WO2022158395A1 - 燃料電池電極触媒 - Google Patents

燃料電池電極触媒 Download PDF

Info

Publication number
WO2022158395A1
WO2022158395A1 PCT/JP2022/001183 JP2022001183W WO2022158395A1 WO 2022158395 A1 WO2022158395 A1 WO 2022158395A1 JP 2022001183 W JP2022001183 W JP 2022001183W WO 2022158395 A1 WO2022158395 A1 WO 2022158395A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell electrode
catalyst
carbon support
less
Prior art date
Application number
PCT/JP2022/001183
Other languages
English (en)
French (fr)
Inventor
彰宏 堀
祐宏 松村
Original Assignee
株式会社キャタラー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャタラー filed Critical 株式会社キャタラー
Priority to KR1020237016857A priority Critical patent/KR20230091951A/ko
Priority to EP22742517.0A priority patent/EP4282528A1/en
Priority to CN202280010630.XA priority patent/CN116745942A/zh
Priority to US18/272,675 priority patent/US20240097146A1/en
Publication of WO2022158395A1 publication Critical patent/WO2022158395A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/392Metal surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell electrode catalyst.
  • Fuel cells are expected to be the next generation of batteries.
  • polymer electrolyte fuel cells have advantages such as a low operating temperature, a short start-up time, and a compact size.
  • a polymer electrolyte fuel cell has a structure in which a cathode (air electrode), a solid polymer electrolyte membrane, and an anode (fuel electrode) are stacked in this order.
  • a cathode air electrode
  • a solid polymer electrolyte membrane solid polymer electrolyte membrane
  • an anode fuel electrode
  • oxidation and reduction reactions occur at each electrode to generate electric power.
  • the electrode contains a fuel cell catalyst for promoting the above oxidation/reduction reaction.
  • fuel cell catalysts those having a structure in which catalyst particles are carried on a carbon powder carrier are widely used.
  • Pt particles and Pt alloy particles are known as catalyst particles for fuel cell catalysts.
  • Patent Document 1 describes a method for producing a Pt-supported catalyst in which a Pt precursor compound is reduced in the liquid phase in the presence of carrier particles.
  • Patent Document 2 describes the use of Pt alloy particles as catalyst particles in order to improve the activity of the cathode of a polymer electrolyte fuel cell.
  • Patent Document 3 describes that an anode catalyst in which Pt or a Pt alloy is supported on a carbon support and a water electrolysis catalyst such as IrO 2 are used together in the catalyst layer on the anode side of the fuel cell. ing.
  • JP-A-08-084930 Japanese Patent Application Laid-Open No. 2003-142112 JP 2009-152143 A
  • a fuel cell particularly a polymer electrolyte fuel cell, as described above
  • oxygen or air is supplied to the cathode
  • fuel such as hydrogen
  • oxidation/reduction reactions occur at both electrodes to generate electric power. do.
  • the fuel supplied to the anode may be depleted, for example, due to the effect of nitrogen permeating from the cathode or due to the effect of water condensate generated by the fuel cell reaction. can occur.
  • the power generation voltage of the fuel cell is maintained as long as protons are supplemented by the above reaction. Therefore, deterioration of the carbon support is difficult to detect in the initial stage. If the initial deterioration of the carbon support is overlooked and the deterioration of the carbon support progresses further, the catalyst metal particles will drop off from the carbon support, resulting in a rapid decrease in the activity of the fuel cell electrode catalyst.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fuel cell electrode catalyst that suppresses deterioration of the carbon support during fuel starvation and is excellent in maintaining ECSA (electrochemically active area). to provide.
  • ECSA electrochemically active area
  • the present invention is as follows.
  • the fuel cell electrode catalyst according to aspect 1 or 2 wherein the catalyst metal particles have an average particle size of 5.0 nm or less.
  • a fuel cell electrode catalyst that suppresses the deterioration of the carbon support during fuel starvation and is excellent in maintaining the ECSA (electrochemically active area).
  • FIG. 1 is a graph showing the relationship between the number of Pt particles per unit specific surface area of the carbon support (particles/100 nm 2 ) and the ECSA after the endurance test in the catalysts obtained in Examples.
  • FIG. 2 is a graph showing the relationship between the number of Pt particles per unit specific surface area of the carbon support (particles/100 nm 2 ) and the ECSA retention rate after the endurance test in the catalysts obtained in Examples.
  • the fuel cell electrode catalyst of the present invention is A fuel cell electrode catalyst in which catalyst metal particles made of Pt or a Pt alloy are supported on a carbon support, The number of catalyst metal particles per unit surface area of the carbon support is 4.3/100 nm2 or more and 16.0/100 nm2 or less. It is a fuel cell electrode catalyst.
  • the number of catalytic metal particles per unit surface area of the carbon support is limited within a predetermined range.
  • the catalyst metal particles when the catalyst metal particles are supported on the adsorption active sites of the carbon support, it is believed that they strongly adsorb to the carbon support and exhibit high catalytic activity.
  • the catalyst metal particles weakly adsorbed to the carbon support are increased without being held by the adsorption active sites of the carbon support, resulting in coarse catalyst metal particles. It is considered that the catalytic activity is lowered due to the quenching. As the mechanism of this coarsening, coarsening due to dissolution and reprecipitation of the catalytic metal particles, coarsening due to migration and agglomeration of the catalytic metal particles on the carrier, and the like are assumed.
  • the number of catalytic metal particles per unit surface area of the carbon support is limited to a predetermined range, thereby preventing deterioration of the carbon support during fuel starvation. is suppressed, and the maintenance of ECSA (electrochemically active area) is excellent.
  • the carbon support in the fuel cell electrode catalyst of the present invention may be, for example, carbon black, graphite, carbon fiber, activated carbon, amorphous carbon, nanocarbon material, or the like.
  • Nanocarbon materials include carbon nanotubes, graphene, fullerenes, and the like.
  • Graphite may be used as the carbon carrier in the present invention.
  • Graphite may be natural graphite or artificial graphite.
  • Natural graphite includes massive graphite, earthy graphite, flake graphite, and the like.
  • Artificial graphite includes graphitized carbon obtained by graphitizing any carbon material.
  • the carbon support in the present invention may be particles of graphitized carbon.
  • the carbon support in the present invention has a specific surface area measured by the BET method using nitrogen as an adsorbate of 10 m 2 /g or more, 20 m 2 /g or more, 30 m 2 /g or more, 40 m 2 /g or more, or 50 m 2 /g. 100 m 2 /g or less, 90 m 2 /g or less, 80 m 2 /g or less, 70 m 2 /g or less, or 60 m 2 /g or less.
  • the specific surface area of the carbon support may be, for example, 10 m 2 /g or more and 100 m 2 /g or less, or 20 m 2 /g or more and 70 m 2 /g or less.
  • the particle size of the carbon support may be 5 nm or more, 10 nm or more, 20 nm or more, 30 nm or more, or 50 nm or more, and may be 500 nm or less, 300 nm or less, or 200 nm or less as a number-average primary particle size measured by electron microscope observation. , or 100 nm or less.
  • the particle size of the carbon support can be calculated as the number average equivalent diameter based on the electron microscope image taken for the fuel cell electrode catalyst.
  • equivalent diameter refers to the diameter of a perfect circle having an outer circumference equal to the outer circumference of the figure to be measured.
  • the catalytic metal particles are made of Pt or a Pt alloy and supported on a carbon support.
  • the catalytic metal particles consist of a Pt alloy
  • the Pt alloy may typically be a Pt--Fe alloy, a Pt--Co alloy, or a Pt--Ni alloy.
