WO2006003943A1 - 直接アルコール型燃料電池及びその製造方法 - Google Patents

直接アルコール型燃料電池及びその製造方法 Download PDF

Info

Publication number
WO2006003943A1
WO2006003943A1 PCT/JP2005/011963 JP2005011963W WO2006003943A1 WO 2006003943 A1 WO2006003943 A1 WO 2006003943A1 JP 2005011963 W JP2005011963 W JP 2005011963W WO 2006003943 A1 WO2006003943 A1 WO 2006003943A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
metal complex
catalyst layer
force sword
catalyst
Prior art date
Application number
PCT/JP2005/011963
Other languages
English (en)
French (fr)
Inventor
Atsushi Sano
Satoshi Maruyama
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to US10/591,176 priority Critical patent/US8652704B2/en
Priority to JP2006528752A priority patent/JP4978191B2/ja
Publication of WO2006003943A1 publication Critical patent/WO2006003943A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a direct alcohol fuel cell that uses alcohol as a direct fuel and a method for producing the same.
  • such a fuel cell may be a low temperature operation fuel cell such as an alkaline type, a solid polymer type, or a phosphoric acid type, and a high temperature operation fuel cell such as a molten carbonate type or a solid oxide type. It is roughly divided into Among them, a polymer electrolyte fuel cell using a solid polymer as the electrolyte.
  • PEFC Polym er Electrolyte Fuel Cell
  • DMFC direct methanol fuel cell
  • anode fuel electrode
  • hydrogen ions are generated. This hydrogen ion moves through the electrolyte and reaches the force sword (air electrode), and reduces the oxygen supplied to the force sword. Based on these redox reactions, current flows between the two electrodes.
  • a direct alcohol fuel cell can be directly used for power generation without reforming alcohol as a fuel into hydrogen or the like, there is no need to separately provide a fuel reforming device. It will have a structure. For this reason, the direct alcohol fuel cell can be reduced in size and weight easily, and can be suitably used for portable power supply applications.
  • a proton is usually used as a polymer electrolyte membrane of such a direct alcohol fuel cell.
  • Conductive ion exchange membranes are used, and in particular, ion exchange membranes having a perfluorocarbon polymer power having sulfonic acid groups are widely used.
  • the anode and the force sword are composed of two layers, for example, a catalyst layer that serves as a reaction field for electrode reaction, and a diffusion layer that supplies reactants to the catalyst layer, exchanges electrons, and the like.
  • Patent Document 1 describes that a metal oxide is contained in an electrolyte membrane
  • Patent Document 2 describes a limiting permeation layer that restricts permeation of liquid fuel between a force sword and a solid electrolyte membrane.
  • Patent Document 3 the first electrolyte layer and the second electrolyte layer having lower organic fuel permeability than that of the first electrolyte layer are also provided. It is described that the electrode is arranged on the anode side.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-331869
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-317742
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-56857
  • the electrolyte membranes described in Patent Documents 1 to 3 are used, it is difficult to completely prevent permeation of alcohol. Therefore, the alcohol gradually permeates As a result, the cell voltage is lowered, and it is difficult to obtain a sufficient output voltage stably over a long period of time.
  • the electrolyte membrane is originally intended to conduct protons, but as described in Patent Documents 1 to 3, substances that do not contribute to proton conduction in the electrolyte membrane are mixed or alcohols are used. Providing a layer that suppresses permeation of water can cause a decrease in proton conductivity.
  • the present invention has been made in view of the above-described problems of the prior art, and in particular, sufficiently suppresses a decrease in cell voltage due to crossover, so that a sufficient output voltage can be stably maintained over a long period of time. It is an object of the present invention to provide a direct alcohol fuel cell that can be obtained and a method for manufacturing the same.
  • a direct alcohol fuel cell includes an anode having an anode catalyst layer, a force sword having a force sword catalyst layer, and the anode.
  • a direct alcohol fuel cell that generates power by supplying alcohol and water to the anode, and the force sword catalyst layer comprises: A metal complex and Z or a metal complex obtained by firing the metal complex includes a fired product as a catalyst.
  • a metal complex and Z or a fired product of a metal complex are used as a catalyst to be contained in a force sword catalyst layer.
  • platinum used as a power sword catalyst has an extremely strong action of oxidizing alcohol as described above, and thus has a problem of lowering the cell voltage when crossover occurs.
  • the metal complex and the fired product of the metal complex are sufficiently weak to oxidize alcohol, and even if the alcohol reaches the power sword by crossover, it hardly acts on this alcohol.
  • the decrease in the potential of the force sword can be sufficiently suppressed.
  • the direct alcohol fuel cell of the first invention It is possible to sufficiently suppress the cell voltage drop due to over, and to obtain a sufficient output voltage stably over a long period of time.
  • this makes it possible to make the alcohol concentration of the fuel a concentration close to the ideal alcohol concentration, and to greatly improve the energy density of the fuel cell system including the volume of the fuel tank.
  • the metal complex preferably has a porphyrin ring or a phthalocyanine ring.
  • the metal complex has a porphyrin ring or a phthalocyanine ring, and has at least one metal selected from the group consisting of Co, Fe, Ni, Cu, Mn and V as a central metal. I prefer to be there.
  • the catalyst preferably includes a supported catalyst obtained by supporting the metal complex and Z or the fired product of the metal complex on a carbon material.
  • a supported catalyst obtained by supporting the metal complex and Z or the fired product of the metal complex on a carbon material.
  • the supported catalyst is fired in a state where the metal complex is supported on the carbon material. It is preferred to be a thing! /.
  • the direct alcohol fuel cell according to the second invention is arranged between an anode having an anode catalyst layer, a force sword having a force sword catalyst layer, and the anode and the force sword.
  • a direct alcohol fuel cell that generates power by supplying alcohol and water to the anode, wherein the solid polymer electrolyte membrane is a key-on exchange membrane.
  • the force sword catalyst layer includes silver as a catalyst.
  • silver is used as a catalyst to be contained in the force sword catalyst layer.
  • Silver is almost the same as the above-mentioned metal complex and the fired metal complex, even if the alcohol reaches the power sword due to crossover, which has a weak enough effect of acidifying the alcohol. It does not act and can sufficiently suppress the decrease in the potential of the force sword.
  • a key-on exchange membrane is used as the electrolyte membrane.
  • force thione exchange membranes are used for electrolyte membranes in fuel cells.
  • silver corrosion occurs immediately at the contact interface between the cation exchange membrane and silver.
  • a key-on exchange membrane and a silver catalyst are used in combination as in the present invention, corrosion of silver can be sufficiently suppressed. That is, according to the direct alcohol fuel cell according to the second invention, it is possible to sufficiently suppress a decrease in cell voltage due to crossover, and it is possible to sufficiently suppress a decrease in catalyst activity. A sufficient output voltage can be obtained stably over a long period of time.
  • the alcohol concentration of the fuel can be set to a concentration close to the ideal alcohol concentration, and the energy density of the fuel cell system including the volume of the fuel tank can be greatly improved. Furthermore, by using a combination of a char-on exchange membrane and a silver catalyst, the overvoltage in the force sword can be sufficiently reduced, and the energy density can be further improved.
  • the catalyst preferably includes a supported catalyst obtained by supporting the silver on a carbon material.
  • a supported catalyst obtained by supporting the silver on a carbon material.
  • the solid polymer battery U preferably the denatured membrane is a key-on exchange membrane.
  • the above-mentioned ion exchange membrane may be a polymer compound having a cationic group in the molecule. It is preferable.
  • the cationic group is preferably at least one selected from the group consisting of a pyridinium group, an alkylammonium group, and an imidazolium group.
  • a char-on exchange membrane is used as an electrolyte membrane, and the force sword catalyst layer is a char-on as a binder. It is preferable to include exchanged rosin.
  • the force sword catalyst layer includes an anion exchange resin as a binder
  • the ion conduction is favorably performed at the contact interface between the binder, the catalyst, and the ion exchange membrane.
  • the energy density can be improved.
  • the alcohol power is at least one selected from the group consisting of alcohol power methanol, ethanol, ethylene glycol, glycerin and erythritol power. .
  • the energy density of the fuel cell tends to be easily improved.
  • the present invention also includes an anode having an anode catalyst layer, a force sword having a force sword catalyst layer, and a solid polymer electrolyte membrane disposed between the anode and the force sword,
  • a method for producing a direct alcohol fuel cell in which power is generated by supplying alcohol and water to an anode, wherein the force sword catalyst layer is fired from a metal complex and Z or the metal complex. And a step of forming the solid polymer electrolyte membrane by plasma polymerization.
  • a method for producing a direct alcohol fuel cell is provided.
  • the direct alcohol fuel cell according to the first invention described above can be efficiently manufactured.
  • the solid polymer electrolyte membrane by plasma polymerization a thin film of the electrolyte membrane can be formed, and the resistance of the electrolyte membrane can be reduced. It is also possible to form a solid polymer electrolyte membrane by plasma polymerization on the surface of a conventional cation exchange membrane or anion exchange membrane, thereby improving the alcohol permeation characteristics and suppressing the occurrence of crossover. be able to.
  • the present invention further includes an anode having an anode catalyst layer, a cathode having a force sword catalyst layer, and a solid polymer electrolyte membrane disposed between the anode and the force sword.
  • a method for producing a direct alcohol fuel cell that generates power by supplying alcohol and water to an anode, the step of forming the force sword catalyst layer using silver, and a gas exchange membrane by plasma polymerization. Forming a solid polymer electrolyte membrane composed of the above-described ion exchange membrane, and providing a method for producing a direct alcohol fuel cell.
  • the direct alcohol fuel cell according to the second invention described above can be efficiently manufactured.
  • the solid polymer electrolyte membrane by plasma polymerization, a thin film of the electrolyte membrane can be formed, and the resistance of the electrolyte membrane can be reduced.
  • a direct alcohol fuel cell capable of sufficiently suppressing a decrease in cell voltage due to crossover and capable of stably obtaining a sufficient output voltage over a long period of time. Can do.
  • FIG. 1 is a schematic cross-sectional view showing a basic configuration of a preferred embodiment of a direct alcohol fuel cell according to the present invention.
  • FIG. 2 is a graph showing the relationship between current density and voltage when a cell power generation test is performed on the direct alcohol fuel cell of Example 1.
  • FIG. 3 is a graph showing the relationship between current density and output density when a cell power generation test is performed on the direct alcohol fuel cell of Example 1.
  • FIG. 1 is a schematic cross-sectional view showing a basic configuration of a preferred embodiment of a direct alcohol fuel cell according to the present invention.
  • a direct alcohol fuel cell 10 (hereinafter simply referred to as “fuel cell 10”) shown in FIG. 1 has a so-called membrane electrode assembly (MEA) form.
  • the fuel cell 10 shown in FIG. 1 mainly includes a solid polymer electrolyte membrane 1, an anode catalyst layer 2 and a force sword catalyst layer 3 that are in close contact with the membrane surface of the electrolyte membrane 1, and an outside of the anode catalyst layer 2.
  • the fuel diffusion layer 4 is in close contact with the surface
  • the gas diffusion layer 5 is in close contact with the outer surface of the force sword catalyst layer 3, and the seal body 8.
  • the anode 20 is composed of the anode catalyst layer 2 and the fuel diffusion layer 4
  • the force sword 30 is composed of the force sword catalyst layer 3 and the gas diffusion layer 5.
  • the fuel diffusion layer 4 and the gas diffusion layer 5 in the anode 20 and the force sword 30 are usually porous conductive base materials.
  • Each diffusion layer 4 and 5 is not an essential component in the fuel cell 10, but promotes the diffusion of fuel to the anode catalyst layer 2 and the gas to the force sword catalyst layer 3, and also functions as a current collector. It is preferable that the anode 20 and the force sword 30 are provided with the respective diffusion layers 4 and 5 because they are provided at the same time.
  • a separator 6 in which a groove 6 a serving as a fuel flow path is formed is disposed outside the anode 20, and a groove 7 a serving as a gas flow path is disposed outside the force sword 30.
  • the formed separator 7 is arranged.
  • Alcohols such as methanol, ethanol, ethylene glycol, glycerin and erythritol are directly supplied as fuel to the anode 20 side through the groove 6a of the separator 6, and the force sword 30 side is passed through the groove 7a of the separator 7. Supplied with oxygen and air.
  • the fuel cell 10 of the present invention uses a metal complex and Z or a metal complex fired product or silver as a catalyst constituting the force sword catalyst layer 3 in a direct alcohol fuel cell. It is the main feature. First, the force sword catalyst layer 3 will be described.
  • the force sword catalyst layer 3 is not particularly limited as long as it contains a metal complex obtained by firing a metal complex as a catalyst and a fired product of Z or a metal complex, or silver. It has a structure including a metal complex and a fired product of Z or metal complex, or a supported catalyst in which silver is supported on a carbon material, and an ion exchange resin.
  • examples of the metal complex include iron phthalocyanine, cobalt phthalocyanine, copper phthalocyanine, manganese phthalocyanine, and zinc phthalocyanine.
  • the fired metal complex can be obtained by firing these metal complexes.
  • the metal complex preferably has a porphyrin ring or a phthalocyanine ring, and is further selected from the group consisting of Co, Fe, Ni, Cu, Mn, and V force. It is more preferable to use a kind of metal as a central metal.
  • the fired metal complex is preferably a fired metal complex having a porphyrin ring or a phthalocyanine ring, and further selected from the group consisting of Co, Fe, Ni, Cu, Mn and V. More preferably, it is obtained by firing a metal complex having at least one selected metal as a central metal.
  • the firing of the metal complex can be performed by treatment in an inert atmosphere at 500 to 800 ° C. for 1 to 20 hours.
  • the calcination may be performed with the metal complex alone! However, it is preferably performed in a state where the metal complex is supported on the carbon material. This tends to provide a supported catalyst in which the metal complex and Z or the fired product of the metal complex are in a highly dispersed state and are in close contact with the carbon material.
  • a supported catalyst When such a supported catalyst is used, the three-phase interface in which the oxygen-containing gas, the catalyst, and the electrolyte membrane 1 are present at the same time can be increased. It can be done.
  • examples of the carbon material used as the metal complex and Z or the metal complex fired product or the silver carrier include carbon black, activated carbon, carbon nanotube, carbon nanohorn, and the like. Among these, carbon black is preferable. When using one-bon black as the carbon material, the specific surface area is 50 to: L000m 2 / g. The power of the viewpoint of forming a larger three-phase interface is preferred.
  • the average primary particle diameter of the carbon material is preferably 10: LOOnm, and the average primary particle diameter of the fired product of the metal complex is preferably 10 to 500 nm. Thereby, a larger three-phase interface can be formed.
  • silver When silver is used as the catalyst in the force sword catalyst layer 3, it is not calcined. It can be used as a supported catalyst in a state of being supported on the carbon material. At this time, it is preferable that the average particle diameter of silver is 1 to 20 nm, whereby a larger three-phase interface can be formed.
  • the supported amount of silver is preferably 10 to 80% by mass based on the total amount of the supported catalyst. If the supported amount is less than 10% by mass, the amount of catalyst in the catalyst layer is insufficient, and there is a tendency that a sufficient three-phase interface cannot be secured. On the other hand, when the supported amount exceeds 80% by mass, silver aggregates and the activity as a catalyst tends to decrease.
  • the supported amount of the metal complex and Z or metal complex fired product is based on the total amount of the supported catalyst.
  • the total mass of the center metal of the fired product is preferably 1 to 10% by mass. If the supported amount (the total mass of the central metal of the metal complex and the fired product of the metal complex) is less than 1% by mass, the amount of catalyst in the catalyst layer becomes insufficient, and there is a tendency that a sufficient three-phase interface cannot be secured. . On the other hand, if the supported amount (total mass of the central metal of the metal complex and the metal complex fired product) exceeds 10% by mass, the proportion of the carbon material decreases, and it tends to be difficult to ensure sufficient conductivity. is there.
  • the ion exchange resin contained in the force sword catalyst layer 3 functions as a binder for binding the supported catalyst.
