WO2019167407A1 - 触媒、液状組成物、電極、電気化学反応用触媒電極、燃料電池及び空気電池 - Google Patents
触媒、液状組成物、電極、電気化学反応用触媒電極、燃料電池及び空気電池 Download PDFInfo
- Publication number
- WO2019167407A1 WO2019167407A1 PCT/JP2018/047829 JP2018047829W WO2019167407A1 WO 2019167407 A1 WO2019167407 A1 WO 2019167407A1 JP 2018047829 W JP2018047829 W JP 2018047829W WO 2019167407 A1 WO2019167407 A1 WO 2019167407A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- catalyst
- atom
- mass
- metal complex
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 152
- 239000007788 liquid Substances 0.000 title claims description 67
- 239000000446 fuel Substances 0.000 title claims description 34
- 239000000203 mixture Substances 0.000 title claims description 23
- 238000003487 electrochemical reaction Methods 0.000 title claims description 15
- -1 electrode Substances 0.000 title description 10
- 150000004696 coordination complex Chemical class 0.000 claims abstract description 59
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 55
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 23
- 125000004433 nitrogen atom Chemical group N* 0.000 claims abstract description 17
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 16
- 125000005843 halogen group Chemical group 0.000 claims abstract description 15
- 125000004429 atom Chemical group 0.000 claims abstract description 13
- 150000001721 carbon Chemical group 0.000 claims abstract description 13
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 51
- 229910052760 oxygen Inorganic materials 0.000 abstract description 51
- 239000001301 oxygen Substances 0.000 abstract description 51
- 230000009467 reduction Effects 0.000 abstract description 38
- 230000003197 catalytic effect Effects 0.000 abstract description 32
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 189
- 238000006722 reduction reaction Methods 0.000 description 51
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 43
- 239000006185 dispersion Substances 0.000 description 42
- 239000002048 multi walled nanotube Substances 0.000 description 37
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 33
- 238000005259 measurement Methods 0.000 description 28
- 239000000758 substrate Substances 0.000 description 28
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 27
- 238000001228 spectrum Methods 0.000 description 27
- 239000010410 layer Substances 0.000 description 25
- 238000006243 chemical reaction Methods 0.000 description 22
- 238000010586 diagram Methods 0.000 description 17
- 239000003792 electrolyte Substances 0.000 description 16
- 239000000047 product Substances 0.000 description 16
- 238000004502 linear sweep voltammetry Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 239000002245 particle Substances 0.000 description 13
- 239000000126 substance Substances 0.000 description 12
- 229910052742 iron Inorganic materials 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 229910021389 graphene Inorganic materials 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- KMHSUNDEGHRBNV-UHFFFAOYSA-N 2,4-dichloropyrimidine-5-carbonitrile Chemical compound ClC1=NC=C(C#N)C(Cl)=N1 KMHSUNDEGHRBNV-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 7
- 239000002041 carbon nanotube Substances 0.000 description 7
- 229910021393 carbon nanotube Inorganic materials 0.000 description 7
- 125000005842 heteroatom Chemical group 0.000 description 7
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 6
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 229910001369 Brass Inorganic materials 0.000 description 5
- 238000001069 Raman spectroscopy Methods 0.000 description 5
- 239000010951 brass Substances 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 239000008151 electrolyte solution Substances 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 239000002079 double walled nanotube Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical group N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 238000004611 spectroscopical analysis Methods 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical group [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910021397 glassy carbon Inorganic materials 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000012844 infrared spectroscopy analysis Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- WADSJYLPJPTMLN-UHFFFAOYSA-N 3-(cycloundecen-1-yl)-1,2-diazacycloundec-2-ene Chemical compound C1CCCCCCCCC=C1C1=NNCCCCCCCC1 WADSJYLPJPTMLN-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 2
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000007809 chemical reaction catalyst Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- GHFGOVUYCKZOJH-UHFFFAOYSA-N pyridine-2,3-dicarbonitrile Chemical compound N#CC1=CC=CN=C1C#N GHFGOVUYCKZOJH-UHFFFAOYSA-N 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 239000002109 single walled nanotube Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- TZMSYXZUNZXBOL-UHFFFAOYSA-N 10H-phenoxazine Chemical compound C1=CC=C2NC3=CC=CC=C3OC2=C1 TZMSYXZUNZXBOL-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- XWIYUCRMWCHYJR-UHFFFAOYSA-N 1h-pyrrolo[3,2-b]pyridine Chemical compound C1=CC=C2NC=CC2=N1 XWIYUCRMWCHYJR-UHFFFAOYSA-N 0.000 description 1
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical group [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- VHMICKWLTGFITH-UHFFFAOYSA-N 2H-isoindole Chemical compound C1=CC=CC2=CNC=C21 VHMICKWLTGFITH-UHFFFAOYSA-N 0.000 description 1
- ALGIYXGLGIECNT-UHFFFAOYSA-N 3h-benzo[e]indole Chemical compound C1=CC=C2C(C=CN3)=C3C=CC2=C1 ALGIYXGLGIECNT-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910052695 Americium Inorganic materials 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 229910052686 Californium Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910052685 Curium Inorganic materials 0.000 description 1
- 229910000737 Duralumin Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical group Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 229910052766 Lawrencium Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052764 Mendelevium Inorganic materials 0.000 description 1
- 239000012901 Milli-Q water Substances 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052781 Neptunium Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical group [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052773 Promethium Inorganic materials 0.000 description 1
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Natural products C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical group [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 150000001224 Uranium Chemical group 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical group [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910052767 actinium Inorganic materials 0.000 description 1
- QQINRWTZWGJFDB-UHFFFAOYSA-N actinium atom Chemical group [Ac] QQINRWTZWGJFDB-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- LXQXZNRPTYVCNG-UHFFFAOYSA-N americium atom Chemical group [Am] LXQXZNRPTYVCNG-UHFFFAOYSA-N 0.000 description 1
- 238000005102 attenuated total reflection Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- HGLDOAKPQXAFKI-UHFFFAOYSA-N californium atom Chemical group [Cf] HGLDOAKPQXAFKI-UHFFFAOYSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 229910021400 carbon nanofoam Inorganic materials 0.000 description 1
- 239000008209 carbon nanofoam Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical group [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- QUQFTIVBFKLPCL-UHFFFAOYSA-L copper;2-amino-3-[(2-amino-2-carboxylatoethyl)disulfanyl]propanoate Chemical compound [Cu+2].[O-]C(=O)C(N)CSSCC(N)C([O-])=O QUQFTIVBFKLPCL-UHFFFAOYSA-L 0.000 description 1
- NIWWFAAXEMMFMS-UHFFFAOYSA-N curium atom Chemical group [Cm] NIWWFAAXEMMFMS-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical group [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical group [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical group [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- MIORUQGGZCBUGO-UHFFFAOYSA-N fermium Chemical group [Fm] MIORUQGGZCBUGO-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical group [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical group [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- SYJRVVFAAIUVDH-UHFFFAOYSA-N ipa isopropanol Chemical compound CC(C)O.CC(C)O SYJRVVFAAIUVDH-UHFFFAOYSA-N 0.000 description 1
- NQXWGWZJXJUMQB-UHFFFAOYSA-K iron trichloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].Cl[Fe+]Cl NQXWGWZJXJUMQB-UHFFFAOYSA-K 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical group [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical group [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical group [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- MQVSLOYRCXQRPM-UHFFFAOYSA-N mendelevium atom Chemical group [Md] MQVSLOYRCXQRPM-UHFFFAOYSA-N 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000002116 nanohorn Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical group [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- LFNLGNPSGWYGGD-UHFFFAOYSA-N neptunium atom Chemical group [Np] LFNLGNPSGWYGGD-UHFFFAOYSA-N 0.000 description 1
- 150000002815 nickel Chemical group 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical group [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical group [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 150000004714 phosphonium salts Chemical group 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical group [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical group [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- VQMWBBYLQSCNPO-UHFFFAOYSA-N promethium atom Chemical group [Pm] VQMWBBYLQSCNPO-UHFFFAOYSA-N 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- XLROVYAPLOFLNU-UHFFFAOYSA-N protactinium atom Chemical group [Pa] XLROVYAPLOFLNU-UHFFFAOYSA-N 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical group [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical group [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical group [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical group [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical group [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical group [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical group [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical group [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- AFVLVVWMAFSXCK-UHFFFAOYSA-N α-cyano-4-hydroxycinnamic acid Chemical compound OC(=O)C(C#N)=CC1=CC=C(O)C=C1 AFVLVVWMAFSXCK-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/18—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
- B01J31/1805—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
- B01J31/181—Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
- B01J31/1825—Ligands comprising condensed ring systems, e.g. acridine, carbazole
- B01J31/183—Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9008—Organic or organo-metallic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/04—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
- H01M12/06—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8652—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9075—Catalytic material supported on carriers, e.g. powder carriers
- H01M4/9083—Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/96—Carbon-based electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/84—Metals of the iron group
- B01J2531/842—Iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/08—Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a catalyst, a liquid composition, an electrode, a catalyst electrode for electrochemical reaction, a fuel cell, and an air cell.
- Fuel cells that produce electric energy using the oxygen reduction reaction are known.
- a catalyst layer for promoting a reduction reaction on the surface of an electrode As this catalyst, a platinum-supported carbon material is known.
- the platinum-supported carbon material is excellent in the function of promoting the oxygen reduction reaction (oxygen reduction catalytic ability).
- Patent Document 1 discloses an air electrode catalyst including an oxygen reduction catalyst and a cocatalyst, which is a carbon material containing 2% by mass or more of a hetero atom to which the cocatalyst can coordinately bond.
- Patent Document 2 discloses an iron phthalocyanine / graphene comprising a step of mixing a graphene oxide dispersion and an iron phthalocyanine dispersion to obtain an iron phthalocyanine / graphene oxide composite, and a step of reducing the iron phthalocyanine / graphene oxide composite.
- Patent Document 3 is an electrode catalyst comprising a catalyst component and a catalyst support material, and the catalyst component is selected from the group consisting of indole, isoindole, naphthopyrrole, pyrrolopyridine, benzimidazole, purine, carbazole, phenoxazine and phenothiazine.
- an electrode catalyst comprising a conductive polymer having at least one repeating unit structure and a conductive polymer metal complex comprising metal ions, and the catalyst-supporting material includes a conductor having a pore structure.
- Patent Document 4 discloses an electrode for oxygen reduction containing a cobalt tetrapyrazinoporphyrazine derivative represented by the following formula (5) as a catalyst component.
- An object of the present invention is to provide a catalyst having an oxygen reduction catalytic ability that exceeds that of a platinum-supported carbon material.
- the inventors of the present invention have surprisingly been effective in solving the above problems when a metal complex having a specific chemical structure and relatively low conductivity is applied to the catalyst. I found out. Specifically, the present inventors have found that a catalyst including a metal complex having a specific chemical structure is superior in oxygen reduction catalytic ability to a platinum-supported carbon material, and has completed the present invention.
- a catalyst comprising a metal complex represented by the following formula (1) and a carbon material.
- X 1 to X 8 are each independently a hydrogen atom or a halogen atom
- D 1 to D 4 are a nitrogen atom or a carbon atom
- the carbon atom has a hydrogen atom or a halogen atom.
- M is a metal atom.
- a catalyst having an oxygen reduction catalytic ability exceeding that of a platinum-supported carbon material can be obtained.
- FIG. 2 is a spectrum diagram showing a measurement result of MALDI-TOF mass spectrometry in Example 1.
- FIG. 2 is a spectrum diagram showing the measurement results of UV-vis in Example 1.
- FIG. 3 is a schematic diagram showing a catalyst of Example 2.
- FIG. 6 is a spectrum diagram showing the measurement results of UV-vis in Example 2.
- FIG. 6 is a spectrum diagram showing the results of infrared spectroscopic analysis in Example 2.
- FIG. 6 is a graph showing the results of laser Raman spectroscopic analysis in Example 2.
- FIG. 7 is an enlarged view of FIG. 6.
- FIG. 7 is an enlarged view of FIG. 6.
- 3 is an observation image of the methanol dispersion liquid of Example 2 by TEM.
- FIG. 10 is an enlarged view of FIG. 9.
- FIG. 20 is an enlarged view of FIG. 19. It is an observation image by TEM of CB.
- FIG. 22 is an enlarged view of FIG. 21.
- FIG. 4 is an observation image by TEM of a fired product of the methanol dispersion liquid of Example 3. It is an enlarged view of FIG. 7 is an observation image of the methanol dispersion liquid of Example 4 by TEM. It is an enlarged view of FIG. It is an observation image by TEM of GO. It is an enlarged view of FIG. 4 is an observation image by TEM of a fired product of the methanol dispersion liquid of Example 4. It is an enlarged view of FIG. 6 is a spectrum diagram showing the measurement results of EDX spectrum analysis for the catalyst of Example 2. FIG. It is an element mapping image based on the measurement result shown in FIG. It is a spectrum figure which shows the measurement result of the EDX spectrum analysis with respect to MWCNT.
- FIG. 40 is an enlarged view of FIG. 39.
- 6 is a graph showing the result of calculating the number of reaction electrons based on the KL plot for the electrode of Example 2. It is a graph which shows the result of having calculated the number of reaction electrons based on RRDE about the electrode of Example 2.
- FIG. It is a graph which shows the result of having evaluated durability about the electrode of Example 2.
- FIG. It is a figure which compares and shows the LSV curve acquired by using each of the electrode of Example 3, and the Pt / C electrode as a working electrode. It is a figure which compares and shows the LSV curve acquired by using each of the electrode of Example 5, and the Pt / C electrode as a working electrode.
- Heteroatom means an atom other than a carbon atom and a hydrogen atom.
- ⁇ indicating a numerical range means that numerical values described before and after that are included as a lower limit value and an upper limit value.
- the catalyst of the present embodiment includes a metal complex represented by the following formula (1) and a carbon material.
- X 1 to X 8 are each independently a hydrogen atom or a halogen atom
- D 1 to D 4 are a nitrogen atom or a carbon atom
- the carbon atom has a hydrogen atom or a halogen atom
- M is a metal atom.
- the bond between the nitrogen atom and M means the coordination of the nitrogen atom to M.
- a halogen atom, a hydroxyl group, or a hydrocarbon group having 1 to 8 carbon atoms may further be bonded to M as a ligand.
- An anionic counter ion may also be present so as to be electrically neutral.
- the valence of M is not particularly limited.
- a halogen atom, a hydroxyl group, or an alkyloxy group having 1 to 8 carbon atoms may be bonded as a ligand (for example, an axial ligand).
- a counter ion may be present.
- the anionic counter ion include halide ions, hydroxide ions, nitrate ions, and sulfate ions.
- the alkyl group structure of the alkyloxy group having 1 to 8 carbon atoms may be linear, branched or cyclic.
- M examples include scandium atom, titanium atom, vanadium atom, chromium atom, manganese atom, iron atom, cobalt atom, nickel atom, copper atom, zinc atom, yttrium atom, zirconium atom, niobium atom, ruthenium atom, rhodium atom, Palladium atom, lanthanum atom, cerium atom, praseodymium atom, neodymium atom, promethium atom, samarium atom, europium atom, gadolinium atom, terbium atom, dysprosium atom, holmium atom, erbium atom, thulium atom, ytterbium atom, lutetium atom, actinium atom, Thorium atom, protactinium atom, uranium atom, neptunium atom, plutonium atom, americium atom,
- an iron atom, a manganese atom, a cobalt atom, a copper atom, and a zinc atom are preferable, an iron atom, a manganese atom, and a cobalt atom are more preferable, and an iron atom is particularly preferable.
- X 1 to X 8 are each independently a hydrogen atom or a halogen atom
- D 1 ′ and D 2 to D 4 are a nitrogen atom or a carbon atom
- the carbon atom includes hydrogen.
- An atom or a halogen atom is bonded
- M is a metal atom.
- the metal complex in the present invention may be an isomer as shown in the formula (1 ′).
- the isomers of the metal complex are not limited to those shown in the formula (1 ′).
- the formula (1) or the above formula (1 ') at least one selected from each of the cyclic structure include each of D 2 ⁇ D 4, any position of the nitrogen atom of D 2 ⁇ D 4 They may be exchanged within the same annular structure as that position.
- an isomer as shown to Formula (1 ') may exist. These isomers are included in preferred embodiments of the metal complex of the present invention.
- the metal complex it is preferable that D 1 to D 4 are carbon atoms, and a hydrogen atom is bonded to the carbon atom. That is, in this catalyst, the metal complex is preferably a compound represented by the following formula (2). In the present catalyst, when the metal complex is a compound represented by the following formula (2), the electrode containing the present catalyst is further excellent in conductivity.
- X 1 to X 8 are each independently a hydrogen atom or a halogen atom, and M is a metal atom.
- the metal complex it is more preferable that D 1 to D 4 are carbon atoms, a hydrogen atom is bonded to the carbon atom, and X 1 to X 8 are hydrogen atoms. That is, in this catalyst, the metal complex is preferably a compound represented by the following formula (3). In the present catalyst, when the metal complex is a compound represented by the following formula (3), the oxygen reduction catalytic ability of the present catalyst is further improved.
- M is a metal atom.
- the metal complex is a compound represented by the formula (3), it is more preferable that M is an iron atom. That is, in this catalyst, the metal complex is more preferably an iron tetrapyridopolyphyrazine (hereinafter referred to as “FeTPP”) represented by the following formula (4).
- FeTPP iron tetrapyridopolyphyrazine
- the nitrogen atom content of the metal complex is preferably 14% by mass or more, more preferably 16% by mass or more, still more preferably 18% by mass or more, and particularly preferably 19% by mass or more with respect to 100% by mass of the metal complex.
- the present catalyst is further excellent in redox catalytic ability.
- the nitrogen atom content of the metal complex is preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 28% by mass or less, and particularly preferably 25% by mass or less with respect to 100% by mass of the metal complex.
- the nitrogen atom content of the metal complex is 40% by mass or less, the present catalyst is excellent in conductivity.
- the nitrogen atom content of the metal complex is preferably 14 to 40% by mass, more preferably 16 to 30% by mass, and further preferably 18 to 28% by mass with respect to 100% by mass of the metal complex. It can be said that 19 to 25% by mass is particularly preferable.
