジョン(第一工業製薬社(株)製:スーパーフレックス210、樹脂濃度35重量%、エマルジョン直径:50nm、分散媒:水)88.5g、イソプロピルアルコール89.1g、純水233.2gを混合して固形分濃度10.0重量%の易接着層形成用の塗布液(P-10P)を調製した。

 易接着層付延伸フィルム基材(P-10F)の製造
 実施例1と同様にして調製した基材用ポリエステル樹脂フィルム(1)を、縦軸延伸(140℃、2.5倍延伸)を行った後、易接着層形成用の塗布液(P-10P)をバーコーター法(バー#4)で塗布し、140℃で120秒間乾燥した後、横軸延伸(140℃、4.5倍延伸)して易接着層付延伸フィルム基材(P-10F)を製造した。このとき、フィルム基材の厚さは100μm、易接着層の膜厚は0.1μmであった。
 得られた易接着層付延伸フィルム基材(P-10F)の全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性、耐擦傷性、アンチブロッキング性および接着性を測定し、また、干渉縞の観察を行い、結果を表に示す。なお、アンチブロッキング性、接着性および干渉縞は以下の方法で評価した。

 アンチブロッキング性
 易接着層付延伸フィルム基材(P-10F)の一部を2枚に切断し、一方の易接着層付延伸フィルム基材(基材+易接着層)の上に他方の易接着層付延伸フィルム基材(基材+易接着層)を重ね合わせ、1cm2当たり10kgの加重が掛かるように重りを載せ、24時間放置した後の剥離の難易度を下記の基準で評価した。
  剥離が極めて容易である    :  ◎
  剥離が容易にできる      :  ○
  剥離がやや困難である     :  △
  剥離ができないか、困難である :  ×

 干渉縞
 易接着層付延伸フィルム基材(P-10F)の背景を黒にした状態で蛍光灯の光を透明被膜表面で反射させ、光の干渉による虹模様の発生を目視観察し、以下の基準で評価した。
  虹模様が全く認められない  :  ◎
  虹模様がわずかに認められる :  ○
  虹模様が明らかに認められる :  △
  虹模様が鮮明に認められる  :  ×

 接着性の評価
 ハードコート塗料(日揮触媒化成(株)製:ELCOM HP-1004)を易接着層付延伸フィルム基材(P-10F)上にバーコーター法(バー#12)で塗布し、80℃で1分間乾燥した後、高圧水銀灯(120W/cm)を搭載した紫外線照射装置(日本電池製:UV照射装置CS30L21-3)で600mJ/cm2照射して硬化させ、ハードコート膜・易接着性層付基材を調製した。このときのハードコート膜の厚さは5μm、合計膜厚は5.6μmであった。
 得られたハードコート膜の密着性を前記した方法で測定し、接着性として評価した。


[比較例4]
 易接着層形成用の塗布液(RP-10P)の調製
 ポリウレタン樹脂エマルジョン(第一工業製薬社(株)製:スーパーフレックス210、樹脂濃度35重量%、粒子径:50nm、分散媒:水)38.0g、イソプロピルアルコール170.4g、メチルイソブチルケトン18.0g、イソプロピルグリコール17.0gを混合し、エマルジョン希釈液を調合した。
 エマルジョン希釈液について観察した結果、目視で透明になり、また、粒子径が測定できなくなったことから樹脂エマルジョンは消失していたと推察される。
 ついで、実施例1と同様にして調製したシリカ微粒子(H-1VS)の水分散液33.2gとシリカオルガノゾル(日揮触媒化成(株)製:ELCOM V-8901、平均粒子径120nm、SiO2濃度20重量%、分散媒:メタノール)0.6gを添加し、固形分濃度7.4重量%の易接着層形成用の塗布液(RP-4P)を調製した。

 易接着層付延伸フィルム基材(RP-1)の製造
 実施例1と同様にして調製した基材用ポリエステル樹脂フィルム(1)を縦軸延伸(140℃、2.5倍延伸)を行った後、易接着層形成用の塗布液(RP-4P)をバーコーター法(バー#6)で塗布し、140℃で120秒間乾燥した後、横軸延伸(140℃、4.5倍延伸)して易接着層付延伸フィルム基材(RP-4F)を製造した。このとき、フィルム基材の厚さは100μm、易接着層の膜厚は0.1μmであった。
 得られた易接着層付延伸フィルム基材(RP-4F)の全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性、耐擦傷性およびアンチブロッキング性を測定し、結果を表に示す。また、接着性は実施例9と同様にハードコート膜を形成して評価して評価した。