  • a strong ion exchange resin is not particularly limited as long as it can bind the supported catalyst, but has the same ion exchange properties as the ion exchange resin used for the electrolyte membrane 1 constituting the fuel cell 10. It is preferable to have it. That is, when silver is used as the catalyst, since the electrolyte membrane 1 is formed of a key-on exchange resin, the ion-exchange resin is preferably a key-on exchange resin.
  • the ion-exchange resin may be an ion-exchange resin or an electrolyte film if the electrolyte membrane 1 is formed of a key-on exchange resin. If 1 is formed by cation exchange resin, it is preferable to use force thione exchange resin. Accordingly, ion conduction is favorably performed at the contact interface between the ion exchange resin, the catalyst, and the electrolyte membrane 1, and the energy density tends to be improved. Even when a metal complex and Z or a fired product of a metal complex are used as the catalyst, the ion exchange resin is not applied to the electrolyte membrane 1. Therefore, in the present invention, it is preferable that the ion exchange resin is a key-on exchange resin.
  • the key-on exchange resin is preferably composed of a polymer compound having a cationic group in the molecule.
  • the cationic group is preferably at least one selected from the group consisting of a pyridinium group, an alkyl ammonium group, and an imidazolium group.
  • anion exchange resins include quaternary ammonia-treated poly-4-vinylpyridine, poly-2-vinylpyridine, poly-2-methyl-5-butylpyridine, poly-1-pyridine-4-ylcarbo-oxyethylene Is mentioned.
  • the quaternary ammonia conversion treatment of poly-4-bulupyridine can be carried out by reacting poly-4-bulupyridine with an alkyl halide such as methyl bromide or bromide acetyl.
  • a perfluorocarbon polymer having a sulfonic acid group for example, a polysulfone resin, a perfluorocarbon polymer having a phosphonic acid group or a carboxylic acid group can be used.
  • the content of the strong ion exchange resin is preferably 10 to 50% by mass based on the total amount of the force sword catalyst layer 3. If the content is less than 10% by mass, it tends to be difficult to coat the catalyst thinly and uniformly with ion-exchanged resin. If the content exceeds 50% by mass, the catalyst is thickly covered by ion-exchanged resin. As a result, gas diffusion becomes difficult and output characteristics tend to deteriorate.
  • the force sword catalyst layer 3 is made of the above-described material, even when the alcohol reaches the force sword 30 due to crossover, the alcohol is oxidized. Since the action is sufficiently weak, the potential drop of the force sword 30 can be sufficiently suppressed. Therefore, a drop in cell voltage due to crossover can be sufficiently suppressed, and a sufficient output voltage can be stably obtained over a long period of time.
  • the thickness of the powerful sword catalyst layer 3 is preferably 10-300 ⁇ m. If the thickness is less than 10 m, the amount of catalyst tends to be insufficient. On the other hand, if the thickness exceeds 300 m, ion migration and gas diffusion are hindered, resistance increases, and output characteristics tend to decrease.
  • the force sword 30 is provided with a gas diffusion layer 5 in order to promote gas diffusion into the force sword catalyst layer 3.
  • a gas diffusion layer 5 in order to promote gas diffusion into the force sword catalyst layer 3.
  • the constituent material of the strong gas diffusion layer 5 include a porous body having electron conductivity. As such a porous body, carbon cloth, carbon paper and the like are preferable.
  • the thickness of the gas diffusion layer 5 is preferably 10 to 300 ⁇ m. If the thickness is less than 10 ⁇ m, water repellency and gas diffusion tend to be insufficient, and if it exceeds 300 / z m, the cell volume tends to increase and the energy density tends to decrease.
  • the anode 20 is composed of an anode catalyst layer 2 and a fuel diffusion layer 4.
  • the anode catalyst layer 2 has a configuration including, for example, a supported catalyst in which a catalyst is supported on a carbon material and an ion-exchanged resin.
  • Examples of the catalyst include noble metals and noble metal alloys. As a precious metal
  • a noble metal alloy preferred by Pt an alloy of Pt and Ru, Sn, Mo, Ni, Co or the like is preferred. Among these, it is preferable to use a noble metal alloy of Pt—Ru that hardly causes poisoning of the catalyst.
  • the carbon material and the ion exchange resin constituting the anode catalyst layer 2 the same materials as those used for the force sword catalyst layer 3 can be used.
  • the amount of the catalyst supported on the carbon material is preferably 10 to 85 mass% based on the total amount of the supported catalyst. If the supported amount is less than 10% by mass, the amount of catalyst in the catalyst layer is insufficient, and there is a tendency that a sufficient three-phase interface cannot be secured. On the other hand, when the supported amount exceeds 85% by mass, the catalysts are aggregated, and the activity as a catalyst tends to be lowered.
  • the content of the ion exchange resin is preferably 10 to 50% by mass based on the total amount of the anode catalyst layer 2. If the content is less than 10% by mass, it tends to be difficult to coat the catalyst thinly and uniformly with an ion exchange resin. If the content exceeds 50% by mass, the catalyst is thickly covered by the ion exchange resin. However, gas diffusion becomes difficult, and output characteristics tend to deteriorate.
  • the anode catalyst layer 2 preferably has a thickness of 10 to 300 ⁇ m. If the thickness is less than 10 ⁇ m, the amount of catalyst tends to be insufficient. If the thickness exceeds 300 m, It tends to hinder ion migration and gas diffusion, increasing resistance and lowering output characteristics
  • the same materials as those used for the gas diffusion layer 5 can be used.
  • the thickness of the fuel diffusion layer 4 to be applied is preferably 10-300 ⁇ m. If the thickness is less than 10 ⁇ m, gas diffusion tends to be insufficient, and if it exceeds 300 / z m, the cell volume tends to increase and the energy density tends to decrease.
  • a proton exchange membrane is used as the electrolyte membrane 1.
  • the constituent material of the strong ion exchange membrane is preferably a polymer compound having a cation group in the molecule.
  • the same material as the ion exchange resin used in the force sword catalyst layer 3 is used.
  • the polymer compound constituting the electrolyte membrane a polymer having a molecular weight larger than that of the key-on exchange resin used for the force sword catalyst layer 3 is usually used.
  • a cation exchange membrane can be used as the electrolyte membrane 1 in addition to the above-described ion exchange membrane.
  • a constituent material of the cation exchange membrane the same materials as the cation exchange resin used for the force sword catalyst layer 3 can be mentioned.
  • a key-on exchange membrane is preferable to use as the electrolyte membrane 1.
  • the thickness of the electrolyte membrane 1 to be used is preferably 20 to 250 ⁇ m.
  • the thickness is less than 20 ⁇ m, the mechanical strength tends to be insufficient, and when it exceeds 250 / z m, the resistance of the electrolyte membrane increases and the output tends to decrease.
  • separators 6 and 7 will be described.
  • a separator 6 having a groove 6 a serving as a fuel flow path is disposed outside the anode 20, and a groove 7 a serving as a gas flow path is formed outside the cathode 30. Separator 7 is placed
  • the separators 6 and 7 are formed of a material having electronic conductivity, and examples of such a material include carbon, resin-molded carbon, titanium, and stainless steel.
  • the fuel cell 10 having the above-described configuration is manufactured by the following method depending on the type of catalyst used for the force sword catalyst layer 3.
  • a metal complex and a carbon material are mixed by a ball mill or the like to obtain a mixture.
  • the mixing method can be selected as appropriate, and may be dry or wet.
  • the compounding amount of the metal complex is preferably 1 to 10% by mass so that the mass of the central metal is 0.1 to 10% by mass based on the total mass of the metal complex and the carbon material. It is more preferable that When the amount is less than 1% by mass, the catalytic active point tends to decrease because the proportion of the central metal is too small. When the amount exceeds 10% by mass, the proportion of the carbon material is relatively small, and the supported catalyst is formed. There is a tendency that the electrical conductivity of is insufficient.
  • the obtained mixture is calcined in an inert atmosphere at 500 ° C to 800 ° C for about 1 to 20 hours to obtain a supported catalyst in which the metal complex calcined product is supported on a carbon material.
  • a Norder solution in which ion-exchange resin as a binder is dissolved in a solvent is prepared.
  • the supported catalyst is put into this solution, mixed, kneaded, and made into a paint.
  • kneading and coating can be carried out by a commonly used kneader such as a ball mill, a twin-screw kneader, or a twin-screw extruder.
  • the obtained paint is applied to a base material such as carbon paper, PET film, PTFE film, and the like, and dried to produce the force sword catalyst layer 3.
  • a doctor blade method, a nozzle method, screen printing, gravure coating, a die coater, or the like can be employed as a coating method.
  • a catalyst such as a noble metal or a noble metal alloy and a carbon material are mixed by a ball mill or the like to obtain a supported catalyst in which the catalyst is supported on a carbon material.
  • the mixing method may be dry or wet.
  • a Norder solution in which ion-exchange resin as a binder is dissolved in a solvent is prepared, and a supported catalyst is placed in the solution, mixed, kneaded, and made into a paint.
  • kneading and coating can be performed by a commonly used kneader such as a ball mill, a twin-screw kneader, or a twin-screw extruder.
  • the binder it is preferable to use the same ion exchange resin as that used in the above-mentioned force sword catalyst layer.
  • the obtained paint is applied to a base material such as carbon paper, PET film, or PTFE film, and dried to prepare the anode catalyst layer 2.
  • a doctor blade method, a nozzle method, screen printing, gravure coating, a die coater, or the like can be employed as a coating method.
  • the electrolyte membrane 1 is formed by plasma polymerization. Specifically, a monomer and plasma assist gas for forming the electrolyte membrane 1 are introduced into the chamber, and plasma is generated by applying an alternating voltage between the electrodes. Then, the monomers ionized by the plasma are polymerized and deposited on the substrate, whereby the thin electrolyte membrane 1 is formed.
  • the electrolyte membrane 1 can be formed by performing plasma polymerization on the surface of a conventional electrolyte membrane (cation exchange membrane, ion exchange membrane, etc., hereinafter referred to as “base membrane”).
  • base membrane a conventional electrolyte membrane
  • the base film is activated with plasma in advance, and the monomer is polymerized on the surface of the ionized base film.
  • the electrolyte membrane 1 obtained in this manner the permeation of alcohol was reduced. It is possible to suppress the cell voltage drop more sufficiently.
  • the force sword catalyst layer 3 and the anode catalyst layer 2 are also transferred to the electrolyte membrane 1 by the base material.
  • the transfer can be performed by a method of bonding the catalyst layers 2 and 3 to the electrolyte membrane 1 by hot pressing or the like and then peeling the substrate. Further, by sandwiching this between the fuel diffusion layer 4 and the gas diffusion layer 5, a laminate composed of the anode 20, the force sword 30 and the electrolyte membrane 1 is produced.
  • the force sword catalyst layer 3 is transferred to the gas diffusion layer 5 and the anode catalyst layer 2 is transferred to the fuel diffusion layer 4 to form the anode 20 and the force sword 30, and then the electrolyte membrane 1 is formed with these.
  • the anode 20 and the force sword 30 are formed by directly applying the paint for forming the force sword catalyst layer 3 and the anode catalyst layer 2 to the gas diffusion layer 5 and the fuel diffusion layer 4 without applying them to the base material. May be.
  • the laminate may be produced by directly applying a paint for forming the catalyst layers 2 and 3 on the electrolyte membrane 1.
  • the laminated body thus obtained is sandwiched between the separator 6 with the fuel supply groove 6a and the separator 7 with the gas supply groove 7a, sealed with the seal body 8, and then the fuel cell.
  • the pond (membrane electrode assembly) 10 is completed.
  • the fuel cell 10 using a metal complex as a catalyst should be produced by the same method as that using the above-mentioned metal complex fired product as a catalyst, except that firing is not performed when obtaining a supported catalyst. Can do.
  • the fuel cell 10 in the case of using silver as a catalyst should be prepared in the same manner as in the case of using the fired metal complex as a catalyst, except that the force sword catalyst layer 3 is prepared by the following procedure. Is possible.
  • a supported catalyst in which silver is supported on a carbon material is obtained.
  • a chemical reduction method, a gas phase reduction method, a reductive pyrolysis method, a sparkling method, or the like can be applied as a method for producing a silver carrying capacity monobon that is a supported catalyst.
  • silver and a carbon material may be mixed by a ball mill or the like. This mixing method can also be selected as appropriate and may be dry or wet! /.
  • a Norder solution in which ion-exchange resin as a binder is dissolved in a solvent is prepared.
  • the supported catalyst is put into this solution, mixed, kneaded, and made into a paint.
  • kneading and coating can be carried out by a commonly used kneader such as a ball mill, a twin-screw kneader, or a twin-screw extruder.
  • the resulting paint is applied to a base material such as carbon paper, PET film, PTFE film, and the like, and dried to complete the production of the force sword catalyst layer 3.
  • a doctor blade method, a nozzle method, screen printing, gravure coating, a die coater, or the like can be employed as a coating method.
  • the electrode prepared as described above was used as the working electrode, platinum as the counter electrode, reversible hydrogen electrode (RHE) as the reference electrode, and oxygen-saturated 0.5M sulfuric acid (H 2 SO 4) solution in the electrolyte.
  • RHE reversible hydrogen electrode
  • H 2 SO 4 oxygen-saturated 0.5M sulfuric acid
  • TPPFeCl 5, 10, 15, 20-tetrafluoro-luporphyrin iron ( ⁇ ) chloride
  • DMSO dimethyl sulfoxide
  • the electrode prepared as described above is used as the working electrode, platinum is used as the counter electrode, reversible hydrogen electrode (RHE) is used as the reference electrode, and oxygen-saturated 1M potassium hydroxide (KOH) aqueous solution is used as the electrolyte.
  • RHE reversible hydrogen electrode
  • KOH oxygen-saturated 1M potassium hydroxide
  • Table 1 shows the oxygen reduction current density at 0.8V.
  • a coating solution was prepared by dissolving 5 mg of silver-carrying carbon (silver carrying amount based on the total amount of silver-carrying carbon: 20% by mass) in 0.33 ml of ethanol.
  • the coating solution 101 was dropped onto a 6 mm ⁇ disk electrode made by Grassy, and a uniform coating film was formed, and this was dried at 25 ° C. for 12 hours to produce an electrode.
  • the electrode was evaluated in the same manner as in Production Example 2 except that the electrode produced as described above was used as the working electrode. The results are shown in Table 1.
  • a 6 mm ⁇ platinum disk electrode was prepared and used as an electrode.
  • the electrode was evaluated in the same manner as in Production Example 1 except that this electrode was used as the working electrode.
  • As the electrolyte a 0.5 M sulfuric acid (H 2 SO 4) aqueous solution saturated with oxygen was used. The results are shown in Table 1.
  • An electrode was obtained in the same manner as in Production Example 1, except that 5,10,15,20-tetraphenylporphyrinatocobalt ( ⁇ ) was not used, but a carbon black fired alone was used as the fired product.
  • the electrode was evaluated in the same manner as in Production Example 1 except that this electrode was used as the working electrode.
  • As the electrolyte a 0.5M sulfuric acid (H 2 SO 4) aqueous solution saturated with oxygen was used.
  • Silver loaded carbon (supported amount of silver relative to the silver loaded carbon total amount: 20 wt%) and, (Aldrich) 8 Weight 0/0 quaternized polyvinyl pyridine and Z methanol solution, and water, 2-pro
  • the compound was mixed with a silver-supported carbon: quaternized polyvinyl pyridine Z methanol solution: water: 2-propanol in a mass ratio of 1: 4: 1: 5 and mixed by a ball mill.
  • a coating solution for forming a catalyst layer was prepared.
  • the obtained coating solution was coated on a PET film using a bar coater. At this time, the coating amount was adjusted so that the content of Ag element contained in the formed force sword catalyst layer was 0.4 mgZcm 2 . After coating, the sword catalyst layer was formed by drying at 25 ° C for 3 hours.
  • the force sword catalyst layer formed on the PET film was transferred onto the surface of AHA (trade name, manufactured by Tokuma Corporation) as an electrolyte membrane at a pressure of 16 kgfZcm 2 and a temperature of 130 ° C.
  • a cell having the structure shown in FIG. 1 was fabricated using a catalyst layer carrying Pt—Ru as the anode catalyst layer and a 120 m thick monobon paper as the gas diffusion layer.
  • the anode was supplied with a 1M methanol fuel mixed with 1M aqueous potassium hydroxide solution.
  • the power sword was supplied with 50 ° C humidified oxygen.
  • the cell power generation test was conducted at a constant current while keeping the cell at 50 ° C.
  • Fig. 2 shows the relationship between current density and voltage
  • Fig. 3 shows the relationship between current density and output density.
  • a cell power generation test was conducted in the same manner as in Evaluation 1 except that a fuel in which 3M ethylene glycol was mixed with 1M potassium hydroxide aqueous solution was supplied to the anode.
  • the relationship between current density and voltage is shown in Fig. 2, and the relationship between current density and output density is shown in Fig. 3, respectively.
  • a direct alcohol that can sufficiently suppress a decrease in cell voltage due to crossover and can stably obtain a sufficient output voltage over a long period of time.
  • Type fuel cell can be provided.