  • the ratio of the Pt atoms in the Pt alloy is 50 mol% or more, 60 mol% or more, 70 mol% or more, 75 mol% or more, 80 mol% or more, or 85 mol% or more, and 99 mol% or less, 95 mol% or less, 90 mol% or less, 85 mol% or less, 80 mol% or less, or 75 mol% or less It's okay.
  • the average particle size of the catalyst metal particles may be 5.0 nm or less, 4.5 nm or less, 4.0 nm or less, 3.5 nm or less, 3.0 nm or less, or 2.5 nm or less, 1.0 nm or more, 1 0.5 nm or greater, 2.0 nm or greater, or 2.5 nm or greater.
  • Catalyst metal particles having an average particle size of 5.0 nm or less have the advantage of high ECSA.
  • Catalyst metal particles having an average particle size of 1.0 nm or more have the advantage of being excellent in maintaining ECSA when the fuel cell is operated for a long period of time.
  • the average particle diameter of the catalyst metal particles may be, for example, 2.0 nm or more and 3.5 nm or less.
  • the average particle size of the catalytic metal particles in the fuel cell electrode catalyst of the present invention can be calculated by the Scherrer formula from the line width of the diffraction peak in the powder XRD measurement of the fuel cell electrode catalyst.
  • the average particle size of the catalytic metal particles is calculated by the Scherrer formula from the line width of the diffraction peak of the (220) plane of Pt in the powder XRD measurement of the fuel cell electrode catalyst. good.
  • the average particle size of the catalytic metal particles may be calculated by small-angle X-ray scattering or transmission electron microscopy (TEM).
  • the number of catalytic metal particles per unit surface area of the carbon support is 4.3/100 nm 2 or more and 16.0/100 nm 2 or less. As described above, if there are too many catalyst metal particles per unit surface area of the carbon support, the catalyst metal particles are not retained by the adsorption active sites of the carbon support and are weakly adsorbed to the carbon support. It is considered that the catalyst activity is lowered due to the coarsening of the grains. On the other hand, if the amount of catalytic metal particles per unit surface area of the carbon support is too small, many adsorption active sites that are not protected by the catalytic metal particles remain on the carbon support, and the carbon support is likely to be decomposed. It is considered that the carbon support is likely to deteriorate when it is deficient.
  • the number of catalyst metal particles per unit surface area of the carbon support is 4.4/100 nm 2 or more, 4.5/100 nm 2 or more, 5.0/100 nm 2 or more, 6.0/ 100 nm 2 or more, 80.0/100 nm 2 or more, 10.0/100 nm 2 or more, or 12.0/100 nm 2 or more, 15.0/100 nm 2 or less, 13.0/ It may be 100 nm 2 or less, 11.0/100 nm 2 or less, 10.0/100 nm 2 or less, 8.0/100 nm 2 or less, or 6.0/100 nm 2 or less.
  • the number of catalytic metal particles per unit surface area of the carbon support may typically be 6.0/100 nm 2 or more and 10.0/100 nm 2 or less.
  • the number of catalytic metal particles per unit surface area of the carbon support may be a value calculated from the average particle diameter of the catalytic metal particles and the specific surface area of the carbon support.
  • the loading density of the catalytic metal particles that is, the loading amount (mass) of the catalytic metal particles per unit surface area of the carbon support is 6.0 mg/m 2 or more, 6.5 mg/m 2 or more, 7.0 mg/m 2 or more. , 8.0 mg/m 2 or more, 10 mg/m 2 or more, 12 mg/m 2 or more, or 15 mg/m 2 or more, 25 mg/m 2 or less, 22 mg/m 2 or less, 20 mg/m 2 or less, It may be 18 mg/m 2 or less, 15 mg/m 2 or less, 12 mg/m 2 or less, or 10 mg/m 2 or less.
  • the loading density of the catalyst metal particles may typically be 6.5 mg/m 2 or more and 25.0 mg/m 2 or less.
  • the loading ratio of the catalytic metal particles that is, the loading amount (mass) of the catalytic metal particles per unit mass of the catalytic metal particles is 3% by mass or more, 5% by mass or more, 10% by mass or more, 15% by mass or more, and 20% by mass. % or more, or 25 mass % or more, and may be 75 mass % or less, 60 mass % or less, 50 mass % or less, 40 mass % or less, or 35 mass % or less.
  • the fuel cell electrode catalyst of the present invention may contain optional components other than the carbon carrier and the catalytic metal particles.
  • the optional component that may be contained in the fuel cell electrode catalyst of the present invention is, for example, one or two selected from carbon materials other than carbon supports, Ir particles, Ir-Ru alloy particles, Ir oxides, etc.
  • the above ingredients may be used.
  • the carbon material other than the carbon support is a carbon material that does not support catalyst metal particles, and may be selected from, for example, graphite, carbon fiber, graphitized carbon black, carbon nanotubes, and the like.
  • the fuel cell electrode catalyst of the present invention can be prepared, for example, by contacting a carbon support and a catalyst metal precursor (precursor contacting step), and reducing the catalyst metal precursor to support catalyst metal particles on the carbon support. (supporting step).
  • a Pt precursor is used as the catalytic metal precursor, the carbon support and the Pt precursor are brought into contact with each other in an appropriate solvent, and then the Pt precursor is reduced to obtain carbon.
  • a fuel cell electrode catalyst can be obtained by supporting Pt particles on a carrier.
  • the carbon carrier to be used may be appropriately selected and used according to the carbon carrier in the desired fuel cell electrode catalyst.
  • the Pt precursor may be appropriately selected from solvent-soluble Pt compounds and used.
  • Pt precursor for example, PtCl 2 , PtCl 4 , PtBr 2 , PtS, Pt(CN) 2 , PtCl 2 (NH 3 ) 2 (dinitrodiammineplatinum) and the like may be appropriately selected and used.
  • the solvent may be selected from those capable of dissolving the Pt precursor used.
  • the Pt precursor is PtCl2
  • hydrochloric acid may be used
  • PtBr2 aqueous hydrobromic acid
  • PtCl2 (NH3)2 aqueous nitric acid may be used.
  • water may be used when PtCl 4 , PtS, or Pt(CN) 2 .
  • Reduction of the Pt precursor may be performed using a suitable reducing agent.
  • Reducing agents may be, for example, ethanol, acetic acid, acetaldehyde, sodium borohydride, hydrazine, and the like.
  • the reduction may be performed at a temperature of 10° C. or higher and 100° C. or lower for 0.5 hours or more and 8 hours or less.
  • the reduction temperature is preferably 10° C. or higher and 50° C. or lower when sodium borohydride is used as the reducing agent, and 60° C. or higher when ethanol, acetic acid, acetaldehyde, or hydrazine is used as the reducing agent.
  • the temperature is preferably 100° C. or lower.
  • the fuel cell electrode catalyst can be obtained, for example, by any of the following methods.
  • a method of sequentially reducing and supporting Pt and an alloy metal (Method 1): Contacting the carbon support and the Pt precursor in a suitable solvent, then reducing the Pt precursor, and supporting Pt particles on the carbon support to obtain Pt-supported carbon; After contacting the Pt-supported carbon and the alloy metal precursor in an appropriate solvent, the alloy metal precursor is reduced to obtain the Pt-alloy metal-supported carbon in which the alloy metal particles are supported on the Pt-supported carbon. and obtaining a fuel cell electrode catalyst in which Pt alloy particles are supported on a carbon support by heating the Pt-alloy metal-supporting carbon and alloying the Pt with the alloy metal.
  • Method 2 A method of simultaneously reducing and supporting Pt and an alloy metal (Method 2): After contacting the carbon support with the Pt precursor and the alloy metal precursor in a suitable solvent, the Pt precursor and the alloy metal precursor are reduced to form Pt particles and alloy metal particles supported on the carbon support. obtaining a Pt-alloy metal-supported carbon; Obtaining a fuel cell electrode catalyst in which Pt alloy particles are supported on a carbon support by heating the Pt-alloy metal-supporting carbon to alloy the Pt with the alloy metal.
  • alloy metal means a metal other than Pt in the Pt alloy that constitutes the catalyst metal particles.
