WO2021045121A1 - 触媒の製造方法、触媒、組成物の製造方法、組成物、電極、電極の製造方法、燃料電池、金属空気電池 - Google Patents

触媒の製造方法、触媒、組成物の製造方法、組成物、電極、電極の製造方法、燃料電池、金属空気電池 Download PDF

Info

Publication number
WO2021045121A1
WO2021045121A1 PCT/JP2020/033290 JP2020033290W WO2021045121A1 WO 2021045121 A1 WO2021045121 A1 WO 2021045121A1 JP 2020033290 W JP2020033290 W JP 2020033290W WO 2021045121 A1 WO2021045121 A1 WO 2021045121A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
metal complex
producing
solvent
electrode
Prior art date
Application number
PCT/JP2020/033290
Other languages
English (en)
French (fr)
Inventor
藪 浩
晃寿 伊藤
博弥 阿部
中村 剛希
Original Assignee
AZUL Energy株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AZUL Energy株式会社 filed Critical AZUL Energy株式会社
Priority to CN202080061456.2A priority Critical patent/CN114342127A/zh
Priority to JP2021544008A priority patent/JP7405452B2/ja
Priority to US17/638,031 priority patent/US20220278338A1/en
Priority to EP20860034.6A priority patent/EP4026614A1/en
Priority to KR1020227005405A priority patent/KR20220034234A/ko
Publication of WO2021045121A1 publication Critical patent/WO2021045121A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/40Non-coordinating groups comprising nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a catalyst manufacturing method, a catalyst, a composition manufacturing method, a composition, an electrode, an electrode manufacturing method, a fuel cell, and a metal-air battery.
  • Fuel cells and metal-air batteries that utilize a redox reaction (hereinafter, may be simply referred to as "fuel cells or the like") are known.
  • fuel cells a platinum-supported carbon material is used as a catalyst for promoting the reduction reaction of oxygen.
  • the platinum-supported carbon material is excellent in the function of promoting the oxygen reduction reaction (oxygen reduction catalytic ability).
  • a manganese dioxide-supported carbon material is used as the catalyst.
  • Patent Document 1 describes a catalyst for an air electrode using iron phthalocyanine (Fe-Pc).
  • Fe-Pc iron phthalocyanine
  • Example 1 of Patent Document 1 an Fe-Pc dispersion obtained by ball-milling iron phthalocyanine and 2-propanol was prepared, and a conductive auxiliary agent, an auxiliary catalyst, a binder, etc. were added to the Fe-Pc dispersion.
  • a method for producing an air catalyst is disclosed, in which a slurry obtained by mixing the above is dried to dryness to produce an air electrode mixture.
  • Iron phthalocyanines have low solubility in 2-propanol. Therefore, in the method described in Patent Document 1, iron phthalocyanine is not dissolved in 2-propanol, and iron phthalocyanine is dispersed in 2-propanol, resulting in a dispersion, and iron phthalocyanine crystals are present in the dispersion.
  • iron phthalocyanine is not dissolved in 2-propanol, and iron phthalocyanine is dispersed in 2-propanol, resulting in a dispersion, and iron phthalocyanine crystals are present in the dispersion.
  • oxygen reduction catalysts such as fuel cells, it has been conventionally considered that the presence of crystalline iron phthalocyanine contributes to the improvement of oxygen reduction catalytic ability and durability when used as an electrode.
  • the present invention is a catalyst having excellent oxygen reduction catalytic ability and excellent durability when used as an electrode for a fuel cell and a metal-air battery; excellent in oxygen reduction catalytic ability and durability when used as an electrode for a fuel cell and a metal-air battery. Provide an excellent method for producing a catalyst.
  • the present invention has the following aspects. [1] In the step (a) of preparing a solution by dissolving the metal complex in a solvent, The step (b) of preparing a dispersion liquid by dispersing the conductive powder in the solution, and The step (c) of removing the solvent from the dispersion liquid and Including A method for producing a catalyst, wherein the metal complex is adsorbed on the surface of the conductive powder to form a complex, and the complex is used as a catalyst.
  • [2] The method for producing a catalyst according to [1], wherein the concentration of the metal complex in the solution is 0.0001 to 5 g / L.
  • [3] The method for producing a catalyst according to [1] or [2], wherein the complex is used as a catalyst without being heat-treated at 200 ° C. or higher.
  • [4] The method for producing a catalyst according to any one of [1] to [3], wherein the step (a) and the step (b) are performed at a temperature equal to or lower than the boiling point of the solvent.
  • [5] The method for producing a catalyst according to any one of [1] to [4], wherein the step (a) and the step (b) are performed at a temperature of 80 ° C. or lower.
  • [6] The method for producing a catalyst according to any one of [1] to [5], wherein the metal complex is adsorbed on the surface of the conductive powder at a temperature equal to or lower than the boiling point of the solvent.
  • X 1 to X 8 are independently hydrogen atoms or halogen atoms
  • D 1 , D 3 , D 5 and D 7 are independently nitrogen or carbon atoms, respectively
  • D 1 , At least one of D 3 , D 5 , and D 7 is a carbon atom
  • a hydrogen atom or a halogen atom is bonded to the carbon atom
  • M is a metal atom.
  • step (a) of preparing a solution by dissolving the metal complex in a solvent The step (b) of preparing a dispersion liquid by dispersing the conductive powder in the solution, and The step (c) of removing the solvent from the dispersion liquid and Including The metal complex is adsorbed on the surface of the conductive powder to form a complex, and the complex is used as a catalyst.
  • a method for producing a composition further comprising a step (d) of mixing the catalyst and a liquid medium.
  • a composition comprising a catalyst obtained by the method for producing a catalyst according to any one of [1] to [14] and a liquid medium.
  • [18] An electrode containing the catalyst obtained by the method for producing a catalyst according to any one of [1] to [14]. [19] In the step (a) of preparing a solution by dissolving the metal complex in a solvent, The step (b) of preparing a dispersion liquid by dispersing the conductive powder in the solution, and The step (c) of removing the solvent from the dispersion liquid and Including The metal complex is adsorbed on the surface of the conductive powder to form a complex, and the complex is used as a catalyst. The step (d) of mixing the catalyst and the liquid medium, A method for producing an electrode, further comprising a step (e) of applying a mixture of the catalyst and the liquid medium to the surface of a base material and removing the liquid medium. [20] A fuel cell having the electrode according to [18]. [21] A metal-air battery having the electrode according to [18].
  • a method for producing a catalyst having excellent durability is provided.
  • metal complex represented by the formula (1) is referred to as a metal complex (1).
  • Metal complexes represented by other formulas are also described in the same manner.
  • Heteroatom means an atom other than a carbon atom and a hydrogen atom.
  • “ ⁇ ” Indicates a numerical range means that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value.
  • the method for producing a catalyst of the present invention includes the following step (a), step (b), and step (c).
  • the metal complex is adsorbed on the surface of the conductive powder to form a complex, and the complex is used as a catalyst.
  • Step (a) In the step (a), the metal complex is dissolved in a solvent to prepare a solution (S).
  • the solution (S) contains a metal complex and a solvent in which the metal complex is dissolved.
  • the conditions such as temperature and pressure when preparing the solution are not particularly limited as long as the metal complex can be dissolved in the solvent.
  • the temperature at which the solution is prepared is preferably a temperature equal to or lower than the boiling point of the solvent.
  • the solution is usually prepared at room temperature (eg, 25 ° C.). When preparing a solution, the solution is usually prepared under atmospheric pressure.
  • the metal complex will be described. Specific examples of the metal complex include an iron complex, a cobalt complex and the like. However, the metal complex may be a transition metal complex, a lanthanoid metal complex, an actinoid metal complex, or the like other than these, and the metal complex is not limited to an iron complex or a cobalt complex.
  • the metal complex in the present invention is preferably the metal complex (1) represented by the following formula (1).
  • the metal complex (1) has an advantage that it is useful as a substitute material for platinum.
  • the four nitrogen atoms coordinated around the metal atom M form part of the pyridine ring structure. It is believed that the four nitrogen atoms that form part of this pyridine ring structure contribute to excellent solubility in the solvent.
  • X 1 to X 8 are independently hydrogen atoms or halogen atoms
  • D 1 to D 8 are independently nitrogen atoms or carbon atoms
  • the carbon atoms are hydrogen atoms or carbon atoms.
  • a halogen atom is bonded and M is a metal atom.
  • Examples of the metal complex (1) include the following metal complex (11), metal complex (12), and metal complex (13).
  • X 1 to X 8 are independently hydrogen atoms or halogen atoms
  • D 1 , D 3 , D 5 and D 7 are independently nitrogen or carbon atoms, respectively
  • D 1 , At least one of D 3 , D 5 , and D 7 is a carbon atom, a hydrogen atom or a halogen atom is bonded to the carbon atom
  • M is a metal atom.
  • X 1 to X 8 are independently hydrogen atoms or halogen atoms, and M is a metal atom.
  • X 1 to X 8 are independently hydrogen atoms or halogen atoms, and M is a metal atom.
  • metal complex (11) examples include the following metal complex (11-1). However, specific examples of the metal complex (11) are not limited to this example.
  • M is a metal atom.
  • metal complex (12) examples include the following metal complex (12-1). However, specific examples of the metal complex (12) are not limited to this example.
  • M is a metal atom.
  • metal complex (13) examples include the following metal complex (13-1). However, specific examples of the metal complex (13) are not limited to this example.
  • M is a metal atom.
  • the metal complex (11) is preferable because the oxygen reduction catalytic ability tends to be improved.
  • the use of the metal complex (11) tends to improve its solubility in solvents. As a result, the affinity with the conductive powder is improved, and the metal complex is easily adsorbed uniformly on the surface of the conductive powder.
  • isomers such as the following metal complex (11-1') and the following metal complex (12-1') may exist.
  • X 1 to X 8 are independently hydrogen atoms or halogen atoms, and D 1 , D 3 , D 5 and D 7 are nitrogen atoms or carbon atoms, respectively, and D 1 , D 3 , D 5 , and D 7 are carbon atoms, hydrogen atoms or halogen atoms are bonded to the carbon atoms, and M is a metal atom.
  • X 1 to X 8 are independently hydrogen atoms or halogen atoms, and M is a metal atom.
  • the metal complex is a concept including isomers as represented by the above formula (11-1'), the above formula (12-1'), and the like.
  • the isomer of the metal complex is not limited to those represented by the above formula (11-1') and the above formula (12-1').
  • the position of the nitrogen atom is D 1 , D 3 in at least one selected from each cyclic structure containing each of D 1 , D 3 , D 5 , and D 7.
  • D 5 and D 7 may be exchanged in the same annular structure as any of the positions.
  • M is a metal atom.
  • the bond between the nitrogen atom and M means the coordination of the nitrogen atom to M.
  • a halogen atom, a hydroxyl group, and a hydrocarbon group having 1 to 8 carbon atoms may be further bonded to M as a ligand.
  • anionic counterions may be present so as to be electrically neutral.
  • the valence of M is not particularly limited.
  • a halogen atom, a hydroxyl group, or an alkyloxy group having 1 to 8 carbon atoms may be bonded as a ligand (for example, an axial ligand) so that the metal complex is electrostatically neutral, and is anionic.
  • Counterions may be present. Examples of the anionic counterion include a halide ion, a hydroxide ion, a nitrate ion, and a sulfate ion.
  • the structure of the alkyl group of the alkyloxy group having 1 to 8 carbon atoms may be linear, branched or cyclic.
  • the M includes a scandium atom, a titanium atom, a vanadium atom, a chromium atom, a manganese atom, an iron atom, a cobalt atom, a nickel atom, a copper atom, a zinc atom, an yttrium atom, a zirconium atom, a niobium atom, a ruthenium atom, and a rhodium atom.
  • iron atom, manganese atom, cobalt atom iron
  • metal complex (1) When M is an iron atom, specific examples of the metal complex (1) include, for example, the following metal complex (11-1-1), metal complex (12-1-1), and metal complex (13-1-). 1) is illustrated. However, specific examples of the metal complex (1) in which M is an iron atom are not limited to this example.
  • the solubility of a metal complex in a solvent is mainly determined by the selection of the combination of the metal complex and the solvent compound.
  • the metal complex is the metal complex (1)
  • the metal complex (1) can be obtained by changing the number of atoms that are nitrogen atoms among D 1 to D 8 in the structure of the metal complex (1).
  • the affinity between the conductive powder and the metal complex can be enhanced, and the oxygen reduction catalytic ability can be further enhanced.
  • the solvent will be described.
  • the solvent is not particularly limited as long as it is a compound in which the metal complex can be dissolved.
  • a compound having a metal complex solubility of 0.1 g / L or more is preferable.
  • the solubility of the metal complex is preferably 0.1 g / L or more, more preferably 0.4 g / L or more, further preferably 2.0 g / L or more, and particularly preferably 10 g / L or more.
  • the upper limit of the solubility of the metal complex (1) is not particularly limited.
  • the upper limit of the solubility of the metal complex (1) may be, for example, 20 g / L, 50 g / L, or 100 g / L.
  • the solubility of the metal complex is at least the above lower limit value, the metal complex is more easily dissolved in the solvent, and the metal complex is more easily adsorbed on the surface of the conductive powder more uniformly. As a result, the oxygen reduction catalytic ability of the catalyst is further improved, and the durability when used as an electrode of a fuel cell is further improved.
  • the solubility of the metal complex in the solvent is usually the maximum value of the dissolved amount (g) of the metal complex per 1 L of the solvent measured by ultraviolet-visible spectroscopy at 25 ° C. and atmospheric pressure.
  • the conditions for measuring the solubility of the metal complex in the solvent are the conditions specified regardless of the conditions for preparing the solution.
  • the solubility parameter of the solvent is preferably 10 to 20 (MPa) 1/2, more preferably 11 to 13 (MPa) 1/2 . If the solubility parameter of the solvent is less than the lower limit, the hydrophobicity tends to be too high and the solubility of the metal complex having a polar portion tends to decrease. When the solubility parameter of the solvent exceeds the upper limit value, the polarity tends to be too high and the solubility of the metal complex having a hydrophobic portion tends to decrease.
  • the solubility parameter of the solvent can be estimated as an SP value by, for example, the Fedors method.
  • the concentration of the metal complex in the solution is preferably 0.0001 to 5 g / L, more preferably 0.01 to 1 g / L, and preferably 0.1 to 1 g / L.
  • concentration of the metal complex is at least the lower limit value, the adsorption efficiency of the metal complex is further improved, the adsorption rate is increased, and the productivity is improved.
  • concentration of the metal complex is not more than the upper limit value, the metal complex in the solution is likely to be uniformly adsorbed on the surface of the conductive powder, and the surface of the conductive powder is uniformly composed of a single molecule of the metal complex. Monomolecular layer is formed.
  • the effect of further improving the oxygen reduction catalytic ability and durability of the catalyst of the present invention can be obtained.
  • a technical idea is generally used to increase the oxygen reduction catalytic ability of the catalyst by increasing the concentration of the metal complex in the crystalline state. It was.
  • a solution having a relatively low concentration of a metal complex is used.
  • the inventors of the present invention have found the technical idea of enhancing the oxygen reduction catalytic ability of the catalyst by using a solution of the metal complex having a relatively low concentration.
  • the concentration of the metal complex can be measured, for example, based on the extinction coefficient and the molar extinction coefficient by a spectrophotometer.
  • the solution may further contain impurities other than the metal complex.
  • the content of impurities is preferably 20% by mass or less with respect to 100% by mass of the content of the metal complex.
  • the metal complex can be more efficiently adsorbed on the conductive powder.
  • the solvent can be appropriately selected depending on the metal complex.
  • specific examples of the solvent include alcohols such as methanol, ethanol and hexafluoro-2-propanol; dimethyl sulfoxide; aprotic polar solvents such as N-methylpyrrolidone, dimethylformamide and acetone; chloroform, dichloromethane, 1,4.
  • -A non-polar solvent such as dioxane is exemplified.
  • specific examples of the solvent are not limited to these examples.
  • One type of solvent may be used alone, or two or more types may be used in combination. That is, the solvent may be composed of only a single component or may be a mixed solvent.
  • the solvent is at least one selected from the group consisting of dimethyl sulfoxide and N, N-dimethylformamide. Is preferable.
  • the metal complex (11-1-1), the metal complex (12-1-1), and the metal complex (13-1-1) for each of dimethyl sulfoxide, N, N-dimethylformamide, and tetrahydrofuran are shown in Table 1 below.