[実施例11]
 帯電防止膜形成用の塗布液(AS-11P)の調製
 Sbドープ酸化錫(ATO)微粒子(日揮触媒化成(株)製:ELCOM TL-30HK、Sb25含有量16重量%、平均粒子径8nm)60gを濃度4.3重量%の水酸化カリウム水溶液140gに分散させ、分散液を30℃に保持しながらサンドミルで3時間粉砕してゾルを調製した。
 次に、このゾルをイオン交換樹脂でpHが3.0になるまで脱アルカリイオン処理を行い、ついで、純水を加えて固形分濃度20重量%のSbド-プ酸化錫微粒子分散液(AS-11V)を調製した。このATO微粒子分散液のpHは3.3であった。また、平均粒子径は8nmであった。
 次いで、濃度20重量%のATO微粒子分散液(AS-11V)100gを25℃に調整し、シランカップリング剤(メチルトリメトキシシラン)(信越化学(株)製:KBM-13)1.0gを3分で添加した後、30分攪拌を行った。その後エタノ-ル100gを1分かけて添加し、50℃に30分間で昇温、15時間過熱処理を行った。このときの固形分濃度は10重量%であった。
 次いで限外濾過膜にて分散媒を水、エタノ-ル混合溶媒から水に置換し、固形分濃度30重量%の表面処理したATO微粒子水分散液(AS-11VS)を調製した。このときアルカリ金属の濃度は、100ppmであった。
 ついで、表面処理したATO微粒子水分散液(AS-11VS)5.0gにポリウレタン樹脂エマルジョン(第一工業製薬社(株)製:スーパーフレックス210、樹脂濃度35重量%、粒子径:50nm、分散媒:水)38.6g、イソプロピルアルコール6.4gを混合して、固形分濃度30.0重量%の帯電防止膜形成用の塗布液(AS-11P)を調製した。

 帯電防止膜付延伸フィルム基材(AS-11F)の製造
 実施例1と同様にして調製したポリエステル樹脂フィルム(1)を縦軸延伸(140℃、2.5倍延伸)した後、帯電防止膜形成用の塗布液(AS-11P)をバーコーター法(バー#42)で塗布し、140℃で120秒間乾燥した後、横軸延伸(140℃、4.5倍延伸)して帯電防止膜付延伸フィルム基材(AS-11F)を製造した。このとき、フィルム基材の厚さは100μm、帯電防止膜の膜厚は3μmであった。
 得られた帯電防止膜付延伸フィルム基材(AS-11F)の全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性、耐擦傷性および表面抵抗値を測定し、結果を表に示す。なお、表面抵抗値は表面抵抗計(三菱化学(株)製:ハイレスタ)にて測定した。


[比較例5]
 帯電防止膜形成用の塗布液(RAS-5P)の調製
 ポリウレタン樹脂エマルジョン(第一工業製薬社(株)製:スーパーフレックス210、樹脂濃度35重量%、粒子径:50nm、分散媒:水)38.0g、イソプロピルアルコール170.4g、メチルイソブチルケトン18.0g、イソプロピルグリコール17.0gを混合し、エマルジョン希釈液を調合した。
 エマルジョン希釈液について観察した結果、目視で透明になり、また、粒子径が測定できなくなったことから樹脂エマルジョンは消失していたと推察される。
 ついで、実施例10と同様にして調製した固形分濃度30重量%の表面処理したATO微粒子水分散液(AS-11VS)4.9gを添加し、固形分濃度5.9重量%の帯電防止膜形成用の塗布液(RAS-5P)を調製した。

 帯電防止膜付延伸フィルム基材(RAS-5F)の製造
 実施例1と同様にして調製したポリエステル樹脂フィルム(1)を縦軸延伸(140℃、2.5倍延伸)した後、帯電防止膜形成用の塗布液(RAS-5P)をバーコーター法(バー#48)で塗布し、140℃で120秒間乾燥した後、横軸延伸(140℃、4.5倍延伸)して帯電防止膜付延伸フィルム基材(RAS-5F)を製造した。このとき、フィルム基材の厚さは100μm、帯電防止膜の膜厚は3.1μmであった。
 得られた帯電防止膜付延伸フィルム基材(RAS-5F)の全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性、耐擦傷性および表面抵抗値を測定し、結果を表に示す。


[実施例12]
 断熱性膜形成用の塗布液(HI-12P)の調製
 中空シリカオルガノゾル(日揮触媒化成(株)製:スルーリア4110、固形分濃度:20.5%、平均粒子径60nm、分散媒:イソプロピルアルコール)98.0gにポリウレタン樹脂エマルジョン(第一工業製薬社(株)製:スーパーフレックス210、樹脂濃度35重量%、粒子径:50nm、分散媒:水)24.0gを混合した後、ロータリーエバポレーターで溶剤を除去し、固形分濃度50.0重量%の断熱性膜形成用の塗布液(HI-12P)を調製した。このときアルカリ金属の濃度は、5ppmであった。

 断熱性膜付延伸フィルム基材(HI-12F)の製造
 実施例1と同様にして調製したポリエステル樹脂フィルム(1)を縦軸延伸(140℃、2.5倍延伸)した後、断熱性膜形成用の塗布液(HI-12P)をスプレー法で45μm塗布し、140℃で120秒間乾燥した後、横軸延伸(140℃、1.5倍延伸)して断熱膜付延伸フィルム基材(HI-12F)を製造した。このとき、フィルム基材の厚さは300μm、断熱性膜の膜厚は30μmであった。
 得られた断熱性膜付延伸フィルム基材(HI-12F)の全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性、耐擦傷性及び熱伝導度を測定し、結果を表に示す。なお、熱伝導度は以下の方法によって測定した。
熱伝導度の測定
 断熱性膜付延伸フィルム基材(HI-12F)について、熱線プローブ式熱伝導率測定装置(京都電子製:QTM-500)を用いて熱伝導率の測定を行った。