  • Method 1 A method of sequentially supporting Pt and an alloy metal on a carbon support (Method 1) In Method 1, first, a carbon support and a Pt precursor are brought into contact with each other in an appropriate solvent, and then the Pt precursor is reduced to support Pt particles on the carbon support to obtain Pt-supported carbon. This step may be carried out similarly to the production of fuel cell electrocatalysts when the catalytic metal particles are Pt particles.
  • the alloy metal precursor is reduced to obtain a Pt-alloy in which the alloy metal particles are supported on the Pt-supported carbon.
  • a metal-supported carbon is obtained.
  • the alloy metal precursor may be appropriately selected and used according to the type of alloy metal in the desired fuel cell electrode catalyst.
  • the alloy metal precursor may be appropriately selected from solvent-soluble compounds containing the desired alloy metal and used. For example, they may be hydroxides, chlorides, sulfides, nitrates, sulfates, acetates, etc. of the desired alloy metals.
  • the solvent may be selected from those capable of dissolving the alloy metal precursor to be used.
  • the solvent can be, for example, water.
  • Reduction of the alloy metal precursor may be performed using a suitable reducing agent or neutralizing agent.
  • the reducing agent can be, for example, sodium borohydride, hydrazine, hydrogen gas, formic acid, and the like.
  • Neutralizing agents can be, for example, sodium metaborate, sodium hydroxide, sodium carbonate, ammonia, and the like.
  • the reduction using a reducing agent may be performed at a temperature of 10°C or higher and 100°C or lower for 0.5 hours or longer and 8 hours or shorter.
  • the reduction temperature is preferably 10° C. or higher and 50° C. or lower when sodium borohydride is used as the reducing agent, and 60° C. or higher when ethanol, acetic acid, acetaldehyde, or hydrazine is used as the reducing agent.
  • the temperature is preferably 100° C. or lower.
  • the alloy metal is once supported on the Pt-supporting carbon in a state of having a valence of 1 or higher, and then heated to reduce the alloy metal. It is considered that the alloy forms an alloy with Pt.
  • the reduction using the neutralizing agent may be performed at a temperature of 60° C. or higher and 100° C. or lower for 0.5 hour or longer and 8 hours or shorter.
  • the obtained Pt-alloy metal-supported carbon is heated to alloy the Pt with the alloy metal, thereby obtaining a fuel cell electrode catalyst in which the Pt alloy particles are supported on the carbon powder support.
  • the heating conditions for alloying Pt and the alloy metal the description of heating in method (1) may be applied as is.
  • the fuel cell electrode catalyst medium of the present invention may be produced, for example, by the above method or by a method obtained by appropriately modifying the above method by those skilled in the art.
  • a fuel cell anode having a catalyst layer comprising the fuel cell electrocatalyst of the invention.
  • the anode may have a suitable substrate layer and a catalyst layer on the substrate layer, the catalyst layer comprising the fuel cell electrode catalyst of the present invention.
  • the base material layer may be appropriately selected and used from fuel cell electrode catalysts and solvents, as well as those having chemical and mechanical stability that can withstand heat treatment, pressure treatment, etc. that are preferably performed during electrode formation. .
  • a sheet of polyimide, polyethylene, polypropylene, polysulfone, polytetrafluoroethylene, or the like may be used.
  • the catalyst layer contains the fuel cell electrode catalyst of the present invention, but in addition to this, it may contain an ionomer, and may further contain optional components such as a binder.
  • the ionomer may be, for example, Nafion (sulfonated tetrafluoroethylene-based (co)polymer).
  • a fuel cell electrode assembly may have a structure in which an anode, a solid polymer electrolyte membrane, and a cathode are laminated in this order, and the anode may be an electrode containing the fuel cell electrode catalyst of the present invention.
  • the solid polymer electrolyte membrane and the cathode in this fuel cell electrode assembly may be known solid polymer electrolyte membranes and cathodes, respectively.
  • the fuel cell electrode assembly of the present invention may be produced by a known method, except that an electrode containing the fuel cell electrode catalyst of the present invention is used as the anode.
  • Fuel cell Yet another aspect of the present invention provides a fuel cell including the fuel cell electrode assembly described above.
  • the fuel cell of the present invention may be a polymer electrolyte fuel cell.
  • the fuel cell of the present invention includes the fuel cell electrode assembly of the present invention.
  • the fuel cell of the present invention may be produced by a known method, except that an electrode containing the fuel cell electrode catalyst of the present invention is used as the anode.
  • reaction system was allowed to cool while stirring until the temperature of the reaction system reached 40°C or lower, and then the solid content was collected by filtration.
  • the collected solid content was repeatedly washed with 1 L of pure water at 60°C. Washing was repeated until the conductivity of the filtrate was 5 ⁇ S/cm or less.
  • the washed solid content was dried at 80°C for 15 hours and then pulverized to obtain a catalyst powder.
  • the average particle size of the Pt particles calculated by the Scherrer formula from the line width of the diffraction peak of the (220) plane of Pt was 2.3 nm. Also, the number of Pt particles per unit area of the support was calculated from this average particle size and the specific surface area of the carbon support.
  • a catalyst powder in which Pt is supported on Ketzen Black manufactured by Ketjen Black International Co., Ltd., product name "EC300" was used.
  • a cathode catalyst layer-forming coating liquid was prepared in the same manner as in the preparation, and a cathode catalyst layer was formed on a sheet using this.
  • the amount of Pt supported in the catalyst powder used for this cathode catalyst layer was 30 mass % based on the mass of the catalyst powder.
  • the Teflon sheets having the anode catalyst layer and the cathode catalyst layer obtained above are laminated with the catalyst layer forming surfaces facing each other, transferred by hot pressing, and then the Teflon sheets are peeled off. , an anode catalyst layer, a polymer electrolyte membrane, and a cathode catalyst layer were laminated in this order to obtain a laminate. Then, a single cell for high voltage endurance test was manufactured by placing a diffusion layer on the surface of each catalyst layer.
  • Examples 2 to 7, and Comparative Examples 1 to 4>> A catalyst powder was prepared and used in the same manner as in Example 1, except that the type of carbon support and the amount of dinitrodiammine platinum used (equivalent to metal Pt) were as shown in Table 1.
  • a single cell for high voltage endurance test was manufactured by the same method, and a high voltage endurance test was conducted.
  • the heat treatment conditions were 250° C. and 2 hours in Example 8, and 300° C. and 2 hours in Comparative Example 5.
  • FIG. 1 shows a graph showing the relationship between the number of Pt particles per unit specific surface area of the carbon support (particles/100 nm 2 ) and the ECSA after the endurance test for each catalyst.
  • FIG. 2 shows a graph showing the relationship between the number of Pt particles per unit specific surface area of the carbon support (particles/100 nm 2 ) and the ECSA retention rate after the endurance test for each catalyst.
  • the catalysts of Comparative Examples 1-4 with a Pt loading density of less than 6.0 mg/m 2 did not have ECSA after the high voltage endurance test.
  • the catalysts of Examples 1 to 8 having a Pt loading density of 6.0 mg/m 2 or more and 16.0 pieces/100 nm 2 or less exhibited significant ECSA even after the high voltage endurance test, and the ECSA retention rate was was verified to be high and exhibit excellent durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