Abstract

 本発明の直接アルコール型燃料電池は、アノード触媒層2を有するアノード20と、カソード触媒層3を有するカソード30と、前記アノード20と前記カソード30との間に配置される固体高分子電解質膜1と、を備え、前記アノード20にアルコール及び水を供給することにより発電を行う直接アルコール型燃料電池であって、前記カソード触媒層3は、金属錯体を焼成してなる金属錯体及び/又は金属錯体焼成物を触媒として含むことを特徴とするものである。

Description

直接アルコール型燃料電池及びその製造方法
技術分野
[0001] 本発明は、アルコール類を直接燃料として使用する直接アルコール型燃料電池及 びその製造方法に関する。
背景技術
[0002] 近年、燃料電池は、発電効率が高ぐ反応生成物が原理的には水のみであり、環 境性にも優れて 、るエネルギー供給源として注目されて 、る。このような燃料電池は 、用いられる電解質の種類により、アルカリ型、固体高分子型、リン酸型等の低温動 作燃料電池と、溶融炭酸塩型、固体酸化物型等の高温動作燃料電池とに大別され る。なかでも、電解質に固体高分子を用いた固体高分子型燃料電池 (PEFC : Polym er Electrolyte Fuel Cell)は、コンパクトな構造で高密度.高出力が得られ、かつ簡易 なシステムで運転が可能なことから、定置用分散電源だけでなく車両用等の電源とし ても広く研究され、実用化が大いに期待されている。
[0003] このような PEFCの一つとして、アルコール類を直接燃料として使用する直接アルコ ール型燃料電池があり、特にメタノールを用いた直接メタノール型燃料電池 (DMFC : Direct Methanol Fuel Cell)が知られている。 DMFCにおいては、アノード(燃料極) にメタノール及び水を供給すると、メタノールが水により酸ィ匕されて水素イオンが生じ る。この水素イオンは電解質を移動して力ソード (空気極)に到達し、この力ソードに供 給されている酸素を還元する。これらの酸化還元反応に基づいて両極間に電流が流 れる。
[0004] このように、直接アルコール型燃料電池は、燃料であるアルコールを水素等に改質 することなく直接発電に用いることができることから、燃料改質用の装置を別途設ける 必要がなぐシンプルな構造を有するものとなる。このため、直接アルコール型燃料 電池は、小型化及び軽量ィ匕が極めて容易であり、ポータブル型電源用途等に好適 に用いることができる。
[0005] このような直接アルコール型燃料電池の高分子電解質膜としては、通常、プロトン 伝導性のイオン交換膜が用いられ、特にスルホン酸基を有するパーフルォロカーボ ン重合体力もなるイオン交換膜が広く用いられている。また、アノード及び力ソードは 、例えば、電極反応の反応場となる触媒層と、触媒層への反応物質の供給、電子の 授受等を行うための拡散層との二層で構成されている。
[0006] し力し、このような直接アルコール型燃料電池においては、アルコールを直接ァノ ードに供給しているために以下の問題が生じることが知られている。すなわち、固体 高分子電解質膜とアルコールとの高い親和性や濃度勾配によりアルコールが電解質 膜に浸透して力ソードに到達する、いわゆる「クロスオーバー」が発生する。ここで、力 ソードには酸素還元に対して活性の高い白金等が触媒として用いられる力 力ソード に到達したアルコールは白金上で直ちに酸ィヒされ、アルデヒドや一酸化炭素、二酸 化炭素を生成する。したがって、クロスオーバーが発生すると、力ソードは酸素還元と 上記のようなアルコールの酸ィ匕との混成電位になるため電位が低下し、結果としてセ ル電圧が低下することとなる。
[0007] このように、クロスオーバー現象は直接アルコール型燃料電池における性能劣化の 大きな原因となっている。そこで、かかるクロスオーバーを抑制するために、電解質膜 に関する様々な検討がなされている。例えば、特許文献 1には、電解質膜に金属酸 化物を含有させることが記載されており、特許文献 2には、液体燃料の透過を制限す る制限透過層を力ソードと固体電解質膜との間に配置することが記載されており、特 許文献 3には、第 1の電解質層とこれよりも有機燃料の透過性が低い第 2の電解質層 力もなる電解質膜を、第 1の電解質層がアノード側となるように配置することが記載さ れている。これらの方法により、クロスオーバーの抑制が図られている。
特許文献 1:特開 2003— 331869号公報
特許文献 2:特開 2003— 317742号公報
特許文献 3:特開 2002— 56857号公報
発明の開示
発明が解決しょうとする課題
[0008] しカゝしながら、特許文献 1〜3に記載された電解質膜を用いた場合であっても、アル コールの透過を完全に防ぐことは困難である。そのため、徐々にアルコールが透過し てセル電圧の低下を生じ、十分な出力電圧を長期間に亘つて安定して得ることが困 難となる。また、電解質膜は本来プロトンを伝導することが目的であるが、特許文献 1 〜3に記載されて 、るように、電解質膜の中にプロトン伝導に寄与しな 、物質を混合 したり、アルコールの透過を抑制する層を設けることは、プロトン伝導性を低下させる 要因となり得る。
[0009] また、クロスオーバーの発生を抑制するために、燃料においてアルコールに対する 水の混合量を増やしてアルコール濃度を下げる方法も行われて 、る。しかしながら、 この場合、アルコール濃度は理論的な理想アルコール濃度の 5分の 1から 20分の 1 程度となるため、十分なエネルギー密度を得ることが困難となる。
[0010] 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、特に、クロス オーバーによるセル電圧の低下を十分に抑制し、十分な出力電圧を長期間に亘っ て安定して得ることが可能な直接アルコール型燃料電池及びその製造方法を提供 することを目的とする。
課題を解決するための手段
[0011] 上記目的を達成するために、第 1の発明に係る直接アルコール型燃料電池は、ァノ ード触媒層を有するアノードと、力ソード触媒層を有する力ソードと、上記アノードと上 記力ソードとの間に配置される固体高分子電解質膜と、を備え、上記アノードにアル コール及び水を供給することにより発電を行う直接アルコール型燃料電池であって、 上記力ソード触媒層は、金属錯体及び Z又は該金属錯体を焼成してなる金属錯体 焼成物を触媒として含むことを特徴とするものである。
[0012] カゝかる直接アルコール型燃料電池においては、力ソード触媒層に含有させる触媒と して金属錯体及び Z又は金属錯体焼成物を用いて 、る。従来から力ソードの触媒と して用いられている白金は、上述したようにアルコールを酸ィ匕させる作用が極めて強 いため、クロスオーバーが生じるとセル電圧を低下させるという問題を有していた。こ れに対して、金属錯体及び金属錯体焼成物は、アルコールを酸化する作用が十分 に弱く、クロスオーバーによりアルコールが力ソードに到達した場合であっても、この アルコールに対してほとんど作用せず、力ソードの電位の低下を十分に抑制すること ができる。したがって、第 1の発明に係る直接アルコール型燃料電池によれば、クロス オーバーによるセル電圧の低下を十分に抑制することができ、十分な出力電圧を長 期間に亘つて安定して得ることが可能となる。また、これにより、燃料のアルコール濃 度を理想アルコール濃度に近い高い濃度とすることが可能となり、燃料タンクの体積 を含めた燃料電池システムのエネルギー密度を大幅に向上することができる。
[0013] ここで、上記金属錯体は、ポルフィリン環又はフタロシア-ン環を有するものであるこ とが好ましい。
[0014] 力かる金属錯体及び該金属錯体を焼成してなる金属錯体焼成物は、アルコールに 対する酸化力がより十分に弱ぐ且つ、酸素に対して十分な還元力を有しているため 、クロスオーバーによるセル電圧の低下をより十分に抑制することができるとともに、 高 、出力電圧を得ることができる傾向がある。
[0015] 更に、上記金属錯体は、ポルフィリン環又はフタロシア-ン環を有するとともに、 Co 、 Fe、 Ni、 Cu、 Mn及び Vからなる群より選択される少なくとも一種の金属を中心金属 とするものであることが好まし 、。
[0016] 力かる金属錯体及び該金属錯体を焼成してなる金属錯体焼成物は、アルコールに 対する酸化力が極めて弱ぐ且つ、酸素に対してより十分な還元力を有しているため 、クロスオーバーによるセル電圧の低下をより十分に抑制することができるとともに、よ り高い出力電圧を得ることができる傾向がある。
[0017] また、上記触媒は、上記金属錯体及び Z又は上記金属錯体焼成物をカーボン材 料に担持させてなる担持触媒を含むことが好ましい。力ソード触媒層が、かかる担持 触媒を触媒として含むことにより、反応物となる酸素を含むガスと、触媒と、電解質膜 とが同時に存在する三相界面を増大させることができるため、力ソードの電極反応を 効率よく生じさせることができる。その結果、より高い出力電圧を得ることができる傾向 がある。
[0018] ここで、力ソードの電極反応をより効率よく生じさせ、出力電圧をより向上させる観点 から、上記担持触媒は、上記金属錯体を上記カーボン材料に担持させた状態で焼 成してなるものであることが好まし!/、。
[0019] また、第 2の発明に係る直接アルコール型燃料電池は、アノード触媒層を有するァ ノードと、力ソード触媒層を有する力ソードと、上記アノードと上記力ソードとの間に配 置される固体高分子電解質膜と、を備え、上記アノードにアルコール及び水を供給 することにより発電を行う直接アルコール型燃料電池であって、上記固体高分子電 解質膜がァ-オン交換膜であり、上記力ソード触媒層は、触媒として銀を含むことを 特徴とするものである。
[0020] カゝかる直接アルコール型燃料電池にぉ ヽては、力ソード触媒層に含有させる触媒と して銀を用いている。銀は上記の金属錯体ゃ金属錯体焼成物と同様に、アルコール を酸ィ匕する作用が十分に弱ぐクロスオーバーによりアルコールが力ソードに到達し た場合であっても、このアルコールに対してほとんど作用せず、力ソードの電位の低 下を十分に抑制することができる。更に、第 2の発明に係る燃料電池においては、電 解質膜としてァ-オン交換膜を用いている。一般的に、燃料電池の電解質膜には力 チオン交換膜が用いられるが、カチオン交換膜と銀触媒とを組み合わせて用いると、 カチオン交換膜と銀との接触界面において銀の腐食が生じやすぐ触媒活性が低下 して出力電圧が低下するという問題が生じる。これに対して、本発明のようにァ-オン 交換膜と銀触媒とを組み合わせて用いると、銀の腐食を十分に抑制することができる 。すなわち、第 2の発明に係る直接アルコール型燃料電池によれば、クロスオーバー によるセル電圧の低下を十分に抑制することができ、且つ、触媒活性の低下を十分 に抑制することができ、それにより十分な出力電圧を長期間に亘つて安定して得るこ とが可能となる。また、燃料のアルコール濃度を理想アルコール濃度に近い高い濃 度とすることが可能となり、燃料タンクの体積を含めた燃料電池システムのエネルギ 一密度を大幅に向上することができる。更に、ァ-オン交換膜と銀触媒とを組み合わ せて用いることにより、力ソードにおける過電圧を十分に低減することが可能となり、 エネルギー密度を更に向上させることができる。
[0021] ここで、上記触媒は、上記銀をカーボン材料に担持させてなる担持触媒を含むこと が好ましい。力ソード触媒層が、力かる担持触媒を触媒として含むことにより、反応物 となる酸素を含むガスと、触媒と、電解質膜とが同時に存在する三相界面を増大させ ることができるため、力ソードの電極反応を効率よく生じさせることができる。その結果 、より高い出力電圧を得ることができる傾向がある。
[0022] また、第 1の発明に係る直接アルコール型燃料電池において、上記固体高分子電 解質膜がァ-オン交換膜であることが好ま U、。
[0023] 第 1の発明に係る燃料電池においても、電解質膜にァ-オン交換膜を用いることに より、金属錯体及び金属錯体焼成物の腐食を十分に抑制することができ、触媒の安 定性を向上させることができる。これにより、より十分な出力電圧を長期間に亘つて安 定して得ることができる傾向がある。更に、ァ-オン交換膜と金属錯体及び Z又は金 属錯体焼成物とを組み合わせて用いることにより、力ソードにおける過電圧を十分に 低減することが可能となり、エネルギー密度を更に向上させることができる傾向がある