- the method for producing the metal complex is not particularly limited.
- a method of heating a dicyano compound such as pyridine-2,3-dicarbonitrile and a metal atom in an alcohol solvent in the presence of a basic substance is exemplified.
- the basic substance include inorganic bases such as potassium carbonate, sodium carbonate, calcium carbonate, sodium hydrogen carbonate and sodium acetate; and organic bases such as triethylamine, tributylamine and diazabicycloundecene.
- the carbon material is preferably derived from conductive carbon.
- the carbon material include graphite, amorphous carbon, activated carbon, graphene, carbon black, carbon fiber, mesocarbon microbead, microcapsule carbon, fullerene, carbon nanofoam, carbon nanotube, and carbon nanohorn.
- graphite, amorphous carbon, activated carbon, graphene, carbon black, carbon fiber, fullerene, and carbon nanotube are preferable, carbon nanotube, carbon black, and graphene are more preferable, and carbon nanotube is more preferable.
- Examples of carbon nanotubes include single-walled carbon nanotubes (hereinafter referred to as “SWCNT”), double-walled carbon nanotubes (hereinafter referred to as “DWCNT”), and multi-walled carbon nanotubes (hereinafter referred to as “MWCNT”). Is done. Among these, DWCNT and MWCNT are preferable, and MWCNT is more preferable because the conductivity of the present catalyst is excellent.
- SWCNT single-walled carbon nanotubes
- DWCNT double-walled carbon nanotubes
- MWCNT multi-walled carbon nanotubes
- the carbon material may have a functional group such as a hydroxyl group, a carboxyl group, a nitrogen-containing group, a silicon-containing group, a phosphorus-containing group such as a phosphoric acid group, or a sulfur-containing group such as a sulfonic acid group.
- the carbon material preferably has a carboxyl group.
- the metal complex is easily adsorbed on the surface of the carbon material, and the catalyst has excellent durability and oxygen reduction catalytic ability.
- the carbon material may have a hetero atom.
- the hetero atom include an oxygen atom, a nitrogen atom, a phosphorus atom, a sulfur atom, and a silicon atom.
- the carbon material may contain one kind of hetero atom alone or may contain two or more kinds of hetero atoms. Note that the carbon material may be oxidized, hydroxylated, nitrided, phosphorylated, sulfided, or silicided.
- the content of the carboxyl group is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less with respect to 100% by mass of the carbon material.
- the content of the carboxyl group is not more than the above upper limit value, the production cost of the present catalyst tends to decrease.
- the content of the carboxyl group is preferably 1% by mass or more, more preferably 5% by mass or more, and further preferably 8% by mass or more.
- the present catalyst is further excellent in durability and oxygen reduction catalytic ability. From the above, when the carbon material contains a carboxyl group, it can be said that the content of the carboxyl group is preferably 1 to 20% by mass and more preferably 5 to 15% by mass with respect to 100% by mass of the carbon material. It can be said that 8 to 15% by mass is more preferable, and 8 to 10% by mass is particularly preferable.
- the content of the carboxyl group can be measured by elemental analysis or X-ray photoelectron spectroscopy.
- the carbon material is preferably DWCNT having a carboxyl group or MWCNT having a carboxyl group, more preferably MWCNT having a carboxyl group, from the viewpoint of excellent conductivity and further excellent oxygen reduction catalytic ability.
- the specific surface area is preferably not less than 0.8 m 2 / g of the carbon material, more preferably at least 1.0 m 2 / g, more preferably not less than 1.1 m 2 / g, particularly preferably not less than 1.5 m 2 / g, 2 0.0 m 2 / g or more is most preferable.
- the upper limit value of the specific surface area is not particularly limited. The upper limit value of the specific surface area can be set to 2000 m 2 / g, for example.
- the specific surface area of the carbon material may be, for example, 0.8 to 2000 m 2 / g, 1.0 to 2000 m 2 / g, 1.1 to 2000 m 2 / g, 1.5 to 2000 m 2 / g. Alternatively, it may be 2.0 to 2000 m 2 / g.
- the specific surface area can be measured by a specific surface area measuring device by a nitrogen adsorption BET method.
- the average particle diameter of the carbon material is not particularly limited.
- the average particle size of the carbon material is preferably 5 nm to 1000 ⁇ m, for example.
- the following (A1) to (A3) are exemplified as a method for adjusting the average particle diameter of the carbon material to the above numerical range.
- (A1) A method in which particles are pulverized by a ball mill or the like, and the resulting coarse particles are dispersed in a dispersant to obtain a desired particle size, followed by drying.
- A2) A method in which particles are pulverized by a ball mill or the like, and the obtained coarse particles are sieved to select the particle diameter.
- (A3) A method of optimizing the production conditions and adjusting the particle size of the particles when producing the carbon material.
- the average particle diameter can be measured with a particle size distribution measuring device, an electron microscope, or the like.
- the ratio of the metal complex is preferably 75% by mass or less, more preferably 50% by mass or less, and still more preferably 30% by mass or less with respect to 100% by mass in total of the metal complex and the carbon material.
- the catalyst is excellent in electroconductivity as the ratio of a metal complex is below the said upper limit.
- the proportion of the metal complex is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 1% by mass or more with respect to 100% by mass in total of the metal complex and the carbon material.
- the present catalyst is further excellent in oxygen reduction catalytic ability.
- the ratio of the metal complex is preferably 0.1 to 75% by mass, more preferably 0.5 to 50% by mass, and preferably 1 to 30% by mass with respect to 100% by mass of the total of the metal complex and the carbon material. % Is more preferable.
- This catalyst can be applied as a material for various industrial products.
- This catalyst has an oxygen reduction catalytic ability. Therefore, it can utilize suitably for the industrial use using the reduction reaction of oxygen.
- this powdery catalyst can be used as a raw material for various industrial products and parts as it is.
- the present catalyst and a platinum-supporting carbon material may be mixed and used.
- the present catalyst described above includes the metal complex and the carbon material described above, the oxygen reduction catalytic ability is improved, and the oxygen reduction catalytic ability exceeding the platinum-supported carbon material is achieved.
- a compound having a phthalocyanine ring having excellent conductivity is selected as a catalyst for a fuel cell from the viewpoint of ensuring the conductivity of the catalyst.
- the metal complex contained in the present catalyst tends to be relatively lower in conductivity than a compound having a phthalocyanine ring. Therefore, even though the conductivity is relatively low, by selecting the metal complex represented by the formula (1), the oxygen reduction catalytic ability of the present catalyst is superior to the platinum-supported carbon material. The effect is completely unexpected.
- the solubility of the metal complex in various solvents is higher, the upper limit value of the content of the metal complex in the present catalyst is increased, and the oxygen reduction catalytic ability of the catalyst is further improved.
- the content of nitrogen atoms in the metal complex is higher, it is easier to increase the content of nitrogen atoms than when selecting a compound having a phthalocyanine ring, and the oxygen reduction catalytic ability of the catalyst is improved. Even better.
- the liquid composition of the present embodiment includes the present catalyst and a liquid medium.
- the present liquid composition may further contain optional components other than the present catalyst and the liquid medium.
- the liquid medium may be a compound that easily dissolves the catalyst (that is, the solubility of the catalyst is high) or a compound that hardly dissolves the catalyst (that is, the solubility of the catalyst is low).
- the liquid medium is a compound that easily dissolves the catalyst, the liquid composition is in the form of a solution.
- the liquid medium is a compound that hardly dissolves the catalyst, the liquid composition is in the form of a dispersion.
- the liquid medium may be an inorganic medium such as water or an organic medium.
- the organic medium examples include alcohols such as methanol, ethanol, propanol, isopropanol (2-propanol) and 1-hexanol; dimethyl sulfoxide; tetrahydrofuran; aprotic polar solvents such as N-methylpyrrolidone, dimethylformamide and acetone; Nonpolar solvents such as chloroform, dichloromethane, 1,4-dioxane, benzene and toluene are exemplified.
- the liquid medium is not limited to these examples.
- a liquid medium may be used individually by 1 type, and may use 2 or more types together.
- the present liquid composition may contain a perfluorocarbon material containing a structural unit based on polytetrafluoroethylene and a perfluoro side chain having a sulfonic acid group as optional components.
- a perfluorocarbon material is Nafion (product name: manufactured by DuPont).
- the present liquid composition can be produced by mixing or kneading the present catalyst, a liquid medium, and a perfluorocarbon material as required.
- a perfluorocarbon material such as a styrene resin, a styrene resin, a styrene resin, a styrene resin, a styrene resin, a styrene resin, a blender, a kneader, a homogenizer, a bead mill, a ball mill, or the like may be used.
- the average particle diameter of the particles may be adjusted using a sieve or the like.
- the present catalyst, perfluorocarbon material, and water and alcohol as necessary may be mixed and stirred until uniform.
- This liquid composition can be applied to the surface of various substrates.
- the layer containing the present catalyst (hereinafter referred to as “the present catalyst layer”) is provided on the surface of various substrates by applying the present liquid composition to the surface of the substrate and removing the liquid medium. Can do.
- the base material is a silicon substrate; a metal substrate such as gold, iron, stainless steel, copper, aluminum, lithium; an alloy substrate including any combination of these metals; indium tin oxide (ITO), indium zinc oxide (IZO) ), An oxide substrate such as antimony tin oxide (ATO); or a substrate substrate such as a carbon substrate such as glassy carbon, pyrolytic graphite, or carbon felt.
- a metal substrate such as gold, iron, stainless steel, copper, aluminum, lithium
- an alloy substrate including any combination of these metals indium tin oxide (ITO), indium zinc oxide (IZO) ), An oxide substrate such as antimony tin oxide (ATO); or a substrate substrate such as a carbon substrate such as glassy carbon, pyrolytic graphite, or carbon felt.
- ITO indium tin oxide
- IZO indium zinc oxide
- ATO antimony tin oxide
- a substrate substrate such as a carbon substrate such as glassy carbon, pyrolytic graphite,
- the present liquid composition described above since the present catalyst described above is included, the oxygen reduction catalytic ability exceeding the platinum-supported carbon material can be imparted to various substrates.
- This liquid composition can be used as, for example, a coating liquid that is applied to the surface of a substrate when an electrode described later is manufactured.
- the liquid composition may be used as it is as a coating solution, or may be used as a coating solution after adjusting the content or solid content concentration of the catalyst.
- the electrode of the present embodiment (hereinafter referred to as “main electrode”) includes the present catalyst.
- the electrode may have a substrate in contact with the catalyst layer.
- This electrode may be formed using this liquid composition as a coating liquid.
- the present liquid composition is applied to the surface of a conductive substrate, and components other than the present catalyst (for example, a liquid medium, a perfluorocarbon material, etc.) are removed.
- heat drying may be performed and you may press after drying.
- the present electrode may have a form in which the present catalyst layer is provided on the surface of a conductive substrate.
- the thickness of the catalyst layer is not particularly limited, but may be, for example, 0.01 to 100 ⁇ m. When the thickness is equal to or greater than the lower limit, the electrode is excellent in durability.
- the thickness is less than or equal to the upper limit, the performance of the present electrode is unlikely to deteriorate.
- the conductive substrate are the same as those described in the section “Liquid composition”.
- Examples of the substrate include the same substrates as those described in the section “Method for producing electrode”. This electrode may have this catalyst layer on one side of the substrate, or may have both sides of the substrate.
- This electrode can be used as an electrode of a fuel cell.
- an electrolyte membrane may be disposed between a pair of electrodes.
- the oxygen reduction reaction represented by the following formula (6) is likely to proceed under acidic conditions
- the reduction reaction represented by the following formula (7) is likely to proceed under alkaline conditions. Become. O 2 + 4H + + 4e ⁇ ⁇ 2H 2 O (6) O 2 + 2H 2 O + 4e ⁇ ⁇ 4OH ⁇ (7)
- a substrate having a porous support layer may be used so that this electrode can be used as an electrode for a fuel cell.
- this electrode When used as an electrode of a fuel cell, this electrode may be used as either a cathode or an anode.
- the porous support layer is a layer that diffuses gas.
- the porous support layer is not particularly limited as long as it has electronic conductivity, high gas diffusibility, and high corrosion resistance. Examples of the porous support layer include carbon-based porous materials such as carbon paper and carbon cloth, stainless steel foil, aluminum foil coated with a corrosion-resistant material, and the like.
- This electrode can be suitably applied to an electrode for a power storage device (power generation device) such as a fuel cell or an air battery.
- a power storage device power generation device
- the catalyst electrode for electrochemical reaction of the present embodiment (hereinafter referred to as “the catalyst electrode for electrochemical reaction”). ) Includes the catalyst.
- the electrochemical reaction catalyst electrode is an electrode having a function as a catalyst for an electrochemical reaction such as an arbitrary reduction reaction or an arbitrary oxidation reaction.
- the catalyst electrode for electrochemical reaction can have a function as a catalyst for the reduction reaction represented by the following formula (6) or the following formula (7). O 2 + 4H + + 4e ⁇ ⁇ 2H 2 O (6) O 2 + 2H 2 O + 4e ⁇ ⁇ 4OH ⁇ (7)
- the catalyst electrode for electrochemical reaction may have a substrate in contact with the layer of the catalyst.
- the catalyst electrode for electrochemical reaction may be formed using the liquid composition as a coating liquid, as in the case of the main electrode described above.
- the catalyst electrode for electrochemical reaction may be in the form in which the catalyst layer is provided on the surface of the conductive base material in the same manner as the above-described main electrode.
- Examples of the substrate include the same substrates as those described in the section “Method for producing electrode”. This electrode may have this catalyst layer on one side of the substrate, or may have both sides of the substrate.
- the catalyst electrode for electrochemical reaction may be manufactured by vacuum deposition or the like.
- the fuel cell of the present embodiment (hereinafter referred to as “the present fuel cell”) has the above-described electrode.
- the fuel cell may further include a second electrode, an electrolyte, and a separator.
- the electrode may be a cathode or an anode.
- this electrode is preferably a cathode and more preferably an oxygen electrode.
- the oxygen electrode means an electrode to which a gas containing oxygen (air or the like) is supplied.
- the second electrode is an electrode used in combination with this electrode.
- the second electrode is an anode
- the second electrode is a cathode
- the second electrode is an anode
- the second electrode is a cathode
- Examples of the second electrode include simple metals such as aluminum and zinc, and metal oxides thereof.
- the second electrode is not limited to these examples.
- an aqueous electrolyte is preferable.
- the aqueous electrolyte include alkaline aqueous solutions such as an aqueous potassium hydroxide solution and an aqueous sodium hydroxide solution; and acidic aqueous solutions such as an aqueous sulfuric acid solution.
- alkaline aqueous solutions such as an aqueous potassium hydroxide solution and an aqueous sodium hydroxide solution
- acidic aqueous solutions such as an aqueous sulfuric acid solution.
- One electrolyte may be used alone, or two or more electrolytes may be used in combination.
- the electrolyte is not limited to these examples, and may be an inorganic solid electrolyte.
- the separator is a member that separates the main electrode and the second electrode, holds the electrolyte, and ensures ionic conductivity between the main electrode and the second electrode.
- Specific examples of the separator include polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, cellulose, cellulose acetate, hydroxyalkyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, cellophane, polystyrene, polyacrylonitrile, polyacrylamide, polyvinyl chloride, polyamide.
- Vinylon, polymer having micropores such as poly (meth) acrylic acid, gel compound, ion exchange membrane, cyclized polymer, poly (meth) acrylate-containing polymer, sulfonate-containing polymer, fourth Examples include quaternary ammonium salt-containing polymers and quaternary phosphonium salt-containing polymers.
- the separator is not limited to these examples.
- the fuel cell may be a primary battery or a secondary battery.
- Examples of the form of the fuel cell include a molten carbonate fuel cell (MCFC), a phosphoric acid fuel cell (PAFC), a solid oxide fuel cell (SOFC), a solid polymer fuel cell (PEFC), and the like.
- MCFC molten carbonate fuel cell
- PAFC phosphoric acid fuel cell
- SOFC solid oxide fuel cell
- PEFC solid polymer fuel cell
- the fuel cell of the present embodiment (hereinafter referred to as “the present air cell”) has the above-described electrode. In this air battery, it is preferable to apply this electrode as an oxygen electrode.
- the air battery may further include a fuel electrode, an electrolyte, and a separator.
- the fuel electrode is an electrode used in combination with this electrode. Examples of the fuel electrode are the same as the specific examples described in the section “Second electrode”. Examples of the electrolyte include those similar to the electrolyte described in the section “Fuel cell”. Examples of the separator are the same as those described in the section “Fuel cell”.
- DMSO dimethyl sulfoxide.
- FeTPP Iron tetrapyridopolyphyrazine.
- DBU Diazabicycloundecene.
- MWCNT Multi-walled Carbon Nanotube (manufactured by Sigma Aldrich, Carbon nanotube, Multi-walled, 724769-25G).
- CB Carbon Black (manufactured by Tokai Carbon Co., Ltd., Seast S).
- GO Graphene Oxide (manufactured by Nishina Material Co., Ltd., graphene oxide).
- Pt / C Platinum-supported carbon (manufactured by Sigma Aldrich, 728549-1G).
- KOH aqueous potassium hydroxide solution.
- UV-vis Ultraviolet Visible Spectrophotometer.
- MALDI-TOF Matrix Assisted Laser Desorption / Ionization-Time Of Flight Mass Spectrometry.
- ATR Attenuated Total Reflection.
- LSV Linear Sweep Voltammetry.
- TEM Transmission Electron Microscope.
- STEM Scanning Transmission Electron Microscope.
- EDX Energy Dispersive X-ray.
- KL Koutecky-Levich.
- RRDE Rotataing Ring Disk Electrides.
- MALDI-TOF mass spectrometry was performed using a matrix-assisted laser desorption / ionization time-of-flight mass spectrometer (manufactured by Bruker Daltonics, REFLEX III) to prepare an aqueous dispersion of the product and an aqueous solution of ⁇ -cyano-4-hydroxycinnamic acid. Measurement was performed after mixing at a mass ratio of 1: 4 and drying at room temperature.