  • the column “DMSO” shows the solubility of each metal complex in dimethyl sulfoxide at 25 ° C. and atmospheric pressure.
  • the column of “DMF” shows the solubility of each metal complex in N, N-dimethylformamide at 25 ° C. and atmospheric pressure.
  • the column “THF” shows the solubility of each metal complex in tetrahydrofuran at 25 ° C. and atmospheric pressure.
  • each solubility shown in Table 1 was measured by the method described in Examples described later.
  • Step (b) In the step (b), the conductive powder is dispersed in the solution to prepare a dispersion liquid.
  • the metal complex is adsorbed on the surface of the conductive powder to form a complex and used as a catalyst.
  • the dispersion contains a catalyst in which the metal complex is adsorbed on the surface of the conductive powder.
  • the temperature at which the dispersion is prepared is preferably a temperature equal to or lower than the boiling point of the solvent.
  • the dispersion is prepared at room temperature (for example, 25 ° C.).
  • the temperature at which the metal complex is adsorbed on the surface of the conductive powder is preferably a temperature equal to or lower than the boiling point of the solvent.
  • the dispersion is prepared at room temperature (for example, 25 ° C.).
  • the conductive powder will be described.
  • the conductive powder is not particularly limited as long as it can be dispersed in a solvent and has conductivity.
  • Examples of the conductive powder include at least one selected from the group consisting of carbon materials, metal materials, and metal oxide materials. Among these, a carbon material is preferable as the conductive powder.
  • the conductive powder one type may be used alone, or two or more types may be used in combination.
  • the carbon material include graphite, amorphous carbon, activated carbon, graphene, carbon black, carbon fiber, mesocarbon microbeads, microcapsule carbon, fullerene, carbon nanofoam, carbon nanotube, carbon nanohorn and the like. .. Among these, graphite, amorphous carbon, activated carbon, graphene, carbon black, carbon fiber, fullerene, and carbon nanotubes are preferable, carbon nanotubes, carbon black, and graphene are more preferable, and carbon nanotubes and graphene are even more preferable.
  • Specific examples of the metal material include titanium, tin and the like.
  • Specific examples of the metal oxide material include titanium oxide, tin oxide (SnO 2 , ITO, ATO) and the like.
  • Examples of carbon nanotubes include single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes. Among these, double-walled carbon nanotubes and multi-walled carbon nanotubes are preferable, and multi-walled carbon nanotubes are even more preferable, from the viewpoint of excellent conductivity of the catalyst.
  • the carbon material may have a functional group such as a hydroxyl group, a carboxyl group, a nitrogen-containing group, a silicon-containing group, a phosphorus-containing group such as a phosphoric acid group, and a sulfur-containing group such as a sulfonic acid group.
  • the carbon material preferably has a carboxyl group.
  • the metal complex is easily adsorbed on the surface of the carbon material, the durability when used as an electrode is further improved, and the oxygen reduction catalytic ability is further improved.
  • the carbon material may have a hetero atom.
  • the hetero atom include an oxygen atom, a nitrogen atom, a phosphorus atom, a sulfur atom, and a silicon atom.
  • the carbon material may contain one kind of heteroatom alone or may contain two or more kinds of heteroatoms.
  • the carbon material may be oxidized, hydroxylated, nitrided, phosphorylated, sulfided, or silicified.
  • the content of the carboxyl group is preferably 20% by mass or less, more preferably 15% by mass or less, still more preferably 10% by mass or less, based on 100% by mass of the carbon material.
  • the content of the carboxyl group is not more than the above upper limit value, the production cost of the catalyst tends to decrease.
  • the content of the carboxyl group is preferably 1% by mass or more, more preferably 5% by mass or more, still more preferably 8% by mass or more.
  • the content of the carboxyl group is at least the above lower limit value, the durability and the oxygen reduction catalytic ability when used as an electrode are further improved.
  • the content of the carboxyl group can be measured by elemental analysis, X-ray photoelectron spectroscopy, or the like.
  • the carbon material is preferably a two-walled carbon nanotube having a carboxyl group and a multi-walled carbon nanotube having a carboxyl group, and a multi-walled carbon nanotube having a carboxyl group is more preferable, because the conductivity of the catalyst is excellent and the oxygen reduction catalytic ability is further excellent. preferable.
  • the specific surface area is preferably not less than 0.8 m 2 / g of the carbon material, more preferably at least 1.0 m 2 / g, more preferably not less than 1.1 m 2 / g, particularly preferably not less than 1.5 m 2 / g, 2 Most preferably, it is 0.0 m 2 / g or more.
  • the upper limit of the specific surface area is not particularly limited.
  • the upper limit of the specific surface area can be, for example, 2000 m 2 / g.
  • the specific surface area can be measured by a nitrogen adsorption BET method with a specific surface area measuring device.
  • the average particle size of the conductive powder is not particularly limited.
  • the average particle size of the conductive powder is preferably, for example, 5 nm to 1000 ⁇ m.
  • Examples of the method for adjusting the average particle size of the conductive powder within the above numerical range include the following methods ( ⁇ 1) to ( ⁇ 3).
  • -Method ( ⁇ 1) A method in which particles are pulverized by a ball mill or the like, and the obtained coarse particles are dispersed in a dispersant to obtain a desired particle size and then dried.
  • -Method ( ⁇ 2) A method in which particles are crushed by a ball mill or the like, and the obtained coarse particles are sieved or the like to select the particle size.
  • -Method ( ⁇ 3) A method of optimizing the production conditions of the conductive powder and adjusting the particle size of the particles when producing the conductive powder.
  • the average particle size of the conductive powder can be measured with a particle size distribution measuring device, an electron microscope, or the like.
  • a dispersion liquid is prepared by dispersing the conductive powder in the solution (S).
  • the solution (S) contains a metal complex and a solvent in which the metal complex is dissolved.
  • the method for dispersing the conductive powder in the solution (S) is not particularly limited.
  • the following methods ( ⁇ 1) and ( ⁇ 2) are exemplified.
  • -Method ( ⁇ 1) A method in which a solution (S) and a conductive powder are mixed, and the obtained mixed solution is subjected to a stirring treatment.
  • -Method ( ⁇ 2) A method in which a solution (S) and a conductive powder are mixed, and the obtained mixed solution is subjected to a dispersion treatment using a disperser such as a homogenizer.
  • examples of the stirring process include the use of a mixer, irradiation with ultrasonic waves, stirring with a magnetic stirrer, and stirring with a stirrer.
  • the stirring process is not limited to these examples.
  • the method for removing the solvent from the dispersion is not particularly limited. For example, filtration such as solid-liquid separation; vacuum drying; heat drying and the like are exemplified.
  • a lower heating temperature is preferable, specifically, 200 ° C. or lower is preferable, 100 ° C. or lower is more preferable, and 50 ° C. or lower is further preferable. preferable.
  • Step (c) In the step (c), the solvent is removed from the dispersion liquid, and a complex in which the metal complex is adsorbed on the surface of the conductive powder is obtained as a catalyst.
  • the method for removing the solvent from the dispersion is not particularly limited. For example, it can be removed by solid-liquid separation. For solid-liquid separation, filtration is preferable because the temperature load on the catalyst is reduced. That is, it is preferable to remove the solvent by filtering the dispersion liquid. At the time of filtration, it is preferable that the absorbance of the filtrate after filtration is reduced by 10% or more as compared with the solution. From this, it is considered that it can be determined that the metal complex is effectively adsorbed on the conductive powder.
  • the conductive powder is dispersed in the solution (S). Therefore, the molecules of the metal complex can be molecularly and uniformly adsorbed on the surface of the conductive powder. As a result, the catalyst molecule can be produced as a composite having the conductive powder and the metal complex adsorbed in layers on the surface of the conductive powder.
  • the composite having the conductive powder and the metal complex adsorbed in layers on the surface of the conductive powder is used as a catalyst without heat treatment at 200 ° C. or higher, and heat treatment at 100 ° C. or higher. It is more preferable to use the catalyst without applying the above, and it is further preferable to use the catalyst without performing the heat treatment at 50 ° C. or higher.
  • a heat treatment such as firing in order to support a metal atom on the surface of a carbon material.
  • it has been considered important to perform heat treatment such as firing in order to support metal atoms, nitrogen atoms, etc. on the carbon material.
  • the steps (a) and (b) may be independent steps, or the steps (a) and (b) may be simultaneous or integrated steps.
  • the step (a) and the step (b) are carried out simultaneously or integrally, the adsorption of the metal complex to the conductive powder is further promoted when the solubility of the metal complex is relatively low.
  • Steps (a) and (b) are preferably carried out at a temperature equal to or lower than the boiling point of the solvent, for example, preferably at a temperature of 80 ° C. or lower. As a result, the temperature load on the catalyst is reduced, which is desirable from the viewpoint of reducing the manufacturing cost.
  • FIG. 1 is a schematic diagram for explaining the method for producing a catalyst of the present invention in comparison with a conventional method.
  • FIG. 1A is a schematic diagram showing a conventional method.
  • FIG. 1B is a schematic view showing a method for producing a catalyst of the present invention.
  • FIG. 2 is a schematic diagram for explaining the catalyst obtained by the production method of the present invention in comparison with the catalyst obtained by the conventional method.
  • FIG. 2A is a schematic diagram showing a catalyst obtained by a conventional method.
  • FIG. 2B is a schematic view showing a catalyst obtained by the production method of the present invention.
  • a dispersion liquid P in which crystals 100 of a metal complex are dispersed in a liquid medium 101 is used. It was customary for the catalyst 103 to be produced. Therefore, the crystal 100 of the metal complex, which is a catalyst molecule, did not uniformly adhere to the surface of the conductive powder 102, and the crystal 100 of the metal complex and the conductive powder 102 were simply mixed. Therefore, in the conventional catalyst, the chemical interaction ability between the crystalline metal complex and the conductive powder 102 has not been sufficiently exhibited.
  • a solvent 51 in which the metal complex 50 can be dissolved is selected, and the solvent 51 is conductive in the solution S of the metal complex 50. Disperse the powder. Therefore, the molecules of the metal complex 50 can be molecularly and uniformly adsorbed on the surface of the conductive powder 52.
  • the catalyst 53 having the conductive powder 52 and the metal complex 50 adsorbed in layers on the surface of the conductive powder 52 can be produced ((b) in FIG. 2). It can be said that the catalyst 53 has a conductive powder 52 and a complex layer containing the metal complex 50. The complex layer is uniformly provided on the surface of the conductive powder 52.
  • the catalyst 53 is a complex in which the metal complex 50 is adsorbed on the surface of the conductive powder 52.
  • the metal complex 50 is adsorbed on the surface of the conductive powder 52, the chemical interaction ability between the metal complex 50 and the conductive powder 52 is improved.
  • the redox catalytic ability of the catalyst 53 is dramatically improved as compared with the conventional catalyst produced in the presence of crystals.
  • the metal complex which is a catalyst molecule is uniformly adsorbed on the surface of the conductive powder, a catalyst having excellent redox catalytic ability can be obtained.
  • the durability of the obtained catalyst electrode is also good. Therefore, there is a possibility that a metal complex which has not been conventionally applied to the use of a redox catalyst of a fuel cell can be applied to the production of a catalyst by selecting a solvent. Therefore, by selecting a solvent capable of dissolving the metal complex, various metal complexes can be applied to the production of the catalyst, and the choice of the metal complex is increased as compared with the prior art.
  • a catalyst having excellent oxygen reduction catalytic ability and excellent durability when used as an electrode can be obtained. Therefore, it can be suitably used for industrial applications that utilize the reduction reaction of oxygen. In particular, it can be suitably applied to electrodes of fuel cells and metal-air batteries, and electrodes for electrochemical reactions. The catalyst can also be applied to the production of the compositions described below.
  • the catalyst of the present invention has a complex layer containing a metal complex and a conductive powder.
  • the complex layer covers the surface of the conductive powder.
  • the complex layer covers the surface of the conductive powder by molecular adsorption. It can be said that the catalyst of the present invention is a complex in which a complex layer containing a metal complex is adsorbed on the surface of a conductive powder.
  • the metal complex since the metal complex is adsorbed on the surface of the conductive powder, the chemical interaction ability between the metal complex and the conductive powder is improved. As a result, the redox catalytic ability is dramatically improved as compared with the conventional catalyst produced in the presence of crystals.
  • the catalyst of the present invention can be obtained, for example, by the above-mentioned method for producing a catalyst of the present invention. That is, it can be said that the catalyst of the present invention is a catalyst obtained by the method for producing the catalyst of the present invention.
  • the catalyst of the present invention can be applied to, for example, the compositions described below.
  • the method for producing the composition of the present invention includes a step (a) of dissolving a metal complex in a solvent to prepare a solution, and a step (b) of dispersing a conductive powder in the solution to prepare a dispersion liquid.
  • the step (c) of removing the solvent from the dispersion liquid is included, and the metal complex is adsorbed on the surface of the conductive powder to form a complex, and the complex is used as a catalyst and the catalyst is used.
  • the step (d) of mixing the liquid medium are further included. That is, the method for producing the composition of the present invention further includes the following step (d) in addition to each step of the method for producing the catalyst of the present invention described above. Step (d): A step of mixing the catalyst and the liquid medium.
  • step (a), the step (b), and the step (c) can be the same as those described in the section ⁇ Catalyst manufacturing method> of the present invention described above.
  • step (d) In step (d), the catalyst and the liquid medium are mixed.
  • the composition may mix or knead the catalyst, the liquid medium and, if necessary, the perfluorocarbon material.
  • a mixer For mixing or kneading, ultrasonic treatment, a mixer, a blender, a kneader, a homogenizer, a bead mill, a ball mill or the like may be used. Before and after the kneading operation, the average particle size of the particles may be adjusted by using a sieve or the like.
  • the catalyst, the perfluorocarbon material and, if necessary, water and alcohol may be mixed and stirred until uniform.
  • the liquid medium may be an inorganic medium such as water or an organic medium.
  • the organic medium include alcohols such as methanol, ethanol, propanol, isopropanol (2-propanol) and 1-hexanol; dimethyl sulfoxide; tetrahydrofuran; aprotic polar solvents such as N-methylpyrrolidone, dimethylformamide and acetone; Non-polar solvents such as chloroform, dichloromethane, 1,4-dioxane, benzene and toluene are exemplified.
  • the liquid medium is not limited to these examples.
  • the liquid medium may be the same as or different from the solvent used in the production of the catalyst. As the liquid medium, one type may be used alone, or two or more types may be used in combination.
  • any component other than the catalyst and the liquid medium may be further mixed.
  • a composition further containing an arbitrary component other than the catalyst and the liquid medium can be obtained.
  • a perfluorocarbon material containing a structural unit based on polytetrafluoroethylene and a perfluoro side chain having a sulfonic acid group may be used as an optional component.
  • the use of a perfluorocarbon material gives a composition further comprising a perfluorocarbon material.
  • Specific examples of the perfluorocarbon material include Nafion (product name: manufactured by DuPont). However, the perfluorocarbon material is not limited to this example.
  • the composition of the present invention includes a catalyst obtained by the method for producing a catalyst of the present invention and a liquid medium.
  • the details of the liquid medium, the catalyst, and the optional components other than the liquid medium are the same as those described in the section ⁇ Method for producing composition>.
  • the composition can be used as a coating solution used in the manufacture of electrodes. That is, the composition is useful as a composition for producing an electrode. The production of the electrode will be described later in the section ⁇ Method of manufacturing the electrode>.