[0024] また、第 1及び第 2の発明に係る直接アルコール型燃料電池にぉ 、て、上記ァ-ォ ン交換膜は、分子内にカチオン基を有する高分子化合物力 なるものであることが好 ましい。
[0025] 力かるァ-オン交換膜を用いることにより、力ソード触媒層中の金属錯体及び/又 は金属錯体焼成物や銀の腐食をより十分に抑制することができるとともに、力ソードに おける過電圧をより十分に低減することができる傾向がある。
[0026] また、上記カチオン基が、ピリジ-ゥム基、アルキルアンモ-ゥム基及びイミダゾリウ ム基カもなる群より選択される少なくとも一種であることが好ましい。
[0027] 力かるカチオン基を有するァ-オン交換膜を用いることにより、力ソード触媒層中の 金属錯体及び Z又は金属錯体焼成物や銀の腐食を更に十分に抑制することができ るとともに、力ソードにおける過電圧を更に十分に低減することができる傾向がある。
[0028] また、第 1及び第 2の発明に係る直接アルコール型燃料電池にぉ 、て、電解質膜と してァ-オン交換膜を用いるとともに、上記力ソード触媒層は、バインダーとしてァ- オン交換榭脂を含むことが好まし 、。
[0029] 力ソード触媒層がバインダーとしてァニオン交換榭脂を含むことにより、当該バイン ダ一と触媒とァ-オン交換膜との接触界面において、ァ-オン伝導が良好に行われ ることとなり、エネルギー密度を向上させることが可能となる傾向がある。
[0030] 更に、第 1及び第 2の発明に係る直接アルコール型燃料電池において、上記アル コール力 メタノール、エタノール、エチレングリコール、グリセリン及びエリトリトール力 らなる群より選択される少なくとも一種であることが好ましい。 [0031] これらのアルコールを燃料として用いることにより、燃料電池のエネルギー密度の向 上が容易となる傾向がある。
[0032] 本発明はまた、アノード触媒層を有するアノードと、力ソード触媒層を有する力ソード と、上記アノードと上記力ソードとの間に配置される固体高分子電解質膜と、を備え、 上記アノードにアルコール及び水を供給することにより発電を行う直接アルコール型 燃料電池の製造方法であって、上記力ソード触媒層を、金属錯体及び Z又は該金 属錯体を焼成してなる金属錯体焼成物を用いて形成する工程と、上記固体高分子 電解質膜を、プラズマ重合により形成する工程と、を含むことを特徴とする直接アルコ ール型燃料電池の製造方法を提供する。
[0033] 力かる製造方法によれば、上述した第 1の発明に係る直接アルコール型燃料電池 を効率的に製造することができる。特に、上記固体高分子電解質膜をプラズマ重合 により形成することにより、電解質膜の薄膜ィ匕が可能になり、電解質膜の抵抗を減ら すことができる。また、従来のカチオン交換膜ゃァニオン交換膜の表面にプラズマ重 合を行って固体高分子電解質膜を形成することも可能であり、これによりアルコール 透過特性を改善し、クロスオーバーの発生を抑制することができる。
[0034] 本発明は更に、アノード触媒層を有するアノードと、力ソード触媒層を有するカソー ドと、上記アノードと上記力ソードとの間に配置される固体高分子電解質膜と、を備え 、上記アノードにアルコール及び水を供給することにより発電を行う直接アルコール 型燃料電池の製造方法であって、上記力ソード触媒層を、銀を用いて形成する工程 と、プラズマ重合によりァ-オン交換膜を形成し、上記ァ-オン交換膜で構成される 上記固体高分子電解質膜を得る工程と、を含むことを特徴とする直接アルコール型 燃料電池の製造方法を提供する。
[0035] 力かる製造方法によれば、上述した第 2の発明に係る直接アルコール型燃料電池 を効率的に製造することができる。特に、上記固体高分子電解質膜をプラズマ重合 により形成することにより、電解質膜の薄膜ィ匕が可能になり、電解質膜の抵抗を減ら すことができる。また、従来のァ-オン交換膜の表面にプラズマ重合を行って固体高 分子電解質膜を形成することも可能であり、これによりアルコール透過特性を改善し 、クロスオーバーの発生を抑制することができる。 発明の効果
[0036] 本発明によれば、クロスオーバーによるセル電圧の低下を十分に抑制し、十分な出 力電圧を長期間に亘つて安定して得ることが可能な直接アルコール型燃料電池を提 供することができる。また、カゝかる直接アルコール型燃料電池を効率的に製造するこ とが可能な直接アルコール型燃料電池の製造方法を提供することができる。
図面の簡単な説明
[0037] [図 1]本発明の直接アルコール型燃料電池の好適な一実施形態の基本構成を示す 模式断面図である。
[図 2]実施例 1の直接アルコール型燃料電池に対してセル発電試験を行った際の電 流密度と電圧との関係を示すグラフである。
[図 3]実施例 1の直接アルコール型燃料電池に対してセル発電試験を行った際の電 流密度と出力密度との関係を示すグラフである。
符号の説明
[0038] 1…固体高分子電解質膜、 2· · ·アノード触媒層、 3· · ·力ソード触媒層、 4…燃料拡散 層、 5…ガス拡散層、 6, 7…セパレータ、 6a…セパレータ 6の燃料供給溝、 7a…セパ レータ 7のガス供給溝、 8· · ·シール体、 10· · ·直接アルコール型燃料電池。
発明を実施するための最良の形態
[0039] 以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。な お、以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省 略する。
[0040] 図 1は、本発明の直接アルコール型燃料電池の好適な一実施形態の基本構成を 示す模式断面図である。図 1に示す直接アルコール型燃料電池 10 (以下、単に「燃 料電池 10」という)は、いわゆる膜電極接合体(MEA : Membrane Electrode Assembl y)の形態を有している。図 1に示す燃料電池 10は、主として、固体高分子電解質膜 1と、この電解質膜 1の膜面に密着したアノード触媒層 2及び力ソード触媒層 3と、ァノ ード触媒層 2の外側の面に密着した燃料拡散層 4と、力ソード触媒層 3の外側の面に 密着したガス拡散層 5と、シール体 8とにより構成されている。 [0041] 燃料電池 10においては、アノード 20はアノード触媒層 2と燃料拡散層 4とから構成 され、力ソード 30は、力ソード触媒層 3とガス拡散層 5とから構成されている。これらの アノード 20及び力ソード 30における燃料拡散層 4及びガス拡散層 5は、通常多孔性 の導電性基材カもなる。各拡散層 4及び 5は、燃料電池 10において必須の構成では ないが、アノード触媒層 2への燃料の拡散及び力ソード触媒層 3へのガスの拡散を促 進し、集電体の機能も同時に有することから、アノード 20及び力ソード 30にはこれら 各拡散層 4及び 5が設けられて 、ることが好ま 、。
[0042] 燃料電池 10において、アノード 20の外側には燃料の流路となる溝 6aが形成された セパレータ 6が配置されており、力ソード 30の外側にはガスの流路となる溝 7aが形成 されたセパレータ 7が配置されている。そして、アノード 20側には、セパレータ 6の溝 6 aを通して、メタノール、エタノール、エチレングリコール、グリセリン及びエリトリトール 等のアルコール類が燃料として直接供給され、力ソード 30側には、セパレータ 7の溝 7aを通して、酸素や空気が供給される。
[0043] 本発明の燃料電池 10は、直接アルコール型の燃料電池にぉ 、て、力ソード触媒層 3を構成する触媒として金属錯体及び Z又は金属錯体焼成物、或いは、銀を用いた ことを主な特徴とするものである。まず、この力ソード触媒層 3について説明する。
[0044] 力ソード触媒層 3は、触媒として金属錯体を焼成してなる金属錯体及び Z又は金属 錯体焼成物、或いは、銀を含むものであればその他の構成は特に制限されないが、 例えば、上記金属錯体及び Z又は金属錯体焼成物、或いは、銀をカーボン材料に 担持した担持触媒と、イオン交換樹脂とを含む構成を有して!/ヽる。
[0045] 触媒として金属錯体及び Z又は該金属錯体を焼成してなる金属錯体焼成物を用 いる場合、上記金属錯体としては、例えば、鉄フタロシアニン、コバルトフタロシアニン 、銅フタロシアニン、マンガンフタロシアニン、亜鉛フタロシアニン等の金属フタロシア ニン、鉄テトラフエ-ルポルフィリン、銅テトラフエ-ルポルフィリン、亜鉛テトラフエ-ル ポルフィリン、コバルトテトラフエ-ルポルフィリン等の金属ポリフィリン、ルテニウムアン ミン錯体、コバルトアンミン錯体、コバルトエチレンジアミン錯体等の金属錯体等が挙 げられる。金属錯体焼成物を用いる場合には、これらの金属錯体を焼成することによ り、上記金属錯体焼成物を得ることができる。 [0046] これらの中でも、金属錯体としては、ポルフィリン環又はフタロシア-ン環を有するも のであることが好ましぐ更に、 Co、 Fe、 Ni、 Cu、 Mn及び V力 なる群より選択される 少なくとも一種の金属を中心金属とするものであることがより好ましい。また、金属錯 体焼成物としては、ポルフィリン環又はフタロシアニン環を有する金属錯体を焼成し てなるものであることが好ましぐ更に、 Co、 Fe、 Ni、 Cu、 Mn及び Vからなる群より選 択される少なくとも一種の金属を中心金属とする金属錯体を焼成してなるものである ことがより好ましい。
[0047] これらの金属錯体及びそれを焼成してなる金属錯体焼成物は、アルコールに対す る酸ィ匕力が極めて弱ぐ且つ、酸素に対して十分な還元力を有しているため、クロス オーバーによるセル電圧の低下を十分に抑制することができるとともに、高い出力電 圧を得ることができる傾向がある。
[0048] ここで、金属錯体焼成物を得る場合、金属錯体の焼成は、 500〜800°Cの不活性 雰囲気中で 1〜20時間処理することにより行うことができる。
[0049] 焼成は、金属錯体単独で行ってもよ!、が、金属錯体をカーボン材料に担持させた 状態で行うことが好ましい。これにより、金属錯体及び Z又は金属錯体焼成物が高分 散状態でカーボン材料に密着した担持触媒を得ることが可能となる傾向がある。この ような担持触媒を用いると、反応物となる酸素を含むガスと、触媒と、電解質膜 1とが 同時に存在する三相界面を増大させることができるため、力ソードの電極反応を効率 よく生じさせることがでさる。
[0050] また、金属錯体及び Z又は金属錯体焼成物や銀の担体となるカーボン材料として は、例えば、カーボンブラック、活性炭、カーボンナノチューブ、カーボンナノホーン 等が挙げられる。これらの中でもカーボンブラックが好ましい。カーボン材料として力 一ボンブラックを用いる場合、その比表面積は 50〜: L000m2/gであること力 より大 きな三相界面を形成する観点力 好ま 、。
[0051] 更に、担持触媒において、カーボン材料の平均一次粒子径は 10〜: LOOnmである ことが好ましぐ金属錯体及び金属錯体焼成物の平均一次粒子径は 10〜500nmで あることが好ましい。これにより、より大きな三相界面を形成することができる。
[0052] なお、力ソード触媒層 3における触媒として銀を用いる場合には、焼成を行うことなく 上記カーボン材料に担持させた状態で担持触媒として用いることができる。このとき の銀の平均粒子径は l〜20nmであることが好ましぐこれにより、より大きな三相界 面を形成することができる。
[0053] カーボン材料に銀を担持させた担持触媒を用いる場合、銀の担持量は、担持触媒 全量を基準として 10〜80質量%であることが好ましい。担持量が 10質量%未満で あると、触媒層中の触媒の量が不十分となり三相界面を十分に確保できなくなる傾向 にある。一方、担持量が 80質量%を超えると、銀同士の凝集が生じ、触媒としての活 性が低下する傾向にある。また、カーボン材料に金属錯体及び Z又は金属錯体焼 成物を担持させた担持触媒を用いる場合、金属錯体及び Z又は金属錯体焼成物の 担持量は、担持触媒全量を基準として金属錯体及び金属錯体焼成物の中心金属の 全質量が 1〜10質量%であることが好ましい。担持量 (金属錯体及び金属錯体焼成 物の中心金属の全質量)が 1質量%未満であると、触媒層中の触媒の量が不十分と なり三相界面を十分に確保できなくなる傾向にある。一方、担持量 (金属錯体及び金 属錯体焼成物の中心金属の全質量)が 10質量%を超えると、炭素材料の割合が減 少することから十分な導電性の確保が困難になる傾向にある。
