WO2006004080A1 - 旋回制御装置、旋回制御方法、および建設機械 - Google Patents

旋回制御装置、旋回制御方法、および建設機械 Download PDF

Info

Publication number
WO2006004080A1
WO2006004080A1 PCT/JP2005/012303 JP2005012303W WO2006004080A1 WO 2006004080 A1 WO2006004080 A1 WO 2006004080A1 JP 2005012303 W JP2005012303 W JP 2005012303W WO 2006004080 A1 WO2006004080 A1 WO 2006004080A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
turning
coefficient
engine
setting
Prior art date
Application number
PCT/JP2005/012303
Other languages
English (en)
French (fr)
Inventor
Jun Morinaga
Hiroaki Inoue
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to JP2006528875A priority Critical patent/JP4729494B2/ja
Priority to US11/631,433 priority patent/US7619378B2/en
Priority to DE112005001562.9T priority patent/DE112005001562B4/de
Priority to CN2005800216467A priority patent/CN1977084B/zh
Publication of WO2006004080A1 publication Critical patent/WO2006004080A1/ja
Priority to GB0700217A priority patent/GB2431738B/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto

Definitions

  • the present invention relates to a turning control device, a turning control method, and a construction machine for a turning body that is turned by an electric motor.
  • the swinging motion of the swinging body is performed by an electric motor. Therefore, even if the swinging body is swung simultaneously with the lifting operation of the hydraulically driven boom or arm, the swinging body can be operated evenly. Unaffected by climbing motion. For this reason, compared to a general excavator that hydraulically drives the swivel body, the loss in the control valve can be reduced and the energy efficiency is good.
  • the engine speed is intentionally adjusted by changing the fuel supply amount, in addition to operating the fuel dial, a mode switching switch for switching the work mode is used. It is also done by operating.
  • the work mode includes, for example, an active mode, an economy mode, a breaker mode, and a lift mode in descending order of engine speed, and a mode corresponding to the work at that time is selected.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-11897 Disclosure of the invention
  • An object of the present invention is to provide a turning control device, a turning control method, and a construction machine capable of preventing the operator from feeling uncomfortable even when the turning body is changed to a hydraulic driving force and an electric drive. .
  • the turning control device of the present invention is a turning control device for controlling a turning body that is turned by an electric motor, and is a fuel supply amount that sets a fuel supply amount to an engine that is used together with the electric motor.
  • the engine is switched to the engine.
  • a target speed command generating means provided to change the target speed command value of the swivel body according to at least one of the switching states in the work mode switching means for setting the fuel supply amount! /, It is characterized by that.
  • the turning control method of the present invention is a turning control method for controlling a turning body that is turned by an electric motor, and is a fuel supply amount that sets a fuel supply amount to an engine that is used together with the electric motor.
  • the engine is switched to the engine.
  • Mode to set the fuel supply amount The turning speed of the revolving structure is changed according to at least one of the switching states of the switching means.
  • a construction machine of the present invention includes a revolving structure that revolves with an electric motor, and a revolving control device of the present invention for controlling the revolving structure.
  • the setting state by the fuel supply amount setting means such as the fuel dial
  • the switching state by the work mode switching means such as the mode switching switch
  • the operation amount of the work machine lever Accordingly, a target speed command signal for the electric motor is generated, and thus the turning speed of the rotating body is changed. Therefore, when the engine speed becomes low due to the state of each means, the turning body of the rotating body is changed accordingly.
  • the turning speed is reduced and the engine speed becomes high, the turning speed can be increased, and even when the work implement is operated during turning, the turning speed can be reduced. Accordingly, it is possible to obtain the same operability as when the revolving body is rotated by a normal hydraulic type, and there is no fear of feeling uncomfortable.
  • FIG. 1 is a plan view showing a construction machine according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram for explaining a turning control device mounted on the construction machine according to the first embodiment.
  • FIG. 3 is a block diagram for explaining throttle command generation means of the turning control device according to the first embodiment.
  • FIG. 4 is a diagram showing the relationship between fuel dial settings and engine idle speed in the first embodiment.
  • FIG. 5 is a diagram showing a relationship between a throttle command value and a turning speed coefficient in the first embodiment.
  • FIG. 6 is a diagram showing the relationship between engine speed and engine torque in the first embodiment.
  • FIG. 7 is a diagram showing the relationship between the work machine lever operation amount and the turning speed coefficient in the first embodiment.
  • FIG. 8 is a block diagram for explaining speed coefficient generation means of the turning control device according to the first embodiment.
  • FIG. 9 is a diagram showing a relationship between a turning lever operation amount and a turning speed in the first embodiment.
  • FIG. 10 is a diagram showing the relationship between the time required for turning in the first embodiment, the boom height, and the turning position.
  • FIG. 11 is a diagram for explaining operations with different turning amounts in the first embodiment.
  • FIG. 12 is a flowchart showing a flow of generating a turning speed coefficient in the turning control device according to the first embodiment.
  • FIG. 13 is a block diagram for explaining a turning control device mounted on a construction machine according to a second embodiment of the present invention.
  • FIG. 1 is a plan view showing an electric swing excavator (construction machine) 1 according to the present embodiment
  • FIG. 2 is a block diagram for explaining a control device (turn control device) 50 mounted on the electric swing shovel 1. It is.
  • an electric swing excavator 1 includes a swing body 4 installed on a track frame constituting a lower traveling body 2 via a swing circle 3, and the swing body 4 meshes with the swing cycle 3.
  • the electric motor 5 is turned and driven.
  • the electric power source of the electric motor 5 is a generator mounted on the force rotating body 4 (not shown), and this generator is driven by the engine 12.
  • the revolving body 4 is provided with a boom 6, an arm 7, and a packet 8 that are respectively operated by a hydraulic cylinder (not shown).
  • the hydraulic pressure source of each hydraulic cylinder is a hydraulic pump driven by the engine 12.
  • the electric swivel excavator 1 is a high-speed motor equipped with a hydraulically driven work machine 9 and an electrically driven swivel 4. Brit construction machine.
  • a lever signal corresponding to the tilt angle is transmitted to the control device 50. Is output. Specifically, this lever signal is first input to the speed command generation means 51 of the control device 50, where it is converted into a reference target speed.
  • the reference target speed is generated by a fuel dial (fuel supply amount setting means) 13, a mode switching switch (working mode switching means) 14, a gain switching switch 15, a work implement lever 16 and the like. By multiplying by the speed coefficient, it is changed to the target speed command value of the swing body 4 and output to the inverter (not shown).
  • the turning speed coefficient is for adjusting the magnitude of the target speed command value. For example, when the turning speed coefficient is determined to be a value exceeding “1”, this value and the reference target speed As a result, the target speed command value increases and the rotational speed of the electric motor 5 increases. On the other hand, if the value is determined to be smaller than “1” (however, greater than “0”), the target speed command value force becomes small, and the rotational speed of the electric motor 5 decreases.
  • the inverter compares the fed back actual speed of the electric motor 5 with the target speed command value, and sets a motor torque command value corresponding to the deviation.
  • the torque command value is converted into a current value and a voltage value, and control is performed so that the electric motor 5 is driven at a target speed. Therefore, if the actual speed does not increase even if the swivel lever 10 is tilted greatly, control is performed so that the torque output is increased to approach the target speed.
  • control is speed control by general P (Proportional) control.
  • the control device 50 generates a target speed command value for the swing body 4 based on setting inputs from the swing lever 10, fuel dial 13, mode switching switch 14, gain switching switch 15, work implement lever 16, and the like. To do.