  • the composition may be, for example, a dispersion type in which the catalyst is dispersed in a liquid medium.
  • the composition may further contain a co-catalyst, a binder and the like, if necessary.
  • the composition can be applied, for example, to the manufacture of electrodes.
  • the method for producing an electrode of the present invention includes a step (a) of dissolving a metal complex in a solvent to prepare a solution, and a step (b) of dispersing a conductive powder in the solution to prepare a dispersion liquid. Including the step (c) of removing the solvent from the dispersion liquid, the metal complex is adsorbed on the surface of the conductive powder to form a complex, and the complex is used as a catalyst to form a complex with the catalyst. Further includes a step (d) of mixing the liquid medium and a step (e) of applying the catalyst and the mixture of the liquid medium to the surface of the base material and removing the liquid medium.
  • the electrode manufacturing method of the present invention further includes the following steps (d) and (e) in addition to the steps of the catalyst manufacturing method of the present invention described above.
  • Step (d) A step of mixing the catalyst and the liquid medium.
  • Step (e) A step of applying a mixture of a catalyst and a liquid medium to the surface of a base material and removing the liquid medium.
  • step (a), step (b), step (c), and step (d) will be described in the section ⁇ Catalyst manufacturing method> or ⁇ Electrode manufacturing method> of the present invention described above.
  • the content can be the same as the content. It can be said that the mixture of the catalyst and the liquid medium is the composition of the present invention. Therefore, in one aspect of the method for producing a catalyst of the present invention, it can be said that the composition obtained by the method for producing a composition of the present invention is applied to the surface of a base material to remove the liquid medium.
  • step (e) the composition is applied to the surfaces of various base materials to provide a layer containing the composition on the surface of the base material.
  • the liquid medium is then removed from the layer containing the composition.
  • a catalyst layer containing a catalyst is provided on the surface of the base material.
  • the thickness when the composition is applied to the surface of the base material is not particularly limited.
  • the composition may be applied to the surface of the base material so that the thickness of the catalyst layer is 0.01 to 100 ⁇ m.
  • the thickness of the catalyst layer is at least the above lower limit value, the durability of the electrode is further improved.
  • the thickness is not more than the upper limit value, the performance of the electrode is unlikely to deteriorate.
  • it may be dried by heating or may be pressed after drying.
  • base material aluminum foil, electrolytic aluminum foil, aluminum mesh (expanded metal), foamed aluminum, punched aluminum, aluminum alloy such as duralumin, copper foil, electrolytic copper foil, copper mesh (expanded metal), foamed copper.
  • Copper alloy such as punching copper, brass, brass foil, brass mesh (expanded metal), foamed brass, punching brass, nickel foil, nickel mesh, corrosion resistant nickel, nickel mesh (expanded metal), punching nickel, foamed nickel, sponge nickel , Metallic zinc, corrosion-resistant metallic zinc, zinc foil, zinc mesh (expanded metal), steel plate, punching steel plate, silver and the like.
  • the substrate is a silicon substrate; a metal substrate such as gold, iron, stainless steel, copper, aluminum, lithium; an alloy substrate containing any combination of these metals; indium tin oxide (ITO), indium zinc oxide (IZO). ), An oxide substrate such as antimony tin oxide (ATO); a substrate-like substrate such as a carbon substrate such as glassy carbon, pyrolytic graphite, or carbon felt may be used.
  • a metal substrate such as gold, iron, stainless steel, copper, aluminum, lithium
  • an alloy substrate containing any combination of these metals indium tin oxide (ITO), indium zinc oxide (IZO).
  • An oxide substrate such as antimony tin oxide (ATO); a substrate-like substrate such as a carbon substrate such as glassy carbon, pyrolytic graphite, or carbon felt may be used.
  • the base material is not limited to these examples.
  • the electrode obtained by the production method of the present invention may be used as an electrode for a fuel cell.
  • the electrode When used as an electrode of a fuel cell, the electrode may be used as either a cathode electrode or an anode electrode.
  • the porous support layer is a layer that diffuses gas.
  • the porous support layer is not particularly limited as long as it has electron conductivity, high gas diffusivity, and high corrosion resistance. Examples of the porous support layer include carbon-based porous materials such as carbon paper and carbon cloth, stainless steel foil, and aluminum foil coated with food-resistant materials.
  • the electrode obtained by the production method of the present invention can be used as an electrode of a fuel cell.
  • an electrolyte membrane may be arranged between the pair of electrodes.
  • the reduction reaction of oxygen represented by the following formula (2) is likely to proceed under acidic conditions
  • the reduction reaction shown by the following formula (3) is likely to proceed under alkaline conditions. .. O 2 + 4H + + 4e - ⁇ 2H 2 O ⁇ (2)
  • an electrode containing a catalyst having excellent oxygen reduction catalytic ability and excellent durability when used as an electrode can be manufactured.
  • the electrodes of the present invention include the catalyst of the present invention. That is, the electrode of the present invention contains the catalyst obtained by the method for producing a catalyst.
  • the electrode of the present invention can be manufactured, for example, by the above-mentioned method for manufacturing an electrode of the present invention.
  • the electrode can be suitably applied to an electrode for a power storage device (power generation device) such as a fuel cell or a metal-air battery.
  • the fuel cell of the present invention has an electrode containing the catalyst of the present invention.
  • the fuel cell has, for example, a first electrode, a second electrode, an electrolyte, and a separator.
  • the first electrode is an electrode obtained by the above-described method for manufacturing an electrode of the present invention.
  • the second electrode is an electrode used in combination with the first electrode.
  • the second electrode is the anode, and if the first electrode is the anode, the second electrode is the cathode.
  • the second electrode include elemental metals such as aluminum and zinc, and metal oxides thereof. However, the second electrode is not limited to these examples.
  • an aqueous electrolyte is preferable.
  • the aqueous electrolytic solution include alkaline aqueous solutions such as potassium hydroxide aqueous solution and sodium hydroxide aqueous solution; and acidic aqueous solutions such as sulfuric acid aqueous solution.
  • alkaline aqueous solutions such as potassium hydroxide aqueous solution and sodium hydroxide aqueous solution
  • acidic aqueous solutions such as sulfuric acid aqueous solution.
  • One type of electrolyte may be used alone, or two or more types may be used in combination. However, the electrolyte is not limited to these examples, and may be an inorganic solid electrolyte.
  • the separator is a member that isolates the first electrode and the second electrode, holds an electrolyte, and secures ionic conductivity between the first electrode and the second electrode.
  • Specific examples of the separator include polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, cellulose, cellulose acetate, hydroxyalkyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, cellophane, polystyrene, polyacrylonitrile, polyacrylamide, polyvinyl chloride, and polyamide.
  • the separator is not limited to these examples.
  • the fuel cell may be a primary battery or a secondary battery.
  • the fuel cell include a metal air cell, a molten carbonate fuel cell (MCFC), a phosphoric acid fuel cell (PAFC), a solid oxide fuel cell (SOFC), and a solid polymer fuel cell (PEFC).
  • MCFC molten carbonate fuel cell
  • PAFC phosphoric acid fuel cell
  • SOFC solid oxide fuel cell
  • PEFC solid polymer fuel cell
  • Examples thereof include an enzyme (bio) fuel cell, a microbial fuel cell, a hydrazine fuel cell, and a methanol direct oxidation fuel cell (DMFC).
  • DMFC methanol direct oxidation fuel cell
  • the form of the fuel cell is not limited to these examples, but PEFC and DMFC are preferable.
  • the fuel cell of the present invention can be manufactured, for example, by using the electrode obtained by the above-described electrode manufacturing method of the present invention when manufacturing the first electrode. This makes it possible to manufacture a fuel cell having a first electrode containing the catalyst obtained by the manufacturing method of the present invention.
  • the fuel cell of the present invention has an electrode having excellent oxygen reduction catalytic ability and excellent durability.
  • the metal-air battery of the present invention has an electrode obtained by the production method of the present invention.
  • the details of the metal-air battery can be the same as those described for the fuel cell described above.
  • the metal-air battery of the present invention can be manufactured basically in the same manner as the method for manufacturing a fuel cell.
  • FeTPP Iron tetrapyrid polyphyllazine (synthesized by the method described below)
  • FePc Iron phthalocyanine ("P0774" manufactured by Tokyo Chemical Industry Co., Ltd.)
  • DBU diazabicycloundecene
  • DMSO dimethyl sulfoxide
  • DMF N, N-dimethylformamide
  • THF tetrahydrofuran MWCNT: ("755125" manufactured by Sigma Aldrich)
  • TEM Transmission Electron Microscope SEM: Scanning Electron Microscope XPS: X-ray photoelectron spectroscopy
  • RRDE Rotating Ring Disk Electrodes
  • LSV Linear Sweep Voltammetry
  • GC Glassy Carbon (manufactured by BAS Co., Ltd., 01338)
  • concentration The concentration of the metal complex in the solution was measured using a spectrophotometer (“V-760DS” manufactured by JASCO Corporation) for the solution in which the metal complex was dissolved in DMSO.
  • V-760DS a spectrophotometer
  • the molar extinction coefficient of FeTPP at a wavelength of 636 nm is 2189.930071L / (mol ⁇ cm).
  • the number of reaction electrons was calculated based on the KL plot.
  • the current densities of the ring electrode and the disk electrode were calculated from the LSV measurement, and the number of reaction electrons was calculated based on the amount of H 2 O 2 produced at the ring electrode based on the RRDE.
  • Cyclic Voltamogram The cyclic voltammogram was measured by a compact stat (NH-COMPACT, manufactured by Ivium). Hydroxymethylferrocene added to a 0.1 M potassium chloride aqueous solution so that the concentration of hydroxymethylferrocene is 1 mM is used as an electrolytic solution, a platinum plate is used as a counter electrode, and Ag / AgCl is used as a reference electrode. Used as.
  • LSV curve uses an oxygen-saturated 0.1 M potassium hydroxide aqueous solution as an electrolytic solution, and uses a rotating ring disk electrode (RRDE-3A, manufactured by BAS Co., Ltd.) to set the lower limit of the sweep range under the condition of a sweep speed of 5 mV / s. Obtained with -0.8V and an upper limit of 0.2V.
  • the rotation speed of the rotating disk was 2400 rpm, Pt wire was used as a counter electrode, and Ag / AgCl was used as a reference electrode.
  • the LSV measurement by RRDE was carried out by using a rotating ring disk electrode (RRDE-3A, manufactured by BAS Co., Ltd.) using an oxygen-saturated 0.1 M potassium hydroxide aqueous solution as an electrolytic solution under the condition of a sweep speed of 5 mV / s.
  • the LSV was measured when the rotation speed of the rotating disk was set to 0 rpm, 400 rpm, 800 rpm, 1200 rpm, 1600 rpm, 2000 rpm, and 2400 rpm, respectively.
  • Pt was used as the counter electrode and Ag / AgCl was used as the reference electrode.
  • Example 1 Pyridine-2,3-dicarbonitrile: 258 mg, iron (III) chloride hexahydrate: 135 mg and DBU: 20 mg are mixed in vitro and dissolved in a mixed solvent containing 10 mL of methanol and 10 mL of DMSO. It was. Then, while substituting with nitrogen, the mixture was heated at 180 ° C. for 3 hours to obtain a reaction product containing FeTPP. The reaction product was centrifuged 3 times with acetone and dried. The precipitate after centrifugation was dissolved in concentrated sulfuric acid and added dropwise to water to precipitate FeTPP. The precipitated FeTPP was recovered by centrifugation and washed with methanol to obtain FeTPP.
  • 0.1 mg of the obtained FeTPP was dissolved in DMSO: 1.0 mL to prepare a solution having a FeTPP concentration of 0.1 g / L.
  • MWCNT having a carboxyl group: 5 mg (diameter: 9.5 nm, length: 1.5 ⁇ m) was dispersed in the obtained solution.
  • ultrasonic treatment (20 kHz) was performed for 15 minutes.
  • DMSO as a solvent was removed from the obtained dispersion by solid-liquid separation and methanol washing, and dried at room temperature for 24 hours to obtain the catalyst of Example 1.
  • Example 1 the obtained catalyst of Example 1, 0.82 mg, Milli-Q water: 84 ⁇ L, isopropyl alcohol: 336 ⁇ L, and 0.5 mass% Nafion aqueous solution: 6 ⁇ L were kneaded with an ultrasonic stirrer and GC. It was applied to an electrode to obtain an electrode of Example 1.
  • Comparative Example 1 a catalyst was produced in the same manner as in Example 1 except that the obtained FeTPP was dissolved in THF. Next, an electrode containing the catalyst of Comparative Example 1 was produced in the same manner as in Example 1.
  • Comparative Example 2 FePc was used instead of FeTPP, and a catalyst was produced in the same manner as in Example 1 except that FePc was dissolved in THF. Next, an electrode containing the catalyst of Comparative Example 2 was produced in the same manner as in Example 1.
  • Comparative Example 3 the electrode (Pt / C electrode) of Comparative Example 3 was produced in the same manner as in Example 1 except that Pt / C was used instead of the catalyst of Example 1.
  • Comparative Example 4 a dispersion of MWCNT was prepared without using FeTPP.
  • the electrodes of Comparative Example 4 were produced in the same manner as in Example 1 except that the obtained dispersion of MWCNT was used.
  • FIG. 3 is a photograph showing a solution in which FeTPP used in Example 1 is dissolved in DMSO. As shown in FIG. 3, the solution was transparent. Moreover, since this solution was blue, it was confirmed that FeTPP was dissolved in DMSO.
  • FIG. 4 is a photograph showing a dispersion liquid in which MWCNT is dispersed in a solution in which FeTPP is dissolved in DMSO in Example 1. Since the entire liquid was uniformly black and turbid, it was confirmed that the liquid was in a uniformly dispersed state.
  • 5 and 6 are photographs showing the catalyst obtained in Example 1. As shown in FIGS. 5 and 6, it was confirmed that the catalyst could be produced on a gram scale. From this result, the present invention can be used industrially.
  • FIG. 7 is an observation image of the catalyst of Example 1 by TEM.
  • the crystal structure as confirmed in FIG. 8 described later was not confirmed.
  • FIG. 8 is an observation image of the catalyst of Comparative Example 1 by SEM. In FIG. 8, as shown by arrows, a large number of crystal structures having different sizes were confirmed. These crystal structures are derived from crystals of FeTPP that were not dissolved in THF.
  • FIG. 9 is a graph showing a comparison of redox characteristics from the measurement results of LSV at 1600 rpm for each of the electrodes of Examples 1 and Comparative Examples 1 to 4.
  • the higher the potential on the horizontal axis when the current on the vertical axis starts to be generated the smaller the energy loss and the better the oxygen reduction catalytic ability.
  • a current is rapidly generated in the section of the potential 0 to 0.05 on the horizontal axis. From this result, it was confirmed that the electrode of Example 1 had an excellent oxygen reduction catalytic ability as compared with the electrodes of Comparative Examples 1 to 4.
  • FIG. 10 is a graph showing a comparison of redox characteristics from the measurement results of LSV at 1600 rpm in Example 1, Comparative Example 3, and Comparative Example 4. From the results of FIGS. 9 and 10, the half-wave potential of each electrode was obtained. Table 2 shows the results of measuring the number of reaction electrons together with the half-wave potential.
  • the amount of catalyst supported is smaller than that of Comparative Examples 1 to 4. Nevertheless, since the electrode of Example 1 showed excellent oxygen reduction reaction characteristics, it was found that the electrode had excellent oxygen reduction catalytic ability. From the measurement results of the half-wave potential and the number of reaction electrons shown in Table 2, it was confirmed that the oxygen reduction catalytic ability of the electrode of Example 1 was superior to the oxygen reduction catalytic ability of the Pt / C electrode of Comparative Example 3. ..
  • FIG. 11 is a diagram showing a comparison of LSV curves when the cyclic voltammogram is subjected to 1 cycle, 50 cycles, and 100 cycles using the electrodes of Example 1. As shown in FIG. 11, in Example 1, even if the number of cycles increased to 1, 50, 100, there was almost no change in the potential on the horizontal axis when the current shown on the vertical axis started to be generated.
  • FIG. 12 is a diagram comparing the LSV curves when the cyclic voltammogram is performed for 1, 50, and 100 cycles using the Pt / C electrode of Comparative Example 3. As shown in FIG. 12, in the Pt / C electrode of Comparative Example 3, as the number of cycles increased to 1, 50, and 100, the potential on the horizontal axis when the current on the vertical axis started to be generated decreased.
  • Example 1 was also superior in durability to the Pt / C electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