[0054] 力ソード触媒層 3に含有されるイオン交換榭脂は、上記担持触媒を結着させるバイ ンダ一として機能するものである。力かるイオン交換榭脂としては、上記担持触媒を 結着させることが可能なものであれば特に制限されないが、燃料電池 10を構成する 電解質膜 1に使用するイオン交換樹脂と同じイオン交換性を有するものであることが 好ましい。すなわち、触媒として銀を用いる場合には、電解質膜 1はァ-オン交換榭 脂により形成されているため、上記イオン交換榭脂もァ-オン交換榭脂であることが 好ましい。また、触媒として金属錯体及び Z又は金属錯体焼成物を用いる場合には 、上記イオン交換榭脂としては、電解質膜 1がァ-オン交換榭脂により形成されてい ればァユオン交換榭脂、電解質膜 1がカチオン交換榭脂により形成されていれば力 チオン交換榭脂を用いることが好ましい。これ〖こより、当該イオン交換樹脂と触媒と電 解質膜 1との接触界面において、イオン伝導が良好に行われることとなり、エネルギ 一密度を向上させることが可能となる傾向がある。なお、触媒として金属錯体及び Z 又は金属錯体焼成物を用いる場合においても、電解質膜 1にはァ-オン交換榭脂を 用いることが好ま 、ため、本発明にお 、て上記イオン交換榭脂はァ-オン交換榭 脂であることが好ましい。
[0055] 上記ァ-オン交換榭脂としては、分子内にカチオン基を有する高分子化合物から なるものが好ましい。また、上記カチオン基は、ピリジ-ゥム基、アルキルアンモ-ゥム 基及びイミダゾリウム基カもなる群より選択される少なくとも一種であることが好ましい 。このようなァニオン交換榭脂としては、例えば、 4級アンモニゥム化処理したポリ 4 ビニルピリジン、ポリ 2 ビニルピリジン、ポリ 2—メチルー 5—ビュルピリジン、 ポリ— 1—ピリジン— 4—ィルカルボ-口キシエチレン等が挙げられる。ここで、ポリ— 4 ビュルピリジンの 4級アンモ-ゥム化処理は、ポリー4 ビュルピリジンを、臭化メ チル、臭化工チル等のアルキルハライドと反応させることによって行うことができる。
[0056] また、上記カチオン交換榭脂としては、例えば、スルホン酸基を有するパーフルォ 口カーボン重合体、ポリサルホン榭脂、ホスホン酸基又はカルボン酸基を有するパー フルォロカーボン重合体等を用いることができる。
[0057] また、力かるイオン交換樹脂の含有量は、力ソード触媒層 3全量を基準として 10〜 50質量%であることが好ましい。含有量が 10質量%未満であると、触媒をイオン交 換榭脂で薄く均一に被うことが困難となる傾向にあり、 50質量%を超えると、イオン交 換榭脂により触媒が厚く被われてしまうためにガスの拡散が困難になり、出力特性が 低下する傾向にある。
[0058] 燃料電池 10において、力ソード触媒層 3が上述の材料により構成されていることに より、クロスオーバーによりアルコールが力ソード 30に到達した場合であっても、この アルコールを酸ィ匕する作用が十分に弱いため、力ソード 30の電位の低下を十分に抑 制することができる。したがって、クロスオーバーによるセル電圧の低下を十分に抑制 することができ、十分な出力電圧を長期間に亘つて安定して得ることが可能となる。
[0059] また、力かる力ソード触媒層 3の厚さは、 10-300 μ mであることが好ましい。厚さが 10 m未満であると、触媒の量が不足する傾向にある。また、厚さが 300 mを越え ると、イオンの移動やガスの拡散を妨げ、抵抗が増大して出力特性が低下する傾向 にある。
[0060] 力ソード 30は、力ソード触媒層 3へのガスの拡散を促進するために、ガス拡散層 5を 有している。力かるガス拡散層 5の構成材料としては、例えば、電子伝導性を有する 多孔質体が挙げられる。このような多孔質体としては、カーボンクロス、カーボンぺー パー等が好ましい。
[0061] かかるガス拡散層 5の厚さは、 10〜300 μ mであることが好ましい。厚さが 10 μ m 未満であると、撥水とガスの拡散が不十分となる傾向にあり、 300 /z mを越えると、セ ルの体積が増大してエネルギー密度が低下する傾向にある。
[0062] 次に、アノード 20について説明する。アノード 20は、アノード触媒層 2と燃料拡散層 4とで構成されている。
[0063] アノード触媒層 2は、例えば、触媒をカーボン材料に担持した担持触媒と、イオン交 換榭脂とを含む構成を有して!/ヽる。
[0064] 上記触媒としては、例えば、貴金属や貴金属合金等が挙げられる。貴金属としては
Ptが好ましぐ貴金属合金としては、 Ptと、 Ru、 Sn、 Mo、 Ni、 Co等との合金が好ま しい。これらの中でも、触媒の被毒が生じにくい Pt—Ruの貴金属合金を用いることが 好ましい。
[0065] アノード触媒層 2を構成するカーボン材料及びイオン交換榭脂としては、力ソード触 媒層 3に使用される材料と同様のものが使用可能である。
[0066] アノード触媒層 2にお ヽて、カーボン材料に対する触媒の担持量は、担持触媒全 量を基準として 10〜85質量%であることが好ましい。担持量が 10質量%未満である と、触媒層中の触媒の量が不十分となり三相界面を十分に確保できなくなる傾向に ある。一方、担持量が 85質量%を超えると、触媒同士の凝集が生じ、触媒としての活 性が低下する傾向にある。
[0067] また、アノード触媒層 2において、イオン交換樹脂の含有量は、アノード触媒層 2全 量を基準として 10〜50質量%であることが好ましい。含有量が 10質量%未満である と、触媒をイオン交換樹脂で薄く均一に被うことが困難となる傾向にあり、 50質量% を超えると、イオン交換榭脂により触媒が厚く被われしまうためにガスの拡散が困難 になり、出力特性が低下する傾向にある。
[0068] 更に、アノード触媒層 2の厚さは、 10〜300 μ mであることが好ましい。厚さが 10 μ m未満であると、触媒の量が不足する傾向にある。また、厚さが 300 mを超えると、 イオンの移動やガスの拡散を妨げ、抵抗が増大して出力特性が低下する傾向にある
[0069] また、燃料拡散層 4の構成材料としては、ガス拡散層 5に使用される材料と同様のも のが使用可能である。
[0070] 力かる燃料拡散層 4の厚さは、 10-300 μ mであることが好ましい。厚さが 10 μ m 未満であると、ガスの拡散が不十分となる傾向にあり、 300 /z mを超えると、セルの体 積が増大してエネルギー密度が低下する傾向にある。
[0071] 次に、アノード 20と力ソード 30との間に配置される電解質膜 1について説明する。
[0072] 力ソード触媒層 3に含有させる触媒として銀を用いる場合、電解質膜 1としてはァ- オン交換膜が用いられる。力かるァ-オン交換膜の構成材料としては、分子内にカチ オン基を有する高分子化合物が好ましぐ例えば、上記力ソード触媒層 3に使用され るァ-オン交換樹脂と同様のものが挙げられる。なお、電解質膜 1を構成する高分子 化合物としては、通常、上記力ソード触媒層 3に使用されるァ-オン交換樹脂よりも分 子量の大き 、ものが用いられる。
[0073] 燃料電池 10において、力ソード触媒層 3に含有される触媒として銀を用いるとともに 、電解質膜 1としてァ-オン交換膜を用いることにより、銀の腐食を十分に抑制するこ とができる。これにより、銀の触媒活性の低下を十分に抑制することができ、十分な出 力電圧を長期間に亘つて安定して得ることが可能となる。更に、ァ-オン交換膜と銀 触媒とを組み合わせて用いることにより、力ソード 30における過電圧を十分に低減す ることが可能となり、エネルギー密度を向上させることができる。
[0074] 力ソード触媒層 3中に含有させる触媒として金属錯体及び Z又は金属錯体焼成物 を用いる場合、電解質膜 1としては上記ァ-オン交換膜以外にカチオン交換膜も使 用可能である。カチオン交換膜の構成材料としは、上記力ソード触媒層 3に使用され るカチオン交換樹脂と同様のものが挙げられる。なお、触媒として金属錯体及び Z又 は金属錯体焼成物を用いた場合にも、電解質膜 1としてはァ-オン交換膜を用いる ことが好ましい。ァ-オン交換膜を用いることにより、金属錯体及び金属錯体焼成物 の腐食を十分に抑制することができ、触媒の安定性を向上させることができる。その ため、より十分な出力電圧を長期間に亘つて安定して得ることができる傾向がある。 更に、ァ-オン交換膜と金属錯体及び z又は金属錯体焼成物触媒とを組み合わせ て用いることにより、力ソード 30における過電圧を十分に低減することが可能となり、 エネルギー密度を向上させることができる傾向がある。
[0075] 力かる電解質膜 1の厚さは、 20〜250 μ mであることが好ましい。厚さが 20 μ m未 満であると、機械的強度が不十分となる傾向にあり、 250 /z mを超えると、電解質膜 の抵抗が大きくなるため出力が低下する傾向にある。
[0076] 次に、セパレータ 6及び 7について説明する。燃料電池 10においては、アノード 20 の外側に、燃料の流路となる溝 6aが形成されたセパレータ 6が配置されており、カソ ード 30の外側に、ガスの流路となる溝 7aが形成されたセパレータ 7が配置されている
[0077] セパレータ 6及び 7は、電子伝導性を有する材料で形成されており、かかる材料とし ては、例えば、カーボン、榭脂モールドカーボン、チタン、ステンレス等が挙げられる
[0078] 上述した構成を有する燃料電池 10は、力ソード触媒層 3に使用する触媒の種類に 応じて、以下の方法により製造される。
[0079] まず、金属錯体焼成物を触媒とする場合の燃料電池 10の製造方法につ 、て説明 する。
[0080] はじめに、力ソード触媒層 3を形成するために、金属錯体とカーボン材料とをボール ミル等によって混合して混合物を得る。混合方法は適宜選択することができ、乾式で あっても湿式であってもよい。このとき、金属錯体の配合量は、その中心金属の質量 が金属錯体とカーボン材料との合計質量を基準として 0. 1〜10質量%となるように することが好ましぐ 1〜6質量%となるようにすることがより好ましい。 0. 1質量%未満 では中心金属の割合が少なすぎるために触媒活性点が減少する傾向があり、 10質 量%を超えると相対的にカーボン材料の割合が少なくなり、担持触媒を形成したとき の導電性が不十分となる傾向がある。
[0081] 次に、得られた混合物を 500°C〜800°Cの不活性雰囲気で 1〜20時間程度焼成 し、金属錯体焼成物をカーボン材料に担持してなる担持触媒を得る。
[0082] 次に、バインダーとしてのイオン交換榭脂を溶媒に溶解させたノインダー溶液を調 製し、この溶液中に担持触媒を入れて混合、混練し、塗料化する。ここで、混鍊、塗 料ィ匕はボールミルや 2軸混鍊機、 2軸押し出し機等、通常用いられる混鍊機により行 うことができる。
[0083] そして、得られた塗料をカーボンペーパーや PETフィルム、 PTFEフィルム等の基 材に塗布、乾燥することによって力ソード触媒層 3を作製する。ここで、塗布の方法と してはドクターブレード法やノズル法、スクリーン印刷やグラビアコート、ダイコーター 等を採用することができる。
[0084] また、アノード触媒層 2を作製するために、貴金属や貴金属合金等の触媒とカーボ ン材料とをボールミル等によって混合し、触媒をカーボン材料に担持してなる担持触 媒を得る。混合方法は、乾式であっても湿式であってもよい。
[0085] 次に、バインダーとしてのイオン交換榭脂を溶媒に溶解させたノインダー溶液を調 製し、この溶液中に担持触媒を入れて混合、混練し、塗料化する。ここで、混鍊、塗 料化は、ボールミルや 2軸混鍊機、 2軸押し出し機等、通常用いられる混鍊機により 行うことができる。また、バインダーとしては、上記力ソード触媒層に使用したものと同 じイオン交換榭脂を用いることが好まし 、。
[0086] そして、得られた塗料をカーボンペーパーや PETフィルム、 PTFEフィルム等の基 材に塗布、乾燥することによってアノード触媒層 2を作製する。ここで、塗布の方法と してはドクターブレード法やノズル法、スクリーン印刷やグラビアコート、ダイコーター 等を採用することができる。
[0087] 一方、電解質膜 1は、プラズマ重合により形成する。具体的には、電解質膜 1を形 成するためのモノマー及びプラズマアシストガスをチャンバ一に導入し、交流電圧を 電極間に印加することによりプラズマを発生させる。そして、プラズマによりイオンィ匕さ れたモノマー同士が重合し、基板上に堆積することにより薄膜状の電解質膜 1が形成 される。