- UV-vis UV-vis UV-vis was measured using an ultraviolet-visible spectrophotometer (manufactured by JASCO, V-670) with each sample dispersed in methanol or DMSO.
- Infrared spectroscopy Infrared spectroscopic analysis was performed on a powdery sample by an ATR method using an infrared spectrophotometer (manufactured by JASCO, FT / IR-6700).
- Laser Raman spectroscopic analysis was performed by irradiating a powdery sample on a silicon substrate with excitation light of 532.10 nm using a microscopic laser Raman spectroscope (LabRAM HR-800, manufactured by Horiba, Ltd.).
- R (I D / I G ) (8)
- EDX spectrum analysis EDX spectrum analysis was performed using an atomic resolution analytical electron microscope (JEOL, JEM-ARM200F).
- TG-DTA measurement The TG-DTA measurement was performed with a thermal analyzer (manufactured by Rigaku Corporation, Thermo plus Evo II) under a nitrogen atmosphere at a temperature rising rate of 5 ° C./min.
- LSV curve The LSV curve is obtained by using a compact stat (produced by Ivium, NH-COMPACT) using oxygen saturated 0.1 M KOH as an electrolyte, and setting the lower limit of the sweep range to -0.8 V under the condition of a sweep speed of 5 mV / s. The upper limit was 0.2V.
- the rotational speed of the rotating disk was 2400 rpm, Pt wire was used as the counter electrode, and Ag / AgCl was used as the reference electrode.
- the number of reaction electrons was calculated based on the KL plot.
- the current density of the ring electrode and the disk electrode was calculated from the LSV measurement, and the number of reaction electrons was calculated based on RRDE.
- Example 1 258 mg of pyridine-2,3-dicarbonitrile, 135 mg of iron (III) chloride hexahydrate and 20 mg of DBU were mixed in a test tube and dissolved in a mixed solvent containing 10 mL of methanol and 10 mL of DMSO. A solution was obtained. The solution was purged with nitrogen and heated at 180 ° C. for 3 hours to obtain a reaction product containing FeTPP. The reaction product was centrifuged three times with acetone and dried. The precipitate after centrifugation was dissolved in concentrated sulfuric acid and dropped into water to precipitate FeTPP. The precipitated FeTPP was collected by centrifugation, washed with methanol, and dried to obtain the metal complex of Example 1. The metal complex of Example 1 was dissolved in DMSO, and measurement by MALDI-TOF mass spectrometry and measurement by UV-vis were performed.
- FIG. 1 is a spectrum diagram showing measurement results of MALDI-TOF mass spectrometry in Example 1.
- the mass average molecular weight of FeTPP is 572.07.
- peaks were observed at a position where the mass average molecular weight was 572.099 and a position where it was 586.943. From this result, in the metal complex of Example 1, the possibility that the methyl group was couple
- FIG. 2 is a spectrum diagram showing the measurement results of UV-vis in Example 1. As shown in FIG. 2, in the metal complex of Example 1, a Q band specific to the phthalocyanine analog was observed in the vicinity of 600 nm, and a Solet band was observed in the vicinity of 300 to 400 nm. This confirmed that FeTPP could be synthesized.
- Example 2 In the same manner as in Example 1, a metal complex (that is, FeTPP) was obtained.
- the obtained FeTPP was dissolved in 0.5 mL of DMSO, and the obtained solution and 10 mg of MWCNT having a carboxyl group (diameter 9.5 nm, length 1.5 ⁇ m) were stirred with a homogenizer for 10 minutes.
- the stirred liquid was washed with DMSO three times, and further washed with methanol three times to obtain a methanol dispersion containing the catalyst of Example 2 (methanol dispersion of Example 2).
- Example 3 A methanol dispersion containing the catalyst of Example 3 (a methanol dispersion of Example 3) was obtained in the same manner as in Example 2 except that 10 mg of CB was used as the carbon material.
- Example 4 A methanol dispersion containing the catalyst of Example 4 (methanol dispersion of Example 4) was obtained in the same manner as in Example 2 except that 10 mg of GO was used as the carbon material.
- Example 5 A methanol dispersion containing the catalyst of Example 5 (methanol dispersion of Example 5) was obtained in the same manner as in Example 2 except that the compound represented by the following formula (9) was used as the metal complex.
- FIG. 3 is a schematic diagram showing the catalyst of Example 2.
- FIG. 4 is a spectrum diagram showing the measurement results of UV-vis in Example 2.
- the line indicated by “Example 1” in FIG. 4 shows the spectrum of a solution obtained by dissolving FeTPP of Example 1 in DMSO.
- the line indicated by “Example 2” in FIG. 4 shows the spectrum of the methanol dispersion liquid of Example 2.
- a line indicated by “MWCNT having a carboxyl group” in FIG. 4 shows a spectrum of a solution in which MWCNT is dissolved in DMSO.
- a peak (Q band) derived from FeTPP was observed in the spectrum of the methanol dispersion liquid of Example 2. This confirmed that the chemical structure of FeTPP was maintained in the methanol dispersion of Example 2.
- FIG. 5 is a spectrum diagram showing the results of infrared spectroscopic analysis in Example 2.
- the line indicated by “Example 1” in FIG. 5 shows the spectrum of a solution obtained by dissolving FeTPP of Example 1 in DMSO.
- the line indicated by “Example 2” in FIG. 5 shows the spectrum of the methanol dispersion liquid of Example 2.
- a line indicated by “MWCNT having a carboxyl group” in FIG. 5 shows a spectrum of a solution in which MWCNT having a carboxyl group is dissolved in DMSO.
- a characteristic peak was observed in each of FETPP and MWCNT having a carboxyl group.
- FIG. 6 is a graph showing the results of laser Raman spectroscopic analysis in Example 2.
- FIG. 7 and 8 are enlarged views of FIG. 6 to 8, the line indicated by “Example 2” shows the spectrum of the methanol dispersion liquid of Example 2. 6 to 8, the line indicated by “baked product of Example 2” shows a spectrum of a solution obtained by dissolving the burned product of the methanol dispersion of Example 2 in DMSO. 6 to 8, a line indicated by “MWCNT having a carboxyl group” shows a spectrum of a solution in which MWCNT is dissolved in DMSO. Based on FIGS. 6 to 8, the peak intensity ratio R was calculated using the equation (8).
- the peak intensity ratio R of CNT / FeTPP was 1.6, the peak intensity ratio R of CNT / FeTPP firing was 1.5, and the peak intensity ratio R of CNT was 1.5.
- FIG. 7 in the spectrum of the methanol dispersion liquid of Example 2, a characteristic peak of the carbon nanotube was observed. Thereby, in the methanol dispersion liquid of Example 2, it was confirmed that the chemical structure of MWCNT was maintained. From the result of the spectrum of the fired product of the methanol dispersion liquid of Example 2 shown in FIG. 8, it was estimated that the chemical structure of FeTPP in the catalyst of Example 2 was affected due to oxidation by firing. .
- FIG. 9 is an observation image of the methanol dispersion liquid of Example 2 by TEM.
- FIG. 10 is an enlarged view of FIG.
- FIG. 11 is an observation image of MWCNT by TEM.
- FIG. 11 is a comparison object of FIG.
- FIG. 12 is an enlarged view of FIG.
- FIG. 13 is an observation image by TEM of the fired product of the methanol dispersion liquid of Example 2.
- FIG. 14 is an enlarged view of FIG.
- FIG. 9 when the diameter of the catalyst of Example 2 in the methanol dispersion liquid was calculated, the diameter was 14.3 ⁇ 1.8 nm.
- FIG. 11 when the diameter of MWCNT was measured, the diameter was 8.7 ⁇ 1.1 nm.
- FIG. 15 is an observation image of the methanol dispersion liquid of Example 2 by TEM.
- FIG. 16 is an observation image of MWCNT by TEM. A comparison between FIG. 15 and FIG. 16 suggested that the FeTPP layer was provided on the surface of the MWCNT in the catalyst of Example 2.
- FIG. 17 is an observation image by STEM of the methanol dispersion liquid of Example 2.
- FIG. 18 is an image observed by STEM of MWCNT. In comparison between FIG. 17 and FIG. 18, the FeTPP layer could not be observed in the catalyst of Example 2.
- FIG. 19 is an observation image of the methanol dispersion liquid of Example 3 by TEM.
- 20 is an enlarged view of FIG.
- FIG. 21 is an observation image of CB by TEM.
- FIG. 22 is an enlarged view of FIG.
- FIG. 23 is an observation image by TEM of the fired product of the methanol dispersion liquid of Example 3.
- FIG. 24 is an enlarged view of FIG. Comparison of FIG. 19 (FIG. 20) and FIG. 21 (FIG. 22) suggested that the FeTPP layer was provided on the surface of CB in the catalyst of Example 3. Further, from the results shown in FIGS. 23 and 24, it was confirmed that the chemical structure of FeTPP in the catalyst of Example 3 was affected by the firing.
- FIG. 25 is an observation image of the methanol dispersion liquid of Example 4 by TEM.
- FIG. 26 is an enlarged view of FIG.
- FIG. 27 is an observation image of GO by TEM.
- FIG. 28 is an enlarged view of FIG.
- FIG. 29 is an observation image by TEM of the fired product of the methanol dispersion liquid of Example 4.
- FIG. 30 is an enlarged view of FIG. Comparison of FIG. 25 (FIG. 26) and FIG. 27 (FIG. 28) suggested that the FeTPP layer was provided on the GO surface in the catalyst of Example 4. Further, from the results shown in FIGS. 29 and 30, it was confirmed that the chemical structure of FeTPP in the catalyst of Example 4 was affected by the calcination.
- FIG. 31 is a spectrum diagram showing the measurement results of EDX spectrum analysis for the catalyst of Example 2.
- FIG. 32 is an element mapping image based on the measurement results shown in FIG.
- FIG. 33 is a spectrum diagram showing measurement results of EDX spectrum analysis for MWCNT.
- FIG. 34 is an element mapping image based on the measurement results shown in FIG. As shown by “FeKa” in FIG. 31, a peak derived from an iron atom was observed. On the other hand, as shown in FIG. 33, no peak derived from iron atoms was observed in MWCNT.
- Comparison of FIG. 32 and FIG. 34 confirmed the formation of a coating layer containing FeTPP on the surface of MWCNT in FIG.
- the numbers “002”, “003”, and “004” indicate areas where spectrum measurement was performed.
- FIG. 35 is a graph showing TG-DTA measurement results.
- the amount of mass decrease is plotted on the vertical axis.
- FIG. 36 is an enlarged view of FIG.
- FIG. 37 is a graph showing the measurement results of TG-DTA.
- the temperature derivative of the mass reduction amount is plotted on the vertical axis.
- FIG. 38 is an enlarged view of FIG. 35 to 38, the line indicated by “Example 1” indicates the measurement result of TG-DTA in FeTPP of Example 1.
- FIG. 35 to 38, the line indicated by “Example 2” indicates the measurement result of TG-DTA in the methanol dispersion liquid of Example 2.
- Example 2 contained about 5% by mass of FeTPP and about 3% by mass of DMSO remained.
- An electrode of Comparative Example 1 was obtained in the same manner as the electrode of Example 2, except that 2 mg of the calcined product of the catalyst of Example 2 was used instead of the catalyst of Example 2.
- a Pt / C electrode was obtained in the same manner as the electrode of Example 2, except that Pt / C was used instead of the catalyst of Example 2.
- a CNT electrode was obtained in the same manner as the electrode of Example 2 except that MWCNT was used instead of the catalyst of Example 2.
- FIG. 39 is a diagram comparing LSV curves obtained using the electrode of Example 2, the electrode of Comparative Example 1, the Pt / C electrode, and the CNT electrode as working electrodes. As shown in FIG. 39, it was found that the electrode of Example 2 showed a saturation current value equivalent to that of the Pt / C electrode.
- FIG. 40 is an enlarged view of FIG. As shown in FIG. 40, in the electrode of Example 2, the potential at which the oxygen reduction reaction started was higher than that of the Pt / C electrode. The average number of reaction electrons is 3.4 electrons for the electrode of Example 2, 3.0 electrons for the electrode of Comparative Example 1, 3.7 electrons for the Pt / C electrode, and 3.2 electrons for the CNT electrode. It was an electron.
- the electrode of Example 2 had an oxygen reduction catalytic ability exceeding that of the Pt / C electrode. Further, in Comparative Example 1, it is considered that the calcined product of the catalyst of Example 2 was lost due to the influence of the calcination of the FeTPP chemical structure originally possessed by the catalyst of Example 2. Therefore, it is considered that the oxygen reduction catalytic ability exceeding the Pt / C electrode did not appear in the electrode of Comparative Example 1.
- FIG. 41 is a graph showing the results of calculating the number of reaction electrons based on the KL plot for the electrode of Example 2.
- FIG. 42 is a graph showing the results of calculating the number of reaction electrons based on RRDE for the electrode of Example 2.
- FIG. 43 is a graph showing the result of calculating the number of reaction electrons based on the KL plot at the CNT electrode.
- FIG. 44 is a graph showing the result of calculating the number of reaction electrons based on RRDE at the CNT electrode. As shown in FIGS. 41 to 44, it was confirmed that the number of reaction electrons increased in the electrode of Example 2 regardless of which method was used to calculate the number of reaction electrons.
- FIG. 45 is a graph showing the result of calculating the number of reaction electrons based on the KL plot, comparing the electrode of Example 2 and the CNT electrode.
- FIG. 46 is a graph showing the result of calculating the number of reaction electrons based on RRDE by comparing the electrode of Example 2 with the CNT electrode. From the results of FIGS. 45 and 46, it was confirmed that the number of reaction electrons increased in the electrode of Example 2 regardless of which method was used to calculate the number of reaction electrons.
- FIG. 47 is a graph showing the results of evaluating methanol crossover for the electrode of Example 2.
- FIG. 47 the curve shown as “No electrode methanol treatment in Example 2” shows an LSV curve measured without adding methanol to the electrolytic solution, and the curve shown in “Example 2 with electrode methanol treatment” shows 3. The LSV curve measured by adding 0 M methanol to electrolyte solution is shown.
- FIG. 48 is a graph showing the results of evaluating methanol crossover for CNT electrodes. In FIG.
- the curve indicated by “No CNT electrode methanol treatment” indicates an LSV curve measured without adding methanol to the electrolyte solution
- the curve indicated by “CNT electrode methanol treatment present” indicates 3.0 M methanol as the electrolyte solution.
- the LSV curve measured in addition to is shown.
- FIG. 49 is a graph showing the results of evaluating the durability of the electrode of Example 2. As shown in FIG.
- the electrode of Example 2 had a relative current of about 100% even after 7000 seconds had elapsed from the start of energization, suggesting that it was excellent in durability.
- the electrode containing platinum-supported carbon material described in ACS Catalyst, 2013, 3,1263 the relative current drops to 73% even after 7000 seconds from the start of energization, and to 86% for the electrode containing g-FePC. Is described. This also suggests that the electrode of Example 2 has durability superior to conventional products such as an electrode including a platinum-supporting carbon material.
- FIG. 50 is a diagram showing a comparison of LSV curves obtained using the electrode of Example 3 and the Pt / C electrode as working electrodes.
- the carbon material is CB.
- the electrode of Example 3 was found to exhibit a higher saturation current value than the Pt / C electrode. The potential at which the oxygen reduction reaction starts was higher than that of the Pt / C electrode. From these results, it was found that the electrode of Example 3 had an oxygen reduction catalytic ability exceeding that of the Pt / C electrode.
- FIG. 51 is a diagram comparing LSV curves obtained using the electrode of Example 5 and the Pt / C electrode as working electrodes.
- the structure of the metal complex is shown by the above formula (9).
- the electrode of Example 5 showed a saturation current value equivalent to that of the Pt / C electrode.
- the potential at which the oxygen reduction reaction starts was higher than that of the Pt / C electrode.
- the electrode of Example 5 had an oxygen reduction catalytic ability exceeding that of the Pt / C electrode.
- 50 and 51 are compared, it can be seen that the electrode of Example 3 has a higher saturation current value than the electrode of Example 5.