カーボン担体に、Pt又はPt合金から成る触媒金属粒子が担持されている、燃料電池電極触媒であって、前記カーボン担体の単位表面積当たりの前記触媒金属粒子の個数が、4.3個/100nm2以上16.0個/100nm2以下である、燃料電池電極触媒。

Description

燃料電池電極触媒
 本発明は、燃料電池電極触媒に関する。
 燃料電池は、次世代の電池として期待されている。特に、固体高分子形燃料電池は、作動温度が低く、起動時間が短く、コンパクトである等の利点を有し、自動車の駆動用電源等の分野では、既に実用化が始まっている。
 固体高分子形燃料電池は、カソード(空気極)、固体高分子電解質膜、及びアノード(燃料極)がこの順に積層された構造を有する。このような固体高分子形燃料電池では、カソードには酸素又は空気が供給され、アノードには燃料、例えば水素が供給されると、各極で酸化・還元反応が起こり、電力が発生する。
 燃料電池では、電極中に、上記の酸化・還元反応を促進するための燃料電池用触媒を含む。この燃料電池用触媒としては、炭素粉末担体上に、触媒粒子を担持させた構造のものが、広く用いられている。燃料電池用触媒の触媒粒子としては、Pt粒子及びPt合金粒子が知られている。
 例えば、特許文献1には、担体粒子の存在下、液相にて、Pt前駆体化合物を還元する、Pt担持触媒の製造方法が記載されている。また、特許文献2には、固体高分子形燃料電池のカソードの活性を向上するために、触媒粒子として、Pt合金粒子を用いることが記載されている。
 また、特許文献3では、燃料電池のアノード側の触媒層に、カーボン担体上にPt又はPt合金を担持したアノード触媒と、IrO等の水電解触媒とを、共存させて用いることが記載されている。
特開平08-084930号公報 特開2003-142112号公報 特開2009-152143号公報
 燃料電池、特に固体高分子形燃料電池では、上述のとおり、カソードには酸素又は空気が供給され、アノードには燃料、例えば水素が供給され、これら両極で酸化・還元反応が起こり、電力が発生する。しかしながら、燃料電池の運転中には、例えば、カソードから浸透して来た窒素の影響により、或いは、燃料電池反応によって発生した水の凝集物の影響により、アノードへ供給される燃料が欠乏する事態が発生し得る。
 アノードにおいて燃料が欠乏した場合、不足のプロトン(H)を補うために、下記反応によって、プロトンを生成するとともに、カーボン担体が腐食して劣化する現象が起こる。
  C+2HO→CO+4H+4e
 更に、アノードにおいて燃料が欠乏しても、上記の反応によってプロトンが補われている限り、燃料電池の発電電圧は維持される。そのため、カーボン担体の劣化は、初期の段階では検知し難い。そして、カーボン担体の初期劣化を看過して、カーボン担体の劣化が更に進行すると、カーボン担体から触媒金属粒子が脱落するに至り、燃料電池電極触媒の活性は急激に低下することになる。
 本発明は、上記の事情に鑑みてなされたものであり、その目的は、燃料欠乏時のカーボン担体の劣化が抑制され、ECSA(電気化学活性面積)の維持性に優れる、燃料電池電極触媒を提供することである。
 本発明は、以下のとおりである。
 《態様1》
 カーボン担体に、Pt又はPt合金から成る触媒金属粒子が担持されている、燃料電池電極触媒であって、
 前記カーボン担体の単位表面積当たりの前記触媒金属粒子の個数が、4.3個/100nm以上16.0個/100nm以下である、燃料電池電極触媒。
 《態様2》
 前記カーボン担体の単位表面積当たりの前記触媒金属粒子の個数が、6.0個/100nm以上10.0個/100nm以下である、態様1に記載の燃料電池電極触媒。
 《態様3》
 前記触媒金属粒子の平均粒径が、5.0nm以下である、態様1又は2に記載の燃料電池電極触媒。
 《態様4》
 前記触媒金属粒子の平均粒径が、2.0nm以上3.5nm以下である、態様1~3のいずれか一項に記載の燃料電池電極触媒。
 《態様5》
 前記カーボン担体の単位表面積当たりの前記触媒金属粒子の担持量が、6.0mg/m以上である、態様1~4のいずれか一項に記載の燃料電池電極触媒。
 《態様6》
 前記カーボン担体の単位表面積当たりの前記触媒金属粒子の担持量が、6.5mg/m以上25.0mg/m以下である、態様5に記載の燃料電池電極触媒。
 《態様7》
 前記カーボン担体が、黒鉛化カーボンの粒子である、態様1~6のいずれか一項に記載の燃料電池電極触媒。
 《態様8》
 前記カーボン担体の比表面積が、10m/g以上100m/g以下である、態様1~7のいずれか一項に記載の燃料電池電極触媒。
 《態様9》
 前記カーボン担体の比表面積が、20m/g以上70m/g以下である、態様8に記載の燃料電池電極触媒。
 《態様10》
 態様1~9のいずれか一項に記載の燃料電池電極触媒を含む触媒層を有する、燃料電池のアノード。
 《態様11》
 態様10に記載のアノードを含む、燃料電池電極接合体。
 《態様12》
 態様11に記載の燃料電池電極接合体を含む、燃料電池。
 本発明によると、燃料欠乏時のカーボン担体の劣化が抑制され、ECSA(電気化学活性面積)の維持性に優れる、燃料電池電極触媒が提供される。
図1は、実施例で得られた触媒における、カーボン担体の単位比表面積当たりのPt粒子の個数(個/100nm)と、耐久試験後のECSAとの関係を示すグラフである。 図2は、実施例で得られた触媒における、カーボン担体の単位比表面積当たりのPt粒子の個数(個/100nm)と、耐久試験後のECSA維持率との関係を示すグラフである。
 《燃料電池電極触媒》
 本発明の燃料電池電極触媒は、
  カーボン担体に、Pt又はPt合金から成る触媒金属粒子が担持されている、燃料電池電極触媒であって、
  カーボン担体の単位表面積当たりの触媒金属粒子の個数が、4.3個/100nm以上16.0個/100nm以下である、
燃料電池電極触媒である。
 本発明の燃料電池電極触媒は、カーボン担体の単位表面積当たりの触媒金属粒子の個数が、所定の範囲に制限されている。
 燃料電池電極触媒において、触媒金属粒子は、カーボン担体の吸着活性点上に担持されたとき、カーボン担体に強く吸着して、高い触媒活性を発現すると考えられる。
 ここで、カーボン担体の単位表面積当たりの触媒金属粒子が多すぎると、カーボン担体の吸着活性点に保持されずに、カーボン担体への吸着が弱い触媒金属粒子が多くなって、触媒金属粒子の粗大化による触媒活性の低下が起こると考えられる。この粗大化のメカニズムとしては、触媒金属粒子の溶解・再析出による粗大化、触媒金属粒子が担体上で移動して凝集することによる粗大化等が想定されている。一方、カーボン担体の単位表面積当たりの触媒金属粒子が少なすぎると、カーボン担体上に、触媒金属粒子で保護されていない吸着活性点が多く残存して、カーボン担体が分解され易くなり、したがって、水素欠乏時にカーボン担体が劣化し易くなると考えられる。