[0088] また、従来の電解質膜 (カチオン交換膜ゃァ-オン交換膜等、以下、「ベース膜」と いう)の表面にプラズマ重合を行って、電解質膜 1を形成することもできる。この場合 には、予めプラズマによりベース膜を活性ィ匕し、イオンィ匕されたベース膜表面にモノ マーを重合させる。このようにして得られた電解質膜 1によれば、アルコールの透過を 抑制することができ、セル電圧の低下をより十分に抑制することができる。
[0089] その後、力ソード触媒層 3及びアノード触媒層 2をそれぞれ基材カも電解質膜 1に 転写する。転写は、ホットプレス等により電解質膜 1に各触媒層 2及び 3を接合し、そ の後基材を剥離する方法等により行うことができる。更に、これを燃料拡散層 4及びガ ス拡散層 5で挟み込むことで、アノード 20、力ソード 30及び電解質膜 1からなる積層 体を作製する。
[0090] なお、力ソード触媒層 3をガス拡散層 5に、アノード触媒層 2を燃料拡散層 4にそれ ぞれ転写し、アノード 20及び力ソード 30を形成した後に、これらで電解質膜 1を挟み 込むことによって上記積層体を作製してもよい。更に、力ソード触媒層 3及びアノード 触媒層 2を形成するための塗料を基材に塗布することなぐそれぞれ直接、ガス拡散 層 5、燃料拡散層 4に塗布してアノード 20及び力ソード 30を形成してもよい。あるいは 、電解質膜 1に各触媒層 2及び 3を形成するための塗料を直接塗布することにより、 上記積層体を作製してもよ ヽ。
[0091] このようにして得られた積層体を、燃料供給溝 6aが形成されたセパレータ 6及びガ ス供給溝 7aが形成されたセパレータ 7で挟み込み、シール体 8で封止して、燃料電 池 (膜電極接合体) 10の作製を完了する。
[0092] また、金属錯体を触媒とする場合の燃料電池 10は、担持触媒を得る際に焼成を行 わない以外は上記の金属錯体焼成物を触媒とする場合と同様の方法で作製すること ができる。
[0093] また、銀を触媒とする場合の燃料電池 10は、力ソード触媒層 3を以下の手順で作製 する以外は上記の金属錯体焼成物を触媒とする場合と同様の方法で作製することが できる。
[0094] まず、銀をカーボン材料に担持させた担持触媒を得る。担持触媒である銀担持力 一ボンの作製方法としては、例えば、化学還元法、気相還元法、還元熱分解法、ス ノ ッタリング法等を適用することができる。また、銀とカーボン材料とをボールミル等に よって混合することで作製してもよい。この混合方法も適宜選択することができ、乾式 であっても湿式であってもよ!/、。
[0095] 次に、バインダーとしてのイオン交換榭脂を溶媒に溶解させたノインダー溶液を調 製し、この溶液中に担持触媒を入れて混合、混練し、塗料化する。ここで、混鍊、塗 料ィ匕はボールミルや 2軸混鍊機、 2軸押し出し機等、通常用いられる混鍊機により行 うことができる。
[0096] そして、得られた塗料をカーボンペーパーや PETフィルム、 PTFEフィルム等の基 材に塗布、乾燥することによって力ソード触媒層 3の作製を完了する。ここで、塗布の 方法としてはドクターブレード法やノズル法、スクリーン印刷やグラビアコート、ダイコ 一ター等を採用することができる。
実施例
[0097] 以下、実施例及び比較例に基づいて本発明をより具体的に説明する力 本発明は 以下の実施例に限定されるものではない。
[0098] [製造例 1]
(電極の作製)
5, 10, 15, 20—テトラフヱ-ルポルフイリナトコバルト(Π) (TPPCo :アルドリッチ社 製) 0. 8gとカーボンブラック(商品名:デンカブラック、電気化学工業社製) 0. 6gとを ボールミルによって混合し、得られた混合物を 600°Cのアルゴン雰囲気で 3時間焼成 して焼成物を得た。この焼成物を 20mg秤量し、 5質量%ナフイオン (登録商標)溶液 (アルドリッチ社製) 0. 18mlとエタノール 0. 82mlとの混合溶液に懸濁させた。次い で、得られた懸濁液 10 μ 1をグラッシ一カーボン製の 6mm φディスク電極に滴下して 均一な塗膜を形成し、これを 25°Cで 12時間乾燥して電極を作製した。
[0099] (電極の評価)
上記のように作製した電極を作用極として用い、対極には白金、参照極には可逆 水素電極 (RHE)を用い、電解液には酸素飽和させた 0. 5M硫酸 (H SO )水溶液
2 4 と、酸素飽和させた 1M水酸ィ匕カリウム (KOH)水溶液とを用いて、それぞれ 0. 9Vか ら 0. 05Vまで 50mV間隔で電位ステップし、各電位で 500秒間保持した後の電流値 を読み取り、定常分極として酸素還元電流密度を測定した。それぞれの電解液につ いて上記の測定を行った後に、各々の電解液 200ml中に 1Mのメタノール水溶液を 5. 28ml追カ卩して同様の測定を行った。 0. 8Vでの酸素還元電流密度の値を表 1に 示す。 [0100] [製造例 2]
(電極の作製)
5, 10, 15, 20—テトラフヱ-ルポルフィリン鉄(Π)塩化物(TPPFeCl:アルドリッチ 社製) 23mgをジメチルスルフォキシド(DMSO) 3mlに溶解して塗布液を調製した。 この塗布液 10 μ 1を、グラッシ一カーボン製の 6mm φディスク電極に滴下して均一な 塗膜を形成し、これを 25°Cで 12時間乾燥することにより電極を作製した。
[0101] (電極の評価)
上記のように作製した電極を作用極として用い、対極には白金、参照極には可逆 水素電極 (RHE)を用い、電解液には酸素飽和させた 1M水酸ィ匕カリウム (KOH)水 溶液を用いて、 0. 9V力 0. 05Vまで 50mV間隔で電位ステップし、各電位で 500 秒間保持した後の電流値を読み取り、定常分極として酸素還元電流密度を測定した 。 1M水酸ィ匕カリウム水溶液を電解液として測定した後に、この 1M水酸ィ匕カリウム水 溶液 200mlに 1Mのメタノール水溶液 5. 28mlを追加して同様の測定を行った。 0. 8Vでの酸素還元電流密度の値を表 1に示す。
[0102] [製造例 3]
(電極の作製)
銀担持カーボン (銀担持カーボン全量を基準とした銀の担持量: 20質量%) 5mgを エタノール 0. 33mlに溶解して塗布液を調製した。この塗布液 10 1を、グラッシ一力 一ボン製の 6mm φディスク電極に滴下して均一な塗膜を形成し、これを 25°Cで 12 時間乾燥することにより電極を作製した。
[0103] (電極の評価)
上記のように作製した電極を作用極として用いた以外は製造例 2と同様の方法で電 極の評価を行った。その結果を表 1に示す。
[0104] [製造例 4]
(電極の作製及び評価)
5, 10, 15, 20—テトラフヱ-ルポルフィリン鉄(Π)塩化物(TPPFeCl:アルドリッチ 社製) 23mgの代わり【こ、 5, 10, 15, 20—テトラフエニノレポノレフイリナトコノ ノレト(II) 2 3mgを用いた以外は製造例 2と同様にして電極を得た。この電極を作用極として用 いた以外は製造例 2と同様の方法で電極の評価を行った。その結果を表 1に示す。
[0105] [製造例 5]
(電極の作製及び評価)
5, 10, 15, 20—テトラフヱ-ルポルフィリン鉄(Π)塩化物(TPPFeCl:アルドリッチ 社製) 23mgの代わりに、ニッケル (II)フタロシアニン 23mgを用いた以外は製造例 2 と同様にして電極を得た。この電極を作用極として用いた以外は製造例 2と同様の方 法で電極の評価を行った。その結果を表 1に示す。
[0106] [比較製造例 1]
(電極の作製及び評価)
6mm φの白金ディスク電極を用意し、これを電極とした。この電極を作用極として 用いた以外は製造例 1と同様の方法で電極の評価を行った。なお、電解液には酸素 飽和させた 0. 5M硫酸 (H SO )水溶液を用いた。その結果を表 1に示す。
2 4
[0107] [比較製造例 2]
(電極の作製及び評価)
5, 10, 15, 20—テトラフエ-ルポルフイリナトコバルト(Π)を使用せず、カーボンブ ラックを単独で焼成したものを焼成物として用いた以外は製造例 1と同様にして電極 を得た。この電極を作用極として用いた以外は製造例 1と同様の方法で電極の評価 を行った。なお、電解液には酸素飽和させた 0. 5M硫酸 (H SO )水溶液を用いた。
2 4
その結果を表 1に示す。
[0108] [表 1]
0. 8Vでの酸素還元電流密度 触媒層材料 電解液 〃 A-cm—2
メタノールなし メタノールあり
0. 5M H2S04 43. 2 33. 6 製造例 1 TPPCo/C焼成体
1 M KOH 79. 1 1 55. 0 製造例 2 TPPFeCI 1 M KOH 7. 0 1 7. 3 製造例 3 Ag/C 1 M KOH 54. 5 47. 1 製造例 4 TPPCo 1 M KOH 8. 42 1 7. 4 製造例 5 Niフタロシアニン 1 M KOH 1 0. 8 20. 9 比較製造例 1 Pt 0. 5M H2S04 474. 0 -4846. 1 比較製造例 2 C焼成体 0. 5M H2S04 -0. 6 -3. 3
[0109] 表 1に示すように、製造例 1〜5はメタノールを添加した後も酸素還元電流が流れて いるが、比較製造例 1〜2はメタノール添加後には逆に酸ィ匕電流が流れている。従つ て、製造例 1〜5は直接アルコール型燃料電池の力ソードとしての特性が得られるが 、比較製造例 1〜2は力ソードとして機能して発電することが困難であることが確認さ れた。
[0110] 直接メタノール型燃料電池ではアノードから透過したメタノールが力ソードに達し、 力ソードの酸素還元電流が減少することが問題になる。製造例 1〜5のようにメタノー ルによる電流減少の割合が少な 、(又は電流減少のな 、)、メタノール耐性の高 ヽ電 極を用いることによって、直接アルコール型燃料電池の出力低下を防ぐことができる 。したがって、製造例 1〜5の電極を用いることで、クロスオーバーの問題を解決し、 十分なエネルギー密度を有する直接アルコール型燃料電池を提供することができる
[0111] [実施例 1]
(燃料電池の作製)
銀担持カーボン (銀担持カーボン全量を基準とした銀の担持量 : 20質量%)と、 8質 量0 /04級化ポリビニルピリジン (アルドリッチ社製) Zメタノール溶液と、水と、 2—プロ ノ ノールとを、銀担持カーボン: 4級化ポリビニルピリジン Zメタノール溶液:水: 2—プ ロパノールが質量比で 1 :4 : 1: 5となるように配合し、ボールミルにより混合してカソー ド触媒層形成用塗布液を調製した。
[0112] 次に、得られた塗布液を、 PETフィルム上にバーコ一ターを用いて塗布した。このと き、形成される力ソード触媒層に含まれる Ag元素の含有量が 0. 4mgZcm2となるよ うに塗布量を調節した。塗布後、 25°Cで 3時間乾燥することにより、力ソード触媒層を 形成した。
[0113] PETフィルム上に形成した力ソード触媒層を、電解質膜としての AHA (商品名、トク ャマ社製)の表面に、 16kgfZcm2の圧力、 130°Cの温度で転写した。また、アノード 触媒層には Pt—Ruを担持した触媒層を用い、ガス拡散層には 120 mの厚さの力 一ボンペーパーを用いて、図 1に示した構成を有するセルを作製した。
[0114] (燃料電池の評価 1)
上記実施例 1の直接アルコール型燃料電池において、アノード〖こは、 1M水酸化力 リウム水溶液に対して 1Mのメタノールを混合した燃料を供給した。また、力ソードに は、 50°C加湿酸素を供給した。セルを 50°Cに保ち、定電流でセル発電試験を行つ た。このときの電流密度と電圧との関係を図 2に、電流密度と出力密度との関係を図 3にそれぞれ示す。
[0115] (燃料電池の評価 2)
アノードに、 1M水酸ィ匕カリウム水溶液に対して 3Mのエチレングリコールを混合した 燃料を供給した以外は上記評価 1と同様にして、セル発電試験を行った。このときの 電流密度と電圧との関係を図 2に、電流密度と出力密度との関係を図 3にそれぞれ 示す。
[0116] 図 2及び 3に示した結果から明らかなように、実施例 1の直接アルコール型燃料電 池によれば、十分なセル電圧及び出力密度が得られることが確認された。
産業上の利用可能性
[0117] 以上説明したように、本発明によれば、クロスオーバーによるセル電圧の低下を十 分に抑制し、十分な出力電圧を長期間に亘つて安定して得ることが可能な直接アル コール型燃料電池を提供することができる。また、カゝかる直接アルコール型燃料電池 を効率的に製造することが可能な直接アルコール型燃料電池の製造方法を提供す ることがでさる。