[比較例6]
 断熱性膜形成用の塗布液(RHI-6P)の調製
 ポリウレタン樹脂エマルジョン(第一工業製薬社(株)製:スーパーフレックス210、樹脂濃度35重量%、粒子径:50nm、分散媒:水)38.0g、イソプロピルアルコール50.2g、メチルイソブチルケトン18.0g、イソプロピルグリコール17.0gを混合し、エマルジョン希釈液を調合した。
 エマルジョン希釈液について観察した結果、目視で透明になり、また、粒子径が測定できなくなったことから樹脂エマルジョンは消失していたと推察される。
 ついで、中空シリカオルガノゾル(日揮触媒化成(株)製:スルーリア4110、固形分濃度:20.5%、平均粒子径60nm、分散媒:イソプロピルアルコール)151.2gを添加し、断熱性膜形成用の塗布液(RHI-6P)を調製した。

 断熱性膜付延伸フィルム基材(RHI-6F)の製造
 実施例1と同様にして調製したポリエステル樹脂フィルム(1)を縦軸延伸(140℃、2.5倍延伸)した後、断熱性膜形成用の塗布液(RHI-6P)をスプレー法で45μm塗布し、140℃で120秒間乾燥した後、横軸延伸(140℃、1.5倍延伸)して断熱膜付延伸フィルム基材(RHI-6F)を製造した。このとき、フィルム基材の厚さは300μm、断熱性膜の膜厚は30μmであった。
 得られた断熱性膜付延伸フィルム基材(RHI-6F)の全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性、耐擦傷性及び熱伝導度を測定し、結果を表に示す。


[実施例13]
 シリカ中空微粒子(AR-13VS)分散液の調製
 シリカ・アルミナゾル(日揮触媒化成(株)製:USBB-120、平均粒子径25nm、SiO2・Al23濃度20重量%、固形分中Al23含有量27重量%)100gに純水3900gを加えて98℃に加温し、この温度を保持しながら、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液1750gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液1750gを6時間で添加して、SiO2・Al23一次粒子分散液を得た。このときの反応液のpHは11.8、固形分濃度0.7%であった。また、平均粒子径は40nmであった。ついで、SiO2として濃度1.5重量%の珪酸ナトリウム水溶液1530gとAl23としての濃度0.5重量%のアルミン酸ナトリウム水溶液500gを6時間で添加して、固形分濃度0.8重量%のシリカ・アルミナ被覆複合酸化物粒子分散液9,500gを得た。また、平均粒子径は60nmであった。
ついで、限外濾過膜で洗浄して固形分濃度13重量%になったシリカ・アルミナ複合酸化物微粒子(1)の分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ微粒子(1)の水分散液を得た。
 ついで、シリカ微粒子(1)の水分散液150gと、純水500g、エタノール1,750gおよび濃度28重量%のアンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO2濃度28重量%)80gを添加してシリカ被覆層を形成し、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ被覆層を形成したシリカ系中空微粒子の水分散液を得た。
 つぎに、シリカ被覆層を形成したシリカ中空微粒子分散液にアンモニア水を添加して分散液のpHを10.5に調整し、ついで150℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ中空微粒子(13T)の水分散液を得た。
 ついで、再び、シリカ中空微粒子(13T)分散液を150℃にて11時間水熱処理した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、ついで、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらに陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ中空微粒子(AR-13V)の水分散液を得た。
 限外濾過膜を用いて分散媒をエタノールに置換した固形分濃度20重量%のシリカ中空微粒子(AR-13V)のアルコール分散液を調製した。
 固形分濃度20重量%のシリカ中空微粒子(AR-13V)のアルコール分散液100gにメチルシランカップリング剤(メチルトリメトキシシラン)(信越化学(株)製:KBM-13)2gを添加し、50℃で加熱処理を行い、固形分濃度20重量%の表面処理シリカ系中空微粒子(AR-13VS)のアルコール分散液を調製した。ロータリーエバポレーターを用いて分散媒を水に置換して、固形分濃度20重量%の表面処理シリカ中空微粒子(AR-13VS)の水分散液を調製した。このとき、アルカリ金属の濃度は、5ppmであった。

 反射防止膜形成用の塗布液(AR-13P)の調製
 固形分濃度20重量%の表面処理シリカ中空微粒子(AR-13VS)の水分散液10.0gにポリウレタン樹脂エマルジョン(第一工業製薬社(株)製:スーパーフレックス210、樹脂濃度35重量%、粒子径:50nm、分散媒:水)3.8g、純水18g、イソプロピルアルコール1.53gを混合して、固形分濃度10.0重量%の反射防止膜形成用の塗布液(AR-13P)を調製した。

 反射防止膜付延伸フィルム基材(AR-1)の製造
 実施例1と同様にして調製したポリエステル樹脂フィルム(1)を縦軸延伸(140℃、2.5倍延伸)した後、反射防止膜形成用の塗布液(AR-13P)をバーコーター法(バー#4)で塗布し、140℃で120秒間乾燥した後、横軸延伸(140℃、4.5倍延伸)して反射防止膜付延伸フィルム基材(AR-13F)を製造した。このとき、フィルム基材の厚さは100μm、反射防止膜の膜厚は100nmであった。
 得られた反射防止膜付延伸フィルム基材(AR-13F)の全光線透過率、ヘーズ、反射率、膜の屈折率、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性および耐擦傷性を測定し、結果を表に示す。