  • the control device 50 includes speed command generating means 51, throttle command generating means 52, work implement lever command generating means 53, gain switching switch command generating means 54, speed coefficient generating means 55, and target speed command generating means 56. ing .
  • the control device 50 also controls the amount of fuel supply (injection) to the engine 12.
  • the speed command generation means 51 first generates a reference target speed of the swing body 4 based on the tilt angle of the swing lever 10.
  • the reference target speed generated here is a value that serves as a base for the target speed command value.
  • the turning speed coefficient force is 1, the reference target speed is output as is to the inverter as the target speed command value. .
  • the throttle command generating means 52 generates a turning speed coefficient corresponding to the set state of the fuel dial 13 and the mode switching switch 14 and outputs it to the speed coefficient generating means 55. That is, the throttle command generating means 52 generates a turning speed coefficient that takes into account the engine speed, which is a change factor of the turning speed of the turning body in the hydraulic excavator. Therefore, as shown in FIG. 3, the throttle command generating means 52 includes a throttle command value generating unit 521, a fuel dial coefficient generating unit 522, a mode switching switch coefficient generating unit 523, and a throttle command coefficient generating unit 524. .
  • the throttle command value generation unit 521 generates a throttle command value according to the setting state of the fuel dial (fuel supply amount setting means) 13 in order to control the fuel supply (injection) amount to the engine 12. To do.
  • the generated throttle command value is output to the governor motor, and is used for rack position control in the fuel injection pump, not shown.
  • the fuel dial 13 can be changed steplessly or gradually from the Li (low idle) side to the Hi (high idle) side, and the fuel dial 13 is rotated to the Hi side.
  • the throttle command value generation unit 521 generates a larger throttle command value, so that a higher idle speed in the engine 12 is set.
  • the throttle command value generation unit 521 generates a smaller throttle command value, so a lower idle speed is set.
  • the fuel dial coefficient generation unit 522 generates a first turning speed coefficient based on the throttle command value generated by the throttle command value generation unit 521.
  • the first turning speed coefficient is generated based on the relationship between the throttle command value and the turning speed coefficient shown in FIG. In other words, when the fuel dial 13 is set to the Hi side and the engine speed is increased, the throttle command value generated by the throttle command value generation unit 521 increases, so the first turning speed coefficient increases. On the other hand, if you set it to the Li side and decrease the engine speed, the throttle finger Since the command value becomes smaller, the first turning speed coefficient becomes smaller.
  • the mode switching switch coefficient generating unit 523 generates a second turning speed coefficient based on the setting mode of the mode switching switch 14 and outputs the second turning speed coefficient to the throttle command coefficient generating unit 524.
  • the value of the turning speed coefficient corresponding to each setting mode is set in advance, and the mode switching switch coefficient generation unit 523 selects the turning speed coefficient according to the setting mode.
  • the mode switching switch 14 is a switch for switching the work mode. For example, the A mode for working at a high engine speed, and the B mode and C mode corresponding to work at a low speed in turn. It can be selected. Specifically, according to the mode switching switch 14, as shown in FIG. 6, when the A mode is selected, the idling speed of the engine 12 is held on the high speed side of A 1, and the B and C modes are selected. Thus, the engine 12 is driven at the idling speed of Bl and C1.
  • Throttle command coefficient generation section 524 uses the first turning speed coefficient generated by fuel dial coefficient generation section 522 and the second turning speed coefficient generated by mode switching switch coefficient generation section 523.
  • the third turning speed coefficient is generated and output to the speed coefficient generating means 55.
  • the throttle command coefficient generation unit 524 multiplies the first turning speed coefficient and the second turning speed coefficient to generate a third turning speed coefficient. Therefore, the third turning speed coefficient is a value that reflects the settings of the fuel dial 13 and the mode switching switch 14.
  • the work implement lever command generation means 53 generates a fourth turning speed coefficient based on the tilt amount of the work implement lever 16 and outputs it to the speed coefficient generation means 55.
  • the fourth turning speed coefficient is generated based on the relationship between the operation amount of the work implement lever 16 and the turning speed coefficient shown in FIG. Therefore, when the operation amount of the work implement lever 16 is large, a smaller turning speed coefficient is generated, and when the operation amount is small, a larger turning speed coefficient is generated.
  • the gain switching switch command generating means 54 generates a fifth turning speed coefficient based on the setting of the gain switching switch 15 and outputs it to the speed coefficient generating means 55.
  • the gain switching switch 15 is a switch for arbitrarily setting the turning speed coefficient regardless of the throttle command value. In this embodiment, for example, the high speed turning, the medium speed turning, the low speed turning, and the very low speed turning. Etc. can be selected. Therefore, high-speed turning is selected with gain selector switch 15.
  • the gain switching switch command generation means 54 calculates a larger turning speed coefficient, and when a low speed turning is selected, calculates a smaller turning speed coefficient.
  • the speed coefficient generating means 55 includes a third turning speed coefficient generated by the throttle command coefficient generating section, a fourth turning speed coefficient generated by the work implement lever command generating means 53, and a gain switching switch 15 A final turning speed coefficient is generated based on the set state of. Therefore, as shown in FIG. 8, the speed coefficient generation means 55 includes a speed coefficient determination unit 551, a speed coefficient selection unit 552, a gain switching state determination unit 553, and a speed coefficient final selection unit 554.
  • the speed coefficient determining unit 551 includes a third turning speed coefficient generated by the throttle command coefficient generating unit 524 of the throttle command generating unit 52 and a fourth turning generated by the work implement lever command generating unit 53. Determine the magnitude relationship with the speed coefficient.
  • the speed coefficient selection unit 552 selects a turning speed coefficient having a smaller value of the third turning speed coefficient and the fourth turning speed coefficient in accordance with the determination result of the speed coefficient determination unit 551.
  • the speed The coefficient selection unit 552 selects a third turning speed coefficient. Therefore, as described later, when the speed coefficient final selection unit 554 selects the value selected by the speed coefficient selection unit 552 as the final turning speed coefficient, the turning speed of the swing body 4 with respect to the turning lever operation amount is It will change according to the characteristics of the 3 turning speed coefficient. That is, the turning speed of the revolving structure 4 with respect to the amount of operation of the turning lever changes according to the settings of the fuel dial 13 and the mode switching switch 14 as shown in FIG.
  • “Hi side” indicates the turning speed when the fuel dial 13 is opened to the maximum Hi side
  • “Li side” indicates the most Li side. It shows the turning speed when it is turned down. Further, the relationship between the turning lever operation amount and the turning speed when the mode switching switch 14 is set in each of modes A to C is shown. In this way, with the same lever operating amount, the turning speed of the revolving structure 4 is maximized when the fuel dial 13 is opened to the most m side, and the turning speed is minimized when the fuel dial 13 is fully throttled to the Li side. Become.
  • the characteristics of the turning speed for each mode of the mode switching switch 14 are set so as to be in the region between them, and the A mode with the higher engine speed has a higher turning speed than the B mode.
  • B The turning speed of the road is higher than that of c mode.