Claims

請求の範囲
[1] アノード触媒層を有するアノードと、力ソード触媒層を有する力ソードと、前記ァノー ドと前記力ソードとの間に配置される固体高分子電解質膜と、を備え、前記アノードに アルコール及び水を供給することにより発電を行う直接アルコール型燃料電池であつ て、
前記力ソード触媒層は、金属錯体及び Z又は該金属錯体を焼成してなる金属錯体 焼成物を触媒として含むことを特徴とする直接アルコール型燃料電池。
[2] 前記金属錯体は、ポルフィリン環又はフタロシア-ン環を有するものであることを特 徴とする請求項 1記載の直接アルコール型燃料電池。
[3] 前記金属錯体は、 Co、 Fe、 Ni、 Cu、 Mn及び V力 なる群より選択される少なくとも 一種の金属を中心金属とするものであることを特徴とする請求項 2記載の直接アルコ ール型燃料電池。
[4] 前記触媒は、前記金属錯体及び Z又は前記金属錯体焼成物をカーボン材料に担 持させてなる担持触媒を含むことを特徴とする請求項 1〜3のうちのいずれか一項に 記載の直接アルコール型燃料電池。
[5] 前記担持触媒は、前記金属錯体を前記カーボン材料に担持させた状態で焼成し てなるものであることを特徴とする請求項 4記載の直接アルコール型燃料電池。
[6] 前記固体高分子電解質膜がァ-オン交換膜であることを特徴とする請求項 1〜5の うちのいずれか一項に記載の直接アルコール型燃料電池。
[7] アノード触媒層を有するアノードと、力ソード触媒層を有する力ソードと、前記ァノー ドと前記力ソードとの間に配置される固体高分子電解質膜と、を備え、前記アノードに アルコール及び水を供給することにより発電を行う直接アルコール型燃料電池であつ て、
前記固体高分子電解質膜がァニオン交換膜であり、
前記力ソード触媒層は、触媒として銀を含むことを特徴とする直接アルコール型燃 料電池。
[8] 前記触媒は、前記銀をカーボン材料に担持させてなる担持触媒を含むことを特徴 とする請求項 7記載の直接アルコール型燃料電池。
[9] 前記ァニオン交換膜は、分子内にカチオン基を有する高分子化合物力もなるもの であることを特徴とする請求項 6〜8のうちのいずれか一項に記載の直接アルコール 型燃料電池。
[10] 前記カチオン基が、ピリジ-ゥム基、アルキルアンモ-ゥム基及びイミダゾリウム基か らなる群より選択される少なくとも一種であることを特徴とする請求項 9記載の直接ァ ルコール型燃料電池。
[11] 前記力ソード触媒層は、バインダーとしてァ-オン交換榭脂を含むことを特徴とする 請求項 6〜10のうちのいずれか一項に記載の直接アルコール型燃料電池。
[12] 前記アルコール力 メタノール、エタノール、エチレングリコール、グリセリン及びエリ トリトール力もなる群より選択される少なくとも一種であることを特徴とする請求項 1〜1 1のうちのいずれか一項に記載の直接アルコール型燃料電池。
[13] アノード触媒層を有するアノードと、力ソード触媒層を有する力ソードと、前記ァノー ドと前記力ソードとの間に配置される固体高分子電解質膜と、を備え、前記アノードに アルコール及び水を供給することにより発電を行う直接アルコール型燃料電池の製 造方法であって、
前記力ソード触媒層を、金属錯体及び Z又は該金属錯体を焼成してなる金属錯体 焼成物を用いて形成する工程と、
前記固体高分子電解質膜を、プラズマ重合により形成する工程と、
を含むことを特徴とする直接アルコール型燃料電池の製造方法。
[14] アノード触媒層を有するアノードと、力ソード触媒層を有する力ソードと、前記ァノー ドと前記力ソードとの間に配置される固体高分子電解質膜と、を備え、前記アノードに アルコール及び水を供給することにより発電を行う直接アルコール型燃料電池の製 造方法であって、
前記力ソード触媒層を、銀を用いて形成する工程と、
プラズマ重合によりァ-オン交換膜を形成し、前記ァ-オン交換膜で構成される前 記固体高分子電解質膜を得る工程と、
を含むことを特徴とする直接アルコール型燃料電池の製造方法。
PCT/JP2005/011963 2004-06-30 2005-06-29 直接アルコール型燃料電池及びその製造方法 WO2006003943A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/591,176 US8652704B2 (en) 2004-06-30 2005-06-29 Direct alcohol fuel cell with cathode catalyst layer containing silver and method for producing the same
JP2006528752A JP4978191B2 (ja) 2004-06-30 2005-06-29 直接アルコール型燃料電池及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004194656 2004-06-30
JP2004-194656 2004-06-30

Publications (1)

Publication Number Publication Date
WO2006003943A1 true WO2006003943A1 (ja) 2006-01-12

Family

ID=35782750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011963 WO2006003943A1 (ja) 2004-06-30 2005-06-29 直接アルコール型燃料電池及びその製造方法

Country Status (5)

Country Link
US (1) US8652704B2 (ja)
JP (2) JP4978191B2 (ja)
CN (1) CN100449829C (ja)
TW (1) TWI289951B (ja)
WO (1) WO2006003943A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273278A (ja) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd 燃料電池用触媒層及び触媒層−電解質膜積層体
JP2008004402A (ja) * 2006-06-22 2008-01-10 Nitto Denko Corp ダイレクトメタノール型燃料電池用アノード電極及びそれを用いたダイレクトメタノール型燃料電池
JP2008504660A (ja) * 2004-07-02 2008-02-14 ソルヴェイ(ソシエテ アノニム) イオン交換膜を含む固体アルカリ型燃料電池
JP2008293850A (ja) * 2007-05-25 2008-12-04 Toyota Motor Corp 燃料電池システム及びその運転方法
EP2003717A2 (en) * 2006-03-31 2008-12-17 Nissan Motor Co., Ltd. Electrode catalyst for electrochemical cell, method for manufacturing the same, electrochemical cell, unit cell for fuel battery, and fuel battery
JP2009231270A (ja) * 2008-02-29 2009-10-08 Commissariat A L'energie Atomique 燃料電池用のイオン伝導性高分子膜を製造するための方法
JP2010015972A (ja) * 2008-06-06 2010-01-21 Toyobo Co Ltd 熱処理した配位高分子金属錯体を用いた燃料電池用触媒、膜電極接合体、及び燃料電池、並びに酸化還元触媒。
JP2011516254A (ja) * 2008-04-07 2011-05-26 アクタ ソシエタ ペル アチオニ 高性能ORR(酸化還元反応)PGM(Pt族金属)フリー触媒
US9012108B2 (en) * 2008-08-22 2015-04-21 Toyota Motor Engineering & Manufacturing North America, Inc. Fuel cell electrodes with triazole modified polymers and membrane electrode assemblies incorporating same
JP2015128058A (ja) * 2013-11-28 2015-07-09 ダイハツ工業株式会社 アノード触媒
WO2021045121A1 (ja) * 2019-09-05 2021-03-11 AZUL Energy株式会社 触媒の製造方法、触媒、組成物の製造方法、組成物、電極、電極の製造方法、燃料電池、金属空気電池