 
[比較例7]
 反射防止膜形成用の塗布液(RAR-7P)の調製
 ポリウレタン樹脂エマルジョン(第一工業製薬社(株)製:スーパーフレックス210、樹脂濃度35重量%、粒子径:50nm、分散媒:水)3.8g、イソプロピルアルコール17.4g、メチルイソブチルケトン1.8g、イソプロピルグリコール1.7gを混合し、エマルジョン希釈液を調合した。
 エマルジョン希釈液について観察した結果、目視で透明になり、また、粒子径が測定できなくなったことから樹脂エマルジョンは消失していたと推察される。
 ついで、実施例13と同様にして調製した表面処理したシリカ中空微粒子AR-13VS)の水分散液10.0gを添加し、反射防止膜形成用の塗布液(RAR-7P)を調製した。

 反射防止膜付延伸フィルム基材(RAR-7F)の製造
 実施例1と同様にして調製した基材用ポリエステル樹脂フィルム(1)を、縦軸方向に2.5倍となるように、140℃で加温下、延伸を行った後、反射防止膜形成用の塗布液(RAR-1P)をバーコーター法(バー#18)で塗布し、ついで、140℃で120秒間乾燥した後、横軸方向に4.5倍となるように140℃で加温下延伸して反射防止膜付延伸フィルム基材(RAR-1F)を製造した。このとき、基材の厚さは100μm、反射防止膜の膜厚は100nmであった。
 得られた反射防止膜付延伸フィルム基材(RAR-1F)の全光線透過率、ヘーズ、反射率、膜の屈折率、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性および耐擦傷性を表に示す。
[実施例14](中空シリカのポリマー分散剤の使用)
 実施例13と同様の固形分濃度20重量%のシリカ中空微粒子(AR-13V)のアルコール分散液100gにポリアクリル酸分散剤(東亜合成(株)製:アロンSD-10)2gを添加し、50℃で加熱処理を行い、固形分濃度20重量%のシリカ中空微粒子(AR-2)のアルコール分散液を調製した。ロータリーエバポレーターを用いて分散媒を水に置換して、固形分濃度20重量%の表面処理シリカ中空微粒子(AR-14VS)の水分散液を調製した。このとき、pHは9.0であった。このときアルカリ金属の濃度は5ppmであった。

 反射防止膜形成用の塗布液(AR-14P)の調製
 固形分濃度20重量%の表面処理シリカ中空微粒子(AR-14VS)の水分散液10.0gにポリウレタン樹脂エマルジョン(第一工業製薬社(株)製:スーパーフレックス210、樹脂濃度35重量%、粒子径:50nm、分散媒:水)3.8g、純水18g、イソプロピルアルコール1.53gを混合して、固形分濃度10.0重量%の反射防止膜形成用の塗布液(AR-14P)を調製した。

 反射防止膜付延伸フィルム基材(AR-14F)の製造
 実施例1と同様にして調製したポリエステル樹脂フィルム(1)を縦軸延伸(140℃、2.5倍延伸)した後、反射防止膜形成用の塗布液(AR-14P)をバーコーター法(バー#4)で塗布し、140℃で120秒間乾燥した後、横軸延伸(140℃、4.5倍延伸)して反射防止膜付延伸フィルム基材(AR-14F)を製造した。このとき、フィルム基材の厚さは100μm、反射防止膜の膜厚は100nmであった。
 得られた反射防止膜付延伸フィルム基材(AR-14F)の全光線透過率、ヘーズ、反射率、膜の屈折率、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性および耐擦傷性を測定し、結果を表に示す。


[比較例8]ポリマー分散剤過多
 反射防止膜形成用の塗布液(RAR-8P)の調製
 実施例14で、ポリアクリル酸分散剤80gを添加した以外は実施例14と同様にして調製した表面処理したシリカ中空微粒子(RAR-8VS)の水分散液10.0gを添加し、反射防止膜形成用の塗布液(RAR-8P)を調製した。

 反射防止膜付延伸フィルム基材(RAR-8F)の製造
 実施例1と同様にして調製した基材用ポリエステル樹脂フィルム(1)を、縦軸方向に2.5倍となるように、140℃で加温下、延伸を行った後、反射防止膜形成用の塗布液((RAR-8P)をバーコーター法(バー#18)で塗布し、ついで、140℃で120秒間乾燥した後、横軸方向に4.5倍となるように140℃で加温下延伸して反射防止膜付延伸フィルム基材(RAR-8F)を製造した。このとき、基材の厚さは100μm、反射防止膜の膜厚は100nmであった。
 得られた反射防止膜付延伸フィルム基材(RAR-8F)の全光線透過率、ヘーズ、反射率、膜の屈折率、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性および耐擦傷性を表に示す。


[比較例9]ポリマー系分散剤過少
 反射防止膜形成用の塗布液(RAR-9P)の調製
 実施例14で、ポリアクリル酸分散剤0.1gを添加した以外は実施例14と同様にして調製した表面処理したシリカ中空微粒子(RAR-9VS)の水分散液10.0gを添加し、反射防止膜形成用の塗布液(RAR-9P)を調製した。