  • the speed coefficient selection unit 552 selects a fourth turning speed coefficient. Therefore, as will be described later, when the speed coefficient final selection unit 554 selects the value selected by the speed coefficient selection unit 552 as the final turning speed coefficient, the turning speed coefficient in this case is as shown in FIG. In addition, regardless of the operation amount of the turning lever 10, the value is determined by the operation amount of the work implement lever 16.
  • gain switching state determination section 553 determines whether or not gain switching switch 15 is set.
  • the speed coefficient final selection unit 554 based on the determination result of the gain switching state determination unit 553, the fifth turning speed coefficient generated by the gain switching switch command generation unit 54 and the turning selected by the speed coefficient selection unit 552.
  • One of the speed coefficients is selected and output as the final turning speed coefficient. That is, when no setting is made by the gain switching switch 15, the speed coefficient final selection unit 554 selects the turning speed coefficient selected by the speed coefficient selection unit 552 as described above.
  • the speed coefficient final selection unit 554 receives the gain switching switch command generation means 54.
  • the generated turning speed coefficient is selected and output as the final turning speed coefficient value. That is, it is possible to adjust the turning speed to high-speed turning, medium-speed turning, constant-speed turning, or extremely constant-speed turning without changing the rotational speed of the engine 12.
  • the power that is in place is a lean movement. Therefore, if the transport vehicle 60 force S is in the position rotated 90 °, select the low-speed turn, and if the transport vehicle 60 is in the position rotated 180 °, select the high-speed turn, and When it is raised to a predetermined loading height (after t seconds), the turning of the turning body 4 is completed so that work without useless movement can be performed.
  • the speed coefficient generation means 55 of the control device 50 generates the turning speed coefficient in a composite manner based on various signals that are input. For this reason, a turning speed coefficient that is finely adjusted according to each setting is generated, and finally, a target speed that is almost the same as a conventional hydraulic excavator and that gives an uncomfortable feeling of operation can be obtained. A command value is generated.
  • the target speed command generation means 56 determines the target speed based on the reference target speed generated by the speed command generation means 51 and the turning speed coefficient generated by the speed coefficient generation means 55. Generate a speed command value. Specifically, the target speed command generation means 56 generates a target speed command value by multiplying the reference target speed and the turning speed coefficient.
  • the throttle command value generation unit 521 of the throttle command generation means 52 reads the setting state of the fuel dial 13 (step 11: the step is simply abbreviated as “S” in the drawings and in the following description). A throttle command value corresponding to the set state is generated (S12).
  • the fuel dial coefficient generation unit 522 generates the throttle generated by the throttle command value generation unit 521. Based on the torque command value, a first turning speed coefficient is generated (S13).
  • the mode switching switch coefficient generation unit 523 reads the setting state of the mode switching switch 14 (S14), and generates a second turning speed coefficient according to the setting state (S15).
  • the throttle command coefficient generation unit 524 multiplies the first turning speed coefficient generated by the fuel dial coefficient generation unit 522 and the second turning speed coefficient generated by the mode switching switch coefficient generation unit 523, Generate the third turning speed coefficient (S16)
  • work implement lever command generation means 53 reads the operation amount of work implement lever 16 (
  • the speed coefficient determination unit 551 of the speed coefficient generation unit 55 uses the fourth turning speed coefficient generated by the work implement lever command generation unit 53 as the third turning speed coefficient generated by the throttle command coefficient generation unit 524. It is determined whether it is smaller (S19).
  • the speed coefficient selecting unit 552 selects the third turning speed coefficient (S20). On the other hand, when it is determined that the fourth turning speed coefficient is smaller than the third turning speed coefficient, the speed coefficient selecting unit 552 selects the fourth turning speed coefficient (S21).
  • the swing speed coefficient is generated according to the setting state of the fuel dial 13 and the switching state of the mode switching switch 14, and accordingly, Since the turning speed of the revolving structure 4 can be changed, if the engine speed becomes low due to the operation of the fuel dial 13 or the mode switching switch 14, the turning speed of the revolving structure 4 is reduced accordingly. If the engine speed is high, the turning speed can be increased.
  • the turning speed coefficient can be changed according to the switching state of the gain changeover switch 15 and the operation amount of the work implement lever 16, the turning body of the turning body 4 is changed to the rotational speed of the engine 12. Even if it is desired to change it unintentionally, it can be changed arbitrarily by operating the gain switching switch 15, and also when the work implement 9 is operated during turning, the turning speed can be reduced. [0050] Accordingly, it is possible to obtain a riding comfort similar to that when the revolving body 4 is swiveled with a normal hydraulic type, and even if the conventional excavator is switched to the electric swivel excavator 1, there is no need to worry about anything. It has the effect of gana.
  • FIG. 13 shows a second embodiment of the present invention.
  • the target speed command value of the swing body 4 is generated by limiting the upper limit of the reference target speed that is not generated by multiplying the reference target speed and the turning speed coefficient. This is different from the first embodiment.
  • the control device 50 includes a speed command limit value setting means 57. Further, the processing content of the target speed command generation means 56 is different from that of the first embodiment.
  • the speed command limit value setting means 57 converts the turning speed coefficient generated by the speed coefficient generation means 55 into a speed command limit value for the reference target speed.
  • the speed command limit value setting means 57 generates a speed command limit value by multiplying the preset maximum value of the target speed command value and the turning speed coefficient.
  • the target speed command generation means 56 limits the upper limit of the reference target speed generated by the speed command generation means 51 by the speed command limit value generated by the speed command limit value setting means 57, and sets the target speed command value.
  • the gain switching switch 15 is provided so that the turning speed coefficient corresponding to the selection of the high speed turning, the medium speed turning, the low speed turning, and the extremely low speed turning related to the engine speed is generated stepwise.
  • an auxiliary adjustment dial 17 as shown by the two-dot chain line in FIG. 2 is provided, and the turning speed coefficient is continuously changed, so that the turning speed is continuously changed regardless of the engine speed. May be.
  • both the gain switching switch 15 and the auxiliary adjustment dial 17 are provided, and the gain switching switch is provided. Within each speed range selected in H15, the turning speed coefficient may be changed continuously and finely.
  • a force that generates a final turning speed coefficient by multiplying or selecting a plurality of turning speed coefficients is not limited to this, and the object of the present invention can be obtained.
  • it may be an average value.
  • composite generation is performed based on various input signals, but a value based on one type of single signal is selected from a plurality of input signals. Also good.
  • the final target speed command value is changed by multiplying the reference target speed by the turning speed coefficient.
  • a plurality of reference target speeds themselves are set.
  • the target speed command value may be selected selectively.
  • the present invention can be used in a control device for driving a swinging body to rotate with an electric motor.
  • the machine on which such a control device is mounted is not limited to a construction machine. Even if it is a construction machine, it has a swivel body that can be swiveled by an electric motor, so it is not limited to shovels in particular! ,.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 電動旋回ショベルの制御装置50において、燃料ダイヤル13での設定状態や、モード切換スイッチ14での切換状態に応じて旋回速度係数を生成し、これによって目標速度指令値の値を変えて旋回体4の旋回速度を変える。このため、燃料ダイヤル13やモード切換スイッチ14の操作によりエンジン回転数が低回転となった場合には、これに応じて旋回体4の旋回速度を低下させることができ、エンジン回転数が高回転となった場合には、旋回速度を上昇させることができる。従って、通常の油圧式で旋回体4を旋回させる場合と略同様な乗り心地を得ることができ、従来の油圧ショベルから電動旋回ショベルに乗り換えたとしても、何ら違和感を覚える心配がない。