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070102819A (ko) * 2006-04-17 2007-10-22 삼성에스디아이 주식회사 혼합 주입형 연료 전지용 스택, 및 이를 포함하는 혼합주입형 연료 전지 시스템
JP5218555B2 (ja) * 2008-10-17 2013-06-26 トヨタ自動車株式会社 燃料電池システム
CN102945975A (zh) * 2012-12-10 2013-02-27 厦门大学 吡啶鎓盐聚合物阴离子交换膜及其制备方法
DK3453065T3 (da) * 2016-05-03 2021-05-17 Opus 12 Incorporated Reaktor med avanceret arkitektur til elektrokemisk reduktion af cox
TWI609719B (zh) * 2016-12-09 2018-01-01 National Taiwan University Of Science And Technology 用於燃料電池的觸媒及其製造方法
JP6888778B2 (ja) * 2017-02-22 2021-06-16 国立大学法人山梨大学 陰イオン交換樹脂、電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
JP7364313B2 (ja) 2018-01-22 2023-10-18 トゥエルブ ベネフィット コーポレーション 二酸化炭素リアクタ制御のための方法
CA3120748A1 (en) 2018-11-28 2020-06-04 Opus 12 Incorporated Electrolyzer and method of use
AU2019401616A1 (en) 2018-12-18 2021-07-22 Twelve Benefit Corporation Electrolyzer and method of use
BR112022010144A2 (pt) 2019-11-25 2022-09-06 Twelve Benefit Corp Conjunto de eletrodos de membrana para redução de cox
CN111370712A (zh) * 2020-02-24 2020-07-03 中南大学 一种高活性电化学氧还原催化剂的制备方法
CN111766517B (zh) * 2020-05-29 2023-03-24 山东理工大学 一种新型燃料电池模具
CN112436167B (zh) * 2020-11-17 2021-10-12 中国科学院兰州化学物理研究所 一种直接式多醚类化合物燃料电池及系统
US11339483B1 (en) 2021-04-05 2022-05-24 Alchemr, Inc. Water electrolyzers employing anion exchange membranes
WO2024035474A1 (en) 2022-08-12 2024-02-15 Twelve Benefit Corporation Acetic acid production

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763137A (en) * 1980-10-04 1982-04-16 Asahi Chem Ind Co Ltd Catalyst for oxygen reduction
JPH1116584A (ja) * 1997-06-25 1999-01-22 Sanyo Electric Co Ltd 固体高分子型燃料電池用セル及びその作製方法
JP2002015744A (ja) * 2000-06-30 2002-01-18 Asahi Glass Co Ltd 固体高分子型燃料電池
CA2453024A1 (en) * 2001-07-03 2003-01-16 Hahn-Meitner-Institut Berlin Gmbh Platinum-free chelate catalyst material for the selective reduction of oxygen and method of its production
CA2448447A1 (en) * 2001-07-11 2003-01-23 Jorg Mueller Method for producing a plasma-polymerized polymer electrolyte membrane and a polyazol membrane coated by plasma-polymerization
JP2003109614A (ja) * 2001-09-27 2003-04-11 Nippon Steel Corp 高分子固体電解質型燃料電池酸素極用触媒及びその製造方法
JP2005228497A (ja) * 2004-02-10 2005-08-25 National Institute Of Advanced Industrial & Technology 低温型燃料電池の酸素極添加剤
JP2005235437A (ja) * 2004-02-17 2005-09-02 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池用電解質膜電極接合体および固体高分子型燃料電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3618840A1 (de) * 1986-06-04 1987-12-10 Basf Ag Methanol/luft-brennstoffzellen
JPH117964A (ja) 1997-06-12 1999-01-12 Japan Storage Battery Co Ltd 直接型メタノ−ル燃料電池
JPH11144745A (ja) * 1997-11-06 1999-05-28 Asahi Glass Co Ltd 固体高分子電解質型メタノール燃料電池
US6100324A (en) 1998-04-16 2000-08-08 E. I. Du Pont De Nemours And Company Ionomers and ionically conductive compositions
US6238534B1 (en) * 1999-05-14 2001-05-29 3M Innovative Properties Company Hybrid membrane electrode assembly
JP3813419B2 (ja) 2000-08-09 2006-08-23 三洋電機株式会社 燃料電池
US7332241B2 (en) * 2000-10-27 2008-02-19 Ab Volvo Cathode layer structure for a solid polymer fuel cell and fuel cell incorporating such structure
US20020127474A1 (en) * 2001-01-09 2002-09-12 E.C.R.-Electro-Chemical Research Ltd. Proton-selective conducting membranes
CN1226086C (zh) * 2001-12-11 2005-11-09 中国科学院大连化学物理研究所 一种担载型金属催化剂及其制备方法
US20030219645A1 (en) * 2002-04-22 2003-11-27 Reichert David L. Treated gas diffusion backings and their use in fuel cells
JP3780971B2 (ja) 2002-04-26 2006-05-31 日本電気株式会社 固体電解質型燃料電池、固体電解質型燃料電池用触媒電極、固体電解質型燃料電池用固体電解質膜、およびそれらの製造方法
JP2003331869A (ja) 2002-05-14 2003-11-21 Hitachi Ltd プロトン伝導性材料
GB0219955D0 (en) * 2002-08-28 2002-10-02 Univ Newcastle Fuel cell electrode
JP4025615B2 (ja) * 2002-10-08 2007-12-26 勇 内田 燃料再生可能な燃料電池、発電方法及び燃料の再生方法
SI1556916T1 (sl) * 2002-10-21 2007-06-30 Idea Lab S R L Elektrokatalizator brez platine
CN1426127A (zh) * 2003-01-28 2003-06-25 天津大学 二次氢氧燃料电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763137A (en) * 1980-10-04 1982-04-16 Asahi Chem Ind Co Ltd Catalyst for oxygen reduction
JPH1116584A (ja) * 1997-06-25 1999-01-22 Sanyo Electric Co Ltd 固体高分子型燃料電池用セル及びその作製方法
JP2002015744A (ja) * 2000-06-30 2002-01-18 Asahi Glass Co Ltd 固体高分子型燃料電池
CA2453024A1 (en) * 2001-07-03 2003-01-16 Hahn-Meitner-Institut Berlin Gmbh Platinum-free chelate catalyst material for the selective reduction of oxygen and method of its production
CA2448447A1 (en) * 2001-07-11 2003-01-23 Jorg Mueller Method for producing a plasma-polymerized polymer electrolyte membrane and a polyazol membrane coated by plasma-polymerization
JP2003109614A (ja) * 2001-09-27 2003-04-11 Nippon Steel Corp 高分子固体電解質型燃料電池酸素極用触媒及びその製造方法
JP2005228497A (ja) * 2004-02-10 2005-08-25 National Institute Of Advanced Industrial & Technology 低温型燃料電池の酸素極添加剤
JP2005235437A (ja) * 2004-02-17 2005-09-02 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池用電解質膜電極接合体および固体高分子型燃料電池

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504660A (ja) * 2004-07-02 2008-02-14 ソルヴェイ(ソシエテ アノニム) イオン交換膜を含む固体アルカリ型燃料電池
EP2003717A4 (en) * 2006-03-31 2011-07-06 Nissan Motor ELECTRODE CATALYST FOR AN ELECTROCHEMICAL CELL, METHOD OF MANUFACTURING THEREOF, ELECTROCHEMICAL CELL, UNIT CELL FOR A FUEL BATTERY AND FUEL BATTERY
EP2003717A2 (en) * 2006-03-31 2008-12-17 Nissan Motor Co., Ltd. Electrode catalyst for electrochemical cell, method for manufacturing the same, electrochemical cell, unit cell for fuel battery, and fuel battery
JP2007273278A (ja) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd 燃料電池用触媒層及び触媒層−電解質膜積層体
US8114538B2 (en) 2006-03-31 2012-02-14 Nissan Motor Co., Ltd. Electrocatalyst for electrochemical cell, method for producing the electrocatalyst, electrochemical cell, single cell of fuel cell, and fuel cell
JP2008004402A (ja) * 2006-06-22 2008-01-10 Nitto Denko Corp ダイレクトメタノール型燃料電池用アノード電極及びそれを用いたダイレクトメタノール型燃料電池
JP2008293850A (ja) * 2007-05-25 2008-12-04 Toyota Motor Corp 燃料電池システム及びその運転方法
JP2009231270A (ja) * 2008-02-29 2009-10-08 Commissariat A L'energie Atomique 燃料電池用のイオン伝導性高分子膜を製造するための方法
JP2011516254A (ja) * 2008-04-07 2011-05-26 アクタ ソシエタ ペル アチオニ 高性能ORR(酸化還元反応)PGM(Pt族金属)フリー触媒
JP2010015972A (ja) * 2008-06-06 2010-01-21 Toyobo Co Ltd 熱処理した配位高分子金属錯体を用いた燃料電池用触媒、膜電極接合体、及び燃料電池、並びに酸化還元触媒。
JP2013243161A (ja) * 2008-06-06 2013-12-05 Toyobo Co Ltd 熱処理した配位高分子金属錯体を用いた燃料電池用触媒、膜電極接合体、及び燃料電池、並びに酸化還元触媒。
US9012108B2 (en) * 2008-08-22 2015-04-21 Toyota Motor Engineering & Manufacturing North America, Inc. Fuel cell electrodes with triazole modified polymers and membrane electrode assemblies incorporating same
JP2015128058A (ja) * 2013-11-28 2015-07-09 ダイハツ工業株式会社 アノード触媒
WO2021045121A1 (ja) * 2019-09-05 2021-03-11 AZUL Energy株式会社 触媒の製造方法、触媒、組成物の製造方法、組成物、電極、電極の製造方法、燃料電池、金属空気電池
JPWO2021045121A1 (ja) * 2019-09-05 2021-03-11
JP7405452B2 (ja) 2019-09-05 2023-12-26 AZUL Energy株式会社 触媒の製造方法、触媒、組成物の製造方法、組成物、電極、電極の製造方法、燃料電池、金属空気電池

Also Published As

Publication number Publication date
JP4978191B2 (ja) 2012-07-18
JPWO2006003943A1 (ja) 2008-04-17
JP5407065B2 (ja) 2014-02-05
CN1930709A (zh) 2007-03-14
TW200614582A (en) 2006-05-01
JP2012084536A (ja) 2012-04-26
TWI289951B (en) 2007-11-11
CN100449829C (zh) 2009-01-07
US8652704B2 (en) 2014-02-18
US20070166601A1 (en) 2007-07-19

Similar Documents

Publication Publication Date Title
JP5407065B2 (ja) 直接アルコール型燃料電池及びその製造方法
JP5037338B2 (ja) ルテニウム−ロジウム合金電極触媒及びこれを含む燃料電池
KR100590555B1 (ko) 담지 촉매 및 이를 이용한 연료전지
JPH05144444A (ja) 燃料電池およびそれに用いる電極の製造方法
KR101137066B1 (ko) 직접 메탄올 연료전지용 백금/팔라듐 촉매
JP2006140152A (ja) 燃料電池用電極、これを含む燃料電池用膜/電極アセンブリ、及び燃料電池システム
JP2007250274A (ja) 貴金属利用効率を向上させた燃料電池用電極触媒、その製造方法、及びこれを備えた固体高分子型燃料電池
JP2018528570A (ja) 電極触媒
US20100035111A1 (en) Fuel cell
KR101113377B1 (ko) 직접 메탄올 연료 전지용 멤브레인 전극 유닛 및 그의 생산방법
US8945791B2 (en) Oxygen side electrode for a fuel cell
US20100068591A1 (en) Fuel cell catalyst, fuel cell cathode and polymer electrolyte fuel cell including the same
JP4919005B2 (ja) 燃料電池用電極の製造方法
Baronia et al. High methanol electro-oxidation using PtCo/reduced graphene oxide (rGO) anode nanocatalysts in direct methanol fuel cell
KR20060104821A (ko) 연료전지용 촉매, 이의 제조방법, 및 이를 포함하는연료전지 시스템
JP2008016344A (ja) 直接アルコール型燃料電池
JP2006209999A (ja) 固体高分子形燃料電池用電極およびその製造方法
JP5618584B2 (ja) 固体高分子型燃料電池用燃料
JP2008269847A (ja) 燃料電池触媒層用インク及びその製造方法、燃料電池用膜電極接合体
US7927762B2 (en) Fuel cell cathode manufacturing method and fuel cell manufacturing method
JP2008004402A (ja) ダイレクトメタノール型燃料電池用アノード電極及びそれを用いたダイレクトメタノール型燃料電池
JP2009087607A (ja) 燃料電池および燃料電池用部材
KR100759432B1 (ko) 연료 전지용 캐소드 촉매, 이를 포함하는 연료 전지용막-전극 어셈블리 및 연료 전지 시스템
JP2006244949A (ja) 燃料電池用電極及び燃料電池
Park et al. Effect of nanoparticle addition into anode electrodes for direct ethanol fuel cells

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528752

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007166601

Country of ref document: US

Ref document number: 10591176

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580007744.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 10591176

Country of ref document: US

122 Ep: pct application non-entry in european phase