- the electrode of Example 3 had a higher potential at which the oxygen reduction reaction started than the electrode of Example 5. From the above, it is considered that the electrode of Example 3 has higher performance as the electrode of the fuel cell or the air cell than the electrode of Example 5.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Catalysts (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
- Hybrid Cells (AREA)
Abstract
本発明は、白金担持炭素材料を超える酸素還元触媒能を具備する触媒を提供する。 下式(1)で表される金属錯体と、炭素材料とを含む、触媒。 式(1)中、X1~X8はそれぞれ独立に、水素原子又はハロゲン原子であり、D1~D4は、窒素原子又は炭素原子であり、前記炭素原子には水素原子又はハロゲン原子が結合し、Mは金属原子である。
Description
本発明は、触媒、液状組成物、電極、電気化学反応用触媒電極、燃料電池及び空気電池に関する。
本願は、2018年3月2日に、日本に出願された特願2018-037521号に基づき優先権を主張し、その内容をここに援用する。
本願は、2018年3月2日に、日本に出願された特願2018-037521号に基づき優先権を主張し、その内容をここに援用する。
酸素の還元反応を利用して、電気エネルギーを生み出す燃料電池が知られている。燃料電池においては、電極の表面に還元反応を促進する触媒の層を設けることが一般的である。この触媒として白金担持炭素材料が知られている。白金担持炭素材料は、酸素の還元反応を促進する機能(酸素還元触媒能)に優れる。
しかし、白金は高価であり、資源量が限られていることから、安価で資源量が豊富な代替触媒の開発が試みられている(特許文献1~4)。
特許文献1は、酸素還元触媒及び助触媒を含む空気極用触媒であって、該助触媒が配位結合できるヘテロ原子を2質量%以上含む炭素材料である、空気極用触媒を開示している。
特許文献2は、酸化グラフェン分散液と鉄フタロシアニン分散液とを混合して鉄フタロシアニン/酸化グラフェン複合体を得る工程と、鉄フタロシアニン/酸化グラフェン複合体を還元する工程とを含む、鉄フタロシアニン/グラフェンナノ複合体酸素還元触媒の製造方法を開示している。
特許文献3は、触媒成分と触媒担持材料からなる電極触媒であって、触媒成分がインドール、イソインドール、ナフトピロール、ピロロピリジン、ベンズイミダゾール、プリン、カルバゾール、フェノキサジン及びフェノチアジンからなる群から選ばれる少なくとも1種の繰り返し単位構造を有する導電性重合体と金属イオンからなる導電性重合体金属錯体を含み、触媒担持材料が細孔構造を有する導電体を含む、電極触媒を開示している。
特許文献4は、下式(5)で示されるコバルトテトラピラジノポルフィラジン誘導体を触媒成分として含有する酸素還元用電極を開示している。
特許文献1は、酸素還元触媒及び助触媒を含む空気極用触媒であって、該助触媒が配位結合できるヘテロ原子を2質量%以上含む炭素材料である、空気極用触媒を開示している。
特許文献2は、酸化グラフェン分散液と鉄フタロシアニン分散液とを混合して鉄フタロシアニン/酸化グラフェン複合体を得る工程と、鉄フタロシアニン/酸化グラフェン複合体を還元する工程とを含む、鉄フタロシアニン/グラフェンナノ複合体酸素還元触媒の製造方法を開示している。
特許文献3は、触媒成分と触媒担持材料からなる電極触媒であって、触媒成分がインドール、イソインドール、ナフトピロール、ピロロピリジン、ベンズイミダゾール、プリン、カルバゾール、フェノキサジン及びフェノチアジンからなる群から選ばれる少なくとも1種の繰り返し単位構造を有する導電性重合体と金属イオンからなる導電性重合体金属錯体を含み、触媒担持材料が細孔構造を有する導電体を含む、電極触媒を開示している。
特許文献4は、下式(5)で示されるコバルトテトラピラジノポルフィラジン誘導体を触媒成分として含有する酸素還元用電極を開示している。
しかしながら、特許文献1~4に記載の技術では、白金担持炭素材料を超える酸素還元触媒能を具備する触媒を得ることが実現できていない。
特許文献1,2に記載の技術にあっては、導電性を担保するために、導電性に優れる鉄フタロシアニンを使用している。しかし、鉄フタロシアニンは種々の溶媒に対する溶解度が低く、触媒における鉄フタロシアニンの含有量の上限値に限界がある。そのため、酸素還元触媒能の向上が鉄フタロシアニンの低い溶解度により制限されている可能性がある。
特許文献3に記載の電極触媒にあっては、製造プロセスで導電性重合体の重合を必要とするため、容易に得られる電極触媒であるとは言い難い。
特許文献4に記載の酸素還元用電極にあっては、コバルトテトラピラジノポルフィラジン誘導体を構成するピラジンにトリフルオロメチル基が結合しているため、酸素還元触媒能が低下する可能性がある。
特許文献1,2に記載の技術にあっては、導電性を担保するために、導電性に優れる鉄フタロシアニンを使用している。しかし、鉄フタロシアニンは種々の溶媒に対する溶解度が低く、触媒における鉄フタロシアニンの含有量の上限値に限界がある。そのため、酸素還元触媒能の向上が鉄フタロシアニンの低い溶解度により制限されている可能性がある。
特許文献3に記載の電極触媒にあっては、製造プロセスで導電性重合体の重合を必要とするため、容易に得られる電極触媒であるとは言い難い。
特許文献4に記載の酸素還元用電極にあっては、コバルトテトラピラジノポルフィラジン誘導体を構成するピラジンにトリフルオロメチル基が結合しているため、酸素還元触媒能が低下する可能性がある。
本発明は、白金担持炭素材料を超える酸素還元触媒能を具備する触媒の提供を目的とする。
本発明の発明者らは、鋭意検討した結果、特定の化学構造を有し、かつ、導電性が相対的に低い金属錯体を触媒に適用すると、意外にも前記課題の解決に有効であることを知見した。具体的には、特定の化学構造を有する金属錯体を含む触媒が白金担持炭素材料より酸素還元触媒能に優れることを見出し、本発明を完成させるに至った。
本発明は、下記の態様を有する。
[1] 下式(1)で表される金属錯体と、炭素材料とを含む、触媒。
式(1)中、X1~X8はそれぞれ独立に、水素原子又はハロゲン原子であり、D1~D4は、窒素原子又は炭素原子であり、前記炭素原子には水素原子又はハロゲン原子が結合し、Mは金属原子である。
[2] 前記金属錯体の割合が、前記金属錯体と前記炭素材料との合計100質量%に対して、75質量%以下である、[1]の触媒。
[3] 前記炭素材料がカルボキシル基を含有し、前記カルボキシル基の含有量が、前記炭素材料100質量%に対して、20質量%以下である、[1]又は[2]の触媒。
[4] 前記金属錯体が下式(2)で表される化合物である、[1]~[3]のいずれかの触媒。
式(2)中、X1~X8はそれぞれ独立に、水素原子又はハロゲン原子であり、Mは金属原子である。
[5] [1]~[4]のいずれかの触媒と液状媒体とを含む、液状組成物。
[6] [1]~[4]のいずれかの触媒を含む、電極。
[7] [1]~[4]のいずれかの触媒を含む、電気化学反応用触媒電極。
[8] [6]の電極を有する、燃料電池。
[9] [6]の電極を有する、空気電池。
[1] 下式(1)で表される金属錯体と、炭素材料とを含む、触媒。
[2] 前記金属錯体の割合が、前記金属錯体と前記炭素材料との合計100質量%に対して、75質量%以下である、[1]の触媒。
[3] 前記炭素材料がカルボキシル基を含有し、前記カルボキシル基の含有量が、前記炭素材料100質量%に対して、20質量%以下である、[1]又は[2]の触媒。
[4] 前記金属錯体が下式(2)で表される化合物である、[1]~[3]のいずれかの触媒。
[5] [1]~[4]のいずれかの触媒と液状媒体とを含む、液状組成物。
[6] [1]~[4]のいずれかの触媒を含む、電極。
[7] [1]~[4]のいずれかの触媒を含む、電気化学反応用触媒電極。
[8] [6]の電極を有する、燃料電池。
[9] [6]の電極を有する、空気電池。
本発明によれば、白金担持炭素材料を超える酸素還元触媒能を具備する触媒が得られる。
本明細書において下記用語の意味は以下の通りである。
「ヘテロ原子」とは、炭素原子及び水素原子以外の原子を意味する。
数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
「ヘテロ原子」とは、炭素原子及び水素原子以外の原子を意味する。
数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
<触媒>
本実施形態の触媒(以下、「本触媒」と記す。)は、下式(1)で表される金属錯体と、炭素材料とを含む。
本実施形態の触媒(以下、「本触媒」と記す。)は、下式(1)で表される金属錯体と、炭素材料とを含む。
式(1)中、X1~X8はそれぞれ独立に、水素原子又はハロゲン原子であり、D1~D4は、窒素原子又は炭素原子であり、前記炭素原子には水素原子又はハロゲン原子が結合し、Mは金属原子である。
窒素原子とMとの間の結合は、窒素原子のMへ配位を意味する。Mには配位子としてハロゲン原子、水酸基、炭素数1~8の炭化水素基がさらに結合してもよい。また、電気的に中性になるように、アニオン性対イオンが存在してもよい。
Mの価数は特に制限されない。金属錯体が静電気的に中性となるように、配位子(例えば、軸配位子)としてハロゲン原子、水酸基、又は、炭素数1~8のアルキルオキシ基が結合してもよく、アニオン性対イオンが存在してもよい。アニオン性対イオンとしては、ハロゲン化物イオン、水酸化物イオン、硝酸イオン、硫酸イオンが例示される。
炭素数1~8のアルキルオキシ基が有するアルキル基の構造は、直鎖状でも、分岐状でも、環状でもよい。
炭素数1~8のアルキルオキシ基が有するアルキル基の構造は、直鎖状でも、分岐状でも、環状でもよい。
前記Mとしては、スカンジウム原子、チタン原子、バナジウム原子、クロム原子、マンガン原子、鉄原子、コバルト原子、ニッケル原子、銅原子、亜鉛原子、イットリウム原子、ジルコニウム原子、ニオブ原子、ルテニウム原子、ロジウム原子、パラジウム原子、ランタン原子、セリウム原子、プラセオジム原子、ネオジム原子、プロメチウム原子、サマリウム原子、ユウロピウム原子、ガドリニウム原子、テルビウム原子、ジスプロシウム原子、ホルミウム原子、エルビウム原子、ツリウム原子、イッテルビウム原子、ルテチウム、アクチニウム原子、トリウム原子、プロトアクチニウム原子、ウラン原子、ネプツニウム原子、プルトニウム原子、アメリシウム原子、キュリウム原子、バークリウム原子、カリホルニウム原子、アインスタイニウム原子、フェルミウム原子、メンデレビウム原子、ノーベリウム原子、ローレンシウム原子が例示される。
これらの中でも、鉄原子、マンガン原子、コバルト原子、銅原子、亜鉛原子が好ましく、鉄原子、マンガン原子、コバルト原子がより好ましく、鉄原子が特に好ましい。
これらの中でも、鉄原子、マンガン原子、コバルト原子、銅原子、亜鉛原子が好ましく、鉄原子、マンガン原子、コバルト原子がより好ましく、鉄原子が特に好ましい。
式(1)で表される金属錯体においては、下式(1’)に示すような異性体が存在し得る。
式(1’)中、X1~X8はそれぞれ独立に、水素原子又はハロゲン原子であり、D1’、D2~D4は、窒素原子又は炭素原子であり、前記炭素原子には水素原子又はハロゲン原子が結合し、Mは金属原子である。
本発明における金属錯体は、式(1’)に示すような異性体でもよい。よって、式(1)においては、D1を有する環状構造で窒素原子の位置とD1の位置とは交換可能であるとも言える。
本発明においては、金属錯体の異性体は式(1’)に示すものに限定されない。例えば、上記式(1)又は上記式(1’)中、D2~D4のそれぞれが含まれるそれぞれの環状構造から選ばれる少なくとも一つにおいて、窒素原子の位置がD2~D4のいずれかの位置と同一の環状構造内で交換されていてもよい。
以下、式(1)の金属錯体の好ましい態様についてさらに詳細に説明するが、いずれの好ましい態様においても、式(1’)に示すような異性体が存在し得る。これらの異性体は、本発明の金属錯体の好ましい態様に含まれるものである。
本発明においては、金属錯体の異性体は式(1’)に示すものに限定されない。例えば、上記式(1)又は上記式(1’)中、D2~D4のそれぞれが含まれるそれぞれの環状構造から選ばれる少なくとも一つにおいて、窒素原子の位置がD2~D4のいずれかの位置と同一の環状構造内で交換されていてもよい。
以下、式(1)の金属錯体の好ましい態様についてさらに詳細に説明するが、いずれの好ましい態様においても、式(1’)に示すような異性体が存在し得る。これらの異性体は、本発明の金属錯体の好ましい態様に含まれるものである。
金属錯体においては、D1~D4が炭素原子であり、前記炭素原子に水素原子が結合していることが好ましい。
即ち、本触媒において、金属錯体は下式(2)で表される化合物が好ましい。本触媒において、金属錯体が下式(2)で表される化合物である場合、本触媒を含む電極が導電性にさらに優れる。
即ち、本触媒において、金属錯体は下式(2)で表される化合物が好ましい。本触媒において、金属錯体が下式(2)で表される化合物である場合、本触媒を含む電極が導電性にさらに優れる。
式(2)中、X1~X8はそれぞれ独立に、水素原子又はハロゲン原子であり、Mは金属原子である。
金属錯体においては、D1~D4が炭素原子であり、前記炭素原子に水素原子が結合し、X1~X8が水素原子であることが、より好ましい。
即ち、本触媒において、金属錯体は下式(3)で表される化合物が好ましい。本触媒において、金属錯体が下式(3)で表される化合物である場合、本触媒の酸素還元触媒能がさらに優れる。
即ち、本触媒において、金属錯体は下式(3)で表される化合物が好ましい。本触媒において、金属錯体が下式(3)で表される化合物である場合、本触媒の酸素還元触媒能がさらに優れる。
式(3)中、Mは金属原子である。
さらに、金属錯体が式(3)で表される化合物である場合において、Mは鉄原子であることがさらに好ましい。即ち、本触媒において、金属錯体は下式(4)で表される鉄テトラピリドポリフィラジン(以下、「FeTPP」と記す。)がさらに好ましい。金属錯体がFeTPPである場合、本触媒の酸素還元触媒能が特に優れる。
金属錯体の窒素原子の含有量は、金属錯体100質量%に対し、14質量%以上が好ましく、16質量%以上がより好ましく、18質量%以上がさらに好ましく、19質量%以上が特に好ましい。金属錯体の窒素原子の含有量が14質量%以上であると、本触媒が酸化還元触媒能にさらに優れる。
金属錯体の窒素原子の含有量は、金属錯体100質量%に対し、40質量%以下が好ましく、30質量%以下がより好ましく、28質量%以下がさらに好ましく、25質量%以下が特に好ましい。金属錯体の窒素原子の含有量が40質量%以下であると、本触媒が導電性に優れる。
金属錯体の窒素原子の含有量は、金属錯体100質量%に対し、14~40質量%が好ましいとも言え、16~30質量%がより好ましいとも言え、18~28質量%がさらに好ましいとも言え、19~25質量%が特に好ましいとも言える。
金属錯体の窒素原子の含有量は、金属錯体100質量%に対し、40質量%以下が好ましく、30質量%以下がより好ましく、28質量%以下がさらに好ましく、25質量%以下が特に好ましい。金属錯体の窒素原子の含有量が40質量%以下であると、本触媒が導電性に優れる。
金属錯体の窒素原子の含有量は、金属錯体100質量%に対し、14~40質量%が好ましいとも言え、16~30質量%がより好ましいとも言え、18~28質量%がさらに好ましいとも言え、19~25質量%が特に好ましいとも言える。
金属錯体の製造方法は特に限定されない。例えば、ピリジン-2,3-ジカルボニトリル等のジシアノ化合物と金属原子とを塩基性物質の存在下にアルコール溶媒中で加熱する方法が例示される。ここで塩基性物質としては、炭酸カリウム、炭酸ナトリウム、炭酸カルシウム、炭酸水素ナトリウム、酢酸ナトリウム等の無機塩基;トリエチルアミン、トリブチルアミン、ジアザビシクロウンデセン等の有機塩基が例示される。
炭素材料は、導電性炭素由来であることが好ましい。炭素材料の具体例としては、黒鉛、アモルファス炭素、活性炭、グラフェン、カーボンブラック、炭素繊維、メソカーボンマイクロビーズ、マイクロカプセルカーボン、フラーレン、カーボンナノフォーム、カーボンナノチューブ、カーボンナノホーン等が例示される。これらの中でも、黒鉛、アモルファス炭素、活性炭、グラフェン、カーボンブラック、炭素繊維、フラーレン、カーボンナノチューブが好ましく、カーボンナノチューブ、カーボンブラック、グラフェンがより好ましく、カーボンナノチューブがさらに好ましい。
カーボンナノチューブとしては、単層カーボンナノチューブ(以下、「SWCNT」と記す。)、2層カーボンナノチューブ(以下、「DWCNT」と記す。)、多層カーボンナノチューブ(以下、「MWCNT」と記す。)が例示される。これらの中でも、本触媒の導電性が優れる点から、DWCNT、MWCNTが好ましく、MWCNTがさらに好ましい。
炭素材料は、水酸基、カルボキシル基、窒素含有基、ケイ素含有基、リン酸基等のリン含有基、スルホン酸基等の硫黄含有基等の官能基を有してもよい。これらの中でも炭素材料は、カルボキシル基を有することが好ましい。炭素材料がカルボキシル基を有すると、炭素材料の表面に金属錯体が吸着しやすくなり、本触媒が耐久性に優れるとともに、酸素還元触媒能にさらに優れる。
炭素材料は、ヘテロ原子を有してもよい。ヘテロ原子としては、酸素原子、窒素原子、リン原子、硫黄原子、ケイ素原子等が例示される。炭素材料がヘテロ原子を有する場合において、炭素材料はヘテロ原子の1種を単独で含んでもよく、2種以上のヘテロ原子を含んでもよい。なお、炭素材料は酸化されていてもよく、水酸化されていてもよく、窒化されていてもよく、リン化されていてもよく、硫化されていてもよく、珪化されていてもよい。
炭素材料がカルボキシル基を含有する場合、カルボキシル基の含有量は、炭素材料100質量%に対して、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましい。カルボキシル基の含有量が前記上限値以下であると、本触媒の製造コストが低下しやすくなる。
炭素材料がカルボキシル基を含有する場合、カルボキシル基の含有量は、1質量%以上が好ましく、5質量%以上がより好ましく、8質量%以上がさらに好ましい。カルボキシル基の含有量が前記下限値以上であると、本触媒が耐久性及び酸素還元触媒能にさらに優れる。
以上より、炭素材料がカルボキシル基を含有する場合、カルボキシル基の含有量は、炭素材料100質量%に対して、1~20質量%が好ましいとも言え、5~15質量%がより好ましいとも言え、8~15質量%がさらに好ましいとも言え、8~10質量%が特に好ましいとも言える。
カルボキシル基の含有量は、元素分析又はX線光電子分光法等により測定できる。
以上より、炭素材料がカルボキシル基を含有する場合、カルボキシル基の含有量は、炭素材料100質量%に対して、1~20質量%が好ましいとも言え、5~15質量%がより好ましいとも言え、8~15質量%がさらに好ましいとも言え、8~10質量%が特に好ましいとも言える。
カルボキシル基の含有量は、元素分析又はX線光電子分光法等により測定できる。
本触媒において、導電性が優れ、かつ、酸素還元触媒能がさらに優れる点から、炭素材料はカルボキシル基を有するDWCNT、カルボキシル基を有するMWCNTが好ましく、カルボキシル基を有するMWCNTがより好ましい。