Description

明 細 書
旋回制御装置、旋回制御方法、および建設機械
技術分野
[0001] 本発明は、電動モータによって旋回する旋回体の旋回制御装置、旋回制御方法、 および建設機械に関する。
背景技術
[0002] 近年、旋回体を電動モータで駆動し、作業機や走行体を油圧ァクチユエ一タで駆 動するハイブリットタイプの電動旋回ショベルが開発されている(例えば、特許文献 1 参照)。
このような電動旋回ショベルでは、旋回体の旋回動作が電動モータで行われるため 、油圧駆動されるブームやアームの上昇動作と同時に旋回体を旋回させても、旋回 体の動作がブームやアームの上昇動作に影響されることがない。このため、旋回体を も油圧駆動する一般的な油圧ショベルに比し、制御バルブ等でのロスを少なくでき、 エネノレギ効率が良好である。
[0003] ところで、通常の油圧ショベルでは、旋回体も作業機と同様に油圧ポンプからの油 圧によって駆動され、この油圧ポンプがエンジンで駆動されている。このため、ェンジ ンへの燃料供給量を変えてその回転数を調整すると、油圧ポンプ力もの作動油の吐 出流量も変化し、旋回体の旋回速度が変化する。つまり、燃料ダイヤルを絞り込み、 燃料供給量を少なくすると、エンジンの回転数が下がるのであるが、これに応じて旋 回体の旋回速度も遅くなる。反対に、燃料ダイヤルの操作によって燃料供給量を多く すると、エンジンの回転数が上がり、旋回体の旋回速度も速くなる。
[0004] なお、油圧ショベルにお 、て、燃料供給量を変えてエンジン回転数を意図的に調 整するのは、燃料ダイヤルを操作する場合の他、作業モード切換用のモード切換ス イッチを操作することでも行われる。作業モードとしては、エンジン回転数の高い順か ら例えばアクティブモード、エコノミーモード、ブレーカモード、リフトモード等があり、 その時々の作業に応じたモードが選択される。
[0005] 特許文献 1 :特開 2001— 11897号公報 発明の開示
発明が解決しょうとする課題
[0006] しかし、前記特許文献 1に記載された電動旋回ショベルによれば、旋回体は油圧に よって駆動されておらず、エンジンの回転数に関係なく一定の旋回速度で旋回する ため、油圧ショベル力 電動旋回ショベルに乗り換えたオペレータは、エンジン回転 数に応じて変化しない旋回体の動きに違和感を覚えるという問題が生じる。
[0007] また、油圧ショベルでの旋回速度の変化は、旋回中にブームやアームと 、つた作業 機を駆動させたときにも生じる。これは、旋回体を旋回させるのに用いられていた作 動油が作業機駆動にも用いられる力 であり、旋回速度が落ちる。そして、このような ときにも、電動旋回ショベルでは旋回速度が一定となるため、やはり違和感が生じて しまう。
[0008] 本発明の目的は、旋回体を油圧駆動力 電動駆動に変えた場合にも、オペレータ に違和感を与えないようにできる旋回制御装置、旋回制御方法、および建設機械を 提供することにある。
課題を解決するための手段
[0009] 本発明の旋回制御装置は、電動モータで旋回する旋回体を制御するための旋回 制御装置であって、前記電動モータと併用されるエンジンへの燃料供給量を設定す る燃料供給量設定手段での設定状態、前記エンジンで駆動される作業機を操作す るための作業機レバーの操作量、および前記作業機を使用して行われる作業の作 業モードを切り換えることにより前記エンジンへの燃料供給量を設定する作業モード 切換手段での切換状態のうち、少なくともいずれかに応じて前記旋回体の目標速度 指令値を変えるように設けられた目標速度指令生成手段を備えて!/、ることを特徴とす る。
[0010] 本発明の旋回制御方法は、電動モータで旋回する旋回体を制御するための旋回 制御方法であって、前記電動モータと併用されるエンジンへの燃料供給量を設定す る燃料供給量設定手段での設定状態、前記エンジンで駆動される作業機を操作す るための作業機レバーの操作量、および前記作業機を使用して行われる作業の作 業モードを切り換えることにより前記エンジンへの燃料供給量を設定する作業モード 切換手段での切換状態のうち、少なくともいずれかに応じて前記旋回体の旋回速度 を変えることを特徴とする。
[0011] 本発明の建設機械は、電動モータで旋回する旋回体と、この旋回体を制御するた めの本発明の旋回制御装置とを備えていることを特徴とする。
発明の効果
[0012] このような本発明によれば、燃料ダイヤル等の燃料供給量設定手段での設定状態 や、モード切換スィッチ等の作業モード切換手段での切換状態、あるいは作業機レ バーの操作量に応じて、電動モータに対する目標速度指令信号を生成し、よって旋 回体の旋回速度を変えるので、各手段の状態によりエンジン回転数が低回転となつ た場合には、これに応じて旋回体の旋回速度を低下させ、エンジン回転数が高回転 となった場合には、旋回速度を上昇させ、さらには、旋回中に作業機を操作した場合 でも、旋回速度を低下させることが可能である。従って、通常の油圧式で旋回体を旋 回させる場合と略同様な操作性が得られるようになり、違和感を覚える心配がない。 図面の簡単な説明
[0013] [図 1]本発明の第 1実施形態に係る建設機械を示す平面図。
[図 2]前記第 1実施形態に係る建設機械に搭載された旋回制御装置を説明するため のブロック図。
[図 3]前記第 1実施形態に係る旋回制御装置のスロットル指令生成手段を説明するた めのブロック図。
[図 4]前記第 1実施形態での燃料ダイヤルの設定とエンジンアイドル回転数との関係 を示す図。
[図 5]前記第 1実施形態でのスロットル指令値と旋回速度係数との関係を示す図。
[図 6]前記第 1実施形態でのエンジン回転数とエンジントルクとの関係を示す図。
[図 7]前記第 1実施形態での作業機レバー操作量と旋回速度係数との関係を示す図
[図 8]前記第 1実施形態に係る旋回制御装置の速度係数生成手段を説明するための ブロック図。
[図 9]前記第 1実施形態での旋回レバー操作量と旋回速度との関係を示す図。 [図 10]前記第 1実施形態での旋回に要する時間、ブーム高さ、旋回位置の関係を示 す図。
[図 11]前記第 1実施形態での旋回量の異なる作業について説明するための図。
[図 12]前記第 1実施形態に係る旋回制御装置での旋回速度係数の生成フローを示 すフローチャート。
[図 13]本発明の第 2実施形態に係る建設機械に搭載された旋回制御装置を説明す るためのブロック図。
符号の説明
[0014] 1…電動旋回ショベル (建設機械)、 4…旋回体、 5…電動モータ、 9…作業機、 12
…エンジン、 13…燃料ダイヤル (燃料供給量設定手段)、 14· ··モード切換スィッチ( 作業モード切換手段)、 16· ··作業機レバー、 50· ··制御装置 (旋回制御装置)、 56— 目標速度指令生成手段。
発明を実施するための最良の形態
[0015] 〔第 1実施形態〕
〔1— 1〕全体構成
以下、本発明の第 1実施形態を図面に基づいて説明する。
図 1は、本実施形態に係る電動旋回ショベル (建設機械) 1を示す平面図、図 2は、 電動旋回ショベル 1に搭載された制御装置 (旋回制御装置) 50を説明するためのブ ロック図である。
[0016] 図 1において、電動旋回ショベル 1は、下部走行体 2を構成するトラックフレーム上 にスイングサークル 3を介して設置された旋回体 4を備え、この旋回体 4がスイングサ 一クル 3と嚙合する電動モータ 5によって旋回駆動される。電動モータ 5の電力源は、 図示を省略する力 旋回体 4に搭載の発電機であり、この発電機がエンジン 12によつ て駆動される。
[0017] 旋回体 4には、それぞれ図示しない油圧シリンダによって動作されるブーム 6、ァー ム 7、およびパケット 8が設けられており、これらによって作業機 9が構成されている。 各油圧シリンダの油圧源は、前記エンジン 12で駆動される油圧ポンプである。従って 、電動旋回ショベル 1は、油圧駆動の作業機 9と電気駆動の旋回体 4とを備えたハイ ブリット建設機械である。
[0018] この電動旋回ショベル 1によれば、図 2に示すように、旋回レバー 10 (通常はアーム 7操作用の作業機レバーを兼用)からは、傾倒角度に応じたレバー信号が制御装置 50に出力される。具体的に、このレバー信号は先ず、制御装置 50の速度指令生成 手段 51に入力され、ここで基準目標速度に変換される。基準目標速度は、燃料ダイ ャル (燃料供給量設定手段) 13、モード切換スィッチ (作業モード切換手段) 14、ゲ イン切換スィッチ 15、作業機レバー 16等力もの設定入力に基づき生成される旋回速 度係数との掛算により、旋回体 4の目標速度指令値に変更され、図示しないインバー タに出力される。
[0019] なお、旋回速度係数は、目標速度指令値の大きさを調整するものであり、例えば、 旋回速度係数が「1」を越えた値に決定されると、この値と基準目標速度との積により 、目標速度指令値が大きくなり、電動モータ 5の回転速度が上がる。逆に、「1」よりも 小さい値 (ただし、「0」よりも大きい)に決定されると、目標速度指令値力 、さくなるか ら、電動モータ 5の回転速度が下がる。
[0020] インバータは、フィードバックされた電動モータ 5の実速度と、目標速度指令値とを 比較し、その偏差に応じたモータトルク指令値を設定する。そして、このトルク指令値 を電流値および電圧値に変換し、電動モータ 5を目標速度で駆動するように制御す る。従って、旋回レバー 10を大きく傾けても、実速度が上がらない場合には、トルク出 力を大きくして目標速度に近づけるように制御する。ただし、このような制御は、一般 的な P (Proportional:比例)制御による速度制御である。