 本発明の燃料電池電極触媒では、上記の考察に基づいて、カーボン担体の単位表面積当たりの触媒金属粒子の個数が所定の範囲に制限されており、このことによって、燃料欠乏時のカーボン担体の劣化が抑制され、ECSA(電気化学活性面積)の維持性に優れることになるのである。
 以下、本発明の燃料電池電極触媒の構成要件について、順に説明する。
 〈カーボン担体〉
 本発明の燃料電池電極触媒におけるカーボン担体は、例えば、カーボンブラック、黒鉛、炭素繊維、活性炭、アモルファス炭素、ナノカーボン材料等であってよい。ナノカーボン材料は、カーボンナノチューブ、グラフェン、フラーレン等を包含する。
 本発明におけるカーボン担体としては、特に、黒鉛を用いてよい。黒鉛は、天然黒鉛でも人造黒鉛でもよい。天然黒鉛は、塊状黒鉛、土状黒鉛、鱗片状黒鉛等を包含する。人造黒鉛は、任意のカーボン材料を黒鉛化した、黒鉛化カーボン等を包含する。本発明におけるカーボン担体は、黒鉛化カーボンの粒子であってよい。
 本発明におけるカーボン担体は、窒素を吸着質としてBET法によって測定した比表面積が、10m/g以上、20m/g以上、30m/g以上、40m/g以上、又は50m/g以上であってよく、100m/g以下、90m/g以下、80m/g以下、70m/g以下、又は60m/g以下であってよい。
 カーボン担体の比表面積は、例えば、10m/g以上100m/g以下であってよく、20m/g以上70m/g以下であってもよい。
 カーボン担体の粒径は、電子顕微鏡観察によって測定された個数平均の一次粒径として、5nm以上、10nm以上、20nm以上、30nm以上、又は50nm以上であってよく、500nm以下、300nm以下、200nm以下、又は100nm以下であってよい。
 カーボン担体の粒径は、燃料電池電極触媒について撮影された電子顕微鏡像に基づいて、等価直径の個数平均として計算することができる。なお、「等価直径」とは、測定対象図形の外周長さと等しい外周長さを有する正円の直径をいう。
 〈触媒金属粒子〉
 触媒金属粒子は、Pt又はPt合金から成り、カーボン担体に担持されている。
 触媒金属粒子がPt合金から成っているとき、該Pt合金は、
  Ptと、
  Ti、Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Hf、Ru、Ir、Pd、Os、及びRhから成る群から選択される1種又は2種以上の金属と
を含む合金であってよい。
 Pt合金は、典型的には、Pt-Fe合金、Pt-Co合金、又はPt-Ni合金であってよい。
 Pt合金中のPt原子の割合は、Pt合金中の金属原子のモル数の合計に対してPt原子のモル数が占める百分率として、50モル%以上、60モル%以上、70モル%以上、75モル%以上、80モル%以上、又は85モル%以上であってよく、99モル%以下、95モル%以下、90モル%以下、85モル%以下、80モル%以下、又は75モル%以下であってよい。
 触媒金属粒子の平均粒径は、5.0nm以下、4.5nm以下、4.0nm以下、3.5nm以下、3.0nm以下、又は2.5nm以下であってよく、1.0nm以上、1.5nm以上、2.0nm以上、又は2.5nm以上であってよい。平均粒径が5.0nm以下の触媒金属粒子は、ECSAが高い利点を有する。平均粒径が1.0nm以上の触媒金属粒子は、燃料電池を長期間稼働したときのECSAの維持性に優れる利点を有する。これらの利点は、本発明の燃料電池触媒をアノード(燃料極)に用いたときに、特に有利に発現する。
 触媒金属粒子の平均粒径は、例えば、2.0nm以上3.5nm以下であってよい。
 本発明の燃料電池電極触媒における触媒金属粒子の平均粒径は、燃料電池電極触媒の粉末XRD測定における回折ピークの線幅から、シェラー式によって算出することができる。例えば、触媒金属粒子がPt粒子である場合、触媒金属粒子の平均粒径は、燃料電池電極触媒の粉末XRD測定におけるPtの(220)面の回折ピークの線幅から、シェラー式によって算出されてよい。一方、触媒金属粒子がPt合金である場合、触媒金属粒子の平均粒径は、小角X線散乱又は透過型電子顕微鏡(TEM)によって算出されてよい。
 本発明の燃料電池電極触媒において、カーボン担体の単位表面積当たりの触媒金属粒子の個数は、4.3個/100nm以上16.0個/100nm以下である。上述したように、カーボン担体の単位表面積当たりの触媒金属粒子が多すぎると、カーボン担体の吸着活性点に保持されずに、カーボン担体への吸着が弱い触媒金属粒子が多くなって、触媒金属粒子の粗大化による触媒活性の低下が起こると考えられる。一方、カーボン担体の単位表面積当たりの触媒金属粒子が少なすぎると、カーボン担体上に、触媒金属粒子で保護されていない吸着活性点が多く残存して、カーボン担体が分解され易くなり、したがって、水素欠乏時にカーボン担体が劣化し易くなると考えられる。
 この観点から、カーボン担体の単位表面積当たりの触媒金属粒子の個数は、4.4個/100nm以上、4.5個/100nm以上、5.0個/100nm以上、6.0個/100nm以上、80.0個/100nm以上、10.0個/100nm以上、又は12.0個/100nm以上であってよく、15.0個/100nm以下、13.0個/100nm以下、11.0個/100nm以下、10.0個/100nm以下、8.0個/100nm以下、又は6.0個/100nm以下であってよい。
 カーボン担体の単位表面積当たりの触媒金属粒子の個数は、典型的には、6.0個/100nm以上10.0個/100nm以下であってよい。
 カーボン担体の単位表面積当たりの触媒金属粒子の個数は、触媒金属粒子の平均粒径と、カーボン担体の比表面積とから、算出される値であってよい。
 触媒金属粒子の担持密度、すなわち、カーボン担体の単位表面積当たりの触媒金属粒子の担持量(質量)は、6.0mg/m以上、6.5mg/m以上、7.0mg/m以上、8.0mg/m以上、10mg/m以上、12mg/m以上、又は15mg/m以上であってよく、25mg/m以下、22mg/m以下、20mg/m以下、18mg/m以下、15mg/m以下、12mg/m以下、又は10mg/m以下であってよい。
 触媒金属粒子の担持密度は、典型的には、6.5mg/m以上25.0mg/m以下であってよい。
 触媒金属粒子の担持率、すなわち、触媒金属粒子の単位質量当たりの触媒金属粒子の担持量(質量)は、3質量%以上、5質量%以上、10質量%以上、15質量%以上、20質量%以上、又は25質量%以上であってよく、75質量%以下、60質量%以下、50質量%以下、40質量%以下、又は35質量%以下であってよい。
 〈任意成分〉
 本発明の燃料電池電極触媒は、カーボン担体及び触媒金属粒子以外に、これら以外の任意成分を含んでいてもよい。本発明の燃料電池電極触媒に、含まれてもよい任意成分は、例えば、カーボン担体以外の炭素材料、Ir粒子、Ir・Ru合金粒子、Ir酸化物等から選択される、1種又は2種以上の成分であってよい。カーボン担体以外の炭素材料は、触媒金属粒子を担持していない炭素材料であり、例えば、黒鉛、炭素繊維、黒鉛化カーボンブラック、カーボンナノチューブ等から選択されてよい。