炭素材料の比表面積は0.8m2/g以上が好ましく、1.0m2/g以上がより好ましく、1.1m2/g以上がさらに好ましく、1.5m2/g以上が特に好ましく、2.0m2/g以上が最も好ましい。比表面積が0.8m2/g以上であると、触媒の凝集を防ぎやすくなり、触媒の酸素還元触媒能がさらに優れる。比表面積の上限値は特に限定されない。比表面積の上限値は、例えば、2000m2/gとすることができる。炭素材料の比表面積は、例えば、0.8~2000m2/gでもよく、1.0~2000m2/gでもよく、1.1~2000m2/gでもよく、1.5~2000m2/gでもよく、2.0~2000m2/gでもよい。
前記比表面積は、窒素吸着BET法で比表面積測定装置により測定できる。
前記比表面積は、窒素吸着BET法で比表面積測定装置により測定できる。
炭素材料の平均粒径は、特に制限されない。炭素材料の平均粒径は、例えば、5nm~1000μmが好ましい。炭素材料の平均粒径を前記数値範囲に調整する方法としては、以下の(A1)~(A3)が例示される。
(A1):粒子をボールミル等により粉砕し、得られた粗粒子を分散剤に分散させて所望の粒子径にした後に乾固する方法。
(A2):粒子をボールミル等により粉砕し、得られた粗粒子をふるい等にかけて粒子径を選別する方法。
(A3):炭素材料を製造する際に、製造条件を最適化し、粒子の粒径を調整する方法。
平均粒子径は、粒度分布測定装置、電子顕微鏡等により測定できる。
(A1):粒子をボールミル等により粉砕し、得られた粗粒子を分散剤に分散させて所望の粒子径にした後に乾固する方法。
(A2):粒子をボールミル等により粉砕し、得られた粗粒子をふるい等にかけて粒子径を選別する方法。
(A3):炭素材料を製造する際に、製造条件を最適化し、粒子の粒径を調整する方法。
平均粒子径は、粒度分布測定装置、電子顕微鏡等により測定できる。
本触媒において、金属錯体の割合は、金属錯体と炭素材料との合計100質量%に対して、75質量%以下が好ましく、50質量%以下がより好ましく、30質量%以下がさらに好ましい。金属錯体の割合が前記上限値以下であると、本触媒が導電性に優れる。
金属錯体の割合は、金属錯体と炭素材料との合計100質量%に対して、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上がさらに好ましい。金属錯体の割合が前記下限値以上であると、本触媒が酸素還元触媒能にさらに優れる。
金属錯体の割合は、金属錯体と炭素材料との合計100質量%に対して、0.1~75質量%が好ましいとも言え、0.5~50質量%がより好ましいとも言え、1~30質量%がさらに好ましいとも言える。
金属錯体の割合は、金属錯体と炭素材料との合計100質量%に対して、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上がさらに好ましい。金属錯体の割合が前記下限値以上であると、本触媒が酸素還元触媒能にさらに優れる。
金属錯体の割合は、金属錯体と炭素材料との合計100質量%に対して、0.1~75質量%が好ましいとも言え、0.5~50質量%がより好ましいとも言え、1~30質量%がさらに好ましいとも言える。
(用途)
本触媒は種々の工業製品の材料として適用可能である。
本触媒は、酸素還元触媒能を具備する。そのため、酸素の還元反応を利用する産業上の用途に好適に利用できる。
例えば、粉末状の本触媒は、そのまま種々の工業製品、部品の原料として使用できる。
加えて、本触媒と白金担持炭素材料(例えば、後述のPt/C等)とを混合して使用してもよい。本触媒を白金担持炭素材料と併用することで、酸素還元触媒能の向上、製造コストの低下等の効果が得られることが期待できる。
本触媒は種々の工業製品の材料として適用可能である。
本触媒は、酸素還元触媒能を具備する。そのため、酸素の還元反応を利用する産業上の用途に好適に利用できる。
例えば、粉末状の本触媒は、そのまま種々の工業製品、部品の原料として使用できる。
加えて、本触媒と白金担持炭素材料(例えば、後述のPt/C等)とを混合して使用してもよい。本触媒を白金担持炭素材料と併用することで、酸素還元触媒能の向上、製造コストの低下等の効果が得られることが期待できる。
(作用効果)
以上説明した本触媒にあっては、上述した金属錯体と炭素材料を含むため、酸素還元触媒能がよくなり、白金担持炭素材料を超える酸素還元触媒能が達成される。
以上説明した本触媒にあっては、上述した金属錯体と炭素材料を含むため、酸素還元触媒能がよくなり、白金担持炭素材料を超える酸素還元触媒能が達成される。
特許文献1、2に記載の技術について言及したように、従来技術においては、触媒の導電性を担保する点から、導電性に優れるフタロシアニン環を有する化合物が燃料電池用の触媒として選択されることが当業者の技術常識であった。これに対し本触媒が含む金属錯体は、導電性がフタロシアニン環を有する化合物より相対的に低くなる傾向にある。
したがって、導電性が相対的に低いにもかかわらず、前記式(1)で表される金属錯体を選択することにより、本触媒の酸素還元触媒能が白金担持炭素材料より優れるようになるという作用効果は、全く意外であるといえる。
したがって、導電性が相対的に低いにもかかわらず、前記式(1)で表される金属錯体を選択することにより、本触媒の酸素還元触媒能が白金担持炭素材料より優れるようになるという作用効果は、全く意外であるといえる。
本触媒にあっては、種々の溶媒に対する金属錯体の溶解度がより高いため、本触媒における金属錯体の含有量の上限値が高くなり、触媒の酸素還元触媒能がさらに優れる。
本触媒にあっては、金属錯体の窒素原子の含有量がより多いため、フタロシアニン環を有する化合物を選択する場合より、窒素原子の含有量をより高くしやすくなり、触媒の酸素還元触媒能がさらに優れる。
本触媒にあっては、金属錯体の窒素原子の含有量がより多いため、フタロシアニン環を有する化合物を選択する場合より、窒素原子の含有量をより高くしやすくなり、触媒の酸素還元触媒能がさらに優れる。
<液状組成物>
本実施形態の液状組成物(以下、「本液状組成物」と記す。)は、本触媒と液状媒体とを含む。本液状組成物は、本触媒及び液状媒体以外の任意成分をさらに含んでもよい。
液状媒体は、本触媒を溶解しやすい(即ち、本触媒の溶解度が高い)化合物でもよく、本触媒を溶解しにくい(即ち、本触媒の溶解度が低い)化合物でもよい。液状媒体が本触媒を溶解しやすい化合物である場合、本液状組成物は溶液の形態である。液状媒体が本触媒を溶解しにくい化合物である場合、本液状組成物は分散液の形態である。
液状媒体は、水等の無機質媒体であってもよく、有機媒体であってもよい。
有機媒体の具体例としては、メタノール、エタノール、プロパノール、イソプロパノール(2-プロパノール)、1-ヘキサノール等のアルコール;ジメチルスルホキシド;テトラヒドロフラン;N-メチルピロリドン、ジメチルホルムアミド、アセトン等の非プロトン性極性溶媒;クロロホルム、ジクロロメタン、1,4―ジオキサン、ベンゼン、トルエン等の非極性溶媒が例示される。ただし、液状媒体はこれらの例示に限定されない。液状媒体は1種を単独で用いてもよく、2種以上を併用してもよい。
本実施形態の液状組成物(以下、「本液状組成物」と記す。)は、本触媒と液状媒体とを含む。本液状組成物は、本触媒及び液状媒体以外の任意成分をさらに含んでもよい。
液状媒体は、本触媒を溶解しやすい(即ち、本触媒の溶解度が高い)化合物でもよく、本触媒を溶解しにくい(即ち、本触媒の溶解度が低い)化合物でもよい。液状媒体が本触媒を溶解しやすい化合物である場合、本液状組成物は溶液の形態である。液状媒体が本触媒を溶解しにくい化合物である場合、本液状組成物は分散液の形態である。
液状媒体は、水等の無機質媒体であってもよく、有機媒体であってもよい。
有機媒体の具体例としては、メタノール、エタノール、プロパノール、イソプロパノール(2-プロパノール)、1-ヘキサノール等のアルコール;ジメチルスルホキシド;テトラヒドロフラン;N-メチルピロリドン、ジメチルホルムアミド、アセトン等の非プロトン性極性溶媒;クロロホルム、ジクロロメタン、1,4―ジオキサン、ベンゼン、トルエン等の非極性溶媒が例示される。ただし、液状媒体はこれらの例示に限定されない。液状媒体は1種を単独で用いてもよく、2種以上を併用してもよい。
本液状組成物は、任意成分として、ポリテトラフルオロエチレンに基づく構成単位とスルホン酸基を有するパーフルオロ側鎖とを含むパーフルオロカーボン材料を含んでもよい。パーフルオロカーボン材料の具体例としては、Nafion(製品名:デュポン社製)が例示される。
本液状組成物は、本触媒と液状媒体と必要に応じてパーフルオロカーボン材料とを混合又は混練することにより、製造できる。
混合又は混練に際しては、超音波処理、ミキサー、ブレンダー、ニーダー、ホモジナイザー、ビーズミル、ボールミル等を使用してもよい。混練操作の前後においては、ふるい等を使用して、粒子の平均粒子径を調整してもよい。
パーフルオロカーボン材料を含む液状組成物を調製する際には、本触媒とパーフルオロカーボン材料と必要に応じて水とアルコールとを混合し、均一になるまで撹拌してもよい。
混合又は混練に際しては、超音波処理、ミキサー、ブレンダー、ニーダー、ホモジナイザー、ビーズミル、ボールミル等を使用してもよい。混練操作の前後においては、ふるい等を使用して、粒子の平均粒子径を調整してもよい。
パーフルオロカーボン材料を含む液状組成物を調製する際には、本触媒とパーフルオロカーボン材料と必要に応じて水とアルコールとを混合し、均一になるまで撹拌してもよい。
本液状組成物は、種々の基材の表面に適用できる。例えば、本液状組成物を基材の表面に塗布し、液状媒体を除去することにより、本触媒を含む層(以下、「本触媒層」と記す。)を種々の基材の表面に設けることができる。
基材としては、アルミニウム箔、電解アルミニウム箔、アルミニウムメッシュ(エキスパンドメタル)、発泡アルミニウム、パンチングアルミニウム、ジュラルミン等のアルミニウム合金、銅箔、電解銅箔、銅メッシュ(エキスパンドメタル)、発泡銅、パンチング銅、真鍮等の銅合金、真鍮箔、真鍮メッシュ(エキスパンドメタル)、発泡真鍮、パンチング真鍮、ニッケル箔、ニッケルメッシュ、耐食性ニッケル、ニッケルメッシュ(エキスパンドメタル)、パンチングニッケル、発泡ニッケル、スポンジニッケル、金属亜鉛、耐食性金属亜鉛、亜鉛箔、亜鉛メッシュ(エキスパンドメタル)、鋼板、パンチング鋼板、銀等が例示される。
基材は、シリコン基板;金、鉄、ステンレス鋼、銅、アルミニウム、リチウム等の金属基板;これらの金属の任意の組み合わせを含む合金基板;インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、アンチモン錫酸化物(ATO)等の酸化物基板;グラッシーカーボン、パイロリティックグラファイト、カーボンフェルト等の炭素基板等の基板状の基材でもよい。ただし、基材は、これらの例示に限定されない。
基材は、シリコン基板;金、鉄、ステンレス鋼、銅、アルミニウム、リチウム等の金属基板;これらの金属の任意の組み合わせを含む合金基板;インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、アンチモン錫酸化物(ATO)等の酸化物基板;グラッシーカーボン、パイロリティックグラファイト、カーボンフェルト等の炭素基板等の基板状の基材でもよい。ただし、基材は、これらの例示に限定されない。
(作用効果)
以上説明した本液状組成物にあっては、上述した本触媒を含むため、種々の基材に白金担持炭素材料を超える酸素還元触媒能を付与できる。
本液状組成物は、例えば、後述の電極を製造する際に基材の表面に塗布する塗工液として使用できる。液状組成物をそのまま塗工液として使用してもよく、本触媒の含有量又は固形分濃度を調整してから塗工液として使用してもよい。
以上説明した本液状組成物にあっては、上述した本触媒を含むため、種々の基材に白金担持炭素材料を超える酸素還元触媒能を付与できる。
本液状組成物は、例えば、後述の電極を製造する際に基材の表面に塗布する塗工液として使用できる。液状組成物をそのまま塗工液として使用してもよく、本触媒の含有量又は固形分濃度を調整してから塗工液として使用してもよい。
<電極>
本実施形態の電極(以下、「本電極」と記す。)は、本触媒を含む。本電極は、本触媒の層と接する基材を有してもよい。
本実施形態の電極(以下、「本電極」と記す。)は、本触媒を含む。本電極は、本触媒の層と接する基材を有してもよい。
本電極は、本液状組成物を塗工液として用いて形成されてもよい。本液状組成物を用いて本電極を形成する場合、本液状組成物を導電性の基材の表面に塗布し、本触媒以外の成分(例えば、液状媒体、パーフルオロカーボン材料等)を除去する。本触媒以外の成分を除去する際は、加熱乾燥をしてもよく、乾燥後にプレスを行ってもよい。
本電極は、導電性の基材の表面に本触媒層が設けられている形態でもよい。この場合、触媒の層の厚みは、特に限定されないが、例えば、0.01~100μmとすることができる。厚みが前記下限値以上であると、本電極が耐久性に優れる。厚みが前記上限値以下であると、本電極の性能が低下しにくくなる。
導電性の基材としては、「液状組成物」の項で説明した基材と同様のものが例示される。
なお、真空蒸着等によって、本触媒層を基材の表面に設けてもよい。
本電極は、導電性の基材の表面に本触媒層が設けられている形態でもよい。この場合、触媒の層の厚みは、特に限定されないが、例えば、0.01~100μmとすることができる。厚みが前記下限値以上であると、本電極が耐久性に優れる。厚みが前記上限値以下であると、本電極の性能が低下しにくくなる。
導電性の基材としては、「液状組成物」の項で説明した基材と同様のものが例示される。
なお、真空蒸着等によって、本触媒層を基材の表面に設けてもよい。
基板としては、「電極の製造方法」の項で説明した基材と同様のものが例示される。
本電極は、本触媒層を基材の片面に有してもよく、基材の両面に有してもよい。
本電極は、本触媒層を基材の片面に有してもよく、基材の両面に有してもよい。
本電極は、燃料電池の電極として利用できる。燃料電池の電極として利用する場合、一対の電極の間に電解質膜を配置してもよい。
本電極を燃料電池の電極として利用する場合、酸性条件下では下式(6)に示す酸素の還元反応が進行しやすくなり、アルカリ性条件下では下式(7)に示す還元反応が進行しやすくなる。
O2+4H++4e-→2H2O ・・・(6)
O2+2H2O+4e-→4OH- ・・・(7)
本電極を燃料電池の電極として利用する場合、酸性条件下では下式(6)に示す酸素の還元反応が進行しやすくなり、アルカリ性条件下では下式(7)に示す還元反応が進行しやすくなる。
O2+4H++4e-→2H2O ・・・(6)
O2+2H2O+4e-→4OH- ・・・(7)
基材として、例えば多孔質支持層を有する基板を用いることで、本電極を燃料電池用の電極として利用してもよい。燃料電池の電極として利用する場合、本電極はカソード又はアノードのいずれの電極に用いてもよい。
多孔質支持層とは、ガスを拡散する層である。多孔質支持層としては、電子伝導性を具備し、ガスの拡散性が高く、耐食性の高いものであれば特に限定されない。多孔質支持層としては、カーボンペーパー、カーボンクロス等の炭素系多孔質材料、ステンレス箔、耐食材を被服したアルミニウム箔等が例示される。
多孔質支持層とは、ガスを拡散する層である。多孔質支持層としては、電子伝導性を具備し、ガスの拡散性が高く、耐食性の高いものであれば特に限定されない。多孔質支持層としては、カーボンペーパー、カーボンクロス等の炭素系多孔質材料、ステンレス箔、耐食材を被服したアルミニウム箔等が例示される。
本電極は、燃料電池、空気電池等の蓄電デバイス(発電デバイス)用の電極に好適に適用できる。
(作用効果)
以上説明した本電極にあっては、本触媒層を有するため、酸素還元触媒能がよくなる。
以上説明した本電極にあっては、本触媒層を有するため、酸素還元触媒能がよくなる。
<電気化学反応用触媒電極>
本実施形態の電気化学反応用触媒電極(以下、「本電気化学反応用触媒電極」と記す。
)は、本触媒を含む。
本実施形態の電気化学反応用触媒電極(以下、「本電気化学反応用触媒電極」と記す。
)は、本触媒を含む。
本電気化学反応用触媒電極は、任意の還元反応又は任意の酸化反応等の電気化学反応の触媒としての機能を具備する電極である。
例えば、本電気化学反応用触媒電極は、下式(6)又は下式(7)に示す還元反応の触媒としての機能を具備できる。
O2+4H++4e-→2H2O ・・・(6)
O2+2H2O+4e-→4OH- ・・・(7)
例えば、本電気化学反応用触媒電極は、下式(6)又は下式(7)に示す還元反応の触媒としての機能を具備できる。
O2+4H++4e-→2H2O ・・・(6)
O2+2H2O+4e-→4OH- ・・・(7)
本電気化学反応用触媒電極は、本触媒の層と接する基材を有してもよい。
本電気化学反応用触媒電極は、上述の本電極と同様に、本液状組成物を塗工液として用いて形成されてもよい。
本電気化学反応用触媒電極は、上述の本電極と同様に、導電性の基材の表面に本触媒層が設けられている形態でもよい。基板としては、「電極の製造方法」の項で説明した基材と同様のものが例示される。
本電極は、本触媒層を基材の片面に有してもよく、基材の両面に有してもよい。
真空蒸着等によって、本電気化学反応用触媒電極を製造してもよい。
本電気化学反応用触媒電極は、上述の本電極と同様に、本液状組成物を塗工液として用いて形成されてもよい。
本電気化学反応用触媒電極は、上述の本電極と同様に、導電性の基材の表面に本触媒層が設けられている形態でもよい。基板としては、「電極の製造方法」の項で説明した基材と同様のものが例示される。
本電極は、本触媒層を基材の片面に有してもよく、基材の両面に有してもよい。
真空蒸着等によって、本電気化学反応用触媒電極を製造してもよい。
(作用効果)
以上説明した本電気化学反応用触媒電極にあっては、本触媒層を有するため、酸素還元触媒能がよくなる。
以上説明した本電気化学反応用触媒電極にあっては、本触媒層を有するため、酸素還元触媒能がよくなる。
<燃料電池>
本実施形態の燃料電池(以下、「本燃料電池」と記す。)は、上述した本電極を有する。
本燃料電池は、第2の電極、電解質、セパレータをさらに有してもよい。
本燃料電池において、本電極はカソードでもアノードでもよい。ただし、本電極はカソードが好ましく、酸素極がより好ましい。なお、酸素極とは酸素を含む気体(空気等)が供給される電極を意味する。
本実施形態の燃料電池(以下、「本燃料電池」と記す。)は、上述した本電極を有する。
本燃料電池は、第2の電極、電解質、セパレータをさらに有してもよい。
本燃料電池において、本電極はカソードでもアノードでもよい。ただし、本電極はカソードが好ましく、酸素極がより好ましい。なお、酸素極とは酸素を含む気体(空気等)が供給される電極を意味する。
第2の電極は本電極と組み合せて用いられる電極である。本電極がカソードである場合、第2の電極はアノードであり、本電極がアノードである場合、第2の電極はカソードである。
第2の電極としては、アルミニウム、亜鉛等の金属単体、これらの金属酸化物が例示される。ただし、第2の電極はこれらの例示に限定されない。
第2の電極としては、アルミニウム、亜鉛等の金属単体、これらの金属酸化物が例示される。ただし、第2の電極はこれらの例示に限定されない。
電解質としては、水性電解液が好ましい。水性電解液としては、水酸化カリウム水溶液、水酸化ナトリウム水溶液等のアルカリ水溶液;硫酸水溶液等の酸性水溶液が例示される。電解質は、1種を単独で用いてもよく、2種以上を併用してもよい。ただし、電解質はこれらの例示に限定されず、無機固体電解質でもよい。
セパレータは、本電極と第2の電極とを隔離し、電解質を保持して本電極と第2の電極との間のイオン伝導性を確保する部材である。