 反射防止膜付延伸フィルム基材(RAR-9F)の製造
 実施例1と同様にして調製した基材用ポリエステル樹脂フィルム(1)を、縦軸方向に2.5倍となるように、140℃で加温下、延伸を行った後、反射防止膜形成用の塗布液(RAR-9P)をバーコーター法(バー#18)で塗布し、ついで、140℃で120秒間乾燥した後、横軸方向に4.5倍となるように140℃で加温下延伸して反射防止膜付延伸フィルム基材(RAR-9F)を製造した。このとき、基材の厚さは100μm、反射防止膜の膜厚は100nmであった。
 得られた反射防止膜付延伸フィルム基材(RAR-9F)の全光線透過率、ヘーズ、反射率、膜の屈折率、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性および耐擦傷性を表に示す。


[実施例15]
 チタニア微粒子(T-15VS)分散液の調製
 チタニアオルガノゾル(日揮触媒化成(株)製:オプトレイク1130Z(S-25・A8)、固形分濃度:30%、平均粒子径20nm、分散媒:メチルアルコール)100.0gにメチルシランカップリング剤(メチルトリメトキシシラン)(信越化学(株)製:KBM-13)3gを添加し、50℃で加熱処理を行い、再び限外濾過膜を用いて分散媒をエタノールに置換した固形分濃度20重量%の表面処理チタニア微粒子のアルコール分散液を調製した。ロータリーエバポレーターを用いて分散媒を水に置換したのち、イオン交換樹脂でpHが3.0になるまで脱アルカリイオン処理を行い、ついで、純水を加えて固形分濃度20重量%の表面処理チタニア微粒子(T-15VS)の水分散液を調製した。このときアルカリ金属の濃度は、50ppmであった。

 易接着層形成用の塗布液(T-15P)の調製
 シリカオルガノゾル(日揮触媒化成(株)製:ELCOM V-8901、平均粒子径120nm、SiO2濃度20重量%、分散媒:メタノール)1.4gに、表面処理チタニア微粒子(T-15VS)33.2gと、ポリウレタン樹脂エマルジョン(第一工業製薬社(株)製:スーパーフレックス210、樹脂濃度35重量%、エマルジョン直径:50nm、分散媒:水)88.5g、イソプロピルアルコール10.1gを混合して固形分濃度10重量%の易接着層形成用の塗布液(T-15P)を調製した。

 易接着層付延伸フィルム基材(T-15F)の製造
 実施例1と同様にして調製した基材用ポリエステル樹脂フィルム(1)を縦軸延伸(140℃、2.5倍延伸)した後、易接着層形成用の塗布液(T-15P)をバーコーター法(バー#6)で塗布し、140℃で120秒間乾燥した後、横軸延伸(140℃、4.5倍延伸)して易接着層付延伸フィルム基材(T-15F)を製造した。このとき、フィルム基材の厚さは100μm、易接着層の膜厚は0.6μmであった。
 得られた易接着層付延伸フィルム基材(T-15F)の全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性、耐擦傷性、アンチブロッキング性および接着性を測定し、また、干渉縞の観察を行い、結果を表に示す。


[比較例10]
 易接着層形成用の塗布液(RT-10P)の調製
 ポリウレタン樹脂エマルジョン(第一工業製薬社(株)製:スーパーフレックス210、樹脂濃度35重量%、粒子径:50nm、分散媒:水)38.0g、イソプロピルアルコール170.4g、メチルイソブチルケトン18.0g、イソプロピルグリコール17.0gを混合し、エマルジョン希釈液を調合した。
 エマルジョン希釈液について観察した結果、目視で透明になり、また、粒子径が測定できなくなったことから樹脂エマルジョンは消失していたと推察される。
 ついで、シリカオルガノゾル(日揮触媒化成(株)製:ELCOM V-8901、平均粒子径120nm、SiO2濃度20重量%、分散媒:メタノール)0.6g、表面処理チタニア微粒子(T-15VS)14.3gを添加し、固形分濃7.4重量%の易接着層形成用の塗布液(RT-10P)を調製した。

 易接着層付延伸フィルム基材(RT-10F)の製造
 実施例1と同様にして調製した基材用ポリエステル樹脂フィルム(1)について、縦軸延伸(140℃、2.5倍延伸)を行った後、易接着層形成用の塗布液(RT-10P)をバーコーター法(バー#40)で塗布し、140℃で120秒間乾燥した後、横軸延伸(140℃、4.5倍延伸)して易接着層付延伸フィルム基材(RT-10F)を製造した。このとき、フィルム基材の厚さは100μm、易接着層の膜厚は0.6μmであった。
 得られた易接着層付延伸フィルム基材(RT-10F)の全光線透過率、ヘーズ、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性、耐擦傷性、アンチブロッキング性および接着性を測定し、また、干渉縞の観察を行い、結果を表に示す。
[比較例11]
チタニア微粒子((RT-11VS)分散液の調製
 実施例15で、イオン交換樹脂を添加しなかった以外は実施例15と同様にして調製した表面処理チタニア微粒子(RT-11VS)の水分散液を調製した。このときアルカリ金属の濃度は、1500ppmであった。

易接着層形成用の塗布液(RT-11P)の調製
 表面処理チタニア微粒子(RT-11VS)の水分散液10.0gを添加し、反射防止膜形成用の塗布液(RT-11P)を調製した。