[0021] [1 - 2]制御装置の構成および各設定入力との関係
次に、図 2〜図 11に基づいて、制御装置 50の構成および各設定入力手段との関 係について説明する。
図 2において、制御装置 50は、旋回レバー 10、燃料ダイヤル 13、モード切換スイツ チ 14、ゲイン切換スィッチ 15、作業機レバー 16等からの設定入力に基づき、旋回体 4の目標速度指令値を生成する。このために制御装置 50は、速度指令生成手段 51 、スロットル指令生成手段 52、作業機レバー指令生成手段 53、ゲイン切換スィッチ 指令生成手段 54、速度係数生成手段 55、目標速度指令生成手段 56を備えている 。なお、制御装置 50は、エンジン 12への燃料供給 (噴射)量の制御も行う。
[0022] 速度指令生成手段 51は、先ず旋回レバー 10の傾倒角度に基づき、旋回体 4の基 準目標速度を生成する。ここで生成される基準目標速度は、目標速度指令値のベー スとなる値であり、旋回速度係数力「1」の場合は、基準目標速度がそのまま目標速 度指令値としてインバータに出力される。
[0023] スロットル指令生成手段 52は、燃料ダイヤル 13やモード切換スィッチ 14の設定状 態に応じた旋回速度係数を生成し、速度係数生成手段 55に出力する。つまり、スロ ットル指令生成手段 52は、油圧ショベルにおける旋回体の旋回速度の変化要因で あるエンジン回転数を考慮した旋回速度係数を生成する。このため、スロットル指令 生成手段 52は、図 3に示すように、スロットル指令値生成部 521、燃料ダイヤル係数 生成部 522、モード切換スィッチ係数生成部 523、およびスロットル指令係数生成部 524を備えている。
[0024] スロットル指令値生成部 521は、エンジン 12への燃料供給 (噴射)量を制御するた めに、燃料ダイヤル (燃料供給量設定手段) 13での設定状態に応じたスロットル指令 値を生成する。そして、生成されたスロットル指令値はガバナモータに出力され、図 示しな 、燃料噴射ポンプでのラックの位置制御に用いられる。
[0025] なお、燃料ダイヤル 13は、 Li (ローアイドル)側から Hi (ハイアイドル)側へ無段階あ るいは段階的に設定状態が変えられるものであり、燃料ダイヤル 13を Hi側へ回転さ せれば、図 4に示すように、スロットル指令値生成部 521はより大きなスロットル指令 値を生成するため、エンジン 12での高めのアイドル回転数が設定される。反対に、 Li 側に回転させれば、スロットル指令値生成部 521はより小さなスロットル指令値を生成 するため、低めのアイドル回転数が設定される。
[0026] 燃料ダイヤル係数生成部 522は、スロットル指令値生成部 521で生成されたスロッ トル指令値に基づき、第 1の旋回速度係数を生成する。本実施形態では、図 5に示 す、スロットル指令値と旋回速度係数との関係に基づいて、第 1の旋回速度係数を生 成する。つまり、燃料ダイヤル 13を Hi側に設定してエンジン回転数を上げると、スロッ トル指令値生成部 521で生成されるスロットル指令値が大きくなるから、第 1の旋回速 度係数は大きくなる。一方、 Li側に設定してエンジン回転数を下げると、スロットル指 令値が小さくなるため、第 1の旋回速度係数は小さくなる。
[0027] モード切換スィッチ係数生成部 523は、モード切換スィッチ 14の設定モードに基づ いて第 2の旋回速度係数を生成し、スロットル指令係数生成部 524に出力する。本実 施形態では、各設定モードに対応する旋回速度係数の値が予め設定されており、モ ード切換スィッチ係数生成部 523は、設定モードに応じて旋回速度係数を選択する
[0028] なお、モード切換スィッチ 14は作業モードを切り換えるスィッチで、例えば高いェン ジン回転数で作業を行うための Aモードをはじめ、順次低い回転数での作業に対応 した Bモード、 Cモードなどを選択できる構成である。具体的に、モード切換スィッチ 1 4によれば、図 6に示すように、 Aモードを選択すると、エンジン 12のアイドリング回転 数が A1の高回転側にホールドされ、 B、 Cモードを選択することで、 Bl、 C1のアイド リング回転数でエンジン 12が駆動される。
[0029] スロットル指令係数生成部 524は、燃料ダイヤル係数生成部 522で生成される第 1 の旋回速度係数と、モード切換スィッチ係数生成部 523で生成される第 2の旋回速 度係数とを用いて第 3の旋回速度係数を生成し、速度係数生成手段 55に出力する。 具体的に、スロットル指令係数生成部 524は、第 1の旋回速度係数と第 2の旋回速度 係数とを掛算し、第 3の旋回速度係数を生成する。従って、第 3の旋回速度係数は、 燃料ダイヤル 13およびモード切換スィッチ 14の設定を反映した値となる。
[0030] 図 2に戻り、作業機レバー指令生成手段 53は、作業機レバー 16の傾倒量に基づき 、第 4の旋回速度係数を生成し、速度係数生成手段 55に出力する。具体的には、図 7に示す作業機レバー 16の操作量と旋回速度係数との関係により、第 4の旋回速度 係数が生成される。従って、作業機レバー 16の操作量が大きいと、より小さな旋回速 度係数が生成され、操作量が小さいと、より大きな旋回速度係数が生成される。
[0031] ゲイン切換スィッチ指令生成手段 54は、ゲイン切換スィッチ 15の設定に基づき、第 5の旋回速度係数を生成し、速度係数生成手段 55に出力する。ここで、ゲイン切換 スィッチ 15は、旋回速度係数をスロットル指令値に関係なく任意に設定するためのス イッチであり、本実施形態では、例えば高速旋回、中速旋回、低速旋回、極低速旋 回等を選択できるようになつている。従って、ゲイン切換スィッチ 15で高速旋回が選 択されると、ゲイン切換スィッチ指令生成手段 54はより大きな旋回速度係数を算出し 、低速旋回が選択されるとより小さな旋回速度係数を算出する。
[0032] 速度係数生成手段 55は、スロットル指令係数生成部で生成される第 3の旋回速度 係数、作業機レバー指令生成手段 53で生成される第 4の旋回速度係数、およびゲイ ン切換スィッチ 15の設定状態に基づき、最終的な旋回速度係数を生成する。このた め、速度係数生成手段 55は、図 8に示すように、速度係数判定部 551、速度係数選 択部 552、ゲイン切換状態判定部 553、速度係数最終選択部 554を備えている。
[0033] 速度係数判定部 551は、スロットル指令生成手段 52のスロットル指令係数生成部 5 24で生成される第 3の旋回速度係数と、作業機レバー指令生成手段 53で生成され る第 4の旋回速度係数との大小関係を判定する。
速度係数選択部 552は、速度係数判定部 551の判定結果に応じ、第 3の旋回速度 係数と第 4の旋回速度係数のうち、小さい方の値の旋回速度係数を選択する。
[0034] つまり、スロットル指令係数生成部 524で生成される第 3の旋回速度係数が、作業 機レバー指令生成手段 53で生成される第 4の旋回速度係数よりも小さいと判定され た場合、速度係数選択部 552は第 3の旋回速度係数を選択する。従って、後述する ように、速度係数最終選択部 554が、速度係数選択部 552での選択値を最終的な 旋回速度係数として選んだ場合、旋回レバー操作量に対する旋回体 4の旋回速度 は、第 3の旋回速度係数の特徴に応じて変化することになる。すなわち、旋回レバー 操作量に対する旋回体 4の旋回速度は、図 9に示すように、燃料ダイヤル 13やモー ド切換スィッチ 14の設定に応じて変化する。
[0035] なお、図 9中の Hi側と記載されているのは、燃料ダイヤル 13を最も Hi側に開いたと きの旋回速度を示し、 Li側と記載されているのは、最も Li側に絞ったときの旋回速度 を示している。また、モード切換スィッチ 14が A〜Cの各モードで設定されている場合 の、旋回レバー操作量と旋回速度との関係が示されている。このように、同一のレバ 一操作量であれば、燃料ダイヤル 13を最も m側に開 、たときに旋回体 4の旋回速度 が最大となり、最も Li側に絞ったときに旋回速度が最小となる。また、モード切換スィ ツチ 14の各モードに対する旋回速度の特性が、この間の領域に入るような設定とさ れ、エンジン回転数の高い Aモードの方が Bモードに比して旋回速度が大きぐ Bモ ードの方が cモードよりも旋回速度が大き 、。
[0036] 一方、作業機レバー指令生成手段 53で生成される第 4の旋回速度係数が、スロット ル指令係数生成部 524で生成される第 3の旋回速度係数よりも小さいと判定された 場合、速度係数選択部 552は、第 4の旋回速度係数を選択する。従って、後述する ように、速度係数最終選択部 554が、速度係数選択部 552での選択値を最終的な 旋回速度係数として選んだ場合、この場合の旋回速度係数は、図 7に示したように、 旋回レバー 10の操作量に関わらず、作業機レバー 16の操作量で決定される値とな る。
[0037] 図 8に戻り、ゲイン切換状態判定部 553は、ゲイン切換スィッチ 15での設定の有無 を判定する。
速度係数最終選択部 554は、ゲイン切換状態判定部 553の判定結果に応じ、ゲイ ン切換スィッチ指令生成手段 54で生成された第 5の旋回速度係数と、速度係数選択 部 552で選択された旋回速度係数とのうち、一方の値を選択し、最終的な旋回速度 係数として出力する。つまり、ゲイン切換スィッチ 15で何ら設定がなされていない場 合、速度係数最終選択部 554は、前述したように、速度係数選択部 552で選択され た旋回速度係数を選択する。