酸素還元触媒能に優れ、燃料電池及び金属空気電池の電極とした際の耐久性に優れる触媒;酸素還元触媒能に優れ、燃料電池及び金属空気電池の電極とした際の耐久性に優れる触媒の製造方法の提供。 金属錯体を溶媒に溶解させて溶液を調製する工程(a)と、前記溶液中に導電性粉体を分散させて分散液を調製する工程(b)と、前記分散液から前記溶媒を除去する工程(c)と、を含み、前記金属錯体を前記導電性粉体の表面上に吸着させて複合体を形成し、前記複合体を触媒とする、触媒の製造方法。

Description

触媒の製造方法、触媒、組成物の製造方法、組成物、電極、電極の製造方法、燃料電池、金属空気電池
 本発明は、触媒の製造方法、触媒、組成物の製造方法、組成物、電極、電極の製造方法、燃料電池、金属空気電池に関する。
 酸化還元反応を利用する燃料電池、金属空気電池(以下、単に「燃料電池等」という場合がある。)が知られている。燃料電池においては、酸素の還元反応を促進する触媒として白金担持炭素材料が用いられている。白金担持炭素材料は、酸素の還元反応を促進する機能(酸素還元触媒能)に優れる。
 一方、金属空気電池においては、前記触媒として二酸化マンガン担持炭素材料が用いられている。
 しかし、白金は高価であり、資源量が限られていることから、白金担持炭素材料の代替材料の開発が試みられている。例えば、白金代替触媒としては、遷移金属錯体が用いられている。代表例としては、特許文献1に鉄フタロシアニン(Fe-Pc)を用いた空気極用触媒が記載されている。特許文献1の実施例1には、鉄フタロシアニンと2-プロパノールとをボールミル処理して得られるFe-Pc分散液を調製し、Fe-Pc分散液に導電助剤、助触媒、結着剤等を混合して得られるスラリーを乾固し、空気極合剤を製造する、空気用触媒の製造方法が開示されている。
特開2016-85925号公報
 鉄フタロシアニンは、2-プロパノールに対する溶解度が低い。そのため特許文献1に記載の方法では、鉄フタロシアニンが2-プロパノールに溶解せず、鉄フタロシアニンが2-プロパノールに分散した分散液となり、分散液中には鉄フタロシアニンの結晶が存在する。ここで、燃料電池等の酸素還元触媒の分野においては、結晶状態の鉄フタロシアニンの存在は、電極とした際の酸素還元触媒能及び耐久性の向上に寄与すると従来から考えられていた。加えて、金属錯体の分散液を使用する従来技術においては、結晶状態の金属錯体の濃度を高くすることで、触媒の酸素還元触媒能及び耐久性を高めようとする技術的思想が一般的であった。
 しかしながら特許文献1に記載の方法にあっては、分散液中に鉄フタロシアニンの結晶が存在するため、カーボン等の導電助剤の鉄フタロシアニンによる表面処理が不充分である。具体的にはカーボンの表面に鉄フタロシアニンが分子吸着せず、鉄フタロシアニンとカーボン等との相互作用が充分に得られない。したがって、従来の酸素還元触媒にあっては酸素還元触媒能に改善の余地がある。
 また、燃料電池等の酸素還元触媒には、電極とした際に優れた耐久性が求められる。
 本発明は、酸素還元触媒能に優れ、燃料電池及び金属空気電池の電極とした際の耐久性に優れる触媒;酸素還元触媒能に優れ、燃料電池及び金属空気電池の電極とした際の耐久性に優れる触媒の製造方法を提供する。
 本発明の発明者らは鋭意検討した結果、金属錯体の分散液の代わりに金属錯体の濃度が相対的に低い金属錯体の溶液を使用することで、触媒の酸素還元触媒能を高めうることを見出した。
 すなわち、本発明は、下記の態様を有する。
[1] 金属錯体を溶媒に溶解させて溶液を調製する工程(a)と、
 前記溶液中に導電性粉体を分散させて分散液を調製する工程(b)と、
 前記分散液から前記溶媒を除去する工程(c)と、
 を含み、
 前記金属錯体を前記導電性粉体の表面上に吸着させて複合体を形成し、前記複合体を触媒とする、触媒の製造方法。
[2] 前記溶液中の前記金属錯体の濃度が、0.0001~5g/Lである、[1]に記載の触媒の製造方法。
[3] 前記複合体に200℃以上の熱処理を施さずに触媒とする、[1]又は[2]に記載の触媒の製造方法。
[4] 前記工程(a)と前記工程(b)を前記溶媒の沸点以下の温度で行う、[1]~[3]のいずれか一項に記載の触媒の製造方法。
[5] 前記工程(a)と前記工程(b)を80℃以下の温度で行う、[1]~[4]のいずれか一項に記載の触媒の製造方法。
[6] 前記溶媒の沸点以下の温度で前記金属錯体を前記導電性粉体の表面上に吸着させる、[1]~[5]のいずれか一項に記載の触媒の製造方法。
[7] 前記分散液をろ過することで前記溶媒を除去する、[1]~[6]のいずれか一項に記載の触媒の製造方法。
[8] ろ過した後の濾液の吸光度が、前記溶液と比較して10%以上低下する、[7]に記載の触媒の製造方法。
[9] 前記金属錯体の前記溶媒に対する溶解度が、0.1g/L以上である、[1]~[8]のいずれか一項に記載の触媒の製造方法。
[10] 前記金属錯体が下式(1)で表される金属錯体である、[1]~[9]のいずれか一項に記載の触媒の製造方法。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、X~Xはそれぞれ独立に、水素原子又はハロゲン原子であり、D~Dは、それぞれ独立に窒素原子又は炭素原子であり、前記炭素原子には水素原子又はハロゲン原子が結合し、Mは金属原子である。
[11] 前記金属錯体が、下式(11)で表される金属錯体である、[1]~[10]のいずれか一項に記載の触媒の製造方法。
Figure JPOXMLDOC01-appb-C000004
 式(11)中、X~Xはそれぞれ独立に、水素原子又はハロゲン原子であり、D、D、D、Dはそれぞれ独立に窒素原子又は炭素原子であり、D、D、D、Dのうち少なくとも一つは炭素原子であり、前記炭素原子には水素原子又はハロゲン原子が結合し、Mは金属原子である。
[12] 前記溶媒の溶解度パラメータが、10~20(MPa)1/2である、[1]~[11]のいずれか一項に記載の触媒の製造方法。
[13] 前記溶媒が、ジメチルスルホキシド、N,N-ジメチルホルムアミドからなる群から選ばれる少なくとも一つである、[1]~[12]のいずれか一項に記載の触媒の製造方法。
[14] 前記導電性粉体が、炭素材料、金属材料、金属酸化物材料からなる群から選ばれる少なくとも一つである、[1]~[13]のいずれか一項に記載の触媒の製造方法。
[15] [1]~[14]のいずれか一項に記載の触媒の製造方法で得られた触媒。
[16] 金属錯体を溶媒に溶解させて溶液を調製する工程(a)と、
 前記溶液中に導電性粉体を分散させて分散液を調製する工程(b)と、
 前記分散液から前記溶媒を除去する工程(c)と、
 を含み、
 前記金属錯体を前記導電性粉体の表面上に吸着させて複合体を形成し、前記複合体を触媒とし、
 前記触媒と、液状媒体とを混合する工程(d)をさらに含む、組成物の製造方法。
[17] [1]~[14]のいずれか一項に記載の触媒の製造方法で得られた触媒と、液状媒体とを含む、組成物。
[18] [1]~[14]のいずれか一項に記載の触媒の製造方法で得られた触媒を含む、電極。
[19] 金属錯体を溶媒に溶解させて溶液を調製する工程(a)と、
 前記溶液中に導電性粉体を分散させて分散液を調製する工程(b)と、
 前記分散液から前記溶媒を除去する工程(c)と、
 を含み、
 前記金属錯体を前記導電性粉体の表面上に吸着させて複合体を形成し、前記複合体を触媒とし、
 前記触媒と、液状媒体とを混合する工程(d)と、
 前記触媒及び前記液状媒体の混合物を、基材の表面に塗布し、前記液状媒体を除去する工程(e)をさらに含む、電極の製造方法。
[20] [18]に記載の電極を有する、燃料電池。
[21] [18]に記載の電極を有する、金属空気電池。
 本発明によれば、酸素還元触媒能に優れ、燃料電池及び金属空気電池の電極とした際の耐久性に優れる触媒;酸素還元触媒能に優れ、燃料電池及び金属空気電池の電極とした際の耐久性に優れる触媒の製造方法が提供される。
本発明の触媒の製造方法を従来の方法と比較して説明するための模式図である。 本発明の製造方法で得られる触媒を従来の方法で得られる触媒と比較して説明するための模式図である。 実施例1で使用したFeTPPがDMSOに溶解している溶液を示す写真である。 実施例1でFeTPPがDMSOに溶解している溶液に、MWCNTを分散させた分散液を示す写真である。 実施例1で得られた触媒を示す写真である。 実施例1で得られた触媒を示す写真である。 実施例1の触媒のTEMによる観察像である。 比較例1の触媒のSEMによる観察像である。 実施例1、比較例1~4の各電極の1600rpmにおけるLSVの測定結果から酸化還元特性を比較して示すグラフである。 実施例1、比較例3、比較例4の1600rpmにおけるLSVの測定結果から酸化還元特性を比較して示すグラフである。 実施例1の電極を使用してサイクリックボルタモグラムを1サイクル、50サイクル、100サイクル行ったときのそれぞれのLSV曲線を比較して示す図である。 比較例3のPt/C電極を使用してサイクリックボルタモグラムを1サイクル、50サイクル、100サイクル行ったときのそれぞれのLSV曲線を比較して示す図である。
 本明細書において、式(1)で表される金属錯体を金属錯体(1)と記す。他の式で表される金属錯体も同様に記す。
 「ヘテロ原子」とは、炭素原子及び水素原子以外の原子を意味する。
 数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
<触媒の製造方法>
 本発明の触媒の製造方法は、以下の工程(a)と、工程(b)と、工程(c)とを含む。本発明の触媒の製造方法においては、前記金属錯体を前記導電性粉体の表面上に吸着させて複合体を形成し、前記複合体を触媒とする。
 工程(a):金属錯体を溶媒に溶解させて溶液を調製する工程。
 工程(b):前記溶液中に導電性粉体を分散させて分散液を調製する工程。
 工程(c):前記分散液から前記溶媒を除去する工程。
(工程(a))
 工程(a)においては、金属錯体を溶媒に溶解させて溶液(S)を調製する。溶液(S)は、金属錯体と、金属錯体が溶解した溶媒とを含む。溶液を調製する際の温度、圧力等の条件は、金属錯体が溶媒に溶解可能な条件であれば特に限定されない。
 例えば、溶液を調製する際の温度は、溶媒の沸点以下の温度が好ましい。通常は室温(例えば、25℃)で溶液を調製する。溶液を調製する際は、通常、大気圧下で溶液を調製する。
 金属錯体について説明する。
 金属錯体の具体例としては、鉄錯体、コバルト錯体等が挙げられる。ただし、金属錯体は、これら以外の遷移金属錯体、ランタノイド金属錯体、アクチノイド金属錯体等でもよく、金属錯体は、鉄錯体、コバルト錯体に限定されない。
 本発明における金属錯体は、下式(1)で表される金属錯体(1)が好ましい。金属錯体(1)は白金の代替材料として有用であるという利点がある。特に金属原子Mの周囲に配位する4つの窒素原子は、ピリジン環構造の一部を構成している。このピリジン環構造の一部を構成する4つの窒素原子が、溶媒に対する優れた溶解性に寄与すると考えられている。
Figure JPOXMLDOC01-appb-C000005
 式(1)中、X~Xはそれぞれ独立に、水素原子又はハロゲン原子であり、D~Dはそれぞれ独立に、窒素原子又は炭素原子であり、前記炭素原子には水素原子又はハロゲン原子が結合し、Mは金属原子である。
 金属錯体(1)の一例としては、例えば、下記の金属錯体(11)、金属錯体(12)、金属錯体(13)が例示される。
Figure JPOXMLDOC01-appb-C000006
 式(11)中、X~Xはそれぞれ独立に、水素原子又はハロゲン原子であり、D、D、D、Dはそれぞれ独立に窒素原子又は炭素原子であり、D、D、D、Dのうち少なくとも一つは炭素原子であり、前記炭素原子には水素原子又はハロゲン原子が結合し、Mは金属原子である。
Figure JPOXMLDOC01-appb-C000007
 式(12)中、X~Xはそれぞれ独立に、水素原子又はハロゲン原子であり、Mは金属原子である。
Figure JPOXMLDOC01-appb-C000008
 式(13)中、X~Xはそれぞれ独立に、水素原子又はハロゲン原子であり、Mは金属原子である。
 金属錯体(11)の具体例としては、例えば、下記の金属錯体(11-1)が例示される。ただし、金属錯体(11)の具体例はこの例示に限定されない。
Figure JPOXMLDOC01-appb-C000009
 式(11-1)中、Mは金属原子である。
 金属錯体(12)の具体例としては、例えば、下記の金属錯体(12-1)が例示される。ただし、金属錯体(12)の具体例はこの例示に限定されない。
Figure JPOXMLDOC01-appb-C000010
 式(12-1)中、Mは金属原子である。
 金属錯体(13)の具体例としては、例えば、下記の金属錯体(13-1)が例示される。ただし、金属錯体(13)の具体例はこの例示に限定されない。
Figure JPOXMLDOC01-appb-C000011
 式(13-1)中、Mは金属原子である。
 金属錯体(11)、金属錯体(12)、金属錯体(13)の中でも、酸素還元触媒能がよくなる傾向があることから、金属錯体(11)が好ましい。加えて、金属錯体(11)を用いると、溶媒に対する溶解性がよくなる傾向がある。その結果、導電性粉体との親和性が向上し、導電性粉体の表面に均一に金属錯体が吸着しやすくなる。
 ここで、金属錯体(1)には、例えば、下記の金属錯体(11-1’)、下記の金属錯体(12-1’)等の異性体が存在し得る。
Figure JPOXMLDOC01-appb-C000012
 式(11-1’)中、X~Xはそれぞれ独立に、水素原子又はハロゲン原子であり、D、D、D、Dはそれぞれ窒素原子又は炭素原子であり、D、D、D、Dのうち少なくとも一つは炭素原子であり、前記炭素原子には水素原子又はハロゲン原子が結合し、Mは金属原子である。
Figure JPOXMLDOC01-appb-C000013