 易接着層付延伸フィルム基材(RT-11F)の製造
 実施例1と同様にして調製した基材用ポリエステル樹脂フィルム(1)を、縦軸方向に2.5倍となるように、140℃で加温下、延伸を行った後、反射防止膜形成用の塗布液(RT-11P)をバーコーター法(バー#18)で塗布し、ついで、140℃で120秒間乾燥した後、横軸方向に4.5倍となるように140℃で加温下延伸して反射防止膜付延伸フィルム基材(RT-11F)を製造した。このとき、基材の厚さは100μm、反射防止膜の膜厚は100nmであった。
 得られた反射防止膜付延伸フィルム基材(RT-11F)の全光線透過率、ヘーズ、反射率、膜の屈折率、密着性、鉛筆硬度、スポット、膜ムラ(海島)、クラックの有無、膜表面の平坦性および耐擦傷性を表に示す。

 上述した実施例や比較例では、式(1)で表される有機珪素化合物としてメチルトリメトキシシランを使用したが、この他にも、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシシラン、テトラブトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、イソブチルトリエトキシシラン、へキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3-トリフルオロプロピルトリメトキシシラン、メチル-3,3,3-トリフルオロプロピルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-(β-グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、γ-ウレイドイソプロピルプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、γ-イソシアネートプロルトリエトキシシラン、γ-ウレイドプロピルトリエトキシシラン等が挙げられる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (12)

  1.  無機酸化物微粒子と樹脂エマルジョンが、水と有機溶媒の少なくとも一つを含む分散媒に分散した塗布液であって、
     前記塗布液の全固形分濃度が0.03~70重量%であり、前記無機酸化物微粒子の濃度(CP)が固形分として0.0009~56重量%の範囲であり、前記樹脂エマルジョンの濃度(CR)が固形分として0.006~68重量%の範囲であり、
     前記無機酸化物微粒子に含まれるアルカリ金属の固形分濃度の合計が、酸化物(Me2O、Me=Li、Na、K)として1000ppm以下であることを特徴とする透明被膜形成用の塗布液。
  2.  前記無機酸化物微粒子が、有機珪素化合物とポリマー分散剤の少なくとも一つで表面処理されており、
     前記有機珪素化合物が、前記無機酸化物微粒子に対して、固形分としてRn-SiX(4n)/2として1~100重量%の範囲で、
     前記ポリマー分散剤が、前記無機酸化物微粒子に対して、固形分として1~300重量%の範囲で、
    存在することを特徴とする請求項1に記載の透明被膜形成用の塗布液。
  3.  前記無機酸化物微粒子が、単分散の無機酸化物微粒子(A)と、一次粒子径が3~30個鎖状に連結した鎖状の無機酸化物微粒子(B)の少なくとも一方であり、
     前記無機酸化物微粒子(A)の平均粒子径(DPA)が3≦DPA≦100nmの範囲にあって、
     前記無機酸化物微粒子(B)の平均一次粒子径(DPB)が3≦DPB≦50nmの範囲にあることを特徴とする請求項1または2に記載の透明被膜形成用の塗布液。
  4.  さらに、平均粒子径(DPC)が100<DPC≦500nmの無機酸化物微粒子(C)を含み、前記無機酸化物微粒子(C)の濃度(CPC)が固形分として0.000003~5重量%の範囲にあることを特徴とする請求項3に記載の透明被膜形成用の塗布液。
  5.  前記無機酸化物微粒子が、TiO2、ZrO2、SiO2、Sb25、ZnO2、SnO2、In23、アンチモンドープ酸化錫(ATO)、錫ドープ酸化インジウム(ITO)、Fドープ酸化錫(FTO)、リンドープ酸化錫(PTO)、アルミニウムドープ酸化亜鉛(AZO)から選ばれる少なくとも1種またはこれらの複合酸化物または混合物であることを特徴とする請求項1~4に記載の透明被膜形成用の塗布液。
  6.  前記樹脂エマルジョンの樹脂がエポキシ樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーン樹脂、ポリウレタン樹脂、メラミン樹脂、ブチラール樹脂、フェノール樹脂、不飽和ポリエステル樹脂、アクリル樹脂、または、これら樹脂の2種以上の共重合体や変性体から選ばれる少なくとも1種あることを特徴とする請求項1~5のいずれかに記載の透明被膜形成用の塗布液。
  7.  前記樹脂エマルジョンの平均直径が10~500nmの範囲にあることを特徴とする請求項1~6のいずれかに記載の透明被膜形成用の塗布液。
  8.  前記無機酸化物微粒子の濃度(CP)と樹脂エマルジョンの濃度(CR)の比(CP/CR)が0.03~4の範囲にあることを特徴とする請求項1~7のいずれかに記載の透明被膜形成用の塗布液。
  9.  下記の工程(a)~(d)を順に行うことを特徴とする透明被膜付基材の製造方法。
    (a)基材上に請求項1~8のいずれかに記載の透明被膜形成用塗布液を塗布する工程
    (b)塗膜付基材を二軸(縦軸および横軸)延伸する工程
    (c)前記塗膜に含まれる分散媒を除去(乾燥)する工程
    (d)前記塗膜を硬化する工程
  10.  下記の工程(a’)~(d)を順に行うことを特徴とする透明被膜付基材の製造方法。
    (a’)縦軸延伸した基材上に請求項1~8のいずれかに記載の透明被膜形成用塗布液を塗布する工程
    (b’)塗膜付基材を横軸延伸する工程
    (c)前記塗膜に含まれる分散媒を除去(乾燥)する工程
    (d)前記塗膜を硬化する工程
  11.  下記の工程(a’’)~(d)を順に行うことを特徴とする透明被膜付基材の製造方法。
    (a’’)基材上に、基材を縦軸延伸しながら請求項1~8のいずれかに記載の透明被膜形成用塗布液を塗布する工程
    (b’’)塗膜付基材を横軸延伸する工程
    (c)前記塗膜に含まれる分散媒を除去(乾燥)する工程
    (d)前記塗膜を硬化する工程
  12.  下記の工程(a’’’)~(d)を順に行うことを特徴とする透明被膜付基材の製造方法。
    (a’’’)基材上に、基材を二軸(縦軸および横軸)しながら請求項1~8のいずれかに記載の透明被膜形成用塗布液を塗布する工程
    (c)前記塗膜に含まれる分散媒を除去(乾燥)する工程
    (d)前記塗膜を硬化する工程
PCT/JP2015/053811 2014-02-14 2015-02-12 透明被膜形成用の塗布液および透明被膜付基材の製造方法 WO2015122453A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167021358A KR102245165B1 (ko) 2014-02-14 2015-02-12 투명 피막 형성용 도포액 및 투명 피막 부착 기재의 제조방법
CN201580008556.8A CN106029798B (zh) 2014-02-14 2015-02-12 用于形成透明被膜的涂布液以及具有透明被膜的基材的制造方法
JP2015562851A JP6470695B2 (ja) 2014-02-14 2015-02-12 透明被膜形成用の塗布液および透明被膜付基材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-026422 2014-02-14
JP2014026422 2014-02-14