 《燃料電池電極触媒の製造方法》
 本発明の燃料電池電極触媒は、例えば、カーボン担体と触媒金属前駆体とを接触させること(前駆体接触工程)、及び触媒金属前駆体を還元して、カーボン担体上に触媒金属粒子を担持すること(担持工程)を含む方法によって、製造されてよい。
 触媒金属粒子がPt粒子であるときは、触媒金属前駆体としてPt前駆体を用い、適当な溶媒中で、カーボン担体とPt前駆体とを接触させた後、Pt前駆体を還元して、カーボン担体上にPt粒子を担持することにより、燃料電池電極触媒を得ることができる。
 使用されるカーボン担体は、所望の燃料電池電極触媒におけるカーボン担体に応じて、適宜選択して使用してよい。
 Pt前駆体は、溶媒可溶のPt化合物から適宜選択して使用してよい。Pt前駆体としては、例えば、PtCl、PtCl、PtBr、PtS、Pt(CN)、PtCl(NH(ジニトロジアンミン白金)等から適宜選択して使用してよい。
 溶媒は、使用するPt前駆体を溶解可能なものから選択して使用してよい。例えば、Pt前駆体が、PtClであるときには塩酸を使用してよく、PtBrであるときには臭化水素酸水溶液を使用してよく、PtCl(NHであるときには硝酸水溶液を使用してよく、PtCl、PtS、又はPt(CN)であるときには水を使用してよい。
 Pt前駆体の還元は、適当な還元剤を使用して行ってよい。還元剤は、例えば、エタノール、酢酸、アセトアルデヒド、水素化ホウ素ナトリウム、ヒドラジン等であってよい。還元は、10℃以上100℃以下の温度にて、0.5時間以上8時間以下の時間で行われてよい。還元温度は、還元剤として水素化ホウ素ナトリウムを用いる場合には、10℃以上50℃以下とすることが好ましく、還元剤は、エタノール、酢酸、アセトアルデヒド、又はヒドラジンを用いる場合には、60℃以上100℃以下とすることが好ましい。
 このようにして、カーボン担体上にPt粒子が担持された、燃料電池電極触媒が得られる。
 一方、触媒金属粒子がPt合金粒子であるときは、例えば、以下のいずれかの方法によって、燃料電池電極触媒を得ることができる。
 (1)Ptと合金金属とを順次に還元担持する方法(方法1):
  適当な溶媒中で、カーボン担体とPt前駆体とを接触させた後、Pt前駆体を還元し、カーボン担体上にPt粒子を担持して、Pt担持カーボンを得ること;
  適当な溶媒中で、Pt担持カーボンと合金金属前駆体とを接触させた後、合金金属前駆体を還元し、Pt担持カーボン上に合金金属粒子が担持された、Pt-合金金属担持カーボンを得ること;及び
  Pt-合金金属担持カーボンを加熱し、Ptと合金金属とを合金化することにより、カーボン担体上にPt合金粒子が担持された、燃料電池電極触媒を得ること。
 (2)Ptと合金金属とを同時に還元担持する方法(方法2):
  適当な溶媒中で、カーボン担体と、Pt前駆体及び合金金属前駆体とを接触させた後、Pt前駆体及び合金金属前駆体を還元して、カーボン担体上にPt粒子及び合金金属粒子が担持された、Pt-合金金属担持カーボンを得ること;
  Pt-合金金属担持カーボンを加熱して、Ptと合金金属とを合金化することにより、カーボン担体上にPt合金粒子が担持された、燃料電池電極触媒を得ること。
 本明細書において、「合金金属」とは、触媒金属粒子を構成するPt合金のうちの、Pt以外の金属を意味する。
 以下、触媒金属粒子がPt合金粒子である、燃料電池電極触媒を製造するための方法1及び方法2について、順に説明する。
 (1)カーボン担体上に、Ptと合金金属とを順次に担持する方法(方法1)
 方法1では、先ず、適当な溶媒中で、カーボン担体とPt前駆体とを接触させた後、Pt前駆体を還元し、カーボン担体上にPt粒子を担持して、Pt担持カーボンを得る。この工程は、触媒金属粒子がPt粒子であるときの、燃料電池電極触媒の製造と同様に行われてよい。
 次いで、適当な溶媒中で、得られたPt担持カーボンと合金金属前駆体とを接触させた後、合金金属前駆体を還元し、Pt担持カーボン上に合金金属粒子が担持された、Pt-合金金属担持カーボンを得る。
 合金金属前駆体は、所望の燃料電池電極触媒における合金金属の種類に応じて、適宜選択して使用してよい。合金金属前駆体は、所望の合金金属を含む、溶媒可溶の化合物から適宜選択して使用してよい。例えば、所望の合金金属の、水酸化物、塩化物、硫化物、硝酸塩、硫酸塩、酢酸塩等であってよい。
 溶媒は、使用する合金金属前駆体を溶解可能なものから選択して使用してよい。溶媒は、例えば、水であってよい。
 合金金属前駆体の還元は、適当な還元剤又は中和剤を使用して行ってよい。還元剤は、例えば、水素化ホウ素ナトリウム、ヒドラジン、水素ガス、ギ酸等であってよい。中和剤は、例えば、メタホウ酸ナトリウム、水酸化ナトリウム、炭酸ナトリウム、アンモニア等であってよい。
 還元剤を用いる還元は、10℃以上100℃以下の温度にて、0.5時間以上8時間以下の時間で行われてよい。還元温度は、還元剤として水素化ホウ素ナトリウムを用いる場合には、10℃以上50℃以下とすることが好ましく、還元剤は、エタノール、酢酸、アセトアルデヒド、又はヒドラジンを用いる場合には、60℃以上100℃以下とすることが好ましい。
 合金金属前駆体の還元において、中和剤を用いる場合には、Pt担持カーボン上に、合金金属が一旦1価以上の価数を有する状態で担持された後、加熱されることによって、還元されるとともにPtとの合金を形成するものと考えられる。中和剤を用いる還元は、60℃以上100℃以下の温度にて、0.5時間以上8時間以下の時間で行われてよい。
 このようにして、Pt担持カーボン上に合金金属粒子が担持された、Pt-合金金属担持カーボンが得られる。
 続いて、得られたPt-合金金属担持カーボンを加熱して、Ptと合金金属とを合金化することにより、炭素粉末担体上にPt合金粒子が担持された、燃料電池電極触媒が得られる。Ptと合金金属とを合金化するための加熱の条件については、方法(1)おける加熱の説明をそのまま適用してよい。
 以上のようにして、カーボン担体上にPt合金粒子が担持された、燃料電池電極触媒が得られる。
 本発明の燃料電池電極触媒媒は、例えば、上記の方法によって、又は上記の方法に当業者による適宜の変更を加えた方法によって、製造されてよい。
 《燃料電池のアノード》
 本発明の別の観点では、本発明の燃料電池電極触媒を含む触媒層を有する、燃料電池のアノードが提供される。
 アノードは、適当な基材層と、該基材層上の触媒層とを有していてよく、触媒層は、本発明の燃料電池電極触媒を含む。
 基材層は、燃料電池電極触媒及び溶媒、並びに電極形成時に好ましく行われる加熱処理、加圧処理等に耐え得る、化学的及び機械的な安定性を有するものから適宜選択して使用してよい。具体的には、例えば、ポリイミド、ポリエチレン、ポリプロピレン、ポリスルホン、ポリテトラフルオロエチレン等のシートを使用してよい。