 式(12-1’)中、X~Xはそれぞれ独立に、水素原子又はハロゲン原子であり、Mは金属原子である。
 本発明においては、金属錯体は、上記式(11-1’)、上記式(12-1’)等で示されるような異性体を含む概念である。ここで、金属錯体の異性体は、上記式(11-1’)、上記式(12-1’)で示すものに限定されない。例えば、上記式(11-1’)中、D、D、D、Dのそれぞれが含まれるそれぞれの環状構造から選ばれる少なくとも一つにおいて、窒素原子の位置がD、D、D、Dのいずれかの位置と同一の環状構造内で交換されていてもよい。
 以下、金属錯体(1)の態様についてさらに詳細に説明するが、いずれの態様においても、式(11-1’)又は式(12-1’)に示すような異性体が存在し得る。これらの異性体は、いずれも本発明の金属錯体の態様に含まれるものである。
 金属錯体(1)においては、Mは金属原子である。
 窒素原子とMとの間の結合は、窒素原子のMへ配位を意味する。Mには配位子としてハロゲン原子、水酸基、炭素数1~8の炭化水素基がさらに結合してもよい。また、電気的に中性になるように、アニオン性対イオンが存在してもよい。
 Mの価数は特に制限されない。金属錯体が静電気的に中性となるように、配位子(例えば、軸配位子)としてハロゲン原子、水酸基、又は、炭素数1~8のアルキルオキシ基が結合してもよく、アニオン性対イオンが存在してもよい。アニオン性対イオンとしては、ハロゲン化物イオン、水酸化物イオン、硝酸イオン、硫酸イオンが例示される。
 炭素数1~8のアルキルオキシ基が有するアルキル基の構造は、直鎖状でも、分岐状でも、環状でもよい。
 前記Mとしては、スカンジウム原子、チタン原子、バナジウム原子、クロム原子、マンガン原子、鉄原子、コバルト原子、ニッケル原子、銅原子、亜鉛原子、イットリウム原子、ジルコニウム原子、ニオブ原子、ルテニウム原子、ロジウム原子、パラジウム原子、ランタン原子、セリウム原子、プラセオジム原子、ネオジム原子、プロメチウム原子、サマリウム原子、ユウロピウム原子、ガドリニウム原子、テルビウム原子、ジスプロシウム原子、ホルミウム原子、エルビウム原子、ツリウム原子、イッテルビウム原子、ルテチウム、アクチニウム原子、トリウム原子、プロトアクチニウム原子、ウラン原子、ネプツニウム原子、プルトニウム原子、アメリシウム原子、キュリウム原子、バークリウム原子、カリホルニウム原子、アインスタイニウム原子、フェルミウム原子、メンデレビウム原子、ノーベリウム原子、ローレンシウム原子が例示される。
 これらの中でも、鉄原子、マンガン原子、コバルト原子、銅原子、亜鉛原子が好ましく、鉄原子、マンガン原子、コバルト原子がより好ましく、鉄原子が特に好ましい。
 Mが鉄原子である場合、鉄原子の周囲に配位する4つの窒素原子が、ピリジン環構造の一部を構成しているため、金属錯体の分子中にこれら4つの窒素原子と鉄原子とを有するFeN構造が局所的に形成される。このFeN構造が形成されると、触媒の酸素還元触媒能がさらによくなる。
 Mが鉄原子である場合、金属錯体(1)の具体例としては、例えば、下記の金属錯体(11-1-1)、金属錯体(12-1-1)、金属錯体(13-1-1)が例示される。ただし、Mが鉄原子である金属錯体(1)の具体例はこの例示に限定されない。
Figure JPOXMLDOC01-appb-C000014
 金属錯体の溶媒に対する溶解度は、金属錯体と溶媒となる化合物との組合せの選択によって主に決定される。例えば、金属錯体が金属錯体(1)である場合においては、金属錯体(1)の構造中のD~Dのうち、窒素原子である原子の数を変更することで、金属錯体(1)の溶媒に対する溶解度を調節できる。これにより、導電性粉体と金属錯体との親和性を高め、酸素還元触媒能をさらに高めることができる。
 溶媒について説明する。
 溶媒は、金属錯体が溶解し得る化合物であれば、特に限定されない。金属錯体の溶解度が0.1g/L以上である化合物が好ましい。
 金属錯体の溶解度は、0.1g/L以上が好ましく、0.4g/L以上がより好ましく、2.0g/L以上がさらに好ましく、10g/L以上が特に好ましい。金属錯体(1)の溶解度の上限値は、特に限定されない。金属錯体(1)の溶解度の上限値は、例えば、20g/Lでもよく、50g/Lでもよく、100g/Lでもよい。
 金属錯体の溶解度が前記下限値以上であると、金属錯体が溶媒にさらに溶けやすく、金属錯体が導電性粉体の表面にさらに均一に吸着しやすくなる。その結果、触媒の酸素還元触媒能がさらによくなり、燃料電池の電極とした際の耐久性がさらによくなる。
 溶媒に対する金属錯体の溶解度は、通常、25℃、大気圧下で紫外可視分光法を用いて測定される溶媒1Lあたりの金属錯体の溶解量(g)の最大値である。加えて、溶媒に対する金属錯体の溶解度の測定条件は、溶液を調製する際の条件とは無関係に特定される条件である。
 溶媒の溶解度パラメータは、10~20(MPa)1/2が好ましく、11~13(MPa)1/2がより好ましい。溶媒の溶解度パラメータが前記下限値未満であると、疎水性が高すぎて極性部を有する金属錯体の溶解度が低下する傾向がある。溶媒の溶解度パラメータが前記上限値超であると、極性が高すぎて疎水部を有する金属錯体の溶解度が低下する傾向がある。
 溶媒の溶解度パラメータは、例えば、Fedors法によってSP値として推算できる。
 前記溶液中の前記金属錯体の濃度は、0.0001~5g/Lが好ましく、0.01~1g/Lがより好ましく、0.1~1g/Lが好ましい。
 前記金属錯体の濃度が前記下限値以上であると、金属錯体の吸着効率がさらによくなり、吸着速度が高くなり、生産性がよくなる。
 前記金属錯体の濃度が前記上限値以下であると、溶液中の金属錯体が導電性粉体の表面に均一に吸着されやすくなり、導電性粉体の表面に金属錯体の単一分子からなる均一な単分子層が形成される。その結果、本発明の触媒の酸素還元触媒能及び耐久性がさらによくなるという効果が得られる。
 ここで、金属錯体の分散液を使用していた従来技術においては、結晶状態の金属錯体の濃度を高くすることで、触媒の酸素還元触媒能を高めようとする技術的思想が一般的であった。これに対して本発明の触媒の製造方法によれば、金属錯体の濃度が相対的に低い溶液を使用する。このように、相対的に低濃度の金属錯体の溶液を使用することで、触媒の酸素還元触媒能を高めようとする技術的思想は、本発明の発明者らが知見したものである。
 金属錯体の濃度は、例えば、分光光度計による吸光度係数とモル吸光係数に基づいて測定できる。
 溶液は、金属錯体以外の不純物をさらに含むことがある。この場合、不純物の含有量は、金属錯体の含有量100質量%に対して20質量%以下が好ましい。不純物の含有量が前記上限値以下であると、さらに効率的に金属錯体が導電性粉体に吸着可能である。
 溶媒は、金属錯体に応じて適宜選択できる。例えば、溶媒の具体例としては、メタノール、エタノール、ヘキサフルオロ-2-プロパノール等のアルコール;ジメチルスルホキシド;N-メチルピロリドン、ジメチルホルムアミド、アセトン等の非プロトン性極性溶媒;クロロホルム、ジクロロメタン、1,4―ジオキサン等の非極性溶媒が例示される。ただし、溶媒の具体例はこれらの例示に限定されない。
 溶媒は1種を単独で用いてもよく、2種以上を併用してもよい。すなわち、溶媒は、単独成分のみからなるものでもよく、混合溶媒であってもよい。
 例えば、金属錯体として上述の金属錯体(11)、金属錯体(12)、金属錯体(13)を使用する場合、溶媒としては、ジメチルスルホキシド、N,N-ジメチルホルムアミドからなる群から選ばれる少なくとも一つが好ましい。ここで、一例として、ジメチルスルホキシド、N,N-ジメチルホルムアミド、テトラヒドロフランのそれぞれに対する金属錯体(11-1-1)、金属錯体(12-1-1)、金属錯体(13-1-1)の25℃、大気圧下における溶解度を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000015
 表1中、「DMSO」の欄は、ジメチルスルホキシドに対する各金属錯体の25℃、大気圧下における溶解度を示す。
 表1中、「DMF」の欄は、N,N-ジメチルホルムアミドに対する各金属錯体の25℃、大気圧下における溶解度を示す。
 表1中、「THF」の欄は、テトラヒドロフランに対する各金属錯体の25℃、大気圧下における溶解度を示す。
 ここで、表1に記載の各溶解度は、後述の実施例に記載の方法で測定した。
(工程(b))
 工程(b)においては、前記溶液中に導電性粉体を分散させて分散液を調製する。
 通常、工程(b)において前記金属錯体を前記導電性粉体の表面上に吸着させて複合体を形成して触媒とする。分散液は、金属錯体が導電性粉体の表面上に吸着している触媒を含む。
 分散液を調製する際の温度は、溶媒の沸点以下の温度が好ましい。通常は室温(例えば、25℃)で分散液を調製する。
 金属錯体を導電性粉体の表面上に吸着させる際の温度は、溶媒の沸点以下の温度が好ましい。通常は室温(例えば、25℃)で分散液を調製する。
 導電性粉体について説明する。
 導電性粉体は、溶媒に分散可能であり、導電性を具備するものであれば特に限定されない。導電性粉体としては、炭素材料、金属材料、金属酸化物材料からなる群から選ばれる少なくとも一つが挙げられる。これらの中でも、導電性粉体としては炭素材料が好ましい。導電性粉体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 炭素材料の具体例としては、例えば、黒鉛、アモルファス炭素、活性炭、グラフェン、カーボンブラック、炭素繊維、メソカーボンマイクロビーズ、マイクロカプセルカーボン、フラーレン、カーボンナノフォーム、カーボンナノチューブ、カーボンナノホーン等が例示される。これらの中でも、黒鉛、アモルファス炭素、活性炭、グラフェン、カーボンブラック、炭素繊維、フラーレン、カーボンナノチューブが好ましく、カーボンナノチューブ、カーボンブラック、グラフェンがより好ましく、カーボンナノチューブ、グラフェンがさらに好ましい。
 金属材料の具体例としては、チタン、スズ等が挙げられる。
 金属酸化物材料の具体例としては、チタン酸化物、スズ酸化物(SnO,ITO、ATO)等が挙げられる。
 カーボンナノチューブとしては、単層カーボンナノチューブ、2層カーボンナノチューブ、多層カーボンナノチューブが例示される。これらの中でも、触媒の導電性が優れる点から、2層カーボンナノチューブ、多層カーボンナノチューブが好ましく、多層カーボンナノチューブがさらに好ましい。
 炭素材料は、水酸基、カルボキシル基、窒素含有基、ケイ素含有基、リン酸基等のリン含有基、スルホン酸基等の硫黄含有基等の官能基を有してもよい。これらの中でも炭素材料は、カルボキシル基を有することが好ましい。炭素材料がカルボキシル基を有すると、炭素材料の表面に金属錯体が吸着しやすくなり、電極とした際の耐久性がさらによくなるとともに、酸素還元触媒能がさらによくなる。
 炭素材料は、ヘテロ原子を有してもよい。ヘテロ原子としては、酸素原子、窒素原子、リン原子、硫黄原子、ケイ素原子等が例示される。炭素材料がヘテロ原子を有する場合において、炭素材料はヘテロ原子の1種を単独で含んでもよく、2種以上のヘテロ原子を含んでもよい。なお、炭素材料は酸化されていてもよく、水酸化されていてもよく、窒化されていてもよく、リン化されていてもよく、硫化されていてもよく、珪化されていてもよい。
 炭素材料がカルボキシル基を含有する場合、カルボキシル基の含有量は、炭素材料100質量%に対して、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましい。カルボキシル基の含有量が前記上限値以下であると、触媒の製造コストが低下しやすくなる。
 炭素材料がカルボキシル基を含有する場合、カルボキシル基の含有量は、1質量%以上が好ましく、5質量%以上がより好ましく、8質量%以上がさらに好ましい。カルボキシル基の含有量が前記下限値以上であると、電極とした際の耐久性及び酸素還元触媒能がさらによくなる。
 カルボキシル基の含有量は、元素分析又はX線光電子分光法等により測定できる。
 触媒の導電性が優れ、かつ、酸素還元触媒能がさらに優れる点から、炭素材料はカルボキシル基を有する2層カーボンナノチューブ、カルボキシル基を有する多層カーボンナノチューブが好ましく、カルボキシル基を有する多層カーボンナノチューブがより好ましい。
 炭素材料の比表面積は0.8m/g以上が好ましく、1.0m/g以上がより好ましく、1.1m/g以上がさらに好ましく、1.5m/g以上が特に好ましく、2.0m/g以上が最も好ましい。比表面積が0.8m/g以上であると、触媒の凝集を防ぎやすくなり、触媒の酸素還元触媒能がさらに優れる。比表面積の上限値は特に限定されない。比表面積の上限値は、例えば、2000m/gとすることができる。
 前記比表面積は、窒素吸着BET法で比表面積測定装置により測定できる。
 導電性粉体の平均粒径は、特に制限されない。導電性粉体の平均粒径は、例えば、5nm~1000μmが好ましい。導電性粉体の平均粒径を前記数値範囲に調整する方法としては、以下の方法(α1)~(α3)が例示される。
・方法(α1):粒子をボールミル等により粉砕し、得られた粗粒子を分散剤に分散させて所望の粒子径にした後に乾固する方法。
・方法(α2):粒子をボールミル等により粉砕し、得られた粗粒子をふるい等にかけて粒子径を選別する方法。
・方法(α3):導電性粉体を製造する際に導電性粉体の製造条件を最適化し、粒子の粒径を調整する方法。
 導電性粉体の平均粒子径は、粒度分布測定装置、電子顕微鏡等により測定できる。
 本発明の触媒の製造方法の一態様においては、溶液(S)に導電性粉体を分散させて分散液を調製する。溶液(S)は、金属錯体と、金属錯体が溶解している溶媒とを含む。
 溶液(S)に導電性粉体を分散させる方法は特に限定されない。例えば、下記の方法(β1)、(β2)が例示される。
・方法(β1):溶液(S)と導電性粉体を混合し、得られた混合液に攪拌処理を施す方法。
・方法(β2):溶液(S)と導電性粉体を混合し、得られた混合液をホモジナイザー等の分散機を使用して分散処理を施す方法。