セパレータの具体例としては、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、セルロース、酢酸セルロース、ヒドロキシアルキルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、セロファン、ポリスチレン、ポリアクリロニトリル、ポリアクリルアミド、ポリ塩化ビニル、ポリアミド、ビニロン、ポリ(メタ)アクリル酸等のマイクロポアを有する重合体、ゲル化合物、イオン交換膜、環化重合体、ポリ(メタ)アクリル酸塩含有重合体、スルホン酸塩含有重合体、第四級アンモニウム塩含有重合体、第四級ホスホニウム塩含有重合体等が例示される。ただし、セパレータはこれらの例示に限定されない。
セパレータの具体例としては、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、セルロース、酢酸セルロース、ヒドロキシアルキルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、セロファン、ポリスチレン、ポリアクリロニトリル、ポリアクリルアミド、ポリ塩化ビニル、ポリアミド、ビニロン、ポリ(メタ)アクリル酸等のマイクロポアを有する重合体、ゲル化合物、イオン交換膜、環化重合体、ポリ(メタ)アクリル酸塩含有重合体、スルホン酸塩含有重合体、第四級アンモニウム塩含有重合体、第四級ホスホニウム塩含有重合体等が例示される。ただし、セパレータはこれらの例示に限定されない。
本燃料電池は一次電池でもよく、二次電池でもよい。
本燃料電池の形態としては、溶融炭酸塩型燃料電池(MCFC)、リン酸型燃料電池(PAFC)、固体酸化物型燃料電池(SOFC)、固体高分子型燃料電池(PEFC)等が例示される。本燃料電池の形態はこれらの例示に限定されないが、PEFCが好ましい。
本燃料電池の形態としては、溶融炭酸塩型燃料電池(MCFC)、リン酸型燃料電池(PAFC)、固体酸化物型燃料電池(SOFC)、固体高分子型燃料電池(PEFC)等が例示される。本燃料電池の形態はこれらの例示に限定されないが、PEFCが好ましい。
(作用効果)
以上説明した本燃料電池にあっては、本電極を有するため、電極における酸素還元反応の酸素還元特性がよくなる。その結果、本燃料電池はエネルギー変換効率に優れる。
以上説明した本燃料電池にあっては、本電極を有するため、電極における酸素還元反応の酸素還元特性がよくなる。その結果、本燃料電池はエネルギー変換効率に優れる。
<空気電池>
本実施形態の燃料電池(以下、「本空気電池」と記す。)は、上述した本電極を有する。本空気電池においては、本電極を酸素極として適用することが好ましい。
本空気電池は、燃料極、電解質、セパレータをさらに有してもよい。
燃料極は本電極と組み合せて用いられる電極である。燃料極としては、「第2の電極」の項で説明した具体例と同様のものが例示される。
電解質としては、「燃料電池」の項で説明した電解質と同様のものが例示される。
セパレータとしては、「燃料電池」の項で説明したセパレータと同様のものが例示される。
本実施形態の燃料電池(以下、「本空気電池」と記す。)は、上述した本電極を有する。本空気電池においては、本電極を酸素極として適用することが好ましい。
本空気電池は、燃料極、電解質、セパレータをさらに有してもよい。
燃料極は本電極と組み合せて用いられる電極である。燃料極としては、「第2の電極」の項で説明した具体例と同様のものが例示される。
電解質としては、「燃料電池」の項で説明した電解質と同様のものが例示される。
セパレータとしては、「燃料電池」の項で説明したセパレータと同様のものが例示される。
(作用効果)
以上説明した本空気電池にあっては、本電極を有するため、電極における酸素還元反応の酸素還元特性がよくなる。その結果、本空気電池はエネルギー変換効率に優れる。
以上説明した本空気電池にあっては、本電極を有するため、電極における酸素還元反応の酸素還元特性がよくなる。その結果、本空気電池はエネルギー変換効率に優れる。
以下、実施例によって本実施形態を具体的に説明するが、本発明は以下の記載によっては限定されない。
(略号)
DMSO:ジメチルスルホキシド。
FeTPP:鉄テトラピリドポリフィラジン。
DBU:ジアザビシクロウンデセン。
MWCNT:Multi-walled Carbon Nanotube(Sigma Aldrich社製、Carbon nanotube, Multi―walled、724769-25G)。
CB:Carbon Black(東海カーボン社製、Seast S)。
GO:Graphene Oxide(株式会社仁科マテリアル社製、酸化グラフェン)。
Pt/C:白金担持カーボン(Sigma Aldrich社製、728549―1G)。
KOH:水酸化カリウム水溶液。
UV-vis:Ultraviolet Visible Spectrophotometer。
MALDI-TOF:Matrix Assisted Laser Desorption / Ionization-Time Of Flight Mass Spectrometry)。
ATR:Attenuated Total Reflection。
LSV:Linear Sweep Voltammetry。
TEM:Transmission Electron Microscope。
STEM:Scanning Transmission Electron Microscope。
EDX:Energy Dispersive X-ray。
K-L:Koutecky-Levich。
RRDE:Rotataing Ring Disk Electrides。
DMSO:ジメチルスルホキシド。
FeTPP:鉄テトラピリドポリフィラジン。
DBU:ジアザビシクロウンデセン。
MWCNT:Multi-walled Carbon Nanotube(Sigma Aldrich社製、Carbon nanotube, Multi―walled、724769-25G)。
CB:Carbon Black(東海カーボン社製、Seast S)。
GO:Graphene Oxide(株式会社仁科マテリアル社製、酸化グラフェン)。
Pt/C:白金担持カーボン(Sigma Aldrich社製、728549―1G)。
KOH:水酸化カリウム水溶液。
UV-vis:Ultraviolet Visible Spectrophotometer。
MALDI-TOF:Matrix Assisted Laser Desorption / Ionization-Time Of Flight Mass Spectrometry)。
ATR:Attenuated Total Reflection。
LSV:Linear Sweep Voltammetry。
TEM:Transmission Electron Microscope。
STEM:Scanning Transmission Electron Microscope。
EDX:Energy Dispersive X-ray。
K-L:Koutecky-Levich。
RRDE:Rotataing Ring Disk Electrides。
(MALDI-TOF質量分析)
MALDI-TOF質量分析は、マトリックス支援レーザー脱離イオン化飛行時間型質量分析装置(Bruker Daltonics社製、REFLEXIII)を用いて生成物の水分散液及びα―シアノ―4―ヒドロキシけい皮酸の水溶液を質量比1:4で混合し、室温下で乾燥させてから測定を行った。
MALDI-TOF質量分析は、マトリックス支援レーザー脱離イオン化飛行時間型質量分析装置(Bruker Daltonics社製、REFLEXIII)を用いて生成物の水分散液及びα―シアノ―4―ヒドロキシけい皮酸の水溶液を質量比1:4で混合し、室温下で乾燥させてから測定を行った。
(UV-vis)
UV-visは、紫外可視分光光度計(JASCO社製、V―670)を用いて各試料をメタノール又はDMSOに分散させた状態で測定を行った。
UV-visは、紫外可視分光光度計(JASCO社製、V―670)を用いて各試料をメタノール又はDMSOに分散させた状態で測定を行った。
(赤外分光分析)
赤外分光分析は、赤外分光光度計(JASCO社製、FT/IR―6700)を用いて、ATR法によって粉末状の試料に対して測定した。
赤外分光分析は、赤外分光光度計(JASCO社製、FT/IR―6700)を用いて、ATR法によって粉末状の試料に対して測定した。
(レーザーラマン分光分析)
レーザーラマン分光分析は、顕微レーザーラマン分光装置(株式会社堀場製作所製、LabRAM HR―800)によってシリコン基板上の粉末状試料に対して532.10nmの励起光を照射して測定を行った。Dバンドのピーク強度をIDとし、Gバンドのピーク強度をIGとし、下式(8)によりピーク強度比Rを算出した。
R=(ID/IG) ・・・(8)
レーザーラマン分光分析は、顕微レーザーラマン分光装置(株式会社堀場製作所製、LabRAM HR―800)によってシリコン基板上の粉末状試料に対して532.10nmの励起光を照射して測定を行った。Dバンドのピーク強度をIDとし、Gバンドのピーク強度をIGとし、下式(8)によりピーク強度比Rを算出した。
R=(ID/IG) ・・・(8)
(TEM)
透過型電子顕微鏡(Hitachi社製、H-7650)によって観察像を得た。
透過型電子顕微鏡(Hitachi社製、H-7650)によって観察像を得た。
(STEM)
走査型透過電子顕微鏡(Hitachi社製、S―5200)によって観察像を得た。
走査型透過電子顕微鏡(Hitachi社製、S―5200)によって観察像を得た。
(EDXスペクトル分析)
EDXスペクトル分析は、原子分解能分析電子顕微鏡(JEOL社製、JEM―ARM200F)を用いて行った。
EDXスペクトル分析は、原子分解能分析電子顕微鏡(JEOL社製、JEM―ARM200F)を用いて行った。
(TG-DTA測定)
TG-DTA測定は、熱分析装置(株式会社リガク製、Thermo plus EvoII)によって窒素雰囲気下、5℃/minの昇温速度の条件下で行った。
TG-DTA測定は、熱分析装置(株式会社リガク製、Thermo plus EvoII)によって窒素雰囲気下、5℃/minの昇温速度の条件下で行った。
(LSV曲線)
LSV曲線は、コンパクトスタット(Ivium社製、NH―COMPACT)によって酸素飽和0.1MのKOHを電解液として使用し、掃引速度5mV/sの条件下で、掃引範囲の下限を-0.8V、上限を0.2Vとして行った。回転ディスクの回転速度は2400rpmとし、対極としてPt線を使用し、参照極としてAg/AgClを使用した。
LSV曲線は、コンパクトスタット(Ivium社製、NH―COMPACT)によって酸素飽和0.1MのKOHを電解液として使用し、掃引速度5mV/sの条件下で、掃引範囲の下限を-0.8V、上限を0.2Vとして行った。回転ディスクの回転速度は2400rpmとし、対極としてPt線を使用し、参照極としてAg/AgClを使用した。
(反応電子数の算出)
K-Lプロットに基づいて反応電子数を算出した。LSV測定からリング電極とディスク電極の電流密度を算出し、RRDEに基づいて反応電子数を算出した。
K-Lプロットに基づいて反応電子数を算出した。LSV測定からリング電極とディスク電極の電流密度を算出し、RRDEに基づいて反応電子数を算出した。
(実施例1)
ピリジン-2,3-ジカルボニトリルの258mgと塩化鉄(III)六水和物の135mgとDBUの20mgとを試験管で混合し、メタノールの10mLとDMSOの10mLとを含む混合溶媒に溶解させ溶解液を得た。溶解液を窒素置換し、180℃で3時間加熱し、FeTPPを含む反応生成物を得た。反応生成物をアセトンで3回遠心分離し、乾燥させた。遠心分離後の沈殿物を濃硫酸に溶解させ、水に滴下し、FeTPPを析出させた。析出したFeTPPを遠心分離で回収し、メタノールで洗浄し、乾燥させ実施例1の金属錯体を得た。
実施例1の金属錯体をDMSOに溶解させ、MALDI-TOF質量分析による測定とUV-visによる測定とを行った。
ピリジン-2,3-ジカルボニトリルの258mgと塩化鉄(III)六水和物の135mgとDBUの20mgとを試験管で混合し、メタノールの10mLとDMSOの10mLとを含む混合溶媒に溶解させ溶解液を得た。溶解液を窒素置換し、180℃で3時間加熱し、FeTPPを含む反応生成物を得た。反応生成物をアセトンで3回遠心分離し、乾燥させた。遠心分離後の沈殿物を濃硫酸に溶解させ、水に滴下し、FeTPPを析出させた。析出したFeTPPを遠心分離で回収し、メタノールで洗浄し、乾燥させ実施例1の金属錯体を得た。
実施例1の金属錯体をDMSOに溶解させ、MALDI-TOF質量分析による測定とUV-visによる測定とを行った。
図1は実施例1におけるMALDI-TOF質量分析の測定結果を示すスペクトル図である。FeTPPの質量平均分子量は572.07である。図1のスペクトル図では、質量平均分子量が572.099の位置と586.943の位置にピークが観測された。この結果から、実施例1の金属錯体では、中心金属である鉄原子にメチル基が結合している可能性が示唆された。
図2は実施例1におけるUV-visの測定結果を示すスペクトル図である。図2中に示すように、実施例1の金属錯体においては、フタロシアニン類縁体に特有のQ bandが600nm付近に、Solet bandが300~400nm付近に観測された。これにより、FeTPPを合成できたことが確認できた。
(実施例2)
実施例1と同様にして、金属錯体(即ち、FeTPP)を得た。得られたFeTPPをDMSOの0.5mLに溶解させ、得られた溶液とカルボキシル基を有するMWCNT(直径9.5nm,長さ1.5μm)の10mgとをホモジナイザーで10分撹拌した。撹拌液をDMSOで3回洗浄した後、さらにメタノールで3回洗浄し、実施例2の触媒を含むメタノール分散液(実施例2のメタノール分散液)を得た。
実施例1と同様にして、金属錯体(即ち、FeTPP)を得た。得られたFeTPPをDMSOの0.5mLに溶解させ、得られた溶液とカルボキシル基を有するMWCNT(直径9.5nm,長さ1.5μm)の10mgとをホモジナイザーで10分撹拌した。撹拌液をDMSOで3回洗浄した後、さらにメタノールで3回洗浄し、実施例2の触媒を含むメタノール分散液(実施例2のメタノール分散液)を得た。
(実施例3)
炭素材料としてCBの10mgを使用した以外は、実施例2と同様にして、実施例3の触媒を含むメタノール分散液(実施例3のメタノール分散液)を得た。
炭素材料としてCBの10mgを使用した以外は、実施例2と同様にして、実施例3の触媒を含むメタノール分散液(実施例3のメタノール分散液)を得た。
(実施例4)
炭素材料としてGOの10mgを使用した以外は、実施例2と同様にして、実施例4の触媒を含むメタノール分散液(実施例4のメタノール分散液)を得た。
炭素材料としてGOの10mgを使用した以外は、実施例2と同様にして、実施例4の触媒を含むメタノール分散液(実施例4のメタノール分散液)を得た。
(実施例5)
金属錯体として下式(9)に示す化合物を使用した以外は、実施例2と同様にして、実施例5の触媒を含むメタノール分散液(実施例5のメタノール分散液)を得た。
金属錯体として下式(9)に示す化合物を使用した以外は、実施例2と同様にして、実施例5の触媒を含むメタノール分散液(実施例5のメタノール分散液)を得た。
図3は実施例2の触媒を示す模式図である。実施例2の触媒においては、MWCNTが有するカルボキシル基が負に帯電しているため、FeTPPがMWCNTの表面に吸着している可能性が高い。
図4は実施例2におけるUV-visの測定結果を示すスペクトル図である。
図4中「実施例1」で示す線は、実施例1のFeTPPをDMSOに溶解した溶液のスペクトルを示す。
図4中「実施例2」で示す線は、実施例2のメタノール分散液のスペクトルを示す。
図4中「カルボキシル基を有するMWCNT」で示す線は、MWCNTをDMSOに溶解した溶液のスペクトルを示す。
図4に示すように、実施例2のメタノール分散液のスペクトルにおいて、FeTPP由来のピーク(Q band)が観測された。これにより、実施例2のメタノール分散液において、FeTPPの化学構造が維持されていることが確認できた。
図4は実施例2におけるUV-visの測定結果を示すスペクトル図である。
図4中「実施例1」で示す線は、実施例1のFeTPPをDMSOに溶解した溶液のスペクトルを示す。
図4中「実施例2」で示す線は、実施例2のメタノール分散液のスペクトルを示す。
図4中「カルボキシル基を有するMWCNT」で示す線は、MWCNTをDMSOに溶解した溶液のスペクトルを示す。
図4に示すように、実施例2のメタノール分散液のスペクトルにおいて、FeTPP由来のピーク(Q band)が観測された。これにより、実施例2のメタノール分散液において、FeTPPの化学構造が維持されていることが確認できた。
図5は実施例2における赤外分光分析の結果を示すスペクトル図である。
図5中「実施例1」で示す線は、実施例1のFeTPPをDMSOに溶解した溶液のスペクトルを示す。
図5中「実施例2」で示す線は、実施例2のメタノール分散液のスペクトルを示す。
図5中「カルボキシル基を有するMWCNT」で示す線は、カルボキシル基を有するMWCNTをDMSOに溶解した溶液のスペクトルを示す。
図5に示すように、実施例2のメタノール分散液のスペクトルにおいて、FETPP及びカルボキシル基を有するMWCNTのそれぞれに特徴的なピークが観測された。これにより、実施例2のメタノール分散液において、FeTPP及びMWCNTのそれぞれの化学構造が維持されていることが確認できた。
図5中「実施例1」で示す線は、実施例1のFeTPPをDMSOに溶解した溶液のスペクトルを示す。
図5中「実施例2」で示す線は、実施例2のメタノール分散液のスペクトルを示す。
図5中「カルボキシル基を有するMWCNT」で示す線は、カルボキシル基を有するMWCNTをDMSOに溶解した溶液のスペクトルを示す。
図5に示すように、実施例2のメタノール分散液のスペクトルにおいて、FETPP及びカルボキシル基を有するMWCNTのそれぞれに特徴的なピークが観測された。これにより、実施例2のメタノール分散液において、FeTPP及びMWCNTのそれぞれの化学構造が維持されていることが確認できた。
図6は実施例2におけるレーザーラマン分光分析の結果を示すグラフである。図7、8は図6の拡大図である。
図6~8中「実施例2」で示す線は、実施例2のメタノール分散液のスペクトルを示す。
図6~8中「実施例2の焼成物」で示す線は、実施例2のメタノール分散液の焼成物をDMSOに溶解した溶液のスペクトルを示す。
図6~8中「カルボキシル基を有するMWCNT」で示す線は、MWCNTをDMSOに溶解した溶液のスペクトルを示す。
図6~8に基づき、式(8)を用いてピーク強度比Rを算出した。CNT/FeTPPのピーク強度比Rは、1.6であり、CNT/FeTPP焼成のピーク強度比Rは、1.5であり、CNTのピーク強度比Rは、1.5であった。
図7に示すように、実施例2のメタノール分散液のスペクトルにおいて、カーボンナノチューブに特徴的なピークが観測された。これにより、実施例2のメタノール分散液において、MWCNTの化学構造が維持されていることが確認できた。
図8に示す実施例2のメタノール分散液の焼成物のスペクトルの結果から、焼成による酸化に起因して、実施例2の触媒におけるFeTPPの化学構造が影響を受けている可能性が推測された。
図6~8中「実施例2」で示す線は、実施例2のメタノール分散液のスペクトルを示す。
図6~8中「実施例2の焼成物」で示す線は、実施例2のメタノール分散液の焼成物をDMSOに溶解した溶液のスペクトルを示す。
図6~8中「カルボキシル基を有するMWCNT」で示す線は、MWCNTをDMSOに溶解した溶液のスペクトルを示す。
図6~8に基づき、式(8)を用いてピーク強度比Rを算出した。CNT/FeTPPのピーク強度比Rは、1.6であり、CNT/FeTPP焼成のピーク強度比Rは、1.5であり、CNTのピーク強度比Rは、1.5であった。
図7に示すように、実施例2のメタノール分散液のスペクトルにおいて、カーボンナノチューブに特徴的なピークが観測された。これにより、実施例2のメタノール分散液において、MWCNTの化学構造が維持されていることが確認できた。