[0038] 一方で、ゲイン切換スィッチ 15で何らかの設定がされていると判定された場合は、 ゲイン切換スィッチ 15の設定が優先され、速度係数最終選択部 554は、ゲイン切換 スィッチ指令生成手段 54で生成された旋回速度係数を選択し、最終的な旋回速度 係数の値として出力する。つまり、エンジン 12の回転数を変えなくとも、旋回速度を高 速旋回、中速旋回、定速旋回、極定速旋回に調整することが可能となる。
[0039] なお、ゲイン切換スィッチ 15によるこのような切り換えは、例えば図 10、図 11に示 すような作業を行う場合に行われる。これらの図では、高速旋回と低速旋回とを切り 換えて使用する例が示されている。電動旋回ショベル 1を用いて掘削作業等を行うと きには通常、掘削を行う位置と掘削土を運搬する運搬車両 60の位置とは、旋回体 4 の旋回角度にして 90° ずれている場合と、 180° ずれている場合とが多い。しかし、 運搬車両 60への積込高さ(ブーム高さ)は一定である。さらに、作業性を考慮すると、 旋回体 4が 90° あるいは 180° 旋回した時点で作業機 9 (ブーム 6)が積込高さの位 置にあるの力 無駄のない動きとなる。従って、 90° 旋回させた位置に運搬車両 60 力 Sいる場合では、低速旋回を選択し、 180° 旋回させた位置に運搬車両 60がいる 場合では、高速旋回を選択し、作業機 9を丁度所定の積込高さまで上昇させたときに (t秒後)、旋回体 4の旋回を完了させ、無駄な動きのない作業が行えるようにするの である。
[0040] また、ゲイン切換スィッチ 15により極定速旋回が選択されると、旋回速度係数として 極めて低い値が生成され、旋回速度を極端に落とすことが可能である。例えば、その ような極低速旋回によれば、図 9中のハッチング部分で示す極低速領域内で旋回体 4を旋回させることが可能である。すなわち、このような制御は、点線で示したカーブ のようになるのであり、旋回レバー 10を大きく傾倒させても、旋回速度がさほど上がら ないため、作業機 9を旋回方向に高精度で位置決めする際の超微速操作に有効で ある。
[0041] このように、制御装置 50の速度係数生成手段 55では、入力される様々な信号によ り、旋回速度係数が複合的に生成される。このため、各設定に応じて細かく調整され た旋回速度係数が生成されることになり、最終的には、従来の油圧ショベルと略同じ で違和感のな 、操作フィーリングが得られるような目標速度指令値が生成される。
[0042] 図 2に戻り、目標速度指令生成手段 56は、速度指令生成手段 51で生成された基 準目標速度、および速度係数生成手段 55で生成された旋回速度係数に基づ ヽて、 目標速度指令値を生成する。具体的に、目標速度指令生成手段 56は、基準目標速 度と旋回速度係数とを掛算することで目標速度指令値を生成する。
[0043] [1 - 3]速度係数生成手段での旋回速度係数の生成フロー
次に、図 12に基づいて、速度係数生成手段 55での旋回速度係数の生成フロー、 その中でも本実施形態で特徴的な、ゲイン切換スィッチ 15で何ら設定がなされてい な 、場合のフローにっ 、て説明する。
[0044] 先ず、スロットル指令生成手段 52のスロットル指令値生成部 521は、燃料ダイヤル 13の設定状態を読み込み (ステップ 11:図面上および以下の説明においてはステツ プを単に「S」と略す)、設定状態に応じたスロットル指令値を生成する(S 12)。
燃料ダイヤル係数生成部 522は、スロットル指令値生成部 521で生成されたスロッ トル指令値に基づき、第 1の旋回速度係数を生成する(S13)。
[0045] また、モード切換スィッチ係数生成部 523は、モード切換スィッチ 14の設定状態を 読み込み (S14)、設定状態に応じて第 2の旋回速度係数を生成する(S15)。
そして、スロットル指令係数生成部 524は、燃料ダイヤル係数生成部 522で生成さ れる第 1の旋回速度係数と、モード切換スィッチ係数生成部 523で生成される第 2の 旋回速度係数とを掛算し、第 3の旋回速度係数を生成する(S16)
[0046] 一方、作業機レバー指令生成手段 53は、作業機レバー 16の操作量を読み込み(
S 17)、この値に応じて基づき第 4の旋回速度係数を生成する(S 18)。
そして、速度係数生成手段 55の速度係数判定部 551は、スロットル指令係数生成 部 524で生成される第 3の旋回速度係数が、作業機レバー指令生成手段 53で生成 される第 4の旋回速度係数より小さいか否かを判定する(S19)。
[0047] ここで、第 3の旋回速度係数が第 4の旋回速度係数より小さ 、と判定された場合、 速度係数選択部 552は、第 3の旋回速度係数を選択する(S20)。一方、第 4の旋回 速度係数の方が第 3の旋回速度係数がより小さいと判定された場合、速度係数選択 部 552は、第 4の旋回速度係数を選択する(S21)。
[0048] 〔1 4〕本実施形態による効果
このような本実施形態によれば、以下の効果がある。
すなわち、電動旋回ショベル 1に搭載された制御装置 50によれば、燃料ダイヤル 1 3での設定状態や、モード切換スィッチ 14での切換状態に応じて旋回速度係数が生 成され、これによつて旋回体 4の旋回速度が変えられるので、燃料ダイヤル 13やモー ド切換スィッチ 14の操作によりエンジン回転数が低回転となった場合には、これに応 じて旋回体 4の旋回速度を低下させることができ、エンジン回転数が高回転となった 場合には、旋回速度を上昇させることができる。
[0049] さら〖こは、旋回速度係数は、ゲイン切換スィッチ 15での切換状態や作業機レバー 1 6の操作量に応じて変えられるので、旋回体 4の旋回体をエンジン 12の回転数に関 係なく意図的に変えたい場合にも、ゲイン切換スィッチ 15の操作によって任意に変 更できるうえ、旋回中に作業機 9を操作した場合にも、旋回速度を低下させることがで きる。 [0050] 従って、通常の油圧式で旋回体 4を旋回させる場合と略同様な乗り心地を得ること ができ、従来の油圧ショベルから電動旋回ショベル 1に乗り換えたとしても、何ら違和 感を覚える心配がな 、と 、う効果がある。
[0051] 〔第 2実施形態〕
図 13には、本発明の第 2実施形態が示されている。
本実施形態では、基準目標速度と旋回速度係数との掛算により目標速度指令値を 生成するのではなぐ基準目標速度の上限を制限することで旋回体 4の目標速度指 令値を生成する点が、第 1実施形態とは異なる。このため、制御装置 50は、速度指 令制限値設定手段 57を備えている。また、目標速度指令生成手段 56の処理内容が 、第 1実施形態とは異なっている。
[0052] 速度指令制限値設定手段 57は、速度係数生成手段 55で生成された旋回速度係 数を、基準目標速度に対する速度指令制限値へと変換する。ここでは、速度指令制 限値設定手段 57は、予め設定されている目標速度指令値の最大値と旋回速度係数 とを掛算することで、速度指令制限値を生成する。
また、目標速度指令生成手段 56は、速度指令生成手段 51で生成された基準目標 速度の上限を、速度指令制限値設定手段 57で生成された速度指令制限値により制 限し、目標速度指令値とする。
その他の構成およびフローは第 1実施形態と同じであり、ここでの説明を省略する。
[0053] このような本実施形態によれば、低速域での速度応答性を下げることなぐ第 1実施 形態の場合と同様の効果が得られる。
[0054] なお、本発明は、前記実施形態に限定されるものではなぐ本発明の目的を達成で きる他の構成等を含み、以下に示すような変形等も本発明に含まれる。
例えば、前記実施形態では、ゲイン切換スィッチ 15が設けられ、エンジン回転数に 関係なぐ高速旋回、中速旋回、低速旋回、極低速旋回といった選択に応じた旋回 速度係数が段階的に生成されるようになっていったが、図 2に二点鎖線に示すような 補助調整ダイヤル 17を設け、旋回速度係数を連続的に変化させて、旋回速度をェ ンジン回転数に関係なく連続的に変化させてもよい。
[0055] また、ゲイン切換スィッチ 15と補助調整ダイヤル 17とを両方設け、ゲイン切換スイツ チ 15で選択されたそれぞれの速度域内で、旋回速度係数を連続的に細カゝく変化さ せてもよい。
[0056] 前記実施形態では、複数の旋回速度係数の掛算や選択により、最終的な旋回速 度係数を生成していた力 これに限られるものではなぐ本発明の目的が得られるも のであれば、例えば平均値であってもよい。
また、前記実施形態では、入力される様々な信号に基づいて複合的な生成が行わ れていたが、複数の入力信号の中から一種類の単独信号に基づく値が選択されるも のであってもよい。
[0057] 前記第 1実施形態では、基準目標速度に旋回速度係数を掛算することで最終的な 目標速度指令値を変化させて ヽたが、基準目標速度自身を複数設定されて ヽる中 から選択的に選び、目標速度指令値としてもよい。
[0058] 本発明を実施するための最良の構成、方法などは、以上の記載で開示されている
1S 本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実 施形態に関して特に図示され、かつ、説明されているが、本発明の技術的思想およ び目的の範囲力 逸脱することなぐ以上述べた実施形態に対し、その他の詳細な 構成において、当業者が様々な変形を加えることができるものである。
産業上の利用可能性
[0059] 本発明は、旋回体を電動モータで旋回駆動させる際の制御装置に利用できる。ま た、このような制御装置が搭載される機械としては、建設機械には限定されない。し 力も、建設機械の場合であっても、旋回体を有しており、それが電動モータで旋回駆 動されればょ 、から、特にショベルに限定されな!、。