 方法(β1)において、攪拌処理としては、ミキサーの使用、超音波の照射、マグネチックスターラーによる攪拌、撹拌機による攪拌等が例示される。ただし、攪拌処理はこれらの例示に限定されない。
 分散液から溶媒を除去する方法は、特に限定されない。例えば、固液分離等のろ過;減圧乾燥;加熱乾燥等が例示される。ただし、加熱乾燥の場合、触媒の電極とした際の耐久性を考慮すると、加熱温度は低い方が好ましく、具体的には200℃以下が好ましく、100℃以下がより好ましく、50℃以下がさらに好ましい。
(工程(c))
 工程(c)においては、分散液から前記溶媒を除去し、金属錯体が導電性粉体の表面上に吸着している複合体を触媒として得る。
 分散液から溶媒を除去する方法は特に限定されない。例えば、固液分離によって除去できる。固液分離としては、触媒への温度負荷が低減されることから、ろ過が好ましい。すなわち、分散液をろ過することで溶媒を除去することが好ましい。濾過の際においては、ろ過した後の濾液の吸光度が、前記溶液と比較して10%以上低下することが好ましい。これにより、金属錯体が導電性粉体に効果的に吸着したことを判断できると考えられる。
 本発明においては、溶液(S)に導電性粉体を分散させる。そのため、金属錯体の分子を導電性粉体の表面に分子的に均一に吸着させることができる。その結果、導電性粉体と導電性粉体の表面に層状に吸着した金属錯体とを有する複合体として触媒分子を製造できる。
 本発明においては、導電性粉体と導電性粉体の表面に層状に吸着した金属錯体とを有する複合体に200℃以上の熱処理を施さずに触媒とすることが好ましく、100℃以上の熱処理を施さずに触媒とすることがより好ましく、50℃以上の熱処理を施さずに触媒とすることがさらに好ましい。
 従来、触媒の製造方法においては、金属原子を炭素材料の表面に担持させるために、焼成等の熱処理を行うことが一般的であった。加えて、炭素材料に金属原子、窒素原子等を担持させるためにも、焼成等の熱処理を施すことが重要であると考えられていた。
 これに対し本発明においては、従来触媒の製造において重要であると考えられていた熱処理を施さずに、金属錯体の溶媒に対する溶解度を高めて、金属錯体の炭素材料に対する親和性を高めることに着目した。金属錯体の溶媒に対する溶解度を高くし、金属錯体の炭素材料に対する親和性を高めることにより、炭素材料の表面に一分子状態で吸着した金属錯体の錯体層を設けることができる。その結果、白金担持炭素材料と同様又はそれ以上の酸化還元触媒能が得られる。
 本発明の触媒の製造方法においては、工程(a)と工程(b)はそれぞれ独立の工程でもよく、工程(a)と工程(b)とは同時の又は一体的な工程でもよい。工程(a)と工程(b)とを同時に又は一体的に実行する場合、金属錯体の溶解度が相対的に低い場合において、金属錯体の導電性粉体への吸着がさらに促進される。
 工程(a)と工程(b)は、溶媒の沸点以下の温度で行うことが好ましく、例えば、80℃以下の温度で行うことが好ましい。これにより、触媒への温度負荷が低減され、製造コスト低減の観点でも望ましい。
(作用効果)
 以上説明した本発明の触媒の製造方法にあっては、金属錯体が溶解している溶媒を含む溶液を使用するため、溶液中では金属錯体が溶媒に溶解している。そのため、溶液中に金属錯体の結晶が存在しにくくなり、金属錯体の分子が導電性粉体の表面に均一に吸着される。このように、金属錯体が導電性粉体の表面に分子的に吸着している複合体を触媒とすることで、金属錯体と導電性粉体との間の電子の授受の効率がよくなるため、触媒の酸化還元触媒能がよくなる。
 加えて、後述の実施例で示すように金属錯体が溶媒に溶解している場合でも、燃料電池の電極とした際の耐久性に優れる触媒が得られる。
 図1は、本発明の触媒の製造方法を従来の方法と比較して説明するための模式図である。図1中(a)は、従来の方法を示す模式図である。図1中(b)は、本発明の触媒の製造方法を示す模式図である。
 図2は、本発明の製造方法で得られる触媒を従来の方法で得られる触媒と比較して説明するための模式図である。図2中(a)は、従来の方法で得られる触媒を示す模式図である。図2中(b)は、本発明の製造方法で得られる触媒を示す模式図である。
 従来、図1中(a)に示すように、燃料電池の電極とした際の耐久性の向上を期待して、金属錯体の結晶100が液状媒体101中に分散した分散液Pを用いて、触媒103が製造されることが通例であった。そのため、導電性粉体102の表面に均一に触媒分子である金属錯体の結晶100が付着せず、金属錯体の結晶100と導電性粉体102とが単に混合されている状態であった。よって、従来の触媒においては、結晶状態の金属錯体と導電性粉体102との間の化学的な相互作用能が充分に発揮されなかった。
 これに対して、本発明の触媒の製造方法にあっては、図1中(b)に示すように、金属錯体50が溶解可能な溶媒51を選択し、金属錯体50の溶液Sに導電性粉体を分散させる。そのため、金属錯体50の分子を導電性粉体52の表面に分子的に均一に吸着させることができる。その結果、導電性粉体52と導電性粉体52の表面に層状に吸着した金属錯体50とを有する触媒53を製造できる(図2中(b))。触媒53は、導電性粉体52と、金属錯体50を含む錯体層とを有するとも言える。錯体層は、導電性粉体52の表面に均一に設けられている。
 このように触媒53は、金属錯体50が導電性粉体52の表面に吸着した複合体である。触媒53にあっては、導電性粉体52の表面に金属錯体50が吸着しているため、金属錯体50と導電性粉体52との間の化学的な相互作用能が向上する。その結果、触媒53においては、結晶の存在下で製造していた従来の触媒と比較して酸化還元触媒能が飛躍的に向上する。
 このように本発明の触媒の製造方法においては、導電性粉体の表面に触媒分子である金属錯体が均一に分子吸着しているため、酸化還元触媒能に優れる触媒が得られる。また、得られる触媒の電極とした際の耐久性もよい。
 よって、従来、燃料電池の酸化還元触媒の用途に適用されなかった金属錯体を、溶媒の選択によって触媒の製造に適用できる可能性がある。そのため、金属錯体を溶解し得る溶媒の選択によって、種々の金属錯体を触媒の製造に適用できるようになり、金属錯体の選択肢が従来技術と比較して増加する。
(用途)
 本発明によれば、酸素還元触媒能に優れ、電極とした際の耐久性にともに優れる触媒が得られる。そのため、酸素の還元反応を利用する産業上の用途に好適に利用できる。特に、燃料電池及び金属空気電池の電極、電気化学反応用電極に好適に適用できる。
 触媒は、後述の組成物の製造にも適用できる。
<触媒>
 本発明の触媒は、金属錯体を含む錯体層と導電性粉体とを有する。そして、錯体層は前記導電性粉体の表面を被覆している。錯体層は、分子吸着により導電性粉体の表面を被覆している。本発明の触媒は、金属錯体を含む錯体層が導電性粉体の表面に吸着した複合体であるとも言える。
 本発明の触媒にあっては、導電性粉体の表面に金属錯体が吸着しているため、金属錯体と導電性粉体との間の化学的な相互作用能が向上する。その結果、結晶の存在下で製造していた従来の触媒と比較して酸化還元触媒能が飛躍的に向上する。
 本発明の触媒は、例えば、上述の本発明の触媒の製造方法によって得ることができる。すなわち、本発明の触媒は、本発明の触媒の製造方法によって得られる触媒であるともいえる。
 本発明の触媒は、例えば、後述の組成物に適用できる。
<組成物の製造方法>
 本発明の組成物の製造方法は、金属錯体を溶媒に溶解させて溶液を調製する工程(a)と、前記溶液中に導電性粉体を分散させて分散液を調製する工程(b)と、前記分散液から前記溶媒を除去する工程(c)と、を含み、前記金属錯体を前記導電性粉体の表面上に吸着させて複合体を形成し、前記複合体を触媒とし、前記触媒と、液状媒体とを混合する工程(d)をさらに含む。
 すなわち、本発明の組成物の製造方法は、上述の本発明の触媒の製造方法の各工程に加えて、下記の工程(d)をさらに含む。
 工程(d):触媒と、液状媒体とを混合する工程。
 工程(a)、工程(b)、工程(c)の詳細及び好ましい態様は、上述の本発明の<触媒の製造方法>の項において説明した内容と同内容とすることができる。
(工程(d))
 工程(d)では、前記触媒と、液状媒体とを混合する。例えば、工程(d)では、組成物は、触媒と液状媒体と必要に応じてパーフルオロカーボン材料とを混合又は混練してもよい。
 混合又は混練に際しては、超音波処理、ミキサー、ブレンダー、ニーダー、ホモジナイザー、ビーズミル、ボールミル等を使用してもよい。混練操作の前後においては、ふるい等を使用して、粒子の平均粒子径を調整してもよい。
 パーフルオロカーボン材料を含む組成物を調製する際には、触媒とパーフルオロカーボン材料と必要に応じて水とアルコールとを混合し、均一になるまで撹拌してもよい。
 液状媒体としては、水等の無機質媒体であってもよく、有機媒体であってもよい。
 有機媒体の具体例としては、メタノール、エタノール、プロパノール、イソプロパノール(2-プロパノール)、1-ヘキサノール等のアルコール;ジメチルスルホキシド;テトラヒドロフラン;N-メチルピロリドン、ジメチルホルムアミド、アセトン等の非プロトン性極性溶媒;クロロホルム、ジクロロメタン、1,4―ジオキサン、ベンゼン、トルエン等の非極性溶媒が例示される。ただし、液状媒体はこれらの例示に限定されない。
 液状媒体は触媒の製造の際に使用した溶媒と同一でもよく、異なっていてもよい。
 液状媒体は1種を単独で用いてもよく、2種以上を併用してもよい。
 混合又は混練に際しては、触媒、液状媒体以外の任意成分をさらに混合してもよい。これにより、触媒、液状媒体以外の任意成分をさらに含む組成物が得られる。例えば、任意成分として、ポリテトラフルオロエチレンに基づく構成単位とスルホン酸基を有するパーフルオロ側鎖とを含むパーフルオロカーボン材料を使用してもよい。パーフルオロカーボン材料を使用すると、パーフルオロカーボン材料をさらに含む組成物が得られる。
 パーフルオロカーボン材料の具体例としては、Nafion(製品名:デュポン社製)が例示される。ただし、パーフルオロカーボン材料はこの例示に限定されない。
<組成物>
 本発明の組成物は、本発明の触媒の製造方法によって得られた触媒と液状媒体とを含む。液状媒体、触媒、液状媒体以外の任意成分の詳細については、<組成物の製造方法>の項で述べた内容と同様である。
 例えば、組成物は、電極の製造において使用する塗工液として使用できる。すなわち、組成物は、電極製造用組成物として有用である。電極の製造については、<電極の製造方法>の項で後述する。
 組成物は、例えば、触媒が液状媒体に分散した分散液タイプでもよい。
 組成物は、助触媒、結着剤等を必要に応じてさらに含んでもよい。組成物は、例えば、電極の製造に適用できる。
<電極の製造方法>
 本発明の電極の製造方法は、金属錯体を溶媒に溶解させて溶液を調製する工程(a)と、前記溶液中に導電性粉体を分散させて分散液を調製する工程(b)と、前記分散液から前記溶媒を除去する工程(c)と、を含み、前記金属錯体を前記導電性粉体の表面上に吸着させて複合体を形成し、前記複合体を触媒とし、前記触媒と、液状媒体とを混合する工程(d)と、前記触媒及び前記液状媒体の混合物を、基材の表面に塗布し、前記液状媒体を除去する工程(e)をさらに含む。
 すなわち、本発明の電極の製造方法は、上述の本発明の触媒の製造方法の各工程に加えて、下記の工程(d)と工程(e)をさらに含む。
 工程(d):触媒と、液状媒体とを混合する工程。
 工程(e):触媒及び液状媒体の混合物を、基材の表面に塗布し、液状媒体を除去する工程。
 工程(a)、工程(b)、工程(c)、工程(d)の詳細及び好ましい態様は、上述の本発明の<触媒の製造方法>の項又は<電極の製造方法>の項において説明した内容と同内容とすることができる。
 触媒及び液状媒体の混合物は、本発明の組成物であるとも言える。そのため、本発明の触媒の製造方法の一態様では、本発明の組成物の製造方法で得られた組成物を基材の表面に塗布し、前記液状媒体を除去するとも言える。
(工程(e))
 工程(e)では、組成物を種々の基材の表面に塗布して、基材の表面に組成物を含む層を設ける。その後、組成物を含む層から液状媒体を除去する。液状媒体を除去した後には基材の表面に触媒を含む触媒層が設けられる。
 組成物を基材の表面に塗布する際の厚みは、特に限定されない。例えば、触媒層の厚みが、0.01~100μmとなるように組成物を基材の表面に塗布してもよい。触媒層の厚みが前記下限値以上であると、電極の耐久性がさらによくなる。厚みが前記上限値以下であると、電極の性能が低下しにくい。
 液状媒体を除去する際は、加熱乾燥をしてもよく、乾燥後にプレスを行ってもよい。
 基材(基板)としては、アルミニウム箔、電解アルミニウム箔、アルミニウムメッシュ(エキスパンドメタル)、発泡アルミニウム、パンチングアルミニウム、ジュラルミン等のアルミニウム合金、銅箔、電解銅箔、銅メッシュ(エキスパンドメタル)、発泡銅、パンチング銅、真鍮等の銅合金、真鍮箔、真鍮メッシュ(エキスパンドメタル)、発泡真鍮、パンチング真鍮、ニッケル箔、ニッケルメッシュ、耐食性ニッケル、ニッケルメッシュ(エキスパンドメタル)、パンチングニッケル、発泡ニッケル、スポンジニッケル、金属亜鉛、耐食性金属亜鉛、亜鉛箔、亜鉛メッシュ(エキスパンドメタル)、鋼板、パンチング鋼板、銀等が例示される。
 基材は、シリコン基板;金、鉄、ステンレス鋼、銅、アルミニウム、リチウム等の金属基板;これらの金属の任意の組み合わせを含む合金基板;インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、アンチモン錫酸化物(ATO)等の酸化物基板;グラッシーカーボン、パイロリティックグラファイト、カーボンフェルト等の炭素基板等の基板状の基材でもよい。ただし、基材は、これらの例示に限定されない。
 基材として、例えば多孔質支持層を有する基板を用いることで、本発明の製造方法で得られる電極を燃料電池用の電極として利用してもよい。燃料電池の電極として利用する場合、電極はカソード又はアノードのいずれの電極に用いてもよい。