図8に示す実施例2のメタノール分散液の焼成物のスペクトルの結果から、焼成による酸化に起因して、実施例2の触媒におけるFeTPPの化学構造が影響を受けている可能性が推測された。
図9は、実施例2のメタノール分散液のTEMによる観察像である。図10は、図9の拡大図である。
図11は、MWCNTのTEMによる観察像である。図11は図9の比較対象である。図12は、図11の拡大図である。
図13は、実施例2のメタノール分散液の焼成物のTEMによる観察像である。図14は、図13の拡大図である。
図9において、メタノール分散液中の実施例2の触媒の直径を算出したところ、直径は、14.3±1.8nmであった。これに対し、図11において、MWCNTの直径を測定したところ、直径は、8.7±1.1nmであった。この結果から、FeTPPとMWCNTとを含む触媒が得られたことを確認できた。また、図10に示すように、実施例2の触媒において、FeTPPを含む層(FeTPP層)がMWCNTの表面に設けられていることが示唆された。FeTPP層の厚さは約2.8nmであると推測できた。
また、図13,14に示す結果から、実施例2の触媒におけるFeTPPの化学構造が焼成による影響を受けたことが確認できた。
図11は、MWCNTのTEMによる観察像である。図11は図9の比較対象である。図12は、図11の拡大図である。
図13は、実施例2のメタノール分散液の焼成物のTEMによる観察像である。図14は、図13の拡大図である。
図9において、メタノール分散液中の実施例2の触媒の直径を算出したところ、直径は、14.3±1.8nmであった。これに対し、図11において、MWCNTの直径を測定したところ、直径は、8.7±1.1nmであった。この結果から、FeTPPとMWCNTとを含む触媒が得られたことを確認できた。また、図10に示すように、実施例2の触媒において、FeTPPを含む層(FeTPP層)がMWCNTの表面に設けられていることが示唆された。FeTPP層の厚さは約2.8nmであると推測できた。
また、図13,14に示す結果から、実施例2の触媒におけるFeTPPの化学構造が焼成による影響を受けたことが確認できた。
図15は実施例2のメタノール分散液のTEMによる観察像である。図16はMWCNTのTEMによる観察像である。図15と図16との比較により、実施例2の触媒において、MWCNTの表面にFeTPP層が設けられていることが示唆された。
これに対し、図17は実施例2のメタノール分散液のSTEMによる観察像である。図18はMWCNTのSTEMによる観察像である。図17と図18の比較では、実施例2の触媒において、FeTPP層を観察できなかった。
これに対し、図17は実施例2のメタノール分散液のSTEMによる観察像である。図18はMWCNTのSTEMによる観察像である。図17と図18の比較では、実施例2の触媒において、FeTPP層を観察できなかった。
図19は実施例3のメタノール分散液のTEMによる観察像である。図20は図19の拡大図である。
図21はCBのTEMによる観察像である。図22は図21の拡大図である。
図23は実施例3のメタノール分散液の焼成物のTEMによる観察像である。図24は図23の拡大図である。
図19(図20)と図21(図22)との比較により、実施例3の触媒において、CBの表面にFeTPP層が設けられていることが示唆された。
また、図23、24に示す結果から、焼成により実施例3の触媒におけるFeTPPの化学構造が影響を受けたことが確認できた。
図21はCBのTEMによる観察像である。図22は図21の拡大図である。
図23は実施例3のメタノール分散液の焼成物のTEMによる観察像である。図24は図23の拡大図である。
図19(図20)と図21(図22)との比較により、実施例3の触媒において、CBの表面にFeTPP層が設けられていることが示唆された。
また、図23、24に示す結果から、焼成により実施例3の触媒におけるFeTPPの化学構造が影響を受けたことが確認できた。
図25は実施例4のメタノール分散液のTEMによる観察像である。図26は図25の拡大図である。
図27はGOのTEMによる観察像である。図28は図27の拡大図である。
図29は実施例4のメタノール分散液の焼成物のTEMによる観察像である。図30は図29の拡大図である。
図25(図26)と図27(図28)との比較により、実施例4の触媒において、GOの表面にFeTPP層が設けられていることが示唆された。
また、図29,30に示す結果から、焼成により実施例4の触媒におけるFeTPPの化学構造が影響を受けたことが確認できた。
図27はGOのTEMによる観察像である。図28は図27の拡大図である。
図29は実施例4のメタノール分散液の焼成物のTEMによる観察像である。図30は図29の拡大図である。
図25(図26)と図27(図28)との比較により、実施例4の触媒において、GOの表面にFeTPP層が設けられていることが示唆された。
また、図29,30に示す結果から、焼成により実施例4の触媒におけるFeTPPの化学構造が影響を受けたことが確認できた。
図31は実施例2の触媒におけるEDXスペクトル分析の測定結果を示すスペクトル図である。図32は、図31に示す測定結果に基づく元素マッピング像である。
図33はMWCNTに対するEDXスペクトル分析の測定結果を示すスペクトル図である。図34は図33に示す測定結果に基づく元素マッピング像である。
図31中「FeKa」で示すように、鉄原子由来のピークが観測された。これに対し、図33に示すようにMWCNTにおいては、鉄原子由来のピークは観測されなかった。
図32と図34との比較により、図32において、MWCNTの表面にFeTPPを含む被覆層の形成が確認された。なお、図32中「002」、「003」、「004」の各数字は、スペクトル測定を行った領域を示す。図34中、「002」、「003」で示す各数字も同様である。
図33はMWCNTに対するEDXスペクトル分析の測定結果を示すスペクトル図である。図34は図33に示す測定結果に基づく元素マッピング像である。
図31中「FeKa」で示すように、鉄原子由来のピークが観測された。これに対し、図33に示すようにMWCNTにおいては、鉄原子由来のピークは観測されなかった。
図32と図34との比較により、図32において、MWCNTの表面にFeTPPを含む被覆層の形成が確認された。なお、図32中「002」、「003」、「004」の各数字は、スペクトル測定を行った領域を示す。図34中、「002」、「003」で示す各数字も同様である。
図35は、TG-DTAの測定結果を示すグラフである。図35では、質量の減少量が縦軸にプロットされている。図36は図35の拡大図である。
図37は、TG-DTAの測定結果を示すグラフである。図37では、質量減少量の温度微分が縦軸にプロットされている。図38は図37の拡大図である。
図35~38中、「実施例1」で示す線は、実施例1のFeTPPにおけるTG-DTAの測定結果を示す。
図35~38中、「実施例2」で示す線は、実施例2のメタノール分散液におけるTG-DTAの測定結果を示す。
図35~38中、「MWCNT」で示す線は、MWCNTにおけるTG-DTAの測定結果を示す。
図35~38に示す結果から、実施例2のメタノール分散液にはFeTPPが5質量%程度含まれ、DMSOが3質量%程度残留していることが判った。
図37は、TG-DTAの測定結果を示すグラフである。図37では、質量減少量の温度微分が縦軸にプロットされている。図38は図37の拡大図である。
図35~38中、「実施例1」で示す線は、実施例1のFeTPPにおけるTG-DTAの測定結果を示す。
図35~38中、「実施例2」で示す線は、実施例2のメタノール分散液におけるTG-DTAの測定結果を示す。
図35~38中、「MWCNT」で示す線は、MWCNTにおけるTG-DTAの測定結果を示す。
図35~38に示す結果から、実施例2のメタノール分散液にはFeTPPが5質量%程度含まれ、DMSOが3質量%程度残留していることが判った。
(電極の作製)
実施例2の触媒の2mgと、Milli―Q水の1mgを超音波撹拌機で混練し、グラッシーカーボン電極に塗布し、さらに0.5質量%のNafion水溶液の5μLをグラッシーカーボン電極に塗布し、実施例2の電極を得た。
実施例2の触媒の代わりに、実施例3の触媒を使用した以外は、実施例2の電極と同様にして、実施例3の電極を得た。
実施例2の触媒の代わりに、実施例5の触媒を使用した以外は、実施例2の電極と同様にして、実施例5の電極を得た。
実施例2の触媒の代わりに、実施例2の触媒の焼成物の2mgを使用した以外は、実施例2の電極と同様にして、比較例1の電極を得た。
実施例2の触媒の代わりに、Pt/Cを使用した以外は、実施例2の電極と同様にして、Pt/C電極を得た。
実施例2の触媒の代わりに、MWCNTを使用した以外は、実施例2の電極と同様にして、CNT電極を得た。
実施例2の触媒の2mgと、Milli―Q水の1mgを超音波撹拌機で混練し、グラッシーカーボン電極に塗布し、さらに0.5質量%のNafion水溶液の5μLをグラッシーカーボン電極に塗布し、実施例2の電極を得た。
実施例2の触媒の代わりに、実施例3の触媒を使用した以外は、実施例2の電極と同様にして、実施例3の電極を得た。
実施例2の触媒の代わりに、実施例5の触媒を使用した以外は、実施例2の電極と同様にして、実施例5の電極を得た。
実施例2の触媒の代わりに、実施例2の触媒の焼成物の2mgを使用した以外は、実施例2の電極と同様にして、比較例1の電極を得た。
実施例2の触媒の代わりに、Pt/Cを使用した以外は、実施例2の電極と同様にして、Pt/C電極を得た。
実施例2の触媒の代わりに、MWCNTを使用した以外は、実施例2の電極と同様にして、CNT電極を得た。
図39は実施例2の電極、比較例1の電極、Pt/C電極、CNT電極のそれぞれを作用極として取得したLSV曲線を比較して示す図である。図39に示すように、実施例2の電極は、Pt/C電極と同等の飽和電流値を示すことが判った。
図40は、図39の拡大図である。図40に示すように、実施例2の電極では、酸素の還元反応が開始する電位がPt/C電極より高かった。平均反応電子数は、実施例2の電極では3.4電子であり、比較例1の電極では3.0電子であり、Pt/C電極では3.7電子であり、CNT電極では3.2電子であった。これらの結果から、Pt/C電極を超える酸素還元触媒能を実施例2の電極が具備することが判った。また、比較例1では、実施例2の触媒の焼成物は、実施例2の触媒が本来有していたFeTPPの化学構造が焼成による影響を受けて失われたことが考えられる。そのため、比較例1の電極では、Pt/C電極を超える酸素還元触媒能が発現しなかったと考えられる。
図40は、図39の拡大図である。図40に示すように、実施例2の電極では、酸素の還元反応が開始する電位がPt/C電極より高かった。平均反応電子数は、実施例2の電極では3.4電子であり、比較例1の電極では3.0電子であり、Pt/C電極では3.7電子であり、CNT電極では3.2電子であった。これらの結果から、Pt/C電極を超える酸素還元触媒能を実施例2の電極が具備することが判った。また、比較例1では、実施例2の触媒の焼成物は、実施例2の触媒が本来有していたFeTPPの化学構造が焼成による影響を受けて失われたことが考えられる。そのため、比較例1の電極では、Pt/C電極を超える酸素還元触媒能が発現しなかったと考えられる。
図41は実施例2の電極について、K-Lプロットに基づいて反応電子数を算出した結果を示すグラフである。図42は実施例2の電極について、RRDEに基づいて反応電子数を算出した結果を示すグラフである。
これに対し、図43はCNT電極におけるK-Lプロットに基づいて反応電子数を算出した結果を示すグラフである。図44はCNT電極におけるRRDEに基づいて反応電子数を算出した結果を示すグラフである。
図41~44に示すように、いずれの方法で反応電子数を計算しても、実施例2の電極では、反応電子数が増加することが確認できた。
これに対し、図43はCNT電極におけるK-Lプロットに基づいて反応電子数を算出した結果を示すグラフである。図44はCNT電極におけるRRDEに基づいて反応電子数を算出した結果を示すグラフである。
図41~44に示すように、いずれの方法で反応電子数を計算しても、実施例2の電極では、反応電子数が増加することが確認できた。
図45はK-Lプロットに基づいて反応電子数を算出した結果を、実施例2の電極とCNT電極とで比較して示すグラフである。図46はRRDEに基づいて反応電子数を算出した結果を、実施例2の電極とCNT電極とで比較して示すグラフである。
図45、46の結果からも、いずれの方法で反応電子数を計算しても、実施例2の電極では、反応電子数が増加することが確認できた。
図45、46の結果からも、いずれの方法で反応電子数を計算しても、実施例2の電極では、反応電子数が増加することが確認できた。
(メタノールクロスオーバー)
3.0Mのメタノールを0.1MのKOH電解質に加えて、回転速度を2400rpmとして、メタノールクロスオーバーを評価した。
図47は実施例2の電極についてメタノールクロスオーバーを評価した結果を示すグラフである。図47中「実施例2の電極メタノール処理無」で示す曲線は、メタノールを電解液に加えずに測定したLSV曲線を示し、「実施例2の電極メタノール処理有」で示す曲線は、3.0Mのメタノールを電解液に加えて測定したLSV曲線を示す。
図48はCNT電極についてメタノールクロスオーバーを評価した結果を示すグラフである。図48中「CNT電極メタノール処理無」で示す曲線は、メタノールを電解液に加えずに測定したLSV曲線を示し、「CNT電極メタノール処理有」で示す曲線は、3.0Mのメタノールを電解液に加えて測定したLSV曲線を示す。
3.0Mのメタノールを0.1MのKOH電解質に加えて、回転速度を2400rpmとして、メタノールクロスオーバーを評価した。
図47は実施例2の電極についてメタノールクロスオーバーを評価した結果を示すグラフである。図47中「実施例2の電極メタノール処理無」で示す曲線は、メタノールを電解液に加えずに測定したLSV曲線を示し、「実施例2の電極メタノール処理有」で示す曲線は、3.0Mのメタノールを電解液に加えて測定したLSV曲線を示す。
図48はCNT電極についてメタノールクロスオーバーを評価した結果を示すグラフである。図48中「CNT電極メタノール処理無」で示す曲線は、メタノールを電解液に加えずに測定したLSV曲線を示し、「CNT電極メタノール処理有」で示す曲線は、3.0Mのメタノールを電解液に加えて測定したLSV曲線を示す。
図47、48に示すように、実施例2の電極及びCNT電極のいずれにおいても、電解液にメタノールを添加すると、電流密度が減少することが観測された。しかし、図47と図48とを比較すると、実施例2の電極ではCNT電極よりも電流密度の減少量が少なく、実施例2の電極は、メタノールクロスオーバーの評価において、CNT電極より良好な結果であった。
一般にPt/C電極は、電極の表面でメタノールの酸化が起こりやすく、メタノールクロスオーバーの評価に劣る傾向にあることが知られている。これに対し実施例2の電極では、メタノールクロスオーバーによる電位低下がPt/C電極及びCNT電極より起きにくいことが判った。
一般にPt/C電極は、電極の表面でメタノールの酸化が起こりやすく、メタノールクロスオーバーの評価に劣る傾向にあることが知られている。これに対し実施例2の電極では、メタノールクロスオーバーによる電位低下がPt/C電極及びCNT電極より起きにくいことが判った。
(耐久性)
コンパクトスタット(Ivium社製、MH―COMPACT)を用いて、電解液として1.0MのKOH電解質を、対極としてPtを、参照極としてAg/AgClを使用し、実施例2の電極に0.7V印加して7000秒間通電し、電流値の経時変化を測定した。通電開始直後の電流値を100%として、relative current(%)を縦軸にプロットした。
図49は、実施例2の電極について耐久性を評価した結果を示すグラフである。
図49に示すように、実施例2の電極は、通電開始から7000秒経過後もrelative currentが100%程度であり、耐久性に優れることが示唆された。
ACS Catalyst, 2013, 3,1263に記載の白金担持炭素材料を含む電極では、通電開始から7000秒経過後もrelative currentが73%まで低下し、g-FePCを含む電極では86%まで低下することが記載されている。このことからも、実施例2の電極は、白金担持炭素材料を含む電極等の従来品より優れた耐久性を具備することが示唆された。
コンパクトスタット(Ivium社製、MH―COMPACT)を用いて、電解液として1.0MのKOH電解質を、対極としてPtを、参照極としてAg/AgClを使用し、実施例2の電極に0.7V印加して7000秒間通電し、電流値の経時変化を測定した。通電開始直後の電流値を100%として、relative current(%)を縦軸にプロットした。
図49は、実施例2の電極について耐久性を評価した結果を示すグラフである。
図49に示すように、実施例2の電極は、通電開始から7000秒経過後もrelative currentが100%程度であり、耐久性に優れることが示唆された。
ACS Catalyst, 2013, 3,1263に記載の白金担持炭素材料を含む電極では、通電開始から7000秒経過後もrelative currentが73%まで低下し、g-FePCを含む電極では86%まで低下することが記載されている。このことからも、実施例2の電極は、白金担持炭素材料を含む電極等の従来品より優れた耐久性を具備することが示唆された。
図50は実施例3の電極、Pt/C電極のそれぞれを作用極として取得したLSV曲線を比較して示す図である。実施例3の触媒においては炭素材料がCBである。この場合でも、図50に示すように、実施例3の電極は、Pt/C電極よりも高い飽和電流値を示すことが判った。また、酸素の還元反応が開始する電位がPt/C電極より高かった。これらより、実施例3の電極は、Pt/C電極を超える酸素還元触媒能を具備することが判った。
図51は実施例5の電極、Pt/C電極のそれぞれを作用極として取得したLSV曲線を比較して示す図である。実施例5の触媒においては、金属錯体の構造が上式(9)で示すものである。この場合、図51に示すように、実施例5の電極は、Pt/C電極と同等の飽和電流値を示すことが判った。また、酸素の還元反応が開始する電位がPt/C電極より高かった。以上より、実施例5の電極は、Pt/C電極を超える酸素還元触媒能を具備することが判った。
図50と図51とを比較すると、実施例3の電極は、実施例5の電極より飽和電流値が高いことが判る。また、実施例3の電極は、酸素の還元反応が開始する電位が実施例5の電極より高かった。以上より、実施例3の電極は、実施例5の電極より燃料電池又は空気電池の電極として高性能であると考えられる。
図50と図51とを比較すると、実施例3の電極は、実施例5の電極より飽和電流値が高いことが判る。また、実施例3の電極は、酸素の還元反応が開始する電位が実施例5の電極より高かった。以上より、実施例3の電極は、実施例5の電極より燃料電池又は空気電池の電極として高性能であると考えられる。
以上説明した実施例の結果から、白金担持炭素材料を超える酸素還元触媒能を具備する触媒が得られたことが確認できた。
Claims (9)
- 前記金属錯体の割合が、前記金属錯体と前記炭素材料との合計100質量%に対して、75質量%以下である、請求項1に記載の触媒。
- 前記炭素材料がカルボキシル基を含有し、前記カルボキシル基の含有量が、前記炭素材料100質量%に対して、20質量%以下である、請求項1又は2に記載の触媒。
- 請求項1~4のいずれか一項に記載の触媒と液状媒体とを含む、液状組成物。
- 請求項1~4のいずれか一項に記載の触媒を含む、電極。
- 請求項1~4のいずれか一項に記載の触媒を含む、電気化学反応用触媒電極。
- 請求項6に記載の電極を有する、燃料電池。