Publications (1)

Publication Number Publication Date
WO2015122453A1 true WO2015122453A1 (ja) 2015-08-20

Family

ID=53800194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053811 WO2015122453A1 (ja) 2014-02-14 2015-02-12 透明被膜形成用の塗布液および透明被膜付基材の製造方法

Country Status (5)

Country Link
JP (1) JP6470695B2 (ja)
KR (1) KR102245165B1 (ja)
CN (1) CN106029798B (ja)
TW (1) TWI645000B (ja)
WO (1) WO2015122453A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177683A (ja) * 2016-03-31 2017-10-05 日揮触媒化成株式会社 撥水性被膜付基材およびその製造方法
CN115260821A (zh) * 2022-07-19 2022-11-01 广州大学 一种具有微结构的透明隔热涂层及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107987701B (zh) * 2017-12-13 2020-04-03 吉林大学 一种铝掺杂氧化锌纳米粒子温敏材料涂层、制备方法及其应用
US11819824B2 (en) * 2020-08-07 2023-11-21 Pure-Light Technologies, Inc. Surface coatings for self-decontamination

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009132A1 (ja) * 2004-07-21 2006-01-26 Catalysts & Chemicals Industries Co., Ltd. シリカ系微粒子、その製造方法、被膜形成用塗料および被膜付基材
JP2009108123A (ja) * 2007-10-26 2009-05-21 Jgc Catalysts & Chemicals Ltd 表面処理金属酸化物粒子の製造方法、該微粒子を含む透明被膜形成用塗布液および透明被膜付基材
JP2012140520A (ja) * 2010-12-28 2012-07-26 Jgc Catalysts & Chemicals Ltd 塗料組成物
JP2013227520A (ja) * 2012-03-30 2013-11-07 Dai Ichi Kogyo Seiyaku Co Ltd プライマー組成物および積層体

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3761189B2 (ja) 1993-11-04 2006-03-29 触媒化成工業株式会社 複合酸化物ゾル、その製造方法および基材
JP4004678B2 (ja) * 1999-03-30 2007-11-07 株式会社クラレ 複合樹脂エマルジヨンの製造方法
JP2003105268A (ja) 2001-09-28 2003-04-09 Catalysts & Chem Ind Co Ltd 透明被膜形成用塗布液および透明導電性被膜付基材、表示装置
JP4979876B2 (ja) 2002-05-31 2012-07-18 日揮触媒化成株式会社 ハードコート膜付基材
JP4592274B2 (ja) 2003-10-17 2010-12-01 日揮触媒化成株式会社 酸化アンチモン被覆シリカ系微粒子、該微粒子の製造方法および該微粒子を含む被膜付基材
JP4439876B2 (ja) 2003-11-06 2010-03-24 日揮触媒化成株式会社 鎖状酸化アンチモン微粒子、該微粒子分散液の製造方法および用途
DE102004049609A1 (de) * 2004-10-12 2006-04-13 Mitsubishi Polyester Film Gmbh Polyesterfolie mit hydrophiler Beschichtung, Verfahren zu ihrer Herstellung und ihre Verwendung
JP2007268928A (ja) * 2006-03-31 2007-10-18 Mitsubishi Paper Mills Ltd インクジェット記録媒体
JP5209855B2 (ja) 2006-05-31 2013-06-12 日揮触媒化成株式会社 透明被膜形成用塗料および透明被膜付基材
JP5148846B2 (ja) 2006-07-13 2013-02-20 日揮触媒化成株式会社 透明被膜形成用塗料および透明被膜付基材
JP2008053371A (ja) * 2006-08-23 2008-03-06 Fujifilm Corp 半導体デバイスの研磨方法
JP5378771B2 (ja) 2008-11-28 2013-12-25 日揮触媒化成株式会社 反射防止膜付基材および反射防止膜形成用塗布液
CN101497687B (zh) * 2009-01-16 2013-10-30 海聚高分子材料科技(广州)有限公司 一种抗刮伤和湿态附着力高的水性聚氨酯分散体及其应用
JP2010235676A (ja) * 2009-03-30 2010-10-21 Asahi Kasei E-Materials Corp ハードコート用コーティング組成物
JP2012101491A (ja) * 2010-11-11 2012-05-31 Seiko Epson Corp インクジェット記録方法及び記録物
JP2013010880A (ja) * 2011-06-30 2013-01-17 Mitsubishi Plastics Inc 離型フィルム
JP2013237835A (ja) * 2012-04-20 2013-11-28 Jsr Corp 活性化エネルギー硬化性水性エマルジョン組成物およびその製造方法、硬化被膜形成方法並びにハードコート形成剤
ES2768232T3 (es) * 2012-07-06 2020-06-22 Akzo Nobel Coatings Int Bv Método para producir una dispersión de nanocompuestos que comprenden partículas de compuestos de nanopartículas inorgánicas y polímeros orgánicos