Claims

請求の範囲
[1] 電動モータで旋回する旋回体を制御するための旋回制御装置であって、
前記電動モータと併用されるエンジンへの燃料供給量を設定する燃料供給量設定 手段での設定状態、
前記エンジンで駆動される作業機を操作するための作業機レバーの操作量、 および前記作業機を使用して行われる作業の作業モードを切り換えることにより前 記エンジンへの燃料供給量を設定する作業モード切換手段での切換状態のうち、 少なくとも 、ずれかに応じて前記旋回体の目標速度指令値を変えるように設けられ た目標速度指令生成手段を備えて 、る
ことを特徴とする旋回制御装置。
[2] 電動モータで旋回する旋回体を制御するための旋回制御方法であって、
前記電動モータと併用されるエンジンへの燃料供給量を設定する燃料供給量設定 手段での設定状態、
前記エンジンで駆動される作業機を操作するための作業機レバーの操作量、 および前記作業機を使用して行われる作業の作業モードを切り換えることにより前 記エンジンへの燃料供給量を設定する作業モード切換手段での切換状態のうち、 少なくともいずれかに応じて前記旋回体の旋回速度を変える
ことを特徴とする旋回制御方法。
[3] 建設機械であって、
電動モータで旋回する旋回体と、
この旋回体を制御するための請求項 1に記載の旋回制御装置とを備えて 、る ことを特徴とする建設機械。
PCT/JP2005/012303 2004-07-05 2005-07-04 旋回制御装置、旋回制御方法、および建設機械 WO2006004080A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006528875A JP4729494B2 (ja) 2004-07-05 2005-07-04 旋回制御装置、旋回制御方法、および建設機械
US11/631,433 US7619378B2 (en) 2004-07-05 2005-07-04 Rotation control device, rotation control method and construction machine
DE112005001562.9T DE112005001562B4 (de) 2004-07-05 2005-07-04 Rotationssteuervorrichtung, Rotationssteuerverfahren und Baumaschine
CN2005800216467A CN1977084B (zh) 2004-07-05 2005-07-04 旋转控制装置、旋转控制方法及建设机械
GB0700217A GB2431738B (en) 2004-07-05 2007-01-05 Rotation control device,rotation control method,and construction machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-198198 2004-07-05
JP2004198198 2004-07-05

Publications (1)

Publication Number Publication Date
WO2006004080A1 true WO2006004080A1 (ja) 2006-01-12

Family

ID=35782881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012303 WO2006004080A1 (ja) 2004-07-05 2005-07-04 旋回制御装置、旋回制御方法、および建設機械

Country Status (7)

Country Link
US (1) US7619378B2 (ja)
JP (2) JP4729494B2 (ja)
KR (1) KR101117533B1 (ja)
CN (1) CN1977084B (ja)
DE (1) DE112005001562B4 (ja)
GB (1) GB2431738B (ja)
WO (1) WO2006004080A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217992A (ja) * 2006-02-17 2007-08-30 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 建設機械の動作制御装置
JP2008088659A (ja) * 2006-09-29 2008-04-17 Kobelco Contstruction Machinery Ltd 作業機械の旋回制御装置
JP2009127296A (ja) * 2007-11-22 2009-06-11 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 旋回駆動制御装置及びこれを含む建設機械
JP2009155992A (ja) * 2007-12-28 2009-07-16 Daikin Ind Ltd 電動旋回装置
JP2010106511A (ja) * 2008-10-29 2010-05-13 Kobelco Contstruction Machinery Ltd 作業機械の旋回制御装置
JP2010106512A (ja) * 2008-10-29 2010-05-13 Kobelco Contstruction Machinery Ltd 作業機械の旋回制御装置
JP2011032857A (ja) * 2009-07-29 2011-02-17 Volvo Construction Equipment Ab ハイブリッド式建設機械の制御システム及び方法
JP2011094451A (ja) * 2009-11-02 2011-05-12 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械の旋回制御装置
WO2012104953A1 (ja) 2011-02-02 2012-08-09 コベルコ建機株式会社 旋回式作業機械
JP2015196968A (ja) * 2014-03-31 2015-11-09 住友建機株式会社 ショベル