- 請求項6に記載の電極を有する、空気電池。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247001260A KR20240011249A (ko) | 2018-03-02 | 2018-12-26 | 촉매, 액상조성물, 전극, 전기화학반응용 촉매전극, 연료전지 및 공기전지 |
JP2020502828A JP7460152B2 (ja) | 2018-03-02 | 2018-12-26 | 触媒、液状組成物、電極、電気化学反応用触媒電極、燃料電池及び空気電池 |
US16/976,283 US11772084B2 (en) | 2018-03-02 | 2018-12-26 | Catalyst, liquid composition, electrode, catalyst electrode for electrochemical reaction, fuel cell, and air battery |
EP18908102.9A EP3760310A4 (en) | 2018-03-02 | 2018-12-26 | CATALYST, LIQUID COMPOSITION, ELECTRODE, CATALYST ELECTRODE FOR ELECTROCHEMICAL REACTION, FUEL CELL AND AIR BATTERY |
CN201880091934.7A CN112041061A (zh) | 2018-03-02 | 2018-12-26 | 催化剂、液状组合物、电极、电化学反应用催化剂电极、燃料电池以及空气电池 |
KR1020207028212A KR20200138250A (ko) | 2018-03-02 | 2018-12-26 | 촉매, 액상조성물, 전극, 전기화학반응용 촉매전극, 연료전지 및 공기전지 |
JP2023027571A JP7572074B2 (ja) | 2018-03-02 | 2023-02-24 | 触媒、液状組成物、電極、電気化学反応用触媒電極、燃料電池及び空気電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018037521 | 2018-03-02 | ||
JP2018-037521 | 2018-03-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019167407A1 true WO2019167407A1 (ja) | 2019-09-06 |
Family
ID=67804931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/047829 WO2019167407A1 (ja) | 2018-03-02 | 2018-12-26 | 触媒、液状組成物、電極、電気化学反応用触媒電極、燃料電池及び空気電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11772084B2 (ja) |
EP (1) | EP3760310A4 (ja) |
JP (1) | JP7460152B2 (ja) |
KR (2) | KR20200138250A (ja) |
CN (1) | CN112041061A (ja) |
WO (1) | WO2019167407A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019179697A (ja) * | 2018-03-30 | 2019-10-17 | 学校法人関西学院 | 燃料電池の空気側電極用触媒 |
WO2021045121A1 (ja) * | 2019-09-05 | 2021-03-11 | AZUL Energy株式会社 | 触媒の製造方法、触媒、組成物の製造方法、組成物、電極、電極の製造方法、燃料電池、金属空気電池 |
JP2021141041A (ja) * | 2020-03-05 | 2021-09-16 | 大日精化工業株式会社 | 酸化物系電極触媒及び固体高分子形燃料電池 |
WO2022138636A1 (ja) * | 2020-12-24 | 2022-06-30 | AZUL Energy株式会社 | 金属錯体又はその付加体、金属錯体又はその付加体を含む触媒及びその製造方法、触媒を含む液状組成物又は電極、電極を備える空気電池又は燃料電池 |
WO2022138644A1 (ja) * | 2020-12-24 | 2022-06-30 | AZUL Energy株式会社 | 酸素還元用触媒及びその選定方法、酸素還元用触媒を含む液状組成物又は電極、電極を備える空気電池又は燃料電池 |
WO2022224990A1 (ja) * | 2021-04-21 | 2022-10-27 | AZUL Energy株式会社 | キャパシタ、キャパシタ用コンポジット材料及びその製造方法 |
WO2023120657A1 (ja) * | 2021-12-22 | 2023-06-29 | AZUL Energy株式会社 | 電気自動車又はドローン装置の給電システム |
WO2023127196A1 (ja) * | 2021-12-28 | 2023-07-06 | AZUL Energy株式会社 | 触媒及びその製造方法、触媒を含む金属空気二次電池用の電極又は水電解システム用の電極、並びに電極を含む金属空気二次電池又は水電解システム |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58186169A (ja) * | 1982-04-22 | 1983-10-31 | Pentel Kk | 空気極 |
WO2007023964A1 (ja) | 2005-08-25 | 2007-03-01 | Matsushita Electric Industrial Co., Ltd. | 酸素還元用電極 |
JP2008311048A (ja) | 2007-06-14 | 2008-12-25 | Toyobo Co Ltd | 電極触媒 |
JP2014091061A (ja) | 2012-10-31 | 2014-05-19 | Kumamoto Univ | 鉄フタロシアニン/グラフェンナノ複合体、鉄フタロシアニン/グラフェンナノ複合体担持電極及びこれらの製造方法 |
JP2016085925A (ja) | 2014-10-28 | 2016-05-19 | 株式会社日本触媒 | 空気極用触媒 |
JP2018037521A (ja) | 2016-08-31 | 2018-03-08 | 富士通株式会社 | 半導体装置及びその製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9109751D0 (en) | 1991-05-04 | 1991-06-26 | Johnson Matthey Plc | Improved catalyst material |
EP2129154B1 (en) | 2007-03-23 | 2014-02-26 | Panasonic Corporation | Radio communication base station device and control channel arrangement method |
CN101417242B (zh) | 2008-11-27 | 2010-08-11 | 上海交通大学 | 一种复合型的非贵金属氧还原催化剂 |
WO2011031539A2 (en) | 2009-08-27 | 2011-03-17 | Swift Enterprises, Ltd. | Electrocatalyst composition and fuel cell containing same |
JP5212533B2 (ja) | 2011-11-15 | 2013-06-19 | 新日鐵住金株式会社 | 継目無オーステナイト系耐熱合金管 |
US10199657B2 (en) | 2012-04-11 | 2019-02-05 | Ionic Materials, Inc. | Alkaline metal-air battery cathode |
US10868298B2 (en) * | 2014-03-21 | 2020-12-15 | Suzhou Institute Of Nano-Tech And Nano-Bionics (Sinano), Chinese Academy Of Sciences | Porous carbon nanotube microsphere and preparation method and use thereof, lithium metal-skeleton carbon composite and preparation method thereof, negative electrode, and battery |
-
2018
- 2018-12-26 CN CN201880091934.7A patent/CN112041061A/zh active Pending
- 2018-12-26 KR KR1020207028212A patent/KR20200138250A/ko not_active IP Right Cessation
- 2018-12-26 WO PCT/JP2018/047829 patent/WO2019167407A1/ja unknown
- 2018-12-26 KR KR1020247001260A patent/KR20240011249A/ko not_active Application Discontinuation
- 2018-12-26 JP JP2020502828A patent/JP7460152B2/ja active Active
- 2018-12-26 US US16/976,283 patent/US11772084B2/en active Active
- 2018-12-26 EP EP18908102.9A patent/EP3760310A4/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58186169A (ja) * | 1982-04-22 | 1983-10-31 | Pentel Kk | 空気極 |
WO2007023964A1 (ja) | 2005-08-25 | 2007-03-01 | Matsushita Electric Industrial Co., Ltd. | 酸素還元用電極 |
JP2008311048A (ja) | 2007-06-14 | 2008-12-25 | Toyobo Co Ltd | 電極触媒 |
JP2014091061A (ja) | 2012-10-31 | 2014-05-19 | Kumamoto Univ | 鉄フタロシアニン/グラフェンナノ複合体、鉄フタロシアニン/グラフェンナノ複合体担持電極及びこれらの製造方法 |
JP2016085925A (ja) | 2014-10-28 | 2016-05-19 | 株式会社日本触媒 | 空気極用触媒 |
JP2018037521A (ja) | 2016-08-31 | 2018-03-08 | 富士通株式会社 | 半導体装置及びその製造方法 |
Non-Patent Citations (2)
Title |
---|
TANAKA, A. A. ET AL.: "Oxygen reduction on adsorbed iron tetrapyridinoporphyrazine", MATERIALS CHEMISTRY AND PHYSICS, vol. 22, 1989, pages 431 - 456, XP026026217, ISSN: 0254-0584, doi:10.1016/0254-0584(89)90009-6 * |
XU,ZHANWEI ET AL.: "Electrochemical performance of carbon nanotube-supported cobalt phthalocyanine and its nitrogen-rich derivatives for oxygen reduction", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 335, 2011, pages 89 - 96, XP055634060, ISSN: 1381-1169 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019179697A (ja) * | 2018-03-30 | 2019-10-17 | 学校法人関西学院 | 燃料電池の空気側電極用触媒 |
JP7082342B2 (ja) | 2018-03-30 | 2022-06-08 | 学校法人関西学院 | 燃料電池の空気側電極用触媒 |
WO2021045121A1 (ja) * | 2019-09-05 | 2021-03-11 | AZUL Energy株式会社 | 触媒の製造方法、触媒、組成物の製造方法、組成物、電極、電極の製造方法、燃料電池、金属空気電池 |
JP2021141041A (ja) * | 2020-03-05 | 2021-09-16 | 大日精化工業株式会社 | 酸化物系電極触媒及び固体高分子形燃料電池 |
JP7418753B2 (ja) | 2020-03-05 | 2024-01-22 | 大日精化工業株式会社 | 酸化物系電極触媒及び固体高分子形燃料電池 |
WO2022138636A1 (ja) * | 2020-12-24 | 2022-06-30 | AZUL Energy株式会社 | 金属錯体又はその付加体、金属錯体又はその付加体を含む触媒及びその製造方法、触媒を含む液状組成物又は電極、電極を備える空気電池又は燃料電池 |
WO2022138644A1 (ja) * | 2020-12-24 | 2022-06-30 | AZUL Energy株式会社 | 酸素還元用触媒及びその選定方法、酸素還元用触媒を含む液状組成物又は電極、電極を備える空気電池又は燃料電池 |
WO2022224990A1 (ja) * | 2021-04-21 | 2022-10-27 | AZUL Energy株式会社 | キャパシタ、キャパシタ用コンポジット材料及びその製造方法 |
JP7444516B2 (ja) | 2021-04-21 | 2024-03-06 | AZUL Energy株式会社 | キャパシタ、キャパシタ用コンポジット材料及びその製造方法 |
WO2023120657A1 (ja) * | 2021-12-22 | 2023-06-29 | AZUL Energy株式会社 | 電気自動車又はドローン装置の給電システム |
WO2023127196A1 (ja) * | 2021-12-28 | 2023-07-06 | AZUL Energy株式会社 | 触媒及びその製造方法、触媒を含む金属空気二次電池用の電極又は水電解システム用の電極、並びに電極を含む金属空気二次電池又は水電解システム |
Also Published As
Publication number | Publication date |
---|---|
CN112041061A (zh) | 2020-12-04 |
JP7460152B2 (ja) | 2024-04-02 |
EP3760310A4 (en) | 2021-12-01 |
EP3760310A1 (en) | 2021-01-06 |
JP2023071802A (ja) | 2023-05-23 |
JPWO2019167407A1 (ja) | 2021-03-11 |
KR20200138250A (ko) | 2020-12-09 |
US11772084B2 (en) | 2023-10-03 |
KR20240011249A (ko) | 2024-01-25 |
US20210308659A1 (en) | 2021-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019167407A1 (ja) | 触媒、液状組成物、電極、電気化学反応用触媒電極、燃料電池及び空気電池 | |
JP5322110B2 (ja) | 燃料電池用カソード電極材料の製造方法及び燃料電池用カソード電極材料並びに該カソード電極材料を用いた燃料電池 | |
Molina-García et al. | Effect of catalyst carbon supports on the oxygen reduction reaction in alkaline media: a comparative study | |
JP6598159B2 (ja) | 燃料電池用電極材料およびその製造方法、並びに燃料電池用電極、膜電極接合体及び固体高分子形燃料電池 | |
WO2018124193A1 (ja) | 酸素還元触媒、膜電極接合体及び燃料電池 | |
JP6455917B2 (ja) | 酸素の電気化学的還元用触媒 | |
US20090068546A1 (en) | Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same | |
JP7112739B2 (ja) | 電極材料及びその製造方法、並びに電極、膜電極接合体及び固体高分子形燃料電池 | |
Wang et al. | Carboxylated carbonized polyaniline nanofibers as Pt-catalyst conducting support for proton exchange membrane fuel cell | |
JP4789179B2 (ja) | 電極触媒、および、その製造方法 | |
WO2006090907A1 (ja) | 燃料電池用触媒、膜電極複合体、および固体高分子電解質型燃料電池 | |
JP7405452B2 (ja) | 触媒の製造方法、触媒、組成物の製造方法、組成物、電極、電極の製造方法、燃料電池、金属空気電池 | |
CN115715230B (zh) | 氧还原用催化剂及其选定方法、包含氧还原用催化剂的液态组合物或电极、具备电极的空气电池或燃料电池 | |
WO2018174143A1 (ja) | 酸素還元触媒、電極、膜電極接合体および燃料電池 | |
JP7572074B2 (ja) | 触媒、液状組成物、電極、電気化学反応用触媒電極、燃料電池及び空気電池 | |
WO2018174142A1 (ja) | 酸素還元触媒、電極、膜電極接合体および燃料電池 | |
WO2018116586A1 (ja) | 金属担持触媒 | |
JP5948452B2 (ja) | 燃料電池用担持触媒の製造方法 | |
JPWO2009051111A1 (ja) | 燃料電池用担持触媒及び燃料電池 | |
JP5759695B2 (ja) | 燃料電池用担持触媒の製造方法 | |
WO2021177431A1 (ja) | 新規触媒組成物並びに窒素含有基を有する炭素材料 | |
KR102720978B1 (ko) | 촉매의 제조 방법, 촉매, 조성물의 제조 방법, 조성물, 전극, 전극의 제조 방법, 연료 전지, 금속 공기 전지 | |
KR20120087402A (ko) | 탄소 나노 재료 및 이의 제조 방법 | |
WO2022158395A1 (ja) | 燃料電池電極触媒 | |
JP2010146828A (ja) | 固体高分子形燃料電池用触媒粉末およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18908102 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020502828 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018908102 Country of ref document: EP Effective date: 20201002 |