 触媒層は、本発明の燃料電池電極触媒を含むが、これ以外に、アイオノマーを含んでいてよく、例えばバインダー等の任意成分を、更に含んでいてよい。アイオノマーは、例えば、ナフィオン(テトラフルオロエチレン系(共)重合体のスルホン化物)であってよい。
 《燃料電池電極接合体》
 本発明の更に別の観点では、上記のアノードを含む、燃料電池電極接合体が提供される。
 燃料電池電極接合体は、アノード、固体高分子電解質膜、及びカソードがこの順に積層させた構造を有していよく、アノードが、本発明の燃料電池電極触媒を含む電極であってよい。
 この燃料電池電極接合体における、固体高分子電解質膜及びカソードは、それぞれ、公知の固体高分子電解質膜及びカソードであってよい。
 本発明の燃料電池電極接合体は、アノードとして、本発明の燃料電池用電極触媒を含む電極を用いる他は、公知の方法により、製造されてよい。
 《燃料電池》
 本発明の更に別の観点では、上記の燃料電池電極接合体を含む、燃料電池が提供される。本発明の燃料電池は、固体高分子形燃料電池であってよい。
 本発明の燃料電池は、本発明の燃料電池電極接合体を含む。これ以外に、例えば、アノード側に、燃料チェネルを有していてよく、カソード側に、空気チャネル又は酸素チャネルを有していてよい。
 本発明の燃料電池は、アノードとして、本発明の燃料電池電極触媒を含む電極を用いる他は、公知の方法により、製造されてよい。
 《実施例1》
 (1)触媒の調製
 カーボン担体として、市販の黒鉛化カーボンブラック(東海カーボン(株)製、品名「トーカブラック#3845」)用いた。この黒鉛化カーボンブラックについて、窒素を吸着質としてBET法により測定した比表面積は、49m/gであった。
 上記の黒鉛化カーボンブラック1.0gを、純水49.4gに60質量%硝酸0.52gを加えた溶液中に加えて30分間撹拌し、分散液を得た。得られた分散液に、金属Pt0.33g相当量のジニトロジアンミン白金の硝酸溶液を加えて15分間撹拌した。その後、ここに、還元剤としてのエタノール7.63gを加えて15分間撹拌した後、90℃において2時間加熱撹拌することにより、Ptイオンを還元して、Pt粒子としてカーボンブラック上に析出させた。
 その後、反応系の温度が40℃以下になるまで撹拌下に放冷した後、固形分をろ取して回収した。
 回収した固形分を、60℃の純水1Lによる洗浄を繰り返した。洗浄は、ろ液の導電率が5μS/cm以下になるまで、繰り返し行った。
 洗浄後の固形分を、80℃において15時間乾燥した後、粉砕することにより、触媒粉末を得た。
 得られた触媒粉末について測定したXRD測定において、Ptの(220)面の回折ピークの線幅からシェラー式によって算出したPt粒子の平均粒径は、2.3nmであった。また、この平均粒径と、カーボン担体の比表面積とから、担体単位面積当たりのPt粒子数を算出した。
 (2)高電圧耐久試験用単セルの製造
 得られた触媒粉末をエタノール中に分散させた後、アイオノマーとしてのナフィオンを含む水分散液を添加し、超音波分散して、アノード触媒層形成用塗工液を調製した。得られたアノード触媒層形成用塗工液を、テフロン(登録商標)製のシートの片面上に塗布した後、乾燥して、シート上にアノード触媒層を形成した。
 上記の触媒粉末の代わりに、ケッツェンブラック(ケッチェン・ブラック・インターナショナル(株)製、品名「EC300」)上にPtを担持した触媒粉末を用いた他は、アノード触媒層形成用塗工液の調製と同様にして、カソード触媒層形成用塗工液を調製し、これを用いてシート上にカソード触媒層を形成した。このカソード触媒層に用いた触媒粉末中のPtの担持量は、触媒粉末の質量を基準として、30質量%出あった。
 高分子電解質膜の両面に、上記で得られたアノード触媒層及びカソード触媒層を有するテフロンシートを、触媒層形成面を対向させて積層し、ホットプレスによって転写した後、テフロンシートを剥離して、アノード触媒層、高分子電解質膜、及びカソード触媒層が、この順に積層された積層体を得た。次いで、各触媒層の表面上に拡散層を設置することにより、高電圧耐久試験用単セルを製造した。
 (3)高電圧耐久試験
 セル温度40℃、加湿度128%の環境下で、カソード側に水素を供給し、アノード側に窒素を供給しつつ、ポテンショスタット(北斗電工(株)製、型名「HZ-5000」)を用いて、1.8Vの電圧を4,400秒間印加した。上記セル条件下のCV測定により、高電圧耐久試験前後のECSA(電気化学活性面積)を測定した。
 《実施例2~7、並びに比較例1~4》
 カーボン担体の種類、及びジニトロジアンミン白金の使用量(金属Pt相当量)を、それぞれ、表1に記載のとおりとした他は、実施例1と同様にして、触媒粉末を調製し、これを用いて高電圧耐久試験用単セルを製造して、高電圧耐久試験を行った。
 《実施例8及び比較例5》
 実施例3で得られた触媒粉末をアルゴン気流中で熱処理したものを用いた他は、実施例1と同様にして、高電圧耐久試験用単セルを製造して、高電圧耐久試験を行った。熱処理の条件は、実施例8では250℃、2時間とし、比較例5では300℃、2時間とした。
 以上の実施例及び比較例の結果を表1に示す。また、各触媒における、カーボン担体の単位比表面積当たりのPt粒子の個数(個/100nm)と、耐久試験後のECSAとの関係を示すグラフを、図1に示す。更に、各触媒における、カーボン担体の単位比表面積当たりのPt粒子の個数(個/100nm)と、耐久試験後のECSA維持率との関係を示すグラフを、図2に示す。
 なお、比較例5については、高電圧耐久試験前のECSAの値が低かったため、以降の試験を行わなかった。
Figure JPOXMLDOC01-appb-T000001
 表1中のカーボン担体の種類の略所は、それぞれ、以下の意味である。
  #3845:トーカブラック#3845、東海カーボン(株)製、比表面積49m/g(BET法(N))
  FCX80:FCX80、CABOT社製、比表面積73m/g
  600JD:Ketjen600JD(ライオン・スペシャリティ・ケミカルズ(株)製、比表面積300m/g)を黒鉛化したもの
  Li435:
 また、表1中のジニトロジアンミン白金量の量は、金属Pt換算質量(g-Pt)として示した。
 表1、並びに図1及び図2から、以下のことが理解される。
 Ptの担持密度が6.0mg/m未満である比較例1~4の触媒は、高電圧耐久試験後にはECSAを有さなかった。
 これらに対して、Ptの担持密度が6.0mg/m以上16.0個/100nm以下の実施例1~8の触媒は、高電圧耐久試験後にも有意のECSAを示し、ECSA維持率が高く、優れた耐久性を示すことが検証された。特に、Pt粒子の平均粒径が6.0nm以下の実施例1~7の触媒は、高電圧耐久試験後のECSAが大きく、極めて優れた耐久性を示した。