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101751044B (zh) * 2008-12-16 2011-11-09 鸿富锦精密工业(深圳)有限公司 速度控制器
KR101500752B1 (ko) * 2008-12-24 2015-03-09 두산인프라코어 주식회사 하이브리드 건설기계의 선회제어장치 및 선회제어방법
JP5149826B2 (ja) * 2009-01-29 2013-02-20 住友重機械工業株式会社 ハイブリッド式作業機械及びサーボ制御システム
JP5363430B2 (ja) * 2010-07-23 2013-12-11 日立建機株式会社 ハイブリッド式建設機械
KR101737636B1 (ko) * 2010-12-24 2017-05-18 두산인프라코어 주식회사 하이브리드 건설기계의 선회제어장치
US8676474B2 (en) * 2010-12-30 2014-03-18 Caterpillar Inc. Machine control system and method
EP2725151B1 (en) * 2011-06-27 2016-08-03 Sumitomo Heavy Industries, Ltd. Hybrid work machine and method for controlling same
JP5970898B2 (ja) * 2012-03-26 2016-08-17 コベルコ建機株式会社 動力伝達装置及びこれを備えたハイブリッド建設機械
JP6373235B2 (ja) * 2015-08-03 2018-08-15 学校法人千葉工業大学 モータの制御装置
CN108678865B (zh) * 2018-04-19 2024-01-19 马鞍山唐拓凿岩机械有限公司 一种一体式全液压钻机的发动机转速控制系统及方法
CN113389538B (zh) * 2021-06-29 2023-07-11 北京三一智造科技有限公司 车身回转控制方法以及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207478A (ja) * 2000-01-28 2001-08-03 Sumitomo Constr Mach Co Ltd 電動ショベル
JP2001226077A (ja) * 2000-02-10 2001-08-21 Sumitomo Constr Mach Co Ltd 電動式の作業機用アクチュエータと旋回駆動装置を備える建設機械
JP2003033063A (ja) * 2001-07-11 2003-01-31 Hitachi Constr Mach Co Ltd 建設機械の駆動装置、建設機械及び建設機械の駆動プログラム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3643635A (en) * 1970-04-24 1972-02-22 William T Milam Electronic fuel injection system
JPS4948304U (ja) * 1972-07-28 1974-04-27
DE2852211C2 (de) * 1978-12-02 1986-01-02 Vdo Adolf Schindling Ag, 6000 Frankfurt Einrichtung zum Steuern der Fahrgeschwindigkeit eines Kraftfahrzeuges
US4359984A (en) * 1979-05-25 1982-11-23 Kiyoharu Nakao Fuel control device for diesel engine
US4248194A (en) * 1979-08-23 1981-02-03 Trw Inc. Method and apparatus for controlling the operation of a pump
US4577604A (en) * 1984-09-28 1986-03-25 Nissan Motor Company, Limited Control system for fuel pump for internal combustion engine
DE3800177A1 (de) * 1988-01-07 1989-07-20 Bosch Gmbh Robert Steuerschaltung und verfahren zur steuerung der drehzahl einer elektrischen kraftstoffpumpe fuer brennkraftmaschinen mit kraftstoff-einspritzung
JPH02209531A (ja) * 1989-02-06 1990-08-21 Yutani Heavy Ind Ltd 施回速度可変システム
JP3571142B2 (ja) * 1996-04-26 2004-09-29 日立建機株式会社 建設機械の軌跡制御装置
DE60037740T2 (de) * 1999-06-25 2009-01-15 Kobelco Construction Machinery Co., Ltd., Hiroshima Hybridbaumaschine und steuervorrichtung für diese baumaschine
JP2001012274A (ja) 1999-06-30 2001-01-16 Kobe Steel Ltd 作業機械の駆動装置
JP3647319B2 (ja) * 1999-06-28 2005-05-11 株式会社神戸製鋼所 油圧駆動装置
JP4002369B2 (ja) * 1999-06-29 2007-10-31 株式会社神戸製鋼所 旋回式作業機械の旋回制御装置
JP3877909B2 (ja) 1999-06-30 2007-02-07 株式会社神戸製鋼所 建設機械の旋回駆動装置
JP2002213257A (ja) * 2001-01-15 2002-07-31 Kobelco Contstruction Machinery Ltd 作業車両のエンジン回転数制御装置
JP4480908B2 (ja) * 2001-02-19 2010-06-16 住友建機株式会社 ハイブリッドショベル
JP2003118975A (ja) * 2001-10-19 2003-04-23 Hitachi Constr Mach Co Ltd フック付き油圧ショベル
JP3613236B2 (ja) * 2001-12-03 2005-01-26 コベルコ建機株式会社 作業機械
JP4015445B2 (ja) * 2002-03-15 2007-11-28 日立建機株式会社 ホイール式建設機械の操作制御装置
JP4099006B2 (ja) * 2002-05-13 2008-06-11 コベルコ建機株式会社 建設機械の回転駆動装置
JP4082935B2 (ja) * 2002-06-05 2008-04-30 株式会社小松製作所 ハイブリッド式建設機械
JP2004028264A (ja) * 2002-06-27 2004-01-29 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd クレーン仕様油圧ショベルの油圧回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207478A (ja) * 2000-01-28 2001-08-03 Sumitomo Constr Mach Co Ltd 電動ショベル
JP2001226077A (ja) * 2000-02-10 2001-08-21 Sumitomo Constr Mach Co Ltd 電動式の作業機用アクチュエータと旋回駆動装置を備える建設機械
JP2003033063A (ja) * 2001-07-11 2003-01-31 Hitachi Constr Mach Co Ltd 建設機械の駆動装置、建設機械及び建設機械の駆動プログラム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217992A (ja) * 2006-02-17 2007-08-30 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 建設機械の動作制御装置
JP2008088659A (ja) * 2006-09-29 2008-04-17 Kobelco Contstruction Machinery Ltd 作業機械の旋回制御装置
EP1905902A3 (en) * 2006-09-29 2008-07-02 Kobelco Construction Machinery Co., Ltd. Rotation control device for working machine
US8798872B2 (en) 2006-09-29 2014-08-05 Kobelco Construction Machinery Co., Ltd. Rotation control device for working machine
JP2009127296A (ja) * 2007-11-22 2009-06-11 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 旋回駆動制御装置及びこれを含む建設機械
JP2009155992A (ja) * 2007-12-28 2009-07-16 Daikin Ind Ltd 電動旋回装置
JP2010106512A (ja) * 2008-10-29 2010-05-13 Kobelco Contstruction Machinery Ltd 作業機械の旋回制御装置
JP2010106511A (ja) * 2008-10-29 2010-05-13 Kobelco Contstruction Machinery Ltd 作業機械の旋回制御装置
JP2011032857A (ja) * 2009-07-29 2011-02-17 Volvo Construction Equipment Ab ハイブリッド式建設機械の制御システム及び方法
JP2011094451A (ja) * 2009-11-02 2011-05-12 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械の旋回制御装置
WO2012104953A1 (ja) 2011-02-02 2012-08-09 コベルコ建機株式会社 旋回式作業機械
US9077272B2 (en) 2011-02-02 2015-07-07 Kobelco Construction Machinery Co., Ltd. Slewing-type working machine
JP2015196968A (ja) * 2014-03-31 2015-11-09 住友建機株式会社 ショベル

Also Published As

Publication number Publication date
GB2431738A (en) 2007-05-02
JP2010275855A (ja) 2010-12-09
JPWO2006004080A1 (ja) 2008-04-24
CN1977084B (zh) 2010-05-12
US20080018271A1 (en) 2008-01-24
CN1977084A (zh) 2007-06-06
KR101117533B1 (ko) 2012-03-08
JP4729494B2 (ja) 2011-07-20
DE112005001562B4 (de) 2017-12-14
JP5118727B2 (ja) 2013-01-16
KR20070037742A (ko) 2007-04-06
GB0700217D0 (en) 2007-02-14
DE112005001562T5 (de) 2007-05-24
US7619378B2 (en) 2009-11-17
GB2431738B (en) 2009-01-07

Similar Documents

Publication Publication Date Title
WO2006004080A1 (ja) 旋回制御装置、旋回制御方法、および建設機械
JP4082935B2 (ja) ハイブリッド式建設機械
JP4675320B2 (ja) 作業機械の油圧駆動装置
KR101652661B1 (ko) 건설 기계
KR100279041B1 (ko) 유압건설기계의 원동기의 오토 액셀러레이터장치 및 원동기와유압펌프의 제어장치
JPH11108003A (ja) 油圧建設機械の原動機と油圧ポンプの制御装置
JPWO2004029434A1 (ja) 建設機械の原動機制御装置
JP4248378B2 (ja) ハイブリッド作業機械の駆動制御装置
JP2008039063A (ja) 建設機械の油圧制御回路
JP4731033B2 (ja) 油圧駆動制御装置
JP3686324B2 (ja) 油圧走行車両
JP3634980B2 (ja) 建設機械の制御装置
JP3539720B2 (ja) 建設機械の制御装置
JP3812728B2 (ja) 上部旋回式作業車両
JP2007132094A (ja) 電動作業機械
JP2001295681A (ja) ホイール走行式油圧建設機械
JPH11107322A (ja) 油圧建設機械の原動機のオートアクセル装置
KR102698835B1 (ko) 작업 기계
US20240287764A1 (en) Shovel
JP2005232835A (ja) 油圧機器の制御装置
JP2000309950A (ja) 建設機械の制御装置
JP2001182103A (ja) 建設機械の制御装置
JPH07166912A (ja) 油圧ポンプの吐出流量制御装置
JP3246520B2 (ja) 建設機械の原動機制御装置
JP2001140285A (ja) 建設機械の制御装置及びその制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528875

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580021646.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11631433

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077000203

Country of ref document: KR

Ref document number: 1020077000198

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 0700217

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20050704

WWE Wipo information: entry into national phase

Ref document number: 0700217.3

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 1120050015629

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020077000203

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112005001562

Country of ref document: DE

Date of ref document: 20070524

Kind code of ref document: P

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11631433

Country of ref document: US