 多孔質支持層とは、ガスを拡散する層である。多孔質支持層としては、電子伝導性を具備し、ガスの拡散性が高く、耐食性の高いものであれば特に限定されない。多孔質支持層としては、カーボンペーパー、カーボンクロス等の炭素系多孔質材料、ステンレス箔、耐食材を被服したアルミニウム箔等が例示される。
 本発明の製造方法で得られる電極は、燃料電池の電極として利用できる。燃料電池の電極として利用する場合、一対の電極の間に電解質膜を配置してもよい。
 電極を燃料電池の電極として利用する場合、酸性条件下では下式(2)に示す酸素の還元反応が進行しやすくなり、アルカリ性条件下では下式(3)に示す還元反応が進行しやすくなる。
 O+4H+4e→2HO  ・・・(2)
 O+2HO+4e→4OH ・・・(3)
 本発明の電極の製造方法によれば、酸素還元触媒能に優れ、電極とした際の耐久性に優れる触媒を含む電極を製造できる。
<電極>
 本発明の電極は、本発明の触媒を含む。すなわち、本発明の電極は、触媒の製造方法で得られた触媒を含む。本発明の電極は、例えば、上述の本発明の電極の製造方法により製造できる。
 電極は、燃料電池、金属空気電池等の蓄電デバイス(発電デバイス)用の電極に好適に適用できる。
<燃料電池>
 本発明の燃料電池は、本発明の触媒を含む電極を有する。燃料電池は、例えば、第1の電極と第2の電極と電解質とセパレータとを有する。ここで、第1の電極は、上述の本発明の電極の製造方法で得られる電極である。第2の電極は第1の電極と組み合せて用いられる電極である。
 第1の電極がカソードである場合、第2の電極はアノードであり、第1の電極がアノードである場合、第2の電極はカソードである。
 第2の電極としては、アルミニウム、亜鉛等の金属単体、これらの金属酸化物が例示される。ただし、第2の電極はこれらの例示に限定されない。
 電解質としては、水性電解液が好ましい。水性電解液としては、水酸化カリウム水溶液、水酸化ナトリウム水溶液等のアルカリ水溶液;硫酸水溶液等の酸性水溶液が例示される。電解質は、1種を単独で用いてもよく、2種以上を併用してもよい。ただし、電解質はこれらの例示に限定されず、無機固体電解質でもよい。
 セパレータは、第1の電極と第2の電極とを隔離し、電解質を保持して第1の電極と第2の電極との間のイオン伝導性を確保する部材である。
 セパレータの具体例としては、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、セルロース、酢酸セルロース、ヒドロキシアルキルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、セロファン、ポリスチレン、ポリアクリロニトリル、ポリアクリルアミド、ポリ塩化ビニル、ポリアミド、ビニロン、ポリ(メタ)アクリル酸等のマイクロポアを有する重合体、ゲル化合物、イオン交換膜、環化重合体、ポリ(メタ)アクリル酸塩含有重合体、スルホン酸塩含有重合体、第四級アンモニウム塩含有重合体、第四級ホスホニウム塩含有重合体等が例示される。ただし、セパレータはこれらの例示に限定されない。
 燃料電池は一次電池でもよく、二次電池でもよい。
 燃料電池の形態としては、金属空気電池、溶融炭酸塩型燃料電池(MCFC)、リン酸型燃料電池(PAFC)、固体酸化物型燃料電池(SOFC)、固体高分子型燃料電池(PEFC)、酵素(バイオ)燃料電池、微生物燃料電池、ヒドラジン燃料電池、メタノール直接酸化型燃料電池(DMFC)等が例示される。燃料電池の形態はこれらの例示に限定されないが、PEFC、DMFCが好ましい。
 本発明の燃料電池は、例えば、第1の電極を製造する際に、上述の本発明の電極の製造方法で得られた電極を使用することで製造できる。これにより、本発明の製造方法で得られる触媒を含む第1の電極を有する燃料電池を製造できる。
 本発明の燃料電池は、酸素還元触媒能に優れ、耐久性に優れる電極を有する。
 本発明の金属空気電池は、本発明の製造方法で得られる電極を有する。金属空気電池の詳細は上述の燃料電池について説明した内容と同内容とすることができる。本発明の金属空気電池は、燃料電池の製造方法と基本的に同様にして製造できる。
 以下、実施例によって本実施形態を具体的に説明するが、本発明は以下の記載によっては限定されない。
<略号>
 FeTPP:鉄テトラピリドポリフィラジン(後述の方法で合成したもの)
 FePc:鉄フタロシアニン(東京化成工業社製「P0774」)
 DBU:ジアザビシクロウンデセン
 DMSO:ジメチルスルホキシド
 DMF:N,N-ジメチルホルムアミド
 THF:テトラヒドロフラン
 MWCNT:(Sigma Aldrich社製「755125」)
 TEM:Transmission Electron Microscope
 SEM:Scanning Electron Microscope
 XPS:X-ray photoelectron spectroscopy
 RRDE:Rotating Ring Disk Electrodes
 LSV:Linear Sweep Voltammetry
 K-L:Koutecky-Levich
 Pt/C:白金担持カーボン(Sigma Aldrich社製、738549-1G)
 GC:グラッシーカーボン(BAS株式会社製、01338)
<測定方法>
(溶解度)
 金属錯体の溶媒に対する溶解度は、25℃、大気圧下で紫外可視分光法を用いて測定し、溶媒1Lあたりの金属錯体の溶解量(g)の最大値とした。
(濃度)
 溶液中の金属錯体の濃度は、金属錯体をDMSOに溶解させた溶液について、分光光度計(JASCO社製「V-760DS」)を使用して測定した。波長636nmにおけるFeTPPのモル吸光係数は、2189.930071L/(mol・cm)である。
(半波電位)
 LSV曲線において、電位が-0.5Vのときの電流値の半分の電流値に達するときの電位を半波電位とした。
(反応電子数)
 K-Lプロットに基づいて反応電子数を算出した。LSV測定からリング電極とディスク電極の電流密度を算出し、RRDEに基づいて、リング電極におけるHの件出量を基に反応電子数を算出した。
(触媒担持量)
 X線光電子分光分析装置(Thermo Fisher Scientific社製、Theta Probe)を用いて測定した。
(TEM)
 透過型電子顕微鏡(Hitachi社製、H-7650)によって観察像を得た。
(SEM)
 走査型透過電子顕微鏡(Hitachi社製、S―5200)によって観察像を得た。
(サイクリックボルタモグラム)
 サイクリックボルタモグラムは、コンパクトスタット(Ivium社製、NH-COMPACT)によって測定した。
 0.1Mの塩化カリウム水溶液中に、ヒドロキシメチルフェロセンの濃度が1mMとなるようにヒドロキシメチルフェロセンを添加したものを、電解液として使用し、白金板を対極として使用し、Ag/AgClを参照極として使用した。
(LSV曲線)
 LSV曲線は、酸素飽和0.1M水酸化カリウム水溶液を電解液として使用し、回転リングディスク電極(BAS株式会社製、RRDE-3A)によって掃引速度5mV/sの条件下で、掃引範囲の下限を-0.8V、上限を0.2Vとして取得した。回転ディスクの回転数は2400rpmとし、Pt線を対極として使用し、Ag/AgClを参照極として使用した。
(RRDEによるLSV測定)
 RRDEによるLSV測定は、回転リングディスク電極(BAS株式会社製、RRDE-3A)によって酸素飽和0.1M水酸化カリウム水溶液を電解液として使用し、掃引速度5mV/sの条件下で行った。回転ディスクの回転数を0rpm,400rpm,800rpm,1200rpm,1600rpm,2000rpm,2400rpmの各回転数にしたときについてそれぞれLSVを測定した。対極としてPtを使用し、参照極としてAg/AgClを使用した。
 RRDEによるLSV測定の結果を示すグラフにおいて、縦軸に示す電流の発生が始まるときの横軸に示す付与電位が高いほど、酸素還元触媒能に優れることを意味する。
<実施例1>
 ピリジン-2,3-ジカルボニトリル:258mgと塩化鉄(III)六水和物:135mgとDBU:20mgとを試験管内で混合し、メタノール:10mLとDMSO:10mLとを含む混合溶媒に溶解させた。次いで窒素置換しながら、180℃で3時間加熱し、FeTPPを含む反応生成物を得た。反応生成物をアセトンで3回遠心分離し、乾燥させた。遠心分離後の沈殿物を濃硫酸に溶解させ、水に滴下し、FeTPPを析出させた。析出したFeTPPを遠心分離で回収し、メタノールで洗浄し、FeTPPを得た。
 次いで、得られたFeTPP:0.1mgをDMSO:1.0mLに溶解させ、FeTPPの濃度が0.1g/Lである溶液を調製した。得られた溶液にカルボキシル基を有するMWCNT:5mg(直径:9.5nm,長さ:1.5μm)を分散させた。分散に際しては、超音波処理(20kHz)を15分間行った。得られた分散液から固液分離及びメタノール洗浄によって溶媒であるDMSOを除去し、室温で24時間乾燥させて実施例1の触媒を得た。
 次いで、得られた実施例1の触媒:0.82mgと、Milli―Q水:84μLと、イソプロピルアルコール:336μLと、0.5質量%のNafion水溶液:6μLを超音波撹拌機で混練し、GC電極に塗布し、実施例1の電極を得た。
<比較例1>
 比較例1では、得られたFeTPPをTHFに溶解させた以外は、実施例1と同様にして触媒を製造した。次いで、実施例1と同様にして比較例1の触媒を含む電極を製造した。
<比較例2>
 比較例2では、FeTPPの代わりにFePcを使用し、FePcをTHFに溶解させた以外は、実施例1と同様にして触媒を製造した。次いで、実施例1と同様にして比較例2の触媒を含む電極を製造した。
<比較例3>
 比較例3では、実施例1の触媒の代わりにPt/Cを使用した以外は、実施例1と同様にして、比較例3の電極(Pt/C電極)を製造した。
<比較例4>
 比較例4では、FeTPPを使用せずにMWCNTの分散液を調製した。得られたMWCNTの分散液を使用した以外は、実施例1と同様にして比較例4の電極を製造した。
 図3は、実施例1で使用したFeTPPがDMSOに溶解している溶液を示す写真である。図3に示すように溶液は透明であった。また、この溶液は青色であったことから、FeTPPがDMSOに溶解していることを確認した。
 図4は、実施例1でFeTPPがDMSOに溶解している溶液に、MWCNTを分散させた分散液を示す写真である。液体の全体が均一に黒く濁っていたことから、均一な分散状態であったことを確認した。
 図5、図6は、実施例1で得られた触媒を示す写真である。図5、6に示すように、グラムスケールで触媒を製造できたことを確認した。この結果から、本発明は工業的な利用が可能である。
 図7は、実施例1の触媒のTEMによる観察像である。図7においては、後述の図8で確認されるような結晶構造は、確認されなかった。別途XPSにより実施例1の触媒の表面には鉄原子が存在することを確認した。これらの結果から、MWCNTの表面にFeTPPの錯体層が分子吸着していることが示唆された。
 図8は、比較例1の触媒のSEMによる観察像である。図8中、矢印で示すように、多数のサイズの異なる結晶構造が確認された。これらの結晶構造は、THFに溶解しなかったFeTPPの結晶に由来する。
 図9は、実施例1、比較例1~4の各電極の1600rpmにおけるLSVの測定結果から酸化還元特性を比較して示すグラフである。ここで、RRDEによるLSV測定の結果を示すグラフにおいて、縦軸に示す電流の発生が始まるときの横軸の電位が高いほど、エネルギー損失が少なく、酸素還元触媒能に優れることを意味する。
 図9に示すように、実施例1のLSV曲線においては、横軸の電位0~0.05の区間で急激に電流が発生している。この結果から、実施例1の電極は、比較例1~4の各電極に比して優れた酸素還元触媒能を具備することが確認できた。
 図10は、実施例1、比較例3、比較例4の1600rpmにおけるLSVの測定結果から酸化還元特性を比較して示すグラフである。図9及び図10の結果から、各電極の半波電位を求めた。半波電位と併せて、反応電子数を測定した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000016
 表2に示すように、実施例1の電極にあっては、触媒の担持量が比較例1~4と比較しても少ない。それにもかかわらず、実施例1の電極は優れた酸素還元反応特性を示したことから、優れた酸素還元触媒能を具備することがわかった。表2に示す半波電位、反応電子数の測定結果から、実施例1の電極の酸素還元触媒能は、比較例3のPt/C電極の酸素還元触媒能より優れていることが確認できた。
 図11は、実施例1の電極を使用してサイクリックボルタモグラムを1サイクル、50サイクル、100サイクル行ったときのそれぞれのLSV曲線を比較して示す図である。
 図11に示すように、実施例1においては、サイクル数が1、50、100と増えても、縦軸に示す電流の発生が始まるときの横軸の電位の変化はほとんどなかった。
 図12は、比較例3のPt/C電極を使用してサイクリックボルタモグラムを1サイクル、50サイクル、100サイクル行ったときのそれぞれのLSV曲線を比較して示す図である。
 図12に示すように、比較例3のPt/C電極においては、サイクル数が1、50、100と増えるにつれて、縦軸に示す電流の発生が始まるときの横軸の電位が低くなった。
 図11、図12に示す結果から、実施例1の電極は、Pt/C電極より耐久性においても優れていることを確認できた。
 以上説明した本実施例の結果から、金属錯体(1)が溶媒に溶解している溶液を使用することで、酸化還元触媒能に優れる触媒を製造できたことを確認した。
 加えて、金属錯体が溶媒に溶解している場合でも、燃料電池の電極とした際の耐久性に優れる触媒を製造できることを確認できた。
 50…金属錯体、51…溶媒、52…導電性粉体、53…触媒、100…金属錯体の結晶、101…液状媒体、102…導電性粉体、103…触媒、S…溶液、P…分散液。