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009132A1 (ja) * 2004-07-21 2006-01-26 Catalysts & Chemicals Industries Co., Ltd. シリカ系微粒子、その製造方法、被膜形成用塗料および被膜付基材
JP2009108123A (ja) * 2007-10-26 2009-05-21 Jgc Catalysts & Chemicals Ltd 表面処理金属酸化物粒子の製造方法、該微粒子を含む透明被膜形成用塗布液および透明被膜付基材
JP2012140520A (ja) * 2010-12-28 2012-07-26 Jgc Catalysts & Chemicals Ltd 塗料組成物
JP2013227520A (ja) * 2012-03-30 2013-11-07 Dai Ichi Kogyo Seiyaku Co Ltd プライマー組成物および積層体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177683A (ja) * 2016-03-31 2017-10-05 日揮触媒化成株式会社 撥水性被膜付基材およびその製造方法
CN115260821A (zh) * 2022-07-19 2022-11-01 广州大学 一种具有微结构的透明隔热涂层及其制备方法和应用

Also Published As

Publication number Publication date
KR20160121522A (ko) 2016-10-19
TW201534670A (zh) 2015-09-16
TWI645000B (zh) 2018-12-21
CN106029798B (zh) 2019-06-07
JPWO2015122453A1 (ja) 2017-03-30
JP6470695B2 (ja) 2019-02-13
CN106029798A (zh) 2016-10-12
KR102245165B1 (ko) 2021-04-26

Similar Documents

Publication Publication Date Title
JP5064649B2 (ja) 反射防止積層体
JP5558414B2 (ja) 反射防止積層体の製造方法
JP5757673B2 (ja) 透明被膜付基材および透明被膜形成用塗料
JP5526468B2 (ja) 反射防止積層体
JP5378771B2 (ja) 反射防止膜付基材および反射防止膜形成用塗布液
JP5209855B2 (ja) 透明被膜形成用塗料および透明被膜付基材
JP4905822B2 (ja) コーティング組成物、その塗膜、反射防止膜、及び画像表示装置
JP2008291174A (ja) 透明被膜形成用塗料および透明被膜付基材
US20070287009A1 (en) Polarizing Plate Protective Film, Reflection Preventive Polarizing Plate and Optical Product
JP5546239B2 (ja) ハードコート膜付基材およびハードコート膜形成用塗布液
JP6016548B2 (ja) 透明被膜形成用塗布液および透明被膜付基材
JPWO2007046357A1 (ja) ハードコート層形成用組成物および光学レンズ
JP2008163205A (ja) 透明被膜形成用塗料および透明被膜付基材
JP6470695B2 (ja) 透明被膜形成用の塗布液および透明被膜付基材の製造方法
JP5148846B2 (ja) 透明被膜形成用塗料および透明被膜付基材
JP6895760B2 (ja) シリカ系粒子分散液の製造方法、シリカ系粒子分散液、透明被膜形成用塗布液及び透明被膜付基材
JP2009066965A (ja) 透明被膜付基材および透明被膜形成用塗料
JP5480743B2 (ja) 透明被膜付基材および透明被膜形成用塗料
JP5877708B2 (ja) ハードコート膜付基材および該ハードコート膜形成用塗布液
JP5554904B2 (ja) 透明被膜形成用塗料および透明被膜付基材
JP2008291175A (ja) 透明被膜形成用塗料および透明被膜付基材
JP5159265B2 (ja) 透明被膜付基材および透明被膜形成用塗布液
JP2012236921A (ja) 帯電防止ハードコート塗材及び光学部材
JP2014058683A (ja) 透明被膜形成用塗料の製造方法
JP2013224436A (ja) 表面処理金属酸化物粒子の製造方法、該粒子を含む透明被膜形成用塗布液および透明被膜付基材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562851

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167021358

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15749367

Country of ref document: EP

Kind code of ref document: A1