Claims (12)

  1.  カーボン担体に、Pt又はPt合金から成る触媒金属粒子が担持されている、燃料電池電極触媒であって、
     前記カーボン担体の単位表面積当たりの前記触媒金属粒子の個数が、4.3個/100nm以上16.0個/100nm以下である、燃料電池電極触媒。
  2.  前記カーボン担体の単位表面積当たりの前記触媒金属粒子の個数が、6.0個/100nm以上10.0個/100nm以下である、請求項1に記載の燃料電池電極触媒。
  3.  前記触媒金属粒子の平均粒径が、5.0nm以下である、請求項1又は2に記載の燃料電池電極触媒。
  4.  前記触媒金属粒子の平均粒径が、2.0nm以上3.5nm以下である、請求項1~3のいずれか一項に記載の燃料電池電極触媒。
  5.  前記カーボン担体の単位表面積当たりの前記触媒金属粒子の担持量が、6.0mg/m以上である、請求項1~4のいずれか一項に記載の燃料電池電極触媒。
  6.  前記カーボン担体の単位表面積当たりの前記触媒金属粒子の担持量が、6.5mg/m以上25.0mg/m以下である、請求項5に記載の燃料電池電極触媒。
  7.  前記カーボン担体が、黒鉛化カーボンの粒子である、請求項1~6のいずれか一項に記載の燃料電池電極触媒。
  8.  前記カーボン担体の比表面積が、10m/g以上100m/g以下である、請求項1~7のいずれか一項に記載の燃料電池電極触媒。
  9.  前記カーボン担体の比表面積が、20m/g以上70m/g以下である、請求項8に記載の燃料電池電極触媒。
  10.  請求項1~9のいずれか一項に記載の燃料電池電極触媒を含む触媒層を有する、燃料電池のアノード。
  11.  請求項10に記載のアノードを含む、燃料電池電極接合体。
  12.  請求項11に記載の燃料電池電極接合体を含む、燃料電池。
PCT/JP2022/001183 2021-01-19 2022-01-14 燃料電池電極触媒 WO2022158395A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237016857A KR20230091951A (ko) 2021-01-19 2022-01-14 연료 전지 전극 촉매
EP22742517.0A EP4282528A1 (en) 2021-01-19 2022-01-14 Fuel cell electrode catalyst
CN202280010630.XA CN116745942A (zh) 2021-01-19 2022-01-14 燃料电池电极催化剂
US18/272,675 US20240097146A1 (en) 2021-01-19 2022-01-14 Fuel cell electrode catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021006426A JP7093860B1 (ja) 2021-01-19 2021-01-19 燃料電池電極触媒
JP2021-006426 2021-01-19

Publications (1)

Publication Number Publication Date
WO2022158395A1 true WO2022158395A1 (ja) 2022-07-28

Family

ID=82217741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001183 WO2022158395A1 (ja) 2021-01-19 2022-01-14 燃料電池電極触媒

Country Status (6)

Country Link
US (1) US20240097146A1 (ja)
EP (1) EP4282528A1 (ja)
JP (1) JP7093860B1 (ja)
KR (1) KR20230091951A (ja)
CN (1) CN116745942A (ja)
WO (1) WO2022158395A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0884930A (ja) 1994-09-16 1996-04-02 Tanaka Kikinzoku Kogyo Kk 白金担持触媒の製造方法
JP2003142112A (ja) 2001-10-31 2003-05-16 Tanaka Kikinzoku Kogyo Kk 高分子固体電解質形燃料電池の空気極用触媒及び該触媒の製造方法
JP2009009815A (ja) * 2007-06-28 2009-01-15 Toyota Central R&D Labs Inc 電極触媒基板及びその製造方法、並びに、固体高分子型燃料電池
JP2009152143A (ja) 2007-12-21 2009-07-09 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体および固体高分子形燃料電池用膜電極接合体の製造方法
JP2010089032A (ja) * 2008-10-09 2010-04-22 Jgc Catalysts & Chemicals Ltd 金属粒子担持触媒およびその製造方法
WO2017094648A1 (ja) * 2015-11-30 2017-06-08 国立大学法人山梨大学 カーボンブラック、それを用いた電極触媒及び燃料電池、並びにカーボンブラックの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0884930A (ja) 1994-09-16 1996-04-02 Tanaka Kikinzoku Kogyo Kk 白金担持触媒の製造方法
JP2003142112A (ja) 2001-10-31 2003-05-16 Tanaka Kikinzoku Kogyo Kk 高分子固体電解質形燃料電池の空気極用触媒及び該触媒の製造方法
JP2009009815A (ja) * 2007-06-28 2009-01-15 Toyota Central R&D Labs Inc 電極触媒基板及びその製造方法、並びに、固体高分子型燃料電池
JP2009152143A (ja) 2007-12-21 2009-07-09 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体および固体高分子形燃料電池用膜電極接合体の製造方法
JP2010089032A (ja) * 2008-10-09 2010-04-22 Jgc Catalysts & Chemicals Ltd 金属粒子担持触媒およびその製造方法
WO2017094648A1 (ja) * 2015-11-30 2017-06-08 国立大学法人山梨大学 カーボンブラック、それを用いた電極触媒及び燃料電池、並びにカーボンブラックの製造方法

Also Published As

Publication number Publication date
KR20230091951A (ko) 2023-06-23
CN116745942A (zh) 2023-09-12
JP2022110799A (ja) 2022-07-29
EP4282528A1 (en) 2023-11-29
JP7093860B1 (ja) 2022-06-30
US20240097146A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
JP5348658B2 (ja) 燃料電池電極素材用白金系合金触媒の製造方法
US7875569B2 (en) Supported catalyst, method for preparing the same, cathode electrode comprising the same, and fuel cell comprising the cathode electrode
EP3734728A1 (en) Catalyst, preparation method therefor, electrode comprising same, membrane-electrode assembly, and fuel cell
KR100868756B1 (ko) 백금/루테늄 합금 담지 촉매, 그 제조방법 및 이를 이용한연료전지
US20130149632A1 (en) Electrode catalyst for a fuel cell, method of preparing the same, and membrane electrode assembly and fuel cell including the electrode catalyst
JP2010027364A (ja) 燃料電池用電極触媒およびその製造方法
JP2008041253A (ja) 電極触媒およびそれを用いた発電システム
Uzundurukan et al. Carbon nanotube-graphene supported bimetallic electrocatalyst for direct borohydride hydrogen peroxide fuel cells
JP2016003396A (ja) コアシェル電極触媒のための安定なコアとしての合金ナノ粒子の合成
US10003084B2 (en) Metal nanoparticle-graphene composites and methods for their preparation and use
Thomas et al. Carbon nanotubes as catalyst supports for ethanol oxidation
WO2020059504A1 (ja) 燃料電池用アノード触媒層及びそれを用いた燃料電池
JP2006297355A (ja) 触媒およびその製造方法
WO2020059503A1 (ja) 燃料電池用アノード触媒層及びそれを用いた燃料電池
JP5706595B1 (ja) 酸素還元触媒、その用途およびその製造方法
JP6956851B2 (ja) 燃料電池用電極触媒及びそれを用いた燃料電池
WO2020059502A1 (ja) 燃料電池用アノード触媒層及びそれを用いた燃料電池
WO2022158395A1 (ja) 燃料電池電極触媒
JP4037814B2 (ja) 燃料電池用膜−電極接合体及び燃料電池
JPWO2009051111A1 (ja) 燃料電池用担持触媒及び燃料電池
JP7387948B1 (ja) 燃料電池電極触媒
WO2023068086A1 (ja) 水素燃料電池アノード用電極触媒
JP7432969B2 (ja) 電極材料、並びにこれを使用した電極、膜電極接合体及び固体高分子形燃料電池
JP7144378B2 (ja) 燃料電池触媒担体用の黒鉛化炭素多孔体、燃料電池触媒、及び燃料電池触媒層の製造方法
WO2020059501A1 (ja) 燃料電池用アノード触媒層及びそれを用いた燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237016857

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18272675

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280010630.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022742517

Country of ref document: EP

Effective date: 20230821