Claims (21)

  1.  金属錯体を溶媒に溶解させて溶液を調製する工程(a)と、
     前記溶液中に導電性粉体を分散させて分散液を調製する工程(b)と、
     前記分散液から前記溶媒を除去する工程(c)と、
     を含み、
     前記金属錯体を前記導電性粉体の表面上に吸着させて複合体を形成し、前記複合体を触媒とする、触媒の製造方法。
  2.  前記溶液中の前記金属錯体の濃度が、0.0001~5g/Lである、請求項1に記載の触媒の製造方法。
  3.  前記複合体に200℃以上の熱処理を施さずに触媒とする、請求項1又は2に記載の触媒の製造方法。
  4.  前記工程(a)と前記工程(b)を前記溶媒の沸点以下の温度で行う、請求項1~3のいずれか一項に記載の触媒の製造方法。
  5.  前記工程(a)と前記工程(b)を80℃以下の温度で行う、請求項1~4のいずれか一項に記載の触媒の製造方法。
  6.  前記溶媒の沸点以下の温度で前記金属錯体を前記導電性粉体の表面上に吸着させる、請求項1~5のいずれか一項に記載の触媒の製造方法。
  7.  前記分散液をろ過することで前記溶媒を除去する、請求項1~6のいずれか一項に記載の触媒の製造方法。
  8.  ろ過した後の濾液の吸光度が、前記溶液と比較して10%以上低下する、請求項7に記載の触媒の製造方法。
  9.  前記金属錯体の前記溶媒に対する溶解度が、0.1g/L以上である、請求項1~8のいずれか一項に記載の触媒の製造方法。
  10.  前記金属錯体が下式(1)で表される金属錯体である、請求項1~9のいずれか一項に記載の触媒の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、X~Xはそれぞれ独立に、水素原子又はハロゲン原子であり、D~Dは、それぞれ独立に、窒素原子又は炭素原子であり、前記炭素原子には水素原子又はハロゲン原子が結合し、Mは金属原子である。
  11.  前記金属錯体が、下式(11)で表される金属錯体である、請求項1~10のいずれか一項に記載の触媒の製造方法。
    Figure JPOXMLDOC01-appb-C000002
     式(11)中、X~Xはそれぞれ独立に、水素原子又はハロゲン原子であり、D、D、D、Dはそれぞれ独立に窒素原子又は炭素原子であり、D、D、D、Dのうち少なくとも一つは炭素原子であり、前記炭素原子には水素原子又はハロゲン原子が結合し、Mは金属原子である。
  12.  前記溶媒の溶解度パラメータが、10~20(MPa)1/2である、請求項1~11のいずれか一項に記載の触媒の製造方法。
  13.  前記溶媒が、ジメチルスルホキシド、N,N-ジメチルホルムアミドからなる群から選ばれる少なくとも一つである、請求項1~12のいずれか一項に記載の触媒の製造方法。
  14.  前記導電性粉体が、炭素材料、金属材料、金属酸化物材料からなる群から選ばれる少なくとも一つである、請求項1~13のいずれか一項に記載の触媒の製造方法。
  15.  請求項1~14のいずれか一項に記載の触媒の製造方法で得られた触媒。
  16.  金属錯体を溶媒に溶解させて溶液を調製する工程(a)と、
     前記溶液中に導電性粉体を分散させて分散液を調製する工程(b)と、
     前記分散液から前記溶媒を除去する工程(c)と、
     を含み、
     前記金属錯体を前記導電性粉体の表面上に吸着させて複合体を形成し、前記複合体を触媒とし、
     前記触媒と、液状媒体とを混合する工程(d)をさらに含む、組成物の製造方法。
  17.  請求項1~14のいずれか一項に記載の触媒の製造方法で得られた触媒と、液状媒体とを含む、組成物。
  18.  請求項1~14のいずれか一項に記載の触媒の製造方法で得られた触媒を含む、電極。
  19.  金属錯体を溶媒に溶解させて溶液を調製する工程(a)と、
     前記溶液中に導電性粉体を分散させて分散液を調製する工程(b)と、
     前記分散液から前記溶媒を除去する工程(c)と、
     を含み、
     前記金属錯体を前記導電性粉体の表面上に吸着させて複合体を形成し、前記複合体を触媒とし、
     前記触媒と、液状媒体とを混合する工程(d)と、
     前記触媒及び前記液状媒体の混合物を、基材の表面に塗布し、前記液状媒体を除去する工程(e)をさらに含む、電極の製造方法。
  20.  請求項18に記載の電極を有する、燃料電池。
  21.  請求項18に記載の電極を有する、金属空気電池。
PCT/JP2020/033290 2019-09-05 2020-09-02 触媒の製造方法、触媒、組成物の製造方法、組成物、電極、電極の製造方法、燃料電池、金属空気電池 WO2021045121A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080061456.2A CN114342127A (zh) 2019-09-05 2020-09-02 催化剂的制造方法、催化剂、组合物的制造方法、组合物、电极、电极的制造方法、燃料电池、金属空气电池
JP2021544008A JP7405452B2 (ja) 2019-09-05 2020-09-02 触媒の製造方法、触媒、組成物の製造方法、組成物、電極、電極の製造方法、燃料電池、金属空気電池
US17/638,031 US20220278338A1 (en) 2019-09-05 2020-09-02 Production method of catalyst, catalyst, production method of composition, composition, electrode, manufacturing method of electrode, fuel cell, metal-air battery
EP20860034.6A EP4026614A1 (en) 2019-09-05 2020-09-02 Production method of catalyst, catalyst, production method of composition, composition, electrode, manufacturing method of electrode, fuel cell, and metal-air battery
KR1020227005405A KR20220034234A (ko) 2019-09-05 2020-09-02 촉매의 제조 방법, 촉매, 조성물의 제조 방법, 조성물, 전극, 전극의 제조 방법, 연료 전지, 금속 공기 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019162370 2019-09-05
JP2019-162370 2019-09-05

Publications (1)

Publication Number Publication Date
WO2021045121A1 true WO2021045121A1 (ja) 2021-03-11

Family

ID=74853333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033290 WO2021045121A1 (ja) 2019-09-05 2020-09-02 触媒の製造方法、触媒、組成物の製造方法、組成物、電極、電極の製造方法、燃料電池、金属空気電池

Country Status (6)

Country Link
US (1) US20220278338A1 (ja)
EP (1) EP4026614A1 (ja)
JP (1) JP7405452B2 (ja)
KR (1) KR20220034234A (ja)
CN (1) CN114342127A (ja)
WO (1) WO2021045121A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127196A1 (ja) * 2021-12-28 2023-07-06 AZUL Energy株式会社 触媒及びその製造方法、触媒を含む金属空気二次電池用の電極又は水電解システム用の電極、並びに電極を含む金属空気二次電池又は水電解システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186169A (ja) * 1982-04-22 1983-10-31 Pentel Kk 空気極
WO2006003943A1 (ja) * 2004-06-30 2006-01-12 Tdk Corporation 直接アルコール型燃料電池及びその製造方法
JP2006059578A (ja) * 2004-08-18 2006-03-02 National Institute Of Advanced Industrial & Technology 固体高分子形燃料電池用カソード電極触媒とその製造方法
JP2012148225A (ja) * 2011-01-18 2012-08-09 National Institute Of Advanced Industrial Science & Technology 水素化物の電気化学的酸化用触媒
JP2015091578A (ja) * 2013-10-04 2015-05-14 国立研究開発法人産業技術総合研究所 酸素の電気化学的還元用触媒
JP2016085925A (ja) 2014-10-28 2016-05-19 株式会社日本触媒 空気極用触媒
WO2019167407A1 (ja) * 2018-03-02 2019-09-06 国立大学法人東北大学 触媒、液状組成物、電極、電気化学反応用触媒電極、燃料電池及び空気電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186169A (ja) * 1982-04-22 1983-10-31 Pentel Kk 空気極
WO2006003943A1 (ja) * 2004-06-30 2006-01-12 Tdk Corporation 直接アルコール型燃料電池及びその製造方法
JP2006059578A (ja) * 2004-08-18 2006-03-02 National Institute Of Advanced Industrial & Technology 固体高分子形燃料電池用カソード電極触媒とその製造方法
JP2012148225A (ja) * 2011-01-18 2012-08-09 National Institute Of Advanced Industrial Science & Technology 水素化物の電気化学的酸化用触媒
JP2015091578A (ja) * 2013-10-04 2015-05-14 国立研究開発法人産業技術総合研究所 酸素の電気化学的還元用触媒
JP2016085925A (ja) 2014-10-28 2016-05-19 株式会社日本触媒 空気極用触媒
WO2019167407A1 (ja) * 2018-03-02 2019-09-06 国立大学法人東北大学 触媒、液状組成物、電極、電気化学反応用触媒電極、燃料電池及び空気電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127196A1 (ja) * 2021-12-28 2023-07-06 AZUL Energy株式会社 触媒及びその製造方法、触媒を含む金属空気二次電池用の電極又は水電解システム用の電極、並びに電極を含む金属空気二次電池又は水電解システム

Also Published As

Publication number Publication date
US20220278338A1 (en) 2022-09-01
CN114342127A (zh) 2022-04-12
JP7405452B2 (ja) 2023-12-26
JPWO2021045121A1 (ja) 2021-03-11
EP4026614A1 (en) 2022-07-13
KR20220034234A (ko) 2022-03-17

Similar Documents

Publication Publication Date Title
JP7460152B2 (ja) 触媒、液状組成物、電極、電気化学反応用触媒電極、燃料電池及び空気電池
JP5481646B2 (ja) 炭素触媒、燃料電池、蓄電装置
US20100323272A1 (en) Carbon catalyst, slurry containing the carbon catalyst, process for producing carbon catalyst, and fuel cell, storage device, and environmental catalyst each employing carbon catalyst
WO2012063681A1 (ja) 炭素触媒及びその製造方法並びにこれを用いた電極及び電池
JP6244936B2 (ja) 炭素触媒及びその製造方法、及び該炭素触媒を用いた触媒インキ並びに燃料電池
JP2010027364A (ja) 燃料電池用電極触媒およびその製造方法
Capelo et al. Stability and durability under potential cycling of Pt/C catalyst with new surface-functionalized carbon support
WO2021045121A1 (ja) 触媒の製造方法、触媒、組成物の製造方法、組成物、電極、電極の製造方法、燃料電池、金属空気電池
JP6040954B2 (ja) 燃料電池用触媒の製造方法
JP2019169289A (ja) 燃料電池用空気極触媒及びその製造方法並びに燃料電池用空気極触媒を用いた燃料電池
JP4789179B2 (ja) 電極触媒、および、その製造方法
KR101111486B1 (ko) 직접메탄올 연료전지용 전극촉매물질 제조방법
Kin et al. Development of direct methanol fuel cell catalyst using marimo nano carbon
JP2009231049A (ja) 白金担持カーボン、燃料電池用触媒、電極膜接合体、および燃料電池
JP5164627B2 (ja) 白金担持カーボン、燃料電池用触媒、電極膜接合体、および燃料電池
WO2009148116A1 (ja) 炭素触媒及び炭素触媒の製造方法、燃料電池、蓄電装置、炭素触媒の使用方法
CN115715230B (zh) 氧还原用催化剂及其选定方法、包含氧还原用催化剂的液态组合物或电极、具备电极的空气电池或燃料电池
JP5948452B2 (ja) 燃料電池用担持触媒の製造方法
JP2024076756A (ja) 複合体及びその製造方法、複合体を含む触媒、液状組成物又は電極、並びに電極を有する燃料電池又は金属空気電池
JP5759695B2 (ja) 燃料電池用担持触媒の製造方法
WO2023037953A1 (ja) 導電性チタン酸化物、金属担持導電性チタン酸化物、膜電極接合体、固体高分子形燃料電池、導電性チタン酸化物の製造方法、及び金属担持導電性チタン酸化物の製造方法
WO2021177431A1 (ja) 新規触媒組成物並びに窒素含有基を有する炭素材料
Nassr Development of nanostructured materials for PEM fuel cells application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544008

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227005405

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020860034

Country of ref document: EP

Effective date